Science.gov

Sample records for electrically-small conformal antenna

  1. Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas.

    PubMed

    Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping

    2015-01-01

    Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu's limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices.

  2. Conformal Pad-Printing Electrically Conductive Composites onto Thermoplastic Hemispheres: Toward Sustainable Fabrication of 3-Cents Volumetric Electrically Small Antennas

    PubMed Central

    Wu, Haoyi; Chiang, Sum Wai; Yang, Cheng; Lin, Ziyin; Liu, Jingping; Moon, Kyoung-Sik; Kang, Feiyu; Li, Bo; Wong, Ching Ping

    2015-01-01

    Electrically small antennas (ESAs) are becoming one of the key components in the compact wireless devices for telecommunications, defence, and aerospace systems, especially for the spherical one whose geometric layout is more closely approaching Chu’s limit, thus yielding significant bandwidth improvements relative to the linear and planar counterparts. Yet broad applications of the volumetric ESAs are still hindered since the low cost fabrication has remained a tremendous challenge. Here we report a state-of-the-art technology to transfer electrically conductive composites (ECCs) from a planar mould to a volumetric thermoplastic substrate by using pad-printing technology without pattern distortion, benefit from the excellent properties of the ECCs as well as the printing-calibration method that we developed. The antenna samples prepared in this way meet the stringent requirement of an ESA (ka is as low as 0.32 and the antenna efficiency is as high as 57%), suggesting that volumetric electronic components i.e. the antennas can be produced in such a simple, green, and cost-effective way. This work can be of interest for the development of studies on green and high performance wireless communication devices. PMID:26317999

  3. Electrically small, complementary electric-field-coupled resonator antennas

    NASA Astrophysics Data System (ADS)

    Odabasi, H.; Teixeira, F. L.; Guney, D. O.

    2013-02-01

    We study the radiation properties of electrically small resonant antennas (ka <1) composed of electric-field-coupled (ELC) and complementary electric-field-coupled (CELC) resonators and a monopole antenna. We use such parasitic ELC and CELC "metaresonators" to design various electrically small antennas. In particular, monopole-excited and bent-monopole-excited CELC resonator antennas are proposed that provide very low profiles on the order of λ0/20. We compare the performance of the proposed ELC and CELC antennas against more conventional designs based upon split-ring resonators.

  4. A tunable spherical cap microfluidic electrically small antenna.

    PubMed

    Jobs, Magnus; Hjort, Klas; Rydberg, Anders; Wu, Zhigang

    2013-10-11

    A highly efficient microfluidic 3D electrically small antenna is created using a simple fabrication technique. It is easy to construct simply by pneumatically inflating a planar microfluidic antenna into a spherical cap. It has premium performance around its hemispherical shape, combining a wide working band with high efficiency.

  5. Biologically-inspired, electrically small antenna arrays

    NASA Astrophysics Data System (ADS)

    Masoumi, Amir Reza

    First, the motivation behind adding a passive external coupling network after antenna arrays is discussed, the concept of biomimetic antenna arrays (BMAAs) introduced and some of the previous work done in this area have been reviewed. Next, a BMAA which achieves an angular resolution of roughly 15 times its regular counterpart is introduced and fully characterized. The introduced BMAA employs transformers which considerably degrade its performance, namely its output power. To cicumvent this shortcoming a new architecture of a BMAA that does not employ transformers and therefore yields a higher output power for the same angular resolution has been subsequently presented. Moreover, a detailed noise analysis of this BMAA is carried out and the output noise of the new architecture is compared with the output noise of the original design. The modified twoelement BMAA architecture is then extended to multiple elements. A novel nonlinear optimization process is introduced that maximizes the total power captured by the BMAA for a given angular resolution and the concept illustrated for a three-element antenna array. Next an optimum two-element BMAA which achieves the maximum possible angular resolution while obtaining the same output power level of a regular antenna array with the same elements and spacing is introduced. A novel two-element superdirective array based on this optimum BMAA has been also discussed. The passive BMAAs discussed in this thesis have a relatively narrow bandwidth. To extend the bandwidth of BMAAs, non- Foster networks have been employed in their external coupling networks and it has been demonstrated that they can increase their bandwidth by a factor of roughly 33. Finally, the BMAA concept has been extended to nano-antenna arrays and a concept for designing sub-wavelength angle-sensing detectors at optical wavelengths has been introduced.

  6. Efficiency of electrically small antennas combined with matching networks

    NASA Technical Reports Server (NTRS)

    Smith, G. S.

    1977-01-01

    In applications where electrically small antennas are necessary and transmitter power is limited, the system efficiency may be a critical parameter in determining the feasibility of the system. The principle of conservation of energy is used to determine the efficiency of an antenna combined with a matching network composed of elements with finite quality factors. It is shown that conditions for maximum efficiency can be met by using a simple L section as the matching network. Illustrative examples concern a cryogenic loop antenna and a ferrite loaded loop antenna.

  7. 2-SR-based electrically small antenna for RFID applications

    NASA Astrophysics Data System (ADS)

    Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Zamora, Gerard; Martin, Ferran; Bonache, Jordi

    2016-04-01

    In this work, the 2-turn spiral resonator (2-SR) is proposed as an electrically small antenna for passive radio frequency identification (RFID) tags at the European ultra-high frequency (UHF) band. The radiation properties are studied in order to explore the viability of the 2-SR applied to tag antenna design. Based on analytical calculations, the radiation pattern is found to provide a cancelation of the radiation nulls. This results in a mitigation of the blind spots in the read range, which are present in typical UHF-RFID tags as an undesired feature. As a proof of concept, a passive tag of size 35 mm × 40 mm (λ 0/10 × λ 0/9) based on the 2-SR antenna is designed and fabricated. Good radiation efficiency (75 %) and a quasi-isotropic radiation pattern are obtained. The experimental tag read range for different directions is in good agreement with the simulation results. The measured read range exhibits maximum and minimum values of 6.7 and 3.5 m, respectively.

  8. Thin magnetic conductor substrate for placement-immune, electrically-small antennas.

    SciTech Connect

    Eubanks, Travis Wayne; McDonald, Jacob J.; Loui, Hung

    2011-09-01

    An antenna is considered to be placement-immune when the antenna operates effectively regardless of where it is placed. By building antennas on magnetic conductor materials, the radiated fields will be positively reinforced in the desired radiation direction instead of being negatively affected by the environment. Although this idea has been discussed thoroughly in theoretical research, the difficulty in building thin magnetic conductor materials necessary for in-phase field reflections prevents this technology from becoming more widespread. This project's purpose is to build and measure an electrically-small antenna on a new type of non-metallic, thin magnetic conductor. This problem has not been previously addressed because non-metallic, thin magnetic conductor materials have not yet been discovered. This work proposed the creation of an artificial magnetic conductor (AMC) with in-phase field reflections without using internal electric conductors, the placement of an electrically-small antenna on this magnetic conductor, and the development of a transmit-receive system that utilizes the substrate and electrically-small antenna. By not using internal electric conductors to create the AMC, the substrate thickness can be minimized. The electrically-small antenna will demonstrate the substrate's ability to make an antenna placement immune, and the transmit-receive system combines both the antenna and the substrate while adding a third layer of system complexity to demonstrate the complete idea.

  9. Conformal array antenna subsystem

    NASA Astrophysics Data System (ADS)

    1985-04-01

    An antenna subsystem to communicate between Ariane 4 and a data relay satellite was studied, concluding that the original ideas on ring antennas should be corrected due to the wide margin of coverage required in elevation for such antennas, which implies the need of splitting the coverage. Nevertheless, the study of cylindrical and conical conformal arrays was continued in view of their intrinsic interest. Needed coverages with specified gain can be obtained with a set of microstrip circular patch antennas. For the lower stage, a single patch is enough. For geostationary missions, one horizontal array is used, and for heliosynchronous missions two horizontal arrays and a vertical one. The numerical study carried out on omniazimuthal ring antennas shows that a tendency to omnidirectional pattern exists in spite of the directivity of the elementary radiators. A small pointing improvement of the meridian pattern can be obtained by means of conical arrays instead of the cylindrical ones.

  10. Electrically Small Microstrip Quarter-Wave Monopole Antennas

    NASA Technical Reports Server (NTRS)

    Young, W. Robert

    2004-01-01

    Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects

  11. Novel Electrically Small Antennas and Metamaterial High Impedance Surfaces

    DTIC Science & Technology

    2005-12-01

    much higher in the b=90’, which can be attributed to the mirror-image symmetry of the current distribution [6]. 4, 8- Peene Antenna Pflno Antena Hibet...dm 1OW l0*M Yogi AM& pmpandkmW to the I -hm pki St Space (dswr between $FC Yagi Uda kAtnna L•ot 4 SWC YA9 Ude Antena Layout 3 EIUrofte w4 Vo Am mMel

  12. Aircraft antennas/conformal antennas missile antennas

    NASA Astrophysics Data System (ADS)

    Solbach, Klaus

    1987-04-01

    Three major areas of airborne microwave antennas are examined. The basic system environment for missile telemetry/telecommand and fuze functions is sketched and the basic antenna design together with practical examples are discussed. The principle requirements of modern nose radar flat plate antennas are shown to result from missile/aircraft system requirements. Basic principles of slotted waveguide antenna arrays are sketched and practical antenna designs are discussed. The present early warning system designs are sketched to point out requirements and performance of practical radar warning and jamming antennas (broadband spiral antennas and horn radiators). With respect to newer developments in the ECM scenario, some demonstrated and proposed antenna systems (lens fed arrays, phased array, active array) are discussed.

  13. Efficient Radiation by Electrically Small Antennas made of Coupled Split-ring Resonators

    PubMed Central

    Peng, Liang; Chen, Peiwei; Wu, Aiting; Wang, Gaofeng

    2016-01-01

    In this paper, coupled split-ring resonators (SRRs) are used to construct the electrically small antennas. We show that through strong magnetic coupling, the coupled SRRs composite can oscillate at a wavelength much larger than its total size. Due to its magnetic dipole feature, the coupled SRRs composite allows the electromagnetic (EM) power to radiate and hence forms the electrically small antenna (ESA). Because of the high-Q resonance, the ESA could be easily matched to the driving circuit in the microwave region, through mutual induction approach. We also demonstrate that the radiation efficiency of such ESAs can be drastically improved if the current distribution on individual SRRs is similar, which is achievable by carefully designing the ESAs. From our simulations and experimental measurements, the ESAs’ radiation efficiency can reach up to 41%, with relative footprint of 0.05λ0 × 0.05λ0. Our approach would be an effective way to realize ESAs with high efficiency, which can be implemented on chip through the standard planar lithography. PMID:27630076

  14. Efficient Radiation by Electrically Small Antennas made of Coupled Split-ring Resonators

    NASA Astrophysics Data System (ADS)

    Peng, Liang; Chen, Peiwei; Wu, Aiting; Wang, Gaofeng

    2016-09-01

    In this paper, coupled split-ring resonators (SRRs) are used to construct the electrically small antennas. We show that through strong magnetic coupling, the coupled SRRs composite can oscillate at a wavelength much larger than its total size. Due to its magnetic dipole feature, the coupled SRRs composite allows the electromagnetic (EM) power to radiate and hence forms the electrically small antenna (ESA). Because of the high-Q resonance, the ESA could be easily matched to the driving circuit in the microwave region, through mutual induction approach. We also demonstrate that the radiation efficiency of such ESAs can be drastically improved if the current distribution on individual SRRs is similar, which is achievable by carefully designing the ESAs. From our simulations and experimental measurements, the ESAs’ radiation efficiency can reach up to 41%, with relative footprint of 0.05λ0 × 0.05λ0. Our approach would be an effective way to realize ESAs with high efficiency, which can be implemented on chip through the standard planar lithography.

  15. Conformal Antenna Array Design Handbook

    DTIC Science & Technology

    1981-09-01

    PLANAR ARRAY PHASE C LbP=IowITH CORRECT CONFORMAL ARRAY PHASE C NbPt NOe OF PhS&. SH-IFT UITSPII- NoP*.GT*1O CONRCLT PHASES ARE USED C TAP19PATTLRN...of Antenna Arrays, Radio Science , Vol. 3, May 1968, pp. 401-522. M. T. Ma, "Theory and Application of Antenna Arrays", Wiley, New York, 1974, Chapter

  16. The Study and Implementation of Electrically Small Printed Antennas for an Integrated Transceiver Design

    SciTech Connect

    Speer, Pete

    2009-04-28

    This work focuses on the design and evaluation of the inverted-F, meandering-monopole, and loop antenna geometries. These printed antennas are studied with the goal of identifying which is suitable for use in a miniaturized transceiver design and which has the ability to provide superior performance using minimal Printed Circuit Board (PCB) space. As a result, the main objective is to characterize tradeoffs and identify which antenna provides the best compromise among volume, bandwidth and efficiency. For experimentation purposes, three types of meandering-monopole antenna are examined resulting in five total antennas for the study. The performance of each antenna under study is evaluated based upon return loss, operational bandwidth, and radiation pattern characteristics. For our purposes, return loss is measured using the S11-port reflection coefficient which helps to characterize how well the small antenna is able to be efficiently fed. Operational bandwidth is measured as the frequency range over which the antenna maintains 2:1 Voltage Standing Wave Ratio (VSWR) or equivalently has 10-dB return loss. Ansoft High Frequency Structure Simulator (HFSS) is used to simulate expected resonant frequency, bandwidth, VSWR, and radiation pattern characteristics. Ansoft HFSS simulation is used to provide a good starting point for antenna design before actual prototype are built using an LPKF automated router. Simulated results are compared with actual measurements to highlight any differences and help demonstrate the effects of antenna miniaturization. Radiation characteristics are measured illustrating how each antenna is affected by the influence of a non-ideal ground plane. The antenna with outstanding performance is further evaluated to determine its maximum range of communication. Each designs range performance is evaluated using a pair of transceivers to demonstrate round-trip communication. This research is intended to provide a knowledge base which will help

  17. Hemispherical coil electrically small antenna made by stretchable conductors printing and plastic thermoforming

    NASA Astrophysics Data System (ADS)

    Wu, Zhigang; Jobs, Magnus; Rydberg, Anders; Hjort, Klas

    2015-02-01

    A production scalable technique is presented to make hemispherical coil antennas by using a stretchable printed silver paste conductor and plastic thermoforming. To ease the fabrication process an unbalanced feed-structure was designed for solderless mounting on conductive materials. The manufactured antenna had a resonance frequency of 2.467 GHz with a reflection coefficient of -33.8 dB. The measured and simulated radiation patterns corresponded to that of monopole structure and the measured efficiency was 40%.

  18. Wideband embedded/conformal antenna subsystem concept

    NASA Astrophysics Data System (ADS)

    Smalanskas, Joseph P.; Valentine, Gary W.; Wolfson, Ronald I.

    1991-10-01

    The concept for a wideband, embedded/conformal antenna subsystem is presented. A multilayer radome not only protects the antenna from hostile environments, but also is designed to sustain aircraft dynamic loading. The radiating element consists of a planar, dual- flared slot capable of high-performance, multioctave operation. Advanced materials are currently being developed to enhance the low profile and efficient, wideband performance of the radiating element.

  19. Scattering and radiation from cylindrically conformal antennas

    NASA Astrophysics Data System (ADS)

    Kempel, Leo Charles

    Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observability over more conventional protruding antennas. Two hybrid finite element methods are presented and are used to examine the scattering and radiation behavior of cylindrically conformal patches. In conjunction with a new divergence-free cylindrical shell element, the finite element-boundary integral method is shown to have low computational and memory requirements when compared with competing approaches. This method uses an efficient creeping wave series for the computation of the dyadic Green's function and a uniform surface mesh so that a fast Fourier transform may be used to reduce the computational and memory burden of the method. An alternative finite element-absorbing boundary condition approach incorporates a new conformal vector condition which minimizes the computational domain. The latter method is more flexible than the former because it can incorporate surface coatings and protruding antennas. Guidelines are established for minimal ABC displacement from the aperture. These two hybrid finite element methods are used to study the scattering, radiation, and input impedance of typical conformal antenna arrays. In particular, the effect of curvature and cavity size is examined for both discrete and wraparound antenna arrays.

  20. Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1999-01-01

    Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.

  1. Closely Coupled Multi-Mode Radiators: A New Concept for Improving the Perfomance of Electrically Small Antennas

    DTIC Science & Technology

    2015-11-23

    vol. 53, no. 7, pp. 2185–2192, Jul. 2005. [6] N. Behdad, M. Al-Joumayly, and M. Salehi , “Ultra-wideband low pro- file antenna,” US 8,228,251. [7] A...and M. Salehi , “Ultra-wideband low profile antenna,” U.S. Patent 8,228,251, Jul. 24, 2012. [7] A. Elsherbini and K. Sarabandi, “Very low-profile top

  2. Closely Coupled Multi-Mode Radiators: A New Concept for Improving the Performance of Electrically Small Antennas

    DTIC Science & Technology

    2012-04-01

    experimentally verify the effect of asymmetry on improving the omni-directionality. Asymmetric coupled loop antenna on  PEC ground. P1 LL CC P2 Ls Zo Zh Zh ( f...phase shifter in (a).(Here, Zo = 50 Ω, Zh = 115 Ω, Ls = 50 mm, L = 23 nH, and C = 3.3 pF.) Fig. 4. Simulated and measured VSWR of the antenna combined...antenna in Fig. 1 obtained by feeding its two ports using the ideal feed network shown in the inset. P1 LL CC P2 Ls Ls Zo Zh Zh (a) (b) 0.5 1.0 1.5

  3. PROCEEDINGS OF THE ECOM-ARO WORKSHOP ON ELECTRICALLY SMALL ANTENNAS, 6 AND 7 MAY 1976, FORT MONMOUTH, NEW JERSEY

    DTIC Science & Technology

    1976-10-01

    antennia? and (Z) what arc the EM fie)ds induced in the operator’s body and their pussible biological ;•" i C~~eflects 7 All investigation of the...currents alnd EM fields inl a radiating stysteml . • l’ .’T i ~ ~consisting cf the smiall auutenna coupled with a biological boldy i.4 llct~i-iisary it)l...8217 f ] anlswer these quetitio ns. -I 2Consider ai thin-wire antenna of radius "a" located in free space adjaccnt to a conducting biological bod) having

  4. Radiation and scattering from cylindrically conformal printed antennas

    NASA Astrophysics Data System (ADS)

    Kempel, Leo C.; Volakis, John L.

    1994-04-01

    Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observables over more conventional protruding antennas. These flat patch antennas were first proposed over thirty years ago by Deschamps in the United States and Gutton and Baisinot in France. Such antennas have been analyzed and developed for planar as well as curved platforms. However, the methods used in these designs employ gross approximations, suffer from extreme computational burden, or require expensive physical experiments. The goal of this thesis is to develop accurate and efficient numerical modeling techniques which represent actual antenna structures mounted on curved surfaces with a high degree of fidelity. In this thesis, the finite element method is extended to cavity-backed conformal antenna arrays embedded in a circular, metallic, infinite cylinder. Both the boundary integral and absorbing boundary mesh closure conditions will be used for terminating the mesh. These two approaches will be contrasted and used to study the scattering and radiation behavior of several useful antenna configurations. An important feature of this study will be to examine the effect of curvature and cavity size on the scattering and radiation properties of wraparound conformal antenna arrays.

  5. The conical conformal MEMS quasi-end-fire array antenna

    NASA Astrophysics Data System (ADS)

    Cong, Lin; Xu, Lixin; Li, Jianhua; Wang, Ting; Han, Qi

    2017-03-01

    The microelectromechanical system (MEMS) quasi-end-fire array antenna based on a liquid crystal polymer (LCP) substrate is designed and fabricated in this paper. The maximum radiation direction of the antenna tends to the cone axis forming an angle less than 90∘, which satisfies the proximity detection system applied at the forward target detection. Furthermore, the proposed antenna is fed at the ended side in order to save internal space. Moreover, the proposed antenna takes small covering area of the proximity detection system. The proposed antenna is fabricated by using the flexible MEMS process, and the measurement results agree well with the simulation results. This is the first time that a conical conformal array antenna is fabricated by the flexible MEMS process to realize the quasi-end-fire radiation. A pair of conformal MEMS array antennas resonates at 14.2 GHz with its mainlobes tending to the cone axis forming a 30∘ angle and a 31∘ angle separately, and the gains achieved are 1.82 dB in two directions, respectively. The proposed antenna meets the performance requirements for the proximity detection system which has vast application prospects.

  6. Thin conformal antenna array for microwave power conversions

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  7. Conformal Antenna and Array Design Using Novel Electronic Materials

    DTIC Science & Technology

    2010-03-31

    4. Miniature conformal spirals on textured/ metamaterial ferrite substrates (middle) to replace traditional blade antennas that protrude nearly...waves (as photonic crystal modes) in textured or layered dielectric media ( metamaterials ). Of importance is that these modes are non- reflecting at...low loss ferrites within the substrate of the printed coupled lines will significantly enhance bandwidth and radiation. A concept that includes

  8. A finite element-boundary integral method for conformal antenna arrays on a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.; Woo, Alex C.; Yu, C. Long

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This is due to the lack of rigorous mathematical models for conformal antenna arrays, and as a result the design of conformal arrays is primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. Herewith we shall extend this formulation for conformal arrays on large metallic cylinders. In this we develop the mathematical formulation. In particular we discuss the finite element equations, the shape elements, and the boundary integral evaluation, and it is shown how this formulation can be applied with minimal computation and memory requirements. The implementation shall be discussed in a later report.

  9. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  10. Conformal Load-Bearing Antenna Structure for Australian Defence Force Aircraft

    DTIC Science & Technology

    2007-03-01

    while the F/A-18 has over 70. Large antenna structures , such as reflecting dishes or planar arrays, are usually housed in fairings or radomes ...manufacturing issues related to incorporating antenna into glass fibre/ ceramic structural armour [24]. A.2.4 USAF The goals of USAF CLAS programs have been...Conformal Load-Bearing Antenna Structure for Australian Defence Force Aircraft Paul J. Callus Air Vehicles Division Defence Science and

  11. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    NASA Astrophysics Data System (ADS)

    Djidel, S.; Bouamar, M.; Khedrouche, D.

    2016-04-01

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  12. Radiation and scattering from cylindrically conformal printed antennas. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1994-01-01

    Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observables over more conventional protruding antennas. These flat patch antennas were first proposed over thirty years ago by Deschamps in the United States and Gutton and Baisinot in France. Such antennas have been analyzed and developed for planar as well as curved platforms. However, the methods used in these designs employ gross approximations, suffer from extreme computational burden, or require expensive physical experiments. The goal of this thesis is to develop accurate and efficient numerical modeling techniques which represent actual antenna structures mounted on curved surfaces with a high degree of fidelity. In this thesis, the finite element method is extended to cavity-backed conformal antenna arrays embedded in a circular, metallic, infinite cylinder. Both the boundary integral and absorbing boundary mesh closure conditions will be used for terminating the mesh. These two approaches will be contrasted and used to study the scattering and radiation behavior of several useful antenna configurations. An important feature of this study will be to examine the effect of curvature and cavity size on the scattering and radiation properties of wraparound conformal antenna arrays.

  13. Characteristics of a Linearly Tapered Slot Antenna (LTSA) Conformed Longitudinally Around a Cylinder

    NASA Technical Reports Server (NTRS)

    Jordan, Jennifer L.; Ponchak, George E.; Tavassolian, Negar; Tentzeris, Manos M.

    2007-01-01

    The family of tapered slot antennas (TSA s) is suitable for numerous applications. Their ease of fabrication, wide bandwidth, and high gain make them desirable for military and commercial systems. Fabrication on thin, flexible substrates allows the TSA to be conformed over a given body, such as an aircraft wing or a piece of clothing for wearable networks. Previously, a Double Exponentially Tapered Slot Antenna (DETSA) was conformed around an exponential curvature, which showed that the main beam skewed towards the direction of curvature. This paper presents a Linearly Tapered Slot Antenna (LTSA) conformed longitudinally around a cylinder. Measured and simulated radiation patterns and the direction of maximum H co-polarization (Hco) as a function of the cylinder radius are presented.

  14. Designing of a small wearable conformal phased array antenna for wireless communications

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless communications is presented. The antenna system is comprised of one microstrip antenna array and a sensor circuit. A 1x4 printed microstrip patch antenna array was designed on a flexible substrate with a resonant frequency of 2.47 GHz. However, the performance of the antenna starts to degrade as the curvature of the surface of the substrate changes. To recover the performance of the system, a flexible sensor circuitry was designed. This sensor circuitry uses analog phase shifters, a flexible resistor and operational-amplifier circuitry to compensate the phase of each array element of the antenna. The proposed analytical method for phase compensation has been first verified by designing an RF test platform consisting of a microstrip antenna array, commercially available analog phase shifters, analog voltage attenuators, 4-port power dividers and amplifiers. The platform can be operated through a LabVIEW GUI interface using a 12-bit digital-to-analog converter. This test board was used to design and calibrate the sensor circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In particular, this phased array antenna system was designed to be used on the surface of a spacesuit or any other flexible prototype. This work was supported in part by the Defense Miroelectronics Activity (DMEA), NASA ND EPSCoR and DARPA/MTO.

  15. Simulation of Conformal Spiral Slot Antennas on Composite Platforms

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Nurnberger, M. W.; Ozdemir,T.

    1998-01-01

    During the course of the grant, we wrote and distributed about 12 reports and an equal number of journal papers supported fully or in part by this grant. The list of reports (title & abstract) and papers are given in Appendices A and B. This grant has indeed been instrumental in developing a robust hybrid finite element method for the analysis of complex broadband antennas on doubly curved platforms. Previous to the grant, our capability was limited to simple printed patch antennas on mostly planar platforms. More specifically: (1) mixed element formulations were developed and new edge-based prisms were introduced; (2) these elements were important in permitting flexibility in geometry gridding for most antennas of interest; (3) new perfectly matched absorbers were introduced for mesh truncations associated with highly curved surfaces; (4) fast integral algorithms were introduced for boundary integral truncations reducing CPU time from O(N-2) down to O(N-1.5) or less; (5) frequency extrapolation schemes were developed for efficient broadband performance evaluations. This activity has been successfully continued by NASA researchers; (6) computer codes were developed and extensively tested for several broadband configurations. These include FEMA-CYL, FEMA-PRISM and FEMA-TETRA written by L. Kempel, T. Ozdemir and J. Gong, respectively; (7) a new infinite balun feed was designed nearly constant impedance over the 800-3000 MHz operational band; (8) a complete slot spiral antenna was developed, fabricated and tested at NASA Langley. This new design is a culmination of the projects goals and integrates the computational and experimental efforts. this antenna design resulted in a U.S. patent and was revised three times to achieve the desired bandwidth and gain requirements from 800-3000 MHz.

  16. Radiation and scattering from printed antennas on cylindrically conformal platforms

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.; Bindiganavale, Sunil

    1994-01-01

    The goal was to develop suitable methods and software for the analysis of antennas on cylindrical coated and uncoated platforms. Specifically, the finite element boundary integral and finite element ABC methods were employed successfully and associated software were developed for the analysis and design of wraparound and discrete cavity-backed arrays situated on cylindrical platforms. This work led to the successful implementation of analysis software for such antennas. Developments which played a role in this respect are the efficient implementation of the 3D Green's function for a metallic cylinder, the incorporation of the fast Fourier transform in computing the matrix-vector products executed in the solver of the finite element-boundary integral system, and the development of a new absorbing boundary condition for terminating the finite element mesh on cylindrical surfaces.

  17. Phase-compensated metasurface for a conformal microwave antenna

    NASA Astrophysics Data System (ADS)

    Germain, Dylan; Seetharamdoo, Divitha; Nawaz Burokur, Shah; de Lustrac, André

    2013-09-01

    The in-phase radiation from a conformal metamaterial surface is numerically and experimentally reported. The LC-resonant metasurface is composed of a simultaneously capacitive and an inductive grid constituted by copper strips printed on both sides of a dielectric board. The metasurface is designed to fit a curved surface by modifying its local phase. The latter phase-compensated metasurface is used as a reflector in a conformal Fabry-Pérot resonant cavity designed to operate at microwave frequencies. Far-field measurements performed on a fabricated prototype allow showing the good performances of such a phase-compensated metasurface in restoring in-phase emissions from the conformal surface and producing a directive emission in the desired direction.

  18. Analysis of microstrip antennas on a curved surface using the conformal grids FD-TD method

    NASA Astrophysics Data System (ADS)

    Fukai, Ichiro; Onishi, Teruo; Kashiwa, Tatsuya

    1994-03-01

    The need for small, potable antennas for mobile communications has recently spurred the study of microstrip antennas (MSA). MSA are quite flexible and have been used as conformal antennas on arbitrary curved surfaces. The characteristics of conformal MSA can be expected to differ from those of planar models. Dependable numerical analyses will obviate many of the costs and other inconveniences associated with experiments, but as antennas may be mounted on the surfaces of arbitrary topological complexity, analysis methods must have as general applicability as possible. The curvilinear finite difference time-domain (FD-TD) method has shown excellent versatility. In this paper, the curvilinear FD-TD method is applied to analyze microstrip antennas mounted on curved surfaces. The numerical predictions are compared with the experimental values. The results confirm the predictions within acceptable limits and appear to confirm the validity of the method. As a result, it was confirmed that the input impedance and directivity of MSA on curved surfaces are different from the flat MSA.

  19. An investigation of conformable antennas for the astronaut backpack communication system

    NASA Technical Reports Server (NTRS)

    Long, Stuart A.; Jackson, David R.; Williams, Jeffery T.; Wilton, Donald R.

    1988-01-01

    During periods of extravehicular activity it is obviously important that communication and telemetry systems continue to function independently of the astronaut. A system of antennas must therefore be designed that will provide the necessary isotropic coverage using circular polarization over both the transmit and receive frequency bands. To avoid the inherent physical limitations to motion that would be incurred with any sort of protruding antenna, it is necessary that the radiator be essentially flush-mounted or conformable to the structure on which it is attached. Several individual antenna elements are needed for the desired coverage. Both the particular elements chosen and their location determine the ultimate radiation pattern of the overall system. For these reasons a two-fold research plan was undertaken. First, individual elements were investigated and designed. Then various mounting locations were considered and the radiation patterns were predicted taking into account the effects of the astronaut's backpack.

  20. Conformal doping of topographic silicon structures using a radial line slot antenna plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru

    2014-06-01

    Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.

  1. Characteristics of Double Exponentially Tapered Slot Antenna (DETSA) Conformed in the Longitudinal Direction Around a Cylindrical Structure

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Chevalier, Christine T.

    2006-01-01

    The characteristics of a double exponentially tapered slot antenna (DETSA) as a function of the radius that the DETSA is conformed to in the longitudinal direction is presented. It is shown through measurements and simulations that the radiation pattern of the conformed antenna rotates in the direction through which the antenna is curved, and that diffraction affects the radiation pattern if the radius of curvature is too small or the frequency too high. The gain of the antenna degrades by only 1 dB if the radius of curvature is large and more than 2 dB for smaller radii. The main effect due to curving the antenna is an increased cross-polarization in the E-plane.

  2. Shaping and resizing of multifed slot radiators used in conformal microwave antenna arrays for hyperthermia treatment of large superficial diseases.

    PubMed

    Maccarini, Paolo F; Arunachalam, Kavitha; Juang, Titania; De Luca, Valeria; Rangarao, Sneha; Neumann, Daniel; Martins, Carlos Daniel; Craciunescu, Oana; Stauffer, Paul R

    2009-01-01

    It has been recently shown that chestwall recurrence of breast cancer and many other superficial diseases can be successfully treated with the combination of radiation, chemotherapy and hyperthermia. Conformal microwave antenna array for hyperthermia treatment of large area superficial diseases can significantly increase patient comfort while at the same time facilitate treatment of larger and more irregularly shaped disease. A large number of small efficient antennas is preferable for improved control of heating, as the disease can be more accurately contoured and the lower power requirement correlates with system reliability, linearity and reduced cost. Thus, starting from the initially proposed square slot antennas, we investigated new designs for multi-fed slot antennas of several shapes that maximize slot perimeter while reducing radiating area, thus increasing antenna efficiency. Simulations were performed with commercial electromagnetic simulation software packages (Ansoft HFSS) to demonstrate that the antenna size reduction method is effective for several dual concentric conductor (DCC) aperture shapes and operating frequencies. The theoretical simulations allowed the development of a set of design rules for multi-fed DCC slot antennas that facilitate conformal heat treatments of irregular size and shape disease with large multi-element arrays. Independently on the shape, it is shown that the perimeter of 10cm at 915 MHz delivers optimal radiation pattern and efficiency. While the maximum radiation is obtained for a circular pattern the rectangular shape is the one that feels more efficiently the array space.

  3. Antennas.

    DTIC Science & Technology

    1980-09-15

    experimentally shown that tae same range properti-; possesses the multiturn helical antenna wita tee contrary ccil/winding. In contr to the spiral with the one...Characteristics off Mul~iturn Cyclindrical Helical Antennas with Counter Winding, by 0. A. Yurtsev ....... 233 U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION...value of load within sufficiently wide limits. Page 68. LEAKY- PIPE ANTENNA WITH TaZ PAS.li EtlITTEPS. Conclusion/output of fundamental principles. Fig

  4. Energy flow in the cryptophyte PE545 antenna is directed by bilin pigment conformation.

    PubMed

    Curutchet, Carles; Novoderezhkin, Vladimir I; Kongsted, Jacob; Muñoz-Losa, Aurora; van Grondelle, Rienk; Scholes, Gregory D; Mennucci, Benedetta

    2013-04-25

    Structure-based calculations are combined with quantitative modeling of spectra and energy transfer dynamics to detemine the energy transfer scheme of the PE545 principal light-harvesting antenna of the cryptomonad Rhodomonas CS24. We use a recently developed quantum-mechanics/molecular mechanics (QM/MM) method that allows us to account for pigment-protein interactions at atomic detail in site energies, transition dipole moments, and electronic couplings. In addition, conformational flexibility of the pigment-protein complex is accounted for through molecular dynamics (MD) simulations. We find that conformational disorder largely smoothes the large energetic differences predicted from the crystal structure between the pseudosymmetric pairs PEB50/61C-PEB50/61D and PEB82C-PEB82D. Moreover, we find that, in contrast to chlorophyll-based photosynthetic complexes, pigment composition and conformation play a major role in defining the energy ladder in the PE545 complex, rather than specific pigment-protein interactions. This is explained by the remarkable conformational flexibility of the eight bilin pigments in PE545, characterized by a quasi-linear arrangement of four pyrrole units. The MD-QM/MM site energies allow us to reproduce the main features of the spectra, and minor adjustments of the energies of the three red-most pigments DBV19A, DBV19B, and PEB82D allow us to model the spectra of PE545 with a similar quality compared to our original model (model E from Novoderezhkin et al. Biophys. J.2010, 99, 344), which was extracted from the spectral and kinetic fit. Moreover, the fit of the transient absorption kinetics is even better in the new structure-based model. The largest difference between our previous and present results is that the MD-QM/MM calculations predict a much smaller gap between the PEB50/61C and PEB50/61D sites, in better accord with chemical intuition. We conclude that the current adjusted MD-QM/MM energies are more reliable in order to explore the

  5. Size reduction and radiation pattern shaping of multi-fed DCC slot antennas used in conformal microwave array hyperthermia applicators.

    PubMed

    Maccarini, Paolo F; Arunachalam, Kavitha; Martins, Carlos D; Stauffer, Paul R

    2009-02-23

    The use of conformal antenna array in the treatment of superficial diseases can significantly increase patient comfort while enhancing the local control of large treatment area with irregular shapes. Originally a regular square multi-fed slot antenna (Dual Concentric Conductor - DCC) was proposed as basic unit cell of the array. The square DCC works well when the outline of the treatment area is rectangular such as in the main chest or back area but is not suitable to outline diseases spreading along the armpit and neck area. In addition as the area of the patch increases, the overall power density decreases affecting the efficiency and thus the ability to deliver the necessary thermal dose with medium power amplifier (<50W). A large number of small efficient antennas is preferable as the disease is more accurately contoured and the lower power requirement for the amplifiers correlates with system reliability, durability, linearity and overall reduced cost. For such reason we developed a set of design rules for multi-fed slot antennas with irregular contours and we implemented a design that reduce the area while increasing the perimeter of the slot, thus increasing the antenna efficiency and the power density. The simulation performed with several commercial packages (Ansoft HFSS, Imst Empire, SemcadX and CST Microwave Studio) show that the size reducing method can be applied to several shapes and for different frequencies. The SAR measurements of several DCCs are performed using an in-house high resolution scanning system with tumor equivalent liquid phantom both at 915 MHz for superficial hyperthermia systems in US) and 433 MHz (Europe). The experimental results are compared with the expected theoretical predictions and both simulated and measured patterns of single antennas of various size and shapes are then summed in various combinations using Matlab to show possible treatment irregular contours of complex diseases. The local control is expected to

  6. Size reduction and radiation pattern shaping of multi-fed DCC slot antennas used in conformal microwave array hyperthermia applicators

    PubMed Central

    Maccarini, Paolo F.; Arunachalam, Kavitha; Martins, Carlos D.; Stauffer, Paul R.

    2013-01-01

    The use of conformal antenna array in the treatment of superficial diseases can significantly increase patient comfort while enhancing the local control of large treatment area with irregular shapes. Originally a regular square multi-fed slot antenna (Dual Concentric Conductor - DCC) was proposed as basic unit cell of the array. The square DCC works well when the outline of the treatment area is rectangular such as in the main chest or back area but is not suitable to outline diseases spreading along the armpit and neck area. In addition as the area of the patch increases, the overall power density decreases affecting the efficiency and thus the ability to deliver the necessary thermal dose with medium power amplifier (<50W). A large number of small efficient antennas is preferable as the disease is more accurately contoured and the lower power requirement for the amplifiers correlates with system reliability, durability, linearity and overall reduced cost. For such reason we developed a set of design rules for multi-fed slot antennas with irregular contours and we implemented a design that reduce the area while increasing the perimeter of the slot, thus increasing the antenna efficiency and the power density. The simulation performed with several commercial packages (Ansoft HFSS, Imst Empire, SemcadX and CST Microwave Studio) show that the size reducing method can be applied to several shapes and for different frequencies. The SAR measurements of several DCCs are performed using an in-house high resolution scanning system with tumor equivalent liquid phantom both at 915 MHz for superficial hyperthermia systems in US) and 433 MHz (Europe). The experimental results are compared with the expected theoretical predictions and both simulated and measured patterns of single antennas of various size and shapes are then summed in various combinations using Matlab to show possible treatment irregular contours of complex diseases. The local control is expected to

  7. Antenna Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix

    2007-01-01

    This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed.

  8. Antenna Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed.

  9. Strain powered antennas

    NASA Astrophysics Data System (ADS)

    Domann, John P.; Carman, Greg P.

    2017-01-01

    This paper proposes the creation of strain powered antennas that radiate electromagnetic energy by mechanically vibrating a piezoelectric or piezomagnetic material. A closed form analytic model of electromagnetic radiation from a strain powered electrically small antenna is derived and analyzed. Fundamental scaling laws and the frequency dependence of strain powered antennas are discussed. The radiation efficiency of strain powered electrically small antennas is contrasted with a conventional electric dipole. Analytical results show that operating at the first mechanical resonance produces the most efficient strain powered radiation relative to electric dipole antennas. A resonant analysis is exploited to determine the material property space that produces efficient strain powered antennas. These results show how a properly designed strain powered antenna can radiate more efficiently than an equally sized electric dipole antenna.

  10. Broadband Ground Penetrating Radar with conformal antennas for subsurface imaging from a rover

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Oden, C. P.; Grimm, R. E.; Ragusa, M.

    2015-12-01

    Ground-Penetrating Radar (GPR) allows subsurface imaging to provide geologic context and will be flown on the next two martian rovers (WISDOM on ExoMars and RIMFAX on Mars 2020). The motivation of our research is to minimize the engineering challenges of mounting a GPR antenna to a spacecraft, while maximizing the scientific capabilities of the GPR. The scientific capabilities increase with the bandwidth as it controls the resolution. Furthermore, ultra-wide bandwidth surveys allow certain mineralogies and rock units to be discriminated based on their frequency-dependent EM or scattering properties. We have designed and field-tested a prototype GPR that utilizes bi-static circularly polarized spiral antennas. Each antenna has a physical size of 61 x 61 x 4 cm, therefore two antennas could be mounted to the underbelly of a MSL-class rover. Spiral antennas were chosen because they have an inherent broadband response and provide a better low frequency response compared with similarly sized linearly polarized antennas. A horizontal spiral radiator emits energy both upward and downward directions. After the radiator is mounted to a metal surface (i.e. the underside of a rover), a cavity is formed that causes the upward traveling energy to reverberate and cause unwanted interference. This interference is minimized by 1) using a high metallization ratio on the spiral to reduce cavity emissions, and 2) placing absorbing material inside the cavity. The resulting antennas provide high gain (0 to 8 dBi) from 200 to 1000 MHz. The low frequency response can be improved by increasing the antenna thickness (i.e., cavity depth). In an initial field test, the antennas were combined with impulse GPR electronics that had ~140 dB of dynamic range (not including antennas) and a sand/clay interface 7 feet deep was detected. To utilize the full bandwidth the antennas, a gated Frequency Modulated Continuous Waveform system will be developed - similar to RIMFAX. The goal is to reach a

  11. Conformal Dielectric-Filled Edge-Slot Antennas for Bodies of Revolution

    DTIC Science & Technology

    1977-09-01

    surface of the body and, for certain applications, is better than cavity-backed slot, microstrip or patch antennas. A modified version of the antenna, a...involving bodies of revolution require directive beams at a prescribed angle relative to the axis of the body. This requirement can be met easily by...analytical study of the edge-slot antena ia currently underway,* but definitive results are not yet available. However, two empirical models, which explain

  12. Antennae

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 7' x 7' on the sky of the interacting galaxies NGC 4038 and NGC 4039, better known as the Antennae, or Ring Tail galaxies. The two galaxies are engaged in a tug-of-war as they collide. The mutual gravitation between them is working to distort each spiral galaxy's appearance as the two merge. The interaction is evidently impetus for an intense burst of new star formation, as can be seen from the many infrared-bright knots and bright galactic nuclei. Compare the 2MASS view of this system with that obtained by the Hubble Space Telescope in the optical. Many of the same features are seen, although 2MASS is able to peer through much of the dust seen in the galaxies' disks. The galaxy light looks smoother. Also, in the near-infrared the bright knots of star formation are likely highlighted by the light of massive red supergiant stars. The much more extended 'tidal tails,' which give the Antennae their name, are quite faint in the 2MASS image mosaic.

  13. Conformal dual-band textile antenna with metasurface for WBAN application

    NASA Astrophysics Data System (ADS)

    Giman, Fatin Nabilah; Soh, Ping Jack; Jamlos, Mohd Faizal; Lago, Herwansyah; Al-Hadi, Azremi Abdullah; Abdulmalek, Mohamedfareq; Abdulaziz, Nidhal

    2017-01-01

    This paper presents the design of a dual-band wearable planar slotted dipole integrated with a metasurface. It operates in the 2.45 GHz (lower) and 5.8 GHz (upper) bands and made fully using textiles to suit wireless body area network applications. The metasurface in the form of an artificial magnetic conductor (AMC) plane is formed using a rectangular patch incorporated with a diamond-shaped slot to generate dual-phase response. This plane is then integrated with the planar slotted dipole antenna prior to its assessment in free space and bent configurations. Simulations and measurements indicated a good agreement, and the antenna featured an impedance bandwidth of 164 and 592 MHz in the lower and upper band, respectively. The presence of the AMC plane also minimized the backward radiation toward the human body and enhanced realized gains by up to 3.01 and 7.04 dB in the lower and upper band.

  14. Analysis of cylindrical wrap-around and doubly conformal patch antennas by way of the finite element-artificial absorber method

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Kempel, L. C.; Sliva, R.; Wang, H. T. G.; Woo, A. G.

    1994-01-01

    The goal of this project was to develop analysis codes for computing the scattering and radiation of antennas on cylindrically and doubly conformal platforms. The finite element-boundary integral (FE-BI) method has been shown to accurately model the scattering and radiation of cavity-backed patch antennas. Unfortunately extension of this rigorous technique to coated or doubly curved platforms is cumbersome and inefficient. An alternative approximate approach is to employ an absorbing boundary condition (ABC) for terminating the finite element mesh thus avoiding use of a Green's function. A FE-ABC method is used to calculate the radar cross section (RCS) and radiation pattern of a cavity-backed patch antenna which is recessed within a metallic surface. It is shown that this approach is accurate for RCS and antenna pattern calculations with an ABC surface displaced as little as 0.3 lambda from the cavity aperture. These patch antennas may have a dielectric overlay which may also be modeled with this technique.

  15. Highly adaptive RF excitation scheme based on conformal resonant CRLH metamaterial ring antennas for 7-Tesla traveling-wave magnetic resonance imaging.

    PubMed

    Erni, Daniel; Liebig, Thorsten; Rennings, Andreas; Koster, Norbert H L; Fröhlich, Jürg

    2011-01-01

    We propose an adaptive RF antenna system for the excitation (and manipulation) of the fundamental circular waveguide mode (TE(11)) in the context of high-field (7T) traveling-wave magnetic resonance imaging (MRI). The system consists of composite right-/left-handed (CRLH) meta-material ring antennas that fully conforms to the inner surface of the MRI bore. The specific use of CRLH metamaterials is motivated by its inherent dispersion engineering capabilities, which is needed when designing resonant ring structures for virtually any predefined diameter operating at the given Larmor frequency (i.e. 298 MHz). Each functional group of the RF antenna system consists of a pair of subsequently spaced and correspondingly fed CRLH ring antennas, allowing for the unidirectional excitation of propagating, circularly polarized B(1) mode fields. The same functional group is also capable to simultaneously mold an incoming, counter-propagating mode. Given these functionalities we are proposing now a compound scheme (i.e. periodically arranged multiple antenna pairs)--termed as "MetaBore"--that is apt to provide a tailored RF power distribution as well as full wave reflection compensation virtually at any desired location along the bore.

  16. Antenna applications of superconductors

    NASA Astrophysics Data System (ADS)

    Hansen, R. C.

    1991-09-01

    The applicability of superconductors to antennas is examined. Potential implementations that are examined are superdirective arrays; electrically small antennas; tuning and matching of these two; high-gain millimeter-wavelength arrays; and kinetic inductance slow wave structures for array phasers and traveling wave array feeds. It is thought that superdirective arrays and small antennas will not benefit directly, but their tuning/matching networks will undergo major improvements. Miniaturization of antennas will not be aided, but much higher gain millimeter-wave arrays will be realizable. Kinetic inductance slow-wave lines appear advantageous for improved array phasers and time delay, as well as for traveling-wave array feeds.

  17. A True Metasurface Antenna

    PubMed Central

    Badawe, Mohamed El; Almoneef, Thamer S.; Ramahi, Omar M.

    2016-01-01

    We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately. PMID:26759177

  18. Electrically small resonators for energy harvesting in the infrared regime

    NASA Astrophysics Data System (ADS)

    AlShareef, Mohammed R.; Ramahi, Omar M.

    2013-12-01

    A novel structure based on electrically small resonators is proposed for harvesting the infrared energy and yielding more than 80% harvesting efficiency. The dispersion effect of the dielectric and conductor materials of the resonators is taken into account by applying the Drude model. A new scheme to channel the infrared waves from an array of split ring resonators is proposed, whereby a wide-bandwidth collector is utilized by employing this new channeling concept.

  19. High-temperature superconductor antenna investigations

    NASA Astrophysics Data System (ADS)

    Karasack, Vincent G.

    1990-10-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  20. High-temperature superconductor antenna investigations

    NASA Technical Reports Server (NTRS)

    Karasack, Vincent G.

    1990-01-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  1. X-Antenna: A graphical interface for antenna analysis codes

    NASA Technical Reports Server (NTRS)

    Goldstein, B. L.; Newman, E. H.; Shamansky, H. T.

    1995-01-01

    This report serves as the user's manual for the X-Antenna code. X-Antenna is intended to simplify the analysis of antennas by giving the user graphical interfaces in which to enter all relevant antenna and analysis code data. Essentially, X-Antenna creates a Motif interface to the user's antenna analysis codes. A command-file allows new antennas and codes to be added to the application. The menu system and graphical interface screens are created dynamically to conform to the data in the command-file. Antenna data can be saved and retrieved from disk. X-Antenna checks all antenna and code values to ensure they are of the correct type, writes an output file, and runs the appropriate antenna analysis code. Volumetric pattern data may be viewed in 3D space with an external viewer run directly from the application. Currently, X-Antenna includes analysis codes for thin wire antennas (dipoles, loops, and helices), rectangular microstrip antennas, and thin slot antennas.

  2. High-temperature superconductor antennas - Utilization of low RF losses and of nonlinear effects

    NASA Astrophysics Data System (ADS)

    Chaloupka, H.

    1992-08-01

    Novel antenna structures based on the low radio frequency (RF) losses in epitaxial high temperature superconductor (HTS) thin films are discussed. Antenna structures under consideration include (1) electrically small and superdirective antennas and (2) high directive mm-wave arrays. The geometric size of antennas with radiation pattern characterized by a low order of spherical harmonics can be considerably reduced without efficiency degradation. The limit in size reduction can be determined by the required frequency bandwidth. Particular attention is given to experimental results for electrically small microstrip HTS antennas including H-antenna and a novel meander antenna; a novel frequency-selective antenna system; and implementation of HTS switches that takes advantage of the nonlinear HTS properties and may replace semiconductor switches in antenna systems.

  3. Conformal Impulse Receive Antenna Arrays

    DTIC Science & Technology

    2007-11-02

    equations then becomes the integro - differential equation )26()()(’)’()’( 1 ’)’()’( 0 2 02 0 2...air-dielectric interface and backed by a perfectly conducting plane. We obtained an integro - differential equation for the surface current density on...multi-element array requires that we solve a certain integro - differential equation for the surface current density on the array. This equation

  4. Configurable Conformal Impulse Receive Antenna

    DTIC Science & Technology

    2005-04-01

    anisotropic conductors” and “band gap” patterns to improve performance (bandwidth, compactness , impedance, dispersion and phase centering, tenability...Ozkar and A. Mortazawi, “ Analysis and design of an inhomogeneous transformer with hard wall waveguide section," IEEE Microwave and Guided Wave Letters...advanced target analysis , and the eventual application context may limit the array size, then we chose the option of solving for dispersion by means

  5. Metamaterials and Conformal Antenna Technologies

    DTIC Science & Technology

    2013-03-01

    1.0 MET AMA TERIALS BASED OPTICAL COMPONENTS .............................................. ...... 2 1.1 Superresolution Imaging Using a 3D...several entirely new optical components including superlenses with superresolution imaging, and lenses that achieve superfocussing, using...metamaterials. 1.1 SUPERRESOLUTION IMAGING USING A 3D MET AMA TERIAL NANOLENS Superresolution imaging beyond Abbe’s diffraction limit can be achieved by

  6. A survey of possible passive antenna applications of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Dinger, Robert J.; Bowling, Donald R.; Martin, Anna M.

    1991-09-01

    A survey of possible applications of high-temperature superconductors (HTSs) to antennas and antenna feed networks is presented. The frequency range considered is 1 MHz to 100 GHz. Three antenna application areas seem appropriate for HTS material: electrically small antennas and their matching networks; feed and matching networks for compact arrays with enhanced directive gain (superdirective arrays); and feed networks for millimeter-wave arrays. Preliminary experimental results are presented on YBaCuO and TBaCaCuO 500 MHz half-loop antennas that show an increase in radiation efficiency (compared with a copper antenna at the same temperature) by a factor of 5 for the HTS antennas.

  7. Experimental demonstration of superdirective dielectric antenna

    SciTech Connect

    Krasnok, Alexander E.; Filonov, Dmitry S.; Belov, Pavel A.; Simovski, Constantin R.; Kivshar, Yuri S.

    2014-03-31

    We propose and demonstrate experimentally a simple approach for achieving superdirectivity of emitted radiation for electrically small antennas based on a spherical dielectric resonator with a notch excited by a dipole source. Superdirectivity is achieved without using complex antenna arrays and for a wide range of frequencies. We also demonstrate the steering effect for a subwavelength displacement of the source. Finally, unlike previously known superdirective antennas, our design has significantly smaller losses, at the operation frequency radiation efficiency attains 80%, and matching holds in the 3%-wide frequency band without any special matching technique.

  8. Advanced MMW antenna system for hypervelocity interceptors

    SciTech Connect

    Newman, G.; Bryanos, J.; Gale, J.; Harris, M.; Shui, Ven; Monk, V.; Mullins, J. U.S. Army, Missile Command, Redstone Arsenal, Huntsville, AL )

    1992-05-01

    Application of conformal surface wave antennas for RF homing systems on endo-atmospheric interceptors is considered. Conformal apertures near the base of the interceptor are employed to generate orthogonal, steerable fan beams for target aquisition and tracking with minimal incursion of the internal interceptor volume. Measured patterns demonstrate the viability of the antenna concept.

  9. Tri-band small monopole antenna based on SRR units

    NASA Astrophysics Data System (ADS)

    Shehata, Gehan; Mohanna, Mahmoud; Rabeh, Mohammed Lotfy

    2015-12-01

    In this paper a novel design for a tri-band monopole antenna coupled with metamaterial units is introduced. The proposed antenna was designed to cover WiMAX (2.5, 3.5) and WLAN (5.2) bands. In our proposal, a coplanar waveguide (CPW) fed circular-disk monopole antenna is coupled with three split ring resonator (SRR) units which exist on its back side. In our design a monopole antenna and SRR units are designed first to resonate at 5.2 GHz and 2.5 GHz respectively. In addition, antenna is loaded with post to force resonance at 3.5 GHz. SRR units are used for 2.5 GHz resonance to miniaturize antenna size, and our proposed antenna considered an electrically small antenna (ESA) at its first resonance frequency. Simulated and measured results exhibit a good agreement that validate our design.

  10. Superconducting matching networks in monopole antennas. Final report, 1 Aug 89-31 Jul 91

    SciTech Connect

    Piatnicia, A.Y.; Talisa, S.H.; Buckley, M.J.; Gavaler, J.R.; Janocko, M.A.

    1991-08-01

    The goals of this program were to demonstrate the performance advantages of UHF Super Directive Array using a monopole antenna matching network made of high temperature superconducting (HTS) material over a monopole antenna matching network made of gold and to demonstrate the feasibility of using HTS material matching networks to feed a two element electrically small superdirective monopole array. In both cases only the matching networks were made of HTS material. The radiators were made of silver, copper, and steel. The electrically small monopole antenna and the electrically small element monopole antenna array were operated in the UHF band because the need exists for a high efficiency electrically small array operating in the UHF range as part of a multispectral seeker of an air-to-air missile. To date no antenna system consisting of electrically small conventional metal monopole radiators and HTS material matching networks has been demonstrated. An electrically small superdirective monopole array with superconducting matching networks is a candidate for use in an air-to-air missile as part of a multispectral seeker. The seeker must have a multispectral capability in order to successfully engage advanced Low Observable aircraft and missiles. The air-to-air missile guidance is initially provided by a surveillance and control aircraft.

  11. Design and development of a conformal load-bearing smart skin antenna: overview of the AFRL Smart Skin Structures Technology Demonstration (S3TD)

    NASA Astrophysics Data System (ADS)

    Lockyer, Allen J.; Alt, Kevin H.; Coughlin, Daniel P.; Durham, Michael D.; Kudva, Jayanth N.; Goetz, Allan C.; Tuss, James

    1999-07-01

    Documented herein is a review of progress for the recently completed 'Smart Skin Structure Technology Demonstration' (S3TD) contract number F33615-93-C-3200 performed by Northrop Grumman Corporation, Hawthorne, California and TRW/ASD, Rancho Bernardo, San Diego, California under the Air Force Research Laboratory, Flight Dynamics Directorate, Structures Division's direction and sponsorship. S3TD was conceived as the first serious attempt, to made a complex antenna become a bone fide aircraft structural panel, without loss of overall structural integrity or electrical performance. The program successfully demonstrated the design, fabrication, and structural validation of a load bearing multifunction antenna component panel subjected to realistic aircraft flight load conditions. The final demonstration article was a structurally effective 36 by 36 inch curved multifunction antenna component panel that withstood running loads of 4,000 pounds per inch, and principal strain levels of 4,700 microstrain. Testing the structural component to ultimate, the panel failed at the predicted limit of 148 kips equating to 150 percent design limit load, after successfully completing one lifetime of fatigue. The load conditions were representative of a mid-fuselage F-18 class fighter component panel installation. The panel was designed not to buckle at ultimate failure, and the dominant failure mode was face sheet pull off, as predicted. Structural test data correlated closely with analysis. Wide band electrical performance for the component antenna panel was validated using anechoic chamber measurements and near field probing techniques, covering avionics communication navigation and identification and electronic warfare functions in the 0.15 to 2.2 GHz frequency regimes.

  12. Breakthroughs In Low-Profile Leaky-Wave HPM Antennas

    DTIC Science & Technology

    2014-09-18

    wave apertures under investigation, promising substantially-improved conformability and application to curved, interrupted, and/or irregular platform...Microwaves (HPM) Antennas. Low-profile Conformal Antennas. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME...Sidewall-Emitting Antenna Double- or triple-curved aperture customized to conform to part or all of an ogive (nose cone). BAWSEA* Bent Aperture

  13. Structural finite-element modeling strategies for conformal load-bearing antenna structure (CLAS) (Air Force contract F33615-C-93-3200)

    NASA Astrophysics Data System (ADS)

    Lockyer, Allen J.; Alt, Kevin H.; Kudva, Jayanth N.; Kinslow, Robert W.; Goetz, Allan C.

    1997-06-01

    As the Wright Lab Air Force military contrast `Smart Skin Structures Technology Demonstration' (S3TD) Contract No. F33615-C-93-3200 draws toward conclusion, pertinent features of the program finite element modeling are presented. Analysis was performed to predict the structural performance of a complex multilayered composite panel that will be tested structurally (and electrically) for the final program deliverable. Application of finite element modeling to predict component load path and strain distribution in sandwich panel construction has been reported elsewhere in the literature for more standard applications. However, the unauthordox sandwich configuration lay-up posed by the quite revolutionary S3TD CLAS aircraft fuselage panel demonstration article merits further discussion. Difficulties with material selection, the stumbling block for many programs, are further exacerbated by conflicting material properties required to support simultaneous electrical and structural performance roles. The structural analysis challenge derives from S3TD's unique program goal, namely, to investigate load bearing antennas structural configurations, rather than conventional structurally inefficient `bolt in' installations, that have been the modus operandi for tactical aircraft antenna installations to date. Discussed below is a cost saving strategy where use of linear finite element analysis has been employed in the prediction of key structural parameters, and validated with risk reduction sub panel measurements, before proceeding to the final fabrication of a full scale 36 by 36 inch CLAS panel demonstration article.

  14. Deployable antenna

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)

    2006-01-01

    A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.

  15. User Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Cramer, Paul

    1990-01-01

    The following subject areas are covered: (1) impact of frequency change of user and spacecraft antenna gain and size; (2) basic personal terminal antennas (impact of 20/30 GHz frequency separation; parametric studies - gain, size, weight; gain and figure of merit (G/T); design data for selected antenna concepts; critical technologies and development goals; and recommendations); and (3) user antenna radiation safety concerns.

  16. Reconfigurable antenna pattern verification

    NASA Technical Reports Server (NTRS)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  17. Investigating a horizontal helical antenna for use in the phantom monopole configuration

    NASA Astrophysics Data System (ADS)

    LeMieux, Mattison

    A phantom monopole was successfully simulated using wire loop antennas prior to this thesis work. These wire loop antennas have an undesirable input impedance, making them difficult to match and implement in physical building. A new type of antenna needs to be found that has a more desirable impedance while still maintaining the same near magnetic field and far field radiation pattern. The research done for this problem focused on a horizontally placed helical antenna. There is little research done on a horizontally placed helical antenna. The fact that there isn't information readily available meant that many different parameters of this antenna were investigated. A normal mode helical antenna was chosen because of its size and impedance. A helical antenna is an electrically small antenna, like the wire loop antenna, with an improved impedance compared to the wire loop. The work done not only dealt with computer simulation of the helical antenna, but also physical building of the antenna. The physical testing was done in order to get real world data and to support the computer modeling of the phantom monopole. Through testing and simulations, it was found that a horizontally placed helical antenna provided an alternative to the wire loop antenna originally used. By placing the helical antenna horizontally, the near magnetic field and far field radiation pattern mimicked those found in the original wire loop configuration. This means the phantom monopole is recreated using a new type of antenna that has an improved input impedance.

  18. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Paschen, D.; Pieper, B. V.

    1985-01-01

    Antenna designs applicable to future satellite mobile vehicle communications are examined. Microstrip disk, quadrifilar helix, cylindrical microstrip, and inverted V and U crossed-dipole low gain antennas (3-5 dBic) that provide omnidirectional coverage are described. Diagrams of medium gain antenna (9-12 dBic) concepts are presented; the antennas are classified into three types: (1) electronically steered with digital phase shifters; (2) electronically switched with switchable power divider/combiner; and (3) mechanically steered with motor. The operating characteristics of a conformal antenna with electronic beam steering and a nonconformal design with mechanical steering are evaluated with respect to isolation levels in a multiple satellite system. Vehicle antenna pointing systems and antenna system costs are investigated.

  19. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Pieper, B. V.; Mckenna, D. B.

    1985-01-01

    The RF performance, size, pointing system, and cost were investigated concepts are: for a mechanically steered 1 x 4 tilted microstrip array, a mechanically steered fixed-beam conformal array, and an electronically steered conformal phased array. Emphasis is on the RF performance of the tilted 1 x 4 antenna array and methods for pointing the various antennas studied to a geosynchronous satellite. An updated version of satellite isolations in a two-satellite system is presented. Cost estimates for the antennas in quantities of 10,000 and 100,000 unites are summarized.

  20. Active antenna

    NASA Technical Reports Server (NTRS)

    Sutton, John F. (Inventor)

    1994-01-01

    An antenna, which may be a search coil, is connected to an operational amplifier circuit which provides negative impedances, each of which is in the order of magnitude of the positive impedances which characterize the antenna. The antenna is connected to the inverting input of the operational amplifier; a resistor is connected between the inverting input and the output of the operational amplifier; a capacitor-resistor network, in parallel, is connected between the output and the noninverting input of the operational amplifier; and a resistor is connected from the noninverting input and the circuit common. While this circuit provides a negative resistance and a negative inductance, in series, which appear, looking into the noninverting input of the operational amplifier, in parallel with the antenna, these negative impedances appear in a series loop with the antenna positive impedances, so as to algebraically add. This circuit is tuned by varying the various circuit components so that the negative impedances are very close, but somewhat less, in magnitude, to the antenna impedances. The result is to increase the sensitivity of the antenna by lowering its effective impedance. This, in turn, increases the effective area of the antenna, which may be broadband.

  1. Some potential antenna applications of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Dinger, Robert J.

    1990-09-01

    A review of possible applications of high temperature superconductors (HTS) to antennas and antenna feed networks is presented. The frequency range of consideration is 1 MHz to 100 GHz. Three antenna application areas seem appropriate for HTS material. (1) Electrically small antennas and their matching networks: an increase in efficiency is possible for electrically short antennas, but at the expense of bandwidth. Substantial radiated power levels (on the order of kilowatts) can be handled by the best HTS material. Substantial improvement may be realized by making only the matching network of HTS material. (2) Feed and matching networks for compact arrays with enhanced directive gain (superdirective arrays): HTS material should permit such arrays to be fabricated that have high efficiency. (3) Feed networks for millimeter-wave arrays: Low-loss feed networks using HTS microstrip transmission lines give many decibels improvement in gain.

  2. Adjoint sensitivity analysis of an ultrawideband antenna

    SciTech Connect

    Stephanson, M B; White, D A

    2011-07-28

    The frequency domain finite element method using H(curl)-conforming finite elements is a robust technique for full-wave analysis of antennas. As computers become more powerful, it is becoming feasible to not only predict antenna performance, but also to compute sensitivity of antenna performance with respect to multiple parameters. This sensitivity information can then be used for optimization of the design or specification of manufacturing tolerances. In this paper we review the Adjoint Method for sensitivity calculation, and apply it to the problem of optimizing a Ultrawideband antenna.

  3. Notch Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  4. Breakthroughs in Low-Profile Leaky-Wave HPM Antennas

    DTIC Science & Technology

    2015-03-18

    Conformal Antennas. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON (Monitor...quarter included: (1) our presentation of “Advances in Low-Profile Leaky- Wave Conformable Antennas for HPM Applications” at the 17 th Annual Directed...that we recommend to fit typical cylindrical apertures. So we are very enthusiastic about the additional platform- conformal opportunities that

  5. RF Photonic, In-Situ, Real-Time Phased Array Antenna Calibration System

    DTIC Science & Technology

    2010-11-22

    physical length of fiber. After photodetection , the RF calibration signals are applied directly to an array of electrically small dipole antennas...allows static adjustment over both the amplitude and phase. After photodetection , the RF signal is placed across the ESDA antenna located at each unit...fed using a double Marchand balun. The Marchand balun consists of a microstrip (unbalanced)-to-slotline ( balanced ) transition. The balun design uses

  6. Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable

  7. Theoretical and practical limits of superdirective antenna arrays

    NASA Astrophysics Data System (ADS)

    Haskou, Abdullah; Sharaiha, Ala; Collardey, Sylvain

    2017-02-01

    Some applications as Wireless Power Transfer (WPT) require compact and directive antennas. However, Electrically Small Antennas (ESAs) have low efficiencies and quasi-isotropic radiation patterns. Superdirective ESA arrays can be an interesting solution to cope with both constraints (the compactness and the directivity). In this paper, the theoretical and practical limits of superdirective antennas will be presented. These limits can be summarized by the directivity sensitivity toward the excitation coefficients changes and the radiation efficiency decrement as the inter-element decreases. The need for negative resistances is also a practical limit for transforming these arrays into parasitic ones. The necessary trade-offs between the antenna total dimensions (the number of elements and the inter-element distance) and the attainable directivity and efficiency are also analyzed throughout this paper. xml:lang="fr"

  8. DIRECTIONAL ANTENNA

    DOEpatents

    Bittner, B.J.

    1958-05-20

    A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.

  9. Structurally Integrated Antenna Concepts for HALE UAVs

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.

    2006-01-01

    This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.

  10. Conformal Nets II: Conformal Blocks

    NASA Astrophysics Data System (ADS)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-03-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  11. Curved spiral antennas for underwater biological applications

    NASA Astrophysics Data System (ADS)

    Llamas, Ruben

    We developed curved spiral antennas for use in underwater (freshwater) communications. Specifically, these antennas will be integrated in so-called mussel backpacks. Backpacks are compact electronics that incorporate sensors and a small radio that operate around 300 MHz. Researchers attach these backpacks in their freshwater mussel related research. The antennas must be small, lightweight, and form-fit the mussel. Additionally, since the mussel orientation is unknown, the antennas must have broad radiation patterns. Further, the electromagnetic environment changes significantly as the mussels burrow into the river bottom. Broadband antennas, such a spiral antennas, will perform better in this instance. While spiral antennas are well established, there has been little work on their performance in freshwater. Additionally, there has been some work on curved spiral antennas, but this work focused on curving in one dimension, namely curving around a cylinder. In this thesis we develop spiral antennas that curve in two dimensions in order to conform the contour of a mussel's shell. Our research has three components, namely (a) an investigation of the relevant theoretical underpinning of spiral antennas, (b) extensive computer simulations using state-of-the art computational electromagnetics (CEM) simulation software, and (c) experimental validation. The experimental validation was performed in a large tank in a laboratory setting. We also validated some designs in a pool (~300,000 liters of water and ~410 squared-meter dive pool) with the aid of a certified diver. To use CEM software and perform successful antenna-related experiments require careful attention to many details. The mathematical description of radiation from an antenna, antenna input impedance and so on, is inherently complex. Engineers often make simplifying assumptions such as assuming no reflections, or an isotropic propagation environment, or operation in the antenna far field, and so on. This makes

  12. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  13. Superluminal antenna

    DOEpatents

    Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu

    2017-03-28

    A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.

  14. Flexible microstrip antennas

    NASA Astrophysics Data System (ADS)

    Cano Barrera, Camilo Antonio

    2013-05-01

    Actually the technological community has an interest in developing flexible circuits and antennas with particular characteristics e.g. robust, flexible, lightweight load-bearing, economical and efficient antennas for integrated millimeter wave systems. Microstrip antennas are an excellent solution because those have all the characteristics before mentioned, but they have the problem of being rigid antennas and this makes impossible that those antennas can be use in portable devices. A practical solution is developing flexible microstrip antennas that can be integrated to different devices. One axis of work is the analysis of the electromagnetic field to the microstrip antennas using Bessel function and after generalize for application inflexible microstrip antennas.

  15. Combined fast multipole-QR compression technique for solving electrically small to large structures for broadband applications

    NASA Technical Reports Server (NTRS)

    Jandhyala, Vikram (Inventor); Chowdhury, Indranil (Inventor)

    2011-01-01

    An approach that efficiently solves for a desired parameter of a system or device that can include both electrically large fast multipole method (FMM) elements, and electrically small QR elements. The system or device is setup as an oct-tree structure that can include regions of both the FMM type and the QR type. An iterative solver is then used to determine a first matrix vector product for any electrically large elements, and a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large elements and the electrically small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is obtained that is within predefined limits. The matrix vector products that were last obtained are used to solve for the desired parameter.

  16. Adaptive antennas

    NASA Astrophysics Data System (ADS)

    Barton, P.

    1987-04-01

    The basic principles of adaptive antennas are outlined in terms of the Wiener-Hopf expression for maximizing signal to noise ratio in an arbitrary noise environment; the analogy with generalized matched filter theory provides a useful aid to understanding. For many applications, there is insufficient information to achieve the above solution and thus non-optimum constrained null steering algorithms are also described, together with a summary of methods for preventing wanted signals being nulled by the adaptive system. The three generic approaches to adaptive weight control are discussed; correlation steepest descent, weight perturbation and direct solutions based on sample matrix conversion. The tradeoffs between hardware complexity and performance in terms of null depth and convergence rate are outlined. The sidelobe cancellor technique is described. Performance variation with jammer power and angular distribution is summarized and the key performance limitations identified. The configuration and performance characteristics of both multiple beam and phase scan array antennas are covered, with a brief discussion of performance factors.

  17. Integrated Solar-Panel Antenna Array for CubeSats

    NASA Technical Reports Server (NTRS)

    Baktur, Reyhan

    2016-01-01

    The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.

  18. Transportation Conformity

    EPA Pesticide Factsheets

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  19. Optimization of integrated antennas for wireless sensors

    NASA Astrophysics Data System (ADS)

    Gandelli, A.; Mussetta, M.; Zich, R. E.

    2007-01-01

    Modern advances in sensor technology, digital electronics and radio frequency design have enabled the development of cheap, small, low-power sensory devices, integrating sensing, processing and communication capabilities. This work aims to present an overview of the benefits and of the most recent advances in antenna technologies, investigating the possibility of integrating enhanced solutions in a large distributed wireless sensor network for the environmental monitoring. The antenna in fact is the key element in order to fully integrate a wireless microsystemon a single chip. The integration requires a small antenna on a low-loss substratematerial compatible with the microelectronic devices. In fact, communication is usually the most energy intensive operation a node performs. Therefore, at each terminal the application of integrated and miniaturized antennas can have a significant impact, in terms of not only system performance but also cost, energy consumptions and terminal physical size. An integrated design technique of a microstrip antenna on a complex dielectric substrate is here presented. For small bit rate wireless networks, microstrip antennas are a good choice. The simplicity of realization, the low cost, the flexibility of use and the reduced dimensions make perfect for the on-chip integration. These objectives are instrumental in selecting elements that can conform to the geometry of the device. The optimization of the wireless device is also presented, to carefully adjust also parameters as the shape and dimensions of the antenna, in order to develop different layers of communication in the same device, thus endowing with multiband capabilities.

  20. Technique for Solving Electrically Small to Large Structures for Broadband Applications

    NASA Technical Reports Server (NTRS)

    Jandhyala, Vikram; Chowdhury, Indranil

    2011-01-01

    Fast iterative algorithms are often used for solving Method of Moments (MoM) systems, having a large number of unknowns, to determine current distribution and other parameters. The most commonly used fast methods include the fast multipole method (FMM), the precorrected fast Fourier transform (PFFT), and low-rank QR compression methods. These methods reduce the O(N) memory and time requirements to O(N log N) by compressing the dense MoM system so as to exploit the physics of Green s Function interactions. FFT-based techniques for solving such problems are efficient for spacefilling and uniform structures, but their performance substantially degrades for non-uniformly distributed structures due to the inherent need to employ a uniform global grid. FMM or QR techniques are better suited than FFT techniques; however, neither the FMM nor the QR technique can be used at all frequencies. This method has been developed to efficiently solve for a desired parameter of a system or device that can include both electrically large FMM elements, and electrically small QR elements. The system or device is set up as an oct-tree structure that can include regions of both the FMM type and the QR type. The system is enclosed with a cube at a 0- th level, splitting the cube at the 0-th level into eight child cubes. This forms cubes at a 1st level, recursively repeating the splitting process for cubes at successive levels until a desired number of levels is created. For each cube that is thus formed, neighbor lists and interaction lists are maintained. An iterative solver is then used to determine a first matrix vector product for any electrically large elements as well as a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large and small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is

  1. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    The application of small computers using digital techniques for operating the servo and control system of large antennas is discussed. The advantages of the system are described. The techniques were evaluated with a forty foot antenna and the Sigma V computer. Programs have been completed which drive the antenna directly without the need for a servo amplifier, antenna position programmer or a scan generator.

  2. A Review of Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acostia, Roberto J.

    2006-01-01

    NASA s plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna

  3. A Review of Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acosta, J.

    2007-01-01

    NASA's plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna

  4. ARISE antenna

    NASA Astrophysics Data System (ADS)

    Chmielewski, Arthur B.; Noca, Muriel; Ulvestad, James

    2000-03-01

    Supermassive black holes are among the most spectacular objects in the Universe, and are laboratories for physics in extreme conditions. Understanding the physics of massive black holes and related phenomena is a primary goal of the ARISE mission. The scientific goals of the mission are described in detail on the ARISE web site http://arise.ipl.nasa.gov and in the ARISE Science Goals document. The following paper, as the title suggests, is not intended to be a comprehensive description of ARISE, but deals only with one aspect of the ARISE mission-the inflatable antenna which is the key element of the ARISE spacecraft. This spacecraft,due to the extensive reliance on inflatables, may be considered as the first generation Gossamer spacecraft

  5. Optical antenna gain. I - Transmitting antennas

    NASA Technical Reports Server (NTRS)

    Klein, B. J.; Degnan, J. J.

    1974-01-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM-00 mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  6. Optical antenna gain. 1: transmitting antennas.

    PubMed

    Klein, B J; Degnan, J J

    1974-09-01

    The gain of centrally obscured optical transmitting antennas is analyzed in detail. The calculations, resulting in near- and far-field antenna gain patterns, assume a circular antenna illuminated by a laser operating in the TEM(00) mode. A simple polynomial equation is derived for matching the incident source distribution to a general antenna configuration for maximum on-axis gain. An interpretation of the resultant gain curves allows a number of auxiliary design curves to be drawn that display the losses in antenna gain due to pointing errors and the cone angle of the beam in the far field as a function of antenna aperture size and its central obscuration. The results are presented in a series of graphs that allow the rapid and accurate evaluation of the antenna gain which may then be substituted into the conventional range equation.

  7. A reconfigurable plasma antenna

    SciTech Connect

    Kumar, Rajneesh; Bora, Dhiraj

    2010-03-15

    An experiment aimed at investigating the antenna properties of different plasma structures of a plasma column as a reconfigurable plasma antenna, is reported. A 30 cm long plasma column is excited by surface wave, which acts as a plasma antenna. By changing the operating parameters, e.g., working pressure, drive frequency, input power, radius of glass tube, length of plasma column, and argon gas, single plasma antenna (plasma column) can be transformed to multiple small antenna elements (plasma blobs). It is also reported that number, length, and separation between two antenna elements can be controlled by operating parameters. Moreover, experiments are also carried out to study current profile, potential profile, conductivity profile, phase relations, radiation power patterns, etc. of the antenna elements. The effect on directivity with the number of antenna elements is also studied. Findings of the study indicate that entire structure of antenna elements can be treated as a phased array broadside vertical plasma antenna, which produces more directive radiation pattern than the single plasma antenna as well as physical properties and directivity of such antenna can be controlled by operating parameters. The study reveals the advantages of a plasma antenna over the conventional antenna in the sense that different antennas can be formed by tuning the operating parameters.

  8. A new planar feed for slot spiral antennas

    NASA Technical Reports Server (NTRS)

    Nurnberger, M. W.; Volakis, J. L.

    1995-01-01

    This report presents a new planar, wideband feed network for a slot spiral antenna, and the subsequent design and performance of a VHF antenna utilizing this feed design. Both input impedance and radiation pattern measurements are presented to demonstrate the performance and usefulness of this feed. Almost all previous designs have utilized wire spirals, requiring bulky, non-planar feeds with separate baluns, and large absorbing cavities. The presented slot spiral antenna feed integrates the balun into the structure of the slot spiral antenna, making the antenna and feed planar. This greatly simplifies the design and construction of the antenna, in addition to providing repeatable accuracy. It also allows the use of a very shallow reflecting cavity for conformal applications. Finally, this feeding approach now makes many of the known miniaturization techniques viable options.

  9. General Conformity

    EPA Pesticide Factsheets

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  10. Conformal Infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg

    2004-12-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  11. Wideband Solid-State Phased-Array Antenna Development at UHF

    DTIC Science & Technology

    1975-07-01

    Transac- tions on Mlicrowave ’I’heory and Techniques, Vol. NITT-8. ’May 196C. pp. 319-325. Ref . 10. G. Gitman . ’The Compeusated Balun.’ IEEE Transactions of...addition, the closely spaced elements halp to ease impedance matching of the antenna aperture over large scar. angles ( Ref . 1). The Applied Physics...Laboratory (APL) has developed a strip radiator that is electrically small and compatible with printed circuitry ( Ref . 2). It appeared that this

  12. Flexible plasma linear antenna

    NASA Astrophysics Data System (ADS)

    Zhao, Jiansen; Wang, Shengzheng; Wu, Huafeng; Liu, Yue; Chang, Yongmeng; Chen, Xinqiang

    2017-02-01

    In this work, we introduce a type of plasma antenna that was fabricated using flexible materials and excited using a 5-20 kHz alternating current (ac) power supply. The results showed that the antenna characteristics, including the impedance, the reflection coefficient (S11), the radiation pattern, and the gain, can be controlled rapidly and easily by varying both the discharge parameters and the antenna shapes. The scope for reconfiguration is greatly enhanced when the antenna shape is changed from a monopole to a helix configuration. Additionally, the antenna polarization can also be adjusted by varying the antenna shapes.

  13. Computer controlled antenna system

    NASA Technical Reports Server (NTRS)

    Raumann, N. A.

    1972-01-01

    Digital techniques are discussed for application to the servo and control systems of large antennas. The tracking loop for an antenna at a STADAN tracking site is illustrated. The augmentation mode is also considered.

  14. Antenna (Selected Articles),

    DTIC Science & Technology

    1981-10-19

    ANTENNA (Selected Articles),, Englih - pages: 91 Sourc -.- Antenny, Nr.-, 1967_, _p. 4-32, Country of origin:/’(USSR) r / -Translated by: LEO K-ANNER...process, M. S. Neyman formulated the basic requirements for transmitting television antennas, and the principles of their construction, many of which...Subsequently, in 1951, an antenna, basically similar to the antenna in the MTTs, was mounted and put into operation in Kiev (Fig. 1), with the difference that

  15. Space-Frame Antenna

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2010-01-01

    The space-frame antenna is a conceptual antenna structure that would be lightweight, deployable from compact stowage, and capable of deforming itself to a size, shape, and orientation required for a specific use. The space-frame antenna would be a trusslike structure consisting mostly of a tetrahedral mesh of nodes connected by variable-length struts. The deformation of the antenna to a desired size, shape, and orientation would be effected through coordinated lengthening and shorting of the struts.

  16. Cross resonant optical antenna.

    PubMed

    Biagioni, P; Huang, J S; Duò, L; Finazzi, M; Hecht, B

    2009-06-26

    We propose a novel cross resonant optical antenna consisting of two perpendicular nanosized gold dipole antennas with a common feed gap. We demonstrate that the cross antenna is able to convert propagating fields of any polarization state into correspondingly polarized, localized, and enhanced fields and vice versa. The cross antenna structure therefore opens the road towards the control of light-matter interactions based on polarized light as well as the analysis of polarized fields on the nanometer scale.

  17. Advanced Antenna Measurement Processing

    DTIC Science & Technology

    2014-06-18

    9.3 GHz slot array shown in Figure 1 and having a nominal directivity of 23 dB. This antenna was measured on an NSI Planar Near-field Scanner using... sidelobe level ; in essence, the antenna radiation pattern. Antenna pattern measurements have historically been conducted by placing a probe in the far...correction. It was noted in the earlier work that the best calibration antenna is one with a low gain so an open ended waveguide was used. This

  18. Coherently combining antennas

    NASA Technical Reports Server (NTRS)

    Dybdal, Robert B. (Inventor); Curry, Samuel J. (Inventor)

    2009-01-01

    An apparatus includes antenna elements configured to receive a signal including pseudo-random code, and electronics configured to use the pseudo-random code to determine time delays of signals incident upon the antenna elements and to compensate the signals to coherently combine the antenna elements.

  19. Antenna performance and resolution

    NASA Technical Reports Server (NTRS)

    Carney, J. J.

    1974-01-01

    The performance of the antenna throughout SL-2, SL-3, and SL-4 was investigated along with the antenna resolution of brightness temperature during flight. The target area selected for the test flights was the Gulf of California, as it offered land/water interface. The coordinate transformations and antenna orientation, flight path simulation, and integration over the radiometric target are discussed.

  20. Very Broad Band VHF/UHF Omnidirectional Antenna Design Study

    DTIC Science & Technology

    1989-12-01

    antennas, is unsuitable for the given appli- cation because its pattern is bi- directional and produces a broad lobe perpendicular to both sides of the...starting point for the new design. The objective was to modify the LPDA to fit the A/V and concurrently achieve a nearly omni- directional radiation pattern...has been included in this review. In particular, many conformal designs including microstrip patch, stripline, slot, and cavity antennas have been

  1. Microstrip patch antenna receiving array operating in the Ku band

    NASA Technical Reports Server (NTRS)

    Walcher, Douglas A.

    1996-01-01

    Microstrip patch antennas were first investigated from the idea that it would be highly advantageous to fabricate radiating elements (antennas) on the same dielectric substrate as RF circuitry and transmission lines. Other advantages were soon discovered to be its lightweight, low profile, conformability to shaped surfaces, and low manufacturing costs. Unfortunately, these same patches continually exhibit narrow bandwidths, wide beamwidths, and low antenna gain. This thesis will present the design and experimental results of a microstrip patch antenna receiving array operating in the Ku band. An antenna array will be designed in an attempt to improve its performance over a single patch. Most Ku band information signals are either wide band television images or narrow band data and voice channels. An attempt to improve the gain of the array by introducing parasitic patches on top of the array will also be presented in this thesis.

  2. The ALMA antenna procurement

    NASA Astrophysics Data System (ADS)

    Stanghellini, S.; Zivick, Jeff; Inatani, Junji

    2009-10-01

    Visitors who come to the OSF at regular intervals find a growing population of antennas at various stages of assembly and testing. The long path from the start of the definition of antenna specifications to the start of science operations with the antennas was and still is a formidable endeavor. When completed, ALMA will comprise a 12-meter diameter antennas array, the bilateral interferometer array, of a minimum of fifty antennas and in addition, the ACA (Atacama Compact Array), composed of four 12-meter diameter antennas and twelve 7-meter diameter antennas. Out of the fifty antennas of the bilateral interferometer array, one-half are provided by the North American partners of ALMA, the other half by the European partners. The sixteen antennas that will comprise the ACA are provided by the East Asian Partners of ALMA. Here we review some key points of this challenging process and we provide a brief history and status of the ALMA antennas. Because of the length of the description, we will present this in a series of two articles. In this first part we concentrate mostly on the bilateral antenna procurement. A detailed description of the ACA will be presented in the next newsletter.

  3. JPL antenna technology development

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.

    1981-01-01

    Plans for evaluating, designing, fabricating, transporting and deploying cost effective and STS compatible offset wrap rib antennas up to 300 meters in diameter for mobile communications, Earth resources observation, and for the orbiting VLBI are reviewed. The JPL surface measurement system, intended for large mesh deployable antenna applications will be demonstrated and validated as part of the antenna ground based demonstration program. Results of the offset wrap rib deployable antenna technology development will include: (1) high confidence structural designs for antennas up to 100 meters in diameter; (2) high confidence estimates of functional performance and fabrication cost for a wide range of antenna sizes (up to 300 meters in diameter); (3) risk assessment for fabricating the large size antennas; and (4) 55 meter diameter flight quality hardware that can be cost effectively completed toto accommodate a flight experiment and/or application.

  4. EVOLUTION OF ANTENNA PERFORMANCE FOR APPLICATIONS IN THERMAL MEDICNE

    PubMed Central

    Stauffer, P.R.; Maccarini, P.F.

    2013-01-01

    This presentation provides an overview of electromagnetic heating technology that has proven useful in clinical applications of hyperthermia therapy for cancer. Several RF and microwave antenna designs are illustrated which highlight the evolution of technology from simple waveguide antennas to spatially and temporally adjustable multiple antenna phased arrays for deep heating, conformal arrays for superficial heating, and compatible approaches for radiometric and magnetic resonance image based non-invasive thermal monitoring. Examples of heating capabilities for several recently developed applicators demonstrate highly adjustable power deposition that has not been possible in the past. PMID:23487445

  5. EVOLUTION OF ANTENNA PERFORMANCE FOR APPLICATIONS IN THERMAL MEDICNE.

    PubMed

    Stauffer, P R; Maccarini, P F

    2011-01-01

    This presentation provides an overview of electromagnetic heating technology that has proven useful in clinical applications of hyperthermia therapy for cancer. Several RF and microwave antenna designs are illustrated which highlight the evolution of technology from simple waveguide antennas to spatially and temporally adjustable multiple antenna phased arrays for deep heating, conformal arrays for superficial heating, and compatible approaches for radiometric and magnetic resonance image based non-invasive thermal monitoring. Examples of heating capabilities for several recently developed applicators demonstrate highly adjustable power deposition that has not been possible in the past.

  6. Analysis of a microstrip reflectarray antenna for microspacecraft applications

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1995-01-01

    A microstrip reflectarray is a flat reflector antenna that can be mounted conformally onto a spacecraft's outside structure without consuming a significant amount of spacecraft volume and mass. For large apertures (2 m or larger), the antenna's reflecting surface, being flat, can be more easily and reliably deployed than a curved parabolic reflector. This article presents the study results on a microstrip reflect-array with circular polarization. Its efficiency and bandwidth characteristics are analyzed. Numerous advantages of this antenna system are discussed. Three new concepts using this microstrip reflectarray are also proposed.

  7. Antenna Controller Replacement Software

    NASA Technical Reports Server (NTRS)

    Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza; Wert, Michael; Leung, Patrick

    2010-01-01

    The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and

  8. Subsurface Deployable Antenna Array

    DTIC Science & Technology

    2009-09-25

    States Patent No. 6,710,746, issued March 23, 2004, to Anderson et al., discloses an antenna having a reconfigurable length, and a method of...an antenna linear extension and retraction apparatus and method of use for a submersible device. The apparatus includes a body having a cavity... microwave communications while at cruising speed and depth. [0027] It is a still further object of the present invention to provide an antenna array

  9. A Compact Annular Ring Microstrip Antenna for WSN Applications

    PubMed Central

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels. PMID:23012510

  10. A compact annular ring microstrip antenna for WSN applications.

    PubMed

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  11. MASTER TELEVISION ANTENNA SYSTEM.

    ERIC Educational Resources Information Center

    Rhode Island State Dept. of Education, Providence.

    SPECIFICATIONS FOR THE FURNISHING AND INSTALLATION OF TELEVISION MASTER ANTENNA SYSTEMS FOR SECONDARY AND ELEMENTARY SCHOOLS ARE GIVEN. CONTRACTOR REQUIREMENTS, EQUIPMENT, PERFORMANCE STANDARDS, AND FUNCTIONS ARE DESCRIBED. (MS)

  12. Turnstile slot antenna

    NASA Technical Reports Server (NTRS)

    Munson, R. E. (Inventor)

    1974-01-01

    A turnstile slot antenna is disclosed, the antenna being for and integral with a spacecraft having a substantially cylindrical body portion. The antenna comprises a circumferential slot about the periphery of the spacecraft body portion with an annular wave guide cavity defining a radial transmission line disposed within the spacecraft body portion behind and in communication with the circumferential slot. Feed stubs and associated transmission apparatus are provided to excite the annular cavity in quadrature phase such that an omnidirectional, circularly polarized, rotating radiation pattern is generated. The antenna of the instant invention has utility both as a transmitting and receiving device, and ensures continuous telemetry and command coverage with the spacecraft.

  13. Cellular Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  14. The single antenna interferometer

    SciTech Connect

    Fitch, J.P.

    1990-01-15

    Air and space borne platforms using synthetic aperture radars (SAR) have made interferometric measurements by using either two physical antennas mounted on one air-frame or two passes of one antenna over a scene. In this paper, a new interferometric technique using one pass of a single-antenna SAR system is proposed and demonstrated on data collected by the NASA-JPL AirSAR. Remotely sensed L-band microwave data are used to show the sensitivity of this technique to ocean surface features as well as a baseline for comparison with work by others using two-antenna systems. 7 refs., 3 figs.

  15. MSU Antenna Pattern Data

    NASA Technical Reports Server (NTRS)

    Mo, Tsan; Kleespies, Thomas J.; Green, J. Philip

    2000-01-01

    The Microwave Sounding Unit (MSU) antenna pattern data for nine MSU Flight Models (FMs) have been successfully rescued from 22-year old 7-track and 9-track magnetic tapes and cartridges. These antenna pattern data were unpacked into user-friendly ASCII format, and are potentially useful for making antenna pattern corrections to MSU antenna temperatures in retrieving the true brightness temperatures. We also properly interpreted the contents of the data and show how to convert the measured antenna signal amplitude in volts into relative antenna power in dB with proper normalization. It is found that the data are of high quality with a 60-dB drop in the co-polarized antenna patterns from the central peak value to its side-lobe regions at scan angles beyond 30 deg. The unpacked antenna pattern data produced in this study provide a useful database for data users to correct the antenna side-lobe contribution to MSU measurements. All of the data are available to the scientific community on a single CD-ROM.

  16. Recent results for plasma antennas

    SciTech Connect

    Alexeff, Igor; Anderson, Ted; Farshi, Esmaeil; Karnam, Naresh; Pulasani, Nanditha Reddy

    2008-05-15

    Plasma antennas are just as effective as metal antennas. They can transmit, receive, and reflect radio waves just as well as metal antennas. In addition, plasma generated noise does not appear to be a problem.

  17. Analysis of radiation performances of plasma sheet antenna

    NASA Astrophysics Data System (ADS)

    Yin, Bo; Zhang, Zu-Fan; Wang, Ping

    2015-12-01

    A novel concept of plasma sheet antennas is presented in this paper, and the radiation performances of plasma sheet antennas are investigated in detail. Firstly, a model of planar plasma antenna (PPA) fed by a microstrip line is developed, and its reflection coefficient is computed by the JE convolution finite-difference time-domain method and compared with that of the metallic patch antenna. It is found that the design of PPA can learn from the theory of the metallic patch antenna, and the impedance matching and reconstruction of resonant frequency can be expediently realized by adjusting the parameters of plasma. Then the PPA is mounted on a metallic cylindrical surface, and the reflection coefficient of the conformal plasma antenna (CPA) is also computed. At the same time, the influence of conformal cylinder radius on the reflection coefficient is also analyzed. Finally, the radiation pattern of a CPA is given, the results show that the pattern agrees well with the one of PPA in the main radiation direction, but its side lobe level has deteriorated significantly.

  18. Linearly tapered slot antenna circular array for mobile communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Kelly, Eron; Lee, Richard Q.; Taub, Susan R.

    1993-01-01

    The design, fabrication and testing of a conformal K-band circular array is presented. The array consists of sixteen linearly tapered slot antennas (LTSA). It is fed by a 1:16 microstrip line power splitter via electromagnetic coupling. The array has an omni-directional pattern in the azimuth plane. In the elevation plane the beam is displaced above the horizon.

  19. Airborne antenna pattern calculations

    NASA Technical Reports Server (NTRS)

    Bagherian, A. B.; Mielke, R. R.

    1983-01-01

    Use of calculation program START and modeling program P 3D to produce radiation patterns of antennas mounted on a space station is discussed. Basic components of two space stations in the early design stage are simulated and radiation patterns for antennas mounted on the modules are presented.

  20. Experiments with Dipole Antennas

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…

  1. Milestones in Broadcasting: Antennas.

    ERIC Educational Resources Information Center

    Media in Education and Development, 1985

    1985-01-01

    Briefly describes the development of antennas in the prebroadcast era (elevated antenna, selectivity to prevent interference between stations, birth of diplex, directional properties, support structures), as well as technological developments used in long-, medium-, and short-wave broadcasting, VHF/FM and television broadcasting, and satellite…

  2. Deformations in VLBI antennas

    NASA Technical Reports Server (NTRS)

    Clark, T. A.; Thomsen, P.

    1988-01-01

    A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.

  3. Bidirectional zoom antenna

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1975-01-01

    Antenna comprises two parabolic cylinders placed orthogoanlly to each other. One cylinder serves as main reflector, and the other as subreflector. Cylinders have telescoping sections to vary antenna beamwidth. Beamwidth can be adjusted in elevation, azimuth, or both. Design has no restriction as to choice of polarization.

  4. Radiation by cavity-backed antennas on a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.; Sliva, Randy

    1994-01-01

    Conformal antenna arrays are popular antennas for aircraft, spacecraft and land vehicle platforms due to their inherent low weight, cost and drag properties. However, to date there has been a dearth of rigorous analytical or numerical solutions to aid the designer. In fact, it has been common practice to use limited measurements and planar approximations in designing such non-planar antennas. The finite element-boundary integral method is extended to radiation by cavity-backed structures in an infinite, metallic cylinder. The formulation is used to investigate the effect of cavity size on the radiation pattern for typical circumferentially and axially polarized patch antennas. Curvature effect on the gain, pattern shape, and input impedance is also studied. Finally, the accuracy of the FE-BI approach for a microstrip patch array is demonstrated.

  5. Polydimethylsiloxane membranes for millimeter-wave planar ultra flexible antennas

    NASA Astrophysics Data System (ADS)

    Tiercelin, Nicolas; Coquet, Philippe; Sauleau, Ronan; Senez, Vincent; Fujita, Hiroyuki

    2006-11-01

    We present here the use of polydimethylsiloxane (PDMS) membranes as a new soft polymer substrate (ɛr ap 2.67 at 77 GHz) for the realization of ultra-flexible millimeter-wave printed antennas thanks to the extremely low Young's modulus (EPDMS < 2 MPa). Ultimately this peculiar property enables one to design wide-angle mechanically beam-steering antennas and flexible conformal antennas. The experimental characterization of PDMS material in V- and W-bands highlights high loss tangent values (tanδ ap 0.04 at 77 GHz). Thus micromachining techniques have been developed to reduce dielectric losses for antenna applications at millimeter waves. Here the antenna performance is demonstrated in the 60 GHz band by considering a single microstrip patch antenna supported by a PDMS membrane over an air-filled cavity. After a brief description of the design approach using the method of moments (MoM) and the finite-difference time-domain (FDTD) technique, the technological processes are described in detail. The input impedance and radiation patterns of the prototype are in good agreement with numerical simulations. The radiation efficiency of the micromachined antenna is equal to 60% and is in the same order as that obtained with conventional polymer bulk substrates such as Duroids. These results confirm the validity of the new technological process and assembly procedure, and demonstrate that PDMS membranes can be used to realize low-loss planar membrane-supported millimeter-wave printed circuits and radiating structures.

  6. RF MEMS Based Reconfigurable Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  7. Autonomous omnidirectional spacecraft antenna system

    NASA Technical Reports Server (NTRS)

    Taylor, T. H.

    1983-01-01

    The development of a low gain Electronically Switchable Spherical Array Antenna is discussed. This antenna provides roughly 7 dBic gain for receive/transmit operation between user satellites and the Tracking and Data Relay Satellite System. When used as a pair, the antenna provides spherical coverage. The antenna was tested in its primary operating modes: directed beam, retrodirective, and Omnidirectional.

  8. Bifocal dual reflector antenna

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    A bifocal dual reflector antenna is similar to and has better scan capability than classical cassegrain reflector antenna. The method used in determining the reflector surfaces is a modification of a design method for the dielectric bifocal lens. The three dimensional dual reflector is obtained by first designing an exact (in geometrical optics sense) two-point corrected two dimensional reflector and then rotating it around its axis of symmetry. A point by point technique is used in computing the reflector surfaces. Computed radiation characteristics of the dual reflector are compared with those of a cassegrain reflector. The results confirm that the bifocal antenna has superior performance.

  9. Satellite Antenna Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory, the ACTS antenna system was transferred from experimental testing status to commercial development with KVH Industries, Inc. The ACTS design enables mobile satellite antennas to remain pointed at the satellite, regardless of the motion or vibration on which it is mounted. KVH's first product based on the ACTS design is a land-mobile satellite antenna system that will enable direct broadcast satellite television aboard moving trucks, recreational vehicles, trains, and buses. Future products could include use in broadcasting, emergency medical and military vehicles.

  10. SAR antenna calibration techniques

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Newell, A. C.

    1978-01-01

    Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.

  11. SPS antenna pointing control

    NASA Technical Reports Server (NTRS)

    Hung, J. C.

    1980-01-01

    The pointing control of a microwave antenna of the Satellite Power System was investigated emphasizing: (1) the SPS antenna pointing error sensing method; (2) a rigid body pointing control design; and (3) approaches for modeling the flexible body characteristics of the solar collector. Accuracy requirements for the antenna pointing control consist of a mechanical pointing control accuracy of three arc-minutes and an electronic phased array pointing accuracy of three arc-seconds. Results based on the factors considered in current analysis, show that the three arc-minute overall pointing control accuracy can be achieved in practice.

  12. Magneto-Dielectric Wire Antennas Theory and Design

    NASA Astrophysics Data System (ADS)

    Sebastian, Tom

    There is a pervasive need in the defense industry for conformal, low-profile, efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared aperture multi-function radiators, while conformal antenna profiles minimize physical damage in army applications, reduce drag and weight penalties in airborne applications and reduce the visual and RF signatures of the communication node. This dissertation is concerned with a new class of antennas called Magneto-Dielectric wire antennas (MDWA) that provide an ideal solution to this ever-present and growing need. Magneto-dielectric structures (mur > 1; epsilon r > 1) can partially guide electromagnetic waves and radiate them by leaking off the structure or by scattering from any discontinuities, much like a metal antenna of the same shape. They are attractive alternatives to conventional whip and blade antennas because they can be placed conformal to a metallic ground plane without any performance penalty. A two pronged approach is taken to analyze MDWAs. In the first, antenna circuit models are derived for the prototypical dipole and loop elements that include the effects of realistic dispersive magneto-dielectric materials of construction. A material selection law results, showing that: (a) The maximum attainable efficiency is determined by a single magnetic material parameter that we term the hesitivity: Closely related to Snoek's product, it measures the maximum magnetic conductivity of the material. (b) The maximum bandwidth is obtained by placing the highest amount of mu" loss in the frequency range of operation. As a result, high radiation efficiency antennas can be obtained not only from the conventional low loss (low mu") materials but also with highly lossy materials (tan(deltam) >> 1). The second approach used to analyze MDWAs is through solving the Green function problem of the infinite magneto-dielectric cylinder fed by a current loop. This solution sheds light on the leaky and guided waves

  13. NASA technology for large space antennas

    NASA Technical Reports Server (NTRS)

    Russell, R. A.; Campbell, T. G.; Freeland, R. E.

    1980-01-01

    Some leading concepts for deployable antennas are described and an assessment of the state of the art in deployable antennas is presented. The advanced sunflower precision antenna, the radial rib antenna and the maypole (hoop/column) antenna, the wrap rib antenna and the parabolic erectable truss antenna are covered. In addition, a discussion on the technology development program for two deployable antenna concepts that are responsive to the antenna mission requirements as defined in the NASA mission model is presented.

  14. Superconducting miniaturized planar antennas

    NASA Astrophysics Data System (ADS)

    Pischke, A.; Chaloupka, H.; Klein, N.; Splitt, G.

    This contribution reports on experimental as well as theoretical investigations of superconducting 2.4 GHz microstrip antenna. Due to both a new stepped-impedance patch shape and a high permittivity substrate (LaAlO3) the size was reduced to an area of only 6x6 mm. The measured radiation efficiency of antennas fabricated from YBa2Cu3O(7-delta) is at 77 K in the order of 45 and 65 percent for a substrate height of 0.5 mm and 1 mm respectively. In contrast, a copper antenna yields an efficiency of 3 and 6 percent only. Deviations from a linear transmission behavior of the superconducting antenna can be observed at a current density of 500,000 A/sq cm. An increase in frequency bandwidth from 4 MHz to over 9 MHz results from replacing the single-patch structure by a double-patch structure (stacked patches).

  15. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  16. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  17. A switchable microstrip antenna

    NASA Astrophysics Data System (ADS)

    Khitrov, Iu. A.

    1992-03-01

    A switchable microstrip antenna is proposed which maintains nondirected radiation in the horizontal plane for all combinations of states of the switched elements. Theoretical and experimental results of studies of the directivity characteristics are presented.

  18. Electrically driven optical antennas

    NASA Astrophysics Data System (ADS)

    Kern, Johannes; Kullock, René; Prangsma, Jord; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-09-01

    Unlike radiowave antennas, so far optical nanoantennas cannot be fed by electrical generators. Instead, they are driven by light or indirectly via excited discrete states in active materials in their vicinity. Here we demonstrate the direct electrical driving of an in-plane optical antenna by the broadband quantum-shot noise of electrons tunnelling across its feed gap. The spectrum of the emitted photons is determined by the antenna geometry and can be tuned via the applied voltage. Moreover, the direction and polarization of the light emission are controlled by the antenna resonance, which also improves the external quantum efficiency by up to two orders of magnitude. The one-material planar design offers facile integration of electrical and optical circuits and thus represents a new paradigm for interfacing electrons and photons at the nanometre scale, for example for on-chip wireless communication and highly configurable electrically driven subwavelength photon sources.

  19. Antenna pattern study

    NASA Technical Reports Server (NTRS)

    Harper, Warren

    1988-01-01

    Prediction of antenna radiation patterns has long been an important function in the design of command, communication, and tracking systems for rocket vehicles and spacecraft. An acceptable degree of assurance that a radio link will provide the required quality of data or certainty of correct command execution must be acquired by some means if the system is to be certified as reliable. Two methods have been used to perform this function: (1) Theoretical analysis, based on the known properties of basic antenna element types and their behavior in the presence of conductive structures of simple shape, and (2) Measurement of the patterns on scale models of the spacecraft or rocket vehicle on which the antenna is located. Both of these methods are ordinarily employed in the antenna design process.

  20. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    NASA Technical Reports Server (NTRS)

    Myhre, R. W.

    1979-01-01

    A lightweight low drag coplanar slot antenna was developed for use on commercial jet aircraft that will provide upper hemisphere coverage in the UHF band at frequencies of 402 and 468 MHz is described. The antenna is designed to transmit meteorological data from wide body jet aircraft to ground users via synchronous meteorological data relay satellites. The low profile antenna (23.5 cm wide by 38.1 cm long slot by 1.9 cm high) is a conformal antenna utilizing the coplanar approach with the advantages of broad frequency bandwidth and improved electrical integrity over wide range of temperature. The antenna is circular polarized, has anon axis gain of near +2.5 dB, and a HPBW greater than 90 deg. Areas discussed include antenna design, radiation characteristics, flight testing, and system performance.

  1. Finline Horn Antennas.

    DTIC Science & Technology

    1985-09-01

    is also given to my second reader, Professor H.M. Lee, for his suggestions on the microstrip to coaxial cable transition for the monopulse comparator...consideranly larger radiating aperture, a highly directive radiation pattern can be achieved. This type of antenna is called an electromagnetic horn. 12...receiver modules are required, as in a pnased array or multichannel direction finding system. B. HELAIED WORK 1. likjA-Fiel Aten Tstn Near-iield antenna

  2. Experimental Results for a Photonic Time Reversal Processor for Adaptive Control of an Ultra Wideband Phased Array Antenna

    DTIC Science & Technology

    2008-03-01

    Radar , Boston: Artech House, 1994. 2. H. Zmuda, “ Optical Beamforming for Phased Array Antennas,” Chapter 19, R...Beamforming, Phased Array Antennas, Time Reversal, Ultra Wideband Radar 1 INTRODUCTION 1.1 Photonic Processing for Microwave Phased Array ...Architecture for Broadband Adaptive Nulling with Linear and Conformal Phased Array Antennas”, Fiber and Integrated Optics , vol. 19, no. 2, March 2000, pp.

  3. Optical antenna gain. II - Receiving antennas

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.; Klein, B. J.

    1974-01-01

    Expressions are developed for the gain of a centrally obscured, circular optical antenna used as the collecting and focusing optics in a laser receiver, involving losses due to (1) incoming light blockage by central obscuration, (2) energy spillover at the detector, and (3) the effect of local oscillator distribution in the case of heterodyne or homodyne detection. Numerical results are presented for direct detection and for three types of local oscillator distribution (uniform, Gaussian, and matched).

  4. Electromagnetic exposure in a phantom in the near and far fields of wire and planar antennas

    NASA Astrophysics Data System (ADS)

    Mazady, Md. Anas Boksh

    Due to the wide availability and usage of wireless devices and systems there have been and are concerns regarding their effects on the human body. Respective regulatory agencies have developed safety standards based on scientific research on electromagnetic (EM) exposure from wireless devices and antennas. The metric that quantifies the exposure level is called the Specific Absorption Rate (SAR). Wireless devices must satisfy the regulatory standards before being marketed. In the past, researchers have primarily focused on investigating the EM exposure from wireless devices that are used very near to the user's head or body (less than 25 mm). But as time progressed many more wireless devices have become ubiquitous (vehicular wireless devices, laptop PCMCIA cards, Bluetooth dongles, wireless LAN routers, cordless phone base stations, and pico base stations are to name a few) and are operated at distances greater than 25 mm yet smaller than 200 mm. Given the variations in operating frequency, distance, and antenna size and type it is challenging to develop an approach using which EM exposure from a wide variety of wireless devices can be evaluated. The problem becomes more involved owing to the difficulties in identifying the antenna zone boundaries, e.g. reactive near-field, radiating near-field, far-field etc. The focus of this thesis is to investigate a large class of low and highly directive antennas and evaluate the EM exposure from them into a large elliptical phantom. The objective is to be able to predict threshold power levels that meet the SAR limits imposed by the regulatory agencies. It was observed that among the low directivity antennas at close near-field distances, electrically small antennas induced distinguishably higher SAR than electrically larger antennas. But differences in SAR were small as the phantom moved into the far-fields of the antennas. SAR induced by highly directive antennas were higher when the phantom was in the far-field of the

  5. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  6. Design investigation for a microstrip phased array antenna for the ORION satellite

    NASA Astrophysics Data System (ADS)

    Smith, Mark B.

    1988-06-01

    Students at the Naval Postgraduate School are designing a general purpose mini-satellite that can be launched from a Get-Away-Special cannister located in the cargo bay of the Space Shuttle and will be compatible with expendable launch vehicles as well. This thesis defines preliminary antenna systems and the design parameters for the telemetry system of the ORION mini-satellite. These antenna design parameters may be used for investigations of various proposed antenna systems and the design parameters also allow for trade-off studies with the mission capabilities and subsystems of the satellite. An investigation is made into the feasibility of using conformal microstrip patch array antennas for the telemetry, tracking and command (TT&C) systems. It is necessary to have two separate microstrip patch array antennas for the telemetry system: one uplink and one downlink antenna. The microstrip patch array antenna can operate as either an omnidirectional antenna or a directional antenna by changing the phase of the individual patch feeds. This feature gives the microstrip patch array antenna more flexibility for meeting the needs of potential users.

  7. Novel Concepts for Conformal Load-Bearing Antenna Structure

    DTIC Science & Technology

    2008-02-01

    liquid moulding techniques of Vacuum Assisted Resin Transfer Moulding ( VARTM ) or Resin Transfer Moulding ( RTM ). Latter specimens were prepared using... VARTM ) 4 Resin Transfer Moulding ( RTM ) 5 Meter resin onto dry fibre then stage in an autoclave 7 Mandrel Number 0 As-received 25.4 mm x 12.7 mm...r Spiral slot radius RF Radio Frequency RFID Radio Frequency Identification Rs Surface resistivity RTM Resin Transfer Moulding S11 Reflection S

  8. Development of Soldier Conformable Antennae Using Conducting Polymers

    DTIC Science & Technology

    2010-12-01

    flexible. Wires synthesized from these materials have a wide range of applications that can include smart textiles (Carpi and Rossi, 2005; Spinks et...have its first resonant frequency at 200 MHz. The resulting laminate was then sewn into a camouflage material. The polymer was then connected to a...2005: Electroactive Polymer- Based Devices for e- Textiles in Biomedicine. IEEE Trans.Inf.Technol.Biomed., 9, 295-318. Carswell, A., E. O’Rear, and B

  9. View of Antenna #1 (foreground), and Antenna #2 surface doors. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Antenna #1 (foreground), and Antenna #2 surface doors. Image looking northeast - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  10. Antenna cab interior showing equipment rack and fiberglass antenna panels, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing equipment rack and fiberglass antenna panels, looking southeast. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  11. Antenna cab interior showing waveguide from external parabolic antenna (later ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing waveguide from external parabolic antenna (later addition), looking north. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  12. Antenna cab interior showing equipment rack and fiberglass antenna panels, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Antenna cab interior showing equipment rack and fiberglass antenna panels, looking west. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  13. Steinberg conformal algebras

    NASA Astrophysics Data System (ADS)

    Mikhalev, A. V.; Pinchuk, I. A.

    2005-06-01

    The structure of Steinberg conformal algebras is studied; these are analogues of Steinberg groups (algebras, superalgebras).A Steinberg conformal algebra is defined as an abstract algebra by a system of generators and relations between the generators. It is proved that a Steinberg conformal algebra is the universal central extension of the corresponding conformal Lie algebra; the kernel of this extension is calculated.

  14. Electrochemically Programmable Plasmonic Antennas.

    PubMed

    Dong, Shi; Zhang, Kai; Yu, Zhiping; Fan, Jonathan A

    2016-07-26

    Plasmonic antennas are building blocks in advanced nano-optical systems due to their ability to tailor optical response based on their geometry. We propose an electrochemical approach to program the optical properties of dipole antennas in a scalable, fast, and energy-efficient manner. These antennas comprise two arms, one serving as an anode and the other a cathode, separated by a solid electrolyte. As a voltage is applied between the antenna arms, a conductive filament either grows or dissolves within the electrolyte, modifying the antenna load. We probe the dynamics of stochastic filament formation and their effects on plasmonic mode programming using a combination of three-dimensional optical and electronic simulations. In particular, we identify device operation regimes in which the charge-transfer plasmon mode can be programmed to be "on" or "off." We also identify, unexpectedly, a strong correlation between DC filament resistance and charge-transfer plasmon mode frequency that is insensitive to the detailed filament morphology. We envision that the scalability of our electrochemical platform can generalize to large-area reconfigurable metamaterials and metasurfaces for on-chip and free-space applications.

  15. Cup Cylindrical Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.

    2008-01-01

    The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).

  16. Multiple Reflector Scanning Antennas

    NASA Astrophysics Data System (ADS)

    Shen, Bing

    Narrow beamwidth antenna systems are important to remote sensing applications and point-to-point communication systems. In many applications the main beam of the antenna radiation pattern must be scannable over a region of space. Scanning by mechanically skewing the entire antenna assembly is difficult and in many situations is unacceptable. Performance during scan is, of course, also very important. Traditional reflector systems employing the well-focused paraboloidal -shaped main reflector accomplish scan by motion of a few feeds, or by phase steering a focal plane feed array. Such scanning systems can experience significant gain loss. Traditional reflecting systems with a spherical main reflector have low aperture efficiency and poor side lobe and cross polarization performance. This dissertation introduces a new approach to the design of scanning spherical reflector systems, in which the performance weaknesses of high cross polarization and high side lobe levels are avoided. Moreover, the low aperture utilization common in spherical reflectors is overcome. As an improvement to this new spherical main reflector configuration, a flat mirror reflector is introduced to minimize the mechanical difficulties to scan the main beam. In addition to the reflector system design, reflector antenna performance evaluation is also important. The temperature resolution issue important for earth observation radiometer antennas is studied, and a new method to evaluate and optimize such temperature resolution is introduced.

  17. Imaging antenna arrays

    NASA Technical Reports Server (NTRS)

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  18. Development of Leaky Wave Antennas for Layered Ridge Dielectric Waveguide

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Katehi, Linda P. B.

    1993-01-01

    The millimeter wave, especially above 100 GHz, and the submillimeter wave frequency spectrum offers the possibility for narrow-beam, high-resolution antennas which are critical for high definition radars required for space debris tracking, airport ground avoidance radars, and missile tracking. In addition, the frequency which most atmospheric constituents may be detected lie in this part of the frequency spectrum. Therefore, the development of electronic components for millimeter/submillimeter wave passive sensors is required for environmental monitoring of the Earth's atmosphere. Typical microwave transmission lines such as microstrip and coplanar waveguide rely on two or more electrical conductors to concentrate and guide the electromagnetic energy. Unfortunately, the surface resistance of the conductors increases as the square root of frequency. In addition, the circuit dimensions must be decreased with increasing frequency to maintain a single mode transmission line which further increases the conductor loss. An alternative family of transmission lines are formed from two or more insulating materials and rely on the differences in the permittivities between the two materials to guide the wave. No metal conductors are required although some dielectric waveguides do utilize a metallic ground plane to facilitate the interconnections of active electrical elements or to reduce the transmission line size. Examples of such transmission lines are image guides, insulated image guides, trapped image guides, ridge guide, and layered ridge dielectric waveguide (LRDW). Although most dielectric waveguides have dimensions on the order of lambda to provide sufficient field confinement, the LRDW has been shown to provide good field confinement for electrically small lines. This offers an advantage in circuit integration. It has been shown that a periodic array of metallic strips placed either along or on top of a dielectric waveguide forms an effective radiator. This antenna is

  19. View of antenna tunnel end. Right to Antenna Silo #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of antenna tunnel end. Right to Antenna Silo #1, left to Antenna Silo #2 - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  20. View north of the antenna array, note the communications antenna ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north of the antenna array, note the communications antenna in the middleground - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Antenna Array, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  1. Hemispheric ultra-wideband antenna.

    SciTech Connect

    Brocato, Robert Wesley

    2006-04-01

    This report begins with a review of reduced size ultra-wideband (UWB) antennas and the peculiar problems that arise when building a UWB antenna. It then gives a description of a new type of UWB antenna that resolves these problems. This antenna, dubbed the hemispheric conical antenna, is similar to a conventional conical antenna in that it uses the same inverted conical conductor over a ground plane, but it also uses a hemispheric dielectric fill in between the conductive cone and the ground plane. The dielectric material creates a fundamentally new antenna which is reduced in size and much more rugged than a standard UWB conical antenna. The creation of finite-difference time domain (FDTD) software tools in spherical coordinates, as described in SAND2004-6577, enabled this technological advance.

  2. The ACTS multibeam antenna

    NASA Technical Reports Server (NTRS)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  3. The ACTS multibeam antenna

    NASA Astrophysics Data System (ADS)

    Regier, Frank A.

    1992-06-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 is briefly introduced. Its multibeam antenna, consisting of electrically similar 30 GHz receive and 20 GHz transmit offset Cassegrain systems, both utilizing orthogonal polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 degree beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz HEMT low-noise amplifier and a 20 GHz TWT power amplifier.

  4. Galileo satellite antenna modeling

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  5. Endfire tapered slot antenna characteristics

    NASA Technical Reports Server (NTRS)

    Schaubert, D. H.

    1989-01-01

    Typical configurations and operating characteristics for endfire tapered slot antennas are described. The feed transition modeling and moment method modeling techniques are utilized to predict antenna performance. The radiation pattern and cross polarization properties for the linearly tapered slot antennas are examined. Endfire tapered slot antennas are applicable for wide-band scanning arrays and focal plane arrays for imaging and multiple beam reflector systems.

  6. Twin-Axial Wire Antenna

    DTIC Science & Technology

    2015-08-06

    08-2015 Publication Twin-Axial Wire Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L, Bldg 102T...Approved for Public Release Distribution is unlimited Attorney Docket No. 300030 1 of 10 TWIN-AXIAL WIRE ANTENNA STATEMENT OF GOVERNMENT INTEREST...2 of 10 length of the antenna wire . This creates a high pass filter in the antenna and prevents current flow in the VLF/LF bands. [0005] U.S

  7. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  8. Near-field testing of the 15-meter hoop-column antenna

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Adams, Richard R.; Bailey, M. C.; Belvin, W. Keith; Butler, David H.; Campbell, Thomas G.

    1989-01-01

    A 15-m-diameter antenna was tested to verify that dimensional tolerances for acceptable performance could be achieved and to verify structural, electromagnetic, and mechanical performance predictions. This antenna utilized the hoop column structure, a gold plated molybdenum mesh reflector, and 96 control cables to adjust the reflector conformance with a paraboloid. The dimensional conformance of the antenna structure and surface was measured with metric camera and theodolites. Near field pattern data were used to assess the electromagnetic performance at five frequencies from 2.225 to 11.6 GHz. The reflector surface was adjusted to greatly improve electromagnetic performance with a finite element model and the surface measurements. Measurement results show that antenna surface figure and adjustments and electromagnetic patterns agree well with predictions.

  9. Satellite communication antenna technology

    NASA Technical Reports Server (NTRS)

    Mittra, R. (Editor); Imbriale, W. A. (Editor); Maanders, E. J. (Editor)

    1983-01-01

    A general overview of current technology in the field of communication satellite antennas is presented. Among the topics discussed are: the design of multiple beam systems; frequency reuse; and polarization control of antenna measurements. Consideration is also given to: contour beam synthesis; dual shaped reflector synthesis; beam shaping; and offset reflector design. The applications of the above technologies to present and future generations of communications satellites is considered, with emphasis given to such systems as: the Intelsats; the Defense Satellite Communications System, (DSCS-III); Satellite Business System (SBS), and Comstar.

  10. Furlable spacecraft antenna development

    NASA Technical Reports Server (NTRS)

    Oliver, R. E.; Wilson, A. H.

    1972-01-01

    The development of large furlable spacecraft antennas using conical main reflectors is described. Two basic antenna configurations which utilize conical main reflectors have been conceived and are under development. In the conical-Gregorian configuration each ray experiences two reflections in traveling from the feed center to the aperture plane. In the Quadreflex (four reflection) configuration, each ray experiences four reflections, one at each of two subreflector surfaces and two at the main conical reflector surface. The RF gain measurements obtained from 6-ft and 30-in. models of the conical-Gregorian and Quadreflex concepts respectively were sufficiently encouraging to warrant further development of the concepts.

  11. Embedded Meta-Material Antennas

    DTIC Science & Technology

    2009-01-31

    of electronic warfare signal and information processing systems. To realize such systems, the key is to miniaturize antennas that transmit and...single aperture, which can provide significant miniaturization and flexibility to the entire system. To design such miniaturized antennas , new materials...and technologies have to be incorporated. For this purpose, the PI has designed and demonstrated miniaturized antennas by introducing metamaterials

  12. Community Antenna Television (CATV).

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The number of households hooked up to cable television or community antenna television (CATV) is expanding rapidly, and Federal Communications Commission (FCC) has been developing regulations since 1962 to guide the growth of the industry. By 1965 the FCC had claimed jurisdiction over all CATV systems in the U. S. This jurisdiction was challenged…

  13. Quartz antenna with hollow conductor

    DOEpatents

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  14. Concepts and cost trade-offs for land vehicle antennas in satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.

    1948-01-01

    Several antenna design concepts, operating at UHF (821 to 825 MHz transmit and 866 to 870 MHz receive bands), with gain ranging between 6 and 12 dBic, that are suitable for land mobile vehicles are presented. The antennas may be used within CONUS and ALASKA to communicate to and from a geosynchronous satellite. Depending on the type of steering mechanism, the antennas are broken down into three categories; (1) electronically scanned arrays with phase shifters, (2) electronically switched arrays with switchable power dividers/combiners, and (3) mechanically steered arrays. The operating characteristics of two of these design concepts, one a conformal antenna with electronic beam steering and the other a nonconformal design with mechanical steering, were evaluated with regard to two and three satellite system. Cost estimates of various antenna concepts were made and plotted against their overall gain performance.

  15. Ultradirective antenna via transformation optics

    NASA Astrophysics Data System (ADS)

    Tichit, P.-H.; Burokur, S. N.; de Lustrac, A.

    2009-05-01

    Spatial coordinate transformation is used as a reliable tool to control electromagnetic fields. In this paper, we derive the permeability and permittivity tensors of a metamaterial able to transform an isotropically radiating source into a compact ultradirective antenna in the microwave domain. We show that the directivity of this antenna is competitive with regard to conventional directive antennas (horn and reflector antennas), besides its dimensions are smaller. Numerical simulations using finite element method are performed to illustrate these properties. A reduction in the electromagnetic material parameters is also proposed for an easy fabrication of this antenna from existing materials. Following that, the design of the proposed antenna using a layered metamaterial is presented. The different layers are all composed of homogeneous and uniaxial anisotropic metamaterials, which can be obtained from simple metal-dielectric structures. When the radiating source is embedded in the layered metamaterial, a highly directive beam is radiated from the antenna.

  16. THE COUPLING AND MUTUAL IMPEDANCE BETWEEN BALANCED WIRE-ARM CONICAL LOG-SPIRAL ANTENNAS

    DTIC Science & Technology

    CONICAL ANTENNAS, *COUPLED ANTENNAS, * HELICAL ANTENNAS, ANTENNA COMPONENTS, ANTENNA RADIATION PATTERNS, COUPLINGS, DESIGN, ELECTRIC CURRENTS...ELECTRIC POTENTIAL, ELECTRICAL IMPEDANCE, MEASUREMENT, POLARIZATION, PROPAGATION, ROTATION, SPIRAL ANTENNAS, THEORY

  17. Novel metamaterial based antennas for flexible wireless systems

    NASA Astrophysics Data System (ADS)

    Khaleel, Haider Raad

    Recent years have witnessed a great deal of interest from both academia and industry in the field of flexible electronic systems. This research topic tops the pyramid of research priorities requested by many national research agencies. Consistently, flexible electronic systems require the integration of flexible antennas operating in specific frequency bands to provide wireless connectivity which is highly demanded by today's information oriented society. On the other hand, metamaterials have become very popular in the design of contemporary antenna and microwave devices due to their wide range of applications derived from their unique properties which significantly enhances the performance of antennas and RF systems. Accordingly, the integration of metamaterial structures within flexible wireless systems is very beneficial in this growing field of research. A systematic approach to the analysis and design of flexible and conformal antennas and metamaterials is ultimately needed. The research reported in this thesis focuses on developing flexible low profile antennas and metamaterial structures in addition to characterizing their performance when integrated within flexible wireless systems. Three flexible, compact, and extremely low profile (50.8 microm) antennas intended for WLAN, Bluetooth and Ultra Wide Band (UWB) applications are presented. Next, a novel miniaturized Artificial Magnetic Conductor (AMC) and a new technique to enhance the bandwidth of micro-Negative (MNG) metamaterial are reported. Furthermore, the effect of bending on the AMC and MNG metamaterial is investigated in this thesis for the first time. Finally, the findings of this research are utilized in practical applications with specific design constraints including mutual coupling reduction between radiating elements in antenna arrays and MIMO systems and Specific Absorption Rate (SAR) reduction in telemedicine systems.

  18. Elasto optical antennas

    NASA Astrophysics Data System (ADS)

    Vinet, J.-Y.

    It is shown that elasto optical properties of some transparent media make possible to couple elastic with optical resonators. Large single crystals with high quality factors lead to narrow band resonant antennas, whereas optical fibers lead to wideband antennas. The sensitivities are evaluated. Les propriétés élasto-optiques de certains milieux transparents permettent le couplage entre des résonateurs optiques et élastiques. Il est possible de concevoir des antennes à bande étroite utilisant des monocristaux de grande taille à très faibles pertes acoustiques, et des antennes à large bande utilisant des fibres optiques. On a calculé des ordres de grandeur pour les sensibilités des deux systèmes.

  19. Microsecond switchable thermal antenna

    SciTech Connect

    Ben-Abdallah, Philippe Benisty, Henri; Besbes, Mondher

    2014-07-21

    We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

  20. Millimeter Wave Antenna Technology,

    DTIC Science & Technology

    1984-09-30

    development work will be required. Milli- meter wave antennas play a key role in the rationale for millimeter system designs beas ihspatial resolution...results in their popularity for multiple bea applications. In their design, care ust be exercised to minimize reflection losses at the lens surfaces...Alternatively, the radome surface may be treated to repel the water, and rivulet flow results. Since the water is more randomly distribu- ted, the gain loss is

  1. JPL Large Advanced Antenna Station Array Study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In accordance with study requirements, two antennas are described: a 30 meter standard antenna and a 34 meter modified antenna, along with a candidate array configuration for each. Modified antenna trade analyses are summarized, risks analyzed, costs presented, and a final antenna array configuration recommendation made.

  2. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  3. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  4. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  5. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  6. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  7. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  8. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  9. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  10. 47 CFR 80.866 - Spare antenna.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Spare antenna. 80.866 Section 80.866... Spare antenna. A spare transmitting antenna completely assembled for immediate erection must be provided. If the installed transmitting antenna is suspended between supports, this spare antenna must be...

  11. 47 CFR 80.863 - Antenna system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna system. 80.863 Section 80.863... Antenna system. (a) An antenna system must be installed which is as nondirectional and as efficient as is... construction of the required antenna must insure operation in time of emergency. (b) If the required antenna...

  12. Tunable Patch Antennas Using Microelectromechanical Systems

    DTIC Science & Technology

    2011-05-11

    Tunable Microstrip Patch Antena Using RF MEMS Technology, IEEE Transactions on Antennas and Propagations, Vol. 55, Issue 4, April 2007, pp. 1193...capacitors co-fabricated in the same process. 15. SUBJECT TERMS Microstrip antennas, patch antennas, radio frequency microelectromechanical systems...resonant mode. Keywords: Microstrip antennas, patch antennas, radio frequency microelectromechanical systems, tunable circuits and devices 2

  13. The ACTS multibeam antenna

    NASA Technical Reports Server (NTRS)

    Regier, Frank A.

    1992-01-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The satellite is introduced briefly, and then the MBA, consisting of electrically similar 30 GHz received and 20 GHz transmit offset Cassegrain systems utilizing orthogonal linear polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 deg beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz high mobility electron transmitter (HEMT) low-noise amplifier and a 20 GHz TWT power amplifier.

  14. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  15. The ACTS multibeam antenna

    NASA Astrophysics Data System (ADS)

    Regier, Frank A.

    1992-04-01

    The Advanced Communications Technology Satellite (ACTS) to be launched in 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The satellite is introduced briefly, and then the MBA, consisting of electrically similar 30 GHz received and 20 GHz transmit offset Cassegrain systems utilizing orthogonal linear polarizations, is described. Dual polarization is achieved by using one feed assembly for each polarization in conjunction with nested front and back subreflectors, the gridded front subreflector acting as a window for one polarization and a reflector for the other. The antennas produce spot beams with approximately 0.3 deg beamwidth and gains of approximately 50 dbi. High surface accuracy and high edge taper produce low sidelobe levels and high cross-polarization isolation. A brief description is given of several Ka-band components fabricated for ACTS. These include multiflare antenna feedhorns, beam-forming networks utilizing latching ferrite waveguide switches, a 30 GHz high mobility electron transmitter (HEMT) low-noise amplifier and a 20 GHz TWT power amplifier.

  16. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  17. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  18. A Mars Riometer: Antenna Considerations

    NASA Technical Reports Server (NTRS)

    Fry, Craig D.

    2001-01-01

    This is the final report on NASA Grant NAG5-9706. This project explored riometer (relative ionospheric opacity meter) antenna designs that would be practical for a Mars surface or balloon mission. The riometer is an important radio science instrument for terrestrial aeronomy investigations. The riometer measures absorption of cosmic radio waves by the overhead ionosphere. Studies have shown the instrument should work well on Mars, which has an appreciable daytime ionosphere. There has been concern that the required radio receiver antenna (with possibly a 10 meter scale size) would be too large or too difficult to deploy on Mars. This study addresses those concerns and presents several antenna designs and deployment options. It is found that a Mars balloon would provide an excellent platform for the riometer antenna. The antenna can be incorporated into the envelope design, allowing self-deployment of the antenna as the balloon inflates.

  19. Efficient Placement of Directional Antennas

    SciTech Connect

    Pan, Feng; Kasiviswanathan, Shiva

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  20. Antenna Calibration and Measurement Equipment

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  1. Design and Development of Aerogel-Based Antennas for Aerospace Applications: A Final Report to the NARI Seedling

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Miranda, Felix A.

    2014-01-01

    explored the possibility of developing these arrays in thin, flexible form to make conformable antennas.

  2. Slotted Antenna with Anisotropic Covering

    DTIC Science & Technology

    2015-08-06

    08-2015 Publication Slotted Antenna with Anisotropic Covering David A. Tonn et al Naval Under Warfare Center Division, Newport 1176 Howell St...NUWC 300055 Distribution A An antenna includes a tubular, conductive radiator having a longitudinal slot formed therein from a first end of the...conductive radiator to a second end of the conductive radiator. An antenna feed can be joined to the conductive radiator adjacent to and across the slot

  3. Improved Gain Microstrip Patch Antenna

    DTIC Science & Technology

    2015-08-06

    08-2015 Publication Improved Gain Microstrip Patch Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L...Distribution A An antenna for mounting on a ground plane includes a dielectric substrate for mounting on the ground plane. A conductive patch...GAIN MICROSTRIP PATCH ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by or for the

  4. Analysis of rectangular microstrip antennas

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1984-01-01

    The problem of microstrip antennas covered by a dielectric substrate is formulated in terms of coupled integro-differential equations with the current distribution on the conducting patch as an unknown quantity. The Galerkin method is used to solve for the unknown patch current. Using the present formulation, the radiation pattern, the resonant frequency, and the bandwidth of a rectangular microstrip antenna are computed. Design data for a rectangular microstrip antenna are also presented.

  5. Deployable antenna phase A study

    NASA Technical Reports Server (NTRS)

    Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.

    1979-01-01

    Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.

  6. Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna

    PubMed Central

    Shin, Keun-Young; Kim, Minkyu; Lee, James S.; Jang, Jyongsik

    2015-01-01

    Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π–π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands. PMID:26338090

  7. Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna

    NASA Astrophysics Data System (ADS)

    Shin, Keun-Young; Kim, Minkyu; Lee, James S.; Jang, Jyongsik

    2015-09-01

    Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π-π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands.

  8. Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna.

    PubMed

    Shin, Keun-Young; Kim, Minkyu; Lee, James S; Jang, Jyongsik

    2015-09-04

    Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π-π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands.

  9. Optical antenna gain. 2: receiving antennas.

    PubMed

    Degnan, J J; Klein, B J

    1974-10-01

    Expressions are derived for the gain of a centrally obscured, circular optical antenna when used as the collecting and focusing optics in a laser receiver which include losses due to (1) blockage of the incoming light by the central obscuration, (2) the spillover of energy at the detector, and (3) the effect of local oscillator distribution in the case of heterodyne or homodyne detection. Numerical results are presented for direct detection and for three types of local oscillator distributions (uniform, Gaussian, and matched) in the case of heterodyne or homodyne detection. The results are presented in several graphs that allow the rapid evaluation of receiver gain for an arbitrary set of telescope and detector parameters. It is found that, for uniform illumination by the LO, the optimum SNR is obtained when the detector radius is approximately 0.74 times the Airy disk radius. The use of an optimized Gaussian (spot size = 0.46 times the Airy disk radius) improves the receiver gain by less than 1 dB. Theuse results are insensitive to the size of the central obscuration.

  10. Near Field Antenna Measurement System.

    DTIC Science & Technology

    1982-03-01

    beam pointing accuracy and .6 dB gain accuracy. These antennas are both planar arrays with the X-band antenna scanning with ferrite phase shifters in...AD-A114 125 M[ES AIRCRAFT CO FULLERTON CA F/ 17/9 NEAR FIELD ANTENNA MEASUREMENT SYSTEM. (U) MAR 82 A E HOLLEY DAABO7-7?-C-1 87 UNCLASSIFIED NL...IllIHE El. onhEnoh IIIIhh --h h I~m I I Research and Development Technical Report I DAABO7-77-C-0587-F1 NEAR FIELD ANTENNA I MEASUREMENT SYSTEM I A.E

  11. Project Echo: Antenna Steering System

    NASA Technical Reports Server (NTRS)

    Klahn, R.; Norton, J. A.; Githens, J. A.

    1961-01-01

    The Project Echo communications experiment employed large, steerable,transmitting and receiving antennas at the ground terminals. It was necessary that these highly directional antennas be continuously and accurately pointed at the passing satellite. This paper describes a new type of special purpose data converter for directing narrow-beam communication antennas on the basis of predicted information. The system is capable of converting digital input data into real-time analog voltage commands with a dynamic accuracy of +/- 0.05 degree, which meets the requirements of the present antennas.

  12. Electronic switching spherical array antenna

    NASA Technical Reports Server (NTRS)

    Stockton, R.

    1978-01-01

    This work was conducted to demonstrate the performance levels attainable with an ESSA (Electronic Switching Spherical Array) antenna by designing and testing an engineering model. The antenna was designed to satisfy general spacecraft environmental requirements and built to provide electronically commandable beam pointing capability throughout a hemisphere. Constant gain and beam shape throughout large volumetric coverage regions are the principle characteristics. The model is intended to be a prototype of a standard communications and data handling antenna for user scientific spacecraft with the Tracking and Data Relay Satellite System (TDRSS). Some additional testing was conducted to determine the feasibility of an integrated TDRSS and GPS (Global Positioning System) antenna system.

  13. Optical resonant Archimedean spiral antennas

    NASA Astrophysics Data System (ADS)

    Wen, Hanqing; Yang, Jing; Zhang, Weiwei; Zhang, Jiasen

    2011-01-01

    We investigated the field enhancement properties of optical resonant Archimedean spiral antennas by using a finite difference time domain method. Due to the spiral structure, the antennas show a circular dichroism in the electric field enhancement, especially for a large turning angle. A large magnetic field enhancement is also obtained with a confinement in the nanometer size. When the turning angle equals π for a linearly polarized incident beam, the polarization of the enhanced field in the spiral antenna can be perpendicular to the incident polarization with a similar enhancement factor to the optical resonant dipole antennas.

  14. Antenna system for MSAT mission

    NASA Technical Reports Server (NTRS)

    Karlsson, Ingmar; Patenaude, Yves; Stipelman, Leora

    1988-01-01

    Spar has evaluated and compared several antenna concepts for the North American Mobile Satellite. The paper describes some of the requirements and design considerations for the antennas and demonstrates the performance of antenna concepts that can meet them. Multiple beam reflector antennas are found to give best performance and much of the design effort has gone into the design of the primary feed radiators and beam forming networks to achieve efficient beams with good overlap and flexibility. Helices and cup dipole radiators have been breadboarded as feed element candidates and meausured results are presented. The studies and breadboard activities have made it possible to proceed with a flight program.

  15. Impact of Optical Baffle on Antenna Pattern

    NASA Technical Reports Server (NTRS)

    Wu, T.; Pogorzelski, R.

    1994-01-01

    One of the major concerns of antenna design for spacecraft applications is the effect of surrounding structures which can reflect and diffract the antenna's radiated energy and cause degradation in the antenna directivity, beam shape, and sidelobe levels.

  16. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.

  17. Ferrite attenuator modulation improves antenna performance

    NASA Technical Reports Server (NTRS)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  18. View of Antenna #1 (foreground), and Antenna #2 surface doors. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Antenna #1 (foreground), and Antenna #2 surface doors. Orientation Target #2 in background. Image looking northeast - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  19. View of Antenna #2 (foreground), and Antenna #1 surface doors. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Antenna #2 (foreground), and Antenna #1 surface doors. Orientation Target #1 in background. Image looking northwest - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  20. Millimeter and submillimeter wave antenna structure

    NASA Technical Reports Server (NTRS)

    Rebiez, Gabriel M. (Inventor); Rutledge, David B. (Inventor)

    1989-01-01

    An integrated circuit antenna structure for transmitting or receiving millimeter and/or submillimeter wave radiation having an antenna relatively unimpaired by the antenna mounting arrangment is disclosed herein. The antenna structure of the present invention includes a horn disposed on a substrate for focusing electromagnetic energy with respect to an antenna. The antenna is suspended relative to the horn to receive or transmit the electromagnetic energy focused thereby.

  1. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  2. The Conformal Bootstrap

    NASA Astrophysics Data System (ADS)

    Simmons-Duffin, David

    These notes are from courses given at TASI and the Advanced Strings School in summer 2015. Starting from principles of quantum field theory and the assumption of a traceless stress tensor, we develop the basics of conformal field theory, including conformal Ward identities, radial quantization, reection positivity, the operator product expansion, and conformal blocks. We end with an introduction to numerical bootstrap methods, focusing on the 2d and 3d Ising models.

  3. Terahertz antenna electronic chopper

    SciTech Connect

    Sterczewski, L. A. Grzelczak, M. P.; Plinski, E. F.

    2016-01-15

    In this paper, we present an electronic circuit used to bias a photoconductive antenna that generates terahertz radiation. The working principles and the design process for the device are discussed in detail. The noise and shape of the wave measurements for a built device are considered. Furthermore, their impact on a terahertz pulse and its spectra is also examined. The proposed implementation is simple to build, robust and offers a real improvement over THz instrumentation due to the frequency tuning. Additionally, it provides for galvanic isolation and ESD protection.

  4. Patch antenna terahertz photodetectors

    SciTech Connect

    Palaferri, D.; Todorov, Y. Chen, Y. N.; Madeo, J.; Vasanelli, A.; Sirtori, C.; Li, L. H.; Davies, A. G.; Linfield, E. H.

    2015-04-20

    We report on the implementation of 5 THz quantum well photodetector exploiting a patch antenna cavity array. The benefit of our plasmonic architecture on the detector performance is assessed by comparing it with detectors made using the same quantum well absorbing region, but processed into a standard 45° polished facet mesa. Our results demonstrate a clear improvement in responsivity, polarization insensitivity, and background limited performance. Peak detectivities in excess of 5 × 10{sup 12} cmHz{sup 1/2}/W have been obtained, a value comparable with that of the best cryogenic cooled bolometers.

  5. Optical antenna enhanced spontaneous emission

    PubMed Central

    Eggleston, Michael S.; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C.

    2015-01-01

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼200 THz optical frequency show a spontaneous emission intensity enhancement of 35× corresponding to a spontaneous emission rate speedup ∼115×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼2,500× spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d2. Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, Io = qω|xo|/d, feeding the antenna-enhanced spontaneous emission, where q|xo| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency. PMID:25624503

  6. Optical antenna enhanced spontaneous emission.

    PubMed

    Eggleston, Michael S; Messer, Kevin; Zhang, Liming; Yablonovitch, Eli; Wu, Ming C

    2015-02-10

    Atoms and molecules are too small to act as efficient antennas for their own emission wavelengths. By providing an external optical antenna, the balance can be shifted; spontaneous emission could become faster than stimulated emission, which is handicapped by practically achievable pump intensities. In our experiments, InGaAsP nanorods emitting at ∼ 200 THz optical frequency show a spontaneous emission intensity enhancement of 35 × corresponding to a spontaneous emission rate speedup ∼ 115 ×, for antenna gap spacing, d = 40 nm. Classical antenna theory predicts ∼ 2,500 × spontaneous emission speedup at d ∼ 10 nm, proportional to 1/d(2). Unfortunately, at d < 10 nm, antenna efficiency drops below 50%, owing to optical spreading resistance, exacerbated by the anomalous skin effect (electron surface collisions). Quantum dipole oscillations in the emitter excited state produce an optical ac equivalent circuit current, I(o) = qω|x(o)|/d, feeding the antenna-enhanced spontaneous emission, where q|x(o)| is the dipole matrix element. Despite the quantum-mechanical origin of the drive current, antenna theory makes no reference to the Purcell effect nor to local density of states models. Moreover, plasmonic effects are minor at 200 THz, producing only a small shift of antenna resonance frequency.

  7. Emergency-vehicle VHF antenna

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Carlson, A. W.; Lewis, J.

    1977-01-01

    Helical VHF antenna mounts on roof of moving vehicle to communicate with distant stations via earth satellites. Antenna requires no pointing and can provide two-way communication while vehicle moves at high speed. Device has proved extremely successful in electrocardiogram transmission tests between medical services vehicle and hospital emergency room.

  8. Optical antennas as nanoscale resonators.

    PubMed

    Agio, Mario

    2012-02-07

    Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  9. Small high directivity ferrite antennas

    NASA Astrophysics Data System (ADS)

    Wright, T. M. B.

    A centimeter-wavelength antenna of millimetric dimensions, which uses the intrinsic angular sensitivity of ferrites, is described, with an emphasis on the modification of the material's permeability. The construction of both the ferrite film lens antenna and the ferrite film cassegrain antenna are detailed; both can be devised in a number of configurations for appropriate beam positioning and rf filtering. The antenna design, discussed primarily in the context of smart missiles, electronic warfare, and satellite systems, presents the possibility of magnetically switching between the transmit and receive modes within the antenna structure itself. Finally, it is noted that for a simple 2-dipole array the angular resolution can be two orders of magnitude higher than with the conventional techniques.

  10. Transcatheter Microwave Antenna

    NASA Technical Reports Server (NTRS)

    Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)

    2001-01-01

    A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.

  11. Soret Fishnet Metalens Antenna

    PubMed Central

    Orazbayev, Bakhtiyar; Beruete, Miguel; Pacheco-Peña, Víctor; Crespo, Gonzalo; Teniente, Jorge; Navarro-Cía, Miguel

    2015-01-01

    At the expense of frequency narrowing, binary amplitude-only diffractive optical elements emulate refractive lenses without the need of large profiles. Unfortunately, they also present larger Fresnel reflection loss than conventional lenses. This is usually tackled by implementing unattractive cumbersome designs. Here we demonstrate that simplicity is not at odds with performance and we show how the fishnet metamaterial can improve the radiation pattern of a Soret lens. The building block of this advanced Soret lens is the fishnet metamaterial operating in the near-zero refractive index regime with one of the edge layers designed with alternating opaque and transparent concentric rings made of subwavelength holes. The hybrid Soret fishnet metalens retains all the merits of classical Soret lenses such as low profile, low cost and ease of manufacturing. It is designed for the W-band of the millimeter-waves range with a subwavelength focal length FL = 1.58 mm (0.5λ0) aiming at a compact antenna or radar systems. The focal properties of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ~2 dB with respect to a fishnet Soret lens without the fishnet metamaterial. PMID:25950243

  12. Adaptive multibeam antenna array

    NASA Astrophysics Data System (ADS)

    Novikov, V. I.

    1984-01-01

    An adaptive multibeam antenna array is considered which will enhance the advantages of a plain one. By providing simultaneous reception of signals from different directions and their sequential processing. The optimization of the array control for maximum interference suppression in the radiation pattern is emphasized. The optimum control is sought with respect to the signal-to-interference power ratio as a genaralized criterion. Sampled useful signals and transmission coefficients are found to be complex-conjugate quantities, assuming compatible formation of beams, so that synphasal equiamplitude addition of signals from all array element is attainable by unique settings of the weight factors. Calculations are simplified by letting the useful signal power in the 1-th beam be approximately equal to the k-th weight factor, before optimizing the weight vector for maximum signal-to-interference ratio. A narrowband interference described by power P and vector V of signal distribution over the array is considered as an example, to demonstrate the algorithm of synthesis. The algorithm, using the Butler matrix, was executed experimentally on a computer for a linear equidistant antenna array of 32 elements with compatible formation of beams.

  13. [Dosimetric evaluation of conformal radiotherapy: conformity factor].

    PubMed

    Oozeer, R; Chauvet, B; Garcia, R; Berger, C; Felix-Faure, C; Reboul, F

    2000-01-01

    The aim of three-dimensional conformal therapy (3DCRT) is to treat the Planning Target Volume (PTV) to the prescribed dose while reducing doses to normal tissues and critical structures, in order to increase local control and reduce toxicity. The evaluation tools used for optimizing treatment techniques are three-dimensional visualization of dose distributions, dose-volume histograms, tumor control probabilities (TCP) and normal tissue complication probabilities (NTCP). These tools, however, do not fully quantify the conformity of dose distributions to the PTV. Specific tools were introduced to measure this conformity for a given dose level. We have extended those definitions to different dose levels, using a conformity index (CI). CI is based on the relative volumes of PTV and outside the PTV receiving more than a given dose. This parameter has been evaluated by a clinical study including 82 patients treated for lung cancer and 82 patients treated for prostate cancer. The CI was low for lung dosimetric studies (0.35 at the prescribed dose 66 Gy) due to build-up around the GTV and to spinal cord sparing. For prostate dosimetric studies, the CI was higher (0.57 at the prescribed dose 70 Gy). The CI has been used to compare treatment plans for lung 3DCRT (2 vs 3 beams) and prostate 3DCRT (4 vs 7 beams). The variation of CI with dose can be used to optimize dose prescription.

  14. Conformal differential invariants

    NASA Astrophysics Data System (ADS)

    Kruglikov, Boris

    2017-03-01

    We compute the Hilbert polynomial and the Poincaré function counting the number of fixed jet-order differential invariants of conformal metric structures modulo local diffeomorphisms, and we describe the field of rational differential invariants separating generic orbits of the diffeomorphism pseudogroup action. This resolves the local recognition problem for conformal structures.

  15. Conformations of Substituted Ethanes.

    ERIC Educational Resources Information Center

    Kingsbury, Charles A.

    1979-01-01

    Reviews state-of-the-art of conformational analysis and factors which affect it. Emphasizes sp-3 hybridized acrylic molecules. Provides examples on the importance of certain factors in determining conformation. Purpose, is to provide examples for examination questions. (Author/SA)

  16. Microstrip antenna on tunable substrate

    NASA Astrophysics Data System (ADS)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  17. L-band orthogonal-mode crossed-slot antenna and VHF crossed-loop antenna

    NASA Technical Reports Server (NTRS)

    Olsson, T.

    1972-01-01

    A low gain, circularly polarized, L-band antenna; a low gain, linealy polarized, L-band antenna; and a low gain, circularly polarized, upper hemisphere, VHF satellite communications antenna intended for airborne applications are described. The text includes impedance and antenna radiation pattern data, along with physical description of the construction of the antennas.

  18. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  19. 47 CFR 73.1675 - Auxiliary antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service...

  20. 47 CFR 73.69 - Antenna monitors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the...

  1. 47 CFR 73.1675 - Auxiliary antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service...

  2. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas...

  3. 47 CFR 73.1680 - Emergency antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged...

  4. 47 CFR 73.1675 - Auxiliary antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service...

  5. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  6. 47 CFR 73.1680 - Emergency antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged...

  7. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. No antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In addition, any MedRadio antenna used...

  8. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas...

  9. 47 CFR 73.1680 - Emergency antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged...

  10. 47 CFR 73.69 - Antenna monitors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the...

  11. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas...

  12. 47 CFR 73.1680 - Emergency antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged...

  13. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas...

  14. 47 CFR 73.510 - Antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna....

  15. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. No antenna for a MedRadio transmitter shall be configured for permanent outdoor use. In addition, any MedRadio antenna used...

  16. 47 CFR 73.69 - Antenna monitors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the...

  17. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  18. 47 CFR 95.51 - Antenna height.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be...

  19. 47 CFR 73.69 - Antenna monitors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the...

  20. 47 CFR 73.510 - Antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna....

  1. 47 CFR 73.1680 - Emergency antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Emergency antennas. 73.1680 Section 73.1680... Rules Applicable to All Broadcast Stations § 73.1680 Emergency antennas. (a) An emergency antenna is one that is erected for temporary use after the authorized main and auxiliary antennas are damaged...

  2. 47 CFR 73.1675 - Auxiliary antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service...

  3. 47 CFR 95.51 - Antenna height.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be...

  4. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  5. 47 CFR 95.51 - Antenna height.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be...

  6. 47 CFR 73.753 - Antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 73.753 Section 73.753... International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate with directional antennas. Such antennas shall be designed and operated so that the radiated power...

  7. 47 CFR 73.510 - Antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna....

  8. 47 CFR 95.51 - Antenna height.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be...

  9. 47 CFR 73.1675 - Auxiliary antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Auxiliary antennas. 73.1675 Section 73.1675... Rules Applicable to All Broadcast Stations § 73.1675 Auxiliary antennas. (a)(1) An auxiliary antenna is one that is permanently installed and available for use when the main antenna is out of service...

  10. 47 CFR 95.51 - Antenna height.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna height. 95.51 Section 95.51... SERVICES General Mobile Radio Service (GMRS) § 95.51 Antenna height. (a) Certain antenna structures used in... this chapter. (b) The antenna for a small base station or for a small control station must not be...

  11. 47 CFR 73.69 - Antenna monitors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna monitors. 73.69 Section 73.69... Broadcast Stations § 73.69 Antenna monitors. (a) Each station using a directional antenna must have in operation at the transmitter site an FCC authorized antenna monitor. (b) In the event that the...

  12. 47 CFR 95.1013 - Antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.1013 Section 95.1013... SERVICES Low Power Radio Service (LPRS) General Provisions § 95.1013 Antennas. (a) The maximum allowable... this chapter, at the band edges. (b) AMTS stations must employ directional antennas. (c) Antennas...

  13. Antenna sunshield membrane

    NASA Technical Reports Server (NTRS)

    Bogorad, Alexander (Inventor); Bowman, Jr., Charles K. (Inventor); Meder, Martin G. (Inventor); Dottore, Frank A. (Inventor)

    1994-01-01

    An RF-transparent sunshield membrane covers an antenna reflector such as a parabolic dish. The blanket includes a single dielectric sheet of polyimide film 1/2-mil thick. The surface of the film facing away from the reflector is coated with a transparent electrically conductive coating such as vapor-deposited indium-tin oxide. The surface of the film facing the reflector is reinforced by an adhesively attached polyester or glass mesh, which in turn is coated with a white paint. In a particular embodiment of the invention, polyurethane paint is used. In another embodiment of the invention, a layer of paint primer is applied to the mesh under a silicone paint, and the silicone paint is cured after application for several days at room temperature to enhance adhesion to the primer.

  14. Metal Patch Antenna

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil F. (Inventor); Hodges, Richard E. (Inventor); Zawadzki, Mark S. (Inventor)

    2012-01-01

    Disclosed herein is a patch antenna comprises a planar conductive patch attached to a ground plane by a support member, and a probe connector in electrical communication with the conductive patch arranged to conduct electromagnetic energy to or from the conductive patch, wherein the conductive patch is disposed essentially parallel to the ground plane and is separated from the ground plane by a spacing distance; wherein the support member comprises a plurality of sides disposed about a central axis oriented perpendicular to the conductive patch and the ground plane; wherein the conductive patch is solely supported above the ground plane by the support member; and wherein the support member provides electrical communication between the planer conductive patch and the ground plane.

  15. Dual-mode antenna array for microwave heating and noninvasive thermometry of superficial tissue disease

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Jacobsen, Svein; Rossetto, Francesca; Diederich, Chris J.; Neuman, Daniel

    1999-05-01

    Hyperthermia therapy of superficial skin disease has proven clinically useful, but current heating equipment is clumsy and technically inadequate for many patients. The present effort describes a dual purpose multielement conformal array microwave applicator that is fabricated from flexible printed circuit board (PCB) material to facilitate heating of large surface areas overlying contoured anatomy. Preliminary studies document the feasibility of combining concentric spiral microstrip antennas within multilayer PCB material in order to achieve tissue heating simultaneously with non-invasive thermometry by radiometric sensing of blackbody radiation from the target tissue under the applicator. Results demonstrate that superficial tissue regions may be heated uniformly above 50% of SARmax out to the periphery of 915 MHz conformal array applicators made from arrays of Dual Concentric Conductor apertures. Finally the data clearly demonstrate that separate complimentary antenna structures may be combined together in thin and lightweight conformal arrays to provide heating simultaneously with microwave radiometry based temperature monitoring of superficial tissue.

  16. Conical quadreflex antenna analytical study

    NASA Technical Reports Server (NTRS)

    Cramer, P. W., Jr.

    1973-01-01

    A method for evaluating the performance of a four-reflection or quadreflex antenna is reported. Geometrical optics was used initially to determine the ideal feed pattern required to produce uniform illumination on the aperture of the conical reflector and the reverse problem of quickly finding the aperture illumination given an arbitrary feed pattern. The knowledge of the aperture illumination makes it possible to compute the antenna efficiency, which is useful for comparing antenna performance during tradeoff studies. Scattering calculations, using physical optics techniques, were then used to more accurately determine the performance of a specific design.

  17. Smart antennas based on graphene

    SciTech Connect

    Aldrigo, Martino; Dragoman, Mircea; Dragoman, Daniela

    2014-09-21

    We report two configurations of smart graphene antennas, in which either the radiation pattern of the antenna or the backscattering of the periodic metallic arrays is controlled by DC biases that induce metal-insulator reversible transitions of graphene monolayers. Such a transition from a high surface resistance (no bias) to a low surface resistance state (finite bias voltage) causes the radiation pattern of metallic antennas backed with graphene to change dramatically, from omnidirectional to broadside. Moreover, reflectarrays enhance the backscattered field due to the same metal-dielectric transition.

  18. Large inflated-antenna system

    NASA Technical Reports Server (NTRS)

    Hinson, W. F.; Keafer, L. S.

    1984-01-01

    It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.

  19. The collinear coaxial array antenna

    NASA Astrophysics Data System (ADS)

    Brammer, D. J.; Williams, D.

    1981-03-01

    A design of a coaxial vertical antenna proposed in the ARRL antenna handbook is analyzed. A numerical analysis was carried out using the moment method. A variety of antenna configurations in the 160 MHz design frequency are analyzed and current distribution, gain, polar diagrams and impedances are calculated. The analysis is carried out for simple configurations and extended to a case with 16 repeated center sections. The effects of using lossy cable in the construction is also investigated. A defect in the original ARRL design is rectified. An array of an overall length 5.33 wavelengths is shown to have a gain of 10.69 dB.

  20. Moths smell with their antennae

    NASA Astrophysics Data System (ADS)

    Spencer, Thomas; Ballard, Matthew; Alexeev, Alexander; Hu, David

    2015-11-01

    Moths are reported to smell each other from over 6 miles away, locating each other with just 200 airborne molecules. In this study, we investigate how the structure of the antennae influences particle capture. We measure the branching patterns of over 40 species of moths, across two orders of magnitude in weight. We find that moth antennae have 3 levels of hierarchy, with dimensions on each level scaling with body size. We perform lattice-Boltzman simulations to determine optimal flow patterns around antennae branches allowing for capture of small particles.

  1. High-efficiency reflectarray antenna using a compact focusing meta-lens

    NASA Astrophysics Data System (ADS)

    Cai, T.; Wang, G.-M.; Liang, J.-G.

    2017-03-01

    The mechanisms of achieving high phase efficiency of a meta-surface are researched and analyzed systematically. For a reflective element, an electrically small size, a complete phase-shift range of more than 360°, and also a smooth phase response play an essential role in determining the high phase efficiency. Based on the design principle, an excellent element is proposed consisting of an isotropic three-turn square-ring resonator (ITSR) on a single-layer slab. The characterizations of the ITSR element are investigated in depth through theoretical calculation, comparative analysis, and electromagnetic (EM) simulation. A focusing meta-lens, with a parabolic phase distribution, is well optimized using 14 × 14 elements. Good focusing effect is demonstrated within a wide bandwidth of more than 1 GHz. Exciting the meta-lens with a waveguide feed antenna at the focus, a high-efficiency reflectarray antenna is designed, which shows a series of advances, such as high aperture efficiency of better than 70%, 1-dB gain bandwidth wider than 13.07%, and also competitive radiation gain. The proposed strategy opens an avenue to new types of high-efficiency RMSs and reflectarray antennas with enhanced radiation characteristics.

  2. Ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen

    2005-12-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.

  3. Intense terahertz antenna array with interdigital electrodes

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Shi, Wei; Xu, Ming; Chen, Yong

    2008-12-01

    In this work a powerful terahertz antenna array with interdigital electrodes is fabricated, and the performance of one antenna unit is compared with a conventional resonant dipole antenna. The antenna unit has a better capacity of generating THz wave compared with a conventional resonant dipole antenna at the same bias electrical field and the same laser energy. However only 23 % of THz wave transmitted through the ceramic substrate of antenna array, if there is a hole drilled through ceramic substrate to release the THz wave, the THz amplitude of entire interdigital antenna array with 8 antenna units can be more than 10 times larger than that of resonant dipole antenna. To get this result, the pump beam is focused into a linear beam by a cylindrical lens to trigger the antenna array, and the linear THz wave is focused by a polyethylene lens before it reaches ZnTe crystal.

  4. EC declaration of conformity.

    PubMed

    Donawa, M E

    1996-05-01

    The CE-marking procedure requires that manufacturers draw up a written declaration of conformity before placing their products on the market. However, some companies do not realize that this is a requirement for all devices. Also, there is no detailed information concerning the contents and format of the EC declaration of conformity in the medical device Directives or in EC guidance documentation. This article will discuss some important aspects of the EC declaration of conformity and some of the guidance that is available on its contents and format.

  5. Conformal Carroll groups

    NASA Astrophysics Data System (ADS)

    Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2014-08-01

    Conformal extensions of Lévy-Leblond's Carroll group, based on geometric properties analogous to those of Newton-Cartan space-time are proposed. The extensions are labeled by an integer k. This framework includes and extends our recent study of the Bondi-Metzner-Sachs (BMS) and Newman-Unti (NU) groups. The relation to conformal Galilei groups is clarified. Conformal Carroll symmetry is illustrated by ‘Carrollian photons’. Motion both in the Newton-Cartan and Carroll spaces may be related to that of strings in the Bargmann space.

  6. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    NASA Technical Reports Server (NTRS)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate

  7. Measurements of AAFE RADSCAT antenna characteristics

    NASA Technical Reports Server (NTRS)

    Cross, A. E.; Jones, W. L., Jr.; Jones, A. L.

    1977-01-01

    Antenna characteristics (active and passive) for a modified AAFE-RADSCAT parabolic dish antenna are documented for a variety of antenna configurations. The modified antenna was a replacement for the original unit which was damaged in January 1975. Pattern measurements made at Langley Research Center and Johnson Space Center are presented, with an analysis of the results. Antenna loss measurements are also presented and summarized.

  8. Electrically floating, near vertical incidence, skywave antenna

    SciTech Connect

    Anderson, Allen A.; Kaser, Timothy G.; Tremblay, Paul A.; Mays, Belva L.

    2014-07-08

    An Electrically Floating, Near Vertical Incidence, Skywave (NVIS) Antenna comprising an antenna element, a floating ground element, and a grounding element. At least part of said floating ground element is positioned between said antenna element and said grounding element. The antenna is separated from the floating ground element and the grounding element by one or more electrical insulators. The floating ground element is separated from said antenna and said grounding element by one or more electrical insulators.

  9. Animal culture: chimpanzee conformity?

    PubMed

    van Schaik, Carel P

    2012-05-22

    Culture-like phenomena in wild animals have received much attention, but how good is the evidence and how similar are they to human culture? New data on chimpanzees suggest their culture may even have an element of conformity.

  10. The new 34-meter antenna

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1986-01-01

    The new 34-m high efficiency Azimuth - Elevation antenna configuration, including its features, dynamic characteristics and performance at 8.4-GHz frequencies is described. The current-technology features of this antenna produce a highly reliable configuration by incorporation of a main wheel and track azimuth support, central pintle pivot bearing, close tolerance surface panels and all-welded construction. Also described are basic drive controls that, as slaved to three automatic microprocessors, provide accurate and safe control of the antenna's steering tasks. At this time antenna installations are completed at Goldstone and Canberra and have operationally supported the Voyager - Uranus encounter. A third installation is being constructed currently in Madrid and is scheduled for completion in late 1986.

  11. Inflatable Antennas Support Emergency Communication

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  12. Planar microstrip YAGI antenna array

    NASA Astrophysics Data System (ADS)

    Huang, John

    1993-06-01

    A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.

  13. NASA Antenna Gets its Bearings

    NASA Video Gallery

    The historic "Mars antenna" at NASA's Deep Space Network site in Goldstone, Calif. has finished a major, delicate surgery that lasted seven months. The operation on the giant, 70-meter-wide (230-fo...

  14. Planar microstrip YAGI antenna array

    NASA Technical Reports Server (NTRS)

    Huang, John (Inventor)

    1993-01-01

    A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.

  15. Efficient complementary metamaterial element for waveguide-fed metasurface antennas.

    PubMed

    Yoo, Insang; Imani, Mohammadreza F; Sleasman, Timothy; Smith, David R

    2016-12-12

    We present a metamaterial element designed as an efficient radiator for waveguide-fed metasurface antennas. The metamaterial element is an electrically-small, complimentary electric-LC (cELC) resonator designed to exhibit large radiated power while maintaining low ohmic losses. The shape of the element is tapered to simultaneously achieve broadband operation and suppression of cross polarization radiation. Full-wave numerical studies at the K-band are conducted to examine its performance when etched into a microstrip line. In this configuration, the element shows a radiation efficiency of 90.2% and a fractional bandwidth of 8.7%. To investigate the potential benefits of the proposed element in two-dimensional platforms, the radiative characteristics of the element are calculated when the element is embedded in a dielectric-filled parallel-plate waveguide. This efficient metamaterial element has potential application as a building block for metasurface devices used in imaging, sensing, wireless power transfer, and wireless communication systems.

  16. Principles and applications of a controllable electromagnetic band gap material to a conformable spherical radome

    NASA Astrophysics Data System (ADS)

    Haché, S.; Burokur, S. N.; de Lustrac, A.; Gadot, F.; Cailleu, P.; Piau, G.-P.

    2009-06-01

    This paper presents the principle of two types of conformable and controllable spherical radome based on Electromagnetic Band Gap (EBG) materials operating at around 10 GHz. The EBG structure is composed of a grid of metallic wires conformed on a hollow spherical object. Two switching control configurations are considered: (1) between an EBG structure made of electrically continuous wires and another one made of discontinuous wires, and (2) between two EBG structures made of discontinuous wires where each has a different period of discontinuities. Both switching configurations are simulated and experimentally characterized on passive prototypes. An excellent agreement is observed between simulations and measurements. The radiation patterns of two types of antennas, a horn antenna and a meteorological antenna, are also measured in the presence of the radome.

  17. Reflection-Zone-Plate Antenna

    NASA Technical Reports Server (NTRS)

    Franke, John M.; Leighty, Bradley D.

    1989-01-01

    Microwave antenna, based on reflection holography, designed and tested. Modified to produce arbitrary beam patterns by controlling relief pattern. Antenna planar or contoured to supporting structure. Low off-axis radar cross section at frequencies removed from operational frequency. Interference pattern produced by spherical wave intersecting plane wave consists of concentric circles similar to Newton's rings. Pattern identical to Fresnel zone plate, which has lens properties. Plane wave incident on hologram, or zone plate, focused to point.

  18. Omnidirectional antenna for radar applications

    NASA Astrophysics Data System (ADS)

    Vitiello, R.

    The development of an omnidirectional antenna for sidelobe blanking is described. The results of electrical measurements for an S-band and L-band configuration are given. The antenna architecture consists of eight printed radiating elements arranged in a biconical fashion. The single radiating element is a pseudo log periodic microstrip array fed by means of capacitive coupling. Modularity and flexibility are the outstanding characteristics of the design.

  19. Trends in Array Antenna Research,

    DTIC Science & Technology

    1977-06-01

    is written: 81. Ruze, J. (1952) Physical Limitations on Antennas. MIT Research Lab . Electronics Tech. Rept. 248. 82. Miller, C. J. (19G4...MIT Radiation Lab ., Cambridge, MA, Hep 479. Ruze, J. (19f>5) Lateral feed displacement in a paraboloid, IEEE Trans. Antennas Propagation...field effects such U the use of a filter near small diffrating obstacles, and in the presence of fields with pseudo- random phase variations. The

  20. Fin-line horn antenna

    DOEpatents

    Reindel, John

    1990-01-01

    A fin line circuit card containing a fin line slot feeds a dipole antenna ich extends a quarterwave outside the waveguide and provides an energy beam focal point at or near the open end of the waveguide. The dipole antenna thus maintains a wide and nearly constant beamwidth, low VSWR and a circular symmetric radiation pattern for use in electronic warfare direction finding and surveillance applications.

  1. Electromagnetic antenna modeling (EAM) system

    NASA Astrophysics Data System (ADS)

    Packer, Malcolm; Powers, Robert; Tsitsopoulos, Paul

    1994-12-01

    The determination of foreign communications capabilities and intent is an important assessment function performed by the USAF National Air Intelligence Center (NAIC). In this context, Rome Laboratory became the NAIC engineering agent for the development of an NAIC requirement for the rapid analysis and evaluation of antenna structures based on often vague to sometimes detailed dimensional information. To this end, the Rome Laboratory sponsored development of the Electromagnetic Antenna Modeling (EAM) System, a state-of-the-art Pascal program with an MS Windows graphical user interface (GUI) pre- and post-processor. Users of NAIC capabilities initiate antenna analysis efforts that range from simple parametric studies to more complex, detailed antenna design and communication-system evaluations. Accordingly, EAM provides a modeling capability 'matched' to the sophistication of the individual analyst, with features appropriate for users ranging from nontechnical analysts to experienced antenna engineers. This capability is particularly valuable in the military-intelligence environment, in which high-speed assessments are required. In particular, EAM meets the specific antenna-analysis requirements of NAIC with a versatile graphical user interface.

  2. Dielectrically Loaded HTS Spiral Antenna

    NASA Astrophysics Data System (ADS)

    Ramasamy, J.; Hanna, D.; Vlasov, Y. A.; Larkins, G. L.; Moeckly, B. H.

    2004-06-01

    The objective of this work is to fabricate, test, and study a dielectrically loaded high temperature superconductor (HTS) spiral antenna that would operate in the frequency band of 10 MHz to 200 MHz. The antenna is formed by depositing and patterning a YBa2Cu3O7 (YBCO) thin film on top of 4-inch-diameter sapphire and Yittria Stabilized ZrO2 substrates. The presence of the HTS material guarantees low conductor loss in the antenna. A thick epitaxial layer of strontium titanate (STO) is then deposited on top of the YBCO for high dielectric constant loading. This set-up can be simulated using the Fidelity software routine, a Finite Difference Time Domain based program from Zeland, Inc. We have simulated the performance of this antenna structure, first in free space and then after loading with the dielectric slabs. Important parameters such as feed point impedance and antenna gain are studied for different simulation conditions. The dielectric ensures reduced feed point impedance as well as improvement of the low frequency response of the antenna.

  3. An Efficient, Wideband, CPW-Fed Antenna Based on Simplified Composite Right/Left-Handed Transmission Line

    NASA Astrophysics Data System (ADS)

    Li, Zhaozhan; Zhou, Cheng; Lin, Yanhong

    2017-01-01

    A wideband electrically small antenna (ESA) based on simplified composite right/left-handed transmission line (SCRLH-TL) is designed, fabricated and tested. The antenna consists of two different sized SCRLH-TL unit cells with different+1st-order mode resonance frequencies. The wideband property of antenna is achieved when these two+1st-order mode resonance frequency suitably merge. A dispersion analysis of the SCRLH-TL reveals that an increase in series of the dual-spiral capacitor would decrease the+1st-order mode resonance frequency, thus reducing the electrical size of the proposed antenna. The 10 dB fractional bandwidth (FBW10 dB) was 54.5 % and the measured maximum was 96.2 %, with an electrical size of 0.32λ0×0.16λ0×0.015λ0 at 3.0 GHz (where λ0 is the wavelength in vacuum). It is shown that the numerical results closely fit the measured results.

  4. NASA technology for large space antennas

    NASA Technical Reports Server (NTRS)

    Russell, R. A.; Campbell, T. G.; Freeland, R. E.

    1979-01-01

    Technology developed by NASA in conjunction with industry for potential large, deployable space antennas with applications in communication, radio astronomy and earth observation is reviewed. Concepts for deployable antennas that have been developed to the point of detail design are summarized, including the advanced sunflower precision antenna, the radial rib antenna, the maypole (hoop/column) antenna and the parabolic erectable truss antenna. The assessment of state-of-the-art deployable antenna technology is discussed, and the approach taken by the NASA Large Space Systems Technology (LSST) Program to the development of technology for large space antenna systems is outlined. Finally, the further development of the wrap-rib antenna and the maypole (hoop/column) concept, which meet mission model requirements, to satisfy LSST size and frequency requirements is discussed.

  5. E-Textile Antennas for Space Environments

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.

    2007-01-01

    The ability to integrate antennas and other radio frequency (RF) devices into wearable systems is increasingly important as wireless voice, video, and data sources become ubiquitous. Consumer applications including mobile computing, communications, and entertainment, as well as military and space applications for integration of biotelemetry, detailed tracking information and status of handheld tools, devices and on-body inventories are driving forces for research into wearable antennas and other e-textile devices. Operational conditions for military and space applications of wireless systems are often such that antennas are a limiting factor in wireless performance. The changing antenna platform, i.e. the dynamic wearer, can detune and alter the radiation characteristics of e-textile antennas, making antenna element selection and design challenging. Antenna designs and systems that offer moderate bandwidth, perform well with flexure, and are electronically reconfigurable are ideally suited to wearable applications. Several antennas, shown in Figure 1, have been created using a NASA-developed process for e-textiles that show promise in being integrated into a robust wireless system for space-based applications. Preliminary characterization of the antennas with flexure indicates that antenna performance can be maintained, and that a combination of antenna design and placement are useful in creating robust designs. Additionally, through utilization of modern smart antenna techniques, even greater flexibility can be achieved since antenna performance can be adjusted in real-time to compensate for the antenna s changing environment.

  6. Mobile antenna development at JPL

    NASA Technical Reports Server (NTRS)

    Huang, J.; Jamnejad, V.; Densmore, A.; Tulintseff, A.; Thomas, R.; Woo, K.

    1993-01-01

    The Jet Propulsion Laboratory (JPL), under the sponsorship of NASA, has pioneered the development of land vehicle antennas for commercial mobile satellite communications. Several novel antennas have been developed at L-band frequencies for the Mobile Satellite (MSAT) program initiated about a decade ago. Currently, two types of antennas are being developed at K- and Ka-band frequencies for the ACTS (Advanced Communications Technology Satellite) Mobile Terminal (AMT) project. For the future, several hand-held antenna concepts are proposed for the small terminals of the Ka-band Personal Access Satellite System (PASS). For the L-band MSAT program, a number of omni-directional low-gain antennas, such as the crossed drooping-dipoles, the higher-order-mode circular microstrip patch, the quadrifilar helix, and the wrapped-around microstrip 'mast' array, have been developed for lower data rate communications. Several medium-gain satellite tracking antennas, such as the electronically scanned low-profile phased array, the mechanically steered tilted microstrip array, the mechanically steered low-profile microstrip Yagi array, and the hybrid electronically/mechanically steered low-profile array, have been developed for the MSAT's higher data rate and voice communications. To date, for the L-band vehicle application, JPL has developed the world's lowest-profile phased array (1.8 cm height), as well as the lowest-profile mechanically steered antenna (3.7 cm height). For the 20/30 GHz AMT project, a small mechanically steered elliptical reflector antenna with a gain of 23 dBi has recently been developed to transmit horizontal polarization at 30 GHz and receive vertical polarization at 20 GHz. Its hemispherical radome has a height of 10 cm and a base diameter of 23 cm. In addition to the reflector, a mechanically steered printed MMIC active array is currently being developed to achieve the same electrical requirements with a low profile capability. These AMT antenna developments

  7. Mobile antenna development at JPL

    NASA Astrophysics Data System (ADS)

    Huang, J.; Jamnejad, V.; Densmore, A.; Tulintseff, A.; Thomas, R.; Woo, K.

    The Jet Propulsion Laboratory (JPL), under the sponsorship of NASA, has pioneered the development of land vehicle antennas for commercial mobile satellite communications. Several novel antennas have been developed at L-band frequencies for the Mobile Satellite (MSAT) program initiated about a decade ago. Currently, two types of antennas are being developed at K- and Ka-band frequencies for the ACTS (Advanced Communications Technology Satellite) Mobile Terminal (AMT) project. For the future, several hand-held antenna concepts are proposed for the small terminals of the Ka-band Personal Access Satellite System (PASS). For the L-band MSAT program, a number of omni-directional low-gain antennas, such as the crossed drooping-dipoles, the higher-order-mode circular microstrip patch, the quadrifilar helix, and the wrapped-around microstrip 'mast' array, have been developed for lower data rate communications. Several medium-gain satellite tracking antennas, such as the electronically scanned low-profile phased array, the mechanically steered tilted microstrip array, the mechanically steered low-profile microstrip Yagi array, and the hybrid electronically/mechanically steered low-profile array, have been developed for the MSAT's higher data rate and voice communications. To date, for the L-band vehicle application, JPL has developed the world's lowest-profile phased array (1.8 cm height), as well as the lowest-profile mechanically steered antenna (3.7 cm height). For the 20/30 GHz AMT project, a small mechanically steered elliptical reflector antenna with a gain of 23 dBi has recently been developed to transmit horizontal polarization at 30 GHz and receive vertical polarization at 20 GHz. Its hemispherical radome has a height of 10 cm and a base diameter of 23 cm. In addition to the reflector, a mechanically steered printed MMIC active array is currently being developed to achieve the same electrical requirements with a low profile capability. These AMT antenna developments

  8. Feed Structure For Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor)

    2005-01-01

    A novel feed structure, for an antenna having a resonant electric field structure, comprising a patch element, an integrated circuit attached to the patch element, at least one inner conductor electrically connected to and terminating at the integrated circuit on a first end of the at least one inner conductor, wherein the at least one inner conductor extends through and is not electrically connected to the patch element, and wherein the at least one inner conductor is available for electrical connectivity on a second end of the at least one inner conductor, and an outer conductor electrically connected to and terminating at the patch element on a first end of the outer conductor, wherein the outer conductor is available for electrical connectivity on a second end of the outer conductor, and wherein the outer conductor concentrically surrounds the at least one inner conductor from the second end of the at least one inner conductor available for electrical connectivity to the first end of the outer conductor terminating at the patch element.

  9. Wide scanning spherical antenna

    NASA Technical Reports Server (NTRS)

    Shen, Bing (Inventor); Stutzman, Warren L. (Inventor)

    1995-01-01

    A novel method for calculating the surface shapes for subreflectors in a suboptic assembly of a tri-reflector spherical antenna system is introduced, modeled from a generalization of Galindo-Israel's method of solving partial differential equations to correct for spherical aberration and provide uniform feed to aperture mapping. In a first embodiment, the suboptic assembly moves as a single unit to achieve scan while the main reflector remains stationary. A feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan thereby eliminating the need to oversize the main spherical reflector. In an alternate embodiment, both the main spherical reflector and the suboptic assembly are fixed. A flat mirror is used to create a virtual image of the suboptic assembly. Scan is achieved by rotating the mirror about the spherical center of the main reflector. The feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan.

  10. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2014-12-15

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a “whistler waveguide” mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  11. Magnetic antenna excitation of whistler modes. II. Antenna arrays

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.

    2014-12-01

    The excitation of whistler modes from magnetic loop antennas has been investigated experimentally. The field topology of the excited wave driven by a single loop antenna has been measured for different loop orientations with respect to the uniform background field. The fields from two or more antennas at different locations are then created by superposition of the single-loop data. It is shown that an antenna array can produce nearly plane waves which cannot be achieved with single antennas. By applying a phase shift along the array, oblique wave propagation is obtained. This allows a meaningful comparison with plane wave theory. The Gendrin mode and oblique cyclotron resonance are demonstrated. Wave helicity and polarization in space and time are demonstrated and distinguished from the magnetic helicity of the wave field. The superposition of two oblique plane whistler modes produces in a "whistler waveguide" mode whose polarization and helicity properties are explained. The results show that single point measurements cannot properly establish the wave character of wave packets. The laboratory observations are relevant for excitation and detection of whistler modes in space plasmas.

  12. Conformational kinetics reveals affinities of protein conformational states.

    PubMed

    Daniels, Kyle G; Suo, Yang; Oas, Terrence G

    2015-07-28

    Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein's affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states.

  13. Conformers of Gaseous Serine.

    PubMed

    He, Kedan; Allen, Wesley D

    2016-08-09

    The myriad conformers of the neutral form of natural amino acid serine (Ser) have been investigated by systematic computations with reliable electronic wave function methods. A total of 85 unique conformers were located using the MP2/cc-pVTZ level of theory. The 12 lowest-energy conformers of serine fall within a 8 kJ mol(-1) window, and for these species, geometric structures, precise relative energies, equilibrium and vibrationally averaged rotational constants, anharmonic vibrational frequencies, infrared intensities, quartic and sextic centrifugal distortion constants, dipole moments, and (14)N nuclear quadrupole coupling constants were computed. The relative energies were refined through composite focal-point analyses employing basis sets as large as aug-cc-pV5Z and correlation treatments through CCSD(T). The rotational constants for seven conformers measured by Fourier-transform microwave spectroscopy are in good agreement with the vibrationally averaged rotational constants computed in this study. Our anharmonic vibrational frequencies are compared to the large number of experimental vibrational absorptions attributable to at least six conformers.

  14. Multilayer Microstrip Slot And Dipole Array Antenna

    NASA Technical Reports Server (NTRS)

    Tulintseff, Ann N.

    1994-01-01

    Multilayer antenna structure contains interleaved linear subarrays of microstrip dipole and slot radiating antenna elements to provide compact, dual-band antenna. Structure also contains associated microstrip transmission lines, plus high-power amplifiers for transmission and low-noise amplifiers for reception. Overall function is to transmit in horizontal polarization at frequency of 29.634 GHz and receive in vertical polarization at 19.914 GHz, in direction 44 degrees from broadside to antenna. Antenna structure is part of apparatus described in "Steerable K/Ka-band Antenna for Land-Mobile Satellite Applications," NPO-18772.

  15. Systems analysis for DSN microwave antenna holography

    NASA Technical Reports Server (NTRS)

    Rochblatt, D. J.

    1989-01-01

    Proposed systems for Deep Space Network (DSN) microwave antenna holography are analyzed. Microwave holography, as applied to antennas, is a technique which utilizes the Fourier Transform relation between the complex far-field radiation pattern of an antenna and the complex aperture field distribution to provide a methodology for the analysis and evaluation of antenna performance. Resulting aperture phase and amplitude distribution data are used to precisely characterize various crucial performance parameters, including panel alignment, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation. Microwave holographic analysis provides diagnostic capacity as well as being a powerful tool for evaluating antenna design specifications and their corresponding theoretical models.

  16. Microstrip antenna gain enhancement with metamaterial radome

    NASA Astrophysics Data System (ADS)

    Attachi, S.; Saleh, C.; Bouzouad, M.

    2017-01-01

    In this work, a high gain patch antenna using multilayer FSS radome is proposed for millimeter-wave applications. The antenna operating frequency is 43.5 GHz. The antenna/radome system consists of one, two, three, or four layers of metasurfaces placed in the near-field region of a microstrip patch antenna. The antenna/radome system gain is improved by 9 dBi compared to the patch antenna alone, and the radiation pattern half-power beamwidth is reduces to 20° in both E- and H-planes.

  17. Vehicle antenna development for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  18. Satellite Communications with NRAO Green Bank Antennas

    NASA Astrophysics Data System (ADS)

    Ford, John M.; Ford, H. Alyson; Watts, Galen

    2014-11-01

    The National Radio Astronomy Observatory's Green Bank facility has several medium and large antennas that are available for satellite communications. The 100 meter Robert C. Byrd Green Bank Telescope (GBT), the largest and most sensitive antenna on site, is capable of receiving signals at frequencies as high as 86 GHz. In addition to the GBT are the fully operational 43 meter, 20 meter, and 13.7 meter antennas, and three mothballed 26 meter antennas. A transmitter could be fitted to any of these antennas for spacecraft uplinks. We discuss the characteristics of these antennas and possible operational models for future planetary science mission support.

  19. Imaging Antenna Structure For Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Rebeiz, G.; Rutledge, D.

    1990-01-01

    Integrated-circuit antenna structure contains two-dimensional array of antennas and antenna reflectors. In receiving mode, each antenna acts as part of detector for one picture element in millimeter- or submillimeter-wavelength imaging radar system. Millimeter-wave imaging system used to view objects through fog, smoke, or smog with resolution intermediate between microwave and visible-light imaging systems. Antenna elements, supports, and reflectors made by integrated-circuit techniques. Structures fabricated on front and back substrates separately. Substrates then joined. Inexpensive way to provide large number of small antenna elements required for imaging, all mounted rigidly in way that does not degrade operation.

  20. Method and apparatus for self-calibration and phasing of array antenna

    NASA Technical Reports Server (NTRS)

    Wu, C. (Inventor)

    1984-01-01

    A technique for self-calibrating and phasing a lens-feed array antenna, while normal operation is stopped, utilizes reflected energy of a continuous and coherent wave broadcast by a transmitter through a central feed while a phase controller advances the phase angles of reciprocal phase shifters in radiation electronics of the array elements at different rates to provide a distinct frequency modulation of electromagnetic wave energy returned by reflection in one mode and leakage in another mode from the radiation electronics of each array element. The composite return signal received by a synchronous receiver goes through a Fourier transform processing system and produces a response function for each antenna element. Compensation of the phase angles for the antenna elements required to conform the antenna response to a precomputed array pattern is derived from the reciprocal square root of the response functions for the antenna elements which, for a rectangular array of NXM elements, is a response function T(n,m). A third mode of calibration uses an external pilot tone from a separate antenna element. Respective responses are thus obtained from the three modes of calibration.

  1. Meandered conformai antenna for ISM-band ingestible capsule communication systems.

    PubMed

    Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2016-08-01

    The wireless capsule has been used to measure physiological parameters in the gastrointestinal tract where communication from in-body to external receiver is necessary using a miniaturized antenna with high gain and onmidirectional radiation pattern. This paper presents a meandered conformal antenna with center frequency of 433 MHz for a wireless link between an in-body capsule system and an ex-body receiver system. The antenna is wrapped around the wireless capsule, which provides extra space for other circuits and sensors inside the capsule as well as allows it having larger dimensions compared to inner antennas. This paper analyses return loss, radiation pattern, antenna gain, and propagation loss using pork as the gastrointestinal tissue simulating medium. From the radiation pattern and return loss results, the antenna shows an omni-directional radiation pattern and an ultrawide bandwidth of 124.4 MHz (371.6 to 496 MHz) for VSWR <; 2. Experimental results shows that the path loss is 17.24 dB for an in-body propagation distance of 140 mm.

  2. Charged conformal Killing spinors

    SciTech Connect

    Lischewski, Andree

    2015-01-15

    We study the twistor equation on pseudo-Riemannian Spin{sup c}-manifolds whose solutions we call charged conformal Killing spinors (CCKSs). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears. A construction principle for Lorentzian manifolds admitting CCKS with nontrivial charge starting from CR-geometry is presented. We obtain a partial classification result in the Lorentzian case under the additional assumption that the associated Dirac current is normal conformal and complete the classification of manifolds admitting CCKS in all dimensions and signatures ≤5 which has recently been initiated in the study of supersymmetric field theories on curved space.

  3. Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian

    2012-01-01

    A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly

  4. Computer modeling of tactical high frequency antennas

    NASA Astrophysics Data System (ADS)

    Gregory, Bobby G., Jr.

    1992-06-01

    The purpose of this thesis was to compare the performance of three tactical high frequency antennas to be used as possible replacement for the Tactical Data Communications Central (TDCC) antennas. The antennas were modeled using the Numerical Electromagnetics Code, Version 3 (NEC3), and the Eyring Low Profile and Buried Antenna Modeling Program (PAT7) for several different frequencies and ground conditions. The performance was evaluated by comparing gain at the desired takeoff angles, the voltage standing wave ratio of each antenna, and its omni-directional capability. The buried antenna models, the ELPA-302 and horizontal dipole, were most effective when employed over poor ground conditions. The best performance under all conditions tested was demonstrated by the HT-20T. Each of these antennas have tactical advantages and disadvantages and can optimize communications under certain conditions. The selection of the best antenna is situation dependent. An experimental test of these models is recommended to verify the modeling results.

  5. Integrated resonant tunneling diode based antenna

    DOEpatents

    Hietala, Vincent M.; Tiggers, Chris P.; Plut, Thomas A.

    2000-01-01

    An antenna comprising a plurality of negative resistance devices and a method for making same comprising employing a removable standoff layer to form the gap between the microstrip antenna metal and the bottom contact layer.

  6. The Helios experiment 5 antenna mechanism

    NASA Technical Reports Server (NTRS)

    Mueller, J. W.

    1976-01-01

    The Experiment 5 Antenna deployment problem onboard Helios A, the failure analysis, and changes in design, test, and operation which led to a successful deployment of both antennas during the early Helios B mission phase are described.

  7. Compact Low Frequency Radio Antenna

    DOEpatents

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  8. Antenna Technology Shuttle Experiment (ATSE)

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Mettler, E.; Miller, L. J.; Rahmet-Samii, Y.; Weber, W. J., III

    1987-01-01

    Numerous space applications of the future will require mesh deployable antennas of 15 m in diameter or greater for frequencies up to 20 GHz. These applications include mobile communications satellites, orbiting very long baseline interferometry (VLBI) astrophysics missions, and Earth remote sensing missions. A Lockheed wrap rip antennas was used as the test article. The experiments covered a broad range of structural, control, and RF discipline objectives, which is fulfilled in total, would greatly reduce the risk of employing these antenna systems in future space applications. It was concluded that a flight experiment of a relatively large mesh deployable reflector is achievable with no major technological or cost drivers. The test articles and the instrumentation are all within the state of the art and in most cases rely on proven flight hardware. Every effort was made to design the experiments for low cost.

  9. Progress on conformal microwave array applicators for heating chestwall disease

    NASA Astrophysics Data System (ADS)

    Stauffer, P. R.; Maccarini, P. F.; Juang, T.; Jacobsen, S. K.; Gaeta, C. J.; Schlorff, J. L.; Milligan, A. J.

    2007-02-01

    Previous studies have reported the computer modeling, CAD design, and theoretical performance of single and multiple antenna arrays of Dual Concentric Conductor (DCC) square slot radiators driven at 915 and 433 MHz. Subsequently, practical CAD designs of microstrip antenna arrays constructed on thin and flexible printed circuit board (PCB) material were reported which evolved into large Conformal Microwave Array (CMA) sheets that could wrap around the surface of the human torso for delivering microwave energy to large areas of superficial tissue. Although uniform and adjustable radiation patterns have been demonstrated from multiple element applicators radiating into simple homogeneous phantom loads, the contoured and heterogeneous tissue loads typical of chestwall recurrent breast cancer have required additional design efforts to achieve good coupling and efficient heating from the increasingly larger conformal array applicators used to treat large area contoured patient anatomy. Thus recent work has extended the theoretical optimization of DCC antennas to improve radiation efficiency of each individual aperture and reduce mismatch reflections, radiation losses, noise, and cross coupling of the feedline distribution network of large array configurations. Design improvements have also been incorporated into the supporting bolus structure to maintain effective coupling of DCC antennas into contoured anatomy and to monitor and control surface temperatures under the entire array. New approaches for non-invasive monitoring of surface and sub-surface tissue temperatures under each independent heat source are described that make use of microwave radiometry and flexible sheet grid arrays of thermal sensors. Efforts to optimize the clinical patient interface and move from planar rectangular shapes to contoured vest applicators that accommodate entire disease in a larger number of patients are summarized. By applying heat more uniformly to large areas of contoured anatomy

  10. Conformational properties of pyrethroids

    NASA Astrophysics Data System (ADS)

    Mullaley, Anne; Taylor, Robin

    1994-04-01

    X-ray database searches and theoretical potential-energy calculations indicate that the acid moieties of pyrethroid cyclopropanecarboxylate esters adopt a well-defined, relatively inflexible conformation. In contrast, the alcohol moieties can exist in many low-energy geometries. One of the least conformationally flexible pyrethroid alcohols is 4-phenylindan-2-ol. The approximate overall conformation adopted at the biological binding site by insecticidal esters of this alcohol can be deduced with reasonable confidence by molecular modelling. Graphics superposition of a variety of pyrethroid acids suggests the existence of a large but rather narrow pocket at the binding site, in which substituents at the 3-position of the cyclopropane ring can be accommodated. This pocket is asymmetric with respect to the plane of the cyclopropane ring, extending further on the side remote from the ester group. The effects of α-substitution on the insecticidal activity of pyrethroid esters may be due to the influence of substituents on the preferred conformations of the molecules. This hypothesis rationalises the paradoxical dependence on absolute stereochemistry of the activities of various allylbenzyl and cinnamyl alcohol derivatives.

  11. Conformal cloak for waves

    SciTech Connect

    Chen Huanyang; Leonhardt, Ulf; Tyc, Tomas

    2011-05-15

    Conformal invisibility devices are only supposed to work within the valid range of geometrical optics. Here, we show by numerical simulations and analytical arguments that for certain quantized frequencies, they are nearly perfect even in a regime that clearly violates geometrical optics. The quantization condition follows from the analogy between the Helmholtz equation and the stationary Schroedinger equation.

  12. Dual-Antenna Microwave Reception Without Switching

    NASA Technical Reports Server (NTRS)

    Hartop, Robert W.

    1994-01-01

    Receiver remains connected to both antennas, transmitter switched to connect it to one or other. Combination of hybrid junction, circulators, and filter provides simultaneous reception paths from both antennas without significantly altering radiation patterns of antennas. Communication system considered for use in spacecraft and in which mechanical switch permitted on downlink but not on uplink. Applicable to terrestrial microwave communication stations subject to dual-antenna requirements.

  13. Automatic Phase-Compensation Modules For Antennas

    NASA Technical Reports Server (NTRS)

    Terry, John D.; Kunath, Richard R., Jr.

    1996-01-01

    Automatic amplitude-controlling and phase-shifting modules developed in order to adaptively compensate for distortions in reflectors of microwave communication antennas. Antenna of type in question includes phased array of radiating antenna elements in focal plane of off-axis paraboloidal or similar reflector. Module lies on path of radio-frequency feed between each antenna element and radio-frequency transmitting/receiving equipment.

  14. Cylindrical Antenna Using Near Zero Index Metamaterial

    DTIC Science & Technology

    2012-07-24

    device for enhancing the directivity and port isolation of a dual-frequency dual- polarization (DFDP) microstrip antenna by using metamaterial... Directivity Microstrip Patch Antenna Based on Zero-Index Metamaterial," IEEE Antennas and Wireless Prop. Letters, vol.8, no., pp.538-541, 2009. [0008...Invention [0003] The present invention is generally directed towards a cylindrical antenna and more specifically directed towards a cylindrical

  15. Optical antenna for photofunctional molecular systems.

    PubMed

    Ikeda, Katsuyoshi; Uosaki, Kohei

    2012-02-06

    Optical antennas can enhance the efficiency of photon-molecule interactions. To design efficient antenna structures, it is essential to consider physicochemical aspects in addition to electromagnetic considerations. Specifically, chemical interactions between optical antennas and molecules have to be controlled to enhance the overall efficiency. For this purpose, sphere-plane nanostructures are suitable optical antennas for molecular-modified functional electrode systems when a well-defined electrode is utilized as a platform.

  16. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.

  17. Nested-cone transformer antenna

    DOEpatents

    Ekdahl, C.A.

    1991-05-28

    A plurality of conical transmission lines are concentrically nested to form an output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated. 6 figures.

  18. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  19. Antenna reconfiguration verification and validation

    NASA Technical Reports Server (NTRS)

    Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor); Carlson, Douglas R. (Inventor); Drexler, Jerome P. (Inventor)

    2009-01-01

    A method of testing the electrical functionality of an optically controlled switch in a reconfigurable antenna is provided. The method includes configuring one or more conductive paths between one or more feed points and one or more test point with switches in the reconfigurable antenna. Applying one or more test signals to the one or more feed points. Monitoring the one or more test points in response to the one or more test signals and determining the functionality of the switch based upon the monitoring of the one or more test points.

  20. Nested-cone transformer antenna

    DOEpatents

    Ekdahl, Carl A.

    1991-01-01

    A plurality of conical transmission lines are concentrically nested to form n output antenna for pulsed-power, radio-frequency, and microwave sources. The diverging conical conductors enable a high power input density across a bulk dielectric to be reduced below a breakdown power density at the antenna interface with the transmitting medium. The plurality of cones maintain a spacing between conductors which minimizes the generation of high order modes between the conductors. Further, the power input feeds are isolated at the input while enabling the output electromagnetic waves to add at the transmission interface. Thus, very large power signals from a pulse rf, or microwave source can be radiated.

  1. 47 CFR 80.967 - Antenna system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable...

  2. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached...

  3. 47 CFR 80.967 - Antenna system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable...

  4. 47 CFR 101.517 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements....

  5. Antenna Construction and Propagation of Radio Waves.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…

  6. 47 CFR 101.517 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements....

  7. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. Link to an amendment published at 76 FR 59572... authorized under the rules of this part must employ a directional antenna adjusted with the center of...

  8. 47 CFR 78.105 - Antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... directional antennas that meet the performance standards indicated in the following table. (i) Stations...

  9. 47 CFR 78.105 - Antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... directional antennas that meet the performance standards indicated in the following table. (i) Stations...

  10. 47 CFR 95.859 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service....

  11. 47 CFR 74.641 - Antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards apply: (1) Fixed TV broadcast auxiliary stations shall use directional antennas that meet...

  12. 47 CFR 73.816 - Antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization...

  13. 47 CFR 73.816 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization...

  14. 47 CFR 80.923 - Antenna system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna system. 80.923 Section 80.923... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.923 Antenna system. An antenna must be provided in accordance with the applicable requirements of § 80.81 of this...

  15. 47 CFR 74.737 - Antenna location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna location. 74.737 Section 74.737... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV.... (b) The transmitting antenna should be placed above growing vegetation and trees lying in...

  16. 47 CFR 74.641 - Antenna systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards apply: (1) Fixed TV broadcast auxiliary stations shall use directional antennas that meet...

  17. 47 CFR 80.923 - Antenna system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.923 Section 80.923... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.923 Antenna system. An antenna must be provided in accordance with the applicable requirements of § 80.81 of this...

  18. 47 CFR 80.923 - Antenna system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna system. 80.923 Section 80.923... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.923 Antenna system. An antenna must be provided in accordance with the applicable requirements of § 80.81 of this...

  19. 47 CFR 80.1017 - Antenna system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone...

  20. 47 CFR 101.117 - Antenna polarization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna polarization. 101.117 Section 101.117... SERVICES Technical Standards § 101.117 Antenna polarization. Except as set forth herein, stations operating... polarization for antennas located within 20 kilometers of the outermost edge of their service area....

  1. 47 CFR 74.737 - Antenna location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna location. 74.737 Section 74.737... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV.... (b) The transmitting antenna should be placed above growing vegetation and trees lying in...

  2. 47 CFR 80.967 - Antenna system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable...

  3. 47 CFR 74.641 - Antenna systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards apply: (1) Fixed TV broadcast auxiliary stations shall use directional antennas that meet...

  4. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. Except for the 2390-2400 MHz band, no antenna for a MedRadio transmitter shall be configured for permanent outdoor use....

  5. 47 CFR 80.1017 - Antenna system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone...

  6. 47 CFR 95.859 - Antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service....

  7. 47 CFR 78.105 - Antenna systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... directional antennas that meet the performance standards indicated in the following table. (i) Stations...

  8. 47 CFR 74.737 - Antenna location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna location. 74.737 Section 74.737... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV.... (b) The transmitting antenna should be placed above growing vegetation and trees lying in...

  9. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed...

  10. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached...

  11. 47 CFR 101.517 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements....

  12. 47 CFR 80.1017 - Antenna system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone...

  13. 47 CFR 80.1017 - Antenna system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone...

  14. 47 CFR 101.117 - Antenna polarization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna polarization. 101.117 Section 101.117... SERVICES Technical Standards § 101.117 Antenna polarization. Except as set forth herein, stations operating... polarization for antennas located within 20 kilometers of the outermost edge of their service area....

  15. 47 CFR 101.517 - Antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements....

  16. Small X-Band Oscillator Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.

    2009-01-01

    A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.

  17. 47 CFR 74.737 - Antenna location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna location. 74.737 Section 74.737... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV.... (b) The transmitting antenna should be placed above growing vegetation and trees lying in...

  18. 47 CFR 95.859 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service....

  19. 47 CFR 73.816 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antennas. 73.816 Section 73.816... Low Power FM Broadcast Stations (LPFM) § 73.816 Antennas. (a) Permittees and licensees may employ nondirectional antennas with horizontal only polarization, vertical only polarization, circular polarization...

  20. 47 CFR 80.1017 - Antenna system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna system. 80.1017 Section 80.1017... MARITIME SERVICES Radiotelephone Installations Required by the Bridge-to-Bridge Act § 80.1017 Antenna system. (a) An antenna must be provided for nonportable bridge-to-bridge radiotelephone...

  1. 47 CFR 74.641 - Antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards apply: (1) Fixed TV broadcast auxiliary stations shall use directional antennas that meet...

  2. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached...

  3. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached...

  4. 47 CFR 101.117 - Antenna polarization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna polarization. 101.117 Section 101.117... SERVICES Technical Standards § 101.117 Antenna polarization. Except as set forth herein, stations operating... polarization for antennas located within 20 kilometers of the outermost edge of their service area....

  5. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed...

  6. 47 CFR 15.203 - Antenna requirement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Antenna requirement. 15.203 Section 15.203... Antenna requirement. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached...

  7. 47 CFR 74.737 - Antenna location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Antenna location. 74.737 Section 74.737... Booster Stations § 74.737 Antenna location. (a) An applicant for a new low power TV, TV translator, or TV.... (b) The transmitting antenna should be placed above growing vegetation and trees lying in...

  8. 47 CFR 95.859 - Antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service....

  9. 47 CFR 101.117 - Antenna polarization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna polarization. 101.117 Section 101.117... SERVICES Technical Standards § 101.117 Antenna polarization. Except as set forth herein, stations operating... polarization for antennas located within 20 kilometers of the outermost edge of their service area....

  10. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. Link to an amendment published at 77 FR 54432... authorized under the rules of this part must employ a directional antenna adjusted with the center of...

  11. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. Except for the 2390-2400 MHz band, no antenna for a MedRadio transmitter shall be configured for permanent outdoor use....

  12. 47 CFR 74.641 - Antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards apply: (1) Fixed TV broadcast auxiliary stations shall use directional antennas that meet...

  13. 47 CFR 101.517 - Antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antennas. 101.517 Section 101.517... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.517 Antennas. (a) Transmitting antennas may be omnidirectional or directional, consistent with coverage and interference requirements....

  14. 47 CFR 78.105 - Antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... directional antennas that meet the performance standards indicated in the following table. (i) Stations...

  15. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed...

  16. 47 CFR 95.859 - Antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antennas. 95.859 Section 95.859... SERVICES 218-219 MHz Service Technical Standards § 95.859 Antennas. (a) The overall height from ground to topmost tip of the CTS antenna shall not exceed the height necessary to assure adequate service....

  17. 47 CFR 80.967 - Antenna system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable...

  18. 47 CFR 78.105 - Antenna systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... directional antennas that meet the performance standards indicated in the following table. (i) Stations...

  19. 47 CFR 80.923 - Antenna system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna system. 80.923 Section 80.923... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.923 Antenna system. An antenna must be provided in accordance with the applicable requirements of § 80.81 of this...

  20. 47 CFR 80.967 - Antenna system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna system. 80.967 Section 80.967... MARITIME SERVICES Radiotelephone Installation Required for Vessels on the Great Lakes § 80.967 Antenna system. The antenna must be omni-directional, vertically polarized and located as high as practicable...

  1. 47 CFR 80.923 - Antenna system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna system. 80.923 Section 80.923... MARITIME SERVICES Compulsory Radiotelephone Installations for Small Passenger Boats § 80.923 Antenna system. An antenna must be provided in accordance with the applicable requirements of § 80.81 of this...

  2. 47 CFR 95.1213 - Antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antennas. 95.1213 Section 95.1213... SERVICES Medical Device Radiocommunication Service (MedRadio) § 95.1213 Antennas. Link to an amendment published at 77 FR 55733, Sept. 11, 2012. No antenna for a MedRadio transmitter shall be configured...

  3. 47 CFR 101.117 - Antenna polarization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna polarization. 101.117 Section 101.117... SERVICES Technical Standards § 101.117 Antenna polarization. Except as set forth herein, stations operating... polarization for antennas located within 20 kilometers of the outermost edge of their service area....

  4. Microwave performance characterization of large space antennas

    NASA Technical Reports Server (NTRS)

    Bathker, D. A. (Editor)

    1977-01-01

    Performance capabilities of large microwave space antenna configurations with apertures generally from 100 wavelengths upwards are discussed. Types of antennas considered include: phased arrays, lenses, reflectors, and hybrid combinations of phased arrays with reflectors or lenses. The performance characteristics of these broad classes of antennas are examined and compared in terms of applications.

  5. Circular polarisation characteristics of stacked microstrip antennas

    NASA Astrophysics Data System (ADS)

    Lee, R. Q.; Talty, T.; Lee, K. F.

    1990-12-01

    Experimental results on the circular polarization (CP) characteristics of a two-layer electromagnetically coupled (EMCP) antenna are presented. Compared to the single CP patch antenna, the two-layer EMCP antenna with proper spacings can provide better axial ratio and directivity.

  6. Coplanar waveguide feed for microstrip patch antennas

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Williams, J. T.

    1992-01-01

    A coplanar waveguide (CPW) loop is shown to be an effective low VSWR feed for microstrip antennas. The low VSWR transition between the CPW and the antenna is obtained without the use of a matching circuit, and it is relatively insensitive to the position of the antenna and the feed.

  7. Measured and predicted root-mean-square errors in square and triangular antenna mesh facets

    NASA Technical Reports Server (NTRS)

    Fichter, W. B.

    1989-01-01

    Deflection shapes of square and equilateral triangular facets of two tricot-knit, gold plated molybdenum wire mesh antenna materials were measured and compared, on the basis of root mean square (rms) differences, with deflection shapes predicted by linear membrane theory, for several cases of biaxial mesh tension. The two mesh materials contained approximately 10 and 16 holes per linear inch, measured diagonally with respect to the course and wale directions. The deflection measurement system employed a non-contact eddy current proximity probe and an electromagnetic distance sensing probe in conjunction with a precision optical level. Despite experimental uncertainties, rms differences between measured and predicted deflection shapes suggest the following conclusions: that replacing flat antenna facets with facets conforming to parabolically curved structural members yields smaller rms surface error; that potential accuracy gains are greater for equilateral triangular facets than for square facets; and that linear membrane theory can be a useful tool in the design of tricot knit wire mesh antennas.

  8. Optically addressed ultra-wideband phased antenna array

    NASA Astrophysics Data System (ADS)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  9. Photogrammetry Of A Parabolic Antenna

    NASA Technical Reports Server (NTRS)

    Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.

    1988-01-01

    Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.

  10. Antenna surface contour control system

    NASA Technical Reports Server (NTRS)

    Ahl, Elvin L. (Inventor); Miller, James B. (Inventor)

    1989-01-01

    The invention is a system for automatically controlling the surface contour of a deployable and restowable antenna having a mesh reflector surface supported by a circular, folding hoop affixed to a central, telescoping column. The antenna, when deployed, forms a quad-aperture reflector with each quadrant of the mesh surface shaped to provide an offset parabolic radio frequency (RF) reflector. The hoop is supported and positioned by quartz support cords attached to the top of a column and by lower graphite hoop control cords that extend between the hoop and base of the column. The antenna, an RF reflective surface, is a gold plated molybdenum wire mesh supported on a graphite cord truss structure that includes the hoop control cords and a plurality of surface control cords attached at selected points on the surface and to the base of the column. The contour of the three-dimensional surface of the antenna is controlled by selectively adjusting the lengths of the surface control cords and the graphite hoop control cords by means of novel actuator assemblies that automatically sense and change the lengths of the lower hoop control cords and surface control cords.

  11. RF/Optical Hybrid Antenna

    NASA Astrophysics Data System (ADS)

    Torrez, T. M.

    2015-05-01

    This article details analyses performed on several variations of a proposed radio frequency (RF)/optical hybrid antenna. The goal was to determine the structural impact of adding an assembly of optical mirrors to the antenna; stresses in the structural members and reflector surface deformation were used to assess this impact. The results showed that the structure could handle the added assembly, and the surface RMS increased, as expected, with larger increases seen as the antenna translates in elevation from the rigging angle of 45 deg (a predetermined location chosen to optimize panel settings during installation). In addition, actuators are located behind each optical mirror to reoptimize the mirror positions after they deflect due to the antenna being tipped in elevation. The necessary actuator motion was calculated for each mirror for a range of elevation angles, and it was found that the required motions are achievable by commonly used actuators. Resonant frequency analysis was also performed on the quadripod and tripod (for DSS-13 at Goldstone) to determine the effect that adding optical components on the apex has on the structure and its first mode; it was found that the impact is minimal to both the stresses seen in the structure and its first mode.

  12. GPS antenna multipath rejection performance

    NASA Astrophysics Data System (ADS)

    Dinius, A. M.

    1995-08-01

    A GPS antenna multipath rejection performance evaluation was conducted. Ground reference station antennas and aviation patches were tested for their ability to reject a multipath signal. Different types of ground plane structures were used such as choke rings, ground planes, and mock sections of fuselage. Frequencies transmitted were L1 (1575 MHz), L2 (1227 MHz), and the median GLONASS frequency (1609 MHz). Receive amplitude and phase were measured on each antenna. Subsequently, these data were converted to absolute gain for a right hand and left hand circularly polarized signal as a function of satellite elevation angle. Two types of multipath signals were considered: ground bounce multipath and building or structure bounce multipath. Ground bounce multipath typically occurs at low satellite elevation angles while structure bounce multipath can occur at any satellite elevation angle. Separate analysis methods were used to assess an antenna's ability to reject either type of multipath. This report describes the data collection methods, data reduction and analysis, and the results.

  13. The Antenna Bride and Bridegroom

    NASA Astrophysics Data System (ADS)

    2007-03-01

    ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of

  14. High-directivity acoustic antenna

    NASA Technical Reports Server (NTRS)

    El-Sum, H. M. A.

    1974-01-01

    Acoustic antenna with unique electronic steering control is used to identify and define aerodynamic noise sources in free field, particularly in wind tunnel which is quite reverberant. Provision is made for high directivity as well as improved discrimination against unwanted background noise such as reverberation or echoes.

  15. Endfire tapered slot antennas on dielectric substrates

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Schaubert, D. H.; Korzeniowski, T. L.; Kollberg, E. L.; Thungren, T.

    1985-01-01

    Endfire-tapered slot antennas are suitable for many integrated circuit applications, imaging and phased arrays. An investigation of single elements of such antennas, including slots which are exponentially tapered (Vivaldi), linearly tapered, and constant width. For antennas of all types, a good general agreement is obtained for curves of beamwidth-versus-length, normalized to wavelength, when one compares the data with that for traveling-wave antennas published by Zucker (1961). An important condition for this agreement is that the effective dielectric thickness, defined in the text, is in a certain optimum range. This condition is qualitatively explained in terms of the theory for traveling-wave antennas.

  16. Compact antennas for lower hybrid wave heating

    NASA Astrophysics Data System (ADS)

    Ohshima, S.; Takamura, S.; Okuda, T.

    1981-01-01

    A T-shaped antenna loaded with alumina was designed and constructed for lower hybrid wave heating of toroidal plasmas. The theoretical power spectra showed that a T-shaped antenna can be used for both ion and electron heating, and the accuracy of the calculation was verified by measuring the antenna's impedance. The dependence of the impedance on the power fed to the antenna was also investigated, and it was found that the RF pressure affected the coupling between the antenna and the plasma.

  17. Measurement of Antenna Bore-Sight Gain

    NASA Technical Reports Server (NTRS)

    Fortinberry, Jarrod; Shumpert, Thomas H.

    2016-01-01

    The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.

  18. Error margin for antenna gain measurements

    NASA Technical Reports Server (NTRS)

    Cable, V.

    2002-01-01

    The specification of measured antenna gain is incomplete without knowing the error of the measurement. Also, unless gain is measured many times for a single antenna or over many identical antennas, the uncertainty or error in a single measurement is only an estimate. In this paper, we will examine in detail a typical error budget for common antenna gain measurements. We will also compute the gain uncertainty for a specific UHF horn test that was recently performed on the Jet Propulsion Laboratory (JPL) antenna range. The paper concludes with comments on these results and how they compare with the 'unofficial' JPL range standard of +/- ?.

  19. Transportation Conformity Training and Presentations

    EPA Pesticide Factsheets

    EPA's OTAQ has provided multiple conformity training sessions in the past to assist state and local governments in implementing conformity requirements. As training information is prepared for other venues, it will be posted on this page.

  20. Multiscale conformal pattern transfer

    PubMed Central

    Lodewijks, Kristof; Miljkovic, Vladimir; Massiot, Inès; Mekonnen, Addis; Verre, Ruggero; Olsson, Eva; Dmitriev, Alexandre

    2016-01-01

    We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics. PMID:27329824

  1. Multiscale conformal pattern transfer

    NASA Astrophysics Data System (ADS)

    Lodewijks, Kristof; Miljkovic, Vladimir; Massiot, Inès; Mekonnen, Addis; Verre, Ruggero; Olsson, Eva; Dmitriev, Alexandre

    2016-06-01

    We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics.

  2. Conformational flexibility of aspartame.

    PubMed

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016.

  3. Conformal ALON® windows

    NASA Astrophysics Data System (ADS)

    Goldman, Lee M.; Balasubramanian, Sreeram; Smith, Mark; Nag, Nagendra; Foti, Robyn; Jha, Santosh; Sastri, Suri

    2014-05-01

    Aluminum Oxynitride (ALON® Optical Ceramic) combines broadband transparency with excellent mechanical properties. ALON's cubic structure means that it is transparent in its polycrystalline form, allowing it to be manufactured by conventional powder processing techniques. Surmet controls every aspect of the manufacturing process, beginning with synthesis of ALON® powder, continuing through forming/heat treatment of blanks, ending with optical fabrication of ALON® windows. Surmet has made significant progress in its production capability in recent years. Additional scale up of Surmet's manufacturing capability, for complex geometries, larger sizes and higher quantities, is underway. The requirements for modern aircraft are driving the need for conformal windows for future sensor systems. However, limitations on optical systems and the ability to produce windows in complex geometries currently limit the geometry of existing windows and window assemblies to faceted assemblies of flat windows. Surmet's ability to produce large curved ALON® blanks is an important step in the development of conformal windows for future aircraft applications.

  4. (GameChanger) Multifunctional Design of Hybrid Composites of Load Bearing Antennas

    DTIC Science & Technology

    2011-06-01

    and Hydroethyl Cellulose ", Nov 2009, AICHE Annual Meeting 24. June 2009:Gordon Research Conference, “ Carbon Nanotube Nanostructures E. Jan, N...Volakis, “Polymer- Carbon Nanotube Sheets for Conformal Load Bearing Antennas,” IEEE Trans. Antenn. Propag., vol. 58, no. 7, pp. 2169- 2175, Jul. 2010...Propagation, Toronto, Canada, July, 2010. 7. Y. Bayram, Feng Du, L. Dai, J.L. Volakis, “Surface Conditioned Carbon Nanotube Conductive Sheet for Flexible and

  5. Conformal scalar field wormholes

    NASA Technical Reports Server (NTRS)

    Halliwell, Jonathan J.; Laflamme, Raymond

    1989-01-01

    The Euclidian Einstein equations with a cosmological constant and a conformally coupled scalar field are solved, taking the metric to be of the Robertson-Walker type. In the case Lambda = 0, solutions are found which represent a wormhole connecting two asymptotically flat Euclidian regions. In the case Lambda greater than 0, the solutions represent tunneling from a small Tolman-like universe to a large Robertson-Walker universe.

  6. The conformal bootstrap

    NASA Astrophysics Data System (ADS)

    Poland, David; Simmons-Duffin, David

    2016-06-01

    The conformal bootstrap was proposed in the 1970s as a strategy for calculating the properties of second-order phase transitions. After spectacular success elucidating two-dimensional systems, little progress was made on systems in higher dimensions until a recent renaissance beginning in 2008. We report on some of the main results and ideas from this renaissance, focusing on new determinations of critical exponents and correlation functions in the three-dimensional Ising and O(N) models.

  7. Low Cost Large Space Antennas

    NASA Technical Reports Server (NTRS)

    Chmielewski, Artur B.; Freeland, Robert

    1997-01-01

    The mobile communication community could significantly benefit from the availability of low-cost, large space-deployable antennas. A new class of space structures, called inflatable deployable structures, will become an option for this industry in the near future. This new technology recently made significant progress with respect to reducing the risk of flying large inflatable structures in space. This progress can be attributed to the successful space flight of the Inflatable Antenna Experiment in May of 1996, which prompted the initiation of the NASA portion of the joint NASA/DOD coordinated Space Inflatables Program, which will develop the technology to be used in future mobile communications antennas along with other users. The NASA/DOD coordinated Space Inflatables Program was initiated in 1997 as a direct result of the Inflatable Antenna Experiment. The program adds a new NASA initiative to a substantial DOD program that involves developing a series of ground test hardware, starting with 3 meter diameter units and advancing the manufacturing techniques to fabricate a 25 meter ground demonstrator unit with surface accuracy exceeding the requirements for mobile communication applications. Simultaneously, the program will be advancing the state of the art in several important inflatable technology areas, such as developing rigidizable materials for struts and tori and investigating thin film technology issues, such as application of coatings, property measurement and materials processing and assembly techniques. A very important technology area being addressed by the program is deployment control techniques. The program will sponsor activities that will lead to understanding the effects of material strain energy release, residual air in the stowed structure, and the design of the launch restraint and release system needed to control deployment dynamics. Other technology areas directly applicable to developing inflatable mobile communication antennas in the near

  8. Non-Gimbaled Antenna Pointing

    NASA Technical Reports Server (NTRS)

    Vigil, Jeannine S.

    1997-01-01

    The small satellite community has been interested in accessing fixed ground stations for means of space-to-ground transmissions, although a problem arises from the limited global coverage. There is a growing interest for using the Space Network (SN) or Tracking and Data Relay Satellites (TDRS) as the primary support for communications because of the coverage it provides. This thesis will address the potential for satellite access of the Space Network with a non-gimbaled antenna configuration and low-power, coded transmission. The non-gimbaled antenna and the TDRS satellites, TDRS-East, TDRS-West, and TDRS-Zone of Exclusion, were configured in an orbital analysis software package called Satellite Tool Kit to emulate the three-dimensional position of the satellites. The access potential, which is the average number of contacts per day and the average time per contact, were obtained through simulations run over a 30-day period to gain all the possible orientations. The orbital altitude was varied from 600 km through 1200 km with the results being a function of orbital inclination angles varying from 20 deg through 100 deg and pointing half-angles of I0 deg through 40 deg. To compare the validity of the simulations, Jet Propulsion Laboratory granted the use of the TOPEX satellite. The TOPEX satellite was configured to emulate a spin-stabilized antenna with its communications antenna stowed in the zenith-pointing direction. This mimicked the antenna pointing spin-stabilized satellite in the simulations. To make valid comparisons, the TOPEX orbital parameters were entered into Satellite Tool Kit and simulated over five test times provided by Jet Propulsion Laboratory.

  9. Low profile antennas for MSAT applications

    NASA Technical Reports Server (NTRS)

    Shafai, L.; Moheb, H.; Chamma, W.; Barakat, M.

    1995-01-01

    For MSAT applications, a number of different antennas have been designed and investigated. They include low gain omnidirectional antennas and medium gain to high gain directional antennas. The latter include both portable and vehicular antennas. While portable units are desirable to be low profile and low cost, the vehicular antennas have proved to be the most challenging antenna types for the mobile satellite application. The results of our efforts in design of such antennas are described briefly. Low profile designs are emphasized in most cases, and microstrip type radiators are therefore selected. The single radiator provides low gain omnidirectional patterns and is optimized for low cost applications. It provides low gains around 2-6 dBic and is useful mostly for the data transmission. Medium to high gain antennas are developed as arrays of omnidirectional elements. Again, different designs are optimized to meet the needs of different applications. For portable units, the array configuration can be flexible and is optimized for maximum broadside gains. For vehicular units, however the configurations are desirable to be low profile, or compact, and have means for scanning the antenna beam. For simplicity, fixed beam antennas with mechanical beam scan are selected. For these antennas, as well, different designs, having low profile or compact size, are selected and optimized to meet the MSAT gain and G/T requirements.

  10. Conformations of organophosphine oxides

    SciTech Connect

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; Gordon, Mark S.; Windus, Theresa L.

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 force field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.

  11. Conformations of organophosphine oxides

    DOE PAGES

    De Silva, Nuwan; Zahariev, Federico; Hay, Benjamin P.; ...

    2015-07-17

    The conformations of a series of organophosphine oxides, OP(CH3)2R, where R = methyl, ethyl, isopropyl, tert-butyl, vinyl, and phenyl, are predicted using the MP2/cc-pVTZ level of theory. Comparison of potential energy surfaces for rotation about P–C bonds with crystal structure data reveals a strong correlation between predicted location and energetics of minima and histograms of dihedral angle distributions observed in the solid state. In addition, the most stable conformers are those that minimize the extent of steric repulsion between adjacent rotor substituents, and the torsional barriers tend to increase with the steric bulk of the rotating alkyl group. MM3 forcemore » field parameters were adjusted to fit the MP2 results, providing a fast and accurate model for predicting organophosphine oxides shapes—an essential part of understanding the chemistry of these compounds. As a result, the predictive power of the modified MM3 model was tested against MP2/cc-pVTZ conformations for triethylphosphine oxide, OP(CH2CH3)3, and triphenylphosphine oxide, OP(Ph)3.« less

  12. Foldable nanopaper antennas for origami electronics.

    PubMed

    Nogi, Masaya; Komoda, Natsuki; Otsuka, Kanji; Suganuma, Katsuaki

    2013-05-21

    Foldable antennas are required for small-sized electronic devices with high portability. Antennas on plastic substrates provide high flexibility and high sensitivity but are not foldable. Antennas on paper substrates are foldable, but their sensitivity is poor because of their coarse surfaces. In this paper, nanopapers with smooth surfaces and high foldability are fabricated from 30 nm wide cellulose nanofibers for use as foldable antenna substrates. Silver nanowires are then printed on the nanopapers to act as antenna lines. These nanopaper antennas with silver nanowires exhibit high sensitivity because of their smooth surfaces and high foldability because of their network structures. Also, their high foldability allows the mechanical tuning of their resonance points over a wide frequency range without using additional components such as condensers and coils. Nanopaper antennas with silver nanowires are therefore suitable for the realization of future foldable electronics.

  13. Foldable nanopaper antennas for origami electronics

    NASA Astrophysics Data System (ADS)

    Nogi, Masaya; Komoda, Natsuki; Otsuka, Kanji; Suganuma, Katsuaki

    2013-05-01

    Foldable antennas are required for small-sized electronic devices with high portability. Antennas on plastic substrates provide high flexibility and high sensitivity but are not foldable. Antennas on paper substrates are foldable, but their sensitivity is poor because of their coarse surfaces. In this paper, nanopapers with smooth surfaces and high foldability are fabricated from 30 nm wide cellulose nanofibers for use as foldable antenna substrates. Silver nanowires are then printed on the nanopapers to act as antenna lines. These nanopaper antennas with silver nanowires exhibit high sensitivity because of their smooth surfaces and high foldability because of their network structures. Also, their high foldability allows the mechanical tuning of their resonance points over a wide frequency range without using additional components such as condensers and coils. Nanopaper antennas with silver nanowires are therefore suitable for the realization of future foldable electronics.

  14. Recent developments in millimeter-wave antennas

    NASA Astrophysics Data System (ADS)

    Ray, S.; Mittra, R.; Trinh, T.; Paleta, R.

    Several types of antennas for use at millimeter-wave frequencies are presented. The first is a leaky-wave structure consisting of a rectangular dielectric rod with metallic strips on one side. This structure radiates a fan-shaped beam in the near-broadside range and can be frequency scanned. A modification of this antenna is the horn-image guide antenna. This antenna consists of a leaky-wave structure, as described above, that is mounted in a metal trough. A metal flare is added along the trough for increased beamwidth control and directivity. This antenna produces a beam which is narrow in both planes and has substantially higher gain than the leaky-wave antenna alone. A particular advantage of both these types of antennas is their integrability with a dielectric waveguide integrated circuit.

  15. A phased array tracking antenna for vehicles

    NASA Technical Reports Server (NTRS)

    Ohmori, Shingo; Mano, Kazukiko; Tanaka, Kenji; Matsunaga, Makoto; Tsuchiya, Makio

    1990-01-01

    An antenna system including antenna elements and a satellite tracking method is considered a key technology in implementing land mobile satellite communications. In the early stage of land mobile satellite communications, a mechanical tracking antenna system is considered the best candidate for vehicles, however, a phased array antenna will replace it in the near future, because it has many attractive advantages such as a low and compact profile, high speed tracking, and potential low cost. Communications Research Laboratory is now developing a new phased array antenna system for land vehicles based on research experiences of the airborne phased array antenna, which was developed and evaluated in satellite communication experiments using the ETS-V satellite. The basic characteristics of the phased array antenna for land vehicles are described.

  16. Improvement of antenna decoupling in radar systems

    NASA Astrophysics Data System (ADS)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  17. Electrical control of protein conformation.

    PubMed

    Wan, Alwin M D; Schur, Rebecca M; Ober, Christopher K; Fischbach, Claudia; Gourdon, Delphine; Malliaras, George G

    2012-05-08

    Conducting polymer devices that enable precise control of fibronectin conformation over macroscopic areas are reported. Single conformations as well as conformation gradients are achieved by applying an appropriate potential. These surfaces remain biologically relevant and support cell culture; hence, they may serve as a model to understand and control cell-surface interactions, with applications in basic research, medical diagnostics, and tissue engineering.

  18. AN INVESTIGATION OF THE NEAR FIELDS ON THE CONICAL EQUIANGULAR SPIRAL ANTENNA

    DTIC Science & Technology

    ANTENNA RADIATION PATTERNS, *CONICAL ANTENNAS, * HELICAL ANTENNAS, ELECTRIC CURRENT, ELECTRIC FIELDS, HELIXES, MATHEMATICAL ANALYSIS, MEASUREMENT, PHASE MEASUREMENT, SPIRAL ANTENNAS, STANDING WAVE RATIOS.

  19. Antenna gain measurements in the intermediate-field zone

    NASA Astrophysics Data System (ADS)

    Anchidin, Liliana; Bari, Farida; Dumitrascu, Ana; Paun, Mirel; Deacu, Daniela; Tasu, Sorin; Danisor, Alin; Tamas, Razvan D.

    2016-12-01

    Antenna gain is usually evaluated under far-field conditions. Furthermore, Friis transmission formula can solely be applied when antenna size can be neglected with respect to the distance between the measuring antenna and the antenna under test. In this paper, we show that by applying the distance averaging technique the far-field and antenna size constraints can be overcome. Our method was validated by measuring a monopole antenna and a Vivaldi antenna in an open area test site (OATS).

  20. Full scale LANDSAT-D antenna pattern measurements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design verification of the LANDSAT-D antenna subsystem is addressed. In particular, the analysis of the antenna radiation patterns utilizing a full scale mockup of the LANDSAT-D satellite is discussed. Test antennas included two S-Band shaped beam antennas, two S-Band omni unit radiators (to operate in array), a GPS antenna, an X-Band shaped beam antenna, and one S-Band high-gain parabolic antenna.

  1. Conformal Janus on Euclidean sphere

    NASA Astrophysics Data System (ADS)

    Bak, Dongsu; Gustavsson, Andreas; Rey, Soo-Jong

    2016-12-01

    We interpret Janus as an interface in a conformal field theory and study its properties. The Janus is created by an exactly marginal operator and we study its effect on the interface conformal field theory on the Janus. We do this by utilizing the AdS/CFT correspondence. We compute the interface free energy both from leading correction to the Euclidean action in the dual gravity description and from conformal perturbation theory in the conformal field theory. We find that the two results agree each other and that the interface free energy scales precisely as expected from the conformal invariance of the Janus interface.

  2. Conformal vectors and stellar models

    NASA Astrophysics Data System (ADS)

    Manjonjo, A. M.; Maharaj, S. D.; Moopanar, S.

    2017-02-01

    The relationship between conformal symmetries and relativistic spheres in astrophysics is studied. We use the nonvanishing components of the Weyl tensor to classify the conformal symmetries in static spherical spacetimes. It is possible to find an explicit connection between the two gravitational potentials for both conformally flat and nonconformally flat cases. We show that the conformal Killing vector admits time dependence in terms of quadratic, trigonometric and hyperbolic functions. The Einstein and Einstein-Maxwell field equations can be written in terms of a single potential, any choice of which leads to an exact solution. Previous results of conformally invariant static spheres are contained in our treatment.

  3. Low gain and steerable vehicle antennas for communications with land mobile satellite

    NASA Technical Reports Server (NTRS)

    Woo, K.

    1982-01-01

    Current development activities at JPL for ground mobile vehicle antennas to be used with the Land Mobile Satellite Service (LMSS) system are described. Both low gain and electronically steerable high gain type antennas are discussed in terms of their design concept and RF performance. For the low gain type, three classes of antennas are under various stages of development. These are the crossed-drooping dipole, quadrifilar helix, and microstrip patch designs. The antennas are intended to provide circularly-polarized radiation with a minimum of 3-dB gain in the angular region from 19 degrees to 60 deg from the horizon in elevation plane and with an omnidirectional pattern in azimuthal plane. For the electronically steerable high gain type, circularly-polarized microstrip patch phased arrays formed on a planar surface and on the surface of a truncated cone are under study. The arrays are intended to provide a minimum of 12 dB gain in the same angular region in elevation plane at all azimuthal angles. This coverage is accomplished by scanning the high gain pencil beam in both elevation and azimuthal directions. Both types of antennas are to transmit at 821-831 MHz band and to receive at 866-876 MHz band. They must be of low cost design and reasonably conformal to the vehicle.

  4. Hexagonal and Pentagonal Fractal Multiband Antennas

    NASA Technical Reports Server (NTRS)

    Tang, Philip W.; Wahid, Parveen

    2005-01-01

    Multiband dipole antennas based on hexagonal and pentagonal fractals have been analyzed by computational simulations and functionally demonstrated in experiments on prototypes. These antennas are capable of multiband or wide-band operation because they are subdivided into progressively smaller substructures that resonate at progressively higher frequencies by virtue of their smaller dimensions. The novelty of the present antennas lies in their specific hexagonal and pentagonal fractal configurations and the resonant frequencies associated with them. These antennas are potentially applicable to a variety of multiband and wide-band commercial wireless-communication products operating at different frequencies, including personal digital assistants, cellular telephones, pagers, satellite radios, Global Positioning System receivers, and products that combine two or more of the aforementioned functions. Perhaps the best-known prior multiband antenna based on fractal geometry is the Sierpinski triangle antenna (also known as the Sierpinski gasket), shown in the top part of the figure. In this antenna, the scale length at each iteration of the fractal is half the scale length of the preceding iteration, yielding successive resonant frequencies related by a ratio of about 2. The middle and bottom parts of the figure depict the first three iterations of the hexagonal and pentagonal fractals along with typical dipole-antenna configuration based on the second iteration. Successive resonant frequencies of the hexagonal fractal antenna have been found to be related by a ratio of about 3, and those of the pentagonal fractal antenna by a ratio of about 2.59.

  5. Phase and amplitude controlled micropatch antenna

    NASA Astrophysics Data System (ADS)

    Thursby, Michael H.

    1994-07-01

    As the wireless communications industry in the U.S. stands poised for an explosion of new commercial and military applications (e.g. the Radio Mall, the Airlink), reducing the high cost of phased array antennas becomes ever more important. Reducing these antenna costs is the primary objective of this research. We will describe an effort that to date has produced a working prototype of a micropatch antenna incorporating a single dollar per bit phase shifter. Since 1987, when we have been involved in designing antenna systems using micropatch elements, early work led to our discovery of the Smart Electromagnetic Structure concept which resulted in the development of a neural controlled, frequency agile antenna element capable of following the frequency of incoming radiation, and tuning the antenna center frequency to that of the incoming signal. This can be applied to systems like frequency-hop radios. In this paper we will describe a method of controlling a micropatch antenna to provide phase only variation of the antenna characteristics using a similar device to that used for the frequency control experiments. We have successfully varied the phase of the antenna element without significantly changing the operating frequency. This work has led us to pursue further the design and fabrication of an array of such phase adjustable element to test the hypothesis that such phase controlled micropatch elements can be used to fabricate a low cost phased array antenna.

  6. Negative ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  7. Wideband Patch Antenna for Land based Vehicles

    NASA Astrophysics Data System (ADS)

    Gangwar, R. P. S.; Dutt, Sanjay

    2016-12-01

    In this paper, an irregular pentagon shaped patch antenna has been presented. The proposed antenna operates over a wide band in frequency range from 12 to 26 GHz with VSWR < 2. It has a partial ground plane with two-inverted L and one I shaped slots in the radiation patch to attain wide bandwidth. The antenna consists of FR4 epoxy as a dielectric substrate with dielectric constant 4.4 and loss tangent 0.002. The size of the antenna is 30 × 30 × 1.57 mm3 and is fed by the microstrip line. The size of the fabricated proposed antenna is smaller than that of the antenna under reference (elliptical radiating patch with defected ground plane). The simulation has been done using high frequency structure simulator (HFSS) which is a finite element method (FEM) based tool. The proposed antenna exhibits the return loss of 21.85, 28.03 and 29.14 dB and gain of 6.6, 5.67 and 7.0 dB at resonant frequencies 16.7, 19.00 and 21.4 GHz, respectively. The bandwidth of the antenna is 10 GHz with normalized radiation efficiencies of 65, 69 and 70 % at corresponding resonant frequencies. The measured results of the fabricated proposed antenna have been compared with the simulated results and there has been a close agreement between both the results. Also the simulated results of the proposed antenna have been compared with the antenna under reference and it is found that the performance of the proposed antenna is far better. The proposed antenna can be used for land based vehicles in both Ku-band (12-18 GHz) and K-band (18-26 GHz).

  8. Transparent antennas for solar cell integration

    NASA Astrophysics Data System (ADS)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.

  9. OSI Conformance Testing for Bibliographic Applications.

    ERIC Educational Resources Information Center

    Arbez, Gilbert; Swain, Leigh

    1990-01-01

    Describes the development of Open Systems Interconnection (OSI) conformance testing sites, conformance testing tools, and conformance testing services. Discusses related topics such as interoperability testing, arbitration testing, and international harmonization of conformance testing. A glossary is included. (24 references) (SD)

  10. Metamaterials with conformational nonlinearity

    PubMed Central

    Lapine, Mikhail; Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.

    2011-01-01

    Within a decade of fruitful development, metamaterials became a prominent area of research, bridging theoretical and applied electrodynamics, electrical engineering and material science. Being man-made structures, metamaterials offer a particularly useful playground to develop interdisciplinary concepts. Here we demonstrate a novel principle in metamaterial assembly which integrates electromagnetic, mechanical, and thermal responses within their elements. Through these mechanisms, the conformation of the meta-molecules changes, providing a dual mechanism for nonlinearity and offering nonlinear chirality. Our proposal opens a wide road towards further developments of nonlinear metamaterials and photonic structures, adding extra flexibility to their design and control. PMID:22355655

  11. Leaf growth is conformal

    NASA Astrophysics Data System (ADS)

    Alim, Karen; Armon, Shahaf; Shraiman, Boris I.; Boudaoud, Arezki

    2016-10-01

    Growth pattern dynamics lie at the heart of morphogenesis. Here, we investigate the growth of plant leaves. We compute the conformal transformation that maps the contour of a leaf at a given stage onto the contour of the same leaf at a later stage. Based on the mapping we predict the local displacement field in the leaf blade and find it to agree with the experimentally measured displacement field to 92%. This approach is applicable to any two-dimensional system with locally isotropic growth, enabling the deduction of the whole growth field just from observation of the tissue contour.

  12. Distributed antenna system and method

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor)

    2004-01-01

    System and methods are disclosed for employing one or more radiators having non-unique phase centers mounted to a body with respect to a plurality of transmitters to determine location characteristics of the body such as the position and/or attitude of the body. The one or more radiators may consist of a single, continuous element or of two or more discrete radiation elements whose received signals are combined. In a preferred embodiment, the location characteristics are determined using carrier phase measurements whereby phase center information may be determined or estimated. A distributed antenna having a wide angle view may be mounted to a moveable body in accord with the present invention. The distributed antenna may be utilized for maintaining signal contact with multiple spaced apart transmitters, such as a GPS constellation, as the body rotates without the need for RF switches to thereby provide continuous attitude and position determination of the body.

  13. Slotted antenna waveguide plasma source

    NASA Technical Reports Server (NTRS)

    Foster, John (Inventor)

    2007-01-01

    A high density plasma generated by microwave injection using a windowless electrodeless rectangular slotted antenna waveguide plasma source has been demonstrated. Plasma probe measurements indicate that the source could be applicable for low power ion thruster applications, ion implantation, and related applications. This slotted antenna plasma source invention operates on the principle of electron cyclotron resonance (ECR). It employs no window and it is completely electrodeless and therefore its operation lifetime is long, being limited only by either the microwave generator itself or charged particle extraction grids if used. The high density plasma source can also be used to extract an electron beam that can be used as a plasma cathode neutralizer for ion source beam neutralization applications.

  14. The ExaVolt Antenna

    NASA Astrophysics Data System (ADS)

    Dailey, Brian

    2014-03-01

    There are strong motivations for a flux of ultra-high energy (UHE) neutrinos that is observable on earth, yet they remain undetected. The proposed ExaVolt Antenna (EVA) uses a novel approach to increase the expected rate of neutrinos in a balloon-borne experiment such as ANITA by 100-fold by turning a 100m-diameter, long-duration, super pressure NASA balloon into an antenna reflector with receivers deployed in the interior of the balloon. EVA would be the world's largest airborne telescope with ~ 1000 m2 of collection area. I will present preliminary results from a 1:20 scale EVA prototype test conducted in early 2014 in a hangar at NASA's Wallops Flight Facility. I will conclude with the expected sensitivity of the full EVA experiment to UHE neutrino fluxes.

  15. Plasmonic Antenna Coupling for QWIPs

    NASA Technical Reports Server (NTRS)

    Hong, John

    2007-01-01

    In a proposed scheme for coupling light into a quantum-well infrared photodetector (QWIP), an antenna or an array of antennas made of a suitable metal would be fabricated on the face of what would otherwise be a standard QWIP. This or any such coupling scheme is required to effect polarization conversion: Light incident perpendicularly to the face is necessarily polarized in the plane of the face, whereas, as a matter of fundamental electrodynamics and related quantum selection rules, light must have a non-zero component of perpendicular polarization in order to be absorbed in the photodetection process. In a prior coupling scheme, gratings in the form of surface corrugations diffract normally gles, thereby imparting some perpendicular polarization. Unfortunately, the corrugation- fabrication process increases the overall nonuniformity of a large QWIP array. The proposed scheme is an alternative to the use of surface corrugations.

  16. The planar parabolic optical antenna.

    PubMed

    Schoen, David T; Coenen, Toon; García de Abajo, F Javier; Brongersma, Mark L; Polman, Albert

    2013-01-09

    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

  17. Omnidirectional antenna having constant phase

    DOEpatents

    Sena, Matthew

    2017-04-04

    Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintaining a required spacing/parallelism therebetween.

  18. Quasi-optical active antennas

    NASA Astrophysics Data System (ADS)

    Moussessian, Alina

    Quasi-optical power combiners such as quasi-optical grids provide an efficient means of combining the output power of many solid-state devices in free space. Unlike traditional power combiners no transmission lines are used, therefore, high output powers with less loss can be achieved at higher frequencies. This thesis investigates four different active antenna grids. The first investigation is into X-band High Electron Mobility Transistor (HEMT) grid amplifiers. Modelling and stability issues of these grids are discussed, and gain and power measurements are presented. A grid amplifier with a maximum efficiency of 22.5% at 10 GHz and a peak gain of 11dB is presented. The second grid is a varactor grid used as a positive feedback network for a grid amplifier to construct a tunable grid oscillator. Reflection measurements for the varactor grid show a tuning range of 1.2 GHz. The third grid is a self- complementary grid amplifier. The goal is to design a new amplifier with a unit cell structure that can be directly modelled using CAD tools. The properties of self- complementary structures are studied and used in the design of this new amplifier grid. The fourth grid is a 12 x 12 terahertz Schottky grid frequency doubler with a measured output power of 24 mW at 1 THz for 3.1-μs 500-GHz input pulses with a peak power of 47 W. A passive millimeter-wave travelling-wave antenna built on a dielectric substrate is also presented. Calculations indicate that the antenna has a gain of 15 dB with 3-dB beamwidths of 10o in the H-plane and 64o in the E-plane. Pattern measurements at 90 GHz support the theory. The antenna is expected to have an impedance in the range of 50/Omega to 80/Omega.

  19. EHF multifunction phased array antenna

    NASA Astrophysics Data System (ADS)

    Solbach, Klaus

    1986-07-01

    The design of a low cost demonstration EHF multifunction-phased array antenna is described. Both, the radiating elements and the phase-shifter circuits are realized on microstrip substrate material in order to allow photolithographic batch fabrication. Self-encapsulated beam-lead PIN-diodes are employed as the electronic switch elements to avoid expensive hermetic encapsulation of the semiconductors or complete circuits. A space-feed using a horn-radiator to illuminate the array from the front-side is found to be the simplest and most inexpensive feed. The phased array antenna thus operates as a reflect-array, the antenna elements employed in a dual role for the collection of energy from the feed-horn and for the re-radiation of the phase-shifted waves (in transmit-mode). The antenna is divided into modules containing the radiator/phase-shifter plate plus drive- and BITE-circuitry at the back. Both drive- and BITE-components use gate-array integrated circuits especially designed for the purpose. Several bus-systems are used to supply bias and logical data flows to the modules. The beam-steering unit utilizes several signal processors and high-speed discrete adder circuits to combine the pointing, frequency and beam-shape information from the radar system computer with the stored phase-shift codes for the array elements. Since space, weight and power consumption are prime considerations only the most advanced technology is used in the design of both the microwave and the digital/drive circuitry.

  20. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  1. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  2. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  3. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  4. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  5. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  6. 47 CFR 73.316 - FM antenna systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false FM antenna systems. 73.316 Section 73.316... Broadcast Stations § 73.316 FM antenna systems. (a) It shall be standard to employ horizontal polarization...) Directional antennas. A directional antenna is an antenna that is designed or altered for the purpose...

  7. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  8. Loaded cavity-backed slot (LCBS) antennas for Reentry Vehicles

    SciTech Connect

    Sena, M.D.

    1992-09-01

    This report describes the linearly-polarized, loaded cavity-backed slot (LCBS) antenna developed for Reentry Vehicles (RVs) and the development process used by the Antenna Development Department. It includes typical antenna engineering design considerations or requirements, fabrication/assembly process, and performance characteristics. Antenna design theory is reduced to the basic concepts useful in designing LCBS antennas for reentry vehicles.

  9. Transcatheter Antenna For Microwave Treatment

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor); Raffoul, George W. (Inventor); Karasack, Vincent G. (Inventor); Pacifico, Antonio (Inventor); Pieper, Carl F. (Inventor)

    2000-01-01

    Method and apparatus are provided for propagating microwave energy into heart tissues to produce a desired temperature profile therein at tissue depths sufficient for thermally ablating arrhythmogenic cardiac tissue to treat ventricular tachycardia and other arrhythmias while preventing excessive heating of surrounding tissues, organs, and blood. A wide bandwidth double-disk antenna is effective for this purpose over a bandwidth of about six gigahertz. A computer simulation provides initial screening capabilities for an antenna such as antenna, frequency, power level, and power application duration. The simulation also allows optimization of techniques for specific patients or conditions. In operation, microwave energy between about 1 Gigahertz and 12 Gigahertz is applied to monopole microwave radiation having a surface wave limiter. A test setup provides physical testing of microwave radiators to determine the temperature profile created in actual heart tissue or ersatz heart tissue. Saline solution pumped over the heart tissue with a peristaltic pump simulates blood flow. Optical temperature sensors disposed at various tissue depths within the heart tissue detect the temperature profile without creating any electromagnetic interference. The method may he used to produce a desired temperature profile in other body tissues reachable by catheter such as tumors and the like.

  10. Membrane Shell Reflector Segment Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  11. Light manipulation with flat and conformal inhomogeneous dispersive impedance sheets: an efficient FDTD modeling.

    PubMed

    Jafar-Zanjani, Samad; Cheng, Jierong; Mosallaei, Hossein

    2016-04-10

    An efficient auxiliary differential equation method for incorporating 2D inhomogeneous dispersive impedance sheets in the finite-difference time-domain solver is presented. This unique proposed method can successfully solve optical problems of current interest involving 2D sheets. It eliminates the need for ultrafine meshing in the thickness direction, resulting in a significant reduction of computation time and memory requirements. We apply the method to characterize a novel broad-beam leaky-wave antenna created by cascading three sinusoidally modulated reactance surfaces and also to study the effect of curvature on the radiation characteristic of a conformal impedance sheet holographic antenna. Considerable improvement in the simulation time based on our technique in comparison with the traditional volumetric model is reported. Both applications are of great interest in the field of antennas and 2D sheets.

  12. Eikonalization of conformal blocks

    SciTech Connect

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; Wang, Junpu

    2015-09-03

    Classical field configurations such as the Coulomb potential and Schwarzschild solution are built from the t-channel exchange of many light degrees of freedom. We study the CFT analog of this phenomenon, which we term the 'eikonalization' of conformal blocks. We show that when an operator T appears in the OPE Ο(x)Ο(0), then the large spin Fock space states [TT···T] also appear in this OPE with a computable coefficient. The sum over the exchange of these Fock space states in an correlator build the classical 'T field' in the dual AdS description. In some limits the sum of all Fock space exchanges can be represented as the exponential of a single T exchange in the 4-pt correlator of O. Our results should be useful for systematizing 1/ℓ perturbation theory in general CFTs and simplifying the computation of large spin OPE coefficients. As examples we obtain the leading log ℓ dependence of Fock space conformal block coefficients, and we directly compute the OPE coefficients of the simplest ‘triple-trace’ operators.

  13. Eikonalization of conformal blocks

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.; ...

    2015-09-03

    Classical field configurations such as the Coulomb potential and Schwarzschild solution are built from the t-channel exchange of many light degrees of freedom. We study the CFT analog of this phenomenon, which we term the 'eikonalization' of conformal blocks. We show that when an operator T appears in the OPE Ο(x)Ο(0), then the large spin Fock space states [TT···T]ℓ also appear in this OPE with a computable coefficient. The sum over the exchange of these Fock space states in an correlator build the classical 'T field' in the dual AdS description. In some limits the sum of all Fock spacemore » exchanges can be represented as the exponential of a single T exchange in the 4-pt correlator of O. Our results should be useful for systematizing 1/ℓ perturbation theory in general CFTs and simplifying the computation of large spin OPE coefficients. As examples we obtain the leading log ℓ dependence of Fock space conformal block coefficients, and we directly compute the OPE coefficients of the simplest ‘triple-trace’ operators.« less

  14. Conformally symmetric traversable wormholes

    SciTech Connect

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-10-15

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.

  15. Passive wireless antenna sensors for crack detection and shear/compression sensing

    NASA Astrophysics Data System (ADS)

    Mohammad, Irshad

    Despite the fact that engineering components and structures are carefully designed against fatigue failures, 50 to 90% of mechanical failures are due to fatigue crack development. The severity of the failure depends on both the crack length and its orientation. Many types of sensors are available that can detect fatigue crack propagation. However, crack orientation detection has been rarely reported in the literature. We evaluated a patch antenna sensor capable of detecting crack propagation as well as crack orientation changes. The aim of these sensors would be to evaluate the real-time health condition of metallic structures to avoid catastrophic failures. The proposed crack sensing system consists of a dielectric substrate with a ground plane on one side of the substrate and an antenna patch printed on the other side of the substrate. The ground plane and the antenna patch, both conductive in nature, form an electromagnetic resonant cavity that radiates at distinct frequencies. These frequencies are monitored to evaluate the condition of cracks. A wireless sensor array can be realized by implementing a wireless interrogation unit. The scientific merits of this research are: 1) high sensitivity: it was demonstrated that the antenna sensors can detect crack growth with a sub-millimeter resolution; 2) passive wireless operation: based on microstrip antennas, the antenna sensors encode the sensing information in the backscattered antenna signal and thus can transmit the information without needing a local battery; 3) thin and conformal: the entire sensor unit is less than a millimeter thick and highly conformal; 4) crack orientation detection: the crack orientation on the structure can be precisely evaluated based on a single parameter, which only few sensors can accomplish. In addition to crack detection, the patch antenna sensors are also investigated for measuring shear and pressure forces, with an aim to study the formation, diagnostics and prevention of foot

  16. Multi-mode horn antenna simulation

    NASA Technical Reports Server (NTRS)

    Dod, L. R.; Wolf, J. D.

    1980-01-01

    Radiation patterns were computed for a circular multimode horn antenna using waveguide electric field radiation expressions. The circular multimode horn was considered as a possible reflector feed antenna for the Large Antenna Multifrequency Microwave Radiometer (LAMMR). This horn antenna uses a summation of the TE sub 11 deg and TM sub 11 deg modes to generate far field primary radiation patterns with equal E and H plane beamwidths and low sidelobes. A computer program for the radiation field expressions using the summation of waveguide radiation modes is described. The sensitivity of the multimode horn antenna radiation patterns to phase variations between the two modes is given. Sample radiation pattern calculations for a reflector feed horn for LAMMR are shown. The multimode horn antenna provides a low noise feed suitable for radiometric applications.

  17. Spinning grating antenna for MMW imaging

    NASA Astrophysics Data System (ADS)

    Manasson, Vladimir A.; Mino, Robert M.; Sadovnik, Lev S.

    1997-06-01

    MMW Scanning Antenna remains one of the most challenging components in the imaging radar design. Electronically steered antennas require sophisticated fabrication and become prohibitively expensive if a large array is considered. Mechanically scanning antennas typically involve one or more hinged parts (lenses, mirrors or feeds). In operation they experience mechanical acceleration and forces that sharply limit scanning rate. We present test results of a recently developed MMW scanning antenna that is capable of providing a fast linear scan while requiring only continuous constant speed rotation. Two antennas applicable to the aircraft autonomous landing and automotive collision warning systems have been developed. They are characterized by simple design and low fabrication cost. Other antennas modifications based on the evanescent coupling principle are proposed to facilitate various radar functions.

  18. Status of the ALMA Antenna Production

    NASA Astrophysics Data System (ADS)

    Stanghellini, Stefano

    2007-12-01

    The design of the ALMA antennas began in 1999 with a prototyping phase. Two antenna prototypes were built, extensively tested at the VLA site in New Mexico and evaluated in 2003. It was decided to proceed to procurement with two parallel calls for tenders based on the two prototypes. In 2005 contracts were placed with the US VertexRSI and the European AEM Consortium for 25 antennas each. An update on the two designs and the production progress is presented. The Japanese antennas (both 7 and 12 m) are being built by Mitsubishi, which also built an additional antenna prototype. The first antennas have recently arrived at the integration facility at the ALMA Operations Support Facility (OSF).

  19. Microfluidic serpentine antennas with designed mechanical tunability.

    PubMed

    Huang, YongAn; Wang, Yezhou; Xiao, Lin; Liu, Huimin; Dong, Wentao; Yin, Zhouping

    2014-11-07

    This paper describes the design and characterization of microfluidic serpentine antennas with reversible stretchability and designed mechanical frequency modulation (FM). The microfluidic antennas are designed based on the Poisson's ratio of the elastomer in which the liquid alloy antenna is embedded, to controllably decrease, stabilize or increase its resonance frequency when being stretched. Finite element modelling was used in combination with experimental verification to investigate the effects of substrate dimensions and antenna aspect ratios on the FM sensitivity to uniaxial stretching. It could be designed within the range of -1.2 to 0.6 GHz per 100% stretch. When the aspect ratio of the serpentine antenna is between 1.0 and 1.5, the resonance frequency is stable under stretching, bending, and twisting. The presented microfluidic serpentine antenna design could be utilized in the field of wireless mobile communication for the design of wearable electronics, with a stable resonance frequency under dynamic applied strain up to 50%.

  20. Compact Miniaturized Antenna for 210 MHz RFID

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.