Science.gov

Sample records for electricity demand function

  1. Saving Electricity and Demand Response

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Nobuyuki

    A lot of people lost their lives in the tremendous earthquake in Tohoku region on March 11. A large capacity of electric power plants in TEPCO area was also damaged and large scale power shortage in this summer is predicted. In this situation, electricity customers are making great effort to save electricity to avoid planned outage. Customers take actions not only by their selves but also by some customers' cooperative movements. All actions taken actually are based on responses to request form the government or voluntary decision. On the other hand, demand response based on a financial stimulus is not observed as an actual behavior. Saving electricity by this demand response only discussed in the newspapers. In this commentary, the events regarding electricity-saving measure after this disaster are described and the discussions on demand response, especially a raise in power rate, are put into shapes in the context of this electricity supply-demand gap.

  2. Projecting Electricity Demand in 2050

    SciTech Connect

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael C. W.

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  3. Cut Electric Bills by Controlling Demand

    ERIC Educational Resources Information Center

    Grumman, David L.

    1974-01-01

    Electric bills can be reduced by lowering electric consumption and by controlling demand -- the amount of electricity used at a certain point in time. Gives tips to help reduce electric demand at peak power periods. (Author/DN)

  4. Economic Rebalancing and Electricity Demand in China

    SciTech Connect

    He, Gang; Lin, Jiang; Yuan, Alexandria

    2015-11-01

    Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts for electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.

  5. Energy infrastructure: Mapping future electricity demand

    NASA Astrophysics Data System (ADS)

    Janetos, Anthony C.

    2016-08-01

    Electricity distribution system planners rely on estimations of future energy demand to build adequate supply, but these are complicated to achieve. An approach that combines spatially resolved projections of population movement and climate change offers a method for building better demand maps to mid-century.

  6. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  7. Estimating elasticity for residential electricity demand in China.

    PubMed

    Shi, G; Zheng, X; Song, F

    2012-01-01

    Residential demand for electricity is estimated for China using a unique household level dataset. Household electricity demand is specified as a function of local electricity price, household income, and a number of social-economic variables at household level. We find that the residential demand for electricity responds rather sensitively to its own price in China, which implies that there is significant potential to use the price instrument to conserve electricity consumption. Electricity elasticities across different heterogeneous household groups (e.g., rich versus poor and rural versus urban) are also estimated. The results show that the high income group is more price elastic than the low income group, while rural families are more price elastic than urban families. These results have important policy implications for designing an increasing block tariff. PMID:22997492

  8. Estimating Elasticity for Residential Electricity Demand in China

    PubMed Central

    Shi, G.; Zheng, X.; Song, F.

    2012-01-01

    Residential demand for electricity is estimated for China using a unique household level dataset. Household electricity demand is specified as a function of local electricity price, household income, and a number of social-economic variables at household level. We find that the residential demand for electricity responds rather sensitively to its own price in China, which implies that there is significant potential to use the price instrument to conserve electricity consumption. Electricity elasticities across different heterogeneous household groups (e.g., rich versus poor and rural versus urban) are also estimated. The results show that the high income group is more price elastic than the low income group, while rural families are more price elastic than urban families. These results have important policy implications for designing an increasing block tariff. PMID:22997492

  9. Price-elastic demand in deregulated electricity markets

    SciTech Connect

    Siddiqui, Afzal S.

    2003-05-01

    The degree to which any deregulated market functions efficiently often depends on the ability of market agents to respond quickly to fluctuating conditions. Many restructured electricity markets, however, experience high prices caused by supply shortages and little demand-side response. We examine the implications for market operations when a risk-averse retailer's end-use consumers are allowed to perceive real-time variations in the electricity spot price. Using a market-equilibrium model, we find that price elasticity both increases the retailers revenue risk exposure and decreases the spot price. Since the latter induces the retailer to reduce forward electricity purchases, while the former has the opposite effect, the overall impact of price responsive demand on the relative magnitudes of its risk exposure and end-user price elasticity. Nevertheless, price elasticity decreases cumulative electricity consumption. By extending the analysis to allow for early settlement of demand, we find that forward stage end-user price responsiveness decreases the electricity forward price relative to the case with price-elastic demand only in real time. Moreover, we find that only if forward stage end-user demand is price elastic will the equilibrium electricity forward price be reduced.

  10. Electricity demand in primary aluminum smelting

    SciTech Connect

    Mork, K.A.

    1982-07-01

    Primary aluminum smelters use almost 10% of all electricity used in US manufacturing, while contributing only about 0.2% to value added. This makes energy substitution in the industry a major concern for energy-conservation policy. The fact that aluminum is a key material for many energy-saving technologies adds to this interest. With a simple constant elasticity of substitution (CES) technology model, this paper presents demand estimates made using data collected from a variety of sources other than the US Census of Manufacturing and with two cross-sections comparing the US, Japan, and Norway. The results confirm beliefs about limited substitution possibilities for electricity in aluminum reduction. However, the estimated elasticity is large enough to indicate significant potentials for energy conservation. In particular, the results indicate potentially substantial energy savings from raising prices of hydro power from the low historic cost to the high level of current alternative cost. 12 references, 1 table.

  11. Electric energy demand and supply prospects for California

    NASA Technical Reports Server (NTRS)

    Jones, H. G. M.

    1978-01-01

    A recent history of electricity forecasting in California is given. Dealing with forecasts and regulatory uncertainty is discussed. Graphs are presented for: (1) Los Angeles Department of Water and Power and Pacific Gas and Electric present and projected reserve margins; (2) California electricity peak demand forecast; and (3) California electricity production.

  12. The design of optimal electric power demand management contracts

    NASA Astrophysics Data System (ADS)

    Fahrioglu, Murat

    1999-11-01

    Our society derives a quantifiable benefit from electric power. In particular, forced outages or blackouts have enormous consequences on society, one of which is loss of economic surplus. Electric utilities try to provide reliable supply of electric power to their customers. Maximum customer benefit derives from minimum cost and sufficient supply availability. Customers willing to share in "availability risk" can derive further benefit by participating in controlled outage programs. Specifically, whenever utilities foresee dangerous loading patterns, there is a need for a rapid reduction in demand either system-wide or at specific locations. The utility needs to get relief in order to solve its problems quickly and efficiently. This relief can come from customers who agree to curtail their loads upon request in exchange for an incentive fee. This thesis shows how utilities can get efficient load relief while maximizing their economic benefit. This work also shows how estimated customer cost functions can be calibrated, using existing utility data, to help in designing efficient demand management contracts. In order to design such contracts, optimal mechanism design is adopted from "Game Theory" and applied to the interaction between a utility and its customers. The idea behind mechanism design is to design an incentive structure that encourages customers to sign up for the right contract and reveal their true value of power. If a utility has demand management contracts with customers at critical locations, most operational problems can be solved efficiently. This thesis illustrates how locational attributes of customers incorporated into demand management contract design can have a significant impact in solving system problems. This kind of demand management contracts can also be used by an Independent System Operator (ISO). During times of congestion a loss of economic surplus occurs. When the market is too slow or cannot help relieve congestion, demand management

  13. Electricity Demand Evolution Driven by Storm Motivated Population Movement

    SciTech Connect

    Allen, Melissa R; Fernandez, Steven J; Fu, Joshua S; Walker, Kimberly A

    2014-01-01

    Managing the risks posed by climate change to energy production and delivery is a challenge for communities worldwide. Sea Level rise and increased frequency and intensity of natural disasters due to sea surface temperature rise force populations to move locations, resulting in changing patterns of demand for infrastructure services. Thus, Infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Combining climate predictions and agent based population movement models shows promise for exploring the universe of these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these patterns. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. This work suggests that the importance of established evacuation routes that move large populations repeatedly through convergence points as an indicator may be under recognized.

  14. Demand side management in recycling and electricity retail pricing

    NASA Astrophysics Data System (ADS)

    Kazan, Osman

    This dissertation addresses several problems from the recycling industry and electricity retail market. The first paper addresses a real-life scheduling problem faced by a national industrial recycling company. Based on their practices, a scheduling problem is defined, modeled, analyzed, and a solution is approximated efficiently. The recommended application is tested on the real-life data and randomly generated data. The scheduling improvements and the financial benefits are presented. The second problem is from electricity retail market. There are well-known patterns in daily usage in hours. These patterns change in shape and magnitude by seasons and days of the week. Generation costs are multiple times higher during the peak hours of the day. Yet most consumers purchase electricity at flat rates. This work explores analytic pricing tools to reduce peak load electricity demand for retailers. For that purpose, a nonlinear model that determines optimal hourly prices is established based on two major components: unit generation costs and consumers' utility. Both are analyzed and estimated empirically in the third paper. A pricing model is introduced to maximize the electric retailer's profit. As a result, a closed-form expression for the optimal price vector is obtained. Possible scenarios are evaluated for consumers' utility distribution. For the general case, we provide a numerical solution methodology to obtain the optimal pricing scheme. The models recommended are tested under various scenarios that consider consumer segmentation and multiple pricing policies. The recommended model reduces the peak load significantly in most cases. Several utility companies offer hourly pricing to their customers. They determine prices using historical data of unit electricity cost over time. In this dissertation we develop a nonlinear model that determines optimal hourly prices with parameter estimation. The last paper includes a regression analysis of the unit generation cost

  15. U.S. electric utility demand-side management 1995

    SciTech Connect

    1997-01-01

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  16. U.S. electric utility demand-side management 1993

    SciTech Connect

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  17. (Energy and electricity supply and demand)

    SciTech Connect

    Wilbanks, T.J.

    1990-10-09

    At the request of the International Atomic Energy Agency (IAEA), representing eleven international agencies which are sponsoring the 1991 Helsinki Symposium on Electricity and the Environment, I traveled to Brussels to participate in the second meeting of one of four advisory groups established to prepare for the Symposium. At the meeting, I was involved in a review of a draft issue paper being prepared for the Symposium and of the Symposium program.

  18. Turkey opens electricity markets as demand grows

    SciTech Connect

    McKeigue, J.; Da Cunha, A.; Severino, D.

    2009-06-15

    Turkey's growing power market has attracted investors and project developers for over a decade, yet their plans have been dashed by unexpected political or financial crises or, worse, obstructed by a lengthy bureaucratic approval process. Now, with a more transparent retail electricity market, government regulators and investors are bullish on Turkey. Is Turkey ready to turn the power on? This report closely examine Turkey's plans to create a power infrastructure capable of providing the reliable electricity supplies necessary for sustained economic growth. It was compiled with on-the-ground research and extensive interview with key industrial and political figures. Today, hard coal and lignite account for 21% of Turkey's electricity generation and gas-fired plants account for 50%. The Alfin Elbistan-B lignite-fired plant has attracted criticism for its lack of desulfurization units and ash dam facilities that have tarnished the industry's image. A 1,100 MW hard-coal fired plant using supercritical technology is under construction. 9 figs., 1 tab.

  19. Closeup view of a general electric company demand meter which ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a general electric company demand meter which formerly monitored railroad power usage obtained from Philadelphia Electric Company sources. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA

  20. US electric utility demand-side management, 1994

    SciTech Connect

    1995-12-26

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  1. U.S. electric utility demand-side management 1996

    SciTech Connect

    1997-12-01

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  2. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  3. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  4. Electricity demand growth in developing countries

    SciTech Connect

    Sheahen, T.P.

    1998-07-01

    On the presumption of inevitable global warming, the US and some other industrialized countries signed a treaty in Kyoto, Japan to reduce the amount of CO{sub 2} being emitted (but only by those countries who agreed to the limitations). Many observers have criticized this move as too hasty, because it would drastically impact the economies of the industralized nations, eliminating jobs and raising prices. They point out that manufacturing will shift to third-world countries who are not going to limit their CO{sub 2} emissions. Consequently, the Kyoto treaty may not be ratified by the US Senate. However, it has escaped attention just how numerically large will be the CO{sub 2} emitted by the non-participating countries as their electricity generation increases, despite the efforts of the industralized nations to cut back on CO{sub 2}. This paper presents calculation to estimate the seriousness of such emissions. The predictions follow from two clearly-stated assumptions, both of which are entirely plausible. Future R and D in combustion technology could partially offset the impact of the expected growth.

  5. Impacts of Demand-Side Resources on Electric Transmission Planning

    SciTech Connect

    Hadley, Stanton W.; Sanstad, Alan H.

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  6. Forecast of the World's Electrical Demands until 2025.

    ERIC Educational Resources Information Center

    Claverie, Maurice J.; Dupas, Alain P.

    1979-01-01

    Models of global energy demand, a lower-growth-rate model developed at Case Western Reserve University and the H5 model of the Conservation Committee of the World Energy Conference, assess the features of decentralized and centralized electricity generation in the years 2000 and 2025. (BT)

  7. Simulation of demand management and grid balancing with electric vehicles

    NASA Astrophysics Data System (ADS)

    Druitt, James; Früh, Wolf-Gerrit

    2012-10-01

    This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.

  8. Climate, extreme heat, and electricity demand in California

    SciTech Connect

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01

    Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such

  9. Modeling future demand for energy resources: A study of residential electricity usage in Thailand

    NASA Astrophysics Data System (ADS)

    Nilagupta, Prapassara

    1999-12-01

    Thailand has a critical need for effective long-term energy planning because of the country's rapidly increasing energy consumption. In this study, the demand for electricity by the residential sector is modeled using a framework that provides detailed estimates of the timing and spatial distribution of changes in energy demand. A population model was developed based on the Cohort-Component method to provide estimates of population by age, sex and urban/non-urban residency in each province. A residential electricity end user model was developed to estimate future electricity usage in urban and non-urban households of the seventy-six provinces in Thailand during the period 1999--2019. Key variables in this model include population, the number of households, family household size, and characteristics of eleven types of electric household appliance such as usage intensity, input power, and saturation rate. The methodology employed in this study is a trending method which utilizes expert opinion to estimate future variables based on a percentage change from the most current value. This study shows that from 1994 to 2019 Thailand will experience an increase in population from 55.4 to 83.6 million. Large percentage population increases will take place in Bangkok, Nonthaburi, Samut Prakarn, Nakhon Pathom and Chonburi. At a national level, the residential electricity consumption will increase from approximately 19,000 to 8 1,000 GWh annually. Consumption in non-urban households will be larger than in urban households, with respective annual increases of 8.0% and 6.2% in 2019. The percent increase of the average annual electricity consumption will be four times the average annual percent population increase. Increased electricity demand is largely a function of increased population and increased demand for high-energy appliances such as air conditioners. In 1994, air conditioning was responsible for xx% of total residential electricity demand. This study estimates that in

  10. The Effect of Temperature on the Electricity Demand: An Empirical Investigation

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kim, I. G.; Park, K. J.; Yoo, S. H.

    2015-12-01

    This paper attempts to estimate the electricity demand function in Korea with quarterly data of average temperature, GDP and electricity price over the period 2005-2013. We apply lagged dependent variable model and ordinary least square method as a robust approach to estimating the parameters of the electricity demand function. The results show that short-run price and income elasticities of the electricity demand are estimated to be -0.569 and 0.631 respectively. They are statistically significant at the 1% level. Moreover, long-run income and price elasticities are estimated to be 1.589 and -1.433 respectively. Both of results reveal that the demand for electricity demand is about 15.2℃. It is shown that power of explanation and goodness-of-fit statistics are improved in the use of the lagged dependent variable model rather than conventional model. Acknowledgements: This research was carried out as a part of "Development and application of technology for weather forecast" supported by the 2015 National Institute of Meteorological Research (NIMR) in the Korea Meteorological Administration.

  11. Assessing the utility of a demand assessment for functional analysis.

    PubMed

    Roscoe, Eileen M; Rooker, Griffin W; Pence, Sacha T; Longworth, Lynlea J

    2009-01-01

    We evaluated the utility of an assessment for identifying tasks for the functional analysis demand condition with 4 individuals who had been diagnosed with autism. During the demand assessment, a therapist presented a variety of tasks, and observers measured problem behavior and compliance to identify demands associated with low levels of compliance or high levels of problem behavior (low-probability demands) and demands associated with high levels of compliance or low levels of problem behavior (high-probability demands). Results showed that clearer functional analysis outcomes were obtained for 3 of the 4 participants when low-probability rather than high-probability demands were used. PMID:20514188

  12. Relationships of farmstead size and equipment to electrical demands

    SciTech Connect

    Stetson, L.E.; Farrell, K.L.

    1981-01-01

    Thirty-five farmsteads are being monitored in a study designed to determine the magnitude and timing of rural electric power demands. The study sites were selected by a stratified randomized design where customers were fitted into three subgroups based on their 1980 average monthly energy usage. The categories were arbitrarily chosen to be 100-750 kWh, 751-1500 kWh and greater than 1501 kWh. The high usage category was further subdivided into five specialized farming operations: cattle, dairy, grain, poultry and swine. Some representative data are being presented showing the typical winter demands for the selected categories. Demands per unit are shown for poultry and dairy operations.

  13. Analysis of PG E's residential end-use metered data to improve electricity demand forecasts

    SciTech Connect

    Eto, J.H.; Moezzi, M.M.

    1992-06-01

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  14. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  15. Electric Water Heater Modeling and Control Strategies for Demand Response

    SciTech Connect

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  16. Electric Power Demand and Emerging Technology in Highly-sophisticated Electric Power Systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Satoshi; Hikita, Masayuki

    In the last few years, the increase of the electric power demand has been remarkable, especially in Asia district. In such trend, the electric power system of Japan has been supplied with high quality, high reliability and highly-stabilized electric power. This is supported by highly-sophisticated electric power system which prides oneself on high voltage and large capacity. In this paper, outlines of these technologies are described. And, newest technology trends such as electric power liberalization, innovation of dispersed power source, effective utilization of natural energy are also explained. In addition, the global standards are important to make the technological level of Japan to be the world one in future.

  17. The analysis of Taiwan's residential electricity demand under the electricity tariff policy

    NASA Astrophysics Data System (ADS)

    Chen, Po-Jui

    In October 2013, the Taiwan Power Company (Taipower), the monopolized state utility service in Taiwan, implemented an electricity tariff adjustment policy to reduce residential electricity demand. Using bi-monthly billing data from 6,932 electricity consumers, this study examine how consumers respond to an increase in electricity prices. This study employs an empirical approach that takes advantage of quasi-random variation over a period of time when household bills were affected by a change in electricity price. The study found that this price increase caused a 1.78% decline in residential electricity consumption, implying a price elasticity of -0.19 for summer-season months and -0.15 for non-summer-season months. The demand for electricity is therefore relatively inelastic, likely because it is hard for people to change their electricity consumption behavior in the short-term. The results of this study highlight that demand-side management cannot be the only lever used to address Taiwan's forecasted decrease in electricity supply.

  18. Assessing the Utility of a Demand Assessment for Functional Analysis

    ERIC Educational Resources Information Center

    Roscoe, Eileen M.; Rooker, Griffin W.; Pence, Sacha T.; Longworth, Lynlea J.

    2009-01-01

    We evaluated the utility of an assessment for identifying tasks for the functional analysis demand condition with 4 individuals who had been diagnosed with autism. During the demand assessment, a therapist presented a variety of tasks, and observers measured problem behavior and compliance to identify demands associated with low levels of…

  19. Programmable and on-demand drug release using electrical stimulation

    PubMed Central

    Yi, Y. T.; Sun, J. Y.; Lu, Y. W.; Liao, Y. C.

    2015-01-01

    Recent advancement in microfabrication has enabled the implementation of implantable drug delivery devices with precise drug administration and fast release rates at specific locations. This article presents a membrane-based drug delivery device, which can be electrically stimulated to release drugs on demand with a fast release rate. Hydrogels with ionic model drugs are sealed in a cylindrical reservoir with a separation membrane. Electrokinetic forces are then utilized to drive ionic drug molecules from the hydrogels into surrounding bulk solutions. The drug release profiles of a model drug show that release rates from the device can be electrically controlled by adjusting the stimulated voltage. When a square voltage wave is applied, the device can be quickly switched between on and off to achieve pulsatile release. The drug dose released is then determined by the duration and amplitude of the applied voltages. In addition, successive on/off cycles can be programmed in the voltage waveforms to generate consistent and repeatable drug release pulses for on-demand drug delivery. PMID:25825612

  20. Surging electricity demand growth bolsters outlook for natural gas

    SciTech Connect

    Koen, A.D.

    1994-10-24

    Economic expansion and regulatory reform are combining to boost global opportunities for burning gas to generate electric power. Companies producing, marketing, or transporting gas are capitalizing on the improved outlook by seizing on synergistic roles in the power generation chain. Much of the improved outlook for gas stems from projected hearty increases in global demand for electricity. Bechtel Power Corp., estimates global power generation capacity during 1994--2003 will increase to as much as 1.2 billion kw, about 25% of which could be added by independent power production (IPPs). Since about 200 bcf of gas reserves producing about 20 MMcfd of gas is needed to fuel of a 100,000 kw electric generating station for 25 years, that adds up to a major growth opportunity for gas producers. The paper discusses the assessment of gas reserves, US power growth, the intent of the Energy Policy Act of 1992 (Epact), effects of Epact, gas industry response, power marketing units, synergistic possibilities, effects on US utilities, international power imperatives, non-US projects, funding good projects, and forecasting future developments.

  1. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  2. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  3. On-demand hierarchical patterning with electric fields

    PubMed Central

    Wang, Qiming; Robinson, Dominick; Zhao, Xuanhe

    2014-01-01

    We report a method to generate hierarchical topographical patterns on demand under the control of applied voltages. The method is implemented by harnessing the electro-creasing instability in multilayer elastomer films. The critical electric field for electro-creasing instability in a layer of elastomer scales with square root of the elastomer's modulus, while the wavelength of instability pattern scales with the layer's thickness. By rationally designing elastomer films with varied modulus and thickness throughout different layers, we control the formation of surface instability patterns with feature sizes of different scales under prescribed voltages. The method is very versatile, giving various types of hierarchical patterns such as randomly oriented, aligned, and gradient ones. A theoretical model is developed and validated to guide the design of hierarchical patterns. PMID:25316923

  4. Demand Response in U.S. Electricity Markets: Empirical Evidence

    SciTech Connect

    Cappers, Peter; Goldman, Charles; Kathan, David

    2009-06-01

    Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ~;;38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation.

  5. Managing Residential Electricity Demand Through Provision of Better Feedback

    NASA Astrophysics Data System (ADS)

    Collins, Myles

    New and affordable technology for providing detailed feedback on household electricity usage presents a host of opportunities for utilities and policy-makers to manage demand. This dissertation examines ways to use these devices to reduce - and shift the timing of - energy use in the residential sector by influencing consumers' behavior. The first portion of the study analyzes the impact of programmable thermostats (PTs) on energy use, focusing on residents' knowledge of climate control settings in the dwelling. I found that of households with natural gas heating systems, young households with PTs used 17 percent less heating energy on average. In addition, residents who did not know their thermostat settings tended to use 10 percent more energy for heating. The main portion of the dissertation focuses specifically on the potential for better feedback on electricity usage to reduce household energy consumption. The existing literature suggests that feedback can reduce electricity consumption in homes by 5 to 20 percent, but that significant uncertainties remain in our knowledge of the effectiveness of feedback. These uncertainties include the variation in feedback effectiveness between demographic groups and consumers in different climate regions. This analysis uses these uncertainties to perform an exploratory analysis to determine the conditions under which the benefits of feedback outweigh the costs and to compare the cost-effectiveness of providing feedback against that of other DSM programs. I found that benefits would likely outweigh costs for enhanced monthly billing and real-time feedback and that cost-effectiveness was superior to that of other DSM programs for these types of feedback. For feedback that is disaggregated by appliance type, cost effectiveness was competitive with other DSM programs under a limited set of cases. This study also examines how energy consumption devices should display feedback on GHG emissions from electricity use under a real

  6. Electricity pricing as a demand-side management strategy: Western lessons for developing countries

    SciTech Connect

    Hill, L.J.

    1990-12-01

    Electric utilities in the Western world have increasingly realized that load commitments can be met not only by constructing new generating plants but also by influencing electricity demand. This demand-side management (DSM) process requires that electric utilities promote measures on the customer's side of the meter to directly or indirectly influence electricity consumption to meet desired load objectives. An important demand-side option to achieve these load objectives is innovative electricity pricing, both by itself and as a financial incentive for other demand-site measures. This study explores electricity pricing as a DSM strategy, addressing four questions in the process: What is the Western experience with DSM in general and electricity pricing in particular Do innovative pricing strategies alter the amount and pattern of electricity consumption Do the benefits of these pricing strategies outweigh the costs of implementation What are future directions in electricity pricing Although DSM can be used to promote increases in electricity consumption for electric utilities with excess capacity as well as to slow demand growth for capacity-short utilities, emphasis here is placed on the latter. The discussion should be especially useful for electric utilities in developing countries that are exploring alternatives to capacity expansion to meet current and future electric power demand.

  7. Climate change and peak demand for electricity: Evaluating policies for reducing peak demand under different climate change scenarios

    NASA Astrophysics Data System (ADS)

    Anthony, Abigail Walker

    This research focuses on the relative advantages and disadvantages of using price-based and quantity-based controls for electricity markets. It also presents a detailed analysis of one specific approach to quantity based controls: the SmartAC program implemented in Stockton, California. Finally, the research forecasts electricity demand under various climate scenarios, and estimates potential cost savings that could result from a direct quantity control program over the next 50 years in each scenario. The traditional approach to dealing with the problem of peak demand for electricity is to invest in a large stock of excess capital that is rarely used, thereby greatly increasing production costs. Because this approach has proved so expensive, there has been a focus on identifying alternative approaches for dealing with peak demand problems. This research focuses on two approaches: price based approaches, such as real time pricing, and quantity based approaches, whereby the utility directly controls at least some elements of electricity used by consumers. This research suggests that well-designed policies for reducing peak demand might include both price and quantity controls. In theory, sufficiently high peak prices occurring during periods of peak demand and/or low supply can cause the quantity of electricity demanded to decline until demand is in balance with system capacity, potentially reducing the total amount of generation capacity needed to meet demand and helping meet electricity demand at the lowest cost. However, consumers need to be well informed about real-time prices for the pricing strategy to work as well as theory suggests. While this might be an appropriate assumption for large industrial and commercial users who have potentially large economic incentives, there is not yet enough research on whether households will fully understand and respond to real-time prices. Thus, while real-time pricing can be an effective tool for addressing the peak load

  8. The physical demands of electrical utilities work in North America.

    PubMed

    Meade, Robert D; Lauzon, Martin; Poirier, Martin P; Flouris, Andreas D; Kenny, Glen P

    2016-01-01

    We assessed the physical demands associated with electrical utilities work in North America and how they influence the level of thermal and cardiovascular strain experienced. Three common job categories were monitored as they are normally performed in thirty-two electrical utility workers: (i) Ground Work (n = 11), (ii) Bucket Work (n = 9), and (iii) Manual Pole Work (n = 12). Video analysis was performed to determine the proportion of the work monitoring period (duration: 187 ± 104 min) spent at different levels of physical effort (i.e., rest as well as light, moderate and heavy effort). Core and skin temperatures as well as heart rate were measured continuously. On average, workers spent 35.9 ± 15.9, 36.8 ± 17.8, 24.7 ± 12.8, and 2.6 ± 3.3% of the work period at rest and performing work classified as light, moderate, and heavy physical effort, respectively. Moreover, a greater proportion of the work period was spent performing heavy work in Ground Work (1.6 ± 1.4%) relative to Bucket Work (0.0 ± 0.0%; P<0.01) and in Manual Pole Climbing (5.5 ± 3.6%) in comparison to both other work job (both P≤0.03). Furthermore, the proportion of time spent during work classified as heavy physical effort was positively correlated to the mean (r = 0.51, P<0.01) and peak (r = 0.42, P = 0.02) core temperatures achieved during the work period as well as the mean heart rate response (presented as a percentage of heart rate reserve; r = 0.40, P = 0.03). Finally, mean and peak core temperatures and mean heart rate responses increased from the first to the second half of the work shift; however, no differences in the proportion of the work spent at the different intensity classifications were observed. We show that Manual Pole Work is associated with greater levels of physical effort compared to Ground or Bucket Work. Moreover, we suggest that the proportion of time spent performing work classified as heavy physical exertion is related to the level of thermal and

  9. Trends in electricity demand and supply in the developing countries, 1980--1990

    SciTech Connect

    Meyers, S.; Campbell, C.

    1992-11-01

    This report provides an overview of trends concerning electricity demand and supply in the developing countries in the 1980--1990 period, with special focus on 13 major countries for which we have assembled consistent data series. We describe the linkage between electricity demand and economic growth, the changing sectoral composition of electricity consumption, and changes in the mix of energy sources for electricity generation. We also cover trends in the efficiency of utility electricity supply with respect to power plant efficiency and own-use and delivery losses, and consider the trends in carbon dioxide emissions from electricity supply.

  10. Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts

    SciTech Connect

    Eto, J.H.; Moezzi, M.M.

    1992-06-01

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  11. Projected Demand and Potential Impacts to the National Airspace System of Autonomous, Electric, On-Demand Small Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Viken, Jeffrey K.; Guerreiro, Nelson M.; Dollyhigh, Samuel M.; Fenbert, James W.; Hartman, Christopher L.; Kwa, Teck-Seng; Moore, Mark D.

    2012-01-01

    Electric propulsion and autonomy are technology frontiers that offer tremendous potential to achieve low operating costs for small-aircraft. Such technologies enable simple and safe to operate vehicles that could dramatically improve regional transportation accessibility and speed through point-to-point operations. This analysis develops an understanding of the potential traffic volume and National Airspace System (NAS) capacity for small on-demand aircraft operations. Future demand projections use the Transportation Systems Analysis Model (TSAM), a tool suite developed by NASA and the Transportation Laboratory of Virginia Polytechnic Institute. Demand projections from TSAM contain the mode of travel, number of trips and geographic distribution of trips. For this study, the mode of travel can be commercial aircraft, automobile and on-demand aircraft. NASA's Airspace Concept Evaluation System (ACES) is used to assess NAS impact. This simulation takes a schedule that includes all flights: commercial passenger and cargo; conventional General Aviation and on-demand small aircraft, and operates them in the simulated NAS. The results of this analysis projects very large trip numbers for an on-demand air transportation system competitive with automobiles in cost per passenger mile. The significance is this type of air transportation can enhance mobility for communities that currently lack access to commercial air transportation. Another significant finding is that the large numbers of operations can have an impact on the current NAS infrastructure used by commercial airlines and cargo operators, even if on-demand traffic does not use the 28 airports in the Continental U.S. designated as large hubs by the FAA. Some smaller airports will experience greater demand than their current capacity allows and will require upgrading. In addition, in future years as demand grows and vehicle performance improves other non-conventional facilities such as short runways incorporated into

  12. Export demand response in the Ontario electricity market

    SciTech Connect

    Peerbocus, Nash; Melino, Angelo

    2007-11-15

    Export responses to unanticipated price shocks can be a key contributing factor to the rapid mean reversion of electricity prices. The authors use event analysis - a technique more familiar from financial applications - to demonstrate how hourly export transactions respond to negative supply shocks in the Ontario electricity market. (author)

  13. [Demography perspectives and forecasts of the demand for electricity].

    PubMed

    Roy, L; Guimond, E

    1995-01-01

    "Demographic perspectives form an integral part in the development of electric load forecasts. These forecasts in turn are used to justify the addition and repair of generating facilities that will supply power in the coming decades. The goal of this article is to present how demographic perspectives are incorporated into the electric load forecasting in Quebec. The first part presents the methods, hypotheses and results of population and household projections used by Hydro-Quebec in updating its latest development plan. The second section demonstrates applications of such demographic projections for forecasting the electric load, with a focus on the residential sector." (SUMMARY IN ENG AND SPA) PMID:12291445

  14. Mental Work Demands, Retirement, and Longitudinal Trajectories of Cognitive Functioning

    PubMed Central

    Fisher, Gwenith G.; Stachowski, Alicia; Infurna, Frank J.; Faul, Jessica D.; Grosch, James; Tetrick, Lois E.

    2015-01-01

    Age-related changes in cognitive abilities are well-documented, and a very important indicator of health, functioning, and decline in later life. However, less is known about the course of cognitive functioning before and after retirement and specifically whether job characteristics during one's time of employment (i.e., higher vs. lower levels of mental work demands) moderate how cognition changes both before and after the transition to retirement. We used data from n = 4,182 (50% women) individuals in the Health and Retirement Study, a nationally representative panel study in the United States, across an 18 year time span (1992–2010). Data were linked to the O'NET occupation codes to gather information about mental job demands to examine whether job characteristics during one's time of employment moderates level and rate of change in cognitive functioning (episodic memory and mental status) both before and after retirement. Results indicated that working in an occupation characterized by higher levels of mental demands was associated with higher levels of cognitive functioning before retirement, and a slower rate of cognitive decline after retirement. We controlled for a number of important covariates, including socioeconomic (education and income), demographic, and health variables. Our discussion focuses on pathways through which job characteristics may be associated with the course of cognitive functioning in relation to the important transition of retirement. Implications for job design as well as retirement are offered. PMID:24635733

  15. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    SciTech Connect

    Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

    2010-11-17

    We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

  16. Electric power supply and demand for the contiguous United States, 1980-1989

    SciTech Connect

    1980-06-01

    A limited review is presented of the outlook for the electric power supply and demand during the period 1980 to 1989. Only the adequacy and reliability aspects of bulk electric power supply in the contiguous US are considered. The economic, financial and environmental aspects of electric power system planning and the distribution of electricity (below the transmission level) are topics of prime importance, but they are outside the scope of this report.

  17. The role of building technologies in reducing and controlling peak electricity demand

    SciTech Connect

    Koomey, Jonathan; Brown, Richard E.

    2002-09-01

    Peak power demand issues have come to the fore recently because of the California electricity crisis. Uncertainties surrounding the reliability of electric power systems in restructured markets as well as security worries are the latest reasons for such concerns, but the issues surrounding peak demand are as old as the electric utility system itself. The long lead times associated with building new capacity, the lack of price response in the face of time-varying costs, the large difference between peak demand and average demand, and the necessity for real-time delivery of electricity all make the connection between system peak demand and system reliability an important driver of public policy in the electric utility sector. This exploratory option paper was written at the request of Jerry Dion at the U.S.Department of Energy (DOE). It is one of several white papers commissioned in 2002 exploring key issues of relevance to DOE. This paper explores policy-relevant issues surrounding peak demand, to help guide DOE's research efforts in this area. The findings of this paper are as follows. In the short run, DOE funding of deployment activities on peak demand can help society achieve a more economically efficient balance between investments in supply and demand-side technologies. DOE policies can promote implementation of key technologies to ameliorate peak demand, through government purchasing, technology demonstrations, and improvements in test procedures, efficiency standards, and labeling programs. In the long run, R&D is probably the most important single leverage point for DOE to influence the peak demand issue. Technologies for time-varying price response hold great potential for radically altering the way people use electricity in buildings, but are decades away from widespread use, so DOE R&D and expertise can make a real difference here.

  18. Demand for functional and nutritional enhancements in specialty milk products.

    PubMed

    Gulseven, Osman; Wohlgenant, Michael

    2014-10-01

    This article investigates the socio-demographic determinants affecting the demand for functional and nutritional enhancements in milk products based on a two-stage model. In order to derive the implicit market values of these enhancements, first we estimated the relationship between the prices of differentiated dairy products and the amount or respectively the presence of specific characteristics in these products. Next, using these implicit prices along with the information on households' demographic background, we analyzed the socio-demographic factors that affect consumer demand for specific functional and nutritional enhancements. The model is estimated using a combined panel data set based on AC Nielsen Retail Homescan Panel and the USDA Nutrient Database. Our results indicate that being lactose/cholesterol free (LFCF) and organic implies substantially higher price premiums, whereas soy has a negative price. Socio-demographic factors such as income, racial profile, presence of children; education level and age have significant effects on the demand for functional enhancements. Specialty milk consumption increases with age, education, and presence of kids, whereas it declines with income. The ratio of specialty milk consumption to total milk consumption is substantially higher among Hispanic, Asian and African-American households. PMID:24997409

  19. Electric shovels meet the demands for mining operations

    SciTech Connect

    Fiscor, S.

    2008-03-15

    Rugged, intelligent shovels offer better productivity and help mine operators avoid costly downtime in a very tight market. In 2007 P & H Mining Equipment began to produce a new breed of electric mining shovels designed to help reduce operating cost in coal and other mining operations. These were designated the P & H C-Series. All have an advanced communication, command and control system called the Centurion system. Coal mining applications for this series include 4100XPCs in Australia, China and Wyoming, USA. The Centurion system provides information on shovel performance and systems health which is communicated via graphic user interface terminals to the operators cab. Bucyrus International is developing a hydraulic crowd mechanism for its electric shovels and is now field testing one for its 495 series shovel. The company has also added greater capability in the primary software in the drive system for troubleshooting and fault identification to quickly diagnose problems onboard or remotely. 4 photos.

  20. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes.

    PubMed

    Kelly, Jack; Knottenbelt, William

    2015-01-01

    Many countries are rolling out smart electricity meters. These measure a home's total power demand. However, research into consumer behaviour suggests that consumers are best able to improve their energy efficiency when provided with itemised, appliance-by-appliance consumption information. Energy disaggregation is a computational technique for estimating appliance-by-appliance energy consumption from a whole-house meter signal. To conduct research on disaggregation algorithms, researchers require data describing not just the aggregate demand per building but also the 'ground truth' demand of individual appliances. In this context, we present UK-DALE: an open-access dataset from the UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the whole-house and at 1/6 Hz for individual appliances. This is the first open access UK dataset at this temporal resolution. We recorded from five houses, one of which was recorded for 655 days, the longest duration we are aware of for any energy dataset at this sample rate. We also describe the low-cost, open-source, wireless system we built for collecting our dataset. PMID:25984347

  1. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes

    PubMed Central

    Kelly, Jack; Knottenbelt, William

    2015-01-01

    Many countries are rolling out smart electricity meters. These measure a home’s total power demand. However, research into consumer behaviour suggests that consumers are best able to improve their energy efficiency when provided with itemised, appliance-by-appliance consumption information. Energy disaggregation is a computational technique for estimating appliance-by-appliance energy consumption from a whole-house meter signal. To conduct research on disaggregation algorithms, researchers require data describing not just the aggregate demand per building but also the ‘ground truth’ demand of individual appliances. In this context, we present UK-DALE: an open-access dataset from the UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the whole-house and at 1/6 Hz for individual appliances. This is the first open access UK dataset at this temporal resolution. We recorded from five houses, one of which was recorded for 655 days, the longest duration we are aware of for any energy dataset at this sample rate. We also describe the low-cost, open-source, wireless system we built for collecting our dataset. PMID:25984347

  2. Optimal Electricity Charge Strategy Based on Price Elasticity of Demand for Users

    NASA Astrophysics Data System (ADS)

    Li, Xin; Xu, Daidai; Zang, Chuanzhi

    The price elasticity is very important for the prediction of electricity demand. This paper mainly establishes the price elasticity coefficient for electricity in single period and inter-temporal. Then, a charging strategy is established based on these coefficients. To evaluate the strategy proposed, simulations of the two elastic coefficients are carried out based on the history data of a certain region.

  3. A statistical analysis of structural differences in minority household electricity demand

    SciTech Connect

    Poyer, D.A.; Earl, E.

    1994-09-01

    In this paper, the structures for electricity demand in non-Latino Black and White households are compared. Electricity demand will be analyzed within the context of a complete demand system, and statistical tests for structural differences will be systematically conducted in the hope of pinpointing the location of differences within the context of this model. Structural differences in demand are defined as statistically significant differences in a parameter or group of parameters that identify the quantitative relationship between explanatory variables and electricity consumption. Along with population taste differences, which might emanate from historical and cultural population differences, structural differences might also occur because of differences in housing and geographic patterns and as a result of differences in access to markets and information. As a consequence, energy consumption decisions will differ, and the level and composition of energy consumption are likely to vary. In practice, it is nearly impossible to untangle the causes contributing to structural differences, but it is reasonably easy to test for statistical differences. The superficial evidence indicates there is a strong likelihood that structural differences do exist in electricity demand between White and Black households. The null hypothesis, which states that there exist no differences in the structures for electricity demand for Black and White households, is tested.

  4. Estimated performance of solar PV and wind turbine systems compared to coincident electrical demand in Minnesota

    SciTech Connect

    Artig, R.

    1995-10-01

    The Minnesota Department of Public Service (department), with the cooperation of Northern States Power (NSP) and US Department of Energy, is making a detailed study of wind and solar resources in the Buffalo Ridge area of southwestern Minnesota. The purpose of the study is to determine the viability of using a combination of wind and solar generation facilities to help meet electrical demand in the region. Through the Solar/Wind Study, five monitoring sites have been established to collect solar radiation and temperature data as well as to record wind speed and direction information at multiple elevations. In this paper, the data from the first year of the Solar/Wind Study are used to directly compare the projected hourly production of electricity from the wind and solar resources to hourly electrical demand. This study compares the potential electrical production from these renewable resources concurrent with peak or near peak occurrences in electrical demand. The electrical demand information used in this study is from two utilities: NSP, a utility that supplies electricity to a combination of urban residential, commercial, and industrial customers; and Cooperative Power (CP), which provides power primarily to suburban and rural residential customers. Estimates of the performance of solar PV systems were made using PVFORM, a simulation program from Sandia National Laboratories. Analysis of first year data indicates that the availability of electricity generated from a combination of solar and wind resources matches period of high peak demand for Northern States Power. The value of adding wind and solar generated electricity to the utility`s resource mix merits further investigation. The match between solar and wind power availability and Cooperative Power`s peak demand period is not apparent, but here, too, further study is needed.

  5. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    SciTech Connect

    Kim, Joyce Jihyun; Kiliccote, Sila

    2012-06-01

    In New York State, the default electricity pricing for large customers is Mandatory Hourly Pricing (MHP), which is charged based on zonal day-ahead market price for energy. With MHP, retail customers can adjust their building load to an economically optimal level according to hourly electricity prices. Yet, many customers seek alternative pricing options such as fixed rates through retail access for their electricity supply. Open Automated Demand Response (OpenADR) is an XML (eXtensible Markup Language) based information exchange model that communicates price and reliability information. It allows customers to evaluate hourly prices and provide demand response in an automated fashion to minimize electricity costs. This document shows how OpenADR can support MHP and facilitate price responsive demand for large commercial customers in New York City.

  6. A long- and short-run analysis of electricity demand in Ciudad Juarez

    NASA Astrophysics Data System (ADS)

    Mendez-Carrillo, Ericka Cecilia

    Economic growth and appliance saturation are increasing electricity consumption in Mexico. Annual frequency data from 1990 to 2012 are utilized to develop an error correction framework that sheds light on short- and long-run electricity consumption behavior in Ciudad Juarez, a large Mexican metropolitan economy at the border with the United States. The results for this study reveal that electricity is an inelastic normal good in this market. Moreover, natural gas is found to be a weak complement to electricity. With regards to the customer base in this urban economy, population, employment, and income exercise positive and statistically significant impacts on the demand for electricity hook-ups.

  7. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    NASA Astrophysics Data System (ADS)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  8. Assessment of factors affecting industrial electricity demand. Final report (revision version)

    SciTech Connect

    1983-07-01

    In Chapter 2, we identify those factors affecting the industrial product mix - taste, relative output prices, and relative input prices - and isolate several determinants which have not been adequately accounted for to date in industrial electricity demand forecasts. We discuss how the lower energy prices of foreign producers affect domestic producers and how the growth in the number of substitutes for intermediate products such as steel and aluminum with plastics and composites affects the composition of production and, hence, the demand for electricity. We also investigate how the changing age structure of the population brought on by the baby boom could change the mix of outputs produced by the industrial sector. In Chapter 3, we review the history of the 1970s with regard to changes in output mix and the manufacturing demand for electricity, and with regard to changes in the use of electricity vis-a-vis the other inputs in the production process. In Chapter 4, we generate forecasts using two models which control for efficiency changes, but in different ways. In this chapter we present the sensitivity of these projections using three sets of assumptions about product mix. The last chapter summarizes our results and draw from those results implications regarding public policy and industrial electricity demand. Two appendices present ISTUM2 results from selected electricity intensive industries, describes the ISTUM and ORIM models.

  9. Preliminary Examination of the Supply and Demand Balance for Renewable Electricity

    SciTech Connect

    Swezey, B.; Aabakken, J.; Bird, L.

    2007-10-01

    In recent years, the demand for renewable electricity has accelerated as a consequence of state and federal policies and the growth of voluntary green power purchase markets, along with the generally improving economics of renewable energy development. This paper reports on a preliminary examination of the supply and demand balance for renewable electricity in the United States, with a focus on renewable energy projects that meet the generally accepted definition of "new" for voluntary market purposes, i.e., projects installed on or after January 1, 1997. After estimating current supply and demand, this paper presents projections of the supply and demand balance out to 2010 and describe a number of key market uncertainties.

  10. Local Muscle Metabolic Demand Induced by Neuromuscular Electrical Stimulation and Voluntary Contractions at Different Force Levels: A NIRS Study

    PubMed Central

    Muthalib, Makii; Kerr, Graham; Nosaka, Kazunori; Perrey, Stephane

    2016-01-01

    Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL. PMID:27478574

  11. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect

    McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

    2008-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies

  12. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect

    McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

    2009-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies

  13. Impacts of climate change on sub-regional electricity demand and distribution in the southern United States

    NASA Astrophysics Data System (ADS)

    Allen, Melissa R.; Fernandez, Steven J.; Fu, Joshua S.; Olama, Mohammed M.

    2016-08-01

    High average temperatures lead to high regional electricity demand for cooling buildings, and large populations generally require more aggregate electricity than smaller ones do. Thus, future global climate and population changes will present regional infrastructure challenges regarding changing electricity demand. However, without spatially explicit representation of this demand or the ways in which it might change at the neighbourhood scale, it is difficult to determine which electricity service areas are most vulnerable and will be most affected by these changes. Here we show that detailed projections of changing local electricity demand patterns are viable and important for adaptation planning at the urban level in a changing climate. Employing high-resolution and spatially explicit tools, we find that electricity demand increases caused by temperature rise have the greatest impact over the next 40 years in areas serving small populations, and that large population influx stresses any affected service area, especially during peak demand.

  14. Prospects of Renewable Energy for Meeting Growing Electricity Demand in Pakistan

    NASA Astrophysics Data System (ADS)

    Uqaili, Mohammad Aslam; Harijan, Khanji; Memon, Mujeebuddin

    2007-10-01

    Pakistan is an energy deficit country. About half of the country's population has access to electricity and per capita supply is only 520 kWh. Majority of the country's population resides in rural areas and most of them are yet without electricity. Conventional electricity generation includes 66.8% thermal, 30% hydel and 3.3% nuclear. It has been projected that electricity demand in Pakistan will increase in the range of 12 MTOE to 17 MTOE by the year 2018, at an average growth rate of about 5% to 7% and will require installed capacity of about 35 GW to 50 GW. Indigenous reserves of oil and gas are limited and the country heavily depends on imported oil. Thermal power generation on the other hand also pollutes the environment. This paper presents the availability of renewables such as hydel, solar, wind and biomass energy, and their prospects for meeting growing electricity demand in Pakistan and subsequent contribution in air pollution abatement. The study concludes that there is substantial potential of these renewables and they have also bright prospects for meeting growing electricity demand in Pakistan.

  15. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand

    PubMed Central

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the

  16. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand.

    PubMed

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers' peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers' location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual 'map' of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations

  17. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  18. Private sector electricity in developing countries. Supply and demand. Discussion paper

    SciTech Connect

    Glen, J.D.

    1992-01-01

    The discussion paper looks at the past and potential future role of the private sector in electricity generation in developing countries. It considers the supply of electricity by the private sector as well as the role of private sector demand for electricity in total investment needs. A case for private sector involvement in the sector is made, to some extent based on evidence from the deregulation and privatization that has taken place in countries around the world. The International Finance Corporation's historical and potential role in the sector is also examined. (Copyright (c) 1992 The World Bank and International Finance Corporation.)

  19. Protes Electrical Functional Chain: Flight Return Experience

    NASA Astrophysics Data System (ADS)

    Cresp, Jean-Michel; Boutelet, Eric; Massot, Jean; Tastet, Pierre

    2011-10-01

    Proteus is a multi-mission bus concept developed in partnership by Thales Alenia Space (France) and CNES (France). The first application of this platform was Jason1, an oceanography satellite launched in December 2001. Later on, led by the need for extra power for the next Proteus missions, the initial electrical functional chain has been modified by the replacement of the previous Nickel-Cadmium battery by a Lithium-ion one, baseline of the new Proteus 5PF platform. The Proteus electrical functional chain is based on the use of a single battery, permanently connected to the main bus. Its charge is ensured by the on-board software, which adapts the number of solar sections connected the bus. Due to the LEO orbits (700 Km for CALIPSO), the battery is submitted to a high number of cycles (typically 25500 cycles for Calipso). Roughly, a 78Ah nameplate battery, coupled to a solar array delivering 1KW, are able to supply a payload with a power demand up to 600W, for a lifetime higher than three years, under LEO environment. In 2006, on April 28th, the French-American CALIPSO satellite mission has been successfully launched. The CALIPSO mission, project involving NASA (US), CNES (France) and the Institut Pierre-Simon Laplace (CNRS, France), is the first satellite using the Proteus 5PF. CALIPSO provides 3D perspectives of clouds and Aerosols. The second Proteus 5PF mission, the space telescope COROT, has been launched in 2006, on December 27th. COROT is a mission of astronomy led by CNES, in association with CNRS, aimed to detect extra-solar planets. The third Proteus 5PF mission, the oceanography satellite Jason2, has been successfully launched on 2008 June 20th. JASON2 is a fourth-partner mission with NASA, CNES, EUMETSAT and NOAA, whose objective is to continue JASON1 sea surface topography measurements with a goal of improving accuracy to 2.5 centimeters. The fourth Proteus 5PF mission, the scientific earth observation satellite SMOS, has been launched on 2009

  20. Estimated winter 1980-1981 electric demand and supply, contiguous United States. Staff report

    SciTech Connect

    1980-12-01

    This report summarizes the most recent data available concerning projected electrical peak demands and available power resouces for the 1980-1981 winter peak period, as reported by electric utilities in the contiguous United States. The data, grouped by Regional Reliability Council areas and by Electrical Regions within the Council areas, was obtained from the Form 12E-2 reports filed by utilities with the Department of Energy on October 15, 1980 (data as of September 30). In some instances the data were revised or verified by telephone. Considerations affecting reliability, arising from Nuclear Regulatory Commission actions based on lessons learned from the forced outage of Three Mile Island Nuclear Unit No. 2, were factored into the report. No widespread large-scale reliability problems are foreseen for electric power supply this winter, on the basis of the supply and demand projections furnished by the electric utilities. Reserve margins could drop in some electric regions to levels considered inadequate for reliable service, if historical forced-outage magnitudes recur.

  1. Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation

    SciTech Connect

    Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

    2013-01-17

    Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suite—as well as potential future suites—of thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sector’s water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

  2. Climate Change Impacts on Electricity Demand and Supply in the United States: A Multi-Model Comparison

    EPA Science Inventory

    This paper compares the climate change impacts on U.S. electricity demand and supply from three models: the Integrated Planning Model (IPM), the Regional Energy Deployment System (ReEDS) model, and GCAM. Rising temperatures cause an appreciable net increase in electricity demand....

  3. Impacts of climate change on sub-regional electricity demand and distribution in the southern United States

    DOE PAGESBeta

    Allen, Melissa R.; Fernandez, Steven J.; Fu, Joshua S.; Olama, Mohammed M.

    2016-07-25

    New tools are employed to develop an electricity demand map for the southeastern United States at neighborhood resolution to serve as a baseline from which to project increases in electricity demand due to a rise in global and local temperature and to population shifts motivated by increases in extreme weather events due to climate change. We find that electricity demand increases due to temperature rise over the next 40 years have a much smaller impact than those due to large population influx. In addition, we find evidence that some, sections of the national electrical grid are more adaptable to thesemore » population shifts and changing demand than others are; and that detailed projections of changing local electricity demand patterns are viable and important for planning at the urban level.« less

  4. Connecting plug-in vehicles with green electricity through consumer demand

    NASA Astrophysics Data System (ADS)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-03-01

    The environmental benefits of plug-in electric vehicles (PEVs) increase if the vehicles are powered by electricity from ‘green’ sources such as solar, wind or small-scale hydroelectricity. Here, we explore the potential to build a market that pairs consumer purchases of PEVs with purchases of green electricity. We implement a web-based survey with three US samples defined by vehicle purchases: conventional new vehicle buyers (n = 1064), hybrid vehicle buyers (n = 364) and PEV buyers (n = 74). Respondents state their interest in a PEV as their next vehicle, in purchasing green electricity in one of three ways, i.e., monthly subscription, two-year lease or solar panel purchase, and in combining the two products. Although we find that a link between PEVs and green electricity is not presently strong in the consciousness of most consumers, the combination is attractive to some consumers when presented. Across all three respondent segments, pairing a PEV with a green electricity program increased interest in PEVs—with a 23% demand increase among buyers of conventional vehicles. Overall, about one-third of respondents presently value the combination of a PEV with green electricity; the proportion is much higher among previous HEV and PEV buyers. Respondents’ reported motives for interest in both products and their combination include financial savings (particularly among conventional buyers), concerns about air pollution and the environment, and interest in new technology (particularly among PEV buyers). The results provide guidance regarding policy and marketing strategies to advance PEVs and green electricity demand.

  5. Marginal capacity costs of electricity distribution and demand for distributed generation

    SciTech Connect

    Woo, Chi-Keung, Lloyd-Zanetti, D.; Orans, R.

    1995-12-31

    Marginal costs of electricity vary by time and location. Past researchers attributed these variations to factors related to electricity generation, transmission and distribution. Past authors, however, did not fully analyze the large variations in marginal distribution capacity costs (MDCC) by area and time. Thus, the objectives of this paper are as follows: (1) to show that large MDCC variations exist within a utility`s service territory; (2) to demonstrate inter-utility variations in MDCC; and (3) to demonstrate the usefulness of these costs in determining demand for distributed generation (DG). 27 refs., 3 figs., 2 tabs.

  6. Industrial process models of electricity demand. Volume 2. The pulp and paper industry. Final report

    SciTech Connect

    Pierce, B.L.; Pilati, D.A.; Chang, J.; Sparrow, F.T.

    1984-05-01

    The National Center for Analysis of Energy Systems at Brookhaven National Laboratory has developed a process model of the US pulp and paper industry. The model is based on data from economic and engineering analyses of the major manufacturing processes in pulp and papermaking and includes Standard Industrial Classifications 2611, 2621, 2631, and 2661. Energy conserving alternatives to conventional technologies are included. The pulp and paper model is a dynamic and regional process optimization model incorporating the Bureau of Census defined regions of the Northeast, North Central, South and West. It is dynamic in that it analyzes a 25-year time horizon. Given fuel prices and product demand projections, the model selects modes of operation and energy consumption characteristics that minimize the cost of meeting the projected demands. With a projected average annual growth rate of 3.3% for paper products, model results show a decline in the energy intensity of paper production and an increase in the demand for electricity.

  7. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  8. Alleviating a form of electric vehicle range anxiety through on-demand vehicle access

    NASA Astrophysics Data System (ADS)

    King, Christopher; Griggs, Wynita; Wirth, Fabian; Quinn, Karl; Shorten, Robert

    2015-04-01

    On-demand vehicle access is a method that can be used to reduce types of range anxiety problems related to planned travel for electric vehicle owners. Using ideas from elementary queueing theory, basic quality of service (QoS) metrics are defined to dimension a shared fleet to ensure high levels of vehicle access. Using mobility data from Ireland, it is argued that the potential cost of such a system is very low.

  9. Impacts of Various Characteristics of Electricity and Heat Demand on the Optimal Configuration of a Microgrid

    NASA Astrophysics Data System (ADS)

    Bando, Shigeru; Watanabe, Hiroki; Asano, Hiroshi; Tsujita, Shinsuke

    A methodology was developed to design the number and capacity for each piece of equipment (e.g. gas engines, batteries, thermal storage tanks) in microgrids with combined heat and power systems. We analyzed three types of microgrids; the first one consists of an office building and an apartment, the second one consists of a hospital and an apartment, the third one consists of a hotel, office and retails. In the methodology, annual cost is minimized by considering the partial load efficiency of a gas engine and its scale economy, and the optimal number and capacity of each piece of equipment and the annual operational schedule are determined by using the optimal planning method. Based on calculations using this design methodology, it is found that the optimal number of gas engines is determined by the ratio of bottom to peak of the electricity demand and the ratio of heat to electricity demand. The optimal capacity of a battery required to supply electricity for a limited time during a peak demand period is auxiliary. The thermal storage tank for space cooling and space heating is selected to minimize the use of auxiliary equipment such as a gas absorption chiller.

  10. Effects of noise exposure and task demand on cardiovascular function.

    PubMed

    Wu, T N; Huang, J T; Chou, P F; Chang, P Y

    1988-01-01

    Cardiovascular effects under various noise-exposure and task-demand conditions were studied among 40 senior highschool students. The subjects consisted of 20 males and 20 females with a mean age of 16.7 +/- 0.7 years. All subjects had equivalent abacus performance ratings. Each subject was tested with a random sequence of six sessions. The time limit set for each session was 33 min. Six experimental sessions were constructed by a random combination of noise exposure (60, 85 or 90 dB (A] white noise) and task demand (task presence or task absence) variables. Blood pressure measures were taken at the beginning and ending phases of each session. A task-demand variable was defined as a conjoint of mental arithmetic (3 min) and abacus arithmetic (30 min). The results from the present study show that the effect of noise exposure on task performance is remarkable. Only noise exposure tended to influence the performance of male students in abacus arithmetic. The effect of task demand on blood pressure was higher than that of noise exposure. No interaction effect (noise exposure x task demand) on blood pressure, was found via analyses of within-subjects two-way ANOVA. PMID:3346087

  11. Bulk electric system reliability evaluation incorporating wind power and demand side management

    NASA Astrophysics Data System (ADS)

    Huang, Dange

    correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.

  12. Impacts of demand response and renewable generation in electricity power market

    NASA Astrophysics Data System (ADS)

    Zhao, Zhechong

    This thesis presents the objective of the research which is to analyze the impacts of uncertain wind power and demand response on power systems operation and power market clearing. First, in order to effectively utilize available wind generation, it is usually given the highest priority by assigning zero or negative energy bidding prices when clearing the day-ahead electric power market. However, when congestion occurs, negative wind bidding prices would aggravate locational marginal prices (LMPs) to be negative in certain locations. A load shifting model is explored to alleviate possible congestions and enhance the utilization of wind generation, by shifting proper amount of load from peak hours to off peaks. The problem is to determine proper amount of load to be shifted, for enhancing the utilization of wind generation, alleviating transmission congestions, and making LMPs to be non-negative values. The second piece of work considered the price-based demand response (DR) program which is a mechanism for electricity consumers to dynamically manage their energy consumption in response to time-varying electricity prices. It encourages consumers to reduce their energy consumption when electricity prices are high, and thereby reduce the peak electricity demand and alleviate the pressure to power systems. However, it brings additional dynamics and new challenges on the real-time supply and demand balance. Specifically, price-sensitive DR load levels are constantly changing in response to dynamic real-time electricity prices, which will impact the economic dispatch (ED) schedule and in turn affect electricity market clearing prices. This thesis adopts two methods for examining the impacts of different DR price elasticity characteristics on the stability performance: a closed-loop iterative simulation method and a non-iterative method based on the contraction mapping theorem. This thesis also analyzes the financial stability of DR load consumers, by incorporating

  13. The costs, air quality, and human health effects of meeting peak electricity demand with installed backup generators.

    PubMed

    Gilmore, Elisabeth A; Lave, Lester B; Adams, Peter J

    2006-11-15

    Existing generators installed for backup during blackouts could be operated during periods of peak electricity demand, increasing grid reliability and supporting electricity delivery. Many generators, however, have non-negligible air emissions and may potentially damage air quality and harm human health. To evaluate using these generators, we compare the levelized private and social (health) costs of diesel internal combustion engines (ICE) with and without diesel particulate filters (DPF), natural gas ICEs, and microturbines to a new peaking plant in New York, NY. To estimate the social cost, first we calculate the upper range emissions for each generator option from producing 36,000 megawatt-hours (MWh) of electricity over 3 days. We then convert the emissions into ambient concentrations with a 3-D chemical transport model, PMCAMx, and Gaussian dispersion plumes. Using a Monte Carlo approach to incorporate the uncertainties, we calculate the health endpoints using concentration-response functions and multiply the response by its economic value. While uncontrolled diesel ICEs would harm air quality and health, a generator with a DPF has a social cost, comparable to natural gas options. We conclude on a full cost basis that backup generators, including controlled diesel ICEs, are a cost-effective method of meeting peak demand. PMID:17153991

  14. Demand-Side Management and Integrated Resource Planning: Findings from a Survey of 24 Electric Utilities

    SciTech Connect

    Schweitzer, M.

    1991-01-01

    Integrated resource planning differs from traditional utility planning practices primarily in its increased attention to demand-side management (DSM) programs and its integration of supply- and demand-side resources into a combined resource portfolio. This report details the findings from an Oak Ridge National Laboratory (ORNL) survey of 24 electric utilities that have well-developed integrated planning processes. These utilities account for roughly one-third of total capacity, electricity generation, and DSM-program expenditures nationwide. The ORNL survey was designed to obtain descriptive data on a national sample of utilities and to test a number of hypothesized relationships between selected utility characteristics and the mix of resources selected for the integrated plan, with an emphasis on the use of DSM resources and the processes by which they are chosen. The survey solicited information on each utility's current and projected resource mix, operating environment, procedures used to screen potential DSM resources, techniques used to obtain public input and to integrate supply- and demand-side options into a unified plan, and procedures used in the final selection of resources for the plan.

  15. Reducing Gridlock on the Grid: Utility Trends in Managing Peak Electric Load through Residential Demand Response

    NASA Astrophysics Data System (ADS)

    McDonald, Betsy

    Utilities across the United States are piloting residential demand response programs to help manage peak electric demand. Using publicly available program evaluations, this thesis analyzes nine such programs to uncover and synthesize the range of program offerings, goals, enrollment strategies, and customer experiences. This review reveals that program participation, components, and results differ based on a variety of factors, including geographic characteristics, program goals, and implementation strategies. The diversity of program designs and evaluation findings suggests an underlying tension between the need to generate cost-effective program impacts and the desire to increase accessibility so that program benefits are not exclusive to certain segments of the population. For more significant and impactful engagement, program goals may need to shift. State level policy support could help shift program goals toward increasing program accessibility. Future research should explore creative strategies that target existing barriers and allow for more inclusive deployment.

  16. Industrial process models of electricity demand. Volume 4. The aluminum industry. Final report

    SciTech Connect

    Pierce, B.L.; Coward, H.; Sparrow, F.T.; Pilati, D.A.

    1984-05-01

    The National Center for Analysis of Energy Systems at Brookhaven National Laboratory has developed a process model of the US aluminum industry. The model consists of the major process steps in the manufacture of milled and cast aluminum products and is designed to select modes of operation and energy consumption characteristics that minimize the cost of meeting projected demands for the industry's products. Domestic refineries and primary smelters are represented individually in the model. Industry structure in terms of plant ownership and allowed transfers of aluminum-bearing materials is explicitly modeled. With a growth in product demand of 4.2% per year, model results show a decline in electricity intensity of primary production.

  17. Temporalization of peak electric generation particulate matter emissions during high energy demand days.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Baker, Kirk R; Rodgers, Mark; Carlton, Annmarie G

    2015-04-01

    Underprediction of peak ambient pollution by air quality models hinders development of effective strategies to protect health and welfare. The U.S. Environmental Protection Agency's community multiscale air quality (CMAQ) model routinely underpredicts peak ozone and fine particulate matter (PM2.5) concentrations. Temporal misallocation of electricity sector emissions contributes to this modeling deficiency. Hourly emissions are created for CMAQ by use of temporal profiles applied to annual emission totals unless a source is matched to a continuous emissions monitor (CEM) in the National Emissions Inventory (NEI). More than 53% of CEMs in the Pennsylvania-New Jersey-Maryland (PJM) electricity market and 45% nationally are unmatched in the 2008 NEI. For July 2006, a United States heat wave with high electricity demand, peak electric sector emissions, and elevated ambient PM2.5 mass, we match hourly emissions for 267 CEM/NEI pairs in PJM (approximately 49% and 12% of unmatched CEMs in PJM and nationwide) using state permits, electricity dispatch modeling and CEMs. Hourly emissions for individual facilities can differ up to 154% during the simulation when measurement data is used rather than default temporalization values. Maximum CMAQ PM2.5 mass, sulfate, and elemental carbon predictions increase up to 83%, 103%, and 310%, at the surface and 51%, 75%, and 38% aloft (800 mb), respectively. PMID:25705922

  18. Measured electric hot water standby and demand loads from Pacific Northwest homes

    SciTech Connect

    Pratt, R.G.; Ross, B.A.

    1991-11-01

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  19. Direct Electricity from Heat: A Solution to Assist Aircraft Power Demands

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    A thermionic device produces an electrical current with the application of a thermal gradient whereby the temperature at one electrode provides enough thermal energy to eject electrons. The system is totally predicated on the thermal gradient and the work function of the electrode collector relative to the emitter electrode. Combined with a standard thermoelectric device high efficiencies may result, capable of providing electrical energy from the waste heat of gas turbine engines.

  20. Impacts of electric demand-side management programs on fuel choice: A case study

    SciTech Connect

    Lee, A.D.; Kavanaugh, D.C.; Sandahl, L.J.; Vinnard, A.B.

    1994-04-01

    Information, rebates, and technical assistance associated with utility demand-side management (DSM) programs can alter consumer behavior. Such programs may unintentionally affect consumer fuel choices. This study addresses fuel choice effects of a unique Pacific Northwest DSM program: (1) it is directed at new manufactured homes only, (2) it is an acquisition program -- utilities make $2,500 payments directly to manufacturers for each electrically heated, energy-efficient home built, (3) it has rapidly penetrated nearly 100% of the potential market, and (4) over 90% of the affected homes in the participating region have traditionally used electricity for space heating. Heating equipment data for all manufactured homes built in the region since 1987 were sampled and regression analysis was used to examine the relationship between the DSM program and fuel shares. The quantitative data were supplemented with interview data to better understand the relationship between the program and fuel choice. The results should be useful for program design and evaluation.

  1. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  2. Natural graphite demand and supply: Implications for electric vehicle battery requirements.

    USGS Publications Warehouse

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  3. Advances in functional electrical stimulation (FES).

    PubMed

    Popović, Dejan B

    2014-12-01

    This review discusses the advancements that are needed to enhance the effects of electrical stimulation for restoring or assisting movement in humans with an injury/disease of the central nervous system. A complex model of the effects of electrical stimulation of peripheral systems is presented. The model indicates that both the motor and sensory systems are activated by electrical stimulation. We propose that a hierarchical hybrid controller may be suitable for functional electrical stimulation (FES) because this type of controller acts as a structural mimetic of its biological counterpart. Specific attention is given to the neural systems at the periphery with respect to the required electrodes and stimulators. Furthermore, we note that FES with surface electrodes is preferred for the therapy, although there is a definite advantage associated with implantable technology for life-long use. The last section of the review discusses the potential need to combine FES and robotic systems to provide assistance in some cases. PMID:25287528

  4. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration.

    PubMed

    Yang, Rui; Terabe, Kazuya; Liu, Guangqiang; Tsuruoka, Tohru; Hasegawa, Tsuyoshi; Gimzewski, James K; Aono, Masakazu

    2012-11-27

    A potential route to extend Moore's law beyond the physical limits of existing materials and device architectures is to achieve nanotechnology breakthroughs in materials and device concepts. Here, we discuss an on-demand WO(3-x)-based nanoionic device where electrical and neuromorphic multifunctions are realized through externally induced local migration of oxygen ions. The device is found to possess a wide range of time scales of memorization, resistance switching, and rectification varying from volatile to permanent in a single device, and these can furthermore be realizable in both two- or three-terminal systems. The gradually changing volatile and nonvolatile resistance states are experimentally demonstrated to mimic the human brain's forgetting process for short-term memory and long-term memory.We propose this nanoionic device with its on-demand electrical and neuromorphic multifunction has a unique paradigm shifting potential for the fabrication of configurable circuits, analog memories, digital-neural fused networks, and more in one device architecture. PMID:23102535

  5. Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model

    SciTech Connect

    Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

    2014-09-05

    Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

  6. A Functional Murine Model of Hind Limb Demand Ischemia

    PubMed Central

    Peck, Michael A.; Crawford, Robert S.; Abularrage, Christopher J.; Patel, Virendra I.; Conrad, Mark F.; Yoo, Jin Hyung; Watkins, Michael T.; Albadawi, Hassan

    2010-01-01

    Introduction To date murine models of treadmill exercise have been used to study general exercise physiology and angiogenesis in ischemic hind limbs. The purpose of these experiments was to develop a murine model of demand ischemia in an ischemic limb to mimic claudication in humans. The primary goal was to determine whether treadmill exercise reflected a hemodynamic picture which might be consistent with the hyperemic response observed in humans. Methods Aged hypercholesterolemic ApoE null mice ( ApoE−/−, n=13) were subjected to Femoral Artery Ligation (FAL), and allowed to recover from the acute ischemic response. Peripheral perfusion of the hind limbs at rest was determined by serial evaluation using laser Doppler imaging (LDI) on days 0, 7, and 14 following FAL. During the duration of the experiments, the mice were also assessed on an established 5 point clinical ischemic score which assessed the degree of digital amputation, necrosis, and cyanosis as compared to the non ischemic contralateral limb. After stabilization of the LDI ratio (ischemic limb flux/contralateral non ischemic limb flux) and clinical ischemic score, mice underwent two days of treadmill training (10 min @ 10 m/min, incline of 10°) followed by 60 minutes daily treadmill exercise (13 m/min, incline of 10°) through day 25. An evaluation of pre-exercise and post exercise perfusion using LDI was performed on two separate occasions following the onset of daily exercise. During the immediate 15 minute post exercise evaluation, LDI scanning was obtained in quadruplicate, to allow identification of peak flux ratios. Statistical analysis included unpaired t-tests and ANOVA. Results After FAL, the LDI Flux ratio reached a nadir between days one and two, then stabilized by day 14 and remained stable through day 25. The clinical ischemic score stabilized at day 7, and remained stable throughout the rest of the experiment. Based on stabilization of both the clinical ischemic score and LDI ratio

  7. An analysis of the factors influencing demand-side management activity in the electric utility industry

    NASA Astrophysics Data System (ADS)

    Bock, Mark Joseph

    Demand-side management (DSM), defined as the "planning, implementation, and monitoring of utility activities designed to encourage consumers to modify their pattern of electricity usage, including the timing and level of electricity demand," is a relatively new concept in the U.S. electric power industry. Nevertheless, in twenty years since it was first introduced, utility expenditures on DSM programs, as well as the number of such programs, have grown rapidly. At first glance, it may seem peculiar that a firm would actively attempt to reduce demand for its primary product. There are two primary explanations as to why a utility might pursue DSM: regulatory mandate, and self-interest. The purpose of this dissertation is to determine the impact these influences have on the amount of DSM undertaken by utilities. This research is important for two reasons. First, it provides insight into whether DSM will continue to exist as competition becomes more prevalent in the industry. Secondly, it is important because no one has taken a comprehensive look at firm-level DSM activity on an industry-wide basis. The primary data set used in this dissertation is the U.S. Department of Energy's Annual Electric Utility Report, Form EIA-861, which represents the most comprehensive data set available for analyzing DSM activity in the U.S. There are four measures of DSM activity in this data set: (1) utility expenditures on DSM programs; (2) energy savings by DSM program participants; and (3) the actual and (4) the potential reductions in peak load resulting from utility DSM measures. Each is used as the dependent variable in an econometric analysis where independent variables include various utility characteristics, regulatory characteristics, and service territory and customer characteristics. In general, the results from the econometric analysis suggest that in 1993, DSM activity was primarily the result of regulatory pressure. All of the evidence suggests that if DSM continues to

  8. Neural efficiency as a function of task demands.

    PubMed

    Dunst, Beate; Benedek, Mathias; Jauk, Emanuel; Bergner, Sabine; Koschutnig, Karl; Sommer, Markus; Ischebeck, Anja; Spinath, Birgit; Arendasy, Martin; Bühner, Markus; Freudenthaler, Heribert; Neubauer, Aljoscha C

    2014-01-01

    The neural efficiency hypothesis describes the phenomenon that brighter individuals show lower brain activation than less bright individuals when working on the same cognitive tasks. The present study investigated whether the brain activation-intelligence relationship still applies when more versus less intelligent individuals perform tasks with a comparable person-specific task difficulty. In an fMRI-study, 58 persons with lower (n = 28) or respectively higher (n = 30) intelligence worked on simple and difficult inductive reasoning tasks having the same person-specific task difficulty. Consequently, less bright individuals received sample-based easy and medium tasks, whereas bright subjects received sample-based medium and difficult tasks. This design also allowed a comparison of lower versus higher intelligent individuals when working on the same tasks (i.e. sample-based medium task difficulty). In line with expectations, differences in task performance and in brain activation were only found for the subset of tasks with the same sample-based task difficulty, but not when comparing tasks with the same person-specific task difficulty. These results suggest that neural efficiency reflects an (ability-dependent) adaption of brain activation to the respective task demands. PMID:24489416

  9. Functional electrical stimulation and spinal cord injury.

    PubMed

    Ho, Chester H; Triolo, Ronald J; Elias, Anastasia L; Kilgore, Kevin L; DiMarco, Anthony F; Bogie, Kath; Vette, Albert H; Audu, Musa L; Kobetic, Rudi; Chang, Sarah R; Chan, K Ming; Dukelow, Sean; Bourbeau, Dennis J; Brose, Steven W; Gustafson, Kenneth J; Kiss, Zelma H T; Mushahwar, Vivian K

    2014-08-01

    Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI. PMID:25064792

  10. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.

    PubMed

    O'Shea, R; Wall, D; Murphy, J D

    2016-09-01

    Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system. PMID:27240240

  11. Spatial analysis of electricity demand patterns in Greece: Application of a GIS-based methodological framework

    NASA Astrophysics Data System (ADS)

    Tyralis, Hristos; Mamassis, Nikos; Photis, Yorgos N.

    2016-04-01

    We investigate various uses of electricity demand in Greece (agricultural, commercial, domestic, industrial use as well as use for public and municipal authorities and street lightning) and we examine their relation with variables such as population, total area, population density and the Gross Domestic Product. The analysis is performed on data which span from 2008 to 2012 and have annual temporal resolution and spatial resolution down to the level of prefecture. We both visualize the results of the analysis and we perform cluster and outlier analysis using the Anselin local Moran's I statistic as well as hot spot analysis using the Getis-Ord Gi* statistic. The definition of the spatial patterns and relationships of the aforementioned variables in a GIS environment provides meaningful insight and better understanding of the regional development model in Greece and justifies the basis for an energy demand forecasting methodology. Acknowledgement: This research has been partly financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA II: Reinforcement of the interdisciplinary and/ or inter-institutional research and innovation (CRESSENDO project; grant number 5145).

  12. US East Coast offshore wind energy resources and their relationship to time-varying electricity demand

    NASA Astrophysics Data System (ADS)

    Dvorak, M. J.; Corcoran, B. A.; Ten Hoeve, J. E.; Jacobson, M. Z.; McIntyre, N.

    2011-12-01

    This study characterizes the annual-mean US East Coast (USEC) offshore wind energy (OWE) resource based on 5 years of skillful, high resolution mesoscale model (WRF-ARW) results at the turbine hub height of 90 m. Model output was validated buoys and offshore towers, which provides insight into the relative errors of forecasting winds in the region. The most suitable locations for OWE are prescribed, based on their wind resource, shallow bathymetry, low hurricane risk, and peak-power generation potential. The offshore region from Maine to Virginia was found to have exceptional overall resource the best wind resource, shallow water, and low hurricane risk. The region east of Long Island, NY to Cape Cod, MA has the best summertime peak resource, due to regional upwelling that often strengthens the sea breeze. Overall, the resource from Maine to Florida out to 200-m depth, using turbine capacity factor cutoffs of 45% and 40% is between 1175-1672 TWh (134-191 GW avg.). Between 30-42% of the electricity demand for the entire US (2009) could be provided using USEC OWE alone and 93-133% of Maine to Florida (2008) demand.

  13. Delivering customer value: The application of quality function deployment to demand-side management

    SciTech Connect

    George, S.S.; Leone, R.A. )

    1992-02-01

    Quality function deployment (QFD) is a planning and communication tool used widely by manufacturing industries to translate customer needs into appropriate technical requirements for product development and manufacture. QFD provides a forum within which the often disparate functional activities of a company -- marketing, engineering, manufacturing -- can work closely together toward both customer-focused and technical aims. This report provides guidance in applying QFD to demand-side management (DSM) program design and implementation. The single most salient feature of QFD, in fact its primary goal, is to incorporate the voice of the customer'' (in QFD parlance) into the design process. QFD always begins with customer's needs (e.g., budgetary concerns, comfort, convenience, etc.). Information about these needs is then linked to the product and service characteristics upon which customers base purchase and utilization decisions (e.g., electricity price level and structure, supply reliability, equipment efficiency and quality, and installation effectiveness). The ways customer needs relate to product/service characteristics are delineated in what is called the House of Value.'' This particular depiction of QFD is based on a 1988 Harvard Business Review article entitled The House of Quality.''

  14. Delivering customer value: The application of quality function deployment to demand-side management. Final report

    SciTech Connect

    George, S.S.; Leone, R.A.

    1992-02-01

    Quality function deployment (QFD) is a planning and communication tool used widely by manufacturing industries to translate customer needs into appropriate technical requirements for product development and manufacture. QFD provides a forum within which the often disparate functional activities of a company -- marketing, engineering, manufacturing -- can work closely together toward both customer-focused and technical aims. This report provides guidance in applying QFD to demand-side management (DSM) program design and implementation. The single most salient feature of QFD, in fact its primary goal, is to incorporate the ``voice of the customer`` (in QFD parlance) into the design process. QFD always begins with customer`s needs (e.g., budgetary concerns, comfort, convenience, etc.). Information about these needs is then linked to the product and service characteristics upon which customers base purchase and utilization decisions (e.g., electricity price level and structure, supply reliability, equipment efficiency and quality, and installation effectiveness). The ways customer needs relate to product/service characteristics are delineated in what is called the ``House of Value.`` This particular depiction of QFD is based on a 1988 Harvard Business Review article entitled ``The House of Quality.``

  15. Electron distribution functions in electric field environments

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence H.

    1991-01-01

    The amount of current carried by an electric discharge in its early stages of growth is strongly dependent on its geometrical shape. Discharges with a large number of branches, each funnelling current to a common stem, tend to carry more current than those with fewer branches. The fractal character of typical discharges was simulated using stochastic models based on solutions of the Laplace equation. Extension of these models requires the use of electron distribution functions to describe the behavior of electrons in the undisturbed medium ahead of the discharge. These electrons, interacting with the electric field, determine the propagation of branches in the discharge and the way in which further branching occurs. The first phase in the extension of the referenced models , the calculation of simple electron distribution functions in an air/electric field medium, is discussed. Two techniques are investigated: (1) the solution of the Boltzmann equation in homogeneous, steady state environments, and (2) the use of Monte Carlo simulations. Distribution functions calculated from both techniques are illustrated. Advantages and disadvantages of each technique are discussed.

  16. Magnetoresistive sensors for angle, position, and electrical current measurement in demanding environments

    NASA Astrophysics Data System (ADS)

    Doms, Marco; Slatter, Rolf

    2014-06-01

    Nowadays, magnetoresistive (MR) sensors are used in a wide range of applications. In general, the MR-effect describes the change of the electrical resistance in an external magnetic field. MR sensors are not only used for measuring magnetic fields and rotational or linear motion, but also for non-contact switching applications and furthermore for highly dynamic current measurement. This is largely the result of increasingly complex demands on the sensors for e.g. high performance electrical drives. The sensors must not only be accurate and dynamic, but must also be robust under difficult operating conditions and exhibit very high reliability. Due to their physical working principle and their small size, MR sensors are especially suited to work in harsh environments like high or low temperature, radiation, pressure or mechanical shock. This paper describes the principle of operation, manufacturing process and benefits of MR sensors. This will be followed by a description of practical application examples from the automotive, oil and gas, renewable energy and space fields, where MR sensors are successfully applied in very small envelopes at very low /very high temperatures, under high pressure, high mechanical loading and under strong radiation.

  17. Important Factors for Early Market Microgrids: Demand Response and Plug-in Electric Vehicle Charging

    NASA Astrophysics Data System (ADS)

    White, David Masaki

    Microgrids are evolving concepts that are growing in interest due to their potential reliability, economic and environmental benefits. As with any new concept, there are many unresolved issues with regards to planning and operation. In particular, demand response (DR) and plug-in electric vehicle (PEV) charging are viewed as two key components of the future grid and both will likely be active technologies in the microgrid market. However, a better understanding of the economics associated with DR, the impact DR can have on the sizing of distributed energy resource (DER) systems and how to accommodate and price PEV charging is necessary to advance microgrid technologies. This work characterizes building based DR for a model microgrid, calculates the DER systems for a model microgrid under DR through a minimization of total cost, and determines pricing methods for a PEV charging station integrated with an individual building on the model microgrid. It is shown that DR systems which consist only of HVAC fan reductions provide potential economic benefits to the microgrid through participation in utility DR programs. Additionally, peak shaving DR reduces the size of power generators, however increasing DR capacity does not necessarily lead to further reductions in size. As it currently stands for a microgrid that is an early adopter of PEV charging, current installation costs of PEV charging equipment lead to a system that is not competitive with established commercial charging networks or to gasoline prices for plug-in hybrid electric vehicles (PHEV).

  18. High ozone concentrations on hot days: The role of electric power demand and NOx emissions

    NASA Astrophysics Data System (ADS)

    He, Hao; Hembeck, Linda; Hosley, Kyle M.; Canty, Timothy P.; Salawitch, Ross J.; Dickerson, Russell R.

    2013-10-01

    ambient temperatures intensify photochemical production of tropospheric ozone, leading to concerns that global warming may exacerbate smog episodes. This widely observed phenomenon has been termed the climate penalty factor (CPF). A variety of meteorological and photochemical processes have been suggested to explain why surface ozone increases on hot days. Here, we quantify an anthropogenic factor previously overlooked: the rise of ozone precursor emissions on hot summer days due to high electricity demand. Between 1997 and 2011, power plant emissions of NOx in the eastern U.S. increased by ~2.5-4.0%/°C, raising surface NOx concentrations by 0.10-0.25 ppb/°C. Given an ozone production efficiency (OPE) of ~8 mol/mol based on the 2011 NASA DISCOVER-AQ campaign, at least one third of the CPF observed in the eastern U.S. can be attributed to the temperature dependence of NOx emissions. This finding suggests that controlling emissions associated with electricity generation on hot summer days can mitigate the CPF.

  19. Optimal Ozone Control with Inclusion of Spatiotemporal Marginal Damages and Electricity Demand.

    PubMed

    Mesbah, S Morteza; Hakami, Amir; Schott, Stephan

    2015-07-01

    Marginal damage (MD), or damage per ton of emission, is a policy metric used for effective pollution control and reducing the corresponding adverse health impacts. However, for a pollutant such as NOx, the MD varies by the time and location of the emissions, a complication that is not adequately accounted for in the currently implemented economic instruments. Policies accounting for MD information would aim to encourage emitters with large MDs to reduce their emissions. An optimization framework is implemented to account for NOx spatiotemporal MDs calculated through adjoint sensitivity analysis and to simulate power plants' behavior under emission and simplified electricity constraints. The results from a case study of U.S. power plants indicate that time-specific MDs are high around noon and low in the evening. Furthermore, an emissions reduction of about 40% and a net benefit of about $1200 million can be gained for this subset of power plants if a larger fraction of the electricity demand is supplied by power plants at low-damage times and in low-damage locations. The results also indicate that the consideration of temporal effects in NOx control policies results in a comparable net benefit to the consideration of spatial or spatiotemporal effects, thus providing a promising option for policy development. PMID:26053406

  20. Social Welfare implications of demand response programs in competitive electricity markets

    SciTech Connect

    Boisvert, Richard N.; Neenan, Bernard F.

    2003-08-01

    The price volatility exhibited by wholesale electricity markets has stymied the movement to restructure the industry, and may derail it altogether. Market designers argue that prices are superior to regulation for directing long-term investments to the proper location and function, and that price volatility is a natural manifestation of a robustly competitive market. However, episodes of prices that soar to previously unimaginable heights try customers' patience and cause policy makers to reconsider if the prize is worth the consequences.

  1. Functional Electrical Stimulation and Spinal Cord Injury

    PubMed Central

    Ho, Chester H.; Triolo, Ronald J.; Elias, Anastasia L.; Kilgore, Kevin L.; DiMarco, Anthony F.; Bogie, Kath; Vette, Albert H.; Audu, Musa; Kobetic, Rudi; Chang, Sarah R.; Chan, K. Ming; Dukelow, Sean; Bourbeau, Dennis J.; Brose, Steven W.; Gustafson, Kenneth J.; Kiss, Zelma; Mushahwar, Vivian K.

    2015-01-01

    Synopsis Spinal cord injuries (SCI) can disrupt communications between the brain and the body, leading to a loss of control over otherwise intact neuromuscular systems. The use of electrical stimulation (ES) of the central and peripheral nervous system can take advantage of these intact neuromuscular systems to provide therapeutic exercise options, to allow functional restoration, and even to manage or prevent many medical complications following SCI. The use of ES for the restoration of upper extremity, lower extremity and truncal functions can make many activities of daily living a potential reality for individuals with SCI. Restoring bladder and respiratory functions and preventing pressure ulcers may significantly decrease the morbidity and mortality following SCI. Many of the ES devices are already commercially available and should be considered by all SCI clinicians routinely as part of the lifelong rehabilitation care plan for all eligible individuals with SCI. PMID:25064792

  2. Technical Rebuilding of Movement Function Using Functional Electrical Stimulation

    NASA Astrophysics Data System (ADS)

    Gföhler, Margit

    To rebuild lost movement functions, neuroprostheses based on functional electrical stimulation (FES) artificially activate skeletal muscles in corresponding sequences, using both residual body functions and artificial signals for control. Besides the functional gain, FES training also brings physiological and psychological benefits for spinal cord-injured subjects. In this chapter, current stimulation technology and the main components of FES-based neuroprostheses including enhanced control systems are presented. Technology and application of FES cycling and rowing, both approaches that enable spinal cord-injured subjects to participate in mainstream activities and improve their health and fitness by exercising like able-bodied subjects, are discussed in detail, and an overview of neuroprostheses that aim at restoring movement functions for daily life as walking or grasping is given.

  3. Using quality function deployment to design better marketing and demand-side management programs

    SciTech Connect

    Henneberger, T.

    1996-01-01

    EPRI conducts a considerable amount of work in the area of Quality Function Deployment (QFD). QFD, which originated in the manufacturing and automobile industries, is perhaps one of the most important program design processes in the electric utility industry. The manner in which demand-side management (DSM) programs are typically approached-and lighting is no exception-is that the utility begins with an inward look. It asks, {open_quotes}What sort of load-shape impact do I want to achieve?{close_quotes} and having answered that question it looks to a variety of technologies to help it realize its load-shape objective. Lighting is one of those technologies. The problem with this approach is that utilities don`t purchase the lighting systems; customers do, and the customers must live daily with lighting systems on their premises. This means the process is backward. Rather than looking inward, a better way of approaching program design is to look outward-to look first to the customer. That`s what QFD is all about. It is a planning and communication tool for translating customer requirements-the voice of utility customers-into appropriate product service or programming characteristics at each stage of the design and implementation process.

  4. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  5. TREATED WATER DEMAND AND THE ECONOMICS OF REGIONALIZATION. VOLUME 2. ECONOMICS OF REGIONALIZATION: THE ELECTRIC POWER EXAMPLE

    EPA Science Inventory

    This two volume report examines the present and future demands and costs for residential water in view of the new requirements for water quality standards under the Safe Drinking Water Act of 1974. This volume investigates consolidation in the electric power supply industry as an...

  6. An Economic Evalution of Demand-side Energy Storage Systems by using a Multi-agent based Electricity Market

    NASA Astrophysics Data System (ADS)

    Furusawa, Ken; Sugihara, Hideharu; Tsuji, Kiichiro

    Opened wholesale electric power market in April 2005, deregulation of electric power industry in Japan has faced a new competitive environment. In the new environment, Independent Power Producer (: IPP), Power Producer and Supplier (: PPS), Load Service Entity (: LSE) and electric utility can trade electric energy through both bilateral contracts and single-price auction at the electricity market. In general, the market clearing price (: MCP) is largely changed by amount of total load demand in the market. The influence may cause price spike, and consequently the volatility of MCP will make LSEs and their customers to face a risk of revenue and cost. DSM is attracted as a means of load leveling, and has effect on decreasing MCP at peak load period. Introducing Energy Storage systems (: ES) is one of DSM in order to change demand profile at customer-side. In case that customers decrease their own demand at jumped MCP, a bidding strategy of generating companies may be changed their strategy. As a result, MCP is changed through such complex mechanism. In this paper the authors evaluate MCP by multi-agent. It is considered that customer-side ES has an effect on MCP fluctuation. Through numerical examples, this paper evaluates the influence on MCP by controlling customer-side ES corresponding to variation of MCP.

  7. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    SciTech Connect

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal

  8. Thermal energy storage for space cooling. Technology for reducing on-peak electricity demand and cost

    SciTech Connect

    2000-12-01

    Cool storage technology can be used to significantly reduce energy costs by allowing energy intensive, electrically driven cooling equipment to be predominantly operated during off-peak hours when electricity rates are lower. In addition, some system configurations may result in lower first costs and/or lower operating costs. Cool storage systems of one type or another could potentially be cost-effectively applied in most buildings with a space cooling system. A survey of approximately 25 manufacturers providing cool storage systems or components identified several thousand current installations, but less than 1% of these were at Federal facilities. With the Federal sector representing nearly 4% of commercial building floor space and 5% of commercial building energy use, Federal utilization would appear to be lagging. Although current applications are relatively few, the estimated potential annual savings from using cool storage in the Federal sector is $50 million. There are many different types of cool storage systems representing different combinations of storage media, charging mechanisms, and discharging mechanisms. The basic media options are water, ice, and eutectic salts. Ice systems can be further broken down into ice harvesting, ice-on-coil, ice slurry, and encapsulated ice options. Ice-on-coil systems may be internal melt or external melt and may be charged and discharged with refrigerant or a single-phase coolant (typically a water/glycol mixture). Independent of the technology choice, cool storage systems can be designed to provide full storage or partial storage, with load-leveling and demand-limiting options for partial storage. Finally, storage systems can be operated on a chiller-priority or storage priority basis whenever the cooling load is less than the design conditions. The first section describes the basic types of cool storage technologies and cooling system integration options. The next three sections define the savings potential in the

  9. Injectable microstimulator for functional electrical stimulation.

    PubMed

    Loeb, G E; Zamin, C J; Schulman, J H; Troyk, P R

    1991-11-01

    A family of digitally controlled devices is constructed for functional electrical stimulation in which each module is an hermetically sealed glass capsule that is small enough to be injected through the lumen of a hypodermic needle. The overall design and component characteristics of microstimulators that receive power and command signals by inductive coupling from a single, externally worn coil are described. Each device stores power between stimulus pulses by charging an electrolytic capacitor formed by its two electrodes, made of sintered, anodised tantalum and electrochemically activated iridium, respectively. Externally, a highly efficient class E amplifier provides power and digitally encoded command signals to control the amplitude, duration and timing of pulses from up to 256 such microstimulators. PMID:1813741

  10. Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts -- final report

    SciTech Connect

    Eto, J.H.; Moezzi, M.M.

    1993-12-01

    This report summarizes findings from a unique project to improve the end-use electricity load shape and peak demand forecasts made by the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). First, the direct incorporation of end-use metered data into electricity demand forecasting models is a new approach that has only been made possible by recent end-use metering projects. Second, and perhaps more importantly, the joint-sponsorship of this analysis has led to the development of consistent sets of forecasting model inputs. That is, the ability to use a common data base and similar data treatment conventions for some of the forecasting inputs frees forecasters to concentrate on those differences (between their competing forecasts) that stem from real differences of opinion, rather than differences that can be readily resolved with better data. The focus of the analysis is residential space cooling, which represents a large and growing demand in the PG&E service territory. Using five years of end-use metered, central air conditioner data collected by PG&E from over 300 residences, we developed consistent sets of new inputs for both PG&E`s and CEC`s end-use load shape forecasting models. We compared the performance of the new inputs both to the inputs previously used by PG&E and CEC, and to a second set of new inputs developed to take advantage of a recently added modeling option to the forecasting model. The testing criteria included ability to forecast total daily energy use, daily peak demand, and demand at 4 P.M. (the most frequent hour of PG&E`s system peak demand). We also tested the new inputs with the weather data used by PG&E and CEC in preparing their forecasts.

  11. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  12. Family Demands, Social Support and Family Functioning in Taiwanese Families Rearing Children with Down Syndrome

    ERIC Educational Resources Information Center

    Hsiao, C-Y.

    2014-01-01

    Background: Down syndrome (DS) affects not only children but also their families. Much remains to be learned about factors that influence how families of children with DS function, especially families in non-Western populations. The purpose of this cross-sectional, correlational study was to examine how family demographics, family demands and…

  13. Response to consumer demand for reduced-fat foods; multi-functional fat replacers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The excessive dietary fat intake can result in health problems such as obesity and heart-related diseases, resulting in increased consumer demand for reduced fat foods. A number of food ingredients with fat-like functions have been developed as fat alternatives in the food industry. Especially, so...

  14. The Effects of Session Length on Demand Functions Generated Using FR Schedules

    ERIC Educational Resources Information Center

    Foster, T. Mary; Kinloch, Jennifer; Poling, Alan

    2011-01-01

    In comparing open and closed economies, researchers often arrange shorter sessions under the former condition than under the latter. Several studies indicate that session length per se can affect performance and there are some data that indicate that this variable can influence demand functions. To provide further data, the present study exposed…

  15. A Study on Grid-Square Statistics Based Estimation of Regional Electricity Demand and Regional Potential Capacity of Distributed Generators

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Sugimoto, Hiroyuki; Suzuoki, Yasuo

    We established a procedure for estimating regional electricity demand and regional potential capacity of distributed generators (DGs) by using a grid square statistics data set. A photovoltaic power system (PV system) for residential use and a co-generation system (CGS) for both residential and commercial use were taken into account. As an example, the result regarding Aichi prefecture was presented in this paper. The statistical data of the number of households by family-type and the number of employees by business category for about 4000 grid-square with 1km × 1km area was used to estimate the floor space or the electricity demand distribution. The rooftop area available for installing PV systems was also estimated with the grid-square statistics data set. Considering the relation between a capacity of existing CGS and a scale-index of building where CGS is installed, the potential capacity of CGS was estimated for three business categories, i.e. hotel, hospital, store. In some regions, the potential capacity of PV systems was estimated to be about 10,000kW/km2, which corresponds to the density of the existing area with intensive installation of PV systems. Finally, we discussed the ratio of regional potential capacity of DGs to regional maximum electricity demand for deducing the appropriate capacity of DGs in the model of future electricity distribution system.

  16. Preschool Children's Conceptions about the Electric Current and the Functioning of Electric Appliances.

    ERIC Educational Resources Information Center

    Solomonidou, Christina; Kakana, Domna-Mika

    2000-01-01

    Examined 5- and 6-year-olds' ideas about the functioning of common electrical appliances and properties of electric current. Found that children represented current in a static way, thinking it was included in the appliance, and confounded electric current and water flow, believing external electricity was different from internal. They were…

  17. Analysis of the electricity demand of Greece for optimal planning of a large-scale hybrid renewable energy system

    NASA Astrophysics Data System (ADS)

    Tyralis, Hristos; Karakatsanis, Georgios; Tzouka, Katerina; Mamassis, Nikos

    2015-04-01

    The Greek electricity system is examined for the period 2002-2014. The demand load data are analysed at various time scales (hourly, daily, seasonal and annual) and they are related to the mean daily temperature and the gross domestic product (GDP) of Greece for the same time period. The prediction of energy demand, a product of the Greek Independent Power Transmission Operator, is also compared with the demand load. Interesting results about the change of the electricity demand scheme after the year 2010 are derived. This change is related to the decrease of the GDP, during the period 2010-2014. The results of the analysis will be used in the development of an energy forecasting system which will be a part of a framework for optimal planning of a large-scale hybrid renewable energy system in which hydropower plays the dominant role. Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  18. Travel and electricity demand analysis of potential US high-speed rail and maglev corridors. Final report

    SciTech Connect

    Vyas, A.D.; Pitstick, M.E.; Rote, D.M.; Johnson, L.R.; Bernard, M.J. III

    1994-01-01

    High-speed rail (HSR) and magnetically levitated (maglev) vehicles will provide an alternative mode of transportation for intercity travel, particularly for short and medium-length trips between 100 and 600 miles (160 to 960 kilometers). A significant portion of highway and air travel can potentially be diverted to such high-speed ground transportation (HSGT) systems. Also, electric utilities will have to meet the energy demands of these systems. Because these systems require significant investments and time to construct an extensive network, they need more time for analysis and planning. This study evaluates the patterns of growth for these systems and the factors affecting that growth for the year 2010 to determine the magnitude of intercity travel, the basis for HSGT use and electricity demand. To forecast the number and frequency of intercity trips, a methodology was developed that accounts for the travelers` socioeconomic status and the attractiveness of metropolitan areas. The study revealed that aggregate travel demand relied upon population growth, the employment status of the traveler, their household size, and income. Further, the study projects travel for 78 major metropolitan areas via air and highway, and identifies the 12 highest density corridors, describing the potential for HSGT systems to substitute some of that travel. In addition, the study estimates the energy demand and power requirements for a representative high-speed rail and maglev system for each corridor and the corridor connections.

  19. Co-optimization of Energy and Demand-Side Reserves in Day-Ahead Electricity Markets

    NASA Astrophysics Data System (ADS)

    Surender Reddy, S.; Abhyankar, A. R.; Bijwe, P. R.

    2015-04-01

    This paper presents a new multi-objective day-ahead market clearing (DAMC) mechanism with demand-side reserves/demand response (DR) offers, considering realistic voltage-dependent load modeling. The paper proposes objectives such as social welfare maximization (SWM) including demand-side reserves, and load served error (LSE) minimization. In this paper, energy and demand-side reserves are cleared simultaneously through co-optimization process. The paper clearly brings out the unsuitability of conventional SWM for DAMC in the presence of voltage-dependent loads, due to reduction of load served (LS). Under such circumstances multi-objective DAMC with DR offers is essential. Multi-objective Strength Pareto Evolutionary Algorithm 2+ (SPEA 2+) has been used to solve the optimization problem. The effectiveness of the proposed scheme is confirmed with results obtained from IEEE 30 bus system.

  20. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  1. The effects of session length on demand functions generated using FR schedules.

    PubMed

    Foster, T Mary; Kinloch, Jennifer; Poling, Alan

    2011-05-01

    In comparing open and closed economies, researchers often arrange shorter sessions under the former condition than under the latter. Several studies indicate that session length per se can affect performance and there are some data that indicate that this variable can influence demand functions. To provide further data, the present study exposed domestic hens to series of increasing fixed-ratio schedules with the length of the open-economy sessions varied over 10, 40, 60, and 120 min. Session time affected the total-session response rates and pause lengths. The shortest session gave the greatest response rates and shortest pauses and the longest gave the lowest response rates and longest pauses. The total-session demand functions also changed with session length: The shortest session gave steeper initial slopes (i.e., the functions were more elastic at small ratios) and smaller rates of change of elasticity than the longest session. Response rates, pauses, and demand functions were, however, similar for equivalent periods of responding taken from within sessions of different overall lengths (e.g., total-session data for 10-min sessions and the data for the first 10 min of 120-min sessions). These findings suggest that differences in session length can confound the results of studies comparing open and closed economies when those economies are arranged in sessions that differ substantially in length, hence data for equivalent-length periods of responding, rather than total-session data, should be of primary interest under these conditions. PMID:21547068

  2. The structure of demand for electricity in the Gulf Cooperation Council countries

    SciTech Connect

    Eltony, M.N.; Mohammad, Y.H.

    1993-12-31

    Electricity is a vital ingredient for the economic and social advancement of all developing nations. The members of Gulf Cooperation Council (GCC) offer no exception. The quantity of electricity consumed in these countries has grown consistently since the 1970s. If past trends are extrapolated to the year 2000, the electricity consumption at the turn of the century will be at least 10-fold the level prevailing the 1970s.

  3. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  4. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-01

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world. PMID:27385064

  5. Transcutaneous functional electrical stimulator "Compex Motion".

    PubMed

    Keller, Thierry; Popovic, Milos R; Pappas, Ion P I; Müller, Pierre-Yves

    2002-03-01

    Research groups in the field of functional electrical stimulation (FES) are often confronted with the fact that existing and commercially available FES stimulators do not provide sufficient flexibility and cannot be used to perform different FES tasks. The lack of flexibility of the commercial systems until now forced various FES research teams to develop their own stimulators. This paper presents a newly developed firmware and graphical programming software for the commercial Compex 2 stimulator which enhances the versatility and capabilities of the stimulator from a medical and therapeutic device to a neuroprosthesis and research tool. The new stimulator, called Compex Motion, can now be used to develop various custom-made neuroprostheses, neurological assessment devices, muscle exercise systems, and experimental setups for physiological studies. It can be programmed to generate any arbitrary stimulation sequence that can be controlled or regulated by various external sensors, sensory systems, or laboratory equipment. By interconnecting two or more Compex Motion stimulators, the number of stimulation channels can be increased to multiples of four channels, 8, 12, 16, 20, and so forth. The stimulation sequences and the control strategies are programmed and stored on exchangeable credit card-sized memory chip cards. The stimulator has four biphasic current-regulated stimulation channels and two general purpose analog input channels that can be configured to measure the output voltage of a variety of sensors such as goniometers, inclinometers, gyroscopes, or electromyographic (EMG) sensors. For real-time EMG control of the stimulation patterns, an EMG processing algorithm with software stimulation artifact blanking was implemented. The Compex Motion stimulator is manufactured by the Swiss company Compex SA and is currently undergoing clinical trials. PMID:11940017

  6. New controller for functional electrical stimulation systems.

    PubMed

    Fisekovic, N; Popovic, D B

    2001-07-01

    A novel, self-contained controller for functional electrical stimulation systems has been designed. The development was motivated by the need to have a general purpose, easy to use controller capable of stimulating many muscle groups, thus restoring complex motor functions (e.g. standing, walking, reaching, and grasping). The designed controller can regulate the frequency, pulse duration, and charge balance on up to 16 channels, and execute pre-programmed and sensory-driven control operations. The controller supports up to eight analog and six digital sensors, and comprises a memory block for including history of the sensory data (time series). Five independent timers provide the basis for the multi-modal and multi-level control of movement. The PC compatible interface is realised via an IR serial communication channel. The PC based software is user friendly and fully menu driven. This paper also presents a case study where the controller was implemented to restore walking in a paraplegic subject. The assistive system comprised the novel controller, the power and output stages of an eight-channel FES system (IEEE Trans Rehabil Eng, TRE-2 (1994) 234), ankle-foot orthoses, and a rolling walker. Stimulation was applied with surface electrodes positioned over the motoneurons that innervate muscles responsible for the hip and knee flexion and extension. The sensory system included goniometers at knee and hip joints, force-sensing resistors built in the shoe insoles, and digital accelerometers at the hips. A rule-based control algorithm was generated following a two-step procedure: (1) simulation and (2) machine learning as described in earlier studies (IEEE Trans Rehab Eng, TRE-7 (1999) 69). The paraplegic subject walked faster, and with less physiological effort, when automatic control was applied as compared to hand-control. This case study, as well as a previous one for assisting grasping (The design and testing of a new programmable electronic stimulator. N

  7. Electric Demand Reduction for the U.S. Navy Public Works Center San Diego, California

    SciTech Connect

    Kintner-Meyer, Michael CW

    2000-09-30

    Pacific Northwest National Laboratory investigated the profitability of operating a Navy ship's generators (in San Diego) during high electricity price periods rather than the ships hooking up to the Base electrical system for power. Profitability is predicated on the trade-off between the operating and maintenance cost incurred by the Navy for operating the ship generators and the net profit associated with the sale of the electric power on the spot market. In addition, PNNL assessed the use of the ship's generators as a means to achieve predicted load curtailments, which can then be marketed to the California Independent System Operator.

  8. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy

  9. New econometric approach to modelling peak load pricing policies: the case of electricity demand by large industrial customers

    SciTech Connect

    Jazayeri, A.A.

    1984-01-01

    This study relates the kWh consumption and the maximum instantaneous demand through a reasonable and simple inequity based on the property of the load curve. The model of analysis includes this inequality and two equations relating the kWh consumption and kW demand to their respective prices. The error term in the first equation is assumed to be normally distributed, and the error term in the second equation is assumed to have an asymptotic distribution similar to that of the largest extremes. Relating the two equations through the inequality necessitates the formation of the convolution of the normal and the extreme value distributions. Such a distribution is formed and the maximum-likelihood estimation technique along with methods of numerical analysis are utilized to estimate the parameters of this system of equations. In addition, the method of estimation is applied to time-of-use electricity pricing which preserve the basic structure of Hopkinson rate, introduction of demand and energy charges, and allows application of distinct demand and energy charges to different periods of the day or season.

  10. Meniscus height as a function of dimensionless variables for drop-on-demand applications

    NASA Astrophysics Data System (ADS)

    Hyun, Choi Kyung; Mehdi, Syed Murtuza

    2013-05-01

    This paper reports experimental correlations for the dimensionless meniscus height ( h/D) as a function of the dimensionless variables that govern the physics of meniscus generation for drop-on-demand applications. Two liquids were considered in this study: namely, ethylene glycol and ethanol. These liquids were selected because of their wide applicability in drop-on-demand applications. The dimensionless governing variables were found by performing a dimensional analysis of the system under consideration. The dimensionless meniscus height ( h/D) was found to depend on two dimensionless numbers: the S number ( S = σ/ρD 2 g) and the P number ( P = p abs / ρDg). The behaviors of h/D for both the liquids were found to increase with increasing variables of interest and are discussed in terms of correlations.

  11. Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)

    SciTech Connect

    Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

    2010-06-01

    This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

  12. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program

    SciTech Connect

    Pratt, R.G.; Ross, B.A.

    1991-11-01

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  13. Long-term power generation expansion planning with short-term demand response: Model, algorithms, implementation, and electricity policies

    NASA Astrophysics Data System (ADS)

    Lohmann, Timo

    Electric sector models are powerful tools that guide policy makers and stakeholders. Long-term power generation expansion planning models are a prominent example and determine a capacity expansion for an existing power system over a long planning horizon. With the changes in the power industry away from monopolies and regulation, the focus of these models has shifted to competing electric companies maximizing their profit in a deregulated electricity market. In recent years, consumers have started to participate in demand response programs, actively influencing electricity load and price in the power system. We introduce a model that features investment and retirement decisions over a long planning horizon of more than 20 years, as well as an hourly representation of day-ahead electricity markets in which sellers of electricity face buyers. This combination makes our model both unique and challenging to solve. Decomposition algorithms, and especially Benders decomposition, can exploit the model structure. We present a novel method that can be seen as an alternative to generalized Benders decomposition and relies on dynamic linear overestimation. We prove its finite convergence and present computational results, demonstrating its superiority over traditional approaches. In certain special cases of our model, all necessary solution values in the decomposition algorithms can be directly calculated and solving mathematical programming problems becomes entirely obsolete. This leads to highly efficient algorithms that drastically outperform their programming problem-based counterparts. Furthermore, we discuss the implementation of all tailored algorithms and the challenges from a modeling software developer's standpoint, providing an insider's look into the modeling language GAMS. Finally, we apply our model to the Texas power system and design two electricity policies motivated by the U.S. Environment Protection Agency's recently proposed CO2 emissions targets for the

  14. Pedotransfer functions in soil electrical resistivity estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface electrical resistivity tomography (ERT) is recognized as a powerful non-invasive soil survey and monitoring method. Relationships between ER and soil water contents that are needed to infer the spatial distribution of soil moisture from the ERT results, are known to reflect soil properties. ...

  15. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  16. Demands For Solar Electricity From The BRICS Countries In The Future

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2015-12-01

    BRICS countries are presently among the leading the economic powers globally, but their increasing demands for energy and sustainable future requires renewed technical progress on implementation of renewable energy (e.g., solar energy) and a sustainable solution rather than extracting finite natural resources. BRICS countries (Brazil, Russia, India, China and South Africa) face both social and environmental pressures as their economy keeps growing. The rapid development of technology in BRICS inevitably altered their culture and behavior, as reflected by education, gender equality, health, and other demographic/socio-economic indicators. These changes coupled with land use/land cover change have altered ecosystem services, as reflected by NEE (Net Ecosystem Exchange of CO2) and NDVI (Normalized Difference Vegetation Index). Global climatic changes also drives the demand for sustainable energy. With a focus on solar energy, we analyzed time series of energy consuming behaviors, government policies, and the ecosystem services. Structural equation modeling was applied to confirm the relationships among societal transition, ecosystem services, and climate change. We compared the energy consumption patterns for the five countries and forecasted the changes through 2025. We found that government policies significantly influenced energy consumption behaviors for BRICS and that solar energy usage would continue to increase to 2025 and beyond.

  17. A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework

    PubMed Central

    Hernández, Luis; Baladrón, Carlos; Aguiar, Javier M.; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Cook, Diane J.; Chinarro, David; Gómez, Jorge

    2012-01-01

    One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.

  18. Functional morphology of the muscular sling at the pectoral girdle in tree sloths: convergent morphological solutions to new functional demands?

    PubMed

    Nyakatura, John A; Fischer, Martin S

    2011-09-01

    Recent phylogenetic analyses imply a diphyly of tree sloths and a convergent evolution of their obligatory suspensory locomotion. In mammals the extrinsic shoulder musculature forms a 'muscular sling' to support the trunk in quadrupedal postures. In addition, the extrinsic pectoral muscles are responsible for moving the proximal forelimb elements during locomotion. Due to the inverse orientation of the body in regard to the gravitational force, the muscular sling as configured as in pronograde mammals is unsuited to suspend the weight of the thorax in sloths. We here review the muscular topography of the shoulder in Choloepus didactylus and Bradypus variegatus in the light of presumably convergent evolution to adapt to the altered functional demands of the inverse orientation of the body. In addition, we venture to deduce the effect of the shoulder musculature of C. didactylus during locomotion based on previously published 3D kinematic data. Finally, we assess likely convergences in the muscular topography of both extant sloth lineages to test the hypothesis that convergent evolution is reflected by differing morphological solutions to the same functional demands posed by the suspensory posture. Muscular topography of the shoulder in C. didactylus is altered from the plesiomorphic condition of pronograde mammals, whereas the shoulder in B. variegatus more closely resembles the general pattern. Overall kinematics as well as the muscles suitable for pro- and retraction of the forelimb were found to be largely comparable to pronograde mammals in C. didactylus. We conclude that most of the peculiar topography of extrinsic forelimb musculature can be attributed to the inverse orientation of the body. These characteristics are often similar in both genera, but we also identified different morphological solutions that evolved to satisfy the new functional demands and are indicative of convergent evolution. We suggest that the shared phylogenetic heritage canalized

  19. Multi-tasking of biosynthetic and energetic functions of glycolysis explained by supply and demand logic.

    PubMed

    van Heerden, Johan H; Bruggeman, Frank J; Teusink, Bas

    2015-01-01

    After more than a century of research on glycolysis, we have detailed descriptions of its molecular organization, but despite this wealth of knowledge, linking the enzyme properties to metabolic pathway behavior remains challenging. These challenges arise from multi-layered regulation and the context and time dependence of component functions. However, when viewed as a system that functions according to the principles of supply and demand, a simplifying theoretical framework can be applied to study its regulation logic and to assess the coherence of experimental interpretations. These principles are universally applicable, as they emphasize the common metabolic tasks of glycolysis: the provision of free-energy carriers, and precursors for biosynthesis and stress-related compounds. Here we will review the regulation of multi-tasking by glycolysis and consider how an understanding of this central metabolic pathway can be pursued using general principles, rather than focusing on the biochemical details of constituent components. PMID:25350875

  20. The framework of weighted subset-hood Mamdani fuzzy rule based system rule extraction (MFRBS-WSBA) for forecasting electricity load demand

    NASA Astrophysics Data System (ADS)

    Mansor, Rosnalini; Kasim, Maznah Mat; Othman, Mahmod

    2016-08-01

    Fuzzy rules are very important elements that should be taken consideration seriously when applying any fuzzy system. This paper proposes the framework of Mamdani Fuzzy Rule-based System with Weighted Subset-hood Based Algorithm (MFRBS-WSBA) in the fuzzy rule extraction for electricity load demand forecasting. The framework consist of six main steps: (1) Data Collection and Selection; (2) Preprocessing Data; (3) Variables Selection; (4) Fuzzy Model; (5) Comparison with Other FIS and (6) Performance Evaluation. The objective of this paper is to show the fourth step in the framework which applied the new electricity load forecasting rule extraction by WSBA method. Electricity load demand in Malaysia data is used as numerical data in this framework. These preliminary results show that the WSBA method can be one of alternative methods to extract fuzzy rules for forecast electricity load demand

  1. Quantification of cardiovascular disease biomarkers via functionalized magnetic beads and on-demand detachable quantum dots.

    PubMed

    Park, Hoyoung; Lee, Jong-Wook; Hwang, Mintai P; Lee, Kwan Hyi

    2013-09-21

    Cardiovascular disease (CVD) is a potent cause of mortality in both advanced and developing countries. While soluble CD40L (sCD40L) has been implicated as a correlative factor among CVD patients, methods to quantify sCD40L are not yet well-established. In this paper, we present an ability to separate and quantify sCD40L via a simple immunomagnetic assay. Composed of functionalized magnetic beads conferred with directionality and on-demand detachable quantum dots for subsequent optical analysis, our system utilizes the competitive nature of imidazole and nickel ions for histidine. In essence, we demonstrate the capacity to effectively separate and detect sCD40L within a clinically relevant range that contains the cut-off value for acute coronary disease. While sCD40L was used to conduct this study, we envision the use of our system for the separation and quantification of other biomarkers. PMID:23893124

  2. Quantification of cardiovascular disease biomarkers via functionalized magnetic beads and on-demand detachable quantum dots

    NASA Astrophysics Data System (ADS)

    Park, Hoyoung; Lee, Jong-Wook; Hwang, Mintai P.; Lee, Kwan Hyi

    2013-08-01

    Cardiovascular disease (CVD) is a potent cause of mortality in both advanced and developing countries. While soluble CD40L (sCD40L) has been implicated as a correlative factor among CVD patients, methods to quantify sCD40L are not yet well-established. In this paper, we present an ability to separate and quantify sCD40L via a simple immunomagnetic assay. Composed of functionalized magnetic beads conferred with directionality and on-demand detachable quantum dots for subsequent optical analysis, our system utilizes the competitive nature of imidazole and nickel ions for histidine. In essence, we demonstrate the capacity to effectively separate and detect sCD40L within a clinically relevant range that contains the cut-off value for acute coronary disease. While sCD40L was used to conduct this study, we envision the use of our system for the separation and quantification of other biomarkers.

  3. Electric fields are novel determinants of human macrophage functions.

    PubMed

    Hoare, Joseph I; Rajnicek, Ann M; McCaig, Colin D; Barker, Robert N; Wilson, Heather M

    2016-06-01

    Macrophages are key cells in inflammation and repair, and their activity requires close regulation. The characterization of cues coordinating macrophage function has focused on biologic and soluble mediators, with little known about their responses to physical stimuli, such as the electrical fields that are generated naturally in injured tissue and which accelerate wound healing. To address this gap in understanding, we tested how properties of human monocyte-derived macrophages are regulated by applied electrical fields, similar in strengths to those established naturally. With the use of live-cell video microscopy, we show that macrophage migration is directed anodally by electrical fields as low as 5 mV/mm and is electrical field strength dependent, with effects peaking ∼300 mV/mm. Monocytes, as macrophage precursors, migrate in the opposite, cathodal direction. Strikingly, we show for the first time that electrical fields significantly enhance macrophage phagocytic uptake of a variety of targets, including carboxylate beads, apoptotic neutrophils, and the nominal opportunist pathogen Candida albicans, which engage different classes of surface receptors. These electrical field-induced functional changes are accompanied by clustering of phagocytic receptors, enhanced PI3K and ERK activation, mobilization of intracellular calcium, and actin polarization. Electrical fields also modulate cytokine production selectively and can augment some effects of conventional polarizing stimuli on cytokine secretion. Taken together, electrical signals have been identified as major contributors to the coordination and regulation of important human macrophage functions, including those essential for microbial clearance and healing. Our results open up a new area of research into effects of naturally occurring and clinically applied electrical fields in conditions where macrophage activity is critical. PMID:26718542

  4. Functional electrical therapy for hemiparesis alleviates disability and enhances neuroplasticity.

    PubMed

    Tarkka, Ina M; Pitkänen, Kauko; Popovic, Dejan B; Vanninen, Ritva; Könönen, Mervi

    2011-01-01

    Impaired motor and sensory function is common in the upper limb in humans after cerebrovascular stroke and it often remains as a permanent disability. Functional electrical stimulation therapy is known to enhance the motor function of the paretic hand; however, the mechanism of this enhancement is not known. We studied whether neural plasticity has a role in this therapy-induced enhancement of the hand motor function in 20 hemiparetic subjects with chronic stroke (age 53 ± 6 years; 7 females and 13 males; 10 with cerebral infarction and 10 with cerebral haemorrhage; and time since incident 2.4 ± 2.0 years). These subjects were randomized to functional electrical therapy or conventional physiotherapy group. Both groups received upper limb treatment (twice daily sessions) for two weeks. Behavioral hand motor function and neurophysiologic transcranial magnetic stimulation (TMS) tests were applied before and after the treatment and at 6-months follow-up. TMS is useful in assessing excitability changes in the primary motor cortex. Faster corticospinal conduction and newly found muscular responses were observed in the paretic upper limb in the functional electrical therapy group but not in the conventional therapy group after the intervention. Behaviourally, faster movement times were observed in the functional electrical therapy group but not in the conventionally treated group. Despite the small number of heterogeneous subjects, functional exercise augmented with individualized electrical therapy of the paretic upper limb may enhance neuroplasticity, observed as corticospinal facilitation, in chronic stroke subjects, along with moderate improvements in the voluntary motor control of the affected limb. PMID:21878747

  5. On-demand doping of graphene by stamping with a chemically functionalized rubber lens.

    PubMed

    Choi, Yongsuk; Sun, Qijun; Hwang, Euyheon; Lee, Youngbin; Lee, Seungwoo; Cho, Jeong Ho

    2015-04-28

    A customized graphene doping method was developed involving stamping using a chemically functionalized rubber lens as a novel design strategy for fabricating advanced two-dimensional (2D) materials-based electronic devices. Our stamping strategy enables deterministic control over the doping level and the spatial pattern of the doping on graphene. The dopants introduced onto graphene were locally and continuously controlled by directly stamping dopants using a chemically functionalized hemispherical rubber lens onto the graphene. The rubber lens was functionalized using two different dopants: poly(ethylene imine) to achieve n-type doping and bis(trifluoromethanesulfonyl)amine to achieve p-type doping. The graphene doping was systematically controlled by varying both the contact area (between the rubber lens and the graphene) and the contact time. Graphene doping using a stamp with a chemically functionalized rubber lens was confirmed by both Raman spectroscopy and charge transport measurements. We theoretically modeled the conductance properties of the spatially doped graphene using the effective medium theory and found excellent agreement with the experimental results. Finally, complementary inverters were successfully demonstrated by connecting n-type and p-type graphene transistors fabricated using the stamping doping method. We believe that this versatile doping method for controlling charge transport in graphene will further promote graphene electronic device applications. The doping method introduced in this paper may also be applied to other emergent 2D materials to tightly modulate the electrical properties in advanced electronic devices. PMID:25817481

  6. Development of the Optimum Operation Scheduling Model of Domestic Electric Appliances for the Supply-Demand Adjustment in a Power System

    NASA Astrophysics Data System (ADS)

    Ikegami, Takashi; Iwafune, Yumiko; Ogimoto, Kazuhiko

    The high penetration of variable renewable generation such as Photovoltaic (PV) systems will cause the issue of supply-demand imbalance in a whole power system. The activation of the residential power usage, storage and generation by sophisticated scheduling and control using the Home Energy Management System (HEMS) will be needed to balance power supply and demand in the near future. In order to evaluate the applicability of the HEMS as a distributed controller for local and system-wide supply-demand balances, we developed an optimum operation scheduling model of domestic electric appliances using the mixed integer linear programming. Applying this model to several houses with dynamic electricity prices reflecting the power balance of the total power system, it was found that the adequate changes in electricity prices bring about the shift of residential power usages to control the amount of the reverse power flow due to excess PV generation.

  7. Demands of Social Change as a Function of the Political Context, Institutional Filters, and Psychosocial Resources

    ERIC Educational Resources Information Center

    Tomasik, Martin J.; Silbereisen, Rainer K.

    2009-01-01

    Individually experienced demands of current social change in the domains of work and family were assessed in a large sample of adults from two Western and two Eastern federal states of Germany. For each domain of life, a cumulated index was computed representing the load with highly endorsed demands and this was compared across political regions,…

  8. Nonlinear Cournot oligopoly games with isoelastic demand function: The effects of different behavior rules

    NASA Astrophysics Data System (ADS)

    Gao, Xing; Zhong, Weijun; Mei, Shue

    2012-12-01

    The analysis of asymptotical convergence for the oligopoly game has always been important to characterize the firms' long-term behavior. In the nonlinear oligopoly competition possibly involving chaotic fluctuations, non-convergent trajectories are particularly undesirable since the resulting behavior will become unpredictable. In this paper, consistent with a traditional assumption that the firms update their outputs simultaneously, we at first construct an adjustment process and discuss the convergence to the equilibrium for a nonlinear Cournot duopoly game with the isoelastic demand function. We indicate that the tendency to instability does rise with the number of firms and the adjustment speeds. In particular, we alter this assumption from simultaneous decisions to sequential decisions so that the latter firms are able to observe the former ones at every time periods. We finally arrive at a conclusion that the unique equilibrium is convergent as long as the adjustment speeds are less than a fixed threshold, no matter what the number of the firms. Our findings show that the firms with sequential decisions can achieve the equilibrium more easily.

  9. Short-run and long-run elasticities of electricity demand in the public sector: A case study of the United States Navy bases

    NASA Astrophysics Data System (ADS)

    Choi, Jino

    Numerous studies have examined the elasticities of electricity demand---residential as well as commercial and industrial---in the private sector. However, no one appears to have examined the behavior of the public sector demand. This study aims to fill that gap and to provide insights into the electricity demand in the public sector, using the U.S. Navy bases as a case study. This study examines electricity demand data of 38 Navy activities within the United States for a 16-year time period from 1985 through 2000. The Navy maintains a highly diverse shore infrastructure to conduct its mission and to support the fleet. The types of shore facilities include shipyards, air stations, aviation depots, hospital, and many others. These Navy activities are analogous to commercial or industrial organizations in the private sector. In this study, I used a number of analytical approaches to estimate short-run and long-run elasticities of electricity demand. Estimation using pooled data was rejected because it failed the test for homogeneity. Estimation using the time series data of each Navy activity had several wrong signs for coefficients. The Stein-rule estimator did not differ significantly from the separate cross-section estimates because of the strong rejection of the homogeneity assumption. The iterative Bayesian shrinkage estimator provided the most reasonable results. The empirical findings from this study are as follows. First, the Navy's electricity demand is price elastic. Second, the price elasticities appear to be lower than those of the private sector. The short-run price elasticities for the Navy activities ranged from -0.083 to -0.157. The long-run price elasticities ranged from -0.151 to -0.769.

  10. Demand response-enabled model predictive HVAC load control in buildings using real-time electricity pricing

    NASA Astrophysics Data System (ADS)

    Avci, Mesut

    A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.

  11. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  12. The Impact of Hybrid Electric Vehicles Incentives on Demand and the Determinants of Hybrid-Vehicle Adoption

    NASA Astrophysics Data System (ADS)

    Riggieri, Alison

    According to the Energy Information Administration, transportation currently accounts for over 60% of U.S. oil demand (E.I.A. 2010). Improving automobile energy efficiency could therefore reduce oil consumption and the negative environmental effects of automobile use. Subsidies for energy-efficient technologies such as hybrid-electric vehicles have gained political popularity since their introduction into the market and therefore have been implemented with increasing frequency. After the introduction of hybrid-electric vehicles into the U.S. market, the federal government initially implemented a 2000 federal tax deduction for these vehicles (later increased to a 3500 credit). Many states followed, offering various exemptions, such as high-occupancy vehicle (HOV) lane use, and excise-tax, sales-tax, and income-tax exemptions. Because not all states have implemented these subsidies, this policy topic is an ideal candidate for an outcome evaluation using an observational study postulation. States adopt incentives for different reasons based on factors that make adoption more attractive, however, so it is first necessary to identify these differences that predict policy adoption. This allows for the evaluative work to control for self selection bias. Three classes of internal determinants of policy adoption, political context, problem severity, and institutional support, and one type of external diffusion factor, are tested using logistic regression. Results suggest that the number of neighboring states that have already adopted incentives are consistently a determinant of diffusion for all three types of incentives test, HOV lane exemptions, sales-tax exemptions, and income-tax exemptions. In terms of internal factors, constituent support, a type of political context, predicts, sale-tax, income-tax, and HOV lane exemptions, but that the other two classes of determinants, problem severity and institutional support, were not universally significant across types of

  13. Price elasticity reconsidered: Panel estimation of an agricultural water demand function

    NASA Astrophysics Data System (ADS)

    Schoengold, Karina; Sunding, David L.; Moreno, Georgina

    2006-09-01

    Using panel data from a period of water rate reform, this paper estimates the price elasticity of irrigation water demand. Price elasticity is decomposed into the direct effect of water management and the indirect effect of water price on choice of output and irrigation technology. The model is estimated using an instrumental variables strategy to account for the endogeneity of technology and output choices in the water demand equation. Estimation results indicate that the price elasticity of agricultural water demand is -0.79, which is greater than that found in previous studies.

  14. Functionally Graded Interfaces: Role and Origin of Internal Electric Field and Modulated Electrical Response.

    PubMed

    Maurya, Deepam; Zhou, Yuan; Chen, Bo; Kang, Min-Gyu; Nguyen, Peter; Hudait, Mantu K; Priya, Shashank

    2015-10-14

    We report the tunable electrical response in functionally graded interfaces in lead-free ferroelectric thin films. Multilayer thin film graded heterostructures were synthesized on platinized silicon substrate with oxide layers of varying thickness. Interestingly, the graded heterostructure thin films exhibited shift of the hysteresis loops on electric field and polarization axes depending upon the direction of an applied bias. A diode-like characteristics was observed in current-voltage behavior under forward and reverse bias. This modulated electrical behavior was attributed to the perturbed dynamics of charge carriers under internal bias (self-bias) generated due to the increased skewness of the potential wells. The cyclic sweeping of voltage further demonstrated memristor-like current-voltage behavior in functionally graded heterostructure devices. The presence of an internal bias assisted the generation of photocurrent by facilitating the separation of photogenerated charges. These novel findings provide opportunity to design new circuit components for the next generation of microelectronic device architectures. PMID:26378954

  15. A programmable system of functional electrical stimulation (FES).

    PubMed

    Velloso, J B; Souza, M N

    2007-01-01

    The development of a novel system intended to perform functional electrical stimulation (FES) is presented. A virtual instrument developed in Labview communicates with a PC through USB and controls the hardware compound of analog and digital circuits. The block diagram of the hardware and the main characteristics of the virtual instrument are presented, as well the results of the electrical safety tests and the errors associated to the programmed and real values of the amplitude, pulse width and frequency of the output current. The results point the equipment can be used in the therapy of paraplegic patients maintaining safety limits reported in the literature. PMID:18002435

  16. High-resolution temperature fields to evaluate the response of Italian electricity demand to meteorological variables: an example of climate service for the energy sector

    NASA Astrophysics Data System (ADS)

    Scapin, Simone; Apadula, Francesco; Brunetti, Michele; Maugeri, Maurizio

    2016-08-01

    The dependence of Italian daily electricity demand on cooling degree-days, heating degree-days and solar radiation is investigated by means of a regression model applied to 12 consecutive 2-year intervals in the 1990-2013 period. The cooling and heating degree-days records used in the model are obtained by (i) estimating, by means of a network of 92 synoptic stations and high-resolution gridded temperature climatologies, a daily effective temperature record for all urbanised grid points of a high-resolution grid covering Italy; (ii) using these records to calculate corresponding grid point degree-days records; and (iii) averaging them to get national degree-days records representative of urban areas. The solar radiation record is obtained with the same averaging approach, with grid point solar radiation estimated from the corresponding daily temperature range. The model is based on deterministic components related to the weekly cyclical pattern of demand and to long-term demand changes and on weather-sensitive components related to cooling degree-days, heating degree-days and solar radiation. It establishes a strong contribution of cooling degree-days to the Italian electricity demand, with values peaking in summer months of the latest years up to 211 GWh day-1 (i.e. about 23 % of the corresponding average Italian electricity demand). This contribution shows a strong positive trend in the period considered here: the coefficient of the cooling degree-days term in the regression models increases from the first 2-year period (1990-1991) to the last one (2012-2013) by a factor 3.5, which is much greater than the increase of the Italian total electricity demand.

  17. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    SciTech Connect

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  18. Erratum to: Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison

    SciTech Connect

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-07-07

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet fewer studies have explored the physical impacts of climate change on the power sector. The present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  19. Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison

    SciTech Connect

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet fewer studies have explored the physical impacts of climate change on the power sector. The present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  20. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    DOE PAGESBeta

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; et al

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less

  1. Dielectronic recombination as a function of electric field strength

    NASA Technical Reports Server (NTRS)

    Reisenfeld, Daniel B.

    1992-01-01

    Dielectronic recombination (DR) is the dominant recombination mechanism at coronal temperatures and densities. We present a procedure for calculating DR rate coefficients as a function of electric field strength and apply this method to carbon ions. We focus on the competing effects of enhancement by plasma microfields and rate decrease through collisional excitation and ionization. We find that, in the case of C(3+), a significant rate enhancement results, leading to a reinterpretation of C IV emission-line intensities in the sun and late-type stars. We further consider how macroscopic electric fields, in particular motional electric fields, can affect DR rate coefficients, demonstrating dramatic rate increases for a number of the carbon ions.

  2. Comparison of energy consumption and demand of earth-coupled heat pumps and electric resistance heaters in a residential multifamily application. Final report

    SciTech Connect

    Rizzuto, J.E.

    1992-12-01

    CES WAY, in cooperation with the management of Regency Park Apartments, initiated a program to explore the potential energy and demand savings associated with converting apartment buildings from electric resistance heating to earth-coupled heat pumps at Regency Park, a 550-unit apartment complex in Guilderland, NY, serviced by Niagara Mohawk Power Corporation. The demonstration involved monitoring and comparing electrical consumption (kWh) and demand (kW) in three apartments in three buildings. ECHPs were installed in the three apartments in one building. The six apartments in the other two buildings retained the original electric resistance heating and central air conditioning systems. CES WAY and Regency Park asked the Energy Authority to do the evaluation.

  3. Noninvasive functional cardiac electrical source imaging: combining MRI and ECG mapping for imaging electrical function

    NASA Astrophysics Data System (ADS)

    Tilg, Bernhard; Modre, Robert; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Roithinger, Franz

    2002-04-01

    Inverse electrocardiography has been developing for several years. By coupling electrocardiographic mapping and 3D+time anatomical data, the electrical excitation sequence can be imaged completely noninvasively in the human heart. In this study, a bidomain theory based surface heart model activation time imaging approach was applied to single beat data of atrial and ventricular depolarization. For sinus and paced rhythms, the sites of early activation and the areas with late activation were estimated with sufficient accuracy. In particular for focal arrhythmias, this model-based imaging approach might allow the guidance and evaluation of antiarrhythmic interventions, for instance, in case of catheter ablation or drug therapy.

  4. Using climate response functions in analyzing electricity production variables. A case study from Norway.

    NASA Astrophysics Data System (ADS)

    Tøfte, Lena S.; Martino, Sara; Mo, Birger

    2016-04-01

    representation of hydropower is included and total hydro power production for each area is calculated, and the production is distributed among all available plants within each area. During simulation, the demand is affected by prices and temperatures. 6 different infrastructure scenarios of wind and power line development are analyzed. The analyses are done by running EMPS calibrated for today's situation for 11*11*8 different combinations of altered weather variables (temperature, precipitation and wind) describing different climate change scenarios, finding the climate response function for every EMPS-variable according the electricity production, such as prices and income, energy balances (supply, consumption and trade), overflow losses, probability of curtailment etc .

  5. Role of Functional Electrical Stimulation in Tetraplegia Hand Surgery.

    PubMed

    Bersch, Ines; Fridén, Jan

    2016-06-01

    The use of functional electrical stimulation (FES) to improve upper limb function is an established method in the rehabilitation of persons with tetraplegia after spinal cord injury. Surgical reconstruction is another well-established yet underused technique to improve the performance of the upper extremities. Hand surgery plays an essential role in restoring hand function, mobility, and quality of life in the tetraplegic population. The knowledge about the effects of FES on a structural and functional level is fundamental for understanding how and when FES can be used best to support the effect of hand surgery, both pre- and postoperatively. In this article we discuss principles of FES and how FES improves functional outcome after surgical reconstruction. The reported results are based on preliminary clinical observations. PMID:27233590

  6. Molecular electric moments calculated by using natural orbital functional theory.

    PubMed

    Mitxelena, Ion; Piris, Mario

    2016-05-28

    The molecular electric dipole, quadrupole, and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-ζ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles and multi-reference single and double excitation configuration interaction methods. PMID:27250280

  7. Molecular electric moments calculated by using natural orbital functional theory

    NASA Astrophysics Data System (ADS)

    Mitxelena, Ion; Piris, Mario

    2016-05-01

    The molecular electric dipole, quadrupole, and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-ζ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles and multi-reference single and double excitation configuration interaction methods.

  8. A High-Resolution Spatially Explicit Monte-Carlo Simulation Approach to Commercial and Residential Electricity and Water Demand Modeling

    SciTech Connect

    Morton, April M; McManamay, Ryan A; Nagle, Nicholas N; Piburn, Jesse O; Stewart, Robert N; Surendran Nair, Sujithkumar

    2016-01-01

    Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may therefore not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  9. Estimating functional connectivity in an electrically coupled interneuron network

    PubMed Central

    Alcami, Pepe; Marty, Alain

    2013-01-01

    Even though it has been known for some time that in many mammalian brain areas interneurons are electrically coupled, a quantitative description of the network electrical connectivity and its impact on cellular passive properties is still lacking. Approaches used so far to solve this problem are limited because they do not readily distinguish junctions among direct neighbors from indirect junctions involving intermediary, multiply connected cells. In the cerebellar cortex, anatomical and functional evidence indicates electrical coupling between molecular layer interneurons (basket and stellate cells). An analysis of the capacitive currents obtained under voltage clamp in molecular layer interneurons of juvenile rats or mice reveals an exponential component with a time constant of ∼20 ms, which represents capacitive loading of neighboring cells through gap junctions. These results, taken together with dual cell recording of electrical synapses, have led us to estimate the number of direct neighbors to be ∼4 for rat basket cells and ∼1 for rat stellate cells. The weighted number of neighbors (number of neighbors, both direct and indirect, weighted with the percentage of voltage deflection at steady state) was 1.69 in basket cells and 0.23 in stellate cells. The last numbers indicate the spread of potential changes in the network and serve to estimate the contribution of gap junctions to cellular input conductance. In conclusion the present work offers effective tools to analyze the connectivity of electrically connected interneuron networks, and it indicates that in juvenile rodents, electrical communication is stronger among basket cells than among stellate cells. PMID:24248377

  10. Electricity decision-making: New techniques for calculating statewide economic impacts from new power supply and demand-side management programs

    NASA Astrophysics Data System (ADS)

    Tegen, Suzanne Isabel Helmholz

    This dissertation introduces new techniques for calculating and comparing statewide economic impacts from new coal, natural gas and wind power plants, as well as from demand-side management programs. The impetus for this work was two-fold. First, reviews of current literature and projects revealed that there was no standard way to estimate statewide economic impacts from new supply- and demand-side electricity options. Second, decision-makers who were interviewed stated that they were overwhelmed with data in general, but also lacked enough specific information about economic development impacts to their states from electricity, to make informed choices. This dissertation includes chapters on electricity decision-making and on economic impacts from supply and demand. The supply chapter compares different electricity options in three states which vary in natural resource content: Arizona, Colorado and Michigan. To account for differing capacity factors, resources are compared on a per-megawatt-hour basis. The calculations of economic impacts from new supply include: materials and labor for construction, operations, maintenance, fuel extraction, fuel transport, as well as property tax, financing and landowner revenues. The demand-side chapter compares residential, commercial and industrial programs in Iowa. Impact calculations include: incremental labor and materials for program planning, installation and operations, as well as sales taxes and electricity saved. Results from supply-side calculations in the three states analyzed indicate that adding new wind power can have a greater impact to a state's economy than adding new gas or coal power due to resource location, taxes and infrastructure. Additionally, demand-side management programs have a higher relative percentage of in-state dollar flow than supply-side solutions, though demand-side programs typically involve fewer MWh and dollars than supply-side generation. Methods for this dissertation include researching

  11. The Impact of Hybrid Electric Vehicles Incentives on Demand and the Determinants of Hybrid-Vehicle Adoption

    NASA Astrophysics Data System (ADS)

    Riggieri, Alison

    According to the Energy Information Administration, transportation currently accounts for over 60% of U.S. oil demand (E.I.A. 2010). Improving automobile energy efficiency could therefore reduce oil consumption and the negative environmental effects of automobile use. Subsidies for energy-efficient technologies such as hybrid-electric vehicles have gained political popularity since their introduction into the market and therefore have been implemented with increasing frequency. After the introduction of hybrid-electric vehicles into the U.S. market, the federal government initially implemented a 2000 federal tax deduction for these vehicles (later increased to a 3500 credit). Many states followed, offering various exemptions, such as high-occupancy vehicle (HOV) lane use, and excise-tax, sales-tax, and income-tax exemptions. Because not all states have implemented these subsidies, this policy topic is an ideal candidate for an outcome evaluation using an observational study postulation. States adopt incentives for different reasons based on factors that make adoption more attractive, however, so it is first necessary to identify these differences that predict policy adoption. This allows for the evaluative work to control for self selection bias. Three classes of internal determinants of policy adoption, political context, problem severity, and institutional support, and one type of external diffusion factor, are tested using logistic regression. Results suggest that the number of neighboring states that have already adopted incentives are consistently a determinant of diffusion for all three types of incentives test, HOV lane exemptions, sales-tax exemptions, and income-tax exemptions. In terms of internal factors, constituent support, a type of political context, predicts, sale-tax, income-tax, and HOV lane exemptions, but that the other two classes of determinants, problem severity and institutional support, were not universally significant across types of

  12. Assessment of Neuromuscular Function Using Percutaneous Electrical Nerve Stimulation.

    PubMed

    Rozand, Vianney; Grosprêtre, Sidney; Stapley, Paul J; Lepers, Romuald

    2015-01-01

    Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise. PMID:26436986

  13. The body electric: a long view of electrical therapy for functional neurological disorders.

    PubMed

    McWhirter, Laura; Carson, Alan; Stone, Jon

    2015-04-01

    The use of electricity in medical treatment has always been technology-driven, rather than aetiology-driven; as new techniques have appeared, clinicians have quickly looked to try them in the treatment of all sorts of conditions where existing treatment options are limited. Functional disorders--as identified anachronistically in our analysis--have been key contenders for emerging electrical treatments: with Leyden jars, with galvanic and electromagnetic machines, and more recently with TMS and TENS. Parallels can be drawn with the history of electrical treatments for migraine and headache (Koehler and Boes, 2010). Regardless of the mode of delivery of electricity, stimulating a limb to produce movement has repeatedly been found to aid and assist recovery in functional motor disorders. This may also be true of non-electrical methods: we have found benefits using both therapeutic sedation and explanatory demonstration of a positive Hoover's sign as therapeutic methods of demonstrating normal movement in functionally weak limbs (Stone et al., 2014). Each surge in enthusiasm for new electrical treatments has been followed by questions about the nature of the disorder and validity of the treatment response. Physicians have tended to attribute therapeutic success initially to powerful biological or even metaphysical effects, but with time and experience these explanations have been replaced by views that the treatment works through suggestion and placebo. Discomfort with these conclusions has in the past discouraged ongoing development of electrical treatments, even if the end result for patients has been encouraging. In Edwards's Bayesian model, functional motor and sensory symptoms are hypothesized to arise when 'pathologically precise prior beliefs' mediated by attentional processes cause experience of symptoms via a hierarchy of false inferences (Edwards, 2012). It can be argued that use of TMS or peripheral stimulation to produce movement of a functionally weak

  14. Regulation of Kidney Function and Metabolism: A Question of Supply and Demand

    PubMed Central

    Blantz, Roland C.; Deng, Aihua; Miracle, Cynthia M.; Thomson, Scott C.

    2007-01-01

    Kidney blood flow and glomerular filtration rate (GFR) are maintained relatively constant by hormonal influences and by efficient autoregulation. However, the kidney remains at risk for ischemia and acute kidney injury. Increases in kidney blood flow cause parallel increments in GFR, thereby dictating tubular reabsorption and increased oxygen/metabolic demands. Coordination between kidney blood flow and GFR with tubular reabsorption is maintained by the tubuloglomerular feedback (TGF) system whereby delivery of NaCl to the macula densa varies inversely with nephron GFR. Metabolic products, ATP and adenosine, are the mediators of TGF via afferent arteriolar vasoconstriction, and nitric oxide; COX-2 products and angiotensin II are modulators of acute TGF responses and temporal adaptation of TGF. Oxygen requirements and metabolic efficiency of Na transport in the kidney are significant variables that are regulated by both mediators and modulators of TGF. These metabolic and hormonal substances efficiently regulate both kidney supply and demand. PMID:18528487

  15. Time-varying effective connectivity during visual object naming as a function of semantic demands.

    PubMed

    Poch, Claudia; Garrido, Marta I; Igoa, José Manuel; Belinchón, Mercedes; García-Morales, Irene; Campo, Pablo

    2015-06-10

    Accumulating evidence suggests that visual object understanding involves a rapid feedforward sweep, after which subsequent recurrent interactions are necessary. The extent to which recurrence plays a critical role in object processing remains to be determined. Recent studies have demonstrated that recurrent processing is modulated by increasing semantic demands. Differentially from previous studies, we used dynamic causal modeling to model neural activity recorded with magnetoencephalography while 14 healthy humans named two sets of visual objects that differed in the degree of semantic accessing demands, operationalized in terms of the values of basic psycholinguistic variables associated with the presented objects (age of acquisition, frequency, and familiarity). This approach allowed us to estimate the directionality of the causal interactions among brain regions and their associated connectivity strengths. Furthermore, to understand the dynamic nature of connectivity (i.e., the chronnectome; Calhoun et al., 2014) we explored the time-dependent changes of effective connectivity during a period (200-400 ms) where adding semantic-feature information improves modeling and classifying visual objects, at 50 ms increments. First, we observed a graded involvement of backward connections, that became active beyond 200 ms. Second, we found that semantic demands caused a suppressive effect in the backward connection from inferior frontal cortex (IFC) to occipitotemporal cortex over time. These results complement those from previous studies underscoring the role of IFC as a common source of top-down modulation, which drives recurrent interactions with more posterior regions during visual object recognition. Crucially, our study revealed the inhibitory modulation of this interaction in situations that place greater demands on the conceptual system. PMID:26063911

  16. Functional compensation of visual field deficits in hemianopic patients under the influence of different task demands.

    PubMed

    Hardiess, Gregor; Papageorgiou, Eleni; Schiefer, Ulrich; Mallot, Hanspeter A

    2010-06-11

    We investigated the task-specific role of eye and head movements as a compensatory strategy in patients with homonymous visual field deficits (HVFDs) and in age-matched normal controls. All participants were tested in two tasks, i.e. a dot counting (DC) task requiring mostly simple visual scanning and a cognitively more demanding comparative visual search (CVS) task. The CVS task involved recognition and memory of geometrical objects and their configuration in two test fields. Based on task performance, patients were assigned to one of two groups, "adequate" (HVFD(A)) and "inadequate" (HVFD(I)); the group definitions based on either task turned out to be identical. With respect to the gaze related parameters in the DC task we obtained results in agreement with previous studies: the gaze pattern of HVFD(A) patients and normal controls did not differ significantly, while HVFD(I) patients showed increased gaze movement activity. In contrast, for the more complex CVS task we identified a deviating pattern of compensatory strategy use. Adequately performing subjects, who had used the same gaze strategies as normals in the DC task, now changed to increased gaze movement activity that allowed coping with the increasing task demands. Inadequately performing patients switched to a novel pattern of compensatory behavior in the CVS task. Different compensatory strategies are discussed with respect to the task-specific demands (in particular working memory involvement), the specific behavioral deficits of the patients, and the corresponding brain lesions. PMID:20381514

  17. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    SciTech Connect

    Heffner, Grayson C.

    2002-09-01

    The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

  18. New Chemically Functionalized Nanomaterials for Electrical Nerve Agents Sensors

    NASA Astrophysics Data System (ADS)

    Simonato, Jean-Pierre; Clavaguera, Simon; Carella, Alexandre; Delalande, Michael; Raoul, Nicolas; Lenfant, Stephane; Vuillaume, Dominique; Dubois, Emmanuel

    2011-08-01

    A chemical receptor specific to traces of organophosphorus nerve agents (OPs) has been synthesized and grafted to carbon nanotubes and silicon nanowires in order to make electrical sensors. Our results show that it is possible to detect efficiently sub-ppm traces of OPs with excellent selectivity notably with the use of silicon nanowires by monitoring the Drain-Source current of the SiNW-FET at an optimum back Gate voltage as a function of time. First developments of a prototype have also been realized.

  19. MODULATING EMISSIONS FROM ELECTRIC GENERATING UNITS AS A FUNCTION OF METEOROLOGICAL VARIABLES

    EPA Science Inventory

    Electric Generating Units (EGUs) are an important source of emissions of nitrogen oxides (NOx), which react with volatile organic compounds (VOCs) in the presence of sunlight to form ozone. Emissions from EGUs are believed to vary depending on short-term demands for electricity;...

  20. Overrecruitment in the aging brain as a function of task demands: evidence for a compensatory view.

    PubMed

    Vallesi, Antonino; McIntosh, Anthony R; Stuss, Donald T

    2011-04-01

    This study used fMRI to investigate the neural effects of increasing cognitive demands in normal aging and their role for performance. Simple and complex go/no-go tasks were used with two versus eight colored letters as go stimuli, respectively. In both tasks, no-go stimuli could produce high conflict (same letter, different color) or low conflict (colored numbers) with go stimuli. Multivariate partial least square analysis of fMRI data showed that older adults overengaged a cohesive pattern of fronto-parietal regions with no-go stimuli under the specific combination of factors which progressively amplified task demands: high conflict no-go trials in the first phase of the complex task. This early neural overrecruitment was positively correlated with a lower error rate in the older group. Thus, the present data suggest that age-related extra-recruitment of neural resources can be beneficial for performance under taxing task conditions, such as when novel, weak, and complex rules have to be acquired. PMID:20350184

  1. Applications of GRID in clinical neurophysiology and Electrical Impedance Tomography of brain function.

    PubMed

    Fritschy, J; Horesh, L; Holder, D; Bayford, R

    2005-01-01

    The computational requirements in Neurophysiology are increasing with the development of new analysis methods. The resources the GRID has to offer are ideally suited for this complex processing. A practical implementation of the GRID, Condor, has been assessed using a local cluster of 920 PCs. The reduction in processing time was assessed in spike recognition of the Electroencephalogram (EEG) in epilepsy using wavelets and the computationally demanding task of non-linear image reconstruction with Electrical Impedance Tomography (EIT). Processing times were decreased by 25 and 40 times respectively. This represents a substantial improvement in processing time, but is still sub optimal due to factors such as shared access to resources and lack of checkpoints so that interrupted jobs had to be restarted. Future work will be to use these methods in non-linear EIT image reconstruction of brain function and methods for automated EEG analysis, if possible with further optimized GRID middleware. PMID:15923723

  2. A Very Short-Term Load Forecasting of Long-Term Fluctuation Components in the Electric Power Demand

    NASA Astrophysics Data System (ADS)

    Kawauchi, Seiji; Sasaki, Hiroshi

    It is indispensable to forecast accurately the very short-term load demand to avoid undesirable disturbances in power system operations which deteriorate economical generations. The authors have so far developed a short-term forecasting method by using Local Fuzzy Reconstruction Method, a variant of the methods based on the chaos theory. However, this approach is unable to give accurate forecasting results in case where load demand consecutively exceeds the historical maximum or is lower than the minimum because forecasting is performed by the historical data themselves. Also, in forecasting holidays in summer, forecasting result of weekdays might appear due to similar demand trend. This paper presents novel demand forecasting methods that are able to make accurate forecasts by resolving the above mentioned problems. First, the new method improves the accuracy by extrapolating forecasted transition from the current point. Secondly, to eliminate miss forecast which may be occurred on holidays in summer, historical data are labeled by the information of the day of the week to distinguish similarly behaved weekdays’ load patterns. The proposed methods are applied to 10, 30, and 60 minutes ahead demand forecasting, and the accuracy is improved 10% to 20% compared with the method previously proposed.

  3. Taxation, regulation, and addiction: a demand function for cigarettes based on time-series evidence.

    PubMed

    Keeler, T E; Hu, T W; Barnett, P G; Manning, W G

    1993-04-01

    This work analyzes the effects of prices, taxes, income, and anti-smoking regulations on the consumption of cigarettes in California (a 25-cent-per-pack state tax increase in 1989 enhances the usefulness of this exercise). Analysis is based on monthly time-series data for 1980 through 1990. Results show a price elasticity of demand for cigarettes in the short run of -0.3 to -0.5 at mean data values, and -0.5 to -0.6 in the long run. We find at least some support for two further hypotheses: that antismoking regulations reduce cigarette consumption, and that consumers behave consistently with the model of rational addiction. PMID:10126486

  4. Effects of Gestational Age at Birth on Cognitive Performance: A Function of Cognitive Workload Demands

    PubMed Central

    Jaekel, Julia; Baumann, Nicole; Wolke, Dieter

    2013-01-01

    Objective Cognitive deficits have been inconsistently described for late or moderately preterm children but are consistently found in very preterm children. This study investigates the association between cognitive workload demands of tasks and cognitive performance in relation to gestational age at birth. Methods Data were collected as part of a prospective geographically defined whole-population study of neonatal at-risk children in Southern Bavaria. At 8;5 years, n = 1326 children (gestation range: 23–41 weeks) were assessed with the K-ABC and a Mathematics Test. Results Cognitive scores of preterm children decreased as cognitive workload demands of tasks increased. The relationship between gestation and task workload was curvilinear and more pronounced the higher the cognitive workload: GA2 (quadratic term) on low cognitive workload: R2 = .02, p<0.001; moderate cognitive workload: R2 = .09, p<0.001; and high cognitive workload tasks: R2 = .14, p<0.001. Specifically, disproportionally lower scores were found for very (<32 weeks gestation) and moderately (32–33 weeks gestation) preterm children the higher the cognitive workload of the tasks. Early biological factors such as gestation and neonatal complications explained more of the variance in high (12.5%) compared with moderate (8.1%) and low cognitive workload tasks (1.7%). Conclusions The cognitive workload model may help to explain variations of findings on the relationship of gestational age with cognitive performance in the literature. The findings have implications for routine cognitive follow-up, educational intervention, and basic research into neuro-plasticity and brain reorganization after preterm birth. PMID:23717694

  5. Goal orientations and performance: differential relationships across levels of analysis and as a function of task demands.

    PubMed

    Yeo, Gillian; Loft, Shayne; Xiao, Tania; Kiewitz, Christian

    2009-05-01

    Goal orientation and self-regulation theories were integrated to develop a multilevel framework aimed at addressing controversies regarding the magnitude and direction of goal orientation effects on performance. In Study 1, goal orientations were measured repeatedly whilst individuals performed an air traffic control task. In Study 2, goal orientations and exam performance were measured across 3 time points while undergraduates completed a course. Mastery-approach orientation was positively related to performance at the intraindividual level, but not at the interindividual level, and its effect was not moderated by task demands. Performance-approach positively predicted performance at the interindividual level, and at the intraindividual level, the direction of its effect switched as a function of task demands. Performance-avoid negatively predicted performance at the interindividual level but did not emerge as an intraindividual predictor. Mastery-avoid did not relate to performance at either level of analysis. This consistent pattern across 2 studies suggests that levels of analysis and task demands can determine the magnitude and direction of goal orientation effects on performance and highlights avenues for theory development. PMID:19450008

  6. Self-Triggered Functional Electrical Stimulation During Swallowing

    PubMed Central

    Burnett, Theresa A.; Mann, Eric A.; Stoklosa, Joseph B.; Ludlow, Christy L.

    2006-01-01

    Hyolaryngeal elevation is essential for airway protection during swallowing and is mainly a reflexive response to oropharyngeal sensory stimulation. Targeted intramuscular electrical stimulation can elevate the resting larynx and, if applied during swallowing, may improve airway protection in dysphagic patients with inadequate hyolaryngeal motion. To be beneficial, patients must synchronize functional electrical stimulation (FES) with their reflexive swallowing and not adapt to FES by reducing the amplitude or duration of their own muscle activity. We evaluated the ability of nine healthy adults to manually synchronize FES with hyolaryngeal muscle activity during discrete swallows, and tested for motor adaptation. Hooked-wire electrodes were placed into the mylo- and thyrohyoid muscles to record electromyographic activity from one side of the neck and deliver monopolar FES for hyolaryngeal elevation to the other side. After performing baseline swallows, volunteers were instructed to trigger FES with a thumb switch in synchrony with their swallows for a series of trials. An experimenter surreptitiously disabled the thumb switch during the final attempt, creating a foil. From the outset, volunteers synchronized FES with the onset of swallow-related thyrohyoid activity (~225 ms after mylohyoid activity onset), preserving the normal sequence of muscle activation. A comparison between average baseline and foil swallows failed to show significant adaptive changes in the amplitude, duration, or relative timing of activity for either muscle, indicating that the central pattern generator for hyolaryngeal elevation is immutable with short term stimulation that augments laryngeal elevation during the reflexive, pharyngeal phase of swallowing. PMID:16107520

  7. A clinical exercise system for paraplegics using functional electrical stimulation.

    PubMed

    Bremner, L A; Sloan, K E; Day, R E; Scull, E R; Ackland, T

    1992-09-01

    A low cost clinical exercise system was developed for the spinal cord injured, based on a bicycle ergometer and electrical stimulation. A pilot project was conducted, using the system, to examine the effects of stimulation induced cycling in long term paraplegics. The project comprised 2 phases of exercise, a strengthening phase involving a 12 week programme of electrical stimulation to the quadriceps and hamstrings and a 12 week cycling phase. Physiological, morphological and biochemical parameters were measured for each subject, at the beginning of the programme and following each phase. Results showed that a programme of stimulation induced lower limb exercise increased the exercise tolerance of all patients, as determined by a progressive increase in exercise time, cycling rate and exercise load. The enhanced exercise tolerance was a result of increases in local muscle strength and endurance. Increases in thigh muscle area and joint range of motion were recorded and all incomplete subjects reported an improvement in functional capabilities and general wellbeing. PMID:1408342

  8. Optimum hydrogen generation capacity and current density of the PEM-type water electrolyzer operated only during the off-peak period of electricity demand

    NASA Astrophysics Data System (ADS)

    Oi, Tsutomu; Sakaki, Yoshinori

    A requirement for widespread adoption of fuel cell vehicles in the transportation sector will be ready availability of pure hydrogen at prices that result in operating costs comparable to, or less than, that of gasoline internal combustion engine vehicles. The existing electrical power grid could be used as the backbone of the hydrogen infrastructure system in combination with water electrolyzers. A water electrolyzer can contribute to the load leveling by changing operational current density in accordance with the change of electricity demand. The optimum hydrogen generation capacity and current density of the polymer electrolyte membrane (PEM)-type water electrolyzer operated only during the off-peak period of electricity demand in respect of both the shortest time required for start and the higher efficiency of water electrolysis are obtained as 500 Nm 3 h -1 and 30 kA m -2, respectively. This PEM-type water electrolyzer could be used in the hydrogen refueling stations and energy storage systems constructed around hydrogen.

  9. The long run effect of green belt amenities upon the population growth: the case of almost linear demand function.

    PubMed

    Suh, S H

    1987-01-01

    "The purpose of this paper is to suggest that, in evaluating the relevance of sustaining the green belt, we must pay more attention to the fact that the green belt amenities can accelerate rather than decelerate the population growth of a city. For this, this paper analyzes the case where there exist green belt amenities and the demand for land function is almost linear. In this case, it can be shown that the green belt is ineffective in restricting the population growth in the long run." PMID:12283599

  10. Ion distribution function in a plasma with uniform electric field

    SciTech Connect

    Lampe, M.; Joyce, G.; Roecker, T. B.; Zhdanov, S. K.; Ivlev, A. V.; Morfill, G. E.

    2012-11-15

    For a homogeneous partially ionized plasma subject to a uniform electric field E, several methods and models are used to calculate the distribution function f(v) for ions subject to charge-exchange collisions. The exact solution for f(v), based on the energy-dependent cross section for Ar, is obtained by Monte Carlo (MC) simulation. This is compared to the MC results for f(v), based on either a constant cross section {sigma} or a constant collision frequency {nu}. The constant-{sigma} model is found to accurately represent f(v) for any value of E, whereas the constant-{nu} results are qualitatively incorrect for large fields. Under the constant-{sigma} assumption, a simple, easily solvable ordinary differential equation is obtained which reproduces the MC results with good accuracy.

  11. Radial Basis Function Neural Network-based PID model for functional electrical stimulation system control.

    PubMed

    Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong

    2009-01-01

    Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model. PMID:19964991

  12. Structural and functional mimic of galactose oxidase by a copper complex of a sterically demanding [N2O2] ligand.

    PubMed

    John, Alex; Shaikh, Mobin M; Ghosh, Prasenjit

    2008-06-01

    A structural and functional mimic of the galactose oxidase (GOase) enzyme active-site by a copper complex supported over a sterically demanding ligand having [N2O2] donor sites is reported. Specifically, the binding of the histidine (496 and 581) and tyrosine (272 and 495) residues to the copper center in a square-pyramidal fashion in the active-site of galactose oxidase (GOase) enzyme has been modeled in a copper complex, ([(3-tert-butyl-5-methyl-2-hydoxybenzyl)(3'-tert-butyl-5'-methyl-2'-oxobenzyl)(2-pyridylmethyl)]amine)Cu(OAc)) (1b), stabilized over a sterically demanding ligand in which the two phenolate-O atoms mimicked the tyrosine binding while an amine-N and pyridyl-N atoms emulated the histidine binding to the metal center, similar to that in the enzyme active-site. Furthermore, the copper complex 1b is found to be an effective functional model of the enzyme as it efficiently catalyzed the chemoselective oxidation of primary alcohols to aldehydes in high turnover numbers under ambient conditions. An insight into the nature of the active-species was obtained by EPR and CV studies, which in conjunction with the DFT studies, revealed that the active-species is an anti-ferromagnetically coupled diamagnetic radical cation, (1)1b+, obtained by one electron oxidation at the equatorial phenolate-O atom of the ligand in the 1b complex. PMID:18478142

  13. Functional Electrical Stimulation in Spinal Cord Injury Respiratory Care

    PubMed Central

    Jarosz, Renata; Littlepage, Meagan M.; Creasey, Graham; McKenna, Stephen L.

    2012-01-01

    The management of chronic respiratory insufficiency and/or long-term inability to breathe independently has traditionally been via positive-pressure ventilation through a mechanical ventilator. Although life-sustaining, it is associated with limitations of function, lack of independence, decreased quality of life, sleep disturbance, and increased risk for infections. In addition, its mechanical and electronic complexity requires full understanding of the possible malfunctions by patients and caregivers. Ventilator-associated pneumonia, tracheal injury, and equipment malfunction account for common complications of prolonged ventilation, and respiratory infections are the most common cause of death in spinal cord–injured patients. The development of functional electric stimulation (FES) as an alternative to mechanical ventilation has been motivated by a goal to improve the quality of life of affected individuals. In this article, we will review the physiology, types, characteristics, risks and benefits, surgical techniques, and complications of the 2 commercially available FES strategies – phrenic nerve pacing (PNP) and diaphragm motor point pacing (DMPP). PMID:23459661

  14. New functional electrical stimulation approaches to standing and walking.

    PubMed

    Mushahwar, Vivian K; Jacobs, Patrick L; Normann, Richard A; Triolo, Ronald J; Kleitman, Naomi

    2007-09-01

    Spinal cord injury (SCI) is a devastating neurological trauma that is prevalent predominantly in young individuals. Several interventions in the areas of neuroregeneration, pharmacology and rehabilitation engineering/neuroscience are currently under investigation for restoring function after SCI. In this paper, we focus on the use of neuroprosthetic devices for restoring standing and ambulation as well as improving general health and wellness after SCI. Four neuroprosthetic approaches are discussed along with their demonstrated advantages and their future needs for improved clinical applicability. We first introduce surface functional electrical stimulation (FES) devices for restoring ambulation and highlight the importance of these devices for facilitating exercise activities and systemic physiological activation. Implanted muscle-based FES devices for restoring standing and walking that are currently undergoing clinical trials are then presented. The use of implanted peripheral nerve intraneural arrays of multi-site microelectrodes for providing fine and graded control of force during sit-to-stand maneuvers is subsequently demonstrated. Finally, intraspinal microstimulation (ISMS) of the lumbosacral spinal cord for restoring standing and walking is introduced and its results to date are presented. We conclude with a general discussion of the common needs of the neuroprosthetic devices presented in this paper and the improvements that may be incorporated in the future to advance their clinical utility and user satisfaction. PMID:17873417

  15. Multi-functional Electric Module for a Vehicle

    NASA Technical Reports Server (NTRS)

    Bluethmann, William J. (Inventor); Waligora, Thomas M. (Inventor); Fraser-Chanpong, Nathan (Inventor); Reed, Ryan (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Figuered, Joshua M. (Inventor); Herrera, Eduardo (Inventor); Markee, Mason M. (Inventor)

    2015-01-01

    A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.

  16. Effects of a Cognitively Demanding Aerobic Intervention During Recess on Children's Physical Fitness and Executive Functioning.

    PubMed

    van der Niet, Anneke G; Smith, Joanne; Oosterlaan, Jaap; Scherder, Erik J A; Hartman, Esther; Visscher, Chris

    2016-02-01

    The objective of this study was to analyze the effects of a physical activity program including both aerobic exercise and cognitively engaging physical activities on children's physical fitness and executive functions. Children from 3 primary schools (aged 8-12 years) were recruited. A quasi-experimental design was used. Children in the intervention group (n = 53; 19 boys, 34 girls) participated in a 22-week physical activity program for 30 min during lunch recess, twice a week. Children in the control group (n = 52; 32 boys, 20 girls) followed their normal lunch routine. Aerobic fitness, speed and agility, and muscle strength were assessed using the Eurofit test battery. Executive functions were assessed using tasks measuring inhibition (Stroop test), working memory (Visual Memory Span test, Digit Span test), cognitive flexibility (Trailmaking test), and planning (Tower of London). Children in the intervention group showed significantly greater improvement than children in the control group on the Stroop test and Digit Span test, reflecting enhanced inhibition and verbal working memory skills, respectively. No differences were found on any of the physical fitness variables. A physical activity program including aerobic exercise and cognitively engaging physical activities can enhance aspects of executive functioning in primary school children. PMID:26252883

  17. Experimental Economics for Teaching the Functioning of Electricity Markets

    ERIC Educational Resources Information Center

    Guevara-Cedeno, J. Y.; Palma-Behnke, R.; Uribe, R.

    2012-01-01

    In the field of electricity markets, the development of training tools for engineers has been extremely useful. A novel experimental economics approach based on a computational Web platform of an electricity market is proposed here for the practical teaching of electrical engineering students. The approach is designed to diminish the gap that…

  18. A functional dissociation between language and multiple-demand systems revealed in patterns of BOLD signal fluctuations.

    PubMed

    Blank, Idan; Kanwisher, Nancy; Fedorenko, Evelina

    2014-09-01

    What is the relationship between language and other high-level cognitive functions? Neuroimaging studies have begun to illuminate this question, revealing that some brain regions are quite selectively engaged during language processing, whereas other "multiple-demand" (MD) regions are broadly engaged by diverse cognitive tasks. Nonetheless, the functional dissociation between the language and MD systems remains controversial. Here, we tackle this question with a synergistic combination of functional MRI methods: we first define candidate language-specific and MD regions in each subject individually (using functional localizers) and then measure blood oxygen level-dependent signal fluctuations in these regions during two naturalistic conditions ("rest" and story-comprehension). In both conditions, signal fluctuations strongly correlate among language regions as well as among MD regions, but correlations across systems are weak or negative. Moreover, data-driven clustering analyses based on these inter-region correlations consistently recover two clusters corresponding to the language and MD systems. Thus although each system forms an internally integrated whole, the two systems dissociate sharply from each other. This independent recruitment of the language and MD systems during cognitive processing is consistent with the hypothesis that these two systems support distinct cognitive functions. PMID:24872535

  19. Improved lung function and symptom control with formoterol on demand in asthma.

    PubMed

    Cheung, D; van Klink, H C J; Aalbers, R

    2006-03-01

    Many asthma patients remain symptomatic despite maintenance therapy with inhaled corticosteroids (ICS) and salbutamol as rescue medication. In the present study the relative efficacy and preference for as-needed formoterol compared with salbutamol was examined. In total, 211 patients with a mean age of 45 yrs (mean forced expiratory volume in one second (FEV1) 77% predicted normal), using ICS, were randomised to 3 weeks' double-blind treatment with as-needed formoterol 4.5 microg Turbuhaler and with as-needed salbutamol 100 mug Turbuhaler in a cross-over fashion. Overall, lung function and symptom control were better with as-needed formoterol than with as-needed salbutamol. During as-needed formoterol treatment daytime and night-time symptom scores were lower, peak expiratory flow and FEV1 were higher and patients experienced fewer disturbed nights (34%) compared with as-needed salbutamol. Patients preferred the formoterol treatment to salbutamol. Of the 162 patients expressing a preference, formoterol was preferred by 68% (95% confidence interval: 60-75). Subjective assessment of effectiveness also favoured formoterol, which was perceived as slightly faster acting than salbutamol. In conclusion, as-needed formoterol improved symptoms and lung function compared with salbutamol and was perceived as more effective and at least as fast acting for symptom relief. PMID:16507849

  20. A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics.

    PubMed

    Mohebi, Mohammad Masoud; Evans, Julian R G

    2002-01-01

    A printer has been designed and built for the preparation of combinatorial libraries of ceramics and for solid freeforming of functionally graded ceramics with three-dimensionally programmable spatial variation in composition. Several ceramic suspensions (as inks) can be subjected to micromixing behind the nozzle and printed at precise positions. Both mixing and positioning are computer-controlled. The machine consists of an XY table to control the geometry, a set of electromagnetic valves that manage the mixing, a combined electromagnetic valve and sapphire nozzle that form the print head, and a computer that controls the whole system. The mixing valves can eject as little as 1 mg/s ink into the mixing chamber. The printer has been controlled, run, calibrated and tested; the composition and geometry of printed mixtures can be controlled precisely. This method for the controlled mixing of powders facilitates the advance of combinatorial methods within the materials sciences. PMID:12099843

  1. Automated Demand Response Strategies and Commissioning CommercialBuilding Controls

    SciTech Connect

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-05-01

    California electric utilities have been exploring the use of dynamic critical peak pricing (CPP) and other demand response programs to help reduce peaks in customer electric loads. CPP is a new electricity tariff design to promote demand response. This paper begins with a brief review of terminology regarding energy management and demand response, followed by a discussion of DR control strategies and a preliminary overview of a forthcoming guide on DR strategies. The final section discusses experience to date with these strategies, followed by a discussion of the peak electric demand savings from the 2005 Automated CPP program. An important concept identified in the automated DR field tests is that automated DR will be most successful if the building commissioning industry improves the operational effectiveness of building controls. Critical peak pricing and even real time pricing are important trends in electricity pricing that will require new functional tests for building commissioning.

  2. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  3. On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position

    PubMed Central

    2016-01-01

    The ability to confine and manipulate light below the diffraction limit is a major goal of future multifunctional optoelectronic/plasmonic systems. Here, we demonstrate the design and realization of a tunable and localized electrical source of excitons coupled to surface plasmons based on a polymer light-emitting field-effect transistor (LEFET). Gold nanorods that are integrated into the channel support localized surface plasmons and serve as nanoantennas for enhanced electroluminescence. By precise spatial control of the near-infrared emission zone in the LEFET via the applied voltages the near-field coupling between electrically generated excitons and the nanorods can be turned on or off as visualized by a change of electroluminescence intensity. Numerical calculations and spectroscopic measurements corroborate significant local electroluminescence enhancement due to the high local density of photonic states in the vicinity of the gold nanorods. Importantly, the integration of plasmonic nanostructures hardly influences the electrical performance of the LEFETs, thus, highlighting their mutual compatibility in novel active plasmonic devices. PMID:26878028

  4. Demand for food on fixed-ratio schedules as a function of the quality of concurrently available reinforcement1

    PubMed Central

    Lea, S. E. G.; Roper, T. J.

    1977-01-01

    Six rats lever pressed for food on concurrent fixed-ratio schedules, in a two-compartment chamber. In one compartment, mixed diet pellets were delivered on fixed-ratio schedules of 1, 6, 11, and 16; in the other, either no food was delivered, or sucrose or mixed diet pellets were delivered on fixed-ratio 8. The number of pellets obtained in the first compartment declined as a function of fixed-ratio size in that compartment in all three conditions, but the decline was greatest overall with mixed diet pellets concurrently available in the other compartment, and least with no food concurrently available. The result is discussed in terms of economic demand theory, and is consistent with the prediction that elasticity of demand for a commodity (defined in operant terms as the ratio of the proportionate change in number of reinforcements per session to the proportionate change in fixed-ratio size) is greater the more substitutable for that commodity are any concurrently available commodities. PMID:16811999

  5. Finite state model of locomotion for functional electrical stimulation systems.

    PubMed

    Popović, D B

    1993-01-01

    A finite state model of locomotion was developed to simplify a controller design for motor activities of handicapped humans. This paper presents a model developed for real time control of locomotion with functional electrical stimulation (FES) assistive systems. Hierarchical control of locomotion was adopted with three levels: voluntary, coordination and actuator level. This paper deals only with coordination level of control. In our previous studies we demonstrated that a skill-based expert system can be used for coordination level of control in multi-joint FES systems. Basic elements in this skill-based expert system are production rules. Production rules have the form of If-Then conditional expressions. A technique of automatic determination of these conditional expressions is presented in this paper. This technique for automatic synthesis of production rules uses fuzzy logic and artificial neural networks (ANN). The special class of fuzzy logic elements used in this research is called preferential neurons. The preferential neurons were used to estimate the relevance of each of the sensory inputs to the recognition of patterns defined as finite states. The combination of preferential neurons forms a preferential neural network. The preferential neural network belongs to a class of ANNs. The preferential neural network determined the set of finite states convenient for a skill-based expert system for different modalities of locomotion. PMID:8234764

  6. Revealing humans' sensorimotor functions with electrical cortical stimulation.

    PubMed

    Desmurget, Michel; Sirigu, Angela

    2015-09-19

    Direct electrical stimulation (DES) of the human brain has been used by neurosurgeons for almost a century. Although this procedure serves only clinical purposes, it generates data that have a great scientific interest. Had DES not been employed, our comprehension of the organization of the sensorimotor systems involved in movement execution, language production, the emergence of action intentionality or the subjective feeling of movement awareness would have been greatly undermined. This does not mean, of course, that DES is a gold standard devoid of limitations and that other approaches are not of primary importance, including electrophysiology, modelling, neuroimaging or psychophysics in patients and healthy subjects. Rather, this indicates that the contribution of DES cannot be restricted, in humans, to the ubiquitous concepts of homunculus and somatotopy. DES is a fundamental tool in our attempt to understand the human brain because it represents a unique method for mapping sensorimotor pathways and interfering with the functioning of localized neural populations during the performance of well-defined behavioural tasks. PMID:26240422

  7. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  8. An overview of the functional food market: from marketing issues and commercial players to future demand from life in space.

    PubMed

    Vergari, Francesca; Tibuzzi, Arianna; Basile, Giovanni

    2010-01-01

    Companies in the food industry have high expectations for food products that meet the consumers' demand for a healthy life style. In this context Functional Food plays a specific role. These foods are not intended only to satisfy hunger and provide the necessary human nutrients, but also to prevent nutrition-related diseases and increase the physical and mental well-being of their consumer. Among participants in space science and missions, recognition of nutraceuticals and dietary supplements is growing for their potential in reducing health risks and to improve health quality and eating habits during long-term flights and missions. In 2008 the entire functional foods market was worth over an estimated US $80 billion, with the US holding a majority share in the nutraceuticals market (35%) followed byJapan (25%) and with the ever-growing European market, currently estimated at US$8 billion. India and China are the two major countries known for their production of traditional functional food products and nutraceuticals, but other South-East Asian countries and Gulf nations are developing potential markets. PMID:21520721

  9. Task- and resting-state functional connectivity of brain regions related to affection and susceptible to concurrent cognitive demand

    PubMed Central

    Kellermann, Tanja S.; Caspers, Svenja; Fox, Peter T.; Zilles, Karl; Roski, Christian; Laird, Angela R.; Turetsky, Bruce I.; Eickhoff, Simon B.

    2016-01-01

    A recent fMRI-study revealed neural responses for affective processing of stimuli for which overt attention irrespective of stimulus valence was required in the orbitofrontal cortex (OFC) and bilateral amygdala (AMY): activation decreased with increasing cognitive demand. To further characterize the network putatively related to this attenuation, we here characterized these regions with respect to their functional properties and connectivity patterns in task-dependent and task-independent states. All experiments of the BrainMap database activating the seed regions OFC and bilateral AMY were identified. Their functional characteristics were quantitatively inferred using the behavioral meta-data of the retrieved experiments. Task-dependent functional connectivity was characterized by meta-analytic connectivity modeling (MACM) of significant co-activations with these seed regions. Task-independent resting-state functional connectivity analysis in a sample of 100 healthy subjects complemented these analyses. All three seed regions co-activated with subgenual cingulum (SGC), precuneus (PCu) and nucleus accumbens (NAcc) in the task-dependent MACM analysis. Task-independent resting-state connectivity revealed significant coupling of the seeds only with the SGC, but not the PCu and the NAcc. The former region (SGC) moreover was shown to feature significant resting-state connectivity with all other regions implicated in the network connected to regions where emotional processing may be modulated by a cognitive distractor. Based on its functional profile and connectivity pattern, we suggest that the SGC might serve as a key hub in the identified network, as such linking autobiographic information [PCu], reward [NAcc], (reinforce) values [OFC] and emotional significance [AMY]. Such a role, in turn, may allow the SGC to influence the OFC and AMY to modulate affective processing. PMID:23370055

  10. Searching for Electrical Properties, Phenomena and Mechanisms in the Construction and Function of Chromosomes

    PubMed Central

    Kanev, Ivan; Mei, Wai-Ning; Mizuno, Akira; DeHaai, Kristi; Sanmann, Jennifer; Hess, Michelle; Starr, Lois; Grove, Jennifer; Dave, Bhavana; Sanger, Warren

    2013-01-01

    Our studies reveal previously unidentified electrical properties of chromosomes: (1) chromosomes are amazingly similar in construction and function to electrical transformers; (2) chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3) chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a) electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b) electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c) mechanisms demonstrating heterochromatin to be electrically active and genetically important. PMID:24688715

  11. Association between mental demands at work and cognitive functioning in the general population – results of the health study of the Leipzig research center for civilization diseases (LIFE)

    PubMed Central

    2014-01-01

    Background The level of mental demands in the workplace is rising. The present study investigated whether and how mental demands at work are associated with cognitive functioning in the general population. Methods The analysis is based on data of the Health Study of the Leipzig Research Centre for Civilization Disease (LIFE). 2,725 participants aged 40–80 years underwent cognitive testing (Trail-Making Test, Verbal Fluency Test) and provided information on their occupational situation. Participants over the age of 65 years additionally completed the Mini-Mental State Examination. Mental demands at work were rated by a standardized classification system (O*NET). The association between mental demands and cognitive functioning was analyzed using Generalized Linear Modeling (GENLIN) adjusted for age, gender, self-regulation, working hour status, education, and health-related factors. Results Univariate as well as multivariate analyses demonstrated significant and highly consistent effects of higher mental demands on better performance in cognitive testing. The results also indicated that the effects are independent of education and intelligence. Moreover, analyses of retired individuals implied a significant association between high mental demands at work of the job they once held and a better cognitive functioning in old age. Conclusions In sum, our findings suggest a significant association between high mental demands at work and better cognitive functioning. In this sense, higher levels of mental demands – as brought about by technological changes in the working environment – may also have beneficial effects for the society as they could increase cognitive capacity levels and might even delay cognitive decline in old age. PMID:24914403

  12. The neural dynamics of stimulus and response conflict processing as a function of response complexity and task demands.

    PubMed

    Donohue, Sarah E; Appelbaum, Lawrence G; McKay, Cameron C; Woldorff, Marty G

    2016-04-01

    Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity 'Ninc' was observed for all conditions, but was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related Ninc, indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. PMID:26827917

  13. An Agent-Based Optimization Framework for Engineered Complex Adaptive Systems with Application to Demand Response in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Haghnevis, Moeed

    The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

  14. Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors

    PubMed Central

    Hahm, Jong-in

    2011-01-01

    The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered. PMID:21691441

  15. Simultaneous dynamic electrical and structural measurements of functional materials

    SciTech Connect

    Vecchini, C.; Stewart, M.; Muñiz-Piniella, A.; Wooldridge, J.; Thompson, P.; McMitchell, S. R. C.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Lucas, C. A.; Lepadatu, S.; Bikondoa, O.; Hase, T. P. A.; Lesourd, M.; Dontsov, D.; Cain, M. G.

    2015-10-15

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  16. An exploration of the function of the triceps surae during normal gait using functional electrical stimulation.

    PubMed

    Stewart, Caroline; Postans, Neil; Schwartz, Michael H; Rozumalski, Adam; Roberts, Andrew

    2007-10-01

    Gastrocnemius and soleus have a common tendon and both are active during stance phase, where they are thought to arrest and control tibial advance. Soleus is associated with the production of an extending moment at the knee. The two-joint gastrocnemius, which crosses the knee joint, will have an additional contribution to the knee flexors. Recent work using induced acceleration analysis (IAA) has demonstrated distinct differences between the actions of gastrocnemius and soleus. This study aims to use gait analysis to provide in vivo examination of these theoretical predictions. Functional electrical stimulation (FES) was chosen to provide a perturbation in muscle force, a close physical analogue to the theoretical predictions of IAA. Five adult male subjects, with no gait problems, participated. Each had gastrocnemius and soleus stimulated at three different timings during normal gait, while 3D gait data were collected. The order of testing was randomised and unstimulated trials were randomly interspersed to act as a control. The results show very different actions for soleus (ankle plantarflexing/knee extending) and gastrocnemius (ankle dorsiflexing/knee flexing) in stance phase. The counterintuitive nature of the action of gastrocnemius suggests that further clinical and biomechanical investigation into this muscle's function is required. The actions of both muscles at the knee confirm published IAA predictions. In vivo evidence such as this gives greater confidence when using model predictions. The approach adopted in this study could eventually be extended to other muscles and patient populations. PMID:17223346

  17. Demand Response Dispatch Tool

    SciTech Connect

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  18. Local electric dipole moments for periodic systems via density functional theory embedding.

    PubMed

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries. PMID:25527922

  19. Local electric dipole moments for periodic systems via density functional theory embedding

    NASA Astrophysics Data System (ADS)

    Luber, Sandra

    2014-12-01

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  20. Local electric dipole moments for periodic systems via density functional theory embedding

    SciTech Connect

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  1. Responders to Wide-Pulse, High-Frequency Neuromuscular Electrical Stimulation Show Reduced Metabolic Demand: A 31P-MRS Study in Humans

    PubMed Central

    Wegrzyk, Jennifer; Fouré, Alexandre; Le Fur, Yann; Maffiuletti, Nicola A.; Vilmen, Christophe; Guye, Maxime; Mattei, Jean-Pierre; Place, Nicolas; Bendahan, David; Gondin, Julien

    2015-01-01

    Conventional (CONV) neuromuscular electrical stimulation (NMES) (i.e., short pulse duration, low frequencies) induces a higher energetic response as compared to voluntary contractions (VOL). In contrast, wide-pulse, high-frequency (WPHF) NMES might elicit–at least in some subjects (i.e., responders)–a different motor unit recruitment compared to CONV that resembles the physiological muscle activation pattern of VOL. We therefore hypothesized that for these responder subjects, the metabolic demand of WPHF would be lower than CONV and comparable to VOL. 18 healthy subjects performed isometric plantar flexions at 10% of their maximal voluntary contraction force for CONV (25 Hz, 0.05 ms), WPHF (100 Hz, 1 ms) and VOL protocols. For each protocol, force time integral (FTI) was quantified and subjects were classified as responders and non-responders to WPHF based on k-means clustering analysis. Furthermore, a fatigue index based on FTI loss at the end of each protocol compared with the beginning of the protocol was calculated. Phosphocreatine depletion (ΔPCr) was assessed using 31P magnetic resonance spectroscopy. Responders developed four times higher FTI’s during WPHF (99 ± 37 ×103 N.s) than non-responders (26 ± 12 ×103 N.s). For both responders and non-responders, CONV was metabolically more demanding than VOL when ΔPCr was expressed relative to the FTI. Only for the responder group, the ∆PCr/FTI ratio of WPHF (0.74 ± 0.19 M/N.s) was significantly lower compared to CONV (1.48 ± 0.46 M/N.s) but similar to VOL (0.65 ± 0.21 M/N.s). Moreover, the fatigue index was not different between WPHF (-16%) and CONV (-25%) for the responders. WPHF could therefore be considered as the less demanding NMES modality–at least in this subgroup of subjects–by possibly exhibiting a muscle activation pattern similar to VOL contractions. PMID:26619330

  2. A novel functional electrical stimulation-control system for restoring motor function of post-stroke hemiplegic patients.

    PubMed

    Huang, Zonghao; Wang, Zhigong; Lv, Xiaoying; Zhou, Yuxuan; Wang, Haipeng; Zong, Sihao

    2014-12-01

    Hemiparesis is one of the most common consequences of stroke. Advanced rehabilitation techniques are essential for restoring motor function in hemiplegic patients. Functional electrical stimulation applied to the affected limb based on myoelectric signal from the unaffected limb is a promising therapy for hemiplegia. In this study, we developed a prototype system for evaluating this novel functional electrical stimulation-control strategy. Based on surface electromyography and a vector machine model, a self-administered, multi-movement, force-modulation functional electrical stimulation-prototype system for hemiplegia was implemented. This paper discusses the hardware design, the algorithm of the system, and key points of the self-oscillation-prone system. The experimental results demonstrate the feasibility of the prototype system for further clinical trials, which is being conducted to evaluate the efficacy of the proposed rehabilitation technique. PMID:25657728

  3. Exploring Selective Neural Electrical Stimulation for Upper Limb Function Restoration

    PubMed Central

    Tigra, Wafa; Guiraud, David; Andreu, David; Coulet, Bertrand; Gelis, Anthony; Fattal, Charles; Maciejasz, Pawel; Picq, Chloé; Rossel, Olivier; Teissier, Jacques; Coste, Christine Azevedo

    2016-01-01

    This article introduces a new approach of selective neural electrical stimulation of the upper limb nerves. Median and radial nerves of individuals with tetraplegia are stimulated via a multipolar cuff electrode to elicit movements of wrist and hand in acute conditions during a surgical intervention. Various configurations corresponding to various combinations of a 12-poles cuff electrode contacts are tested. Video recording and electromyographic (EMG) signals recorded via sterile surface electrodes are used to evaluate the selectivity of each stimulation configuration in terms of activated muscles. In this abstract we introduce the protocol and preliminary results will be presented during the conference. PMID:27478571

  4. Toward an implantable functional electrical stimulation device to correct strabismus

    PubMed Central

    Velez, Federico G.; Isobe, Jun; Zealear, David; Judy, Jack W.; Edgerton, V. Reggie; Patnode, Stephanie; Lee, Hyowon; Hahn, Brian T.

    2010-01-01

    PURPOSE To investigate the feasibility of electrically stimulating the lateral rectus muscle to recover its physiologic abduction ability in cases of complete sixth cranial (abducens) nerve palsy. METHODS In the feline lateral rectus muscle model, the effects of a charge-balanced, biphasic, current-controlled stimulus on the movement of the eye were investigated while stimulation frequency, amplitude, and pulse duration was varied. Eye deflection was measured with a force transducer. Denervated conditions were simulated by injection of botulinum toxin A. RESULTS Three chemically denervated and 4 control lateral rectus muscles were analyzed. In control lateral rectus muscles, the minimum fusion frequency was approximately 170 Hz, and the maximum evoked abduction was 27°. The minimum fusion frequency was unchanged after 4 weeks of chemical denervation. Stimulation of chemically denervated lateral rectus muscle resulted in 17° of abduction. For both innervated and chemically denervated lateral rectus muscle, frequencies greater than 175 Hz yielded very little increase in abduction. Modulating amplitude produced noticeable movement throughout the tested range (0.2 to 9 mA). CONCLUSIONS Results from the feline lateral rectus muscle showed that electrical stimulation is a feasible approach to evoke a contraction from a denervated lateral rectus muscle. The degree of denervation of the feline lateral rectus muscle was indeterminate. Varying the stimulation amplitude allowed greater eye movement. It is very likely that both frequency and amplitude must be modulated for finer control of static eye position. PMID:19375369

  5. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces

    PubMed Central

    Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-01-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734

  6. Surface runoff pollution by cattle slurry and inorganic fertilizer spreading: chemical oxygen demand, ortho-phosphates, and electrical conductivity levels for different buffer strip lengths.

    PubMed

    Núñez-Delgado, A; López-Periago, E; Quiroga-Lago, F; Díaz-Fierros Viqueira, F

    2001-01-01

    As a way of dealing with the removal of pollutants from farming practices generated wastewater in the EU, we investigate the effect of spreading cattle slurry and inorganic fertiliser on 8 x 5 m2 and 8 x 3 m2 areas, referred to surface runoff chemical oxygen demand (COD), ortho-phosphates (o-P) and electrical conductivity (EC) levels, and the efficiency of grass buffer strips of various lengths in removing pollutants from runoff. The experimental plot was a 15% sloped Lolium perenne pasture. Surface runoff was generated by means of a rainfall simulator working at 47 mm h-1 rainfall intensity. Runoff was sampled by using Gerlach-type troughs situated 2, 4, 6 and 8 m downslope from the amended areas. During the first rainfall simulation, COD, o-P and EC levels were consistently higher in the slurry zone, more evidently in the larger amended area. During the second and third rainfall simulations, concentration and mass levels show a downslope drift into the buffer zones, with no clear buffer strip length attenuation. Correlation between runoff and mass drift is clearly higher in the slurry zone. Percentage attenuation in COD and o-P levels, referred to initial slurry concentrations--including rainfall dilution--were higher than 98%, and higher than 90% for EC. PMID:11496670

  7. Interim Data Changes in the Short-term Energy Outlook Data Systems Related to Electric Power Sector and Natural Gas Demand Data Revisions (Released in the STEO December 2002)

    EIA Publications

    2002-01-01

    Beginning with the December 2002 issue of the Energy Information Administration's Short-Term Energy Outlook (STEO), electricity generation and related fuel consumption totals will be presented on a basis that is consistent with the definitions and aggregates used in the 2001 edition of EIA's Annual Energy Review (AER). Particularly affected by these changes are the demand and balancing item totals for natural

  8. Automated Demand Response and Commissioning

    SciTech Connect

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  9. Essays on measurement and evaluation of demand side management programs in the electricity industry, and impacts of firm strategy on stock price in the biotechnology industry

    NASA Astrophysics Data System (ADS)

    Bandres Motola, Miguel A.

    Essay one estimates changes in small business customer energy consumption (kWh) patterns resulting from a seasonally differentiated pricing structure. Econometric analysis leverages cross-sectional time series data across the entire population of affected customers, from 2007 through the present. Observations include: monthly energy usage (kWh), relevant customer segmentations, local daily temperature, energy price, and region-specific economic conditions, among other variables. The study identifies the determinants of responsiveness to seasonal price differentiation. In addition, estimated energy consumption changes occurring during the 2010 summer season are reported for the average customer and in aggregate grouped by relevant customer segments, climate zone, and total customer base. Essay two develops an econometric modeling methodology to evaluate load impacts for short duration demand response events. The study analyzes time series data from a season of direct load control program tests aimed at integrating demand response into the wholesale electricity market. I have combined "fuzzy logic" with binary variables to create "fuzzy indicator variables" that allow for measurement of short duration events while using industry standard model specifications. Typically, binary variables for every hour are applied in load impact analysis of programs dispatched in hourly intervals. As programs evolve towards integration with the wholesale market, event durations become irregular and often occur for periods of only a few minutes. This methodology is innovative in that it conserves the degrees of freedom in the model while allowing for analysis of high frequency data using fixed effects. Essay three examines the effects of strategies, intangibles, and FDA news on the stocks of young biopharmaceutical firms. An event study methodology is used to explore those effects. This study investigates 20,839 announcements from 1990 to 2005. Announcements on drug development

  10. Perceptions of Philosophies of Significant Others and Their Correlations with Institutional Functioning and Institutional Response to Student Demand for Change.

    ERIC Educational Resources Information Center

    Richard, Harold G.

    It has been determined by previous studies that student uprisings and demands could not be successful if the college faculty were not in support of the cause. The present study was conducted to verify certain expectations of the author concerning student-faculty relationships and attitudes. In particular, it was expected that faculty and student…

  11. Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids.

    PubMed

    Richards, Dylan J; Tan, Yu; Coyle, Robert; Li, Yang; Xu, Ruoyu; Yeung, Nelson; Parker, Arran; Menick, Donald R; Tian, Bozhi; Mei, Ying

    2016-07-13

    The advancement of human induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology has shown promising potential to provide a patient-specific, regenerative cell therapy strategy to treat cardiovascular disease. Despite the progress, the unspecific, underdeveloped phenotype of hiPSC-CMs has shown arrhythmogenic risk and limited functional improvements after transplantation. To address this, tissue engineering strategies have utilized both exogenous and endogenous stimuli to accelerate the development of hiPSC-CMs. Exogenous electrical stimulation provides a biomimetic pacemaker-like stimuli that has been shown to advance the electrical properties of tissue engineered cardiac constructs. Recently, we demonstrated that the incorporation of electrically conductive silicon nanowires to hiPSC cardiac spheroids led to advanced structural and functional development of hiPSC-CMs by improving the endogenous electrical microenvironment. Here, we reasoned that the enhanced endogenous electrical microenvironment of nanowired hiPSC cardiac spheroids would synergize with exogenous electrical stimulation to further advance the functional development of nanowired hiPSC cardiac spheroids. For the first time, we report that the combination of nanowires and electrical stimulation enhanced cell-cell junction formation, improved development of contractile machinery, and led to a significant decrease in the spontaneous beat rate of hiPSC cardiac spheroids. The advancements made here address critical challenges for the use of hiPSC-CMs in cardiac developmental and translational research and provide an advanced cell delivery vehicle for the next generation of cardiac repair. PMID:27328393

  12. Electrical properties of Topopah Spring tuff as a function of saturation

    SciTech Connect

    Roberts, J.J.; Lin, Wunan

    1994-01-01

    Much attention has been focused on the hydrologic properties of tuff from the potential nuclear waste repository at Yucca Mountain, Nevada. The successful characterization of the near-field environment of the potential repository depends on the ability to understand and predict the movement of water within the matrix and fractures when the rock mass is heated by nuclear waste. This understanding will come only after many combined laboratory experiments, field tests, and model calculations have been performed. Electrical properties, including electrical resistivity and dielectric permittivity, have been utilized in past studies to infer water content in partially saturated rocks. In this study we determine the electrical properties of Topopah Spring tuff from Yucca Mountain (Area 25), and Area 3, Nevada Test Site (NTS), NV, as a function of water content. These results will be used to (1) study the electrical properties of ted rocks as functions of saturation and water chemistry; (2) relate the observed electrical properties to the distribution of water and to the rnicrogeometry of the rock; and (3) to create a database of electrical resistivity ({rho}) and relative dielectric permittivity ({kappa}{prime}) versus water content (Sw) and temperature for rocks within the potential repository horizon. The database will be used both in laboratory experiments and field tests to determine the moisture content in rocks based on measured electrical properties.

  13. Demand Response Dispatch Tool

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore » reliability and economic conditions.« less

  14. Structural and electrical properties of functionalized multiwalled carbon nanotube/epoxy composite

    NASA Astrophysics Data System (ADS)

    Gantayat, S.; Rout, D.; Swain, S. K.

    2016-05-01

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increased with increasing concentration of f-MWCNTs.

  15. Simulation of the Electrical Field in Equine Larynx to Optimize Functional Electrical Stimulation in Denervated Musculus Cricoarythenoideus Dorsalis.

    PubMed

    Reichel, Martin; Martinek, Johannes

    2014-09-23

    Distribution of the electrical field is very important to activate muscle and nerve cells properly. One therapeutic method to treat Recurrent Laryngeal Neuropathy (RLN) in horses can be performed by Functional Electrical Stimulation (FES). Current method to optimize the stimulation effect is to use implanted quadripolar electrodes to the musculus cricoarythenoideus dorsalis (CAD) and testing electrode configuration until best possible optimum is reached. For better understanding and finding of maximum possible activation of CAD a simulation model of the actual entire setting is currently in development. Therefore the geometric model is built from CT-data of a dissected larynx containing the quadripolar electrodes as well as fiducials for later data registration. The geometric model is the basis for a finite difference method containing of voxels with corresponding electrical conductivity of the different types of tissue due to threshold segmentation of the CT-data. Model validation can be done by the measurement of the 3D electrical potential distribution of a larynx positioned in an electrolytic tray. Finally, measured and calculated results have to be compared as well as further investigated. Preliminary results show, that changes of electrode as well as conductivity configuration leads to significant different voltage distributions and can be well presented by equipotential lines superimposed CT-slices - a Matlab graphical user interface visualizes the results in freely selectable slices of the 3D geometry. Voltage distribution along theoretically estimated fiber paths could be calculated as well as visualized. For further calculation of nerve or denervated muscle fiber activation and its optimization, real fiber paths have to be defined and referenced to the potential- and the CT-data. PMID:26913137

  16. Electric-Field-Induced Nanoscale Surface Patterning in Mexylaminotriazine-Functionalized Molecular Glass Derivatives.

    PubMed

    Umezawa, Hirohito; Nunzi, Jean-Michel; Lebel, Olivier; Sabat, Ribal Georges

    2016-06-01

    Nanoscale surface patterns were observed in thin films of mexylaminotriazine-functionalized glasses containing polar groups upon the application of an electric field at temperatures over their glass transition temperatures (Tg). This phenomenon occurred due to the surface deformation process initiated by external electric field instabilities on the films. The minimal surface deformation temperature (Tdewet) relative to Tg was found to increase as a function of the polarity of the substituents and the surface pattern roughness was observed to increase linearly with temperature for a fixed electric field and exposure time. Reversal of the electrical field polarity and the use of both hydrophilic and hydrophobic substrates did not significantly change the surface deformation behavior of the films, which is due to the deposition of charges at the free interface. The application of a mask between the electric field electrodes allowed to selectively pattern areas that are exposed. Furthermore, it was observed that this surface deformation behavior was reversible, since heating the films to a temperature above Tg in the absence of an electric field caused the erasure of all surface patterns. PMID:27186805

  17. The effects of self-focused attention, performance demand, and dispositional sexual self-consciousness on sexual arousal of sexually functional and dysfunctional men.

    PubMed

    van Lankveld, Jacques J D M; van den Hout, Marcel A; Schouten, Erik G W

    2004-08-01

    Sexually functional (N=26) and sexually dysfunctional heterosexual men with psychogenic erectile disorder (N=23) viewed two sexually explicit videos. Performance demand was manipulated through verbal instruction that a substantial genital response was to be expected from the videos. Self-focused attention was manipulated by introducing a camera pointed at the participant. Dispositional self-consciousness was assessed by questionnaire. Performance demand was found to independently inhibit the genital response. No main effect of self-focus was found. Self-focus inhibited genital response in men scoring high on general and sexual self-consciousness traits, whereas it enhanced penile tumescence in low self-conscious men. Inhibition effects were found in both volunteers and patients. No interaction effects of performance demand and self-focus were found. Subjective sexual arousal in sexually functional men was highest in the self-focus condition. In sexually dysfunctional men, subjective sexual response proved dependent on locus of attention as well as presentation order. PMID:15178466

  18. Effects of charging and electric field on graphene functionalized with titanium.

    PubMed

    Gürel, H Hakan; Ciraci, S

    2013-07-10

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal-insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties. PMID:23774307

  19. The influence of functional electrical stimulation on hand motor recovery in stroke patients: a review

    PubMed Central

    2014-01-01

    Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success. PMID:25276333

  20. Application of electrical stimulation for functional tissue engineering in vitro and in vivo

    NASA Technical Reports Server (NTRS)

    Radisic, Milica (Inventor); Park, Hyoungshin (Inventor); Langer, Robert (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor)

    2013-01-01

    The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.

  1. Wave function for time-dependent harmonically confined electrons in a time-dependent electric field.

    PubMed

    Li, Yu-Qi; Pan, Xiao-Yin; Sahni, Viraht

    2013-09-21

    The many-body wave function of a system of interacting particles confined by a time-dependent harmonic potential and perturbed by a time-dependent spatially homogeneous electric field is derived via the Feynman path-integral method. The wave function is comprised of a phase factor times the solution to the unperturbed time-dependent Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical driven equation of motion. The wave function reduces to that of the Harmonic Potential Theorem wave function for the case of the time-independent harmonic confining potential. PMID:24070284

  2. The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke

    PubMed Central

    Gandolla, Marta; Ward, Nick S.; Molteni, Franco; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership—the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place. PMID:27073701

  3. Estimating Depth to Argillic Soil Horizons using Apparent Electrical Conductivity Response Functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maps of apparent electrical conductivity (ECa) of the soil profile are widely used in precision agriculture practice and research. A number of ECa sensors are commercially available, each with a unique response function (i.e., the relative contribution of soil at each depth to the integrated ECa rea...

  4. The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke.

    PubMed

    Gandolla, Marta; Ward, Nick S; Molteni, Franco; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership-the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place. PMID:27073701

  5. Estimating depth to argillic soil horizons using apparent electrical conductivity response functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maps of apparent electrical conductivity (ECa) of the soil profile are widely used in precision agriculture practice and research. A number of ECa sensors are commercially available, each with a unique response function (i.e., the relative contribution of soil at each depth to the integrated ECa rea...

  6. [Interest of EEG recording during direct electrical stimulation for brain mapping function in surgery].

    PubMed

    Trebuchon, A; Guye, M; Tcherniack, V; Tramoni, E; Bruder, N; Metellus, P

    2012-06-01

    Brain tumor surgery is at risk when lesions are located in eloquent areas. The interindividual anatomo-functional variability of the central nervous system implies that brain surgery within eloquent regions may induce neurological sequelae. Brain mapping using intraoperative direct electrical stimulation in awake patients has been for long validated as the standard for functional brain mapping. Direct electrical stimulation inducing a local transient electrical and functional disorganization is considered positive if the task performed by the patient is disturbed. The brain area stimulated is then considered as essential for the function tested. However, the exactitude of the information provided by this technique is cautious because the actual impact of cortical direct electrical stimulation is not known. Indeed, the possibility of false negative (insufficient intensity of the stimulation due to the heterogeneity of excitability threshold of different cortical areas) or false positive (current spread, interregional signal propagation responsible for remote effects, which make difficult the interpretation of positive or negative behavioural effects) constitute a limitation of this technique. To improve the sensitivity and specificity of this technique, we used an electrocorticographic recording system allowing a real time visualization of the local. We provide here evidence that direct cortical stimulation combined with electrocorticographic recording could be useful to detect remote after discharge and to adjust stimulation parameters. In addition this technique offers new perspective to better assess connectivity of cerebral networks. PMID:22683402

  7. Stationary electron velocity distribution function in crossed electric and magnetic fields with collisions

    SciTech Connect

    Shagayda, Andrey

    2012-08-15

    Analytical studies and numerical simulations show that the electron velocity distribution function in a Hall thruster discharge with crossed electric and magnetic fields is not Maxwellian. This is due to the fact that the mean free path between collisions is greater than both the Larmor radius and the characteristic dimensions of the discharge channel. However in numerical models of Hall thrusters, a hydrodynamic approach is often used to describe the electron dynamics, because discharge simulation in a fully kinetic approach requires large computing resources and is time consuming. A more accurate modeling of the electron flow in the hydrodynamic approximation requires taking into account the non-Maxwellian character of the distribution function and finding its moments, an approach that reflects the properties of electrons drifting in crossed electric and magnetic fields better than the commonly used Euler or Navier-Stokes approximations. In the present paper, an expression for the electron velocity distribution function in rarefied spatially homogeneous stationary plasma with crossed electric and magnetic fields and predominance of collisions with heavy particles is derived in the relaxation approximation. The main moments of the distribution function including longitudinal and transversal temperatures, the components of the viscous stress tensor, and of the heat flux vector are calculated. Distinctive features of the hydrodynamic description of electrons with a strongly non-equilibrium distribution function and the prospects for further development of the proposed approach for calculating the distribution function in spatially inhomogeneous plasma are discussed.

  8. Low-intensity functional electrical stimulation can increase multidirectional trunk stiffness in able-bodied individuals during sitting.

    PubMed

    Vette, Albert H; Wu, Noel; Masani, Kei; Popovic, Milos R

    2015-08-01

    The inability to voluntarily control the trunk musculature is a major problem following spinal cord injury as it can compromise functional independence and produce unwanted secondary complications. Recent developments suggest that neuroprostheses utilizing functional electrical stimulation (FES) may be able to facilitate or restore trunk control during sitting, standing, and other tasks involving postural control. In spite of these efforts, no study to date has used low-intensity FES to increase multidirectional trunk stiffness and damping in an attempt to bolster stability while minimizing muscle fatigue. Therefore, we set out to investigate how multidirectional trunk stiffness changes in response to low-intensity FES of a few selected trunk muscles. Fifteen healthy participants sitting naturally were randomly perturbed in eight horizontal directions. Trunk stiffness and damping during natural and FES-supported sitting conditions were quantified using force and trunk kinematics in combination with two models of a mass-spring-damper system. Our results indicate that low-intensity FES can increase trunk stiffness in healthy individuals, and this specifically for directions associated with the stimulated muscles. In contrast, trunk damping was not found to be altered during FES. The presented results suggest that low-intensity FES is a simple and effective method for increasing trunk stiffness on demand. PMID:26071025

  9. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters.

    PubMed

    Elmer, Stefan; Hänggi, Jürgen; Jäncke, Lutz

    2014-05-01

    Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes. PMID:24699036

  10. Risk perception of driving as a function of advanced training aimed at recognizing and handling risks in demanding driving situations.

    PubMed

    Rosenbloom, Tova; Shahar, Amit; Elharar, Avi; Danino, Offir

    2008-03-01

    The present study examined in 224 individuals whether an advanced driving training aimed at recognizing, avoiding and handling risks in demanding driving situations, affected perceived risk of driving situations (measured by a questionnaire). The training, which involved both experience and feedback on real performance, specifically intended to emphasize the dangers in loss of control of a vehicle. With that emphasis, it was hypothesized that perceived risk would increase after as compared to before the training. In addition, this study examined whether risk perception was dependent on gender or on age. A mixed ANOVA performed on mean scores on the questionnaire yielded significant main effects for training (before/after), gender, and age. Higher levels of perceived risk were reported after the training as compared to before it, by females than by males, and by older adult drivers than by younger adult drivers. An analysis of the data of a smaller sample showed that the increment in perceived risk was still present 2 months after the training, and that it did not decrease significantly as compared to immediately after the training. These results are discussed in relation to relevant methodological issues and future research. PMID:18329423

  11. Electrical measurement of moisturizing effect on skin hydration and barrier function in psoriasis patients.

    PubMed

    Rim, J H; Jo, S J; Park, J Y; Park, B D; Youn, J I

    2005-07-01

    Transepidermal water loss (TEWL) in psoriatic skin lesions seems to be related to the severity of the psoriasis, and the electrical capacitance and conductance of the skin are indicators of the hydration level of the stratum corneum. We compared the characteristics of these electrical measurements, in assessing the persistent effect of a moisturizing cream on skin hydration and barrier function in psoriasis patients. Seventeen Korean psoriasis patients were recruited. Their right leg was treated with the moisturizer twice daily for 6 weeks, while their left leg was used as the control site. For each patient, one psoriatic plaque on each leg was selected as the involved psoriatic lesion. Uninvolved psoriatic skin was regarded as the apparently healthy looking skin 4-5 cm away from the periphery of the psoriatic lesion. The TEWL, electrical capacitance and conductance were measured, in order to evaluate the barrier function and hydration level of the stratum corneum. The clinical and biophysical data for each patient were recorded at the start of the study and after 2, 4 and 6 weeks. The degree of skin dryness at the applied area improved progressively. The electrical capacitance at the treated psoriatic lesion increased significantly after 2 weeks, and this improvement was maintained during the entire study period. However, no noticeable change was observed in the electrical conductance. The TEWL showed an inverse pattern to that of the skin capacitance, decreasing during the study period. The skin capacitance and TEWL exhibited good correlation with the visual assessment of skin dryness, but the skin conductance did not. Our data suggest that electrical capacitance and TEWL may be useful in the evaluation of the effect of a moisturizer on the hydration status and barrier function of psoriatic skin. PMID:15953083

  12. [Real-time Gait Training System with Embedded Functional Electrical Stimulation].

    PubMed

    Gu, Linyan; Ruan, Zhaomin; Jia, Guifeng; Xla, Jing; Qiu, Lijian; Wu, Changwang; Jin, Xiaoqing; Ning, Gangmin

    2015-07-01

    To solve the problem that mostly gait analysis is independent from the treatment, this work proposes a system that integrates the functions of gait training and assessment for foot drop treatment. The system uses a set of sensors to collect gait parameters and designes multi-mode functional electrical stimulators as actuator. Body area network technology is introduced to coordinate the data communication and execution of the sensors and stimulators, synchronize the gait analysis and foot drop treatment. Bluetooth 4.0 is applied to low the power consumption of the system. The system realizes the synchronization of treatment and gait analysis. It is able to acquire and analyze the dynamic parameters of ankle, knee and hip in real-time, and treat patients by guiding functional electrical stimulation delivery to the specific body locations of patients. PMID:26665943

  13. Relativistic electron distribution function of a plasma in a near-critical electric field

    SciTech Connect

    Sandquist, P.; Sharapov, S. E.; Helander, P.; Lisak, M.

    2006-07-15

    A corrected relativistic collision operator is used to derive a Fokker-Planck equation for the distribution function of relativistic suprathermal electrons in a weakly relativistic plasma, which is then solved by a procedure similar to that employed in Connor and Hastie [Nucl. Fusion 15, 415 (1975)]. Analytical expressions are derived for the electron distribution function in plasmas with the electric field close to critical, which is typical of plasmas with grassy sawteeth on the Joint European Torus. A numerical solution is used for determining the normalization constant, which matches the relativistic region onto the weakly relativistic region. It is found that the scaling of the runaway rate with the electric field obtained by Connor and Hastie is a good approximation in spite of their use of an incomplete form of the collision operator not conserving number of particles. The present analysis determines the proportionality constant and introduces corrections to the earlier scaling of the runaway rate with respect to the electric field. The results obtained for the electron distribution function constitute a basis for studies of experimentally observed phenomena in near-threshold electric field plasmas with a significant suprathermal electron population.

  14. Mathematical model for studying the variation of the electrical parameters in functioning of nonlinear loads

    NASA Astrophysics Data System (ADS)

    Rob, Raluca; Rat, Cezara

    2013-10-01

    This paper presents a study concerning the variation of the most important electrical parameters, measured during the functioning of an electrothermal installation with electromagnetic induction. Two measuring methods are described: the first method consists in using a power and energy quality analyzer and the second uses a data acquisition system that contains an adapting interface and a data acquisition board connected to a computer. In order to compute the electrical parameters, a LabVIEW application was designed. The data acquisition system is able to measure in real time the variation of the parameters and also to save the obtained information.

  15. Electric Field Magnitude and Radar Reflectivity as a Function of Distance from Cloud Edge

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2004-01-01

    The results of analyses of data collected during a field investigation of thunderstorm anvil and debris clouds are reported. Statistics of the magnitude of the electric field are determined as a function of distance from cloud edge. Statistics of radar reflectivity near cloud edge are also determined. Both analyses use in-situ airborne field mill and cloud physics data coupled with ground-based radar measurements obtained in east-central Florida during the summer convective season. Electric fields outside of anvil and debris clouds averaged less than 3 kV/m. The average radar reflectivity at the cloud edge ranged between 0 and 5 dBZ.

  16. Charged Particle in a Time-dependent Electric Field: A White Noise Functional Approach

    SciTech Connect

    Gravador, E. B.; Bornales, J. B.; Liwanag, M. J.

    2008-06-18

    The propagator for a charged particle in a time-dependent electric field is calculated following Hida and Streit's framework where the propagator is the T-transform of Feynman functional. However, we have to regard the potential V = -qE({tau})x{identical_to}{radical}((m/({Dirac_h}/2{pi}))){xi}x following C. C. Bernido and M. V. Carpio-Bernido's prescription of time-dependent potentials. The result agrees with the limiting form of Eqn. (16) of N. Morgenstern Horing, H. L. Cui, and G. Fiorenza, when the magnetic field is switched off, and Eqn. (17) of [3] when the electric field is constant in time.

  17. A functional dissociation between language and multiple-demand systems revealed in patterns of BOLD signal fluctuations

    PubMed Central

    Kanwisher, Nancy; Fedorenko, Evelina

    2014-01-01

    What is the relationship between language and other high-level cognitive functions? Neuroimaging studies have begun to illuminate this question, revealing that some brain regions are quite selectively engaged during language processing, whereas other “multiple-demand” (MD) regions are broadly engaged by diverse cognitive tasks. Nonetheless, the functional dissociation between the language and MD systems remains controversial. Here, we tackle this question with a synergistic combination of functional MRI methods: we first define candidate language-specific and MD regions in each subject individually (using functional localizers) and then measure blood oxygen level-dependent signal fluctuations in these regions during two naturalistic conditions (“rest” and story-comprehension). In both conditions, signal fluctuations strongly correlate among language regions as well as among MD regions, but correlations across systems are weak or negative. Moreover, data-driven clustering analyses based on these inter-region correlations consistently recover two clusters corresponding to the language and MD systems. Thus although each system forms an internally integrated whole, the two systems dissociate sharply from each other. This independent recruitment of the language and MD systems during cognitive processing is consistent with the hypothesis that these two systems support distinct cognitive functions. PMID:24872535

  18. On the spectral expansion of the electric and magnetic dyadic Green's functions in cylindrical harmonics

    NASA Astrophysics Data System (ADS)

    Pearson, L. W.

    1983-04-01

    The expansions of the electric and magnetic dyadic Green's functions are constructed in terms of the solenoidal Hansen vector wave functions in cylindrical coordinates. A static term is shown to arise in the course of conducting the radial spectral integral. This pole term has apparently not been identified in previously published expansions and is similar to recently identified static terms in Cartesian and spherical wave function expansions. The integration in the longitudinal spectral variable is considered, too, and forms which offer two alternative integration paths are constructed.

  19. Theoretical study of the electric dipole moment function of the ClO molecule

    NASA Technical Reports Server (NTRS)

    Pettersson, L. G. M.; Langhoff, S. R.; Chong, D. P.

    1986-01-01

    The potential energy function and electric dipole moment function (EDMF) are computed for ClO X 2Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 + or - 2 per sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.

  20. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective.

    PubMed

    Llinás, Rodolfo R

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified toward one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function. PMID:25408634

  1. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  2. A dynamic model of industrial energy demand in Kenya

    SciTech Connect

    Haji, S.H.H.

    1994-12-31

    This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

  3. Electrical properties of tuff from the ESF as a function of water saturation and temperature

    SciTech Connect

    Roberts, J.J.; Carlberg, E.; Lin, W.

    1998-01-01

    The electrical properties of partially saturated tuff provide information about the microstructure of the matrix and how water is distributed within the pore space as the material undergoes saturation and desaturation cycles. Understanding electrical properties as a function of saturation and temperature is also important because the determination of water saturation during field tests and laboratory experiments depends of reliable laboratory data. Spatial distribution and temporal variation of moisture content in the rock mass in the repository horizontal is one of the most important parameters needed in order to understand coupled TMHC processes. Geophysical methods are required to determine the moisture content in rock masses during thermal tests. These data are currently used in the inversion of electrical resistance tomography (ERT) and ground penetrating radar (GPR) measurements at the LBT, SHT, and the DST tests. This paper contains a description of the experimental procedure, sample preparation, data collection and data analyses for tuff samples from the ESF.

  4. Reconfigurable anisotropy and functional transformations with VO2-based metamaterial electric circuits

    NASA Astrophysics Data System (ADS)

    Savo, Salvatore; Zhou, You; Castaldi, Giuseppe; Moccia, Massimo; Galdi, Vincenzo; Ramanathan, Shriram; Sato, Yuki

    2015-04-01

    We demonstrate an innovative multifunctional artificial material that combines exotic metamaterial properties and the environmentally responsive nature of phase-change media. The tunable metamaterial is designed with the aid of two interwoven coordinate-transformation equations and implemented with a network of thin-film resistors and vanadium dioxide (VO2). The strong temperature dependence of VO2 electrical conductivity results in a significant modification of the resistor network behavior, and we provide experimental evidence for a reconfigurable metamaterial electric circuit that not only mimics a continuous medium, but is also capable of responding to thermal stimulation through dynamic variation of its spatial anisotropy. Upon external temperature change, the overall effective functionality of the material switches between a "truncated cloak" and a "concentrator" for electric currents. Possible applications may include adaptive matching resistor networks, multifunctional electronic devices, and equivalent artificial materials in the magnetic domain. Additionally, the proposed technology could also be relevant for thermal management of integrated circuits.

  5. Effects of functional electrical stimulation (FES) on evoked muscular output in paraplegic quadriceps muscle.

    PubMed

    Rabischong, E; Ohanna, F

    1992-07-01

    In order to assess the effects of FES on muscle output, chronic electrical stimulation of the quadriceps muscle was applied for half an hour twice a day for 2 months, in 10 thoracic level traumatic paraplegic patients. Results concerning torque (at 6 different muscle lengths) and fatigue were measured using a strain gauge transducer in isometric condition, and compared with the findings in 15 paraplegic patients who had not received electrical stimulation, and with 10 able bodied subjects with normal motor functions. With training, muscle strength was very significantly improved whilst fatigue resistance remained at a low level. The peak torque was not found to be of the same muscle length when comparing paraplegics and control subjects; it seemed to demonstrate that length-tension relationship of the muscular actuator was changing when it was electrically activated. Moreover, the force recorded in paraplegics remained markedly lower than in able bodied people. PMID:1508560

  6. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.

  7. Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators

    NASA Technical Reports Server (NTRS)

    Watson, Michael Dale

    2004-01-01

    Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.

  8. Upper limb functional electrical stimulation devices and their man-machine interfaces.

    PubMed

    Venugopalan, L; Taylor, P N; Cobb, J E; Swain, I D

    2015-01-01

    Functional Electrical Stimulation (FES) is a technique that uses electricity to activate the nerves of a muscle that is paralysed due to hemiplegia, multiple sclerosis, Parkinson's disease or spinal cord injury (SCI). FES has been widely used to restore upper limb functions in people with hemiplegia and C5-C7 tetraplegia and has improved their ability to perform their activities of daily living (ADL). At the time of writing, a detailed literature review of the existing upper limb FES devices and their man-machine interfaces (MMI) showed that only the NESS H200 was commercially available. However, the rigid arm splint doesn't fit everyone and prevents the use of a tenodesis grip. Hence, a robust and versatile upper limb FES device that can be used by a wider group of people is required. PMID:26508077

  9. Electrical and morphological characterization of multiwalled carbon nanotubes functionalized via the Bingel reaction

    NASA Astrophysics Data System (ADS)

    Brković, Danijela V.; Ivić, Milka L. Avramov; Rakić, Vesna M.; Valentini, Luca; Uskoković, Petar S.; Marinković, Aleksandar D.

    2015-08-01

    Covalent sidewall functionalization of multiwalled carbon nanotubes (MWCNTs) has been performed using two approaches, direct and indirect cycloaddition through diethyl malonate, based on the Bingel reaction. The results revealed that functionalized MWCNTs demonstrated enhanced electrical properties and significantly lower sheet resistance, especially after electric field thermal assisted annealing at 80 °C was performed. The presence of 1,3-dicarbonyl compounds caused the surface of MWCNTs to be more hydrophilic, approachable for the electrolyte and improved the capacitance performance of Au/MWCNTs electrodes. The modified MWCNTs have been incorporated into nanocomposites by using solution mixing method with polyaniline and drop-casting resulting mixture on the paper substrate. The reduction in the sheet resistance with increasing the content of MWCNTs in the prepared nanocomposite films has been achieved.

  10. Chronic exposure to a 60-Hz electric field: effects on neuromuscular function in the rat

    SciTech Connect

    Jaffe, R.A.; Laszewski, B.L.; Carr, D.B.

    1981-01-01

    Neuromuscular function in adult male rats was studied following 30 days of exposure to a 60-Hz electric field at 100 kV/m (unperturbed field strength). Isometric force transducters were attached to the tendons of the plantaris (predominantly fast twitch), and soleus (predominantly slow twitch) muscles in the urethan-anesthetized rat. Square-wave stimuli were delivered to the distal stump of the transected sciatic nerve. Several measurements were used to characterize neuromuscular function, including twitch characteristics, chronaxie, tetanic and posttetanic potentiation, and fatigue and recovery. The results from three independent series of experiments are reported. Only recovery from fatigue in slow-twitch muscles was consistently and significantly affected (enhanced) by electric-field exposure. This effect does not appear to be mediated by field-induced changes in either neuromuscular transmission, or in the contractile mechanism itself. It is suggested that the effect may be mediated secondary to an effect on mechanisms regulating muscle blood flow or metabolism.

  11. Modulation of cell function by electric field: a high-resolution analysis

    PubMed Central

    Taghian, T.; Narmoneva, D. A.; Kogan, A. B.

    2015-01-01

    Regulation of cell function by a non-thermal, physiological-level electromagnetic field has potential for vascular tissue healing therapies and advancing hybrid bioelectronic technology. We have recently demonstrated that a physiological electric field (EF) applied wirelessly can regulate intracellular signalling and cell function in a frequency-dependent manner. However, the mechanism for such regulation is not well understood. Here, we present a systematic numerical study of a cell-field interaction following cell exposure to the external EF. We use a realistic experimental environment that also recapitulates the absence of a direct electric contact between the field-sourcing electrodes and the cells or the culture medium. We identify characteristic regimes and present their classification with respect to frequency, location, and the electrical properties of the model components. The results show a striking difference in the frequency dependence of EF penetration and cell response between cells suspended in an electrolyte and cells attached to a substrate. The EF structure in the cell is strongly inhomogeneous and is sensitive to the physical properties of the cell and its environment. These findings provide insight into the mechanisms for frequency-dependent cell responses to EF that regulate cell function, which may have important implications for EF-based therapies and biotechnology development. PMID:25994294

  12. A new paradigm of electrical stimulation to enhance sensory neural function.

    PubMed

    Breen, Paul P; ÓLaighin, Gearóid; McIntosh, Caroline; Dinneen, Sean F; Quinlan, Leo R; Serrador, Jorge M

    2014-08-01

    The ability to improve peripheral neural transmission would have significant therapeutic potential in medicine. A technology of this kind could be used to restore and/or enhance sensory function in individuals with depressed sensory function, such as older adults or patients with peripheral neuropathies. The goal of this study was to investigate if a new paradigm of subsensory electrical noise stimulation enhances somatosensory function. Vibration (50Hz) was applied with a Neurothesiometer to the plantar aspect of the foot in the presence or absence of subsensory electrical noise (1/f type). The noise was applied at a proximal site, on a defined region of the tibial nerve path above the ankle. Vibration perception thresholds (VPT) of younger adults were measured in control and experimental conditions, in the absence or presence of noise respectively. An improvement of ∼16% in VPT was found in the presence of noise. These are the first data to demonstrate that modulation of axonal transmission with externally applied electrical noise improves perception of tactile stimuli in humans. PMID:24894033

  13. Modulation of cell function by electric field: a high-resolution analysis.

    PubMed

    Taghian, T; Narmoneva, D A; Kogan, A B

    2015-06-01

    Regulation of cell function by a non-thermal, physiological-level electromagnetic field has potential for vascular tissue healing therapies and advancing hybrid bioelectronic technology. We have recently demonstrated that a physiological electric field (EF) applied wirelessly can regulate intracellular signalling and cell function in a frequency-dependent manner. However, the mechanism for such regulation is not well understood. Here, we present a systematic numerical study of a cell-field interaction following cell exposure to the external EF. We use a realistic experimental environment that also recapitulates the absence of a direct electric contact between the field-sourcing electrodes and the cells or the culture medium. We identify characteristic regimes and present their classification with respect to frequency, location, and the electrical properties of the model components. The results show a striking difference in the frequency dependence of EF penetration and cell response between cells suspended in an electrolyte and cells attached to a substrate. The EF structure in the cell is strongly inhomogeneous and is sensitive to the physical properties of the cell and its environment. These findings provide insight into the mechanisms for frequency-dependent cell responses to EF that regulate cell function, which may have important implications for EF-based therapies and biotechnology development. PMID:25994294

  14. An electrically tunable optical zoom system with separated focusing and zooming functions

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Syuan; Chen, Po-Ju; Lin, Yi-Hsin

    2013-09-01

    In this paper, we demonstrated an electrically tunable optical zoom system with separated focusing and zooming functions. The optical mechanism is discussed. The focusing distance and magnification of the image can be controlled separately by focusing lenses and zooming lenses. As a result, the zoom ratio is independent of objective distance and only depends on the tunable range of the lens power of the active-optical elements. This study helps designing many applications with an optical zoom function, such as cell phones, holographic projectors, pico projectors and endoscopes.

  15. A multi-pad electrode based functional electrical stimulation system for restoration of grasp

    PubMed Central

    2012-01-01

    Background Functional electrical stimulation (FES) applied via transcutaneous electrodes is a common rehabilitation technique for assisting grasp in patients with central nervous system lesions. To improve the stimulation effectiveness of conventional FES, we introduce multi-pad electrodes and a new stimulation paradigm. Methods The new FES system comprises an electrode composed of small pads that can be activated individually. This electrode allows the targeting of motoneurons that activate synergistic muscles and produce a functional movement. The new stimulation paradigm allows asynchronous activation of motoneurons and provides controlled spatial distribution of the electrical charge that is delivered to the motoneurons. We developed an automated technique for the determination of the preferred electrode based on a cost function that considers the required movement of the fingers and the stabilization of the wrist joint. The data used within the cost function come from a sensorized garment that is easy to implement and does not require calibration. The design of the system also includes the possibility for fine-tuning and adaptation with a manually controllable interface. Results The device was tested on three stroke patients. The results show that the multi-pad electrodes provide the desired level of selectivity and can be used for generating a functional grasp. The results also show that the procedure, when performed on a specific user, results in the preferred electrode configuration characteristics for that patient. The findings from this study are of importance for the application of transcutaneous stimulation in the clinical and home environments. PMID:23009589

  16. Restoration of Upper Limb Function in an Individual with Cervical Spondylotic Myelopathy using Functional Electrical Stimulation Therapy: A Case Study.

    PubMed

    Popovic, Milos R; Zivanovic, Vera; Valiante, Taufik A

    2016-01-01

    Non-traumatic spinal cord pathology is responsible for 25-52% of all spinal cord lesions. Studies have revealed that spinal stenosis accounts for 16-21% of spinal cord injury (SCI) admissions. Impaired grips as well as slow unskilled hand and finger movements are the most common complaints in patients with spinal cord disorders, such as myelopathy secondary to cervical spondylosis. In the past, our team carried out couple of successful clinical trials, including two randomized control trials, showing that functional electrical stimulation therapy (FEST) can restore voluntary reaching and/or grasping function, in people with stroke and traumatic SCI. Motivated by this success, we decided to examine changes in the upper limb function following FEST in a patient who suffered loss of hand function due to myelopathy secondary to cervical spondylosis. The participant was a 61-year-old male who had C3-C7 posterior laminectomy and instrumented fusion for cervical myelopathy. The participant presented with progressive right hand weakness that resulted in his inability to voluntarily open and close the hand and to manipulate objects unilaterally with his right hand. The participant was enrolled in the study ~22 months following initial surgical intervention. Participant was assessed using Toronto Rehabilitation Institute's Hand Function Test (TRI-HFT), Action Research Arm Test (ARAT), Functional Independence Measure (FIM), and Spinal Cord Independence Measure (SCIM). The pre-post differences in scores on all measures clearly demonstrated improvement in voluntary hand function following 15 1-h FEST sessions. The changes observed were meaningful and have resulted in substantial improvement in performance of activities of daily living. These results provide preliminary evidence that FEST has a potential to improve upper limb function in patients with non-traumatic SCI, such as myelopathy secondary to cervical spondylosis. PMID:27375547

  17. Restoration of Upper Limb Function in an Individual with Cervical Spondylotic Myelopathy using Functional Electrical Stimulation Therapy: A Case Study

    PubMed Central

    Popovic, Milos R.; Zivanovic, Vera; Valiante, Taufik A.

    2016-01-01

    Non-traumatic spinal cord pathology is responsible for 25–52% of all spinal cord lesions. Studies have revealed that spinal stenosis accounts for 16–21% of spinal cord injury (SCI) admissions. Impaired grips as well as slow unskilled hand and finger movements are the most common complaints in patients with spinal cord disorders, such as myelopathy secondary to cervical spondylosis. In the past, our team carried out couple of successful clinical trials, including two randomized control trials, showing that functional electrical stimulation therapy (FEST) can restore voluntary reaching and/or grasping function, in people with stroke and traumatic SCI. Motivated by this success, we decided to examine changes in the upper limb function following FEST in a patient who suffered loss of hand function due to myelopathy secondary to cervical spondylosis. The participant was a 61-year-old male who had C3–C7 posterior laminectomy and instrumented fusion for cervical myelopathy. The participant presented with progressive right hand weakness that resulted in his inability to voluntarily open and close the hand and to manipulate objects unilaterally with his right hand. The participant was enrolled in the study ~22 months following initial surgical intervention. Participant was assessed using Toronto Rehabilitation Institute’s Hand Function Test (TRI-HFT), Action Research Arm Test (ARAT), Functional Independence Measure (FIM), and Spinal Cord Independence Measure (SCIM). The pre–post differences in scores on all measures clearly demonstrated improvement in voluntary hand function following 15 1-h FEST sessions. The changes observed were meaningful and have resulted in substantial improvement in performance of activities of daily living. These results provide preliminary evidence that FEST has a potential to improve upper limb function in patients with non-traumatic SCI, such as myelopathy secondary to cervical spondylosis. PMID:27375547

  18. Wave function for dissipative harmonically confined electrons in a time-dependent electric field

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Yun; Pan, Xiao-Yin; Li, Yu-Qi

    2016-07-01

    We investigate the many-body wave function of a dissipative system of interacting particles confined by a harmonic potential and perturbed by a time-dependent spatially homogeneous electric field. Applying the method of Yu and Sun (1994), it is found that the wave function is comprised of a phase factor times the solution to the unperturbed time-dependent (TD) Schrödinger equation with the latter being translated by a time-dependent value that satisfies the classical damped driven equation of motion, plus an addition fluctuation term due to the Brownian motion. The wave function reduces to that of the Harmonic Potential Theorem (HPT) wave function in the absence of the dissipation. An example of application of the results derived is also given.

  19. New density functional parameterizations to accurate calculations of electric field gradient variations among compounds.

    PubMed

    Santiago, Régis Tadeu; Haiduke, Roberto Luiz Andrade

    2015-10-30

    This research provides a performance investigation of density functional theory and also proposes new functional parameterizations to deal with electric field gradient (EFG) calculations at nuclear positions. The entire procedure is conducted within the four-component formalism. First, we noticed that traditional hybrid and long-range corrected functionals are more efficient in the description of EFG variations for a set of elements (indium, antimony, iodine, lutetium, and hafnium) among linear molecules. Thus, we selected the PBE0, B3LYP, and CAM-B3LYP functionals and promoted a reoptimization of their parameters for a better description of these EFG changes. The PBE0q variant developed here showed an overall promising performance in a validation test conducted with potassium, iodine, copper, and gold. In general, the correlation coefficients found in linear regressions between experimental nuclear quadrupole coupling constants and calculated EFGs are improved while the systematic EFG errors also decrease as a result of this reparameterization. PMID:26284820

  20. Demand Response Spinning Reserve Demonstration

    SciTech Connect

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  1. Ab initio studies of mechanical, electric, and magnetic properties of functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Milowska, Karolina; Birowska, Magdalena; Majewski, Jacek A.

    2012-02-01

    We present results of extensive theoretical studies of mechanical, electric, and magnetic properties of functionalized carbon nanotubes (CNTs). Our studies are based on the ab initio calculations in the framework of the density functional theory. We have performed calculations for various metallic and semiconductor single wall CNTs, functionalized with simple organic molecules such as OH, COOH, NHn, CHn and metals, Al, Fe, Ni, Cu, Zn, and Pd. We have determined the stability of the functionalized CNTs, their elastic moduli, conductance, and magnetic moments (in the case of CNTs decorated with magnetic ions). These studies shed light on physical mechanisms governing the binding of the adsorbed molecules and also provide valuable quantitative predictions that are of importance for design of novel composite materials and functional devices. In particular, we find out that the Young's modulus of functionalized CNTs is smaller than in the case of bare CNTs, however it is large enough to provide a strong enforcement of composites. The functionalization with molecules leads also to the metallization of semiconducting CNTs, being relevant in the context of CNT interconnects, whereas the functionalization with metals might be used to cut CNTs into ribbons.

  2. 3D Conducting Polymer Platforms for Electrical Control of Protein Conformation and Cellular Functions

    PubMed Central

    Wan, Alwin Ming-Doug; Inal, Sahika; Williams, Tiffany; Wang, Karin; Leleux, Pierre; Estevez, Luis; Giannelis, Emmanuel P.; Fischbach, Claudia; Malliaras, George G.; Gourdon, Delphine

    2015-01-01

    We report the fabrication of three dimensional (3D) macroporous scaffolds made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. The scaffolds offer tunable pore size and morphology, and are electrochemically active. When a potential is applied to the scaffolds, reversible changes take place in their electrical doping state, which in turn enables precise control over the conformation of adsorbed proteins (e.g., fibronectin). Additionally, the scaffolds support the growth of mouse fibroblasts (3T3-L1) for 7 days, and are able to electrically control cell adhesion and pro-angiogenic capability. These 3D matrix-mimicking platforms offer precise control of protein conformation and major cell functions, over large volumes and long cell culture times. As such, they represent a new tool for biological research with many potential applications in bioelectronics, tissue engineering, and regenerative medicine. PMID:26413300

  3. Electric dipole transition moments and permanent dipole moments for spin-orbit configuration interaction wave functions

    NASA Astrophysics Data System (ADS)

    Roostaei, B.; Ermler, W. C.

    2012-03-01

    A procedure for calculating electric dipole transition moments and permanent dipole moments from spin-orbit configuration interaction (SOCI) wave functions has been developed in the context of the COLUMBUS ab initio electronic structure programs. The SOCI procedure requires relativistic effective core potentials and their corresponding spin-orbit coupling operators to define the molecular Hamiltonian, electric dipole transition moment and permanent dipole moment matrices. The procedure can be used for any molecular system for which the COLUMBUS SOCI circuits are applicable. Example applications are reported for transition moments and dipole moments for a series of electronic states of LiBe and LiSr defined in diatomic relativistic ωω-coupling.

  4. The alchemy of demand response: turning demand into supply

    SciTech Connect

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  5. Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification.

    PubMed

    Liang, Bin; Kong, Deyong; Ma, Jincai; Wen, Chongqing; Yuan, Tong; Lee, Duu-Jong; Zhou, Jizhong; Wang, Aijie

    2016-09-01

    Improvement of the stability of functional microbial communities in wastewater treatment system is critical to accelerate pollutants detoxification in cold regions. Although biocathode communities could accelerate environmental pollutants degradation, how to acclimate the cold stress and to improve the catalytic stability of functional microbial communities are remain poorly understood. Here we investigated the structural and functional responses of antibiotic chloramphenicol (CAP) reducing biocathode communities to constant low temperature 10 °C (10-biocathode) and temperature elevation from 10 °C to 25 °C (S25-biocathode). Our results indicated that the low temperature acclimation with electrical stimulation obviously enhanced the CAP nitro group reduction efficiency when comparing the aromatic amine product AMCl2 formation efficiency with the 10-biocathode and S25-biocathode under the opened and closed circuit conditions. The 10-biocathode generated comparative AMCl maximum as the S25-biocathode but showed significant lower dehalogenation rate of AMCl2 to AMCl. The continuous low temperature and temperature elevation both enriched core functional community in the 10-biocathode and S25-biocathode, respectively. The 10-biocathode functioning stability maintained mainly through selectively enriching cold-adapted functional species, coexisting metabolically similar nitroaromatics reducers and maintaining the relative abundance of key electrons transfer genes. This study provides new insights into biocathode functioning stability for accelerating environmental pollutants degradation in cold wastewater system. PMID:27183211

  6. Burst Firing in the Electrosensory System of Gymnotiform Weakly Electric Fish: Mechanisms and Functional Roles

    PubMed Central

    Metzen, Michael G.; Krahe, Rüdiger; Chacron, Maurice J.

    2016-01-01

    Neurons across sensory systems and organisms often display complex patterns of action potentials in response to sensory input. One example of such a pattern is the tendency of neurons to fire packets of action potentials (i.e., a burst) followed by quiescence. While it is well known that multiple mechanisms can generate bursts of action potentials at both the single-neuron and the network level, the functional role of burst firing in sensory processing is not so well understood to date. Here we provide a comprehensive review of the known mechanisms and functions of burst firing in processing of electrosensory stimuli in gymnotiform weakly electric fish. We also present new evidence from existing data showing that bursts and isolated spikes provide distinct information about stimulus variance. It is likely that these functional roles will be generally applicable to other systems and species. PMID:27531978

  7. Theoretical Study of the Electric Dipole Moment Function of the CIO Molecule

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Langhoff, Stephen R.; Chong, Delano P.

    1986-01-01

    The potential energy function and electric dipole moment function (EDMF) are computed for CIO Chi(sup 2)Pi using several different techniques to include electron correlation. The EDMF is used to compute Einstein coefficients, vibrational lifetimes, and dipole moments in higher vibrational levels. Remaining questions concerning the position of the maximum of the EDMF may be resolved through experimental measurement of dipole moments of higher vibrational levels. The band strength of the 1-0 fundamental transition is computed to be 12 +/- 2 /sq cm atm in good agreement with three experimental values, but larger than a recent value of 5 /sq cm atm determined from infrared heterodyne spectroscopy. The theoretical methods used include SCF, CASSCF, multireference singles plus doubles configuration interaction (MRCI) and contracted CI, coupled pair functional (CPF), and a modified version of the CPF method. The results obtained using the different methods are critically compared.

  8. Electrical Properties of Conductive Cotton Yarn Coated with Eosin Y Functionalized Reduced Graphene Oxide.

    PubMed

    Kim, Eunju; Arul, Narayanasamy Sabari; Han, Jeong In

    2016-06-01

    This study reports the fabrication and investigation of the electrical properties of two types of conductive cotton yarns coated with eosin Y or eosin B functionalized reduced graphene (RGO) and bare graphene oxide (GO) using dip-coating method. The surface morphology of the conductive cotton yarn coated with reduced graphene oxide was observed by Scanning Electron Microscope (SEM). Due to the strong electrostatic attractive forces, the negatively charged surface such as the eosin Y functionalized reduced graphene oxide or bare GO can be easily coated to the positively charged polyethyleneimine (PEI) treated cotton yarn. The maximum current for the conductive cotton yarn coated with eosin Y functionalized RGO and bare GO with 20 cycles repetition of (5D + R) process was found to be 793.8 μA and 3482.8 μA. Our results showed that the electrical conductivity of bare GO coated conductive cotton yarn increased by approximately four orders of magnitude with the increase in the dipping cycle of (5D+R) process. PMID:27427672

  9. Solar Electric Propulsion System Integration Technology (SEPSIT). Volume 2: Encke rendezvous mission and space vehicle functional description

    NASA Technical Reports Server (NTRS)

    Gardner, J. A.

    1972-01-01

    A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.

  10. Semiclassical Green's function for electron motion in combined Coulomb and electric fields

    NASA Astrophysics Data System (ADS)

    Ambalampitiya, Harindranath; Fabrikant, Ilya

    2016-05-01

    We are developing an extension of the Green-function approach to the theory of ionization of a multielectron atom in a strong laser field by using the semiclassical Van Vleck-Gutzwiller propagator. For a static field the exact quantum mechanical Green's function can be calculated with an arbitrary accuracy. Therefore, as a first step towards solution of the problem, we apply the semiclassical method to the static field case for the energies above the ionization threshold where all classical trajectories contributing to the Green's function are real. Required trajectories are determined by solving the problem of finding initial velocity and traveling time corresponding to two position points. For the pure electric field case of two trajectories the semiclassical Green's function agrees very well with the exact Green's function. With the inclusion of the Coulomb field, the number of classical trajectories between two points grows rapidly and here we observe that the agreement between the semiclassical and exact Green's functions increases when more trajectories are included in the computation. Supported by the National Science Foundation.

  11. Assessment of the Efficacy of Functional Electrical Stimulation in Patients with Hemiplegia.

    PubMed

    Binder-Macleod, S A; Lee, S C

    1997-01-01

    The purpose of this review is to summarize recent findings relevant to the efficacy of functional electrical stimulation (FES) in the rehabilitation of patients with hemiplegia. Most clinicians still view this modality as an experimental tool. Recent controlled clinical studies have shown that FES has the potential for improving the gait pattern of hemiplegic patients and for reducing shoulder subluxation. Controlled studies showing successful treatment of the hemiplegic hand are not presently available. Given the recent technological advances and promising clinical studies, it appears that FES may become a more common clinical tool in the treatment of the hemiplegic patient in the future. PMID:27620377

  12. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain's ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable and provides imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles. SR using imperceptible stochastic electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS) applied to normal subjects has shown to improve the degree of association between the weak input periodic signals introduced via venous blood pressure receptors and the heart-rate responses. Also, application of SVS over 24

  13. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats

    PubMed Central

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-01-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  14. Effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration after spinal cord injury in rats.

    PubMed

    Tian, Da-Sheng; Jing, Jue-Hua; Qian, Jun; Chen, Lei; Zhu, Bin

    2016-05-01

    [Purpose] The aim of this study was to evaluate the effect of oscillating electrical field stimulation on motor function recovery and myelin regeneration in rats with spinal cord injury. [Subjects and Methods] A rat model of spinal cord injury was constructed by using the Allen weight-drop method. These rats were randomly divided into normal, spinal cord injury, and spinal cord injury + oscillating electrical field stimulation groups. The experimental group received the intervention with oscillating electrical field stimulation, and the control group received the intervention with an electrical field stimulator without oscillating electrical field stimulation. Each group was then randomly divided into seven subgroups according to observation time (1, 2, 4, 6, 8, 10, and 12 weeks). Basso-Beattie-Bresnahan score and inclined plate test score evaluation, motor evoked potential detection, and histological observation were performed. [Results] In the first 2 weeks of oscillating electrical field stimulation, the oscillating electrical field stimulation and inclined plate test scores of spinal cord injury group and spinal cord injury + oscillating electrical field stimulation group were not significantly different. In the fourth week, the scores of the spinal cord injury group were significantly lower than those of the spinal cord injury + oscillating electrical field stimulation group. The motor evoked potential incubation period in the spinal cord injury + oscillating electrical field stimulation group at the various time points was shorter than that in the spinal cord injury group. In the sixth week, the relative area of myelin in the spinal cord injury + oscillating electrical field stimulation group was evidently larger than that in the spinal cord injury group. [Conclusion] Oscillating electrical field stimulation could effectively improve spinal cord conduction function and promote motor function recovery in rats with spinal cord injury, as well as promote myelin

  15. Fatigue and non-fatigue mathematical muscle models during functional electrical stimulation of paralyzed muscle

    PubMed Central

    Cai, Zhijun; Bai, Er-wei; Shields, Richard K.

    2013-01-01

    Electrical muscle stimulation demonstrates potential for preventing muscle atrophy and for restoring functional movement after spinal cord injury (SCI). Control systems used to optimize delivery of electrical stimulation protocols depend upon the algorithms generated using computational models of paralyzed muscle force output. The Hill-Huxley-type model, while being highly accurate, is also very complex, making it difficult for real-time implementation. In this paper, we propose a Wiener-Hammerstein system to model the paralyzed skeletal muscle under electrical stimulus conditions. The proposed model has substantial advantages in identification algorithm analysis and implementation including computational complexity and convergence, which enable it to be used in real-time model implementation. Experimental data sets from the soleus muscles of fourteen subjects with SCI were collected and tested. The simulation results show that the proposed model outperforms the Hill-Huxley-type model not only in peak force prediction, but also in fitting performance for force output of each individual stimulation train. PMID:23667385

  16. Complex electrical properties of shale as a function of frequency and water content

    NASA Astrophysics Data System (ADS)

    Adisoemarta, Paulus Suryono

    1999-10-01

    The objective of this study is to analyze the change in complex electrical permittivity of shale as a function of water content. An experimental research program has been initiated to investigate the electrical properties of swelling shales, shales that have been exposed to water and are therefore expanding, across a wide frequency range, 5 Hz to 1.3 GHz. This range spans the spectrum of the commonly used down-hole logging measurements from the deep laterologs to the microwave dielectric tools. Two distinct measurement techniques have been used to span the range: four-electrode with balanced bridge for the low frequencies, and open-ended coaxial probe with network analyzer at the high end. The probe technique is simple to use, potentially enabling field measurements of complex permittivity to be taken, although some accuracy is sacrificed. The effects of swelling are most pronounced at the lowest frequencies. This investigation discovered a phenomenon of shale: it will generate a direct electrical current under stress that has a potential for a wellbore diagnostic tool. Also the best fluid for shale preservation was found to be Isopar M TM, a mineral oil saturated with deionized water.

  17. A mitochondrial alkaline/neutral invertase isoform (A/N-InvC) functions in developmental energy-demanding processes in Arabidopsis.

    PubMed

    Martín, Mariana L; Lechner, Leandra; Zabaleta, Eduardo J; Salerno, Graciela L

    2013-03-01

    Recent findings demonstrate that alkaline/neutral invertases (A/N-Invs), enzymes that catalyze the breakdown of sucrose into glucose and fructose, are essential proteins in plant life. The fact that different isoforms are present in multiple locations makes them candidates for the coordination of metabolic processes. In the present study, we functionally characterized the encoding gene of a novel A/N-Inv (named A/N-InvC) from Arabidopsis, which localizes in mitochondria. A/N-InvC is expressed in roots, in aerial parts (shoots and leaves) and flowers. A detailed phenotypic analysis of knockout mutant plants (invc) reveals an impaired growth phenotype. Shoot growth was severely reduced, but root development was not affected as reported for A/N-InvA mutant (inva) plants. Remarkably, germination and flowering, two energy demanding processes, were the most affected stages. The effect of exogenous growth regulators led us to suggest that A/N-InvC may be modulating hormone balance in relation to the radicle emergence. We also show that oxygen consumption is reduced in inva and invc in comparison with wild-type plants, indicating that both organelle isoenzymes may play a fundamental role in mitochondrion functionality. Taken together, our results emphasize the involvement of mitochondrial A/N-Invs in developmental processes and uncover the possibility of playing different roles for the two isoforms located in the organelle. PMID:23135328

  18. Response functions for electrically coupled neuronal network: a method of local point matching and its applications.

    PubMed

    Yihe, Lu; Timofeeva, Yulia

    2016-06-01

    Neuronal networks connected by electrical synapses, also referred to as gap junctions, are present throughout the entire central nervous system. Many instances of gap-junctional coupling are formed between dendritic arbours of individual cells, and these dendro-dendritic gap junctions are known to play an important role in mediating various brain rhythms in both normal and pathological states. The dynamics of such neuronal networks modelled by passive or quasi-active (resonant) membranes can be described by the Green's function which provides the fundamental input-output relationships of the entire network. One of the methods for calculating this response function is the so-called 'sum-over-trips' framework which enables the construction of the Green's function for an arbitrary network as a convergent infinite series solution. Here we propose an alternative and computationally efficient approach for constructing the Green's functions on dendro-dendritic gap junction-coupled neuronal networks which avoids any infinite terms in the solutions. Instead, the Green's function is constructed from the solution of a system of linear algebraic equations. We apply this new method to a number of systems including a simple single cell model and two-cell neuronal networks. We also demonstrate that the application of this novel approach allows one to reduce a model with complex dendritic formations to an equivalent model with a much simpler morphological structure. PMID:26994016

  19. Functional results of electrical cortical stimulation of the lower sensory strip.

    PubMed

    Tanriverdi, Taner; Al-Jehani, Hosam; Poulin, Nicole; Olivier, Andre

    2009-09-01

    The aim of this paper is to provide functional results obtained from electrical cortical stimulation of the lower postcentral gyrus in patients who underwent either lesional or non-lesional epilepsy surgery. Group I (n=393) included those patients with gliosis or normal tissue and Group II (n=107) included patients with space-occupying lesions. For cortical stimulation, a unipolar voltage-controlled electrode was used. The tongue, lip, and hand/finger sequences over the lower postcentral gyrus lateromedially in both groups were in agreement with classic teaching. The presence of structural lesions, such as tumors and dysplasia, did not affect the vertical representation of the body parts on the lower sensory strip. Individual variations, which included mosaicism over the sensory strip, were frequent. Whether the functional variability and mosaicism within the sensory cortex result from a pathological condition or not remains to be elucidated in healthy humans using advanced non-invasive brain mapping techniques. PMID:19497753

  20. Functional Electrical Stimulation in Spinal Cord Injury: Clinical Evidence Versus Daily Practice.

    PubMed

    Bersch, Ines; Tesini, Stefani; Bersch, Ulf; Frotzler, Angela

    2015-10-01

    Functional electrical stimulation (FES) has clinical evidence in the rehabilitation of patients with spinal cord injury as indicated by several studies. Both inpatients and outpatients benefit from the therapeutic effect of the FES. The application areas are multifaceted and can be customized on the need for patients. This is represented by the individuality of the programmability of the stimulators and the variety of stimulation schedules that are based on the knowledge about the effects of FES on structural and functional level. Nevertheless, looking into daily clinical practice, the use of FES is rather poor. Expenditure of time, complexity of technical equipment, and compliance and acceptance of therapists and patients should be taken into account as limiting factors. PMID:26471135

  1. EEG-Based Asynchronous BCI Controls Functional Electrical Stimulation in a Tetraplegic Patient

    NASA Astrophysics Data System (ADS)

    Pfurtscheller, Gert; Müller-Putz, Gernot R.; Pfurtscheller, Jörg; Rupp, Rüdiger

    2005-12-01

    The present study reports on the use of an EEG-based asynchronous (uncued, user-driven) brain-computer interface (BCI) for the control of functional electrical stimulation (FES). By the application of FES, noninvasive restoration of hand grasp function in a tetraplegic patient was achieved. The patient was able to induce bursts of beta oscillations by imagination of foot movement. These beta oscillations were recorded in a one EEG-channel configuration, bandpass filtered and squared. When this beta activity exceeded a predefined threshold, a trigger for the FES was generated. Whenever the trigger was detected, a subsequent switching of a grasp sequence composed of 4 phases occurred. The patient was able to grasp a glass with the paralyzed hand completely on his own without additional help or other technical aids.

  2. Examination of Ventricular Contraction Function Using Electrical Lumped Circuit Model of Circulation System

    NASA Astrophysics Data System (ADS)

    Ito, Mitsuyo; Koya, Yoshiharu; Mizoshiri, Isao

    Presently, many of the already proposed blood circulation models are mainly partial models although they are precise models. A complete model that is a combination of these partial models are difficult to analyze because it is complicated to consider both the viscosity of blood and circulatory details at the same time. So, it is difficult to control the model parameters in order to adapt to various cases of circulatory diseases. This paper proposes a complete circulation model as a lumped electrical circuit, which is comparatively simple. In the circuit model, total blood is modeled as seven lumped capacitors, representing the functions of atriums, ventricles, arteries, veins and lungs. We regard the variation of the ventricle capacitance as the driving force of the complete circulation model. In our model, we considered only the variation of pressure between each part and the blood capacity of each part. In particular, the contraction function of the left ventricle is examined under the consideration of whole blood circulation.

  3. Mapping Field-Aligned Currents as a Function of the Interplanetary Electric Field

    NASA Astrophysics Data System (ADS)

    Edwards, T.; Weimer, D. R.; Luhr, H.; Olsen, N.; Stauning, P.

    2015-12-01

    Magnetometer measurements from both the Oersted and CHAMP satellite have been combined together to create a database that is used to construct maps of the polar, magnetic field-aligned currents (FAC). As these satellite data span the time range of years 1999 to 2005 for Oersted and 2001 to 2010 for CHAMP, this large quantity is useful to investigate how the currents change under various conditions. This presentation will focus on the magnitude of the total current as a function of the interplanetary electric field (IEF), the product of the interplanetary magnetic field (IMF) and solar wind velocity. This topic is of particular interest due to the numerous prior studies in the past, both experimental and theoretical, about the behavior of the polar cap electric potentials. Specifically, the electric potentials increase and then level off to a saturated value as the IMF and IEF increase in magnitude. The majority of the theoretical explanations for this saturation involve the "Region 1" currents. What has been found in this investigation is that the total FAC is highly linear as a function of the IEF, up to values of 8 mV/m, for all IMF clock angles. This is more than double the value of the IEF where the electric potentials exhibit the roll-off toward saturation. The linear slope does vary as a function of dipole tilt angle, which correlates with season; the summer hemisphere has a larger slope and higher currents than the winter hemisphere. In addition to looking at the total FAC values, the totals within the Regions 0, 1, and 2 have also been extracted from the FAC patterns, and it has been found that the linearity of the response curve is maintained. Above IEF values of 8 mV/m, corresponding to IMF magnitudes around 20 nT, the volume of data is very low, resulting in much uncertainty in the FAC values that are obtained, although there is some evidence that the total FAC does begin to saturate above 8 mV/m.

  4. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  5. Feasibility of a Hybrid Brain-Computer Interface for Advanced Functional Electrical Therapy

    PubMed Central

    Savić, Andrej M.; Malešević, Nebojša M.; Popović, Mirjana B.

    2014-01-01

    We present a feasibility study of a novel hybrid brain-computer interface (BCI) system for advanced functional electrical therapy (FET) of grasp. FET procedure is improved with both automated stimulation pattern selection and stimulation triggering. The proposed hybrid BCI comprises the two BCI control signals: steady-state visual evoked potentials (SSVEP) and event-related desynchronization (ERD). The sequence of the two stages, SSVEP-BCI and ERD-BCI, runs in a closed-loop architecture. The first stage, SSVEP-BCI, acts as a selector of electrical stimulation pattern that corresponds to one of the three basic types of grasp: palmar, lateral, or precision. In the second stage, ERD-BCI operates as a brain switch which activates the stimulation pattern selected in the previous stage. The system was tested in 6 healthy subjects who were all able to control the device with accuracy in a range of 0.64–0.96. The results provided the reference data needed for the planned clinical study. This novel BCI may promote further restoration of the impaired motor function by closing the loop between the “will to move” and contingent temporally synchronized sensory feedback. PMID:24616644

  6. Electrical conductivity of metals from real-time time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Andrade, Xavier; Correa, Alfredo

    In this presentation, I will discuss how to apply real-time electron dynamics to study electronic currents in crystalline systems and, in particular, how to use this method to predict electrical conductivities in different regimes. This approach presents many interesting theoretical challenges associated to the representation of bulk systems as infinitely periodic. For example, in order to induce electronic currents in the system, we use a gauge transformation that allows us to include finite electric fields in the simulation. We have implemented this approach using time-dependent density functional theory (TDDFT). This implementation allows us to induce, measure and visualize the current density as a function of time, in simulations with thousands of electrons (hundreds and even thousands of atoms). We have found that real-time TDDFT can describe how currents naturally decay in metals. From this dissipation process we can directly calculate the frequency-dependent conductivity, including the direct current (DC) conductivity that is not accessible from linear-response approaches like Kubo-Greenwood.

  7. Functional electrical stimulation of intrinsic laryngeal muscles under varying loads in exercising horses.

    PubMed

    Cheetham, Jon; Regner, Abby; Jarvis, Jonathan C; Priest, David; Sanders, Ira; Soderholm, Leo V; Mitchell, Lisa M; Ducharme, Norm G

    2011-01-01

    Bilateral vocal fold paralysis (BVCP) is a life threatening condition and appears to be a good candidate for therapy using functional electrical stimulation (FES). Developing a working FES system has been technically difficult due to the inaccessible location and small size of the sole arytenoid abductor, the posterior cricoarytenoid (PCA) muscle. A naturally-occurring disease in horses shares many functional and etiological features with BVCP. In this study, the feasibility of FES for equine vocal fold paralysis was explored by testing arytenoid abduction evoked by electrical stimulation of the PCA muscle. Rheobase and chronaxie were determined for innervated PCA muscle. We then tested the hypothesis that direct muscle stimulation can maintain airway patency during strenuous exercise in horses with induced transient conduction block of the laryngeal motor nerve. Six adult horses were instrumented with a single bipolar intra-muscular electrode in the left PCA muscle. Rheobase and chronaxie were within the normal range for innervated muscle at 0.55±0.38 v and 0.38±0.19 ms respectively. Intramuscular stimulation of the PCA muscle significantly improved arytenoid abduction at all levels of exercise intensity and there was no significant difference between the level of abduction achieved with stimulation and control values under moderate loads. The equine larynx may provide a useful model for the study of bilateral fold paralysis. PMID:21904620

  8. The effect of Functional Electric Stimulation in stroke patients' motor control - a case report

    NASA Astrophysics Data System (ADS)

    Pripas, Denise; Rogers Venditi Beas, Allan; Fioramonte, Caroline; Gonsales de Castro, Pedro Claudio; Goroso, Daniel Gustavo; Cecília dos Santos Moreira, Maria

    2011-12-01

    Functional Electric Stimulation (FES) has been studied as a therapeutic resource to reduce spasticity in hemiplegic patients, however there are no studies about the effects of FES in motor control of these patients during functional tasks like balance maintenance. Muscular activation of gastrocnemius medialis and semitendinosus was investigated in both limbs of a hemiparetic patient during self-disturbed quiet stance before and after FES on tibialis anterior, by surface electromyography. The instant of maximum activation peak of GM and ST were calculated immediately after a motor self-disturbance, in order to observe muscular synergy between these two muscles, and possible balance strategies used (ankle or hip strategy). At the preserved limb there occurred distal-proximal synergy (GM followed by ST), expected for small perturbations; however, at spastic limb there was inversion of this synergy (proximal-distal) after FES. It is possible that intervention of electricity had inhibited synergical pathways due to antidromic effect, making it difficult to use ankle strategy in the spastic limb.

  9. Empirically constructed dynamic electric dipole polarizability function of magnesium and its applications

    NASA Astrophysics Data System (ADS)

    Babb, James F.

    2015-08-01

    The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of the photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results for the principal resonance line oscillator strength, for the static polarizability, and for the van der Waals coefficient are given in the Appendix.

  10. Microsoft Kinect-Based Artificial Perception System for Control of Functional Electrical Stimulation Assisted Grasping

    PubMed Central

    Kočović, Slobodan; Popović, Dejan B.

    2014-01-01

    We present a computer vision algorithm that incorporates a heuristic model which mimics a biological control system for the estimation of control signals used in functional electrical stimulation (FES) assisted grasping. The developed processing software acquires the data from Microsoft Kinect camera and implements real-time hand tracking and object analysis. This information can be used to identify temporal synchrony and spatial synergies modalities for FES control. Therefore, the algorithm acts as artificial perception which mimics human visual perception by identifying the position and shape of the object with respect to the position of the hand in real time during the planning phase of the grasp. This artificial perception used within the heuristically developed model allows selection of the appropriate grasp and prehension. The experiments demonstrate that correct grasp modality was selected in more than 90% of tested scenarios/objects. The system is portable, and the components are low in cost and robust; hence, it can be used for the FES in clinical or even home environment. The main application of the system is envisioned for functional electrical therapy, that is, intensive exercise assisted with FES. PMID:25202707

  11. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  12. Study of electric susceptibility, electrical resistivity and energy loss functions of carbon-nickel composite films at different annealing temperatures

    NASA Astrophysics Data System (ADS)

    Dalouji, V.; Elahi, S. M.; Saadi Alecasir, M.

    2015-11-01

    In this work, the optical and electrical properties of carbon-nickel films annealed at different temperatures (300-1000 °C) were investigated. The obtained data of the refractive index n using the Swanepoel’s method can be analyzed to obtain the high-frequency dielectric constant which describes the free carriers and the lattice vibration modes of dispersion. The lattice dielectric constant ɛL and the plasma frequency ωp at 500 °C have maximum values 4.95 and 40.02 × 106 Hz, respectively. The free carrier electric susceptibility measurements in wavelength range (300-1000 nm) are discussed according to the Spitzer-Fan model. It is shown that the electric susceptibility at 500 °C has maximum value and with increasing wavelength it increases. It is also shown that the waste of electrical energy as heat at 500 °C has maximum value and with increasing wavelength it increases. It is found that energy loss by the free charge carriers when traversing the bulk and surface of films at 800 °C has a minimum value and it is approximately constant with wavelength. It is shown that optical properties were consistent with electrical properties of films annealed at different temperatures in temperature range (15-500 K).

  13. Effects function analysis of ELF magnetic field exposure in the electric utility work environment.

    PubMed

    Zhang, J; Nair, I; Sahl, J

    1997-01-01

    The incomplete understanding of the relation between power-frequency fields and biological responses raises problems in defining an appropriate metric for exposure assessment and epidemiological studies. Based on evidence from biological experiments, one can define alternative metrics or effects functions that embody the relationship between field exposure patterns and hypothetical health effects. In this paper, we explore the application of the "effects function" approach to occupational exposure data. Our analysis provides examples of exposure assessments based on a range of plausible effects functions. An EMDEX time series data set of ELF frequency (40-800 Hz) magnetic field exposure measurements for electric utility workers was analyzed with several statistical measures and effects functions: average field strength, combination of threshold and exposure duration, and field strength changes. Results were compared for eight job categories: electrician, substation operator, machinist, welder, plant operator, lineman/splicer, meter reader, and clerical. Average field strength yields a different ranking for these job categories than the ranks obtained using other biologically plausible effects functions. Whereas the group of electricians has the highest exposure by average field strength, the group of substation operators has the highest ranking for most of the other effects functions. Plant operators rank highest in the total number of field strength changes greater than 1 microT per hour. The clerical group remains at the lowest end for all of these effects functions. Our analysis suggests that, although average field strength could be used as a surrogate of field exposure for simply classifying exposure into "low" and "high," this summary measure may be misleading in the relative ranking of job categories in which workers are in "high" fields. These results indicate the relevance of metrics other than average field strength in occupational exposure assessment and

  14. Control of Ion and Electron Distribution Functions by the Electrical Asymmetry Effect

    NASA Astrophysics Data System (ADS)

    Czarnetzki, Uwe

    2011-10-01

    In capacitively coupled RF discharges the ion energy distribution functions at the electrodes and the electron energy distribution function in the bulk can be controlled by the electrically asymmetry effect (EAE). A fundamental RF frequency and its second harmonic are applied in parallel with a fixed but controllable phase. Even in a geometrically symmetric discharge a DC bias is established which can be tuned from negative to positive with the phase as the control parameter. Accordingly the ion energy distribution functions at both electrodes can be controlled. This allows maximizing the ion energy at one electrode while at the same time minimizing it at the counter electrode or vice versa. Also the sheath dynamics and the spatial and temporal Ohmic and stochastic heating of electrons are strongly influenced by the phase. However, the volume and period average of the power input is effectively constant which leads to a similar constant ion flux. The dynamics of these processes has been investigated by experiment, model, and simulation and very good agreement is found throughout. Based on these results the fundamental principles of distribution function control via the EAE will be explained. Further, advantages and limits will be discussed.

  15. Brain-controlled functional electrical stimulation for lower-limb motor recovery in stroke survivors.

    PubMed

    McCrimmon, Colin M; King, Christine E; Wang, Po T; Cramer, Steven C; Nenadic, Zoran; Do, An H

    2014-01-01

    Despite the prevalence of stroke-induced gait impairment due to foot drop, current rehabilitative practices to improve gait function are limited, and orthoses can be uncomfortable and do not provide long-lasting benefits. Therefore, novel modalities that may facilitate lasting neurological and functional improvements, such as brain-computer interfaces (BCIs), have been explored. In this article, we assess the feasibility of BCI-controlled functional electrical stimulation (FES) as a novel physiotherapy for post-stroke foot drop. Three chronic stroke survivors with foot drop received three, 1-hour sessions of therapy during 1 week. All subjects were able to purposefully operate the BCI-FES system in real time. Furthermore, the salient electroencephalographic (EEG) features used for classification by the data-driven methodology were determined to be physiologically relevant. Over the course of this short therapy, the subjects' dorsiflexion active range of motion (AROM) improved by 3°, 4°, and 8°, respectively. These results indicate that chronic stroke survivors can operate the BCI-FES system, and that BCI-FES intervention may promote functional improvements. PMID:25570191

  16. Joint optimisation of price, warranty and recovery planning in remanufacturing of used products under linear and non-linear demand, return and cost functions

    NASA Astrophysics Data System (ADS)

    Yazdian, Seyed Ahmad; Shahanaghi, Kamran; Makui, Ahmad

    2016-04-01

    We investigate joint optimisation of remanufacturing, pricing and warranty decision-making for end-of-life products. A novel mathematical-statistical model is proposed where decisions involve pricing of returned used products (cores), degree of their remanufacturing, selling price and the warranty period for the final remanufactured products. The virtual age reliability improvement approach is chosen to model the upgrading of the cores to higher quality levels. We consider price- and warranty-dependent demand, price- and age-dependent return, and age-dependent remanufacturing cost in the model development. Both linear and non-linear forms of these functions are investigated. First, under some restrictive conditions of upgrade level and age distribution of received cores, special cases of the problem, which can be solved using a recently developed non-linear optimisation solver, are presented. We also implement a particle swarm optimisation algorithm for the solution of the original problem when all the restrictive assumptions are dropped. Finally, numerical experiments and sensitivity analysis are presented to address different aspects of the model and the solution approaches.

  17. Gastric Electrical Stimulation for the Treatment of Obesity: From Entrainment to Bezoars—A Functional Review

    PubMed Central

    Mintchev, Martin P.

    2013-01-01

    Growing worldwide obesity epidemic has prompted the development of two main treatment streams: (a) conservative approaches and (b) invasive techniques. However, only invasive surgical methods have delivered significant and sustainable benefits. Therefore, contemporary research exploration has focused on the development of minimally invasive gastric manipulation methods featuring a safe but reliable and long-term sustainable weight loss effect similar to the one delivered by bariatric surgeries. This antiobesity approach is based on placing external devices in the stomach ranging from electrodes for gastric electrical stimulation to temporary intraluminal bezoars for gastric volume displacement for a predetermined amount of time. The present paper examines the evolution of these techniques from invasively implantable units to completely noninvasive patient-controllable implements, from a functional, rather than from the traditional, parametric point of view. Comparative discussion over the available pilot and clinical studies related to gastric electrical stimulation outlines the promises and the fallacies of this concept as a reliable alternative anti-obesity strategy. PMID:23476793

  18. Functional Electrical Stimulation Helps Replenish Progenitor Cells in the Injured Spinal Cord of Adult Rats

    PubMed Central

    Becker, Daniel; Gary, Devin S.; Rosenzweig, Ephron S.; Grill, Warren M.; McDonald, John W.

    2010-01-01

    Functional electrical stimulation (FES) can restore control and offset atrophy to muscles after neurological injury. However, FES has not been considered as a method for enhancing CNS regeneration. This paper demonstrates that FES dramatically enhanced progenitor cell birth in the spinal cord of rats with a chronic spinal cord injury (SCI). A complete SCI at thoracic level 8/9 was performed on 12 rats. Three weeks later, a FES device to stimulate hindlimb movement was implanted into these rats. Twelve identically-injured rats received inactive FES implants. An additional control group of uninjured rats were also examined. Ten days after FES implantation, dividing cells were marked with bromodeoxyuridine (BrdU). The ‘cell birth’ subgroup (half the animals in each group) was sacrificed immediately after completion of BrdU administration, and the ‘cell survival’ subgroup was sacrificed 7 days later. In the injured ‘cell birth’ subgroup, FES induced an 82-86 % increase in cell birth in the lumbar spinal cord. In the injured ‘cell survival’ subgroup, the increased lumbar newborn cell counts persisted. FES doubled the proportion of the newly-born cells which expressed nestin and other markers suggestive of tripotential progenitors. In uninjured rats, FES had no effect on cell birth/survival. This report suggests that controlled electrical activation of the CNS may enhance spontaneous regeneration after neurological injuries. PMID:20059998

  19. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions

    SciTech Connect

    Horn, Paul R. E-mail: mhg@cchem.berkeley.edu; Head-Gordon, Martin E-mail: mhg@cchem.berkeley.edu

    2015-09-21

    The polarization energy in intermolecular interactions treated by self-consistent field electronic structure theory is often evaluated using a constraint that the atomic orbital (AO) to molecular orbital transformation is blocked by fragments. This approach is tied to AO basis sets, overestimates polarization energies in the overlapping regime, particularly in large AO basis sets, and lacks a useful complete basis set limit. These problems are addressed by the construction of polarization subspaces based on the responses of isolated fragments to weak electric fields. These subspaces are spanned by fragment electric-field response functions, which can capture effects up to the dipole (D), or quadrupole (DQ) level, or beyond. Schemes are presented for the creation of both non-orthogonal and orthogonal fragment subspaces, and the basis set convergence of the polarization energies computed using these spaces is assessed. Numerical calculations for the water dimer, water–Na{sup +}, water–Mg{sup 2+}, water–F{sup −}, and water–Cl{sup −} show that the non-orthogonal DQ model is very satisfactory, with small differences relative to the orthogonalized model. Additionally, we prove a fundamental difference between the polarization degrees of freedom in the fragment-blocked approaches and in constrained density schemes. Only the former are capable of properly prohibiting charge delocalization during polarization.

  20. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions.

    PubMed

    Horn, Paul R; Head-Gordon, Martin

    2015-09-21

    The polarization energy in intermolecular interactions treated by self-consistent field electronic structure theory is often evaluated using a constraint that the atomic orbital (AO) to molecular orbital transformation is blocked by fragments. This approach is tied to AO basis sets, overestimates polarization energies in the overlapping regime, particularly in large AO basis sets, and lacks a useful complete basis set limit. These problems are addressed by the construction of polarization subspaces based on the responses of isolated fragments to weak electric fields. These subspaces are spanned by fragment electric-field response functions, which can capture effects up to the dipole (D), or quadrupole (DQ) level, or beyond. Schemes are presented for the creation of both non-orthogonal and orthogonal fragment subspaces, and the basis set convergence of the polarization energies computed using these spaces is assessed. Numerical calculations for the water dimer, water-Na(+), water-Mg(2+), water-F(-), and water-Cl(-) show that the non-orthogonal DQ model is very satisfactory, with small differences relative to the orthogonalized model. Additionally, we prove a fundamental difference between the polarization degrees of freedom in the fragment-blocked approaches and in constrained density schemes. Only the former are capable of properly prohibiting charge delocalization during polarization. PMID:26395691

  1. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens.

    PubMed

    Albaugh, Daniel L; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  2. Electrical DNA sequencing by graphene edges functionalized with H or N atoms

    NASA Astrophysics Data System (ADS)

    Amorim, Rodrigo G.; Scheicheir, Ralph H.

    2014-03-01

    The current technology of DNA sequencing needs to be revolutionized in order to be sufficiently cost-efficient for widespread application in healthcare and genomic research. One of the most promising proposals is to use a solid-state nanodevice based on graphene due to its atomically thin edges which would readily enable single-nucleobase resolution in transverse conductance measurements. We used ab initio calculations based on Density Functional Theory combined with the non-equilibrium Green's function method to study how the capability of a graphene nanogap to electrically sense the four nucleobases (Adenine, Cytosine, Guanine and Thymine) is affected by different passivation (H or N) of the graphene edges. We will show how, for the same nucleobase, the zero bias conductance can be increased by five orders of magnitude when N atoms are chosen for functionalization over H atoms. Other aspects investigated by us concern the translational process of nucleobases through the nanogap and the corresponding spatial resolution due to diminishing transmittance as the nucleobase moves out of the gap.

  3. Electrically evoked hearing perception by functional neurostimulation of the central auditory system.

    PubMed

    Tatagiba, M; Gharabaghi, A

    2005-01-01

    Perceptional benefits and potential risks of electrical stimulation of the central auditory system are constantly changing due to ongoing developments and technical modifications. Therefore, we would like to introduce current treatment protocols and strategies that might have an impact on functional results of auditory brainstem implants (ABI) in profoundly deaf patients. Patients with bilateral tumours as a result of neurofibromatosis type 2 with complete dysfunction of the eighth cranial nerves are the most frequent candidates for auditory brainstem implants. Worldwide, about 300 patients have already received an ABI through a translabyrinthine or suboccipital approach supported by multimodality electrophysiological monitoring. Patient selection is based on disease course, clinical signs, audiological, radiological and psycho-social criteria. The ABI provides the patients with access to auditory information such as environmental sound awareness together with distinct hearing cues in speech. In addition, this device markedly improves speech reception in combination with lip-reading. Nonetheless, there is only limited open-set speech understanding. Results of hearing function are correlated with electrode design, number of activated electrodes, speech processing strategies, duration of pre-existing deafness and extent of brainstem deformation. Functional neurostimulation of the central auditory system by a brainstem implant is a safe and beneficial procedure, which may considerably improve the quality of life in patients suffering from deafness due to bilateral retrocochlear lesions. The auditory outcome may be improved by a new generation of microelectrodes capable of penetrating the surface of the brainstem to access more directly the auditory neurons. PMID:15986735

  4. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    PubMed Central

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  5. Reducing Peak Demand by Time Zone Divisions

    NASA Astrophysics Data System (ADS)

    Chakrabarti, A.

    2014-09-01

    For a large country like India, the electrical power demand is also large and the infrastructure cost for power is the largest among all the core sectors of economy. India has an emerging economy which requires high rate of growth of infrastructure in the power generation, transmission and distribution. The current peak demand in the country is approximately 1,50,000 MW which shall have a planned growth of at least 50 % over the next five years (Seventeenth Electric Power Survey of India, Central Electricity Authority, Government of India, March 2007). By implementing the time zone divisions each comprising of an integral number of contiguous states based on their total peak demand and geographical location, the total peak demand of the nation can be significantly cut down by spreading the peak demand of various states over time. The projected reduction in capital expenditure over a plan period of 5 years is substantial. Also, the estimated reduction in operations expenditure cannot be ignored.

  6. Do the Effects of Transcutaneous Electrical Nerve Stimulation on Knee Osteoarthritis Pain and Function Last?

    PubMed

    Cherian, Jeffrey Jai; Harrison, Paige E; Benjamin, Samantha A; Bhave, Anil; Harwin, Steven F; Mont, Michael A

    2016-08-01

    Transcutaneous electrical nerve stimulation (TENS) has been shown to decrease pain associated with knee osteoarthritis, which potentially leads to better function, improved quality of life, and postpones the need for surgical intervention. The purpose of this study was to perform a 1-year follow-up of a previous prospective group of patients with knee osteoarthritis, randomized to TENS or standard of care, who were asked to rate their changes in: (1) patient pain perception; (2) subjective medication use; (3) subjective functional abilities; (4) quality of life; (5) device use; and (6) conversion to TKA. A population of 70 patients were randomized to receive either a TENS device or a standard conservative therapy regimen. Patients were evaluated based on various subjective outcomes at minimum 1-year (mean, 19 months) follow-up. The TENS cohort had lower visual analog pain scores compared with the matching cohort. Subjective functional outcomes, as well as functional and activity scores, were also greater in the TENS cohort. Patients in TENS cohort showed significant improvements in their subjective and functional outcomes as compared with their initial status, while the control group did not show significant change. A majority of the TENS patients were able to reduce the amount of pain medications. Additionally, a large portion of the patients assigned to the TENS group continue to use the device, after completion of the trial. This study demonstrated the benefit of TENS for improving subjective outcomes in patients with pain due to knee osteoarthritis, compared with standard conservative treatments. The results of the study suggest that TENS is a safe and effective adjunct as part of the spectrum of current nonoperative treatment methods for knee osteoarthritis. PMID:26540652

  7. Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma.

    PubMed

    Frerichs, I; Zhao, Z; Becher, T; Zabel, P; Weiler, N; Vogt, B

    2016-06-01

    The measurement of rapid regional lung volume changes by electrical impedance tomography (EIT) could determine regional lung function in patients with obstructive lung diseases during pulmonary function testing (PFT). EIT examinations carried out before and after bronchodilator reversibility testing could detect the presence of spatial and temporal ventilation heterogeneities and analyse their changes in response to inhaled bronchodilator on the regional level. We examined seven patients suffering from chronic asthma (49  ±  19 years, mean age  ±  SD) using EIT at a scan rate of 33 images s(-1) during tidal breathing and PFT with forced full expiration. The patients were studied before and 5, 10 and 20 min after bronchodilator inhalation. Seven age- and sex-matched human subjects with no lung disease history served as a control study group. The spatial heterogeneity of lung function measures was quantified by the global inhomogeneity indices calculated from the pixel values of tidal volume, forced expiratory volume in one second (FEV1), forced vital capacity (FVC), peak flow and forced expiratory flow between 25% and 75% of FVC as well as histograms of pixel FEV1/FVC values. Temporal heterogeneity was assessed using the pixel values of expiration times needed to exhale 75% and 90% of pixel FVC. Regional lung function was more homogeneous in the healthy subjects than in the patients with asthma. Spatial and temporal ventilation distribution improved in the patients with asthma after the bronchodilator administration as evidenced mainly by the histograms of pixel FEV1/FVC values and pixel expiration times. The examination of regional lung function using EIT enables the assessment of spatial and temporal heterogeneity of ventilation distribution during bronchodilator reversibility testing. EIT may become a new tool in PFT, allowing the estimation of the natural disease progression and therapy effects on the regional and not only global level. PMID

  8. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    PubMed

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients. PMID:21265597

  9. Abdominal Functional Electrical Stimulation to Assist Ventilator Weaning in Acute Tetraplegia: A Cohort Study

    PubMed Central

    McCaughey, Euan J.; Berry, Helen R.; McLean, Alan N.; Allan, David B.; Gollee, Henrik

    2015-01-01

    Background Severe impairment of the major respiratory muscles resulting from tetraplegia reduces respiratory function, causing many people with tetraplegia to require mechanical ventilation during the acute stage of injury. Abdominal Functional Electrical Stimulation (AFES) can improve respiratory function in non-ventilated patients with sub-acute and chronic tetraplegia. The aim of this study was to investigate the clinical feasibility of using an AFES training program to improve respiratory function and assist ventilator weaning in acute tetraplegia. Methods AFES was applied for between 20 and 40 minutes per day, five times per week on four alternate weeks, with 10 acute ventilator dependent tetraplegic participants. Each participant was matched retrospectively with a ventilator dependent tetraplegic control, based on injury level, age and sex. Tidal Volume (VT) and Vital Capacity (VC) were measured weekly, with weaning progress compared to the controls. Results Compliance to training sessions was 96.7%. Stimulated VT was significantly greater than unstimulated VT. VT and VC increased throughout the study, with mean VC increasing significantly (VT: 6.2 mL/kg to 7.8 mL/kg VC: 12.6 mL/kg to 18.7 mL/kg). Intervention participants weaned from mechanical ventilation on average 11 (sd: ± 23) days faster than their matched controls. Conclusion The results of this study indicate that AFES is a clinically feasible technique for acute ventilator dependent tetraplegic patients and that this intervention may improve respiratory function and enable faster weaning from mechanical ventilation. Trial Registration ClinicalTrials.gov NCT02200393 PMID:26047468

  10. A microscale photovoltaic neurostimulator for fiber optic delivery of functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Song, Yoon-Kyu; Stein, John; Patterson, William R.; Bull, Christopher W.; Davitt, Kristina M.; Serruya, Mijail D.; Zhang, Jiayi; Nurmikko, Arto V.; Donoghue, John P.

    2007-09-01

    Recent advances in functional electrical stimulation (FES) show significant promise for restoring voluntary movement in patients with paralysis or other severe motor impairments. Current approaches for implantable FES systems involve multisite stimulation, posing research issues related to their physical size, power and signal delivery, surgical and safety challenges. To explore a different means for delivering the stimulus to a distant muscle nerve site, we have elicited in vitro FES response using a high efficiency microcrystal photovoltaic device as a neurostimulator, integrated with a biocompatible glass optical fiber which forms a lossless, interference-free lightwave conduit for signal and energy transport. As a proof of concept demonstration, a sciatic nerve of a frog is stimulated by the microcrystal device connected to a multimode optical fiber (core diameter of 62.5 µm), which converts optical activation pulses (~100 µs) from an infrared semiconductor laser source (at 852 nm wavelength) into an FES signal.

  11. Application of the Actor-Critic Architecture to Functional Electrical Stimulation Control of a Human Arm.

    PubMed

    Thomas, Philip; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen

    2009-01-01

    Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of the actor-critic architecture, with neural networks for the both the actor and the critic, as a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a planar arm model and Hill-based muscle dynamics. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic's ability to adapt without supervision in a reasonable number of episodes. Finally, we devise methods for achieving both rapid learning and long-term stability. PMID:20689654

  12. Creating a Reinforcement Learning Controller for Functional Electrical Stimulation of a Human Arm.

    PubMed

    Thomas, Philip S; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen

    2008-01-01

    Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of Reinforcement Learning to create a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a two-dimensional arm model and Hill-based muscle dynamics. An actor-critic architecture is used with artificial neural networks for both the actor and the critic. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic's ability to adapt without supervision in a reasonable number of episodes. PMID:22081795

  13. Electrical double layers and differential capacitance in molten salts from density functional theory

    DOE PAGESBeta

    Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.

    2014-08-05

    Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. Inmore » conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.« less

  14. Electrical double layers and differential capacitance in molten salts from density functional theory

    SciTech Connect

    Frischknecht, Amalie L.; Halligan, Deaglan O.; Parks, Michael L.

    2014-08-05

    Classical density functional theory (DFT) is used to calculate the structure of the electrical double layer and the differential capacitance of model molten salts. The DFT is shown to give good qualitative agreement with Monte Carlo simulations in the molten salt regime. The DFT is then applied to three common molten salts, KCl, LiCl, and LiKCl, modeled as charged hard spheres near a planar charged surface. The DFT predicts strong layering of the ions near the surface, with the oscillatory density profiles extending to larger distances for larger electrostatic interactions resulting from either lower temperature or lower dielectric constant. In conclusion, overall the differential capacitance is found to be bell-shaped, in agreement with recent theories and simulations for ionic liquids and molten salts, but contrary to the results of the classical Gouy-Chapman theory.

  15. Functional Electrical Stimulation Alters the Postural Component of Locomotor Activity in Healthy Humans

    PubMed Central

    Talis, Vera; Ballay, Yves; Grishin, Alexander; Pozzo, Thierry

    2015-01-01

    Knowledge of the effects of Functional Electrical Stimulation (FES) of different intensity on postural stability during walking in healthy subjects is necessary before these relationships in patients with postural disorders can be assessed and understood. We examined healthy subjects in Control group walking on a treadmill for 40 min and in FES group—provided with 30 min of stimulation, which intensity increased every 10 min. The main difference between Control and FES group was the progressive increase of trunk oscillations in sagittal, frontal, and horizontal planes and an increase of relative stance duration in parallel with FES intensity increase. Both Control and FES groups exhibited shank elevation angle increase as an after-effect. It is concluded, that high intensity FES significantly changes the postural component of locomotor activity, but the fatigue signs afterwards were not FES specific. PMID:26733791

  16. Function electrical stimulation signals generator circuits for the central nerve and the sciatic nerve.

    PubMed

    Wenyuan, Li; Zhenyu, Zhang; Zhi-Gong, Wang

    2005-01-01

    Circuits for the signal generation of the FES (functional electrical stimulation) of the central nerve and the sciatic nerve have been designed. The circuits were implemented by using discrete devices. The FES circuits consist of two or three operational amplifiers. The bandwidths of the circuits are more than 10 kHz and their gains are variable from 20 dB to 60 dB. To a load of several kilo-ohms, according to the microelectrode with the nerve, the circuit for stimulating central nerve can provide a current signal, and the signal value is more than 1mA. The circuit for stimulating sciatic nerve can provide a stimulating voltage signal of more than 10 Vs. The loads of the circuits are microelectrodes contacted with nerves. The circuits can be used with two kinds of microelectrodes: cuff microelectrodes which for stimulating sciatic nerve and shaft microelectrodes which for stimulating central nerve. PMID:17281443

  17. Mechanical design and driving mechanism of an isokinetic functional electrical stimulation-based leg stepping trainer.

    PubMed

    Hamzaid, N A; Fornusek, C; Ruys, A; Davis, G M

    2007-12-01

    The mechanical design of a constant velocity (isokinetic) leg stepping trainer driven by functional electrical stimulation-evoked muscle contractions was the focus of this paper. The system was conceived for training the leg muscles of neurologically-impaired patients. A commercially available slider crank mechanism for elliptical stepping exercise was adapted to a motorized isokinetic driving mechanism. The exercise system permits constant-velocity pedalling at cadences of 1-60 rev x min(-1). The variable-velocity feature allows low pedalling forces for individuals with very weak leg muscles, yet provides resistance to higher pedalling effort in stronger patients. In the future, the system will be integrated with a computer-controlled neuromuscular stimulator and a feedback control unit to monitor training responses of spinal cord-injured, stroke and head injury patients. PMID:18274073

  18. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    PubMed

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. PMID:26277460

  19. Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids

    PubMed Central

    Ali, S. M.; Mehmood, C. A; Khan, B.; Jawad, M.; Farid, U; Jadoon, J. K.; Ali, M.; Tareen, N. K.; Usman, S.; Majid, M.; Anwar, S. M.

    2016-01-01

    In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion. PMID:27314229

  20. Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids.

    PubMed

    Ali, S M; Mehmood, C A; Khan, B; Jawad, M; Farid, U; Jadoon, J K; Ali, M; Tareen, N K; Usman, S; Majid, M; Anwar, S M

    2016-01-01

    In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion. PMID:27314229

  1. Models of supply function equilibrium with applications to the electricity industry

    NASA Astrophysics Data System (ADS)

    Aromi, J. Daniel

    Electricity market design requires tools that result in a better understanding of incentives of generators and consumers. Chapter 1 and 2 provide tools and applications of these tools to analyze incentive problems in electricity markets. In chapter 1, models of supply function equilibrium (SFE) with asymmetric bidders are studied. I prove the existence and uniqueness of equilibrium in an asymmetric SFE model. In addition, I propose a simple algorithm to calculate numerically the unique equilibrium. As an application, a model of investment decisions is considered that uses the asymmetric SFE as an input. In this model, firms can invest in different technologies, each characterized by distinct variable and fixed costs. In chapter 2, option contracts are introduced to a supply function equilibrium (SFE) model. The uniqueness of the equilibrium in the spot market is established. Comparative statics results on the effect of option contracts on the equilibrium price are presented. A multi-stage game where option contracts are traded before the spot market stage is considered. When contracts are optimally procured by a central authority, the selected profile of option contracts is such that the spot market price equals marginal cost for any load level resulting in a significant reduction in cost. If load serving entities (LSEs) are price takers, in equilibrium, there is no trade of option contracts. Even when LSEs have market power, the central authority's solution cannot be implemented in equilibrium. In chapter 3, we consider a game in which a buyer must repeatedly procure an input from a set of firms. In our model, the buyer is able to sign long term contracts that establish the likelihood with which the next period contract is awarded to an entrant or the incumbent. We find that the buyer finds it optimal to favor the incumbent, this generates more intense competition between suppliers. In a two period model we are able to completely characterize the optimal mechanism.

  2. Non-linear analysis of body responses to functional electrical stimulation on hemiplegic subjects.

    PubMed

    Yu, W W; Acharya, U R; Lim, T C; Low, H W

    2009-08-01

    Functional electrical stimulation (FES) is a method of applying low-level electrical currents to restore or improve body functions lost through nervous system impairment. FES is applied to peripheral nerves that control specific muscles or muscle groups. Application of advanced signal computing techniques to the medical field has helped to achieve practical solutions to the health care problems accurately. The physiological signals are essentially non-stationary and may contain indicators of current disease, or even warnings about impending diseases. These indicators may be present at all times or may occur at random on the timescale. However, to study and pinpoint these subtle changes in the voluminous data collected over several hours is tedious. These signals, e.g. walking-related accelerometer signals, are not simply linear and involve non-linear contributions. Hence, non-linear signal-processing methods may be useful to extract the hidden complexities of the signal and to aid physicians in their diagnosis. In this work, a young female subject with major neuromuscular dysfunction of the left lower limb, which resulted in an asymmetric hemiplegic gait, participated in a series of FES-assisted walking experiments. Two three-axis accelerometers were attached to her left and right ankles and their corresponding signals were recorded during FES-assisted walking. The accelerometer signals were studied in three directions using the Hurst exponent H, the fractal dimension (FD), the phase space plot, and recurrence plots (RPs). The results showed that the H and FD values increase with increasing FES, indicating more synchronized variability due to FES for the left leg (paralysed leg). However, the variation in the normal right leg is more chaotic on FES. PMID:19743632

  3. Changes in electrical energy requirements to operate an ice cream freezer as a function of sweeteners and gums

    SciTech Connect

    Smith, D.E.; Bakshi, A.S.; Gay, S.A.

    1985-01-01

    Changes in electrical energy required to operate a continuous freezer were monitored for various ice cream formulae. Ice cream formulae consisted of nine different combinations of sucrose, 36 DE corn syrup, and 42 high fructose corn syrup as well as two ratios of guar gum to locust bean gum. Within the same sweetening system, a mix high in locust bean gum tended to have a lower energy demand than mix with large amounts of guar gum. This was especially pronounced in mixes with 50% 42 high fructose corn syrup and/or 50% 36 DE corn syrup solids.

  4. Trade-off between the Mechanical Strength and Microwave Electrical Properties of Functionalized and Irradiated Carbon Nanotube Sheets.

    PubMed

    Williams, Tiffany S; Orloff, Nathan D; Baker, James S; Miller, Sandi G; Natarajan, Bharath; Obrzut, Jan; McCorkle, Linda S; Lebron-Colón, Marisabel; Gaier, James; Meador, Michael A; Liddle, J Alexander

    2016-04-13

    Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements. PMID:27044063

  5. European transition to a low carbon electricity system using a mix of variable renewable energies: carbon saving trajectories as functions of production and storage capacity.

    NASA Astrophysics Data System (ADS)

    Francois, Baptiste; Creutin, Jean-Dominique

    2016-04-01

    Today, most of the produced energy is generated from fossil energy sources (i.e. coal, petroleum). As a result, the energy sector is still the main source of greenhouse gas in the atmosphere. For limiting greenhouse gas emission, a transition from fossil to renewable energy is required, increasing gradually the fraction energy coming from variable renewable energy (i.e. solar power, wind power and run-of-the river hydropower, hereafter denoted as VRE). VRE penetration, i.e. the percentage of demand satisfied by variable renewables assuming no storage capacity, is hampered by their variable and un-controllable features. Many studies show that combining different VRE over space smoothes their variability and increases their global penetration by a better match of demand fluctuations. When the demand is not fully supplied by the VRE generation, backup generation is required from stored energy (mostly from dams) or fossil sources, the latter being associated with high greenhouse gas emission. Thus the VRE penetration is a direct indicator of carbon savings and basically depends on the VRE installed capacity, its mix features, and on the installed storage capacity. In this study we analyze the European transition to a low carbon electricity system. Over a selection of representative regions we analyze carbon saving trajectories as functions of VRE production and storage capacities for different scenarios mixing one to three VRE with non-renewables. We show substantial differences between trajectories when the mix of sources is far from the local optimums, when the storage capacity evolves. We bring new elements of reflection about the effect of transport grid features from local independent systems to a European "copper plate". This work is part of the FP7 project COMPLEX (Knowledge based climate mitigation systems for a low carbon economy; Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/).

  6. Cardiorespiratory and Muscle Metabolic Responses During Conventional Versus Motion Sensor-Assisted Strategies for Functional Electrical Stimulation Standing After Spinal Cord Injury.

    PubMed

    Braz, Gustavo P; Russold, Michael F; Fornusek, Ché; Hamzaid, Nur Azah; Smith, Richard M; Davis, Glen M

    2015-10-01

    This is a case series study with the objective of comparing two motion sensor automated strategies to avert knee buckle during functional electrical stimulation (FES)-standing against a conventional hand-controlled (HC) FES approach. The research was conducted in a clinical exercise laboratory gymnasium at the University of Sydney, Australia. The automated strategies, Aut-A and Aut-B, applied fixed and variable changes of neurostimulation, respectively, in quadriceps amplitude to precisely control knee extension during standing. HC was an "on-demand" increase of stimulation amplitude to maintain stance. Finally, maximal FES amplitude (MA) was used as a control condition, whereby knee buckle was prevented by maximal isometric muscle recruitment. Four AIS-A paraplegics undertook 4 days of testing each, and each assessment day comprised three FES standing trials using the same strategy. Cardiorespiratory responses were recorded, and quadriceps muscle oxygenation was quantified using near-infrared spectroscopy. For all subjects, the longest standing times were observed during Aut-A, followed by Aut-B, and then HC and MA. The standing times of the automated strategies were superior to HC by 9-64%. Apart from a lower heart rates during standing (P = 0.034), the automation of knee extension did not promote different cardiorespiratory responses compared with HC. The standing times during MA were significantly shorter than during the automated or "on-demand" strategies (by 80-250%). In fact, the higher isometric-evoked quadriceps contraction during MA resulted in a greater oxygen demand (P < 0.0001) and wider arteriovenous oxygen extraction (P = 0.08) when compared with the other strategies. In conclusion, even though increased standing times were demonstrated using automated control of knee extension, physiological benefits compared with HC were not evident. PMID:26471136

  7. A Vision of Demand Response - 2016

    SciTech Connect

    Levy, Roger

    2006-10-15

    Envision a journey about 10 years into a future where demand response is actually integrated into the policies, standards, and operating practices of electric utilities. Here's a bottom-up view of how demand response actually works, as seen through the eyes of typical customers, system operators, utilities, and regulators. (author)

  8. Experimental determination of the 1 Sigma(+) state electric dipole moment function of carbon monoxide up to a large internuclear separation

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Farrenq, R.; Guelachvili, G.; Rossetti, C.; Urban, W.

    1984-01-01

    Experimental intensity information is combined with numerically obtained vibrational wave functions in a nonlinear least-squares fitting procedure to obtain the ground electronic state electric dipole moment function of carbon monoxide valid in the range of nuclear oscillation (0.87-1.91 A) of about the V = 38th vibrational level. Vibrational transition matrix elements are computed from this function for Delta V = 1, 2, 3 with V not more than 38.

  9. The typical development of posterior medial frontal cortex function and connectivity during task control demands in youth 8-19years old.

    PubMed

    Liu, Yanni; Angstadt, Mike; Taylor, Stephan F; Fitzgerald, Kate D

    2016-08-15

    To characterize the development of neural substrate for interference processing and task control, this study examined both linear and non-linear effects of age on activation and connectivity during an interference task designed to engage the posterior medial frontal cortex (pMFC). Seventy-two youth, ages 8-19years, performed the Multi-Source Interference Task (MSIT) during functional magnetic resonance imaging (fMRI). With increasing age, overall performance across high-interference incongruent and low-interference congruent trials became faster and more accurate. Effects of age on activation to interference- (incongruent versus congruent conditions), error- (errors versus correct trials during the incongruent condition) and overall task-processing (incongruent plus congruent conditions, relative to implicit baseline) were tested in whole-brain voxel-wise analyses. Age differentially impacted activation to overall task processing in discrete sub-regions of the pMFC: activation in the pre-supplementary motor area (pre-SMA) decreased with age, whereas activation in the dorsal anterior cingulate cortex (dACC) followed a non-linear (i.e., U-shaped) pattern in relation to age. In addition, connectivity of pre-SMA with anterior insula/frontal operculum (AI/FO) increased with age. These findings suggest differential development of pre-SMA and dACC sub-regions within the pMFC. Moreover, as children age, decreases in pre-SMA activation may couple with increases in pre-SMA-AI/FO connectivity to support gains in processing speed in response to demands for task control. PMID:27173761

  10. Testing simulation and structural models with applications to energy demand

    NASA Astrophysics Data System (ADS)

    Wolff, Hendrik

    2007-12-01

    This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality

  11. Useful applications and limits of battery powered implants in functional electrical stimulations.

    PubMed

    Lanmüller, H; Bijak, M; Mayr, W; Rafolt, D; Sauermann, S; Thoma, H

    1997-03-01

    Battery powered stimulation implants have been well-known for a long time as heart pacemakers. In the last few years, fully implantable stimulators have been used in the field of functional electrical stimulation (FES) for applications like dynamic cardiomyoplasty and electro-stimulated graciloplasty for fecal incontinence. The error rate of battery powered implants is significantly smaller than that for conventional stimulator systems, and the quality of life for the patients is increased because the need for an external power and control unit is eliminated. The use of battery powered implants is limited by the complexity of the stimulation control strategies and the battery capacity. Therefore, applications like the stimulation of lower extremities for walking, cochlea stimulation, or direct muscle stimulation cannot be supported. The improvement of implantable batteries, microcontrollers, and ultralow power products is ongoing. In the future, battery powered implants will also meet the requirements of complex applications. Systems for restoration of hand and breathing functions after spinal cord injury can be the next field of use for battery powered implants. For these purposes, we developed a battery powered multichannel implant with a sufficient life span for phrenic pacing. The problems during development and the limits of this system are described in this paper. PMID:9148707

  12. Aging assessment of Westinghouse PWR and General Electric BWR containment isolation functions

    SciTech Connect

    Lee, B.S.; Travis, R.; Grove, E.; DiBiasio, A.

    1996-03-01

    A study was performed to assess the effects of aging on the Containment Isolation (CI) functions of Westinghouse Pressurized Water Reactors and General Electric Boiling Water Reactors. This study is part of the Nuclear Plant Aging Research (NPAR) program, sponsored by the U.S. Nuclear Regulatory Commission. The objectives of this program are to provide an understanding of the aging process and how it affects plant safety so that it can be properly managed. This is one of a number of studies performed under the NPAR program which provide a technical basis for the identification and evaluation of degradation caused by age. Failure data from two national databases, Nuclear Plant Reliability Data System (NPRDS) and Licensee Event Reports (LERs), as well as plant specific data were reviewed and analyzed to understand the effects of aging on the CI functions. This study provided information on the effects of aging on component failure frequency, failure modes, and failure causes. Current inspection, surveillance, and monitoring practices were also reviewed.

  13. Capillary pressure as a unique function of electric permittivity and water saturation

    NASA Astrophysics Data System (ADS)

    Plug, Willem-Jan; Slob, Evert; van Turnhout, Jan; Bruining, Johannes

    2007-07-01

    The relation between capillary pressure (P c ) and interfacial area has been investigated by measuring P c and the electric permittivity at 100 kHz simultaneously as function of the water saturation, (S w ). Drainage and imbibition experiments have been conducted for sand-distilled water-gas (CO2/N2) systems. The main capillary cycles and the scanning curves show hysteresis with the drainage curves displaying higher values than the imbibition curves. The 100 kHz permittivity data also show hysteresis between drainage and imbibition. Furthermore non-monotonic behavior is observed, which is analogous to the interfacial area characteristics obtained from network and micro-pore models. The permittivity behavior is attributed to polarization of the gas-water and water-solid interfaces. The permittivity hysteresis is provoked by the different phase distributions and geometries. Our results show that P c is a unique function of the permittivity and S w , and therefore this work provides clear evidence that the permittivity is a measure for the interfacial area.

  14. Effects of transcutaneous electrical nerve stimulation on quadriceps function in individuals with experimental knee pain.

    PubMed

    Son, S J; Kim, H; Seeley, M K; Feland, J B; Hopkins, J T

    2016-09-01

    Knee joint pain (KJP) is a cardinal symptom in knee pathologies, and quadriceps inhibition is commonly observed among KJP patients. Previously, KJP independently reduced quadriceps strength and activation. However, it remains unknown how disinhibitory transcutaneous electrical nerve stimulation (TENS) will affect inhibited quadriceps motor function. This study aimed at examining changes in quadriceps maximum voluntary contraction (MVC) and central activation ratio (CAR) before and after sensory TENS following experimental knee pain. Thirty healthy participants were assigned to either the TENS or placebo groups. All participants underwent three separate data collection sessions consisting of two saline infusions and one no infusion control in a crossover design. TENS or placebo treatment was administered to each group for 20 min. Quadriceps MVC and CAR were measured at baseline, infusion, treatment, and post-treatment. Perceived knee pain intensity was measured on a 100-mm visual analogue scale. Post-hoc analysis revealed that hypertonic saline infusion significantly reduced the quadriceps MVC and CAR compared with control sessions (P < 0.05). Sensory TENS, however, significantly restored inhibited quadriceps motor function compared with placebo treatment (P < 0.05). There was a negative correlation between changes in MVC and knee pain (r = 0.33, P < 0.001), and CAR and knee pain (r = 0.62, P < 0.001), respectively. PMID:26346597

  15. Electric dipole moment function and line intensities for the ground state of carbon monxide

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Jun; Wu, Jie; Liu, Hao; Cheng, Xin-Lu

    2015-08-01

    An accurate electric dipole moment function (EDMF) is obtained for the carbon monoxide (CO) molecule (X1Σ+) by fitting the experimental rovibrational transitional moments. Additionally, an accurate ab initio EDMF is found using the highly accurate, multi-reference averaged coupled-pair functional (ACPF) approach with the basis set, aug-cc-pV6Z, and a finite-field with ±0.005 a.u. (The unit a.u. is the abbreviation of atomic unit). This ab initio EDMF is very consistent with the fitted ones. The vibrational transition matrix moments and the Herman-Wallis factors, calculated with the Rydberg-Klein-Rees (RKR) potential and the fitted and ab initio EDMFs, are compared with experimental measurements. The consistency of these line intensities with the high-resolution transmission (HITRAN) molecular database demonstrates the improved accuracy of the fitted and ab initio EDMFs derived in this work. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374217 and 11474207).

  16. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    PubMed

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. PMID:25919579

  17. Functional and taxonomic dynamics of an electricity-consuming methane-producing microbial community.

    PubMed

    Bretschger, Orianna; Carpenter, Kayla; Phan, Tony; Suzuki, Shino; Ishii, Shun'ichi; Grossi-Soyster, Elysse; Flynn, Michael; Hogan, John

    2015-11-01

    The functional and taxonomic microbial dynamics of duplicate electricity-consuming methanogenic communities were observed over a 6 months period to characterize the reproducibility, stability and recovery of electromethanogenic consortia. The highest rate of methanogenesis was 0.72 mg-CH4/L/day, which occurred during the third month of enrichment when multiple methanogenic phylotypes and associated Desulfovibrionaceae phylotypes were present in the electrode-associated microbial community. Results also suggest that electromethanogenic microbial communities are very sensitive to electron donor-limiting open-circuit conditions. A 45 min exposure to open-circuit conditions induced an 87% drop in volumetric methane production rates. Methanogenic performance recovered after 4 months to a maximum value of 0.30 mg-CH4/L/day under set potential operation (-700 mV vs Ag/AgCl); however, current consumption and biomass production was variable over time. Long-term functional and taxonomic analyses from experimental replicates provide new knowledge toward understanding how to enrich electromethanogenic communities and operate bioelectrochemical systems for stable and reproducible performance. PMID:26178785

  18. Seat Pressure Changes after Eight Weeks of Functional Electrical Stimulation Cycling: A Pilot Study

    PubMed Central

    2013-01-01

    Background: Pressure ulcers (PUs) are a common secondary condition associated with spinal cord injury (SCI). PUs can potentially interfere with activities of daily living, occupational duties, and rehabilitation programs, and in severe cases they may threaten life. Functional electrical stimulation (FES) cycling has been proposed as an activity that may decrease the risk of PUs through the promotion of increased blood flow and thickening of the gluteus maximus. The purpose of this pilot study was to measure the effects of home-based FES cycling on the average and maximal seat pressure of wheelchair-reliant individuals with SCI. Method: Eight male veterans with C5-T6 SCI participated in FES cycling 3 times per week. Cycling parameters were individualized depending on the comfort of the participants and the amount of current needed to perform the cycling activity. Pressure mapping was completed immediately before and after the 8 weeks of FES cycling with the measurement performed by a force sensitive application (FSA) 4 pressure mapping system. Results: The mean average seat pressure decreased by 3.69 ± 4.46 mm Hg (35.57 ± 11.99 to 31.88 ± 13.02), while the mean maximum seat pressure decreased by 14.56 ±18.45 mm Hg (112 ± 34.73 to 98.36 ± 25.89). Although neither measurement was statistically significant, there was a strong trend toward a reduction in average and maximal seat pressure (P = .052 and P = .061, respectively). Conclusion: The positive trend of decreased seat pressure in our study creates incentive for further investigation of the effects of electrical stimulation activities on seat pressure and the prevention of PUs. PMID:23960706

  19. Comparing neural response to painful electrical stimulation with functional MRI at 3 and 7 T.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Seidel, Eva-Maria; Sladky, Ronald; Kraus, Christoph; Küblböck, Martin; Pfabigan, Daniela M; Hummer, Allan; Grahl, Arvina; Ganger, Sebastian; Windischberger, Christian; Lamm, Claus; Lanzenberger, Rupert

    2013-11-15

    Progressing from 3T to 7 T functional MRI enables marked improvements of human brain imaging in vivo. Although direct comparisons demonstrated advantages concerning blood oxygen level dependent (BOLD) signal response and spatial specificity, these mostly focused on single brain regions with rather simple tasks. Considering that physiological noise also increases with higher field strength, it is not entirely clear whether the advantages of 7T translate equally to the entire brain during tasks which elicit more complex neuronal processing. Therefore, we investigated the difference between 3T and 7 T in response to transcutaneous electrical painful and non-painful stimulation in 22 healthy subjects. For painful stimuli vs. baseline, stronger activations were observed at 7 T in several brain regions including the insula and supplementary motor area, but not the secondary somatosensory cortex (p<0.05 FWE-corrected). Contrasting painful vs. non-painful stimulation limited the differences between the field strengths to the periaqueductal gray (PAG, p<0.001 uncorrected) due to a similar signal increase at 7 T for both the target and specific control condition in most brain regions. This regional specificity obtained for the PAG at higher field strengths was confirmed by an additional spatial normalization strategy optimized for the brainstem. Here, robust BOLD responses were obtained in the dorsal PAG at 7 T (p<0.05 FWE-corrected), whereas at 3T activation was completely missing for the contrast against non-painful stimuli. To summarize, our findings support previously reported benefits obtained at ultra-high field strengths also for complex activation patterns elicited by painful electrical stimulation. However, this advantage depends on the region and even more on the contrast of interest. The greatest gain at 7 T was observed within the small brainstem region of the PAG, where the increased field strength offered marked improvement for the localization of activation

  20. Thermal conductivity and electrical resistivity of gadolinium as functions of pressure and temperature

    NASA Astrophysics Data System (ADS)

    Jacobsson, P.; Sundqvist, B.

    1989-11-01

    The electrical resistivity ρ and the thermal diffusivity a of gadolinium have been measured as functions of T in the range 45-400 K. The thermal conductivity λ has been calculated from a and experimental data for the specific-heat capacity, cp. λ can be analyzed in terms of simple models for the lattice and electronic components above the Curie temperature TC~=291.4 K. Below TC an additional term, identified as a magnon (spin-wave) thermal conductivity λm, is found. ρ and λ have also been studied as functions of T and P in the range 150-400 K and 0-2.5 GPa. The Lorenz function L=ρλ/T increases by about 20%/GPa under pressure due to a very strong pressure dependence of the lattice thermal conductivity. The pressure coefficients of ρ and λ are -5.1×10-2 and 0.22 GPa-1, respectively, at 300 K (above TC), and 0 and 0.16 GPa-1 at 200 K (below TC). TC and the spin-reorganization temperature Tr~=219 K both decrease under pressure, at the rates -14.0 and -22.0 K/GPa, respectively. Although the magnitude of λm cannot be accurately calculated from the zero-pressure data for λ, the temperature dependence of dλ/dP allows us to distinguish between several models and assign a value of λm~=1.5 W m-1 K-1, or 16.0% of λ, at 200 K.

  1. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats.

    PubMed

    Huang, Jinghui; Zhang, Yongguang; Lu, Lei; Hu, Xueyu; Luo, Zhuojing

    2013-12-01

    The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions. PMID:24118464

  2. Successful demand-side management

    SciTech Connect

    Hadley, S.; Flanigan, T.

    1995-05-01

    This article is a brief summary of a series of case studies of five publicly-owned utilities that are noted for their success with demand-side management. These utilities are: (1) city of Austin, Texas, (2) Burlington Electric Department in Vermont, (3) Sacramento Municipal Utility District in California, (4) Seattle City Light, and (5) Waverly Light and Power in Iowa. From these case studies, the authors identified a number of traits associated with a successful demand-side management program. These traits are: (1) high rates, (2) economic factors, (3) environmental awareness, (4) state emphasis on integrated resource planning/demand side management, (5) local political support, (6) large-sized utilities, and (7) presence of a champion.

  3. Electrical conductivity of mantle clinopyroxene as a function of water content and its implication on electrical structure of uppermost mantle

    NASA Astrophysics Data System (ADS)

    Zhao, Chengcheng; Yoshino, Takashi

    2016-08-01

    The electrical conductivity of San Carlos clinopyroxene aggregates with various water contents were measured under Ni-NiO buffer at 1.5 GPa and 600-1200 K in a DIA-type apparatus. The conductivity increases with increasing water content in clinopyroxene. Hidden conduction mechanism was detected because of the much smaller iron content in clinopyroxene, which was usually covered by small polaron conduction in other nominally anhydrous minerals. The identified activation enthalpies ranged from 0.70-0.75 eV to 1.23-1.37 eV. Our result reveals that the dominant charge-carrying species in electrical conductivity could change with temperature and water content. At high temperatures relevant to asthenospheric condition, activation enthalpy for the conductivity agrees well with that for the hydrogen self-diffusion. The dominant charge carrier therefore might be M site vacancy. However, contrary to previous view that all hydrogens contribute to increasing conductivity equally, our result shows that only a limited amount (20%-40%) of hydrogen acts as effective charge carrier in clinopyroxene. On the other hand, the activation enthalpy for the conductivity at low temperatures is significantly lower than that for the hydrogen self-diffusion, similar to what has been observed in olivine and orthopyroxene. This type of conduction is probably caused by fast diffusion of specific hydrogen or fast hydrogen grain boundary diffusion. At low temperatures, the proton conduction of clinopyroxene is nearly one order and two orders of magnitude lower than those of olivine and orthopyroxene, respectively, and tends to converge at high temperatures. Using the present data combined with conductivity of olivine and orthopyroxene, a laboratory-based conductivity-depth profile in the uppermost mantle shows that hydrous clinopyroxene cannot account for the high conductive regions observed beneath the ocean floor near Eastern Pacific Rise. The presence of partial melt would be unavoidable.

  4. Characterization of electrical resistivity as a function of temperature in the Mo-Si-B system

    SciTech Connect

    Beckman, Sarah E.

    1999-12-10

    Measurements of electrical resistivity as a function of temperature from 25 to 1,500 C were conducted on polycrystalline samples in the Mo-Si-B system. Single phase, or nearly single phase, samples were prepared for the following phases: Mo{sub 3}Si, Mo{sub 5}SiB{sub 2}, Mo{sub 5}Si{sub 3}B{sub x}, MoB, MoSi{sub 2}, and Mo{sub 5}Si{sub 3}. Thesis materials all exhibit resistivity values within a narrow range(4--22 x 10{sup {minus}7}{Omega}-m), and the low magnitude suggests these materials are semi-metals or low density of states metals. With the exception of MoSi{sub 2}, all single phase materials in this study were also found to have low temperature coefficient of resistivity(TCR) values. These values ranged from 2.10 x 10{sup {minus}10} to 4.74 x 10{sup {minus}10}{Omega}-m/{degree} C, and MoSi{sub 2} had a TCR of 13.77 x 10{sup {minus}10}{Omega}-m/{degree} C. The results from the single phase sample measurements were employed in a natural log rule-of-mixtures model to relate the individual phase resistivity values to those of multiphase composites. Three Mo-Si-B phase regions were analyzed: the binary Mo{sub 5}Si{sub 3}-MoSi{sub 2} system, the ternary phase field Mo{sub 5}Si{sub 3}B{sub x}MoB-MoSi{sub 2}, and the Mo{sub 3}Si-Mo{sub 5}SiB{sub 2}-Mo{sub 5} Si{sub 3}B{sub x} ternary region. The experimental data for samples in each of these regions agreed with the natural log model and illustrated that this model can predict the electrical resistivity as a function of temperature of multi-phase, sintered samples within an error of one standard deviation.

  5. Density Functional Theory in High Energy Density Physics: phase-diagram and electrical conductivity of water

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.

    2007-06-01

    Atomistic simulations employing Density Functional Theory (DFT) have recently emerged as a powerful way of increasing our understanding of materials and processes in high energy density physics. Knowledge of the properties of water (equation of state, electrical conductivity, diffusion, low-energy opacity) is essential for correctly describing the physics of giant planets as well as shock waves in water. Although a qualitative picture of water electrical conductivity has emerged, the necessary quantitative information is scarce over a wide range of temperature and density. Since experiments can only access certain areas of phase space, and often require modeling as a part of the analysis, Quantum Molecular Dynamics simulations play a vital role. Using finite-temperature density functional theory (FT-DFT), we have investigated the structure and electronic conductivity of water across three phase transitions (molecular liquid/ ionic liquid/ superionic/ electronic liquid). The ionic contribution to the conduction is calculated from proton diffusion and the electronic contribution is calculated using the Kubo-Greenwood formula. The calculations are performed with VASP, a plane-wave pseudo-potential code. There is a rapid transition to ionic conduction at 2000 K and 2 g/cm^3, whereas electronic conduction dominates at temperatures at and above 6000 K&[tilde;1]. Contrary to earlier results using the Car-Parrinello method&[tilde;2], we predict that the fluid bordering the superionic phase is conducting above 4000 K and 100 GPa. Our comprehensive use of FT-DFT explains the new findings. The calculated conductivity is compared to experimental data. I gratefully acknowledge Mike Desjarlais, my collaborator in this effort. The LDRD office at Sandia supported this work. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL

  6. Statistical approaches to short-term electricity forecasting

    NASA Astrophysics Data System (ADS)

    Kellova, Andrea

    The study of the short-term forecasting of electricity demand has played a key role in the economic optimization of the electric energy industry and is essential for power systems planning and operation. In electric energy markets, accurate short-term forecasting of electricity demand is necessary mainly for economic operations. Our focus is directed to the question of electricity demand forecasting in the Czech Republic. Firstly, we describe the current structure and organization of the Czech, as well as the European, electricity market. Secondly, we provide a complex description of the most powerful external factors influencing electricity consumption. The choice of the most appropriate model is conditioned by these electricity demand determining factors. Thirdly, we build up several types of multivariate forecasting models, both linear and nonlinear. These models are, respectively, linear regression models and artificial neural networks. Finally, we compare the forecasting power of both kinds of models using several statistical accuracy measures. Our results suggest that although the electricity demand forecasting in the Czech Republic is for the considered years rather a nonlinear than a linear problem, for practical purposes simple linear models with nonlinear inputs can be adequate. This is confirmed by the values of the empirical loss function applied to the forecasting results.

  7. Ionic Asymmetry and Solvent Excluded Volume Effects on Spherical Electric Double Layers: A Density Functional Approach

    SciTech Connect

    Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.; Sushko, Maria L.; Marucho, Marcelo

    2014-05-29

    In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.

  8. Modulation of proprioceptive feedback during functional electrical stimulation: an fMRI study.

    PubMed

    Christensen, Mark Schram; Grey, Michael James

    2013-06-01

    Functional electrical stimulation (FES) is sometimes used as a therapeutic modality in motor rehabilitation to augment voluntary motor drive to effect movement that would otherwise not be possible through voluntary activation alone. Effective motor rehabilitation should require that the central nervous system integrate efferent commands and appropriate afferent information to update the internal models of acquired skills. Here, we investigate whether FES-evoked (FES-ev) and FES-assisted (FES-as) movement are associated with the normal integration of motor commands and sensory feedback in a group of healthy participants during functional magnetic resonance imaging (fMRI). Sensory feedback was removed with a peripheral ischaemic nerve block while the participants performed voluntary (VOL), FES-ev or FES-as movement during fMRI. Before the peripheral nerve block, secondary somatosensory area (S2) activation was greater for the FES-ev and FES-as conditions than for the VOL condition. During the ischaemic nerve block, S2 activation was reduced for the FES-ev condition but not for FES-as and VOL conditions. The nerve block also reduced activation during FES in the primary somatosensory cortex and other motor areas including primary motor cortex, dorsal premotor cortex and supplementary motor area. In contrast, superior parietal lobule (area 7A) and precuneus activation was reduced as a consequence of the ischaemic nerve block in the VOL condition. These data suggest FES-related S2 activation is mainly a sensory phenomenon and does not reflect integration of sensory signals with motor commands. PMID:23461704

  9. Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: A density functional approach

    PubMed Central

    Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.; Sushko, Maria L.; Marucho, Marcelo

    2014-01-01

    In this article, we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry, and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids [J. Chem. Phys. 124, 154506 (2006); Hansen-Goos and Roth, J. Phys.: Condens. Matter 18, 8413 (2006)]. It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilize a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the mean spherical approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry, and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that

  10. Four weeks of functional electrical stimulated cycling after spinal cord injury: a clinical cohort study.

    PubMed

    Kuhn, Daniel; Leichtfried, Veronika; Schobersberger, Wolfgang

    2014-09-01

    The aim of this study was to determine the efficacy and the effects of functional electrical stimulated cycling (FES cycling) in patients with spinal cord injury during their rehabilitation in a special acute care unit. Thirty patients [10 with American Spinal Injury Association Impairment Scale (AIS) grade A, three with AIS grade B, 15 with AIS grade C, two with AIS grade D] aged 44±15.5 years and 2 (median) (interquartile range, 1.0-4.25) months after spinal cord injury were included in the study. The patients participated in a 20-min FES-cycling program 2 days per week for 4 weeks during their acute inpatient rehabilitation. The influence on muscle cross-section, muscle and leg circumference, spasticity, and the walking ability parameter (distance, time, aids) was measured. Muscle stimulation intensity and output parameters (pedalling time and distance) were also recorded. Spasticity decreased during hip abduction and adduction (70 and 98.1%, respectively). Spasticity during knee flexion and knee extension decreased by 66.8 and 76.6%, and a decrease was found during dorsal foot extension (67.8%; for all, P<0.05). Presession-postsession comparisons showed that after 4 weeks of FES cycling, an increase in the circumference of the cross-sectional area of 15.3% on the left and of 17% on the right m. rectus femoris could be observed in group AIS A+B. In the AIS C+D group, the circumference of the left m. rectus femoris increased by 25% and that of the right m. rectus femoris by 21% (for all, P<0.05). The results of the study show that FES cycling in combination with function-oriented physiotherapy and occupational therapy can have a positive influence on spasticity, walking ability, and muscular reactivation. It seems to support circulatory processes within the rehabilitation of paraplegics already after a 4-week intervention. PMID:24802976

  11. Effects of eye movement with functional electrical stimulation on balance in stroke patients with neglect syndrome

    PubMed Central

    Park, Si-Eun

    2016-01-01

    [Purpose] The aim of the present study was to determine whether eye movement in conjunction with functional electrical stimulation (FES) could improve balance ability in stroke patients with neglect syndrome. [Subjects and Methods] The subjects consisted of 15 stroke patients with neglect syndrome. The intervention was eye movement in conjunction with FES. The program was conducted 5 times per week, for 6 weeks. Static balance (eyes-open and eyes-closed) and dynamic balance were measured before and after testing. [Results] In measurement of static balance, subjects showed significant differences in sway length and sway area when examined in the eyes-open condition, but not the eyes-closed condition. In measurement of dynamic balance, the subjects showed significant differences in limit of stability (forward/backward and left/right). [Conclusion] These results indicate that eye movement in conjunction with FES had a positive effect on the static and dynamic balance in the eyes-open condition, but not in the eyes-closed condition of stroke patients with neglect syndrome. Further studies should therefore investigate various interventions in stroke patients with neglect syndrome. PMID:27313375

  12. Effects of eye movement with functional electrical stimulation on balance in stroke patients with neglect syndrome.

    PubMed

    Park, Si-Eun

    2016-05-01

    [Purpose] The aim of the present study was to determine whether eye movement in conjunction with functional electrical stimulation (FES) could improve balance ability in stroke patients with neglect syndrome. [Subjects and Methods] The subjects consisted of 15 stroke patients with neglect syndrome. The intervention was eye movement in conjunction with FES. The program was conducted 5 times per week, for 6 weeks. Static balance (eyes-open and eyes-closed) and dynamic balance were measured before and after testing. [Results] In measurement of static balance, subjects showed significant differences in sway length and sway area when examined in the eyes-open condition, but not the eyes-closed condition. In measurement of dynamic balance, the subjects showed significant differences in limit of stability (forward/backward and left/right). [Conclusion] These results indicate that eye movement in conjunction with FES had a positive effect on the static and dynamic balance in the eyes-open condition, but not in the eyes-closed condition of stroke patients with neglect syndrome. Further studies should therefore investigate various interventions in stroke patients with neglect syndrome. PMID:27313375

  13. Evoked electromyography-based closed-loop torque control in functional electrical stimulation.

    PubMed

    Zhang, Qin; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine

    2013-08-01

    This paper proposed a closed-loop torque control strategy of functional electrical stimulation (FES) with the aim of obtaining an accurate, safe, and robust FES system. Generally, FES control systems are faced with the challenge of how to deal with time-variant muscle dynamics due to physiological and biochemical factors (such as fatigue). The degraded muscle force needs to be compensated in order to ensure the accuracy of the motion restored by FES. Another challenge concerns the fact that implantable sensors are unavailable to feedback torque information for FES in humans. As FES-evoked electromyography (EMG) represents the activity of stimulated muscles, and also enables joint torque prediction as presented in our previous studies, here we propose an EMG-feedback predictive controller of FES to control joint torque adaptively. EMG feedback contributes to taking the activated muscle state in the FES torque control system into account. The nature of the predictive controller facilitates prediction of the muscle mechanical response and the system can therefore control joint torque from EMG feedback and also respond to time-variant muscle state changes. The control performance, fatigue compensation and aggressive control suppression capabilities of the proposed controller were evaluated and discussed through experimental and simulation studies. PMID:23529189

  14. Mesoporous carbon/zirconia composites: a potential route to chemically functionalized electrically-conductive mesoporous materials.

    PubMed

    Oh, Jung-Min; Kumbhar, Amar S; Geiculescu, Olt; Creager, Stephen E

    2012-02-14

    Mesoporous nanocomposite materials in which nanoscale zirconia (ZrO(2)) particles are embedded in the carbon skeleton of a templated mesoporous carbon matrix were prepared, and the embedded zirconia sites were used to accomplish chemical functionalization of the interior surfaces of mesopores. These nanocomposite materials offer a unique combination of high porosity (e.g., ∼84% void space), electrical conductivity, and surface tailorability. The ZrO(2)/carbon nanocomposites were characterized by thermogravimetric analysis, nitrogen-adsorption porosimetry, helium pychnometry, powder X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Comparison was made with templated mesoporous carbon samples prepared without addition of ZrO(2). Treatment of the nanocomposites with phenylphosphonic acid was undertaken and shown to result in robust binding of the phosphonic acid to the surface of ZrO(2) particles. Incorporation of nanoscale ZrO(2) surfaces in the mesoporous composite skeleton offers unique promise as a means for anchoring organophosphonates inside of pores through formation of robust covalent Zr-O-P bonds. PMID:22248432

  15. Autogenic EMG-Controlled Functional Electrical Stimulation for Ankle Dorsiflexion Control

    PubMed Central

    Yeom, Hojun; Chang, Young-Hui

    2010-01-01

    Our objectives were to develop and test a new system for the potential for stable, real-time cancellation of residual stimulation artefacts (RSA) using surface electrode autogenic electromyography-controlled functional electrical stimulator (aEMGcFES). This type of closed-loop FES could be used to provide more natural, continuous control of lower extremity paretic muscles. We built upon work that has been done in the field of FES with one major technological innovation, an adaptive Gram-Schmidt filtering algorithm, which allowed us to digitally cancel RSA in real-time. This filtering algorithm resulted in a stable real-time estimation of the volitional intent of the stimulated muscle, which then acted as the direct signal for continuously controlling homonymous muscle stimulation. As a first step toward clinical application, we tested the viability of our aEMGcFES system to continuously control ankle dorsiflexion in a healthy subject. Our results indicate positively that an aEMGcFES device with adaptive filtering can respond proportionally to voluntary EMG and activate forceful movements to assist dorsiflexion during controlled isometric activation at the ankle. We also verified that normal ankle joint range of movement could be maintained while using the aEMGcFES system. We suggest that real-time cancellation of both primary and RSA is possible with surface electrode aEMGcFES in healthy subjects and shows promising potential for future clinical application to gait pathologies such as drop foot related to hemiparetic stroke. PMID:20713086

  16. Influence of motor imagination on cortical activation during functional electrical stimulation

    PubMed Central

    Reynolds, Clare; Osuagwu, Bethel A.; Vuckovic, Aleksandra

    2015-01-01

    Objective Motor imagination (MI) and functional electrical stimulation (FES) can activate the sensory-motor cortex through efferent and afferent pathways respectively. Motor imagination can be used as a control strategy to activate FES through a brain–computer interface as the part of a rehabilitation therapy. It is believed that precise timing between the onset of MI and FES is important for strengthening the cortico-spinal pathways but it is not known whether prolonged MI during FES influences cortical response. Methods Electroencephalogram was measured in ten able-bodied participants using MI strategy to control FES through a BCI system. Event related synchronisation/desynchronisation (ERS/ERD) over the sensory-motor cortex was analysed and compared in three paradigms: MI before FES, MI before and during FES and FES alone activated automatically. Results MI practiced both before and during FES produced strongest ERD. When MI only preceded FES it resulted in a weaker beta ERD during FES than when FES was activated automatically. Following termination of FES, beta ERD returns to the baseline level within 0.5 s while alpha ERD took longer than 1 s. Conclusions When MI and FES are combined for rehabilitation purposes it is recommended that MI is practiced throughout FES activation period. Significance The study is relevant for neurorehabilitation of movement. PMID:25454278

  17. Electrical and mechanical properties of molecularly functionalized mesoporous silica thin films

    NASA Astrophysics Data System (ADS)

    Singh, Amit Pratap

    Mesoporous silica (MPS) thin films are attractive for achieving low relative dielectric permittivity (low-kappa) interlayer isolation in integrated circuit wiring, but are susceptible to instabilities in electrical behavior due to water uptake and copper diffusion. This work investigates the electrical, chemical, and thermal instabilities, Cu diffusion, and adhesion of these materials for evaluating and enabling their use for applications as interlayer insulators in nanodevice wiring. Upon annealing Al/MPS/Si(001)/Al capacitors between 80 to 200°C, the flat-band voltage first increases, reaches a maximum, and then decreases. Concurrently, the initially observed deep depletion behavior is replaced by strong inversion. Subsequent air-exposure restores the preanneal C-V characteristics. Kinetics analyses reveal two thermally activated processes: proton generation through fissure of silanol bonds (activation energy Ea1 = 0.42 +/- 0.04 eV) and proton-induced depassivation of dangling bond traps (Ea2 = 0.54 +/- 0.05 eV) at the MPS/Si interface. We present an empirical model correlating these processes with the C-V characteristics. Further, we show that capping MPS films with a trimethyl-terminated organosilane irreversibly suppresses moisture-induced capacitance instabilities, and decreases the relative dielectric permittivity and Cu-induced leakage currents. Analysis of capacitance-voltage and current-voltage characteristics along with infrared spectroscopy shows that the trimethyl organosilanes inhibit hydrogen bonding of water molecules by rendering the dielectric surfaces hydrophobic. Fracture behavior and mechanical properties of pristine (i.e., un-functionalized MPS) and silylated mesoporous silica (SMPS) films were studied by four-point bend tests and nanoindentation measurements. Four-point bend measurements on Si/epoxy/Ti/Cu/MPS/Si stacks show that structures with un-silylated MPS films fracture at ˜3 J/m2, while those with SMPS films show a ˜50% lower

  18. Hybrid functional electrical stimulation with medial linkage knee-ankle-foot orthoses in complete paraplegics.

    PubMed

    Shimada, Yoichi; Hatakeyama, Kazutoshi; Minato, Takashi; Matsunaga, Toshiki; Sato, Mineyoshi; Chida, Satoaki; Itoi, Eiji

    2006-06-01

    We have previously restored ambulation in paraplegics by performing hybrid functional electrical stimulation (FES) with medial linkage knee-ankle-foot orthosis (MLKAFO). The most common MLKAFO (hinge-type MLKAFO) has the hypothetical axis that is lower than the physiological hip joint position, resulting in slow velocity and short step length. A new MLKAFO (sliding-type MLKAFO), which uses sliding medial linkages, has been developed to correct the axial discrepancy of the hinge-type MLKAFO that causes limited hip joint excursion. There have been reports of instability associated with sliding medial linkages, but the mechanism of this instability is unclear. The purpose of the present study was to evaluate the effects of FES with MLKAFOs on ambulation in paraplegics. Two complete paraplegic patients (levels T8 and T12, respectively) participated in this study. Kinematics data during ambulation were obtained using a motion analysis system. We measured gait velocity and hip progression during the standing phase. The sliding-type MLKAFO produced faster gait velocity than did the hinge-type MLKAFO, but it caused pelvis instability without FES. Pelvis instability was controlled by hybrid FES using the sliding-type MLKAFO. With hybrid FES, the sliding-type MLKAFO provides better gait performance than the hinge-type MLKAFO, but the hinge-type MLKAFO provides greater pelvis stability during walking. Moreover, FES provides sufficient propulsion to allow the complete paraplegics to walk. PMID:16707853

  19. Model-based imaging of cardiac electrical function in human atria

    NASA Astrophysics Data System (ADS)

    Modre, Robert; Tilg, Bernhard; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Hintringer, Florian; Roithinger, Franz

    2003-05-01

    Noninvasive imaging of electrical function in the human atria is attained by the combination of data from electrocardiographic (ECG) mapping and magnetic resonance imaging (MRI). An anatomical computer model of the individual patient is the basis for our computer-aided diagnosis of cardiac arrhythmias. Three patients suffering from Wolff-Parkinson-White syndrome, from paroxymal atrial fibrillation, and from atrial flutter underwent an electrophysiological study. After successful treatment of the cardiac arrhythmia with invasive catheter technique, pacing protocols with stimuli at several anatomical sites (coronary sinus, left and right pulmonary vein, posterior site of the right atrium, right atrial appendage) were performed. Reconstructed activation time (AT) maps were validated with catheter-based electroanatomical data, with invasively determined pacing sites, and with pacing at anatomical markers. The individual complex anatomical model of the atria of each patient in combination with a high-quality mesh optimization enables accurate AT imaging, resulting in a localization error for the estimated pacing sites within 1 cm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias.

  20. Autogenic EMG-controlled functional electrical stimulation for ankle dorsiflexion control.

    PubMed

    Yeom, Hojun; Chang, Young-Hui

    2010-10-30

    Our objectives were to develop and test a new system for the potential for stable, real-time cancellation of residual stimulation artefacts (RSA) using surface electrode autogenic electromyography-controlled functional electrical stimulator (aEMGcFES). This type of closed-loop FES could be used to provide more natural, continuous control of lower extremity paretic muscles. We built upon work that has been done in the field of FES with one major technological innovation, an adaptive Gram-Schmidt filtering algorithm, which allowed us to digitally cancel RSA in real-time. This filtering algorithm resulted in a stable real-time estimation of the volitional intent of the stimulated muscle, which then acted as the direct signal for continuously controlling homonymous muscle stimulation. As a first step toward clinical application, we tested the viability of our aEMGcFES system to continuously control ankle dorsiflexion in a healthy subject. Our results indicate positively that an aEMGcFES device with adaptive filtering can respond proportionally to voluntary EMG and activate forceful movements to assist dorsiflexion during controlled isometric activation at the ankle. We also verified that normal ankle joint range of movement could be maintained while using the aEMGcFES system. We suggest that real-time cancellation of both primary and RSA is possible with surface electrode aEMGcFES in healthy subjects and shows promising potential for future clinical application to gait pathologies such as drop foot related to hemiparetic stroke. PMID:20713086

  1. Experimental Determination of the Electric Dipole Moment Function of the X Pi-2 Hydroxyl Radical

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Goorvitch, D.; Abrams, M. C.; Davis, S. P.; Benidar, A.; Farrenq, R.; Guelachvili, G.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Laboratory infrared emission spectra of X 2piOH obtained with the Solar McMath FTS and the U. Paris (Orsay) FTS are used in an inversion procedure to experimentally determine the electric dipole moment function (EDMF) of the hydroxyl radical. The spectra produced at Kitt Peak show vibrational levels up to v = 10 and rotational lines in the range, -25.5 less than or equal to m less than or equal to 12.5. The following vibrational quantum number ranges were observed: for DELTA v = -1, v prime = 1 - 9, for DELTA v = -2, v prime = 2 - 10, and for DELTA v = - 3, v prime = 6 - 10. The spectra produced at Orsay show DELTA v = -1, with v prime = 1 - 4 and -22.5 less than or equal to m less than or equal to 9.5 as well as DELTA v = 0, with v prime= 1 - 3, and 9.5 less than or equal to m less than or equal to 25.5. The OH rovibrational wavefunctions used in the inversion procedure were calculated using a procedure which reproduces observed rotational constants with a high level of accuracy. Comparisons of our EDMF are made with previous experimental and theoretical work.

  2. Emergency Preparedness: Balancing Electrical Supply and Demand

    ERIC Educational Resources Information Center

    Rose, Mary Annette

    2006-01-01

    Integrating technology learning goals and activities with recent experiences created by natural disasters is a valuable motivational strategy. The newfound appreciation that exists for personal emergency preparedness generates unique and sustained interest in alternative energy technologies and conservation. As described in this article, an ice…

  3. Model documentation report: Short-term Integrated Forecasting System demand model 1985. [(STIFS)

    SciTech Connect

    Not Available

    1985-07-01

    The Short-Term Integrated Forecasting System (STIFS) Demand Model consists of a set of energy demand and price models that are used to forecast monthly demand and prices of various energy products up to eight quarters in the future. The STIFS demand model is based on monthly data (unless otherwise noted), but the forecast is published on a quarterly basis. All of the forecasts are presented at the national level, and no regional detail is available. The model discussed in this report is the April 1985 version of the STIFS demand model. The relationships described by this model include: the specification of retail energy prices as a function of input prices, seasonal factors, and other significant variables; and the specification of energy demand by product as a function of price, a measure of economic activity, and other appropriate variables. The STIFS demand model is actually a collection of 18 individual models representing the demand for each type of fuel. The individual fuel models are listed below: motor gasoline; nonutility distillate fuel oil, (a) diesel, (b) nondiesel; nonutility residual fuel oil; jet fuel, kerosene-type and naphtha-type; liquefied petroleum gases; petrochemical feedstocks and ethane; kerosene; road oil and asphalt; still gas; petroleum coke; miscellaneous products; coking coal; electric utility coal; retail and general industry coal; electricity generation; nonutility natural gas; and utility petroleum. The demand estimates produced by these models are used in the STIFS integrating model to produce a full energy balance of energy supply, demand, and stock change. These forecasts are published quarterly in the Outlook. Details of the major changes in the forecasting methodology and an evaluation of previous forecast errors are presented once a year in Volume 2 of the Outlook, the Methodology publication.

  4. Marital and Family Satisfaction as a Function of Work-Family Demands and Community Resources: Individual- and Couple-Level Analyses

    ERIC Educational Resources Information Center

    Hostetler, Andrew J.; Desrochers, Stephan; Kopko, Kimberly; Moen, Phyllis

    2012-01-01

    This study uses individual- and couple-level analyses to examine the influence of work-family demands and community resources on marital and family satisfaction within a sample of dual-earner parents with dependent children (N = 260 couples, 520 individuals). Total couple work hours were strongly negatively associated with marital satisfaction for…

  5. Strategies for Demand Response in Commercial Buildings

    SciTech Connect

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  6. Alteration of Muscle Function After Electrical Stimulation Bout of Knee Extensors and Flexors

    PubMed Central

    Vanderthommen, Marc; Triffaux, Mylène; Demoulin, Christophe; Crielaard, Jean-Michel; Croisier, Jean-Louis

    2012-01-01

    The purpose was to study the effects on muscle function of an electrical stimulation bout applied unilaterally on thigh muscles in healthy male volunteers. One group (ES group, n = 10) received consecutively 100 isometric contractions of quadriceps and 100 isometric contractions of hamstrings (on-off ratio 6-6 s) induced by neuromuscular electrical stimulations (NMES). Changes in muscle torque, muscle soreness (0-10 VAS), muscle stiffness and serum creatine kinase (CK) activity were assessed before the NMES exercise (pre-ex) as well as 24h (d+1), 48h (d+2) and 120h (d+5) after the bout. A second group (control group, n = 10) were submitted to the same test battery than the ES group and with the same time-frame. The between-group comparison indicated a significant increase in VAS scores and in serum levels of CK only in the ES group. In the ES group, changes were more pronounced in hamstrings than in quadriceps and peaked at d+2 (quadriceps VAS scores = 2.20 ± 1.55 a.u. (0 at pre-ex); hamstrings VAS scores = 3.15 ± 2.14 a.u. (0 at pre-ex); hip flexion angle = 62 ± 5° (75 ± 6° at pre-ex); CK activity = 3021 ± 2693 IU·l-1 (136 ± 50 IU·l-1 at pre-ex)). The results of the present study suggested the occurrence of muscle damage that could have been induced by the peculiar muscle recruitment in NMES and the resulting overrated mechanical stress. The sensitivity to the damaging effects of NMES appeared higher in the hamstrings than in quadriceps muscles. Key points A stimulation bout of quadriceps and hamstrings that reflects usual application of NMES, increases indirect markers of muscle damage (muscle soreness, muscle weakness and stiffness and serum CK activity). The occurrence of muscle damage could have been induced by the peculiar muscle recruitment in NMES and the resulting overrated mechanical stress. The sensitivity to the damaging effects of NMES appears higher in the hamstrings than in quadriceps muscles. PMID:24150067

  7. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  8. The Kinked Demand Curve When Demand Shifts.

    ERIC Educational Resources Information Center

    Frasco, Gregg P.

    1993-01-01

    Reviews recent research into the theory of the kinked demand curve in economics. Applies this theory to economic concepts such as marginal cost and price flexibility. Discusses the implications for corporations and government policymakers. (CFR)

  9. Combination of Eccentric Exercise and Neuromuscular Electrical Stimulation to Improve Quadriceps Function Post-ACL Reconstruction

    PubMed Central

    Lepley, Lindsey K.; Wojtys, Edward M.; Palmieri-Smith, Riann M.

    2014-01-01

    Background Neuromuscular electrical stimulation (NMES) has been shown to reduce quadriceps activation failure (QAF), and eccentric exercise has been shown lessen muscle atrophy post-ACL reconstruction. Given that these are two critical components of quadriceps strength, intervention combining these therapies may be effective at reinstituting quadriceps function post-anterior cruciate ligament (ACL) reconstruction. Objectives To evaluate the effectiveness of a combined NMES and eccentric exercise intervention to improve the recovery of quadriceps activation and strength post-reconstruction. Design Parallel longitudinal design. Setting Laboratory. Participants Thirty-six individuals post-injury were placed into four treatment groups (N&E, NMES and eccentrics; E-only, eccentrics only; N-only, NMES-only; STND, standard of care) and ten healthy controls participated. Intervention N&E and N-only received the NMES protocol 2x per week for the first six weeks post-reconstruction. N&E and E-only received the eccentric exercise protocol 2x per week beginning six weeks post-reconstruction. Main outcome measure Quadriceps activation was assessed via the superimposed burst technique and quantified via the central activation ratio. Quadriceps strength was assessed via maximal voluntary isomeric contractions (Nm/kg). Data was gathered on three occasions: pre-operative, 12-weeks-post-surgery and at return-to-play. Results No differences in pre-operative measures existed (P>0.05). E-only recovered quadriceps activation better than N-only or STND (P<0.05). N&E and E-only recovered strength better than N-only or the STND (P<0.05) and had strength values that were similar to healthy individuals at return-to-play (P>0.05). Conclusion Eccentric exercise was capable of restoring levels of quadriceps activation and strength that were similar to those of healthy adults and better than NMES alone. PMID:25819154

  10. Effects of Functional Electric Stimulation Cycle Ergometry Training on Lower Limb Musculature in Acute Sci Individuals

    PubMed Central

    Demchak, Timothy J.; Linderman, Jon K.; Mysiw, W. Jerry; Jackson, Rebecca; Suun, Jihong; Devor, Steven T.

    2005-01-01

    The purpose of this study was to compare three different intervals for a between sets rest period during a common isokinetic knee extension strength-testing protocol of twenty older Brazilian men (66.30 ± 3.92 yrs). The volunteers underwent unilateral knee extension (Biodex System 3) testing to determine their individual isokinetic peak torque at 60, 90, and 120° ·s-1. The contraction speeds and the rest periods between sets (30, 60 and 90 s) were randomly performed in three different days with a minimum rest period of 48 hours. Significant differences between and within sets were analyzed using a One Way Analysis of Variance (ANOVA) with repeated measures. Although, at angular velocity of 60°·s-1 produced a higher peak torque, there were no significant differences in peak torque among any of the rest periods. Likewise, there were no significant differences between mean peak torque among all resting periods (30, 60 and 90s) at angular velocities of 90 and 120°·s-1. The results showed that during a common isokinetic strength testing protocol a between set rest period of at least 30 s is sufficient for recovery before the next test set in older men. Key Points Muscle fiber cross sectional area (CSAf ) decreased 38% following spinal cord injury (SCI). Early intervention with functional electric stimulation cycle ergometry (FES-CE) prevented further loss of CSAf in SCI patients and increased power output. Muscle myosin heavy chain (MHC) and myonuclear density were unaffected by SCI or FES-CE PMID:24453530

  11. Effects of functional electric stimulation cycle ergometry training on lower limb musculature in acute sci individuals.

    PubMed

    Demchak, Timothy J; Linderman, Jon K; Mysiw, W Jerry; Jackson, Rebecca; Suun, Jihong; Devor, Steven T

    2005-09-01

    The purpose of this study was to compare three different intervals for a between sets rest period during a common isokinetic knee extension strength-testing protocol of twenty older Brazilian men (66.30 ± 3.92 yrs). The volunteers underwent unilateral knee extension (Biodex System 3) testing to determine their individual isokinetic peak torque at 60, 90, and 120° ·s-1. The contraction speeds and the rest periods between sets (30, 60 and 90 s) were randomly performed in three different days with a minimum rest period of 48 hours. Significant differences between and within sets were analyzed using a One Way Analysis of Variance (ANOVA) with repeated measures. Although, at angular velocity of 60°·s-1 produced a higher peak torque, there were no significant differences in peak torque among any of the rest periods. Likewise, there were no significant differences between mean peak torque among all resting periods (30, 60 and 90s) at angular velocities of 90 and 120°·s-1. The results showed that during a common isokinetic strength testing protocol a between set rest period of at least 30 s is sufficient for recovery before the next test set in older men. Key PointsMuscle fiber cross sectional area (CSAf ) decreased 38% following spinal cord injury (SCI).Early intervention with functional electric stimulation cycle ergometry (FES-CE) prevented further loss of CSAf in SCI patients and increased power output.Muscle myosin heavy chain (MHC) and myonuclear density were unaffected by SCI or FES-CE. PMID:24453530

  12. Conducted electrical weapon incapacitation during a goal-directed task as a function of probe spread.

    PubMed

    Ho, Jeffrey; Dawes, Donald; Miner, James; Kunz, Sebastian; Nelson, Rebecca; Sweeney, James

    2012-12-01

    Despite training and field experience that the location and spread between conducted electrical weapon (CEW) probes is important in establishing incapacitation, there have been no human studies which have systematically examined the relationships between probe spread and incapacitation. We have investigated this relationship with the TASER(®) X26. We have also developed and validated methodologies for prospective assessment of the effectiveness of CEWs in the incapacitation of highly motivated human subjects. Subjects (n = 30) had probes placed on the front or back with randomly varied spreads in accordance with recommended targeting zones. Subjects were motivated to complete the task of disabling the device or a dummy officer suspended ten feet away during the exposure while using a training knife. Subjects were rated on their progress toward goal success and on the extent of any incapacitation using two separate observer scoring panels: one consisting of experts in physiology and X26 technology, and another of veteran peace officers. Incapacitation by all measures was found to be a function of spread; generally increasing in effectiveness up to spreads between 9 and 12 in. There were notable differences between front and back exposures, with front exposures not leading to full incapacitation of the upper extremities regardless of probe spread. This is the first published study on a quantitative methodology for directly assessing the effectiveness of CEWs in human incapacitation. We have also validated and quantified for the first time in human subjects that establishing a minimal spread between X26 probes correlates to the extent of device effectiveness. PMID:22610783

  13. Myocardial Ischemia: Lack of Coronary Blood Flow or Myocardial Oxygen Supply/Demand Imbalance?

    PubMed

    Heusch, Gerd

    2016-07-01

    Regional myocardial blood flow and contractile function in ischemic myocardium are well matched, and there is no evidence for an oxygen supply/demand imbalance. Thus, myocardial ischemia is lack of coronary blood flow with electric, functional, metabolic, and structural consequences for the myocardium. All therapeutic interventions must aim to improve blood flow to ischemic myocardium as much and as quickly as possible. PMID:27390331

  14. Coordination of Energy Efficiency and Demand Response

    SciTech Connect

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  15. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    PubMed

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-01

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. PMID:25146589

  16. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  17. Demand Response Analysis Tool

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  18. Demand Response Analysis Tool

    SciTech Connect

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  19. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    SciTech Connect

    Djurabekova, Flyura Ruzibaev, Avaz; Parviainen, Stefan; Holmström, Eero; Hakala, Mikko

    2013-12-28

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from −1 V/nm up to −2 V/nm (−1 to −2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms.

  20. EPA'S PHOTOVOLTAIC DEMAND-SIDE MANAGEMENT COST-SHARED DEMONSTRATIONS

    EPA Science Inventory

    The paper discusses an investigation of how photovoltaics (PV) may be used as both a pollution-mitigating energy replacement for fossil fuels and a demand-side management (DSM) option to reduce peak electrical demands of commercial and residential buildings. leven electric utilit...

  1. U.S. EPA'S PHOTOVOLTAIC DEMAND-SIDE MANAGEMENT PROJECT

    EPA Science Inventory

    The paper discusses an investigation of how photovoltaic (PV) may be used as both a pollution-mitigating energy replacement for fossil fuels and a demand-side management (DSM) option to reduce peak electrical demands of commercial and residential buildings. leven electric utiliti...

  2. Measuring the capacity impacts of demand response

    SciTech Connect

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  3. Electrical stimulation as a treatment intervention to improve function, edema or pain following acute lateral ankle sprains: A systematic review.

    PubMed

    Feger, Mark A; Goetschius, John; Love, Hailey; Saliba, Sue A; Hertel, Jay

    2015-11-01

    The purpose of this systematic review was to assess whether electrical stimulation (ES), when used in conjunction with a standard treatment, can reduce levels of functional impairment, edema, and pain compared to a standard treatment alone, in patients following a lateral ankle sprain. We searched PubMed, CINAHL, SportDiscus, and Medline (OVID) databases through June 2014 using the terms "ankle sprain or ankle sprains or ligament injury or ligamentous injury," and "electric stimulation or electric stimulation or electrotherapy." Our search identified four randomized control trials, of which, neuromuscular ES and high-voltage pulsed stimulation were the only two ES modalities utilized. Effect sizes and 95% confidence intervals (CI) were estimated using Cohen's d for comparison between treatment groups. Three of four effect sizes for function had 95% CI that crossed zero. Twenty-four of the thirty-two effect sizes for edema had 95% CI that crossed zero. All effect sizes for pain had 95% CI that crossed zero. Therefore, the use of ES is not recommended as a means to improve function, reduce edema, or decrease pain in the treatment of acute lateral ankle sprains. PMID:25791198

  4. Nanosecond pulsed platelet-rich plasma (nsPRP) improves mechanical and electrical cardiac function following myocardial reperfusion injury.

    PubMed

    Hargrave, Barbara; Varghese, Frency; Barabutis, Nektarios; Catravas, John; Zemlin, Christian

    2016-02-01

    Ischemia and reperfusion (I/R) of the heart is associated with biochemical and ionic changes that result in cardiac contractile and electrical dysfunction. In rabbits, platelet-rich plasma activated using nanosecond pulsed electric fields (nsPRP) has been shown to improve left ventricular pumping. Here, we demonstrate that nsPRP causes a similar improvement in mouse left ventricular function. We also show that nsPRP injection recovers electrical activity even before reperfusion begins. To uncover the mechanism of nsPRP action, we studied whether the enhanced left ventricular function in nsPRP rabbit and mouse hearts was associated with increased expression of heat-shock proteins and altered mitochondrial function under conditions of oxidative stress. Mouse hearts underwent 30 min of global ischemia and 1 h of reperfusion in situ. Rabbit hearts underwent 30 min of ischemia in vivo and were reperfused for 14 days. Hearts treated with nsPRP expressed significantly higher levels of Hsp27 and Hsp70 compared to hearts treated with vehicle. Also, pretreatment of cultured H9c2 cells with nsPRP significantly enhanced the "spare respiratory capacity (SRC)" also referred to as "respiratory reserve capacity" and ATP production in response to the uncoupler FCCP. These results suggest a cardioprotective effect of nsPRP on the ischemic heart during reperfusion. PMID:26908713

  5. A Simultaneous Model of Education Supply and Demand.

    ERIC Educational Resources Information Center

    McNamara, Kevin T.; And Others

    An economic model of educational supply and demand was tested using cross-sectional data for the 95 Virginia county school districts. Three equations were hypothesized: (1) the quantity supply functions; (2) the quantity demand function; and (3) the quality demand function. The variables in the equations are education expenditures, percent of 9th…

  6. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  7. Electrical transport and field-effect transistors using inkjet-printed SWCNT films having different functional side groups.

    PubMed

    Gracia-Espino, Eduardo; Sala, Giovanni; Pino, Flavio; Halonen, Niina; Luomahaara, Juho; Mäklin, Jani; Tóth, Géza; Kordás, Krisztián; Jantunen, Heli; Terrones, Mauricio; Helistö, Panu; Seppä, Heikki; Ajayan, Pulickel M; Vajtai, Robert

    2010-06-22

    The electrical properties of random networks of single-wall carbon nanotubes (SWNTs) obtained by inkjet printing are studied. Water-based stable inks of functionalized SWNTs (carboxylic acid, amide, poly(ethylene glycol), and polyaminobenzene sulfonic acid) were prepared and applied to inkjet deposit microscopic patterns of nanotube films on lithographically defined silicon chips with a back-side gate arrangement. Source-drain transfer characteristics and gate-effect measurements confirm the important role of the chemical functional groups in the electrical behavior of carbon nanotube networks. Considerable nonlinear transport in conjunction with a high channel current on/off ratio of approximately 70 was observed with poly(ethylene glycol)-functionalized nanotubes. The positive temperature coefficient of channel resistance shows the nonmetallic behavior of the inkjet-printed films. Other inkjet-printed field-effect transistors using carboxyl-functionalized nanotubes as source, drain, and gate electrodes, poly(ethylene glycol)-functionalized nanotubes as the channel, and poly(ethylene glycol) as the gate dielectric were also tested and characterized. PMID:20481513

  8. Residential demand for energy. Volume 1: residential energy demand in the United States. Final report

    SciTech Connect

    Taylor, L.D.; Blattenberger, G.R.; Rennhack, R.K.

    1982-04-01

    Updated and improved versions of the residential energy demand models that are currently used in EPRI's Demand 80/81 Model are presented. The primary objective of the study is the development and estimation of econometric demand models that take into account in a theoretically appropriate way the problems caused by decreasing-block pricing in the sale of electricity and natural gas. An ancillary objective is to take into account the impact on electricity, natural gas, and fuel oil demands of differences and changes in the availability of natural gas. Econometric models of residential demand are estimated for all three fuel types using time-series data by state. Price and income elasticities for a number of alternative models are presented.

  9. Dielectrics in a time-dependent electric field: A real-time approach based on density-polarization functional theory

    NASA Astrophysics Data System (ADS)

    Grüning, M.; Sangalli, D.; Attaccalite, C.

    2016-07-01

    In the presence of a (time-dependent) macroscopic electric field the electron dynamics of dielectrics cannot be described by the time-dependent density only. We present a real-time formalism that has the density and the macroscopic polarization P as key quantities. We show that a simple local function of P already captures long-range correlation in linear and nonlinear optical response functions. Specifically, after detailing the numerical implementation, we examine the optical absorption, the second- and third-harmonic generation of bulk Si, GaAs, AlAs, and CdTe, at different levels of approximation. We highlight links with ultranonlocal exchange-correlation functional approximations proposed within a linear response time-dependent density functional theory framework.

  10. The Market Demand for Air Transportation

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    Although the presentation will touch upon the areas of market for air transportation, the theoretical foundations of the demand function, the demand models, and model selection and evaluation, the emphasis of the presentation will be on a qualitative description of the factors affecting the demand for air transportation. The presentation will rely heavily on the results of market surveys carried out by the Port of New York Authority, the University of Michigan, and Census of Transportation.

  11. Development of Electric Cart with Function of Maintaining/Improving Exercise Ability—Part I: Design of the Electric Cart System—

    NASA Astrophysics Data System (ADS)

    Ohyama, Yasuhiro; She, Jin-Hua; Kobayashi, Hiroyuki; Naemura, Kiyoshi

    This paper explains the development of a three-wheeled electric cart that not only is a means of transportation, but also provides the driver with a way of getting some physical exercise. Based on an investigation of the physiological decline accompanying aging, pedaling was chosen to implement the function of maintaining or improving physical strength; and an ergonomically designed pedal unit was mounted on a cart. An interface board that handles inputs and outputs was assembled to simplify the design of the system. Finally, a simple bilateral master-slave control system was built to test the cart. Experimental results on a fabricated cart demonstrate the effectiveness of pedaling and the usability of the system structure.

  12. Energy use and conservation in the commercial sector: Volume 2, An application of the NBECS (Nonresidential Buildings Energy Consumption Survey) commercial conditional demand model to a test case utility, San Diego Gas and Electric Company: Final report

    SciTech Connect

    Parti, M.; Sebald, A.V.; Farber, M.

    1988-02-01

    This report describes an investigation into the application of an enhanced conditional demand analysis (CDA) technique to the estimation and forecasting of commercial sector energy demand. The report consists of two volumes. This volume, the second, describes the application of the technique to a particular utility service area. 5 refs., 4 figs., 27 tabs.

  13. Density functional theory studies of methyl dissociation on a Ni(111) surface in the presence of an external electric field.

    PubMed

    Che, Fanglin; Zhang, Renqin; Hensley, Alyssa J; Ha, Su; McEwen, Jean-Sabin

    2014-02-14

    To provide a basis for understanding the reactive processes on nickel surfaces at fuel cell anodes, we investigate the influence of an external electric field on the dehydrogenation of methyl species on a Ni(111) surface using density functional theory calculations. The structures, adsorption energies and reaction barriers for all methyl species dissociation on the Ni(111) surface are identified. Our results show that the presence of an external electric field does not affect the structures and favorable adsorption sites of the adsorbed species, but causes the adsorption energies of the CHx species at the stable site to fluctuate around 0.2 eV. Calculations give an energy barrier of 0.692 eV for CH3* → CH2* + H*, 0.323 eV for CH2* → CH* + H* and 1.373 eV for CH* → C* + H*. Finally, we conclude that the presence of a large positive electric field significantly increases the energy barrier of the CH* → C* + H* reaction more than the other two reactions, suggesting that the presence of pure C atoms on Ni(111) are impeded in the presence of an external positive electric field. PMID:24352204

  14. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  15. Electricity Market Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the Electricity Market Module as it was used for the Annual Energy Outlook 2013. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

  16. Loudness function derives from data on electrical discharge rates in auditory nerve fibers

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1973-01-01

    Judgements of the loudness of pure-tone sound stimuli yield a loudness function which relates perceived loudness to stimulus amplitude. A loudness function is derived from physical evidence alone without regard to human judgments. The resultant loudness function is L=K(q-q0), where L is loudness, q is effective sound pressure (specifically q0 at the loudness threshold), and K is generally a weak function of the number of stimulated auditory nerve fibers. The predicted function is in agreement with loudness judgment data reported by Warren, which imply that, in the suprathreshold loudness regime, decreasing the sound-pressure level by 6 db results in halving the loudness.

  17. Optical and electrical properties of composites based on functional components of an electroluminescent layer

    NASA Astrophysics Data System (ADS)

    Avanesyan, V. T.; Rakina, A. V.; Sychov, M. M.; Vasina, E. S.

    2016-07-01

    Optical and electrical properties of cyanoethyl ether of polyvinyl alcohol with filling of barium titanate BaTiO3 modified by shungite carbon nanoparticles are studied. It is found that the modification affects the diffuse reflectance spectra and dispersion characteristics of the impedance components due to a change in the nature of interfacial interactions in the system. The values of the forbidden band width for various modifier and filler concentrations are determined.

  18. A study of rolling resistance of electrorheological fluids impregnated polymer fibers as a function of electric field

    NASA Astrophysics Data System (ADS)

    Zade, Vishal; Zhang, Xiaomin; Wong, Shing-Chung

    2015-05-01

    Rolling resistance contributes to 6-10% of the overall fuel consumption. In an effort to provide tunable rolling resistance and tunable damping rubbers, smart fluids are introduced to composites to fabricate smart composites. The subsequent composites will possess unique mechanical properties in response to an externally applied voltage. This paper discusses the measurement of rolling resistance of poly(vinylidene fluoride) (PVDF) using a wooden pendulum roller, crafted in our lab. All fibers can be submerged in the electro rheological fluids (ERF) and become impregnated with barium titanyl oxalate with urea coated particles. Under the influence of electric field strength, the properties such as damping coefficient, rolling force and viscoelastic properties are altered. A comparison between the properties of different PVDF samples was made. PVDF3 with 0.17 g/ml concentration is best aligned and shows the highest change in properties as a function of electric field strength.

  19. A Demanding Public.

    ERIC Educational Resources Information Center

    Coleman, Diane J.; Monger, Joyce R.

    1992-01-01

    This curriculum unit, intended for use with gifted students and others, uses the daily activities of a zoo gift shop to teach principles of economics including the law of demand, the nature of a market, and influences on product demand. (DB)

  20. Effect of the Masako maneuver and neuromuscular electrical stimulation on the improvement of swallowing function in patients with dysphagia caused by stroke

    PubMed Central

    Byeon, Haewon

    2016-01-01

    [Purpose] The aim of this study was to compare improvements in swallowing function by the intervention of the Masako maneuver and neuromuscular electrical stimulation in patients with dysphagia caused by stroke. [Subjects and Methods] The Masako maneuver (n=23) and neuromuscular electrical stimulation (n=24) were conducted in 47 patients with dysphagia caused by stroke over a period of 4 weeks. Swallowing recovery was recorded using the functional dysphagia scale based on videofluoroscopic studies. [Results] Mean functional dysphagia scale values for the Masako maneuver and neuromuscular electrical stimulation groups decreased after the treatments. However, the pre-post functional dysphagia scale values showed no statistically significant differences between the groups. [Conclusion] The Masako maneuver and neuromuscular electrical stimulation each showed significant effects on the improvement of swallowing function for the patients with dysphagia caused by stroke, but no significant difference was observed between the two treatment methods. PMID:27512266

  1. Automation of energy demand forecasting

    NASA Astrophysics Data System (ADS)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  2. Demand Side Bidding. Final Report

    SciTech Connect

    Spahn, Andrew

    2003-12-31

    This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

  3. Whole-eye electrical stimulation therapy preserves visual function and structure in P23H-1 rats.

    PubMed

    Hanif, Adam M; Kim, Moon K; Thomas, Joel G; Ciavatta, Vincent T; Chrenek, Micah; Hetling, John R; Pardue, Machelle T

    2016-08-01

    Low-level electrical stimulation to the eye has been shown to be neuroprotective against retinal degeneration in both human and animal subjects, using approaches such as subretinal implants and transcorneal electrical stimulation. In this study, we investigated the benefits of whole-eye electrical stimulation (WES) in a rodent model of retinitis pigmentosa. Transgenic rats with a P23H-1 rhodopsin mutation were treated with 30 min of low-level electrical stimulation (4 μA at 5 Hz; n = 10) or sham stimulation (Sham group; n = 15), twice per week, from 4 to 24 weeks of age. Retinal and visual functions were assessed every 4 weeks using electroretinography and optokinetic tracking, respectively. At the final time point, eyes were enucleated and processed for histology. Separate cohorts were stimulated once for 30 min, and retinal tissue harvested at 1 h and 24 h post-stimulation for real-time PCR detection of growth factors and inflammatory and apoptotic markers. At all time-points after treatment, WES-treated rat eyes exhibited significantly higher spatial frequency thresholds than untreated eyes. Inner retinal function, as measured by ERG oscillatory potentials (OPs), showed significantly improved OP amplitudes at 8 and 12 weeks post-WES compared to Sham eyes. Additionally, while photoreceptor segment and nuclei thicknesses in P23H-1 rats did not change between treatment groups, WES-treated eyes had significantly greater numbers of retinal ganglion cell nuclei than Sham eyes at 20 weeks post-WES. Gene expression levels of brain-derived neurotrophic factor (BDNF), caspase 3, fibroblast growth factor 2 (FGF2), and glutamine synthetase (GS) were significantly higher at 1 h, but not 24 h after WES treatment. Our findings suggest that WES has a beneficial effect on visual function in a rat model of retinal degeneration and that post-receptoral neurons may be particularly responsive to electrical stimulation therapy. PMID:27327393

  4. Drivers of U.S. mineral demand

    USGS Publications Warehouse

    Sznopek, John L.

    2006-01-01

    Introduction: The word 'demand' has different meanings for different people. To some, it means their 'wants and needs,' to others it is what they consume. Yet, when considering economics, demand refers to the specific amounts of goods or services that individuals will purchase at various prices. Demand is measured over a given time period. It is determined by a number of factors including income, tastes, and the price of complementary and substitute goods. In this paper, the term consumption is used fairly synonymously with the term demand. Most mineral commodities, like iron ore, copper, zinc, and gravel, are intermediate goods, which means that they are used in the production of other goods, called final goods. Demand for intermediate goods is called derived demand because such demand is derived from the demand for final goods. When demand increases for a commodity, generally the price rises. With everything else held constant, this increases the profits for those who provide this commodity. Normally, this would increase profits of existing producers and attract new producers to the market. When demand for a commodity decreases, generally the price falls. Normally, this would cause profits to fall and, as a consequence, the least efficient firms may be forced from the industry. Demand changes for specific materials as final goods or production techniques are reengineered while maintaining or improving product performance, for example, the use of aluminum in the place of copper in long distance electrical transmission lines or plastic replacing steel in automobile bumpers. Substitution contributes to efficient material usage by utilizing cheaper or technically superior materials. In this way, it may also alleviate materials scarcity. If a material becomes relatively scarce (and thus more expensive), a more abundant (and less expensive) material generally replaces it (Wagner and others, 2003, p. 91).

  5. Comparison of the electrical response of dry and hydrosaturated gabbro as a function of uniaxial stress

    NASA Astrophysics Data System (ADS)

    Dahlgren, R.; Johnston, M. J.; Freund, F. T.; Nakaba, R. N.; Vanderbilt, V. C.

    2012-12-01

    Suggestions that substantial charge generation occurs in the Earth's crust as a result of tectonic loading and variations in this loading prior to earthquakes have been controversial because the presence of fluids in crustal materials is thought to preclude the storing of charge. A series of laboratory experiments was set up to investigate the charge response during repetitive step loading of a suite of dry and saturated rocks. The dry rocks include those with possible semiconductor properties (granite, sandstone, gabbro) and those without (marble, limestone). Saturated samples (gabbro) were prepared by firstly vacuum removing all fluids and gas from open pores, microcracks and fractures and then saturating them for several months with fluids similar to those observed in and around fault zones. Brine with an electrical conductivity matched to that observed in and near fault zones (2 S/m) was obtained by preparing a 0.56 molar NaCl solution. Electrical response from dry rocks during repeated loading cycles from a pedestal stress of 5.6 MPa to 22.7 MPa and back to 5.6 MPa indicates 1) a short-term transient current response of a few tens of pA during loading and unloading with decay time constants of seconds consistent with generation and decay of electrical charge from various alternative physical processes, 2) a net negative current with increasing load in most cases of a few pA or less, and 3) a similar response for rocks with and without semiconductor properties. For the fluid-saturated sample tested, resistance was much lower as expected, and the resistance was increased such that it was on par with the dry sample with a 100 Mohm padding resistor. The baseline was slowly drifting, and continuous currents were observed from self-potential (SP) and electrokinetic effects, but step-loading and unloading produced no observable changes in current generation. This is consistent with self discharge expected in the electrically conductive crust near active faults during

  6. Measurement of lung function using Electrical Impedance Tomography (EIT) during mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Noshiro, Makoto; Brown, Brian H.; Soma, Kazui

    2010-04-01

    The consistency of regional lung density measurements as estimated by Electrical Impedance Tomography (EIT), in eleven patients supported by a mechanical ventilator, was validated to verify the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities between the normal lung and diseased lungs associated with pneumonia, atelectasis and pleural effusion (Steel-Dwass test, p < 0.05). Temporal changes in regional lung density of patients with atelectasis were observed to be in good agreement with the results of clinical diagnosis. These results indicate that it is feasible to obtain a quantitative value for regional lung density using EIT.

  7. Cycling with Functional Electrical Stimulation Before and After a Distal Femur Fracture in a Man with Paraplegia

    PubMed Central

    Marino, Ralph J.; Oleson, Christina V.; Schmidt-Read, Mary; Modlesky, Christopher M.

    2015-01-01

    Case Presentation: A man with chronic paraplegia sustained a distal femur fracture following an unrelated fall while enrolled in a study examining musculoskeletal changes after 6 months of cycling with functional electrical stimulation (FES). After healing, he restarted and completed the study. Management and Outcome: Study measures included areal bone mineral density, trabecular bone microarchitecture, cortical bone macroarchitecture, serum bone formation/resorption markers, and muscle volume. The patient made small gains in bone- and muscle-related measures. Bone markers had not returned to baseline prior to restarting cycling, which may have impacted results. Discussion: This case shows that cycling with FES may be safely resumed after distal femur fracture. PMID:26689692

  8. The Effects of Assisted Ergometer Training With a Functional Electrical Stimulation on Exercise Capacity and Functional Ability in Subacute Stroke Patients

    PubMed Central

    Lee, So Young; Kang, Sa-Yoon; Im, Sang Hee; Kim, Bo Ryun; Kim, Sun Mi; Yoon, Ho Min

    2013-01-01

    Objective To determine if assistive ergometer training can improve the functional ability and aerobic capacity of subacute stroke patients and if functional electrical stimulation (FES) of the paretic leg during ergometer cycling has additional effects. Methods Sixteen subacute stroke patents were randomly assigned to the FES group (n=8) or the control group (n=8). All patients underwent assistive ergometer training for 30 minutes (five times per week for 4 weeks). The electrical stimulation group received FES of the paretic lower limb muscles during assistive ergometer training. The six-minute walk test (6MWT), Berg Balance Scale (BBS), and the Korean version of Modified Barthel Index (K-MBI) were evaluated at the beginning and end of treatment. Peak oxygen consumption (Vo2peak), metabolic equivalent (MET), resting and maximal heart rate, resting and maximal blood pressure, maximal rate pressure product, submaximal rate pressure product, submaximal rate of perceived exertion, exercise duration, respiratory exchange ratio, and estimated anaerobic threshold (AT) were determined with the exercise tolerance test before and after treatment. Results At 4 weeks after treatment, the FES assistive ergometer training group showed significant improvements in 6MWT (p=0.01), BBS (p=0.01), K-MBI (p=0.01), Vo2peak (p=0.02), MET (p=0.02), and estimated AT (p=0.02). The control group showed improvements in only BBS (p=0.01) and K-MBI (p=0.02). However, there was no significant difference in exercise capacity and functional ability between the two groups. Conclusion This study demonstrated that ergometer training for 4 weeks improved the functional ability of subacute stroke patients. In addition, aerobic capacity was improved after assisted ergometer training with a FES only. PMID:24231752

  9. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates.

    PubMed

    Fisichella, Gabriele; Di Franco, Salvatore; Fiorenza, Patrick; Lo Nigro, Raffaella; Roccaforte, Fabrizio; Tudisco, Cristina; Condorelli, Guido G; Piluso, Nicolò; Spartà, Noemi; Lo Verso, Stella; Accardi, Corrado; Tringali, Cristina; Ravesi, Sebastiano; Giannazzo, Filippo

    2013-01-01

    Chemical vapour deposition (CVD) on catalytic metals is one of main approaches for high-quality graphene growth over large areas. However, a subsequent transfer step to an insulating substrate is required in order to use the graphene for electronic applications. This step can severely affect both the structural integrity and the electronic properties of the graphene membrane. In this paper, we investigated the morphological and electrical properties of CVD graphene transferred onto SiO2 and on a polymeric substrate (poly(ethylene-2,6-naphthalene dicarboxylate), briefly PEN), suitable for microelectronics and flexible electronics applications, respectively. The electrical properties (sheet resistance, mobility, carrier density) of the transferred graphene as well as the specific contact resistance of metal contacts onto graphene were investigated by using properly designed test patterns. While a sheet resistance R sh ≈ 1.7 kΩ/sq and a specific contact resistance ρc ≈ 15 kΩ·μm have been measured for graphene transferred onto SiO2, about 2.3× higher R sh and about 8× higher ρc values were obtained for graphene on PEN. High-resolution current mapping by torsion resonant conductive atomic force microscopy (TRCAFM) provided an insight into the nanoscale mechanisms responsible for the very high ρc in the case of graphene on PEN, showing a ca. 10× smaller "effective" area for current injection than in the case of graphene on SiO2. PMID:23616943

  10. Electrically small, near-field resonant parasitic (NFRP) antennas augmented with passive and active circuit elements to enhance their functionality

    NASA Astrophysics Data System (ADS)

    Zhu, Ning

    Metamaterials have drawn considerable attention because they can exhibit epsilon-negative (ENG) and/or mu-negative (MNG) properties, which in turn can lead to exotic physical effects that can enable interesting, practical applications. For instance, ENG and MNG properties can be engineered to yield double negative (DNG) properties, such as a negative index of refraction, which leads to flat lenses. Similarly, their extreme versions enable cloaking effects. Inspired by such metamaterial properties, a promising methodology has been developed to design electrically small antennas (ESAs). These ESAs use unit cells of metamaterials as their near-field resonant parasitic (NFRP) elements. This new metamaterial-inspired antenna miniaturization method is extended in this dissertation by augmenting the antenna designs with circuits. A rectifying circuit augmentation is used to achieve electrically small, high efficiency rectenna systems. Rectennas are the enabling components of power harvesting and wireless power transmission systems. Electrically small, integrated rectennas have become popular and in demand for several wireless applications including sensor networks and bio-implanted devices. Four global positioning system (GPS) L1 frequency (1.5754 GHz) rectenna systems were designed, fabricated and measured: three resistor-loaded and one supercapacitor-loaded. The simulated and measured results will be described; good agreement between them was obtained. The NFRP ESAs are also augmented with active, non-Foster elements in order to overcome the physical limits of the impedance bandwidth of passive ESA systems. Unlike conventional active external matching network approaches, the non-Foster components are incorporated directly into the NFRP element of the ESA. Three 300 MHz non-Foster circuit-augmented broadband, ESA systems were demonstrated: an Egyptian axe monopole (EAM) antenna, an Egyptian axe dipole (EAD) antenna, and a protractor antenna. The simulated and measured

  11. Characterization of solar cells for space applications. Volume 13: Electrical characteristics of Hughes LPE gallium arsenide solar cells as a function of intensity and temperature

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1980-01-01

    Electrical characteristics of Hughes Liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature.

  12. Ionisation potential theorem in the presence of the electric field: Assessment of range-separated functional in the reproduction of orbital and excitation energies

    NASA Astrophysics Data System (ADS)

    Borpuzari, Manash Protim; Boruah, Abhijit; Kar, Rahul

    2016-04-01

    Recently, the range-separated density functionals have been reported to reproduce gas phase orbital and excitation energies with good accuracy. In this article, we have revisited the ionisation potential theorem in the presence of external electric field. Numerical results on six linear molecules are presented and the performance of the range-separated density functionals in reproducing highest occupied molecular orbital (HOMO) energies, LUMO energies, HOMO-LUMO gaps in the presence of the external electric field is assessed. In addition, valence and Rydberg excitation energies in the presence of the external electric field are presented. It is found that the range-separated density functionals reproduce orbital and excitation energies accurately in the presence of the electric field. Moreover, we have performed fractional occupation calculation using cubic spline equation and tried to explain the performance of the functional.

  13. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Technical Reports Server (NTRS)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  14. Optical electric fields as wavelength function within active layer of graphene/Si heterojunction solar cell – An analysis

    SciTech Connect

    Rosikhin, Ahmad Winata, Toto

    2015-09-30

    The optical electric field characteristics of graphene/Si heterojunction thin film solar cell as the function of wavelength photons incident have modeled and calculated. There is ITO/TiO{sub 2}/C-Si/TiO{sub 2} device configuration in which p-n junction represented by C-Si and viewed as active layer for excited electrons production. The dependent of such electric field on wavelength can be understood by solving scattering matrix obtained from the interface matrix and layer matrix operation, in this report we have calculated the electric field distribution for several active layer thickness (d{sub AL}) conditions and each of them examined in the cases of x position are equal to zero, half and full of d{sub AL} while for the entire taking into account we used 250 – 840 nm wavelength range. However, this calculation is restricted by idealization assumption such as the complex refraction index is doesn’t change significantly by the thickness in hundred nanometer range, linear optical response described by scalar refraction complex index and the interface are parallel and flat compared to the wavelength of the light.

  15. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    NASA Astrophysics Data System (ADS)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  16. A systematic comparison of different approaches of density functional theory for the study of electrical double layers

    SciTech Connect

    Yang, Guomin; Liu, Longcheng

    2015-05-21

    Based on the best available knowledge of density functional theory (DFT), the reference-fluid perturbation method is here extended to yield different approaches that well account for the cross correlations between the Columbic interaction and the hard-sphere exclusion in an inhomogeneous ionic hard-sphere fluid. In order to quantitatively evaluate the advantage and disadvantage of different approaches in describing the interfacial properties of electrical double layers, this study makes a systematic comparison against Monte Carlo simulations over a wide range of conditions. The results suggest that the accuracy of the DFT approaches is well correlated to a coupling parameter that describes the coupling strength of electrical double layers by accounting for the steric effect and that can be used to classify the systems into two regimes. In the weak-coupling regime, the approaches based on the bulk-fluid perturbation method are shown to be more accurate than the counterparts based on the reference-fluid perturbation method, whereas they exhibit the opposite behavior in the strong-coupling regime. More importantly, the analysis indicates that, with a suitable choice of the reference fluid, the weighted correlation approximation (WCA) to DFT gives the best account of the coupling effect of the electrostatic-excluded volume correlations. As a result, a piecewise WCA approach can be developed that is robust enough to describe the structural and thermodynamic properties of electrical double layers over both weak- and strong-coupling regimes.

  17. Magnetic resonance imaging of morphological and functional changes of the uterus induced by sacral surface electrical stimulation.

    PubMed

    Ogura, Takahide; Murakami, Takashi; Ozawa, Yuka; Seki, Kazunori; Handa, Yasunobu

    2006-01-01

    The purpose of this study is to examine the morphological and kinematical changes of the uterus induced by electrical stimulation applied to the skin just above the second and fourth posterior sacral foramens (sacral surface electrical stimulation [ssES]) in 26 healthy subjects. Out of them, eight subjects who had severe pain subjectively during every menstruation received ssES just in menstruation. Morphological and functional changes of the uterus were examined by using T2-weighted magnetic resonance (MR) imaging and T1-weighted MR cinematography, respectively. Cyclic electrical stimulation for 15 min with 5 sec ON and 5 sec OFF was applied just before MR scanning. A decrease in thickness of the muscular layer of the uterus was observed in every subject after ssES for 15 min and was significant as compared with the thickness before ssES. Periodic uterine movement during menstruation was observed in the subjects with severe menstrual pain in MR cine and the power spectrum analysis of the movement showed a marked decrease in peak power and frequency after ssES treatment. We conclude that ssES causes a reduction of static muscle tension of the uterus in all menstrual cycle periods and suppression of uterine peristalsis during menstruation in the subjects with severe menstrual pain. Possible neural mechanisms for these static and dynamic effects of ssES on the uterus at spinal level are discussed. PMID:16340175

  18. Electrical interference in non-competitive pacemakers.

    PubMed

    Sowton, E; Gray, K; Preston, T

    1970-09-01

    Patients with 41 implanted non-competitive pacemakers were investigated. A variety of domestic electrical equipment, a motor-car, and a physiotherapy diathermy apparatus were each operated in turn at various ranges from the patient. Interference effects on pacemaker function were assessed on the electrocardiograph. Medtronic demand 5841 pacemakers were stopped by diathermy while Cordis Ectocor pacemakers developed a fast discharge rate. Cordis triggered pacemakers (both Atricor and Ectocor) were sensitive to interference from many items of domestic equipment and the motor car. The Elema EM153 ran at an increased rate when an electric razor was running close to the pacemaker. The Devices demand 2980 and the Medtronic demand 5841 were not affected by the domestic equipment tested. The significance of interference effects is discussed in relation to pacemaker design. PMID:5470044

  19. Latin American demand

    SciTech Connect

    1994-12-01

    From Mexico to Argentina, independent power companies are finding great demand for their services in Latin America. But while legal and economic conditions are increasingly favorable, political and financial uncertainties make power development challenging.

  20. Supply and Demand

    MedlinePlus

    ... a good breastfeeding rhythm with your baby. In reality, the efficient supply-and-demand rhythm of normal ... is one reason it’s a good idea to alternate which breast you use to begin nursing. A ...

  1. Impact of Energy Demands

    ERIC Educational Resources Information Center

    Cambel, Ali B.

    1970-01-01

    The types of pollutants associated with the process of power production are identified. A nine-point proposal is presented on the ways the increase in power demands might be achieved with the minimum threat to the environment. (PR)

  2. Effects of Severing the Corpus Callosum on Electrical and BOLD Functional Connectivity and Spontaneous Dynamic Activity in the Rat Brain

    PubMed Central

    Magnuson, Matthew E.; Thompson, Garth J.; Pan, Wen-Ju

    2014-01-01

    Abstract Functional networks, defined by synchronous spontaneous blood oxygenation level-dependent (BOLD) oscillations between spatially distinct brain regions, appear to be essential to brain function and have been implicated in disease states, cognitive capacity, and sensing and motor processes. While the topographical extent and behavioral function of these networks has been extensively investigated, the neural functions that create and maintain these synchronizations remain mysterious. In this work callosotomized rodents are examined, providing a unique platform for evaluating the influence of structural connectivity via the corpus callosum on bilateral resting state functional connectivity. Two experimental groups were assessed, a full callosotomy group, in which the corpus callosum was completely sectioned, and a sham callosotomy group, in which the gray matter was sectioned but the corpus callosum remained intact. Results indicated a significant reduction in interhemispheric connectivity in the full callosotomy group as compared with the sham group in primary somatosensory cortex and caudate-putamen regions. Similarly, electrophysiology revealed significantly reduced bilateral correlation in band limited power. Bilateral gamma Band-limited power connectivity was most strongly affected by the full callosotomy procedure. This work represents a robust finding indicating the corpus callosum's influence on maintaining integrity in bilateral functional networks; further, functional magnetic resonance imaging (fMRI) and electrophysiological connectivity share a similar decrease in connectivity as a result of the callosotomy, suggesting that fMRI-measured functional connectivity reflects underlying changes in large-scale coordinated electrical activity. Finally, spatiotemporal dynamic patterns were evaluated in both groups; the full callosotomy rodents displayed a striking loss of bilaterally synchronous propagating waves of cortical activity. PMID:24117343

  3. Factor demand in Swedish manufacturing industry with special reference to the demand for energy. Instantaneous adjustment models; some results

    NASA Astrophysics Data System (ADS)

    Sjoeholm, K. R.

    1981-02-01

    The dual approach to the theory of production is used to estimate factor demand functions of the Swedish manufacturing industry. Two approximations of the cost function, the translog and the generalized Leontief models, are used. The price elasticities of the factor demand do not seem to depend on the choice of model. This is at least true as to the sign pattern and as to the inputs capital, labor, total energy and other materials. Total energy is separated into solid fuels, gasoline, fuel oil, electricity and a residual. Fuel oil and electricity are found to be substitutes by both models. Capital and energy are shown to be substitutes. This implies that Swedish industry will save more energy if the capital cost can be reduced. Both models are, in the best versions, able to detect an inappropriate variable. The assumption of perfect competition on the product market, is shown to be inadequate by both models. When this assumption is relaxed, the normal substitution pattern among the inputs is resumed.

  4. Creating and manipulating vortices in atomic wave functions with short electric field pulses.

    PubMed

    Ovchinnikov, S Yu; Sternberg, J B; Macek, J H; Lee, Teck-Ghee; Schultz, D R

    2010-11-12

    We demonstrate the creation of vortices in the electronic probability density of an atom subject to short electric field pulses, how these vortices evolve and can be manipulated by varying the applied pulses, and that they persist to macroscopic distances in the spectrum of ejected electrons. This opens the possibility to use practical femtosecond or shorter laser pulses to create and manipulate these vortex quasiparticles at the atomic scale and observe them in the laboratory. Within a hydrodynamic interpretation we also show, since the Schrödinger equation is a particular instance of the Navier-Stokes equations, that for compressible fluids vortices can appear spontaneously and with a certain time delay, which is not expected to occur from the conventional point of view, illustrating applicability of the present study to vortex formation more broadly. PMID:21231229

  5. Quality assurance and functionality tests on electrical components during the ATLAS IBL production

    NASA Astrophysics Data System (ADS)

    Bassalat, A.

    2014-01-01

    During the shutdown of 2013-2014, for the enhancement of the current ATLAS Pixel Detector, a fourth layer (Insertable B Layer, IBL) is being built and will be installed between the innermost layer and a new beam pipe. A new generation of readout chip has been developed, and two different sensor designs, a rather conventional planar and a 3D design, have been bump bonded to the Front Ends. Additionally, new staves and module flex circuits have been developed. A production QA test bench was therefore established to test all production staves before integration with the new beam pipe. Quality assurance measurements under cleanroom conditions, including temperature and humidity control, are being performed on the individual components during the various production steps of the IBL; namely, connectivity tests, electrical tests and signal probing on individual parts and assembled subsystems. This paper discusses the pre-assembly QC procedures, the capabilities of the stave qualification setup, and recent results from stave testing.

  6. Demand or Request: Will Load Behave?

    SciTech Connect

    Widergren, Steven E.

    2009-07-30

    Power planning engineers are trained to design an electric system that satisfies predicted electrical demand under stringent conditions of availability and power quality. Like responsible custodians, we plan for the provision of electrical sustenance and shelter to those in whose care regulators have given us the responsibility to serve. Though most customers accept this nurturing gladly, a growing number are concerned with the economic costs and environmental impacts of service at a time when technology (particularly distributed generation, storage, automation, and information networks) offers alternatives for localized control and competitive service. As customers’ and their systems mature, a new relationship with the electricity provider is emerging. Demand response is perhaps the first unsteady step where the customer participates as a partner in system operations. This paper explores issues system planners need to consider as demand response matures to significant levels beyond direct load control and toward a situation where service is requested and bargains are reached with the electricity provider based on desired load behavior. On one hand, predicting load growth and behavior appears more daunting than ever. On the other, for the first time load becomes a new resource whose behavior can be influenced during system operations to balance system conditions.

  7. Effects of a 12-hour neuromuscular electrical stimulation treatment program on the recovery of upper extremity function in sub-acute stroke patients: a randomized controlled pilot trial.

    PubMed

    Cui, Bao-Juan; Wang, Dao-Qing; Qiu, Jian-Qing; Huang, Lai-Gang; Zeng, Fan-Shuo; Zhang, Qi; Sun, Min; Liu, Ben-Ling; Sun, Qiang-San

    2015-07-01

    [Purpose] This study investigated the effects of a 12-hour neuromuscular electrical stimulation program in the evening hours on upper extremity function in sub-acute stroke patients. [Subjects and Methods] Forty-five subjects were randomized to one of three groups: 12-hour neuromuscular electrical stimulation group (n=15), which received 12 hours of neuromuscular electrical stimulation and conventional rehabilitation for the affected upper extremity; neuromuscular electrical stimulation group (n=15), which received 30 min of neuromuscular electrical stimulation and conventional rehabilitation; and control group (n=15), which received conventional rehabilitation only. The Fugl-Meyer assessment, Action Research Arm Test, and modified Ashworth scale were used to evaluate the effects before and after intervention, and 4 weeks later. [Results] The improvement in the distal (wrist-hand) components of the Fugl-Meyer assessment and Action Research Arm Test in the 12-hour neuromuscular electrical stimulation group was more significant than that in the neuromuscular electrical stimulation group. No significant difference was found between the two groups in the proximal component (shoulder-elbow) of the Fugl-Meyer assessment. [Conclusion] The 12-hour neuromuscular electrical stimulation group achieved better improvement in upper extremity motor function, especially in the wrist-hand function. This alternative therapeutic approach is easily applicable and can be used in stroke patients during rest or sleep. PMID:26311975

  8. Task-related training combined with transcutaneous electrical nerve stimulation promotes upper limb functions in patients with chronic stroke.

    PubMed

    Kim, Tae Hoon; In, Tae Sung; Cho, Hwi-young

    2013-01-01

    Severe upper limb paresis is a major contributor to disability after stroke. This study investigated the efficacy of task-related training (TRT) with transcutaneous electrical nerve stimulation (TENS) on recovery of upper limb motor function in chronic-stroke survivors. Thirty patients with chronic stroke were randomly allocated two groups: the TRT+TENS group (n = 15) and the TRT+placebo (TRT+PLBO) group (n = 15). Patients in the TRT+TENS group received TENS stimulation (two to three times the sensory threshold), while subjects in the TRT+PLBO group received TENS without real electrical stimulation. TENS was applied to muscle belly of triceps and wrist extensors, while placebo (PLBO) stimulation was administrated without real electrical stimulation. Both interventions were given for 30 minutes per day, 5 days per week, for a period of 4 weeks. The primary outcomes were assessed with Fugl-Meyer assessment scores (FMA), Manual function test (MFT), Box and block test (BBT), and Modified Ashworth scale (MAS), each of which was performed one day before and one day after intervention. Both groups showed significant improvements in FMA, MFT, and BBT after intervention. When compared with the TRT+PLBO group, the TRT+TENS group showed significantly greater improvements in FMA (p = 0.034), MFT (p = 0.037), and BBT (p = 0.042). In MAS score, significant improvement was observed only in the TRT+TENS group (p = 0.011). Our findings indicate that TRT with TENS can reduce motor impairment and improve motor activity in stroke survivors with chronic upper limb paresis, highlighting the benefits of somatosensory stimulation from TENS. PMID:24097280

  9. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    SciTech Connect

    Hummon, Marissa; Palchak, David; Denholm, Paul; Jorgenson, Jennie; Olsen, Daniel J.; Kiliccote, Sila; Matson, Nance; Sohn, Michael; Rose, Cody; Dudley, Junqiao; Goli, Sasank; Ma, Ookie

    2013-12-01

    This report is one of a series stemming from the U.S. Department of Energy (DOE) Demand Response and Energy Storage Integration Study. This study is a multi-national-laboratory effort to assess the potential value of demand response (DR) and energy storage to electricity systems with different penetration levels of variable renewable resources and to improve our understanding of associatedmarkets and institutions. This report implements DR resources in the commercial production cost model PLEXOS.

  10. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  11. Demand for superpremium needle cokes on upswing

    SciTech Connect

    Acciarri, J.A.; Stockman, G.H. )

    1989-12-01

    The authors discuss how recent supply shortages of super-premium quality needle cokes, plus the expectation of increased shortfalls in the future, indicate that refiners should consider upgrading their operations to fill these demands. Calcined, super-premium needle cokes are currently selling for as much as $550/metric ton, fob producer, and increasing demand will continue the upward push of the past year. Needle coke, in its calcined form, is the major raw material in the manufacture of graphite electrodes. Used in steelmaking, graphite electrodes are the electrical conductors that supply the heat source, through arcing electrode column tips, to electric arc steel furnaces. Needle coke is commercially available in three grades - super premium, premium, and intermediate. Super premium is used to produce electrodes for the most severe electric arc furnace steelmaking applications, premium for electrodes destined to less severe operations, and intermediate for even less critical needs.

  12. Essays in energy economics: The electricity industry

    NASA Astrophysics Data System (ADS)

    Martinez-Chombo, Eduardo

    Electricity demand analysis using cointegration and error-correction models with time varying parameters: The Mexican case. In this essay we show how some flexibility can be allowed in modeling the parameters of the electricity demand function by employing the time varying coefficient (TVC) cointegrating model developed by Park and Hahn (1999). With the income elasticity of electricity demand modeled as a TVC, we perform tests to examine the adequacy of the proposed model against the cointegrating regression with fixed coefficients, as well as against the spuriousness of the regression with TVC. The results reject the specification of the model with fixed coefficients and favor the proposed model. We also show how some flexibility is gained in the specification of the error correction model based on the proposed TVC cointegrating model, by including more lags of the error correction term as predetermined variables. Finally, we present the results of some out-of-sample forecast comparison among competing models. Electricity demand and supply in Mexico. In this essay we present a simplified model of the Mexican electricity transmission network. We use the model to approximate the marginal cost of supplying electricity to consumers in different locations and at different times of the year. We examine how costs and system operations will be affected by proposed investments in generation and transmission capacity given a forecast of growth in regional electricity demands. Decomposing electricity prices with jumps. In this essay we propose a model that decomposes electricity prices into two independent stochastic processes: one that represents the "normal" pattern of electricity prices and the other that captures temporary shocks, or "jumps", with non-lasting effects in the market. Each contains specific mean reverting parameters to estimate. In order to identify such components we specify a state-space model with regime switching. Using Kim's (1994) filtering algorithm

  13. Mechano-electric heterogeneity of the myocardium as a paradigm of its function

    PubMed Central

    Solovyova, Olga; Katsnelson, Leonid B.; Kohl, Peter; Panfilov, Alexander V.; Tsaturyan, Andrey K.; Tsyvian, Pavel B.

    2016-01-01

    Myocardial heterogeneity is well appreciated and widely documented, from sub-cellular to organ levels. This paper reviews significant achievements of the group, led by Professor Vladimir S. Markhasin, Russia, who was one of the pioneers in studying and interpreting the relevance of cardiac functional heterogeneity. PMID:26713555

  14. A comparative density functional study on electrical properties of layered penta-graphene

    SciTech Connect

    Yu, Zhi Gen Zhang, Yong-Wei

    2015-10-28

    We present a comparative study of the influence of the number of layers, the biaxial strain in the range of −3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of p{sub z} orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN and ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.

  15. Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation.

    PubMed

    Meinzer, Marcus; Antonenko, Daria; Lindenberg, Robert; Hetzer, Stefan; Ulm, Lena; Avirame, Keren; Flaisch, Tobias; Flöel, Agnes

    2012-02-01

    Excitatory anodal transcranial direct current stimulation (atDCS) can improve human cognitive functions, but neural underpinnings of its mode of action remain elusive. In a cross-over placebo ("sham") controlled study we used functional magnetic resonance imaging (fMRI) to investigate neurofunctional correlates of improved language functions induced by atDCS over a core language area, the left inferior frontal gyrus (IFG). Intrascanner transcranial direct current stimulation-induced changes in overt semantic word generation assessed behavioral modulation; task-related and task-independent (resting-state) fMRI characterized language network changes. Improved word-retrieval during atDCS was paralleled by selectively reduced task-related activation in the left ventral IFG, an area specifically implicated in semantic retrieval processes. Under atDCS, resting-state fMRI revealed increased connectivity of the left IFG and additional major hubs overlapping with the language network. In conclusion, atDCS modulates endogenous low-frequency oscillations in a distributed set of functionally connected brain areas, possibly inducing more efficient processing in critical task-relevant areas and improved behavioral performance. PMID:22302824

  16. A comparative density functional study on electrical properties of layered penta-graphene

    NASA Astrophysics Data System (ADS)

    Yu, Zhi Gen; Zhang, Yong-Wei

    2015-10-01

    We present a comparative study of the influence of the number of layers, the biaxial strain in the range of -3% to 3%, and the stacking misalignments on the electronic properties of a new 2D carbon allotrope, penta-graphene (PG), based on hybrid-functional method within the density functional theory (DFT). In comparison with local exchange-correlation approximation in the DFT, the hybrid-functional provides an accurate description on the degree of pz orbitals localization and bandgap. Importantly, the predicted bandgap of few-layer PG has a weak layer dependence. The bandgap of monolayer PG is 3.27 eV, approximately equal to those of GaN and ZnO; and the bandgap of few-layer PG decreases slowly with the number of layers (N) and converge to 2.57 eV when N ≥ 4. Our calculations using HSE06 functional on few-layer PG reveal that bandgap engineering by stacking misalignment can further tune the bandgap down to 1.37 eV. Importantly, there is no direct-to-indirect bandgap transition in PG by varying strain, layer number, and stacking misalignment. Owing to its tunable, robustly direct, and wide bandgap characteristics, few-layer PG is promising for optoelectronic and photovoltaic applications.

  17. Mechano-electric heterogeneity of the myocardium as a paradigm of its function.

    PubMed

    Solovyova, Olga; Katsnelson, Leonid B; Kohl, Peter; Panfilov, Alexander V; Tsaturyan, Andrey K; Tsyvian, Pavel B

    2016-01-01

    Myocardial heterogeneity is well appreciated and widely documented, from sub-cellular to organ levels. This paper reviews significant achievements of the group, led by Professor Vladimir S. Markhasin, Russia, who was one of the pioneers in studying and interpreting the relevance of cardiac functional heterogeneity. PMID:26713555

  18. Demand forecasting and revenue requirements, with implications for consideration in British Columbia

    SciTech Connect

    Acton, J.P.

    1983-05-01

    This paper was filed as an exhibit on behalf of The Consumers' Association of Canada (B.C. Branch), The Federated Anti-Poverty Groups of B.C., The Sierra Club of Western Canada, and the B.C. Old Age Pensioners' Organization. It was subjected to cross-examination on October 29, 1982, during Phase I of the hearings. The Utilities Commission had designated Phase I for consideration of (1) demand, (2) assets in service, (3) revenue requirements excluding return, and (4) financing and capital requirements. This paper presents a general discussion of the elements of a rate structure and their relationship to the demand for electricity, a systematic review of some 50 empirical studies of the demand for electricity as a function of price and other factors by the three principal classes of customers, and a discussion of the notion of revenue requirements. The paper should be of interest to utility regulators, rate specialists, and forecasters for its review of demand models and to academics concerned with the study of energy demand.

  19. Advances in the use of electrical stimulation for the recovery of motor function.

    PubMed

    Popović, Dejan B; Popović, Mirjana B

    2011-01-01

    This chapter sheds light on several issues that are being explored to optimize the application of electrical stimulation in a motor neural prosthesis (MNP) for the restoration of movement in humans with paralysis. Although several MNPs are commercially available, there are issues that limit their use in therapy and/or daily assistance: (1) the users' intention of what and how to move needs to be effectively transmitted to the MNP controller; (2) interface to the neural pathways that leads to physiological-like activation should be improved; (3) artificial control of the MNP should match the biological control of the preserved biological systems; and (4) sensors information should be fused and provided to both the controller of the MNP and the user. We suggest that with the improved use of cortical or other physiological signals, application of multipad electrodes with special protocols, rule-based control that mimics biological control, and with the incorporation of micro- and nanotechnologies, wireless communications, and microcontrollers, the MNP operation can be greatly enhanced. The chapter specifically addresses the control of MNP for the upper extremities and provides details on the new surface multipad electrodes that are of interest for neurorehabilitation of stroke patients. PMID:21867806

  20. Effect of pulsed electric fields assisted acetylation on morphological, structural and functional characteristics of potato starch.

    PubMed

    Hong, Jing; Chen, Rujiao; Zeng, Xin-An; Han, Zhong

    2016-02-01

    Pulsed electric fields (PEF)-assisted acetylation of potato starch with different degree of substitution (DS) was prepared and effects of PEF strength, reaction time, starch concentration on DS were studied by response surface methodology. Results showed DS was increased from 0.054 (reaction time of 15 min) to 0.130 (reaction time of 60 min) as PEF strength increased from 3 to 5 kV/cm. External morphology revealed that acetylated starch with higher DS was aggravated more bulges and asperities. Fourier-transformed infrared spectroscopy confirmed the introduction of acetyl group through a band at 1730 cm(-1). The optimum sample (DS =0 .13) had lower retrogradation (39.1%), breakdown (155 BU) and setback value (149BU), while pasting temperature (62.2 °C) was slightly higher than non-PEF-assisted samples. These results demonstrated PEF treatment can be a potential and beneficial method for acetylation and achieve higher DS with shorter reaction time. PMID:26304315

  1. Lesson on Demand. Lesson Plan.

    ERIC Educational Resources Information Center

    Weaver, Sue

    This lesson plan helps students understand the role consumer demand plays in the market system, i.e., how interactions in the marketplace help determine pricing. Students will participate in an activity that demonstrates the concepts of demand, demand schedule, demand curve, and the law of demand. The lesson plan provides student objectives;…

  2. Effects of brain-computer interface-based functional electrical stimulation on balance and gait function in patients with stroke: preliminary results

    PubMed Central

    Chung, EunJung; Park, Sang-In; Jang, Yun-Yung; Lee, Byoung-Hee

    2015-01-01

    [Purpose] The purpose of this study was to determine the effects of brain-computer interface (BCI)-based functional electrical stimulation (FES) on balance and gait function in patients with stroke. [Subjects] Subjects were randomly allocated to a BCI-FES group (n=5) and a FES group (n=5). [Methods] The BCI-FES group received ankle dorsiflexion training with FES according to a BCI-based program for 30 minutes per day for 5 days. The FES group received ankle dorsiflexion training with FES for the same duration. [Results] Following the intervention, the BCI-FES group showed significant differences in Timed Up and Go test value, cadence, and step length on the affected side. The FES group showed no significant differences after the intervention. However, there were no significant differences between the 2 groups after the intervention. [Conclusion] The results of this study suggest that BCI-based FES training is a more effective exercise for balance and gait function than FES training alone in patients with stroke. PMID:25729205

  3. Demand-side management glossary

    SciTech Connect

    Isaksen, L. ); Ignelzi, P.C. )

    1992-10-01

    Demand-side management (DSM) plays an increasingly important role in helping utilities meet capacity needs while addressing important customer service issues. In implementing utility-specific programs, however, DSM professionals have created an entire vocabulary of words and phrases that are often used and interpreted in very different ways by people with similar utility planning backgrounds. Such inconsistent terminology can hamper the very communication DSM seeks to support. Thus, this report-the first of its kind-presents a glossary of DSM terms, grouped under five major categories: (1) utility systems, (2) programs and techniques, (3) costs, revenues, and rates, (4) modeling and analysis, and (5) marketing. An index facilitates the rapid search for key words. This glossary together with a complimentary report entitled, Electric Utility DSM Programs: Terminology and Reporting Formats attempts to define some of the most common terms used in DSM today.

  4. Exogenous connexin43-expressing autologous skeletal myoblasts ameliorate mechanical function and electrical activity of the rabbit heart after experimental infarction

    PubMed Central

    Antanavičiūtė, Ieva; Ereminienė, Eglė; Vysockas, Vaidas; Račkauskas, Mindaugas; Skipskis, Vilius; Rysevaitė, Kristina; Treinys, Rimantas; Benetis, Rimantas; Jurevičius, Jonas; Skeberdis, Vytenis A

    2015-01-01

    Acute myocardial infarction is one of the major causes of mortality worldwide. For regeneration of the rabbit heart after experimentally induced infarction we used autologous skeletal myoblasts (SMs) due to their high proliferative potential, resistance to ischaemia and absence of immunological and ethical concerns. The cells were characterized with muscle-specific and myogenic markers. Cell transplantation was performed by injection of cell suspension (0.5 ml) containing approximately 6 million myoblasts into the infarction zone. The animals were divided into four groups: (i) no injection; (ii) sham injected; (iii) injected with wild-type SMs; and (iv) injected with SMs expressing connexin43 fused with green fluorescent protein (Cx43EGFP). Left ventricular ejection fraction (LVEF) was evaluated by 2D echocardiography in vivo before infarction, when myocardium has stabilized after infarction, and 3 months after infarction. Electrical activity in the healthy and infarction zones of the heart was examined ex vivo in Langendorff-perfused hearts by optical mapping using di-4-ANEPPS, a potential sensitive fluorescent dye. We demonstrate that SMs in the coculture can couple electrically not only to abutted but also to remote acutely isolated allogenic cardiac myocytes through membranous tunnelling tubes. The beneficial effect of cellular therapy on LVEF and electrical activity was observed in the group of animals injected with Cx43EGFP-expressing SMs. L-type Ca2+ current amplitude was approximately fivefold smaller in the isolated SMs compared to healthy myocytes suggesting that limited recovery of LVEF may be related to inadequate expression or function of L-type Ca2+ channels in transplanted differentiating SMs. PMID:25529770

  5. Sum of effects of myocardial ischemia followed by electrically induced tachycardia on myocardial function

    PubMed Central

    Díez, José Luis; Hernándiz, Amparo; Cosín-Aguilar, Juan; Aguilar, Amparo; Portolés, Manuel

    2013-01-01

    Background The alteration of contractile function after tachyarrhythmia ceases is influenced by the type of prior ischemia (acute coronary syndrome or ischemia inherent in a coronary revascularization procedure). We aimed to analyze cardiac dysfunction in an acute experimental model of supraphysiological heart rate preceded by different durations and types of ischemia. Material/Methods Twenty-four pigs were included in: (S1) series of ventricular pacing; (S2, A and B) series with 10 or 20 min, respectively, of coronary occlusion previous to ventricular pacing; S3 with 20 brief, repeated ischemia/reperfusion processes prior to ventricular pacing and; (S4) control series. Overall cardiac function parameters and regional myocardial contractility at the apex and base of the left ventricle were recorded, as were oxidative stress markers (glutathione and lipid peroxide serum levels). Left ventricular pacing at 60% over baseline heart rate was performed for 2 h followed by 1 h of recovery. Results High ventricular pacing rates preceded by short, repeated periods of coronary ischemia/reperfusion resulted in worse impairment of overall cardiac and regional function that continued to be altered 1 h after tachycardia ceased. There was significant reduction of stroke volume (26.9±5.3 basal vs. 16±6.2 ml; p<0.05), LVP; dP/dt and LAD flow (13.1±1.5 basal vs. 8.4±1.6 ml/min; p<0.05); the base contractility remained altered when recovering compared to baseline (base SF: 5.6±2.8 vs. 2.2±0.7%; p<0.05); and LPO levels were higher than less aggressive series at the end of recovery. Conclusions Ischemia and tachycardia accumulate their effects, with increased cardiac involvement depending on the type of ischemia. PMID:23722244

  6. Hospital demand for physicians.

    PubMed

    Morrisey, M A; Jensen, G A

    1990-01-01

    This article develops a derived demand for physicians that is general enough to encompass physician control, simple profit maximization and hospital utility maximization models of the hospital. The analysis focuses on three special aspects of physician affiliations: the price of adding a physician to the staff is unobserved; the physician holds appointments at multiple hospitals, and physicians are not homogeneous. Using 1983 American Hospital Association data, a system of specialty-specific demand equations is estimated. The results are consistent with the model and suggest that physicians should be concerned about reduced access to hospitals, particularly as the stock of hospitals declines. PMID:10104050

  7. Electric Power annual 1996: Volume II

    SciTech Connect

    1997-12-01

    This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

  8. DEVELOPMENTAL CHANGES IN FACT AND SOURCE RECALL: CONTRIBUTIONS FROM EXECUTIVE FUNCTION AND BRAIN ELECTRICAL ACTIVITY

    PubMed Central

    Rajan, Vinaya; Bell, Martha Ann

    2014-01-01

    Source memory involves recollecting the contextual details surrounding a memory episode. When source information is bound together, it makes a memory episodic in nature. Unfortunately, very little is known about the factors that contribute to its formation in early development. This study examined the development of source memory in middle childhood. Measures of executive function were examined as potential sources of variation in fact and source recall. Continuous electroencephalogram (EEG) measures were collected during baseline and fact and source retrieval in order to examine memory-related changes in EEG power. Six and 8-year-old children were taught 10 novel facts from two different sources and recall for fact and source information was later tested. Older children were better on fact recall, but both ages were comparable on source recall. However, source recall performance was poor at both ages, suggesting that this ability continues to develop beyond middle childhood. Regression analyses revealed that executive function uniquely predicted variance in source recall performance. Task-related increases in theta power were observed at frontal, temporal and parietal electrode sites during fact and source retrieval. This investigation contributes to our understanding of age-related differences in source memory processing in middle childhood. PMID:25459873

  9. Acupuncture-Related Modulation of Pain-Associated Brain Networks During Electrical Pain Stimulation: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Choi, Kyung-Eun; Gizewski, Elke R.; Wen, Ming; Rampp, Thomas; Gasser, Thomas; Dobos, Gustav J.; Forsting, Michael; Musial, Frauke

    2014-01-01

    Abstract Objective: Findings of existing functional MRI (fMRI) studies on the neural mechanisms that mediate effects of acupuncture analgesia are inconsistent. This study analyzes the effects of manual acupuncture on pain ratings and brain activation in response to experimental, electrical pain stimuli. Design: Fourteen healthy volunteers were examined by using a 1.5-T MRI scanner. The intensity of pain stimuli was adjusted to individual pain ratings on a numeric rating scale. Baseline fMRI was performed during electrical pain stimulation in a blocked design. For the second session, manual acupuncture with repeated stimulation was performed on contralateral acupoints—large intestine 4, liver 3, and stomach 36—before imaging. After imaging, subjective pain ratings and ratings of the de qi sensation were assessed. Results: Compared with baseline, volunteers showed modulated brain activity under pain conditions in the cingulate gyrus, insula, primary somatosensory cortex, and prefrontal areas after the acupuncture session. In accordance with the literature, anterior insular and prefrontal activity seemed to be correlated with acupuncture treatment. Conclusion: This study supports the existence of analgesic acupuncture effects that outlast the needling period. Pain-associated brain areas were modulated in direct response to a preceding acupuncture treatment. PMID:25389905

  10. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  11. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Manik, N. B.

    2014-12-01

    We report the effect of COOH-functionalized single walled carbon nanotubes (COOH-SWCNT) on the electrical and photovoltaic characteristics of Malachite Green (MG) dye based photovoltaic cells. Two different types of photovoltaic cells were prepared, one with MG dye and another by incorporating COOH-SWCNT with this dye. Cells were characterized through different electrical and photovoltaic measurements including photocurrent measurements with pulsed radiation. From the dark current—voltage (I-V) characteristic results, we observed a certain transition voltage (Vth) for both the cells beyond which the conduction mechanism of the cells change sharply. For the MG dye, Vth is 3.9 V whereas for COOH-SWCNT mixed with this dye, Vth drops to 2.7 V. The device performance improves due to the incorporation of COOH-SWCNT. The open circuit voltage and short circuit current density change from 4.2 to 97 mV and from 108 to 965 μA/cm2 respectively. Observations from photocurrent measurements show that the rate of growth and decay of the photocurrent are quite faster in the presence of COOH-SWCNT. This observation indicates a faster charge separation processes due to the incorporation of COOH-SWCNT in the MG dye cells. The high aspect ratio of COOH-SWCNT allows efficient conduction pathways for the generated charge carriers.

  12. Characterization of terrestrial solar cells for space applications: Electrical characteristics of thin Westinghouse dendritic web cells as a function of solar intensity, temperature, and incidence angle

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Anspaugh, B. E.

    1985-01-01

    Electrical characteristics of thin (100- and 140-micron) Westinghouse dendritic-web N/P silicon solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. Performance is also shown as a function of solar illlumination angle of incidence for AMO.

  13. Electric power market agent design

    NASA Astrophysics Data System (ADS)

    Oh, Hyungseon

    The electric power industry in many countries has been restructured in the hope of a more economically efficient system. In the restructured system, traditional operating and planning tools based on true marginal cost do not perform well since information required is strictly confidential. For developing a new tool, it is necessary to understand offer behavior. The main objective of this study is to create a new tool for power system planning. For the purpose, this dissertation develops models for a market and market participants. A new model is developed in this work for explaining a supply-side offer curve, and several variables are introduced to characterize the curve. Demand is estimated using a neural network, and a numerical optimization process is used to determine the values of the variables that maximize the profit of the agent. The amount of data required for the optimization is chosen with the aid of nonlinear dynamics. To suggest an optimal demand-side bidding function, two optimization problems are constructed and solved for maximizing consumer satisfaction based on the properties of two different types of demands: price-based demand and must-be-served demand. Several different simulations are performed to test how an agent reacts in various situations. The offer behavior depends on locational benefit as well as the offer strategies of competitors.

  14. Interoperability of Demand Response Resources Demonstration in NY

    SciTech Connect

    Wellington, Andre

    2014-03-31

    The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

  15. Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies.

    PubMed

    Quinn, T Alexander; Kohl, Peter

    2013-03-15

    Since the development of the first mathematical cardiac cell model 50 years ago, computational modelling has become an increasingly powerful tool for the analysis of data and for the integration of information related to complex cardiac behaviour. Current models build on decades of iteration between experiment and theory, representing a collective understanding of cardiac function. All models, whether computational, experimental, or conceptual, are simplified representations of reality and, like tools in a toolbox, suitable for specific applications. Their range of applicability can be explored (and expanded) by iterative combination of 'wet' and 'dry' investigation, where experimental or clinical data are used to first build and then validate computational models (allowing integration of previous findings, quantitative assessment of conceptual models, and projection across relevant spatial and temporal scales), while computational simulations are utilized for plausibility assessment, hypotheses-generation, and prediction (thereby defining further experimental research targets). When implemented effectively, this combined wet/dry research approach can support the development of a more complete and cohesive understanding of integrated biological function. This review illustrates the utility of such an approach, based on recent examples of multi-scale studies of cardiac structure and mechano-electric function. PMID:23334215

  16. Using Functional Electrical Stimulation Mediated by Iterative Learning Control and Robotics to Improve Arm Movement for People With Multiple Sclerosis.

    PubMed

    Sampson, Patrica; Freeman, Chris; Coote, Susan; Demain, Sara; Feys, Peter; Meadmore, Katie; Hughes, Ann-Marie

    2016-02-01

    Few interventions address multiple sclerosis (MS) arm dysfunction but robotics and functional electrical stimulation (FES) appear promising. This paper investigates the feasibility of combining FES with passive robotic support during virtual reality (VR) training tasks to improve upper limb function in people with multiple sclerosis (pwMS). The system assists patients in following a specified trajectory path, employing an advanced model-based paradigm termed iterative learning control (ILC) to adjust the FES to improve accuracy and maximise voluntary effort. Reaching tasks were repeated six times with ILC learning the optimum control action from previous attempts. A convenience sample of five pwMS was recruited from local MS societies, and the intervention comprised 18 one-hour training sessions over 10 weeks. The accuracy of tracking performance without FES and the amount of FES delivered during training were analyzed using regression analysis. Clinical functioning of the arm was documented before and after treatment with standard tests. Statistically significant results following training included: improved accuracy of tracking performance both when assisted and unassisted by FES; reduction in maximum amount of FES needed to assist tracking; and less impairment in the proximal arm that was trained. The system was well tolerated by all participants with no increase in muscle fatigue reported. This study confirms the feasibility of FES combined with passive robot assistance as a potentially effective intervention to improve arm movement and control in pwMS and provides the basis for a follow-up study. PMID:25823038

  17. Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations.

    PubMed

    Kutlu, M; Freeman, C T; Hallewell, E; Hughes, A-M; Laila, D S

    2016-04-01

    Functional electrical stimulation (FES) has shown effectiveness in restoring upper-limb movement post-stroke when applied to assist participants' voluntary intention during repeated, motivating tasks. Recent clinical trials have used advanced controllers that precisely adjust FES to assist functional reach and grasp tasks with FES applied to three muscle groups, showing significant reduction in impairment. The system reported in this paper advances the state-of-the-art by: (1) integrating an FES electrode array on the forearm to assist complex hand and wrist gestures; (2) utilising non-contact depth cameras to accurately record the arm, hand and wrist position in 3D; and (3) employing an interactive touch table to present motivating virtual reality (VR) tasks. The system also uses iterative learning control (ILC), a model-based control strategy which adjusts the applied FES based on the tracking error recorded on previous task attempts. Feasibility of the system has been evaluated in experimental trials with 2 unimpaired participants and clinical trials with 4 hemiparetic, chronic stroke participants. The stroke participants attended 17, 1 hour training sessions in which they performed functional tasks, such as button pressing using the touch table and closing a drawer. Stroke participant results show that the joint angle error norm reduced by an average of 50.3% over 6 attempts at each task when assisted by FES. PMID:26947097

  18. Comparison of muscle functional electrical stimulation to conventional bicycle exercise on endothelium and functional status indices in patients with heart failure.

    PubMed

    Deftereos, Spyridon; Giannopoulos, Georgios; Raisakis, Konstantinos; Kossyvakis, Charalampos; Kaoukis, Andreas; Driva, Metaxia; Pappas, Loukas; Panagopoulou, Vasiliki; Ntzouvara, Olga; Karavidas, Apostolos; Pyrgakis, Vlasios; Rentoukas, Ilias; Aggeli, Constadina; Stefanadis, Christodoulos

    2010-12-01

    The aim of this prospective, open-label, cohort study was to compare the effect of muscle functional electrical stimulation (FES) on endothelial function to that of conventional bicycle training. Eligible patients were those with New York Heart Association class II or III heart failure symptoms and ejection fractions ≤ 0.35. Two physical conditioning programs were delivered: FES of the muscles of the lower limbs and bicycle training, each lasting for 6 weeks, with a 6-week washout period between them. Brachial artery flow-mediated dilation (FMD) and other parameters were assessed before and after FES and the bicycle training program. FES resulted in a significant improvement in FMD, which increased from 5.9 ± 0.5% to 7.7 ± 0.5% (95% confidence interval for the difference 1.5% to 2.3%, p < 0.001). Bicycle training also resulted in a substantial improvement of endothelial function. FMD increased from 6.2 ± 0.4% to 9.2 ± 0.4% (95% confidence interval for the difference 2.5% to 3.5%, p < 0.001). FES was associated with a 41% relative increase in FMD, compared to 57% with bicycle exercise (95% confidence interval for the difference between the relative changes 1.2% to 30.5%, p = 0.034). This resulted in attaining a significantly higher FMD value after bicycle training compared to FES (9.2 ± 0.4% vs 7.7 ± 0.5%, p < 0.001). In conclusion, the effect of muscle FES in patients with heart failure on endothelial function, although not equivalent to that of conventional exercise, is substantial. Muscle FES protocols may prove very useful in the treatment of patients with heart failure who cannot or will not adhere to conventional exercise programs. PMID:21094364

  19. An investigation of the action of the hamstring muscles during standing in crouch using functional electrical stimulation (FES).

    PubMed

    Stewart, C; Postans, N; Schwartz, M H; Rozumalski, A; Roberts, A P

    2008-10-01

    The hamstring muscle moment arms indicate that they act as hip extensors and knee flexors. Previous work using induced acceleration (IA) analysis and functional electrical stimulation (FES) has, however, revealed counter-intuitive muscle actions, particularly for biarticular muscles during the stance phase of normal gait. In conditions such as cerebral palsy the hamstrings have been associated with the development of pathological gait patterns, particularly crouch gait. This study examines the role of these muscles in the control of crouched standing postures. Five unimpaired adult subjects had their muscles stimulated during quiet standing in different degrees of crouch. Kinematic and kinetic changes were observed and measured using a 3D motion analysis system. The hamstring muscles were shown to act strongly to retrovert the pelvis and extend the hip. The action at the knee changes as crouch increases, moving from flexing to extending. PMID:18579383

  20. Thermoelectric properties of nano-meso-micro β-MnO₂ powders as a function of electrical resistance

    DOE PAGESBeta

    Hedden, Morgan; Francis, Nick; Haraldsen, Jason T.; Ahmed, Towfiq; Constantin, Costel

    2015-07-15

    Particle sizes of manganese oxide (β-MnO₂) powders were modified by using a mortar and pestle ground method for period of times that varied between 15–60 min. Particle size versus ground time clearly shows the existence of a size-induced regime transition (i.e., regime I and II). Thermoelectric properties of β-MnO₂ powders as a function of electrical resistance in the range of RP = 10 - 80Ω were measured. Based on the data presented, we propose a model for the β-MnO₂ system in which nanometer-scale MnO₂ crystallites bond together through weak van der Waals forces to form larger conglomerates that span inmore » size from nanometer to micrometer scale.« less