Science.gov

Sample records for electricity demand pattern

  1. Electricity demand curtailment planning

    SciTech Connect

    Allentuck, J; Carroll, O; Schnader, M

    1980-01-01

    The state of electricity demand curtailment planning for long term electricity supply disruptions is reviewed. Legal, institutional and technological problems associated with demand curtailment plans are examined, and the existence of well defined social objectives on the part of planners is questioned. A linear programming approach to electricity demand curtailment planning is presented.

  2. Spatial analysis of electricity demand patterns in Greece: Application of a GIS-based methodological framework

    NASA Astrophysics Data System (ADS)

    Tyralis, Hristos; Mamassis, Nikos; Photis, Yorgos N.

    2016-04-01

    We investigate various uses of electricity demand in Greece (agricultural, commercial, domestic, industrial use as well as use for public and municipal authorities and street lightning) and we examine their relation with variables such as population, total area, population density and the Gross Domestic Product. The analysis is performed on data which span from 2008 to 2012 and have annual temporal resolution and spatial resolution down to the level of prefecture. We both visualize the results of the analysis and we perform cluster and outlier analysis using the Anselin local Moran's I statistic as well as hot spot analysis using the Getis-Ord Gi* statistic. The definition of the spatial patterns and relationships of the aforementioned variables in a GIS environment provides meaningful insight and better understanding of the regional development model in Greece and justifies the basis for an energy demand forecasting methodology. Acknowledgement: This research has been partly financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA II: Reinforcement of the interdisciplinary and/ or inter-institutional research and innovation (CRESSENDO project; grant number 5145).

  3. Saving Electricity and Demand Response

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Nobuyuki

    A lot of people lost their lives in the tremendous earthquake in Tohoku region on March 11. A large capacity of electric power plants in TEPCO area was also damaged and large scale power shortage in this summer is predicted. In this situation, electricity customers are making great effort to save electricity to avoid planned outage. Customers take actions not only by their selves but also by some customers' cooperative movements. All actions taken actually are based on responses to request form the government or voluntary decision. On the other hand, demand response based on a financial stimulus is not observed as an actual behavior. Saving electricity by this demand response only discussed in the newspapers. In this commentary, the events regarding electricity-saving measure after this disaster are described and the discussions on demand response, especially a raise in power rate, are put into shapes in the context of this electricity supply-demand gap.

  4. Residential electricity demand in Arkansas

    NASA Astrophysics Data System (ADS)

    Resendez, Ileana M.

    This study analyzes residential electricity demand in Arkansas. Explanatory variables utilized include real per capita income, residential electricity price, heating degree days, cooling degree days, and residential natural gas price. The results indicate that the income effect dominates the substitution effect given a real personal income increase and a decline in real electricity rates in the state of Arkansas during the period under study.

  5. Projecting Electricity Demand in 2050

    SciTech Connect

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael C. W.

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  6. Cut Electric Bills by Controlling Demand

    ERIC Educational Resources Information Center

    Grumman, David L.

    1974-01-01

    Electric bills can be reduced by lowering electric consumption and by controlling demand -- the amount of electricity used at a certain point in time. Gives tips to help reduce electric demand at peak power periods. (Author/DN)

  7. Hawaiian Electric Company Demand Response Roadmap Project

    SciTech Connect

    Levy, Roger; Kiliccote, Sila

    2013-01-12

    The objective of this project was to develop a “roadmap” to guide the Hawaiian Electric Company (HECO) demand response (DR) planning and implementation in support of the Hawaii Clean Energy Initiative (HCEI) 70% clean energy goal by 2030.

  8. Forecasting residential electricity demand in provincial China.

    PubMed

    Liao, Hua; Liu, Yanan; Gao, Yixuan; Hao, Yu; Ma, Xiao-Wei; Wang, Kan

    2017-03-01

    In China, more than 80% electricity comes from coal which dominates the CO2 emissions. Residential electricity demand forecasting plays a significant role in electricity infrastructure planning and energy policy designing, but it is challenging to make an accurate forecast for developing countries. This paper forecasts the provincial residential electricity consumption of China in the 13th Five-Year-Plan (2016-2020) period using panel data. To overcome the limitations of widely used predication models with unreliably prior knowledge on function forms, a robust piecewise linear model in reduced form is utilized to capture the non-deterministic relationship between income and residential electricity consumption. The forecast results suggest that the growth rates of developed provinces will slow down, while the less developed will be still in fast growing. The national residential electricity demand will increase at 6.6% annually during 2016-2020, and populous provinces such as Guangdong will be the main contributors to the increments.

  9. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  10. Perforation patterned electrical interconnects

    SciTech Connect

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  11. Economic Rebalancing and Electricity Demand in China

    SciTech Connect

    He, Gang; Lin, Jiang; Yuan, Alexandria

    2015-11-01

    Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts for electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.

  12. Demand for electric automobiles. Final report

    SciTech Connect

    Beggs, S.D.

    1981-10-01

    The objective of this report is to specify and estimate models suitable for predicting the demand for electric automobiles, taking into account their key limitations relative to conventional alternatives: limited range, lengthy refueling, lower performance, higher initial price, and greater relative cost for providing additional load-carrying capacity or amenities such as air conditioning. Possible advantages of electric vehicles relative to conventional vehicles, notably lower operating costs, are also considered. Interest centers on the possibility of a mass market for electric vehicles, not identification of specialized markets. Only the private market for electric cars is considered, not commercial or industrial users, and it is assumed multi-car households are the most likely purchasers. Logit models of multi-vehicle households' choices of their smallest cars are estimated on two bodies of data: a panel study conducted by Arthur D. Little (ADL) in the spring of 1978, specifically to test consumers' reactions to hypothetical configurations for electric vehicles; and a sample of multi-vehicle households gathered in Baltimore in the spring of 1977. The ADL panel data allows estimation of consumers' valuations of novel characteristics of electric vehicles, notably limited range coupled with lengthy refueling time. The actual market data from Baltimore serves largely as a check on the validity of estimates obtained from the ADL panel. A generalization of the usual multinomial logit model, called the ordered logit model, is derived in this study from basic economic and statistical principles, and is applied to the ranked choices of the ADL panel; the ordered logit model is compared to the conjoint model employed earlier by ALD.

  13. Demand for electric automobiles. Final report

    SciTech Connect

    Beggs, S.D.

    1981-10-01

    The objective of this report is to specify and estimate models suitable for predicting the demand for electric automobiles, taking into account their key limitations relative to conventional alternatives: limited range, lengthy refueling, lower performance, higher initial price, and greater relative cost for providing additional load-carrying capacity or amenities such as air conditioning. Possible advantages of electric vehicles relative to conventional vehicles, notably lower operating costs, are also considered. Interest centers on the possibility of a mass market for electric vehicles, not identification of specialized markets. Only the private market for electric cars is considered, not commercial or industrial users, and it is assumed multi-car households are the most likely purchasers. Logit models of multi-vehicle households' choices of their smllest cars are estimated on two bodies of data: a panel study conducted by Arthur D. Little (ADL) in the spring of 1978, specifically to test consumers' reactions to hypothetical configurations for electric vehicles; and a sample of multi-vehicle households gathered in Baltimore in the spring of 1977. The ADL panel data allows estimation of consumers' valuations of novel characteristics of electric vehicles, notably limited range coupled with lengthy refueling time. The actual market data from Baltimore serves largely as a check on the validity of estimates obtained from the ADL panel. A generalization of the usual multinomial logit model, called the ordered logit model, is derived in this study from basic economicand statistical principles, and is applied to the ranked choices of the ADL panel; the ordered logit model is compared to the conjoint model employed earlier by ADL.

  14. Electricity Demand Evolution Driven by Storm Motivated Population Movement

    SciTech Connect

    Allen, Melissa R; Fernandez, Steven J; Fu, Joshua S; Walker, Kimberly A

    2014-01-01

    Managing the risks posed by climate change to energy production and delivery is a challenge for communities worldwide. Sea Level rise and increased frequency and intensity of natural disasters due to sea surface temperature rise force populations to move locations, resulting in changing patterns of demand for infrastructure services. Thus, Infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Combining climate predictions and agent based population movement models shows promise for exploring the universe of these future population distributions and changes in coastal infrastructure configurations. In this work, we created a prototype agent based population distribution model and developed a methodology to establish utility functions that provide insight about new infrastructure vulnerabilities that might result from these patterns. Combining climate and weather data, engineering algorithms and social theory, we use the new Department of Energy (DOE) Connected Infrastructure Dynamics Models (CIDM) to examine electricity demand response to increased temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. This work suggests that the importance of established evacuation routes that move large populations repeatedly through convergence points as an indicator may be under recognized.

  15. Demand responsive programs - an emerging resource for competitive electricity markets?

    SciTech Connect

    Heffner, Grayson C. Dr.; Goldman, Charles A.

    2001-06-25

    The restructuring of regional electricity markets in the U.S. has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created significant new opportunities for technologies and business approaches that allow load serving entities and other aggregators, to control and manage the load patterns of their wholesale or retail end-users. These technologies and business approaches for manipulating end-user load shapes are known as Load Management or, more recently, Demand Responsive programs. Lawrence Berkeley National Laboratory (LBNL) is conducting case studies on innovative demand responsive programs and presents preliminary results for five case studies in this paper. These case studies illustrate the diversity of market participants and range of technologies and business approaches and focus on key program elements such as target markets, market segmentation and participation results; pricing scheme; dispatch and coordination; measurement, verification, and settlement; and operational results where available.

  16. Electricity pricing as a demand-side management strategy: Western lessons for developing countries

    SciTech Connect

    Hill, L.J.

    1990-12-01

    Electric utilities in the Western world have increasingly realized that load commitments can be met not only by constructing new generating plants but also by influencing electricity demand. This demand-side management (DSM) process requires that electric utilities promote measures on the customer's side of the meter to directly or indirectly influence electricity consumption to meet desired load objectives. An important demand-side option to achieve these load objectives is innovative electricity pricing, both by itself and as a financial incentive for other demand-site measures. This study explores electricity pricing as a DSM strategy, addressing four questions in the process: What is the Western experience with DSM in general and electricity pricing in particular Do innovative pricing strategies alter the amount and pattern of electricity consumption Do the benefits of these pricing strategies outweigh the costs of implementation What are future directions in electricity pricing Although DSM can be used to promote increases in electricity consumption for electric utilities with excess capacity as well as to slow demand growth for capacity-short utilities, emphasis here is placed on the latter. The discussion should be especially useful for electric utilities in developing countries that are exploring alternatives to capacity expansion to meet current and future electric power demand.

  17. Demand side management in recycling and electricity retail pricing

    NASA Astrophysics Data System (ADS)

    Kazan, Osman

    This dissertation addresses several problems from the recycling industry and electricity retail market. The first paper addresses a real-life scheduling problem faced by a national industrial recycling company. Based on their practices, a scheduling problem is defined, modeled, analyzed, and a solution is approximated efficiently. The recommended application is tested on the real-life data and randomly generated data. The scheduling improvements and the financial benefits are presented. The second problem is from electricity retail market. There are well-known patterns in daily usage in hours. These patterns change in shape and magnitude by seasons and days of the week. Generation costs are multiple times higher during the peak hours of the day. Yet most consumers purchase electricity at flat rates. This work explores analytic pricing tools to reduce peak load electricity demand for retailers. For that purpose, a nonlinear model that determines optimal hourly prices is established based on two major components: unit generation costs and consumers' utility. Both are analyzed and estimated empirically in the third paper. A pricing model is introduced to maximize the electric retailer's profit. As a result, a closed-form expression for the optimal price vector is obtained. Possible scenarios are evaluated for consumers' utility distribution. For the general case, we provide a numerical solution methodology to obtain the optimal pricing scheme. The models recommended are tested under various scenarios that consider consumer segmentation and multiple pricing policies. The recommended model reduces the peak load significantly in most cases. Several utility companies offer hourly pricing to their customers. They determine prices using historical data of unit electricity cost over time. In this dissertation we develop a nonlinear model that determines optimal hourly prices with parameter estimation. The last paper includes a regression analysis of the unit generation cost

  18. The design of optimal electric power demand management contracts

    NASA Astrophysics Data System (ADS)

    Fahrioglu, Murat

    1999-11-01

    Our society derives a quantifiable benefit from electric power. In particular, forced outages or blackouts have enormous consequences on society, one of which is loss of economic surplus. Electric utilities try to provide reliable supply of electric power to their customers. Maximum customer benefit derives from minimum cost and sufficient supply availability. Customers willing to share in "availability risk" can derive further benefit by participating in controlled outage programs. Specifically, whenever utilities foresee dangerous loading patterns, there is a need for a rapid reduction in demand either system-wide or at specific locations. The utility needs to get relief in order to solve its problems quickly and efficiently. This relief can come from customers who agree to curtail their loads upon request in exchange for an incentive fee. This thesis shows how utilities can get efficient load relief while maximizing their economic benefit. This work also shows how estimated customer cost functions can be calibrated, using existing utility data, to help in designing efficient demand management contracts. In order to design such contracts, optimal mechanism design is adopted from "Game Theory" and applied to the interaction between a utility and its customers. The idea behind mechanism design is to design an incentive structure that encourages customers to sign up for the right contract and reveal their true value of power. If a utility has demand management contracts with customers at critical locations, most operational problems can be solved efficiently. This thesis illustrates how locational attributes of customers incorporated into demand management contract design can have a significant impact in solving system problems. This kind of demand management contracts can also be used by an Independent System Operator (ISO). During times of congestion a loss of economic surplus occurs. When the market is too slow or cannot help relieve congestion, demand management

  19. Electric energy demand and supply prospects for California

    NASA Technical Reports Server (NTRS)

    Jones, H. G. M.

    1978-01-01

    A recent history of electricity forecasting in California is given. Dealing with forecasts and regulatory uncertainty is discussed. Graphs are presented for: (1) Los Angeles Department of Water and Power and Pacific Gas and Electric present and projected reserve margins; (2) California electricity peak demand forecast; and (3) California electricity production.

  20. Incorporating weather uncertainty in demand forecasts for electricity market planning

    NASA Astrophysics Data System (ADS)

    Ziser, C. J.; Dong, Z. Y.; Wong, K. P.

    2012-07-01

    A major component of electricity network planning is to ensure supply capability into the future, through generation and transmission development. Accurate forecasts of maximum demand are a crucial component of this process, with future weather conditions having a large impact on forecast accuracy. This article presents an improved methodology for the consideration of weather uncertainty in electricity demand forecasts. Case studies based on the Australian national electricity market are used to validate the proposed methodology.

  1. Analysis of recent projections of electric power demand

    SciTech Connect

    Hudson, Jr, D V

    1993-08-01

    This report reviews the changes and potential changes in the outlook for electric power demand since the publication of Review and Analysis of Electricity Supply Market Projections (B. Swezey, SERI/MR-360-3322, National Renewable Energy Laboratory). Forecasts of the following organizations were reviewed: DOE/Energy Information Administration, DOE/Policy Office, DRI/McGraw-Hill, North American Electric Reliability Council, and Gas Research Institute. Supply uncertainty was briefly reviewed to place the uncertainties of the demand outlook in perspective. Also discussed were opportunities for modular technologies, such as renewable energy technologies, to fill a potential gap in energy demand and supply.

  2. Estimating elasticity for residential electricity demand in China.

    PubMed

    Shi, G; Zheng, X; Song, F

    2012-01-01

    Residential demand for electricity is estimated for China using a unique household level dataset. Household electricity demand is specified as a function of local electricity price, household income, and a number of social-economic variables at household level. We find that the residential demand for electricity responds rather sensitively to its own price in China, which implies that there is significant potential to use the price instrument to conserve electricity consumption. Electricity elasticities across different heterogeneous household groups (e.g., rich versus poor and rural versus urban) are also estimated. The results show that the high income group is more price elastic than the low income group, while rural families are more price elastic than urban families. These results have important policy implications for designing an increasing block tariff.

  3. U.S. electric utility demand-side management 1995

    SciTech Connect

    1997-01-01

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  4. U.S. electric utility demand-side management 1993

    SciTech Connect

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  5. Demand response and electricity market efficiency

    SciTech Connect

    Spees, Kathleen; Lave, Lester B.

    2007-04-15

    Customer response is a neglected way of solving electricity industry problems. Historically, providers have focused on supply, assuming that consumers are unwilling or unable to modify their consumption. Contrary to these expectations, customers respond to higher prices that they expect to continue by purchasing more efficient appliances and taking other efficiency measures, a review of published studies indicates. (author)

  6. (Energy and electricity supply and demand)

    SciTech Connect

    Wilbanks, T.J.

    1990-10-09

    At the request of the International Atomic Energy Agency (IAEA), representing eleven international agencies which are sponsoring the 1991 Helsinki Symposium on Electricity and the Environment, I traveled to Brussels to participate in the second meeting of one of four advisory groups established to prepare for the Symposium. At the meeting, I was involved in a review of a draft issue paper being prepared for the Symposium and of the Symposium program.

  7. Turkey opens electricity markets as demand grows

    SciTech Connect

    McKeigue, J.; Da Cunha, A.; Severino, D.

    2009-06-15

    Turkey's growing power market has attracted investors and project developers for over a decade, yet their plans have been dashed by unexpected political or financial crises or, worse, obstructed by a lengthy bureaucratic approval process. Now, with a more transparent retail electricity market, government regulators and investors are bullish on Turkey. Is Turkey ready to turn the power on? This report closely examine Turkey's plans to create a power infrastructure capable of providing the reliable electricity supplies necessary for sustained economic growth. It was compiled with on-the-ground research and extensive interview with key industrial and political figures. Today, hard coal and lignite account for 21% of Turkey's electricity generation and gas-fired plants account for 50%. The Alfin Elbistan-B lignite-fired plant has attracted criticism for its lack of desulfurization units and ash dam facilities that have tarnished the industry's image. A 1,100 MW hard-coal fired plant using supercritical technology is under construction. 9 figs., 1 tab.

  8. Closeup view of a general electric company demand meter which ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a general electric company demand meter which formerly monitored railroad power usage obtained from Philadelphia Electric Company sources. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA

  9. US electric utility demand-side management, 1994

    SciTech Connect

    1995-12-26

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  10. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  11. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOEpatents

    Chassin, David P [Pasco, WA; Donnelly, Matthew K [Kennewick, WA; Dagle, Jeffery E [Richland, WA

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  12. U.S. electric utility demand-side management 1996

    SciTech Connect

    1997-12-01

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  13. Impacts of climate change on sub-regional electricity demand and distribution in the southern United States

    NASA Astrophysics Data System (ADS)

    Allen, Melissa R.; Fernandez, Steven J.; Fu, Joshua S.; Olama, Mohammed M.

    2016-08-01

    High average temperatures lead to high regional electricity demand for cooling buildings, and large populations generally require more aggregate electricity than smaller ones do. Thus, future global climate and population changes will present regional infrastructure challenges regarding changing electricity demand. However, without spatially explicit representation of this demand or the ways in which it might change at the neighbourhood scale, it is difficult to determine which electricity service areas are most vulnerable and will be most affected by these changes. Here we show that detailed projections of changing local electricity demand patterns are viable and important for adaptation planning at the urban level in a changing climate. Employing high-resolution and spatially explicit tools, we find that electricity demand increases caused by temperature rise have the greatest impact over the next 40 years in areas serving small populations, and that large population influx stresses any affected service area, especially during peak demand.

  14. Managing Residential Electricity Demand Through Provision of Better Feedback

    NASA Astrophysics Data System (ADS)

    Collins, Myles

    New and affordable technology for providing detailed feedback on household electricity usage presents a host of opportunities for utilities and policy-makers to manage demand. This dissertation examines ways to use these devices to reduce - and shift the timing of - energy use in the residential sector by influencing consumers' behavior. The first portion of the study analyzes the impact of programmable thermostats (PTs) on energy use, focusing on residents' knowledge of climate control settings in the dwelling. I found that of households with natural gas heating systems, young households with PTs used 17 percent less heating energy on average. In addition, residents who did not know their thermostat settings tended to use 10 percent more energy for heating. The main portion of the dissertation focuses specifically on the potential for better feedback on electricity usage to reduce household energy consumption. The existing literature suggests that feedback can reduce electricity consumption in homes by 5 to 20 percent, but that significant uncertainties remain in our knowledge of the effectiveness of feedback. These uncertainties include the variation in feedback effectiveness between demographic groups and consumers in different climate regions. This analysis uses these uncertainties to perform an exploratory analysis to determine the conditions under which the benefits of feedback outweigh the costs and to compare the cost-effectiveness of providing feedback against that of other DSM programs. I found that benefits would likely outweigh costs for enhanced monthly billing and real-time feedback and that cost-effectiveness was superior to that of other DSM programs for these types of feedback. For feedback that is disaggregated by appliance type, cost effectiveness was competitive with other DSM programs under a limited set of cases. This study also examines how energy consumption devices should display feedback on GHG emissions from electricity use under a real

  15. Impacts of Demand-Side Resources on Electric Transmission Planning

    SciTech Connect

    Hadley, Stanton W.; Sanstad, Alan H.

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  16. Simulation of demand management and grid balancing with electric vehicles

    NASA Astrophysics Data System (ADS)

    Druitt, James; Früh, Wolf-Gerrit

    2012-10-01

    This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.

  17. Climate, extreme heat, and electricity demand in California

    SciTech Connect

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01

    Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such

  18. Impacts of climate change on sub-regional electricity demand and distribution in the southern United States

    SciTech Connect

    Allen, Melissa R.; Fernandez, Steven J.; Fu, Joshua S.; Olama, Mohammed M.

    2016-07-25

    New tools are employed to develop an electricity demand map for the southeastern United States at neighborhood resolution to serve as a baseline from which to project increases in electricity demand due to a rise in global and local temperature and to population shifts motivated by increases in extreme weather events due to climate change. We find that electricity demand increases due to temperature rise over the next 40 years have a much smaller impact than those due to large population influx. In addition, we find evidence that some, sections of the national electrical grid are more adaptable to these population shifts and changing demand than others are; and that detailed projections of changing local electricity demand patterns are viable and important for planning at the urban level.

  19. Impacts of climate change on sub-regional electricity demand and distribution in the southern United States

    DOE PAGES

    Allen, Melissa R.; Fernandez, Steven J.; Fu, Joshua S.; ...

    2016-07-25

    New tools are employed to develop an electricity demand map for the southeastern United States at neighborhood resolution to serve as a baseline from which to project increases in electricity demand due to a rise in global and local temperature and to population shifts motivated by increases in extreme weather events due to climate change. We find that electricity demand increases due to temperature rise over the next 40 years have a much smaller impact than those due to large population influx. In addition, we find evidence that some, sections of the national electrical grid are more adaptable to thesemore » population shifts and changing demand than others are; and that detailed projections of changing local electricity demand patterns are viable and important for planning at the urban level.« less

  20. Relationships of farmstead size and equipment to electrical demands

    SciTech Connect

    Stetson, L.E.; Farrell, K.L.

    1981-01-01

    Thirty-five farmsteads are being monitored in a study designed to determine the magnitude and timing of rural electric power demands. The study sites were selected by a stratified randomized design where customers were fitted into three subgroups based on their 1980 average monthly energy usage. The categories were arbitrarily chosen to be 100-750 kWh, 751-1500 kWh and greater than 1501 kWh. The high usage category was further subdivided into five specialized farming operations: cattle, dairy, grain, poultry and swine. Some representative data are being presented showing the typical winter demands for the selected categories. Demands per unit are shown for poultry and dairy operations.

  1. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  2. The analysis of Taiwan's residential electricity demand under the electricity tariff policy

    NASA Astrophysics Data System (ADS)

    Chen, Po-Jui

    In October 2013, the Taiwan Power Company (Taipower), the monopolized state utility service in Taiwan, implemented an electricity tariff adjustment policy to reduce residential electricity demand. Using bi-monthly billing data from 6,932 electricity consumers, this study examine how consumers respond to an increase in electricity prices. This study employs an empirical approach that takes advantage of quasi-random variation over a period of time when household bills were affected by a change in electricity price. The study found that this price increase caused a 1.78% decline in residential electricity consumption, implying a price elasticity of -0.19 for summer-season months and -0.15 for non-summer-season months. The demand for electricity is therefore relatively inelastic, likely because it is hard for people to change their electricity consumption behavior in the short-term. The results of this study highlight that demand-side management cannot be the only lever used to address Taiwan's forecasted decrease in electricity supply.

  3. National patterns of energy demand and expenditures by Hispanics

    SciTech Connect

    Poyer, D.A.

    1987-01-01

    This paper is based on ongoing research, at Argonne National Laboratory, being done for the Office of Minority Economic Impact (MI) of the US Department of Energy. Under its legislative mandate MI is required to assess the impact of government policy, programs, and actions on US minorities. In line with this mission Argonne is currently involved in characterizing and analyzing the patterns of energy demand and expenditures of minorities. A major barrier associated with this task is the availability of sufficient data. With the possible exception of blacks, analysis of the patterns of energy demand for most minority population categories is all but impossible because of small sample sizes. The major source of residential energy consumption data, the Residential Energy Consumption Survey, only collects data on 5000 to 7000 households. For many minority population categories, this number of observations make any meaningful statistical analysis at least at the regional Census level practically impossible, with any further refinement of the analysis becoming even more difficult. In this paper our primary purpose is to describe the patterns of energy demand for Hispanics and nonhispanics but ancillary to that briefly present one possible solution to the data availability problem.

  4. Programmable and on-demand drug release using electrical stimulation

    PubMed Central

    Yi, Y. T.; Sun, J. Y.; Lu, Y. W.; Liao, Y. C.

    2015-01-01

    Recent advancement in microfabrication has enabled the implementation of implantable drug delivery devices with precise drug administration and fast release rates at specific locations. This article presents a membrane-based drug delivery device, which can be electrically stimulated to release drugs on demand with a fast release rate. Hydrogels with ionic model drugs are sealed in a cylindrical reservoir with a separation membrane. Electrokinetic forces are then utilized to drive ionic drug molecules from the hydrogels into surrounding bulk solutions. The drug release profiles of a model drug show that release rates from the device can be electrically controlled by adjusting the stimulated voltage. When a square voltage wave is applied, the device can be quickly switched between on and off to achieve pulsatile release. The drug dose released is then determined by the duration and amplitude of the applied voltages. In addition, successive on/off cycles can be programmed in the voltage waveforms to generate consistent and repeatable drug release pulses for on-demand drug delivery. PMID:25825612

  5. The Impact of Energy Efficiency and Demand Response Programs on the U.S. Electricity Market

    SciTech Connect

    Baek, Young Sun; Hadley, Stanton W

    2012-01-01

    This study analyzes the impact of the energy efficiency (EE) and demand response (DR) programs on the grid and the consequent level of production. Changes in demand caused by EE and DR programs affect not only the dispatch of existing plants and new generation technologies, the retirements of old plants, and the finances of the market. To find the new equilibrium in the market, we use the Oak Ridge Competitive Electricity Dispatch Model (ORCED) developed to simulate the operations and costs of regional power markets depending on various factors including fuel prices, initial mix of generation capacity, and customer response to electricity prices. In ORCED, over 19,000 plant units in the nation are aggregated into up to 200 plant groups per region. Then, ORCED dispatches the power plant groups in each region to meet the electricity demands for a given year up to 2035. In our analysis, we show various demand, supply, and dispatch patterns affected by EE and DR programs across regions.

  6. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  7. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  8. Demand Response in U.S. Electricity Markets: Empirical Evidence

    SciTech Connect

    Cappers, Peter; Goldman, Charles; Kathan, David

    2009-06-01

    Empirical evidence concerning demand response (DR) resources is needed in order to establish baseline conditions, develop standardized methods to assess DR availability and performance, and to build confidence among policymakers, utilities, system operators, and stakeholders that DR resources do offer a viable, cost-effective alternative to supply-side investments. This paper summarizes the existing contribution of DR resources in U.S. electric power markets. In 2008, customers enrolled in existing wholesale and retail DR programs were capable of providing ~;;38,000 MW of potential peak load reductions in the United States. Participants in organized wholesale market DR programs, though, have historically overestimated their likely performance during declared curtailments events, but appear to be getting better as they and their agents gain experience. In places with less developed organized wholesale market DR programs, utilities are learning how to create more flexible DR resources by adapting legacy load management programs to fit into existing wholesale market constructs. Overall, the development of open and organized wholesale markets coupled with direct policy support by the Federal Energy Regulatory Commission has facilitated new entry by curtailment service providers, which has likely expanded the demand response industry and led to product and service innovation.

  9. Electricity Markets: Actions Needed to Expand GSA and DOD Participation in Demand-Response Activities

    DTIC Science & Technology

    2014-07-01

    consumes about 60 watts, and a comparable compact fluorescent light bulb consumes approximately 15 watts. In fiscal year 2012, DOD installations...enrollment in programs offered by utilities and retail electricity providers, “demand-response aggregators ”—private companies that combine the demand...time. Demand-response aggregators typically enroll multiple electricity consumers in demand-response programs that otherwise would only be open to

  10. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning.

    PubMed

    Wang, Qiming; Gossweiler, Gregory R; Craig, Stephen L; Zhao, Xuanhe

    2014-09-16

    Cephalopods can display dazzling patterns of colours by selectively contracting muscles to reversibly activate chromatophores--pigment-containing cells under their skins. Inspired by this novel colouring strategy found in nature, we design an electro-mechano-chemically responsive elastomer system that can exhibit a wide variety of fluorescent patterns under the control of electric fields. We covalently couple a stretchable elastomer with mechanochromic molecules, which emit strong fluorescent signals if sufficiently deformed. We then use electric fields to induce various patterns of large deformation on the elastomer surface, which displays versatile fluorescent patterns including lines, circles and letters on demand. Theoretical models are further constructed to predict the electrically induced fluorescent patterns and to guide the design of this class of elastomers and devices. The material and method open promising avenues for creating flexible devices in soft/wet environments that combine deformation, colorimetric and fluorescent response with topological and chemical changes in response to a single remote signal.

  11. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Gossweiler, Gregory R.; Craig, Stephen L.; Zhao, Xuanhe

    2014-09-01

    Cephalopods can display dazzling patterns of colours by selectively contracting muscles to reversibly activate chromatophores - pigment-containing cells under their skins. Inspired by this novel colouring strategy found in nature, we design an electro-mechano-chemically responsive elastomer system that can exhibit a wide variety of fluorescent patterns under the control of electric fields. We covalently couple a stretchable elastomer with mechanochromic molecules, which emit strong fluorescent signals if sufficiently deformed. We then use electric fields to induce various patterns of large deformation on the elastomer surface, which displays versatile fluorescent patterns including lines, circles and letters on demand. Theoretical models are further constructed to predict the electrically induced fluorescent patterns and to guide the design of this class of elastomers and devices. The material and method open promising avenues for creating flexible devices in soft/wet environments that combine deformation, colorimetric and fluorescent response with topological and chemical changes in response to a single remote signal.

  12. Climate change and peak demand for electricity: Evaluating policies for reducing peak demand under different climate change scenarios

    NASA Astrophysics Data System (ADS)

    Anthony, Abigail Walker

    This research focuses on the relative advantages and disadvantages of using price-based and quantity-based controls for electricity markets. It also presents a detailed analysis of one specific approach to quantity based controls: the SmartAC program implemented in Stockton, California. Finally, the research forecasts electricity demand under various climate scenarios, and estimates potential cost savings that could result from a direct quantity control program over the next 50 years in each scenario. The traditional approach to dealing with the problem of peak demand for electricity is to invest in a large stock of excess capital that is rarely used, thereby greatly increasing production costs. Because this approach has proved so expensive, there has been a focus on identifying alternative approaches for dealing with peak demand problems. This research focuses on two approaches: price based approaches, such as real time pricing, and quantity based approaches, whereby the utility directly controls at least some elements of electricity used by consumers. This research suggests that well-designed policies for reducing peak demand might include both price and quantity controls. In theory, sufficiently high peak prices occurring during periods of peak demand and/or low supply can cause the quantity of electricity demanded to decline until demand is in balance with system capacity, potentially reducing the total amount of generation capacity needed to meet demand and helping meet electricity demand at the lowest cost. However, consumers need to be well informed about real-time prices for the pricing strategy to work as well as theory suggests. While this might be an appropriate assumption for large industrial and commercial users who have potentially large economic incentives, there is not yet enough research on whether households will fully understand and respond to real-time prices. Thus, while real-time pricing can be an effective tool for addressing the peak load

  13. The physical demands of electrical utilities work in North America.

    PubMed

    Meade, Robert D; Lauzon, Martin; Poirier, Martin P; Flouris, Andreas D; Kenny, Glen P

    2016-01-01

    We assessed the physical demands associated with electrical utilities work in North America and how they influence the level of thermal and cardiovascular strain experienced. Three common job categories were monitored as they are normally performed in thirty-two electrical utility workers: (i) Ground Work (n = 11), (ii) Bucket Work (n = 9), and (iii) Manual Pole Work (n = 12). Video analysis was performed to determine the proportion of the work monitoring period (duration: 187 ± 104 min) spent at different levels of physical effort (i.e., rest as well as light, moderate and heavy effort). Core and skin temperatures as well as heart rate were measured continuously. On average, workers spent 35.9 ± 15.9, 36.8 ± 17.8, 24.7 ± 12.8, and 2.6 ± 3.3% of the work period at rest and performing work classified as light, moderate, and heavy physical effort, respectively. Moreover, a greater proportion of the work period was spent performing heavy work in Ground Work (1.6 ± 1.4%) relative to Bucket Work (0.0 ± 0.0%; P<0.01) and in Manual Pole Climbing (5.5 ± 3.6%) in comparison to both other work job (both P≤0.03). Furthermore, the proportion of time spent during work classified as heavy physical effort was positively correlated to the mean (r = 0.51, P<0.01) and peak (r = 0.42, P = 0.02) core temperatures achieved during the work period as well as the mean heart rate response (presented as a percentage of heart rate reserve; r = 0.40, P = 0.03). Finally, mean and peak core temperatures and mean heart rate responses increased from the first to the second half of the work shift; however, no differences in the proportion of the work spent at the different intensity classifications were observed. We show that Manual Pole Work is associated with greater levels of physical effort compared to Ground or Bucket Work. Moreover, we suggest that the proportion of time spent performing work classified as heavy physical exertion is related to the level of thermal and

  14. Trends in electricity demand and supply in the developing countries, 1980--1990

    SciTech Connect

    Meyers, S.; Campbell, C.

    1992-11-01

    This report provides an overview of trends concerning electricity demand and supply in the developing countries in the 1980--1990 period, with special focus on 13 major countries for which we have assembled consistent data series. We describe the linkage between electricity demand and economic growth, the changing sectoral composition of electricity consumption, and changes in the mix of energy sources for electricity generation. We also cover trends in the efficiency of utility electricity supply with respect to power plant efficiency and own-use and delivery losses, and consider the trends in carbon dioxide emissions from electricity supply.

  15. Export demand response in the Ontario electricity market

    SciTech Connect

    Peerbocus, Nash; Melino, Angelo

    2007-11-15

    Export responses to unanticipated price shocks can be a key contributing factor to the rapid mean reversion of electricity prices. The authors use event analysis - a technique more familiar from financial applications - to demonstrate how hourly export transactions respond to negative supply shocks in the Ontario electricity market. (author)

  16. Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model

    SciTech Connect

    Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

    2014-09-05

    Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

  17. Historical patterns and drivers of global crop water demand.

    NASA Astrophysics Data System (ADS)

    Urban, D.; Lobell, D. B.; Sheffield, J.

    2015-12-01

    With climate change expected to subject staple crops in major growing regions to increased heat exposure, a critical question for agriculture and global food security is the degree to which crop water demand is also likely to change. Recent work has explored the relationship between extreme temperatures and crop water demand, finding that vapor pressure deficit (VPD), through its dependence on both temperature and humidity, provides a very good meteorological predictor of water stress. However, assessing crop water demand solely through atmospheric conditions ignores the roles of radiation and transpiration efficiency, which are increased through elevated CO2. We provide a 60-year global assessment of crop water demand in the world's major growing areas, comparing trends and drivers across key growing regions. We find that an atmospheric-based demand measure can differ significantly from that of a crop-specific sink-based approach that incorporates radiation and CO2 effects, sometimes enough to reverse the sign of historical trends. We also find that these changes differ significantly by region, and that multi-decadal trends can mask large decadal swings. To our knowledge, our work is the first to use global meteorological datasets in a global analysis of crop water demand, and should serve as a valuable reference for future work examining the interaction of hydrological, temperature, and CO2 changes on crop yields.

  18. Projected Demand and Potential Impacts to the National Airspace System of Autonomous, Electric, On-Demand Small Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Viken, Jeffrey K.; Guerreiro, Nelson M.; Dollyhigh, Samuel M.; Fenbert, James W.; Hartman, Christopher L.; Kwa, Teck-Seng; Moore, Mark D.

    2012-01-01

    Electric propulsion and autonomy are technology frontiers that offer tremendous potential to achieve low operating costs for small-aircraft. Such technologies enable simple and safe to operate vehicles that could dramatically improve regional transportation accessibility and speed through point-to-point operations. This analysis develops an understanding of the potential traffic volume and National Airspace System (NAS) capacity for small on-demand aircraft operations. Future demand projections use the Transportation Systems Analysis Model (TSAM), a tool suite developed by NASA and the Transportation Laboratory of Virginia Polytechnic Institute. Demand projections from TSAM contain the mode of travel, number of trips and geographic distribution of trips. For this study, the mode of travel can be commercial aircraft, automobile and on-demand aircraft. NASA's Airspace Concept Evaluation System (ACES) is used to assess NAS impact. This simulation takes a schedule that includes all flights: commercial passenger and cargo; conventional General Aviation and on-demand small aircraft, and operates them in the simulated NAS. The results of this analysis projects very large trip numbers for an on-demand air transportation system competitive with automobiles in cost per passenger mile. The significance is this type of air transportation can enhance mobility for communities that currently lack access to commercial air transportation. Another significant finding is that the large numbers of operations can have an impact on the current NAS infrastructure used by commercial airlines and cargo operators, even if on-demand traffic does not use the 28 airports in the Continental U.S. designated as large hubs by the FAA. Some smaller airports will experience greater demand than their current capacity allows and will require upgrading. In addition, in future years as demand grows and vehicle performance improves other non-conventional facilities such as short runways incorporated into

  19. Making Complex Electrically Conductive Patterns on Cloth

    NASA Technical Reports Server (NTRS)

    Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert

    2008-01-01

    A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.

  20. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    SciTech Connect

    Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

    2010-11-17

    We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

  1. Electric power supply and demand for the contiguous United States, 1980-1989

    SciTech Connect

    1980-06-01

    A limited review is presented of the outlook for the electric power supply and demand during the period 1980 to 1989. Only the adequacy and reliability aspects of bulk electric power supply in the contiguous US are considered. The economic, financial and environmental aspects of electric power system planning and the distribution of electricity (below the transmission level) are topics of prime importance, but they are outside the scope of this report.

  2. Water-Resources Manpower: Supply and Demand Patterns to 1980.

    ERIC Educational Resources Information Center

    Lewis, James E.

    Relating the supply of scientific manpower to the educational potential of the general population and the productive capacity of the educational system, this study disaggregates independent projections of scientific manpower supply and demand to yield projections for water resources manpower. This supply of engineers, natural scientists, and…

  3. Changing patterns in global lead supply and demand

    NASA Astrophysics Data System (ADS)

    Roberts, H.

    The past decade has seen some very significant changes in the supply and the demand for lead. One of the most obvious developments is the emergence of China—both as the world's largest producer of primary lead and as a very significant consumer. Perhaps less obvious have been the increasing role of secondary lead in meeting demand for refined metal and the rapid growth in demand for industrial batteries, which have helped to sustain an annual average growth rate in Western World consumption of 3.4% between 1993 and 2000. Patchy knowledge about the lead industry in China has made it difficult to anticipate developments there and has created uncertainty in the global market. This uncertainty, and lead's poor environmental image, largely undeserved as it may be today, has meant few companies outside the lead business want to be seen participating in it. This is just one factor accounting for the very limited increase in lead mine production for the foreseeable future. With around 75% of lead now being used in batteries and a very high global scrap recycling rate, it is probable that most, if not all, growth in lead demand can be met without an overall increase in mine production. The challenge for the lead industry will be to ensure that sufficient recycling capacity is in place in the right parts of the world to process an increasing quantity of battery and other lead-bearing scrap. Huge investment in the world's telecommunications infrastructure and IT networks in the second half of the 1990s created a major market for industrial lead-acid batteries. With the collapse of the market for telecommunications equipment in 2001, lead consumption has fallen sharply and has revealed the extent to which demand growth in recent years has been dependent on this sector.

  4. Electric utility demand side programs and integrated resource planning: visits to ten utilities

    SciTech Connect

    Hirst, E.

    1986-03-01

    During fall 1985, the author visited ten investor-owned electric utilities in California, Nevada, Washington, Wisconsin, New Jersey, New York, Connecticut, Massachusetts, and Maine. Purpose of thes visits was to discuss electric utility demand-side planning and programs, and to learn more about utility efforts to establish integrated resource planning processes. The author also attended a course on the Load Management Strategy Testing Model, developed for the Electric Power Research Institute. Finally, the author reviewed three other integrated resource planning models. This report presents my impressions of current electric utility activities in conservation and load management program planning, analysis, and evaluation; and in integrated demand/supply planning.

  5. E3 Success Story - Reducing Electrical Demand in San Antonio, TX

    EPA Pesticide Factsheets

    To meet its goal of reducing electrical demand by 9 megawatts CPS Energy in San Antonio, TX partnered with the Texas Manufacturing Assistance Center (TMAC) and the Southwest Research Institute to provide lean, clean and energy efficiency training.

  6. An analysis of the factors influencing demand-side management activity in the electric utility industry

    NASA Astrophysics Data System (ADS)

    Bock, Mark Joseph

    Demand-side management (DSM), defined as the "planning, implementation, and monitoring of utility activities designed to encourage consumers to modify their pattern of electricity usage, including the timing and level of electricity demand," is a relatively new concept in the U.S. electric power industry. Nevertheless, in twenty years since it was first introduced, utility expenditures on DSM programs, as well as the number of such programs, have grown rapidly. At first glance, it may seem peculiar that a firm would actively attempt to reduce demand for its primary product. There are two primary explanations as to why a utility might pursue DSM: regulatory mandate, and self-interest. The purpose of this dissertation is to determine the impact these influences have on the amount of DSM undertaken by utilities. This research is important for two reasons. First, it provides insight into whether DSM will continue to exist as competition becomes more prevalent in the industry. Secondly, it is important because no one has taken a comprehensive look at firm-level DSM activity on an industry-wide basis. The primary data set used in this dissertation is the U.S. Department of Energy's Annual Electric Utility Report, Form EIA-861, which represents the most comprehensive data set available for analyzing DSM activity in the U.S. There are four measures of DSM activity in this data set: (1) utility expenditures on DSM programs; (2) energy savings by DSM program participants; and (3) the actual and (4) the potential reductions in peak load resulting from utility DSM measures. Each is used as the dependent variable in an econometric analysis where independent variables include various utility characteristics, regulatory characteristics, and service territory and customer characteristics. In general, the results from the econometric analysis suggest that in 1993, DSM activity was primarily the result of regulatory pressure. All of the evidence suggests that if DSM continues to

  7. The role of building technologies in reducing and controlling peak electricity demand

    SciTech Connect

    Koomey, Jonathan; Brown, Richard E.

    2002-09-01

    Peak power demand issues have come to the fore recently because of the California electricity crisis. Uncertainties surrounding the reliability of electric power systems in restructured markets as well as security worries are the latest reasons for such concerns, but the issues surrounding peak demand are as old as the electric utility system itself. The long lead times associated with building new capacity, the lack of price response in the face of time-varying costs, the large difference between peak demand and average demand, and the necessity for real-time delivery of electricity all make the connection between system peak demand and system reliability an important driver of public policy in the electric utility sector. This exploratory option paper was written at the request of Jerry Dion at the U.S.Department of Energy (DOE). It is one of several white papers commissioned in 2002 exploring key issues of relevance to DOE. This paper explores policy-relevant issues surrounding peak demand, to help guide DOE's research efforts in this area. The findings of this paper are as follows. In the short run, DOE funding of deployment activities on peak demand can help society achieve a more economically efficient balance between investments in supply and demand-side technologies. DOE policies can promote implementation of key technologies to ameliorate peak demand, through government purchasing, technology demonstrations, and improvements in test procedures, efficiency standards, and labeling programs. In the long run, R&D is probably the most important single leverage point for DOE to influence the peak demand issue. Technologies for time-varying price response hold great potential for radically altering the way people use electricity in buildings, but are decades away from widespread use, so DOE R&D and expertise can make a real difference here.

  8. Modeling future demand for energy resources: A study of residential electricity usage in Thailand

    NASA Astrophysics Data System (ADS)

    Nilagupta, Prapassara

    1999-12-01

    Thailand has a critical need for effective long-term energy planning because of the country's rapidly increasing energy consumption. In this study, the demand for electricity by the residential sector is modeled using a framework that provides detailed estimates of the timing and spatial distribution of changes in energy demand. A population model was developed based on the Cohort-Component method to provide estimates of population by age, sex and urban/non-urban residency in each province. A residential electricity end user model was developed to estimate future electricity usage in urban and non-urban households of the seventy-six provinces in Thailand during the period 1999--2019. Key variables in this model include population, the number of households, family household size, and characteristics of eleven types of electric household appliance such as usage intensity, input power, and saturation rate. The methodology employed in this study is a trending method which utilizes expert opinion to estimate future variables based on a percentage change from the most current value. This study shows that from 1994 to 2019 Thailand will experience an increase in population from 55.4 to 83.6 million. Large percentage population increases will take place in Bangkok, Nonthaburi, Samut Prakarn, Nakhon Pathom and Chonburi. At a national level, the residential electricity consumption will increase from approximately 19,000 to 8 1,000 GWh annually. Consumption in non-urban households will be larger than in urban households, with respective annual increases of 8.0% and 6.2% in 2019. The percent increase of the average annual electricity consumption will be four times the average annual percent population increase. Increased electricity demand is largely a function of increased population and increased demand for high-energy appliances such as air conditioners. In 1994, air conditioning was responsible for xx% of total residential electricity demand. This study estimates that in

  9. Electric shovels meet the demands for mining operations

    SciTech Connect

    Fiscor, S.

    2008-03-15

    Rugged, intelligent shovels offer better productivity and help mine operators avoid costly downtime in a very tight market. In 2007 P & H Mining Equipment began to produce a new breed of electric mining shovels designed to help reduce operating cost in coal and other mining operations. These were designated the P & H C-Series. All have an advanced communication, command and control system called the Centurion system. Coal mining applications for this series include 4100XPCs in Australia, China and Wyoming, USA. The Centurion system provides information on shovel performance and systems health which is communicated via graphic user interface terminals to the operators cab. Bucyrus International is developing a hydraulic crowd mechanism for its electric shovels and is now field testing one for its 495 series shovel. The company has also added greater capability in the primary software in the drive system for troubleshooting and fault identification to quickly diagnose problems onboard or remotely. 4 photos.

  10. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes

    NASA Astrophysics Data System (ADS)

    Kelly, Jack; Knottenbelt, William

    2015-03-01

    Many countries are rolling out smart electricity meters. These measure a home’s total power demand. However, research into consumer behaviour suggests that consumers are best able to improve their energy efficiency when provided with itemised, appliance-by-appliance consumption information. Energy disaggregation is a computational technique for estimating appliance-by-appliance energy consumption from a whole-house meter signal. To conduct research on disaggregation algorithms, researchers require data describing not just the aggregate demand per building but also the ‘ground truth’ demand of individual appliances. In this context, we present UK-DALE: an open-access dataset from the UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the whole-house and at 1/6 Hz for individual appliances. This is the first open access UK dataset at this temporal resolution. We recorded from five houses, one of which was recorded for 655 days, the longest duration we are aware of for any energy dataset at this sample rate. We also describe the low-cost, open-source, wireless system we built for collecting our dataset.

  11. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes

    PubMed Central

    Kelly, Jack; Knottenbelt, William

    2015-01-01

    Many countries are rolling out smart electricity meters. These measure a home’s total power demand. However, research into consumer behaviour suggests that consumers are best able to improve their energy efficiency when provided with itemised, appliance-by-appliance consumption information. Energy disaggregation is a computational technique for estimating appliance-by-appliance energy consumption from a whole-house meter signal. To conduct research on disaggregation algorithms, researchers require data describing not just the aggregate demand per building but also the ‘ground truth’ demand of individual appliances. In this context, we present UK-DALE: an open-access dataset from the UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the whole-house and at 1/6 Hz for individual appliances. This is the first open access UK dataset at this temporal resolution. We recorded from five houses, one of which was recorded for 655 days, the longest duration we are aware of for any energy dataset at this sample rate. We also describe the low-cost, open-source, wireless system we built for collecting our dataset. PMID:25984347

  12. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes.

    PubMed

    Kelly, Jack; Knottenbelt, William

    2015-01-01

    Many countries are rolling out smart electricity meters. These measure a home's total power demand. However, research into consumer behaviour suggests that consumers are best able to improve their energy efficiency when provided with itemised, appliance-by-appliance consumption information. Energy disaggregation is a computational technique for estimating appliance-by-appliance energy consumption from a whole-house meter signal. To conduct research on disaggregation algorithms, researchers require data describing not just the aggregate demand per building but also the 'ground truth' demand of individual appliances. In this context, we present UK-DALE: an open-access dataset from the UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the whole-house and at 1/6 Hz for individual appliances. This is the first open access UK dataset at this temporal resolution. We recorded from five houses, one of which was recorded for 655 days, the longest duration we are aware of for any energy dataset at this sample rate. We also describe the low-cost, open-source, wireless system we built for collecting our dataset.

  13. Optimal Electricity Charge Strategy Based on Price Elasticity of Demand for Users

    NASA Astrophysics Data System (ADS)

    Li, Xin; Xu, Daidai; Zang, Chuanzhi

    The price elasticity is very important for the prediction of electricity demand. This paper mainly establishes the price elasticity coefficient for electricity in single period and inter-temporal. Then, a charging strategy is established based on these coefficients. To evaluate the strategy proposed, simulations of the two elastic coefficients are carried out based on the history data of a certain region.

  14. A long- and short-run analysis of electricity demand in Ciudad Juarez

    NASA Astrophysics Data System (ADS)

    Mendez-Carrillo, Ericka Cecilia

    Economic growth and appliance saturation are increasing electricity consumption in Mexico. Annual frequency data from 1990 to 2012 are utilized to develop an error correction framework that sheds light on short- and long-run electricity consumption behavior in Ciudad Juarez, a large Mexican metropolitan economy at the border with the United States. The results for this study reveal that electricity is an inelastic normal good in this market. Moreover, natural gas is found to be a weak complement to electricity. With regards to the customer base in this urban economy, population, employment, and income exercise positive and statistically significant impacts on the demand for electricity hook-ups.

  15. The Effect of Temperature on the Electricity Demand: An Empirical Investigation

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kim, I. G.; Park, K. J.; Yoo, S. H.

    2015-12-01

    This paper attempts to estimate the electricity demand function in Korea with quarterly data of average temperature, GDP and electricity price over the period 2005-2013. We apply lagged dependent variable model and ordinary least square method as a robust approach to estimating the parameters of the electricity demand function. The results show that short-run price and income elasticities of the electricity demand are estimated to be -0.569 and 0.631 respectively. They are statistically significant at the 1% level. Moreover, long-run income and price elasticities are estimated to be 1.589 and -1.433 respectively. Both of results reveal that the demand for electricity demand is about 15.2℃. It is shown that power of explanation and goodness-of-fit statistics are improved in the use of the lagged dependent variable model rather than conventional model. Acknowledgements: This research was carried out as a part of "Development and application of technology for weather forecast" supported by the 2015 National Institute of Meteorological Research (NIMR) in the Korea Meteorological Administration.

  16. Analysis of PG E's residential end-use metered data to improve electricity demand forecasts

    SciTech Connect

    Eto, J.H.; Moezzi, M.M.

    1992-06-01

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  17. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    NASA Astrophysics Data System (ADS)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  18. Assessment of factors affecting industrial electricity demand. Final report (revision version)

    SciTech Connect

    1983-07-01

    In Chapter 2, we identify those factors affecting the industrial product mix - taste, relative output prices, and relative input prices - and isolate several determinants which have not been adequately accounted for to date in industrial electricity demand forecasts. We discuss how the lower energy prices of foreign producers affect domestic producers and how the growth in the number of substitutes for intermediate products such as steel and aluminum with plastics and composites affects the composition of production and, hence, the demand for electricity. We also investigate how the changing age structure of the population brought on by the baby boom could change the mix of outputs produced by the industrial sector. In Chapter 3, we review the history of the 1970s with regard to changes in output mix and the manufacturing demand for electricity, and with regard to changes in the use of electricity vis-a-vis the other inputs in the production process. In Chapter 4, we generate forecasts using two models which control for efficiency changes, but in different ways. In this chapter we present the sensitivity of these projections using three sets of assumptions about product mix. The last chapter summarizes our results and draw from those results implications regarding public policy and industrial electricity demand. Two appendices present ISTUM2 results from selected electricity intensive industries, describes the ISTUM and ORIM models.

  19. Preliminary Examination of the Supply and Demand Balance for Renewable Electricity

    SciTech Connect

    Swezey, B.; Aabakken, J.; Bird, L.

    2007-10-01

    In recent years, the demand for renewable electricity has accelerated as a consequence of state and federal policies and the growth of voluntary green power purchase markets, along with the generally improving economics of renewable energy development. This paper reports on a preliminary examination of the supply and demand balance for renewable electricity in the United States, with a focus on renewable energy projects that meet the generally accepted definition of "new" for voluntary market purposes, i.e., projects installed on or after January 1, 1997. After estimating current supply and demand, this paper presents projections of the supply and demand balance out to 2010 and describe a number of key market uncertainties.

  20. Travel and electricity demand analysis of potential US high-speed rail and maglev corridors. Final report

    SciTech Connect

    Vyas, A.D.; Pitstick, M.E.; Rote, D.M.; Johnson, L.R.; Bernard, M.J. III

    1994-01-01

    High-speed rail (HSR) and magnetically levitated (maglev) vehicles will provide an alternative mode of transportation for intercity travel, particularly for short and medium-length trips between 100 and 600 miles (160 to 960 kilometers). A significant portion of highway and air travel can potentially be diverted to such high-speed ground transportation (HSGT) systems. Also, electric utilities will have to meet the energy demands of these systems. Because these systems require significant investments and time to construct an extensive network, they need more time for analysis and planning. This study evaluates the patterns of growth for these systems and the factors affecting that growth for the year 2010 to determine the magnitude of intercity travel, the basis for HSGT use and electricity demand. To forecast the number and frequency of intercity trips, a methodology was developed that accounts for the travelers` socioeconomic status and the attractiveness of metropolitan areas. The study revealed that aggregate travel demand relied upon population growth, the employment status of the traveler, their household size, and income. Further, the study projects travel for 78 major metropolitan areas via air and highway, and identifies the 12 highest density corridors, describing the potential for HSGT systems to substitute some of that travel. In addition, the study estimates the energy demand and power requirements for a representative high-speed rail and maglev system for each corridor and the corridor connections.

  1. The effects of demand uncertainty on strategic gaming in the merit-order electricity pool market

    NASA Astrophysics Data System (ADS)

    Frem, Bassam

    In a merit-order electricity pool market, generating companies (Gencos) game with their offered incremental cost to meet the electricity demand and earn bigger market shares and higher profits. However when the demand is treated as a random variable instead of as a known constant, these Genco gaming strategies become more complex. After a brief introduction of electricity markets and gaming, the effects of demand uncertainty on strategic gaming are studied in two parts: (1) Demand modelled as a discrete random variable (2) Demand modelled as a continuous random variable. In the first part, we proposed an algorithm, the discrete stochastic strategy (DSS) algorithm that generates a strategic set of offers from the perspective of the Gencos' profits. The DSS offers were tested and compared to the deterministic Nash equilibrium (NE) offers based on the predicted demand. This comparison, based on the expected Genco profits, showed the DSS to be a better strategy in a probabilistic sense than the deterministic NE. In the second part, we presented three gaming strategies: (1) Deterministic NE (2) No-Risk (3) Risk-Taking. The strategies were then tested and their profit performances were compared using two assessment tools: (a) Expected value and standard deviation (b) Inverse cumulative distribution. We concluded that despite yielding higher profit performance under the right conjectures, Risk-Taking strategies are very sensitive to incorrect conjectures on the competitors' gaming decisions. As such, despite its lower profit performance, the No-Risk strategy was deemed preferable.

  2. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect

    McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

    2009-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies

  3. Modeling and Analysis of Commercial Building Electrical Loads for Demand Side Management

    NASA Astrophysics Data System (ADS)

    Berardino, Jonathan

    In recent years there has been a push in the electric power industry for more customer involvement in the electricity markets. Traditionally the end user has played a passive role in the planning and operation of the power grid. However, many energy markets have begun opening up opportunities to consumers who wish to commit a certain amount of their electrical load under various demand side management programs. The potential benefits of more demand participation include reduced operating costs and new revenue opportunities for the consumer, as well as more reliable and secure operations for the utilities. The management of these load resources creates challenges and opportunities to the end user that were not present in previous market structures. This work examines the behavior of commercial-type building electrical loads and their capacity for supporting demand side management actions. This work is motivated by the need for accurate and dynamic tools to aid in the advancement of demand side operations. A dynamic load model is proposed for capturing the response of controllable building loads. Building-specific load forecasting techniques are developed, with particular focus paid to the integration of building management system (BMS) information. These approaches are tested using Drexel University building data. The application of building-specific load forecasts and dynamic load modeling to the optimal scheduling of multi-building systems in the energy market is proposed. Sources of potential load uncertainty are introduced in the proposed energy management problem formulation in order to investigate the impact on the resulting load schedule.

  4. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand.

    PubMed

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers' peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers' location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual 'map' of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations

  5. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand

    PubMed Central

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the

  6. Forecasting customer electricity load demand in the power trading agent competition using machine learning

    NASA Astrophysics Data System (ADS)

    Abu, Saiful

    Accurate electricity load demand forecasting is an important problem in managing the power grid for both economic and environmental reasons. The Power TAC simulation provides a platform to do research on smart grid energy generation and distribution systems. Brokers are the focus of the design task posed to developers by the system. The brokers work as self-interested entities that try to maximize profits by trading electricity across multiple markets. To be successful, a broker has to forecast the electricity demand for customers as accurately as possible so it can use this information to operate efficiently. My proposed forecasting method uses a combination of clustering and classifiers. First, the customers are clustered based on a small history of weekly average load. After that, energy load history and weather related information are used as features to train classifiers for each cluster of customers. To forecast for a new customer, the proposed method needs at least one week of energy load history for the customer. The system assigns the new customer to one of the clusters based on the similarity of its electricity usage history. The classifier for that cluster will be used to forecast the new customer. This approach produced 13% error compared to 31% relative absolute error observed for a moving average baseline predictor. The Power TAC system has six different types of customer such as customers with demand shifting capabilities, customers with no demand shifting capabilities, electric vehicles, thermal storage, wind production and solar production. Previous approaches to demand forecasting treated all types of customers equally. This work shows that a forecasting system that treats customers of different type differently by creating clusters of similar types can generalize effectively, having similar error rates to learning individual predictors for each cluster, while also allowing fast predictions for novel customers.

  7. Exploring the Basis for Gender Differences in the Demand-Withdraw Pattern

    PubMed Central

    Holley, Sarah R.; Sturm, Virginia E.; Levenson, Robert W.

    2010-01-01

    During marital conflict, wives tend to demand and husbands tend to withdraw. These behaviors were historically thought to stem from essential differences between men and women. An alternative explanation implicates one form of power differences—wives desire more change and therefore demand, whereas husbands desire less change and withdraw to maintain status quo. Studying same-sex as well as cross-sex couples enables an evaluation of both explanations. We examined demand-withdraw behaviors in 63 heterosexual, gay, and lesbian couples. The demand-withdraw pattern was seen regardless of type of couple. Further, for all couples, differences in the amount of change desired in partners during a conflict interaction predicted differences in demand and withdraw behaviors. These results offer further evidence that an oft-observed difference in heterosexual relationships may result from social conventions that afford men greater power and women less power. PMID:20455136

  8. The role of temperature in the variability and extremes of electricity and gas demand in Great Britain

    NASA Astrophysics Data System (ADS)

    Thornton, H. E.; Hoskins, B. J.; Scaife, A. A.

    2016-11-01

    The daily relationship of electricity and gas demand with temperature in Great Britain is analysed from 1975 to 2013 and 1996 to 2013 respectively. The annual mean and annual cycle amplitude of electricity demand exhibit low frequency variability. This low frequency variability is thought to be predominantly driven by socio-economic changes rather than temperature variation. Once this variability is removed, both daily electricity and gas demand have a strong anti-correlation with temperature (r elec = -0.90 , r gas = -0.94). However these correlations are inflated by the changing demand-temperature relationship during spring and autumn. Once the annual cycles of temperature and demand are removed, the correlations are {r}{{elec}}=-0.60 and {r}{{gas}}=-0.83. Winter then has the strongest demand-temperature relationship, during which a 1 °C reduction in daily temperature typically gives a ˜1% increase in daily electricity demand and a 3%-4% increase in gas demand. Extreme demand periods are assessed using detrended daily temperature observations from 1772. The 1 in 20 year peak day electricity and gas demand estimates are, respectively, 15% (range 14%-16%) and 46% (range 44%-49%) above their average winter day demand during the last decade. The risk of demand exceeding recent extreme events, such as during the winter of 2009/2010, is also quantified.

  9. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  10. Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation

    SciTech Connect

    Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

    2013-01-17

    Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suite—as well as potential future suites—of thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sector’s water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

  11. Climate Change Impacts on Electricity Demand and Supply in the United States: A Multi-Model Comparison

    EPA Science Inventory

    This paper compares the climate change impacts on U.S. electricity demand and supply from three models: the Integrated Planning Model (IPM), the Regional Energy Deployment System (ReEDS) model, and GCAM. Rising temperatures cause an appreciable net increase in electricity demand....

  12. Connecting plug-in vehicles with green electricity through consumer demand

    NASA Astrophysics Data System (ADS)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-03-01

    The environmental benefits of plug-in electric vehicles (PEVs) increase if the vehicles are powered by electricity from ‘green’ sources such as solar, wind or small-scale hydroelectricity. Here, we explore the potential to build a market that pairs consumer purchases of PEVs with purchases of green electricity. We implement a web-based survey with three US samples defined by vehicle purchases: conventional new vehicle buyers (n = 1064), hybrid vehicle buyers (n = 364) and PEV buyers (n = 74). Respondents state their interest in a PEV as their next vehicle, in purchasing green electricity in one of three ways, i.e., monthly subscription, two-year lease or solar panel purchase, and in combining the two products. Although we find that a link between PEVs and green electricity is not presently strong in the consciousness of most consumers, the combination is attractive to some consumers when presented. Across all three respondent segments, pairing a PEV with a green electricity program increased interest in PEVs—with a 23% demand increase among buyers of conventional vehicles. Overall, about one-third of respondents presently value the combination of a PEV with green electricity; the proportion is much higher among previous HEV and PEV buyers. Respondents’ reported motives for interest in both products and their combination include financial savings (particularly among conventional buyers), concerns about air pollution and the environment, and interest in new technology (particularly among PEV buyers). The results provide guidance regarding policy and marketing strategies to advance PEVs and green electricity demand.

  13. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  14. Holiday in Lights: Tracking Cultural Patterns in Demand for Energy Services

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Stokes, Eleanor C.

    2015-01-01

    Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro-level has identified economic activity, power generation and technology, and economic role as significant factors that shape energy use. However, most demand models lack basic contextual information on how dominant social phenomenon, the changing demographics of cities, and the sociocultural setting within which people operate, affect energy decisions and use patterns. Here we use high-quality Suomi-NPP VIIRS nighttime environmental products to: (1) observe aggregate human behavior through variations in energy service demand patterns during the Christmas and New Year's season and the Holy Month of Ramadan and (2) demonstrate that patterns in energy behaviors closely track sociocultural boundaries at the country, city, and district level. These findings indicate that energy decision making and demand is a sociocultural process as well as an economic process, often involving a combination of individual price-based incentives and societal-level factors. While nighttime satellite imagery has been used to map regional energy infrastructure distribution, tracking daily dynamic lighting demand at three major scales of urbanization is novel. This methodology can enrich research on the relative importance of drivers of energy demand and conservation behaviors at fine scales. Our initial results demonstrate the importance of seating energy demand frameworks in a social context.

  15. Holidays in lights: Tracking cultural patterns in demand for energy services.

    PubMed

    Román, Miguel O; Stokes, Eleanor C

    2015-06-01

    Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro-level has identified economic activity, power generation and technology, and economic role as significant factors that shape energy use. However, most demand models lack basic contextual information on how dominant social phenomenon, the changing demographics of cities, and the sociocultural setting within which people operate, affect energy decisions and use patterns. Here we use high-quality Suomi-NPP VIIRS nighttime environmental products to: (1) observe aggregate human behavior through variations in energy service demand patterns during the Christmas and New Year's season and the Holy Month of Ramadan and (2) demonstrate that patterns in energy behaviors closely track sociocultural boundaries at the country, city, and district level. These findings indicate that energy decision making and demand is a sociocultural process as well as an economic process, often involving a combination of individual price-based incentives and societal-level factors. While nighttime satellite imagery has been used to map regional energy infrastructure distribution, tracking daily dynamic lighting demand at three major scales of urbanization is novel. This methodology can enrich research on the relative importance of drivers of energy demand and conservation behaviors at fine scales. Our initial results demonstrate the importance of seating energy demand frameworks in a social context.

  16. Holidays in lights: Tracking cultural patterns in demand for energy services

    NASA Astrophysics Data System (ADS)

    Román, Miguel O.; Stokes, Eleanor C.

    2015-06-01

    Successful climate change mitigation will involve not only technological innovation, but also innovation in how we understand the societal and individual behaviors that shape the demand for energy services. Traditionally, individual energy behaviors have been described as a function of utility optimization and behavioral economics, with price restructuring as the dominant policy lever. Previous research at the macro-level has identified economic activity, power generation and technology, and economic role as significant factors that shape energy use. However, most demand models lack basic contextual information on how dominant social phenomenon, the changing demographics of cities, and the sociocultural setting within which people operate, affect energy decisions and use patterns. Here we use high-quality Suomi-NPP VIIRS nighttime environmental products to: (1) observe aggregate human behavior through variations in energy service demand patterns during the Christmas and New Year's season and the Holy Month of Ramadan and (2) demonstrate that patterns in energy behaviors closely track sociocultural boundaries at the country, city, and district level. These findings indicate that energy decision making and demand is a sociocultural process as well as an economic process, often involving a combination of individual price-based incentives and societal-level factors. While nighttime satellite imagery has been used to map regional energy infrastructure distribution, tracking daily dynamic lighting demand at three major scales of urbanization is novel. This methodology can enrich research on the relative importance of drivers of energy demand and conservation behaviors at fine scales. Our initial results demonstrate the importance of seating energy demand frameworks in a social context.

  17. Marginal capacity costs of electricity distribution and demand for distributed generation

    SciTech Connect

    Woo, Chi-Keung, Lloyd-Zanetti, D.; Orans, R.

    1995-12-31

    Marginal costs of electricity vary by time and location. Past researchers attributed these variations to factors related to electricity generation, transmission and distribution. Past authors, however, did not fully analyze the large variations in marginal distribution capacity costs (MDCC) by area and time. Thus, the objectives of this paper are as follows: (1) to show that large MDCC variations exist within a utility`s service territory; (2) to demonstrate inter-utility variations in MDCC; and (3) to demonstrate the usefulness of these costs in determining demand for distributed generation (DG). 27 refs., 3 figs., 2 tabs.

  18. Alleviating a form of electric vehicle range anxiety through on-demand vehicle access

    NASA Astrophysics Data System (ADS)

    King, Christopher; Griggs, Wynita; Wirth, Fabian; Quinn, Karl; Shorten, Robert

    2015-04-01

    On-demand vehicle access is a method that can be used to reduce types of range anxiety problems related to planned travel for electric vehicle owners. Using ideas from elementary queueing theory, basic quality of service (QoS) metrics are defined to dimension a shared fleet to ensure high levels of vehicle access. Using mobility data from Ireland, it is argued that the potential cost of such a system is very low.

  19. The marketability of electric vehicles: Battery performance and consumer demand for driving range

    SciTech Connect

    Kurani, K.; Sperling, D.; Turrentine, T.

    1996-11-01

    This paper reports on a four-year study of electric vehicle demand. The study was motivated by the hypothesis that most previous studies understate electric vehicle (EV) demand because they largely ignore behavior adaptations of households, the benefits of home recharging, and the likelihood that vehicle purchase and use decisions would change over time as more information and experience becomes available. The authors focused on a newly defined market segment: multi-car hybrid households, in which one car has limited driving range. The authors designed a four-stage mail survey that included a video of EV use and recharging, information material, a 3-day trip diary, and a series of vehicle choice questions. Respondents had a choice of propulsion systems, body styles and sizes, driving ranges, and other features. The variety of driving ranges offered tested the hypothesis that demand for EVs will be segmented by demand for driving range. Prices of EVs varied, but tended to be up to several thousand dollars higher than those of comparable gasoline vehicles. The questionnaires were administered to 740 multi-car households in 6 metropolitan areas of California. The response rate was 61%.

  20. Impacts of Various Characteristics of Electricity and Heat Demand on the Optimal Configuration of a Microgrid

    NASA Astrophysics Data System (ADS)

    Bando, Shigeru; Watanabe, Hiroki; Asano, Hiroshi; Tsujita, Shinsuke

    A methodology was developed to design the number and capacity for each piece of equipment (e.g. gas engines, batteries, thermal storage tanks) in microgrids with combined heat and power systems. We analyzed three types of microgrids; the first one consists of an office building and an apartment, the second one consists of a hospital and an apartment, the third one consists of a hotel, office and retails. In the methodology, annual cost is minimized by considering the partial load efficiency of a gas engine and its scale economy, and the optimal number and capacity of each piece of equipment and the annual operational schedule are determined by using the optimal planning method. Based on calculations using this design methodology, it is found that the optimal number of gas engines is determined by the ratio of bottom to peak of the electricity demand and the ratio of heat to electricity demand. The optimal capacity of a battery required to supply electricity for a limited time during a peak demand period is auxiliary. The thermal storage tank for space cooling and space heating is selected to minimize the use of auxiliary equipment such as a gas absorption chiller.

  1. Impacts of demand response and renewable generation in electricity power market

    NASA Astrophysics Data System (ADS)

    Zhao, Zhechong

    This thesis presents the objective of the research which is to analyze the impacts of uncertain wind power and demand response on power systems operation and power market clearing. First, in order to effectively utilize available wind generation, it is usually given the highest priority by assigning zero or negative energy bidding prices when clearing the day-ahead electric power market. However, when congestion occurs, negative wind bidding prices would aggravate locational marginal prices (LMPs) to be negative in certain locations. A load shifting model is explored to alleviate possible congestions and enhance the utilization of wind generation, by shifting proper amount of load from peak hours to off peaks. The problem is to determine proper amount of load to be shifted, for enhancing the utilization of wind generation, alleviating transmission congestions, and making LMPs to be non-negative values. The second piece of work considered the price-based demand response (DR) program which is a mechanism for electricity consumers to dynamically manage their energy consumption in response to time-varying electricity prices. It encourages consumers to reduce their energy consumption when electricity prices are high, and thereby reduce the peak electricity demand and alleviate the pressure to power systems. However, it brings additional dynamics and new challenges on the real-time supply and demand balance. Specifically, price-sensitive DR load levels are constantly changing in response to dynamic real-time electricity prices, which will impact the economic dispatch (ED) schedule and in turn affect electricity market clearing prices. This thesis adopts two methods for examining the impacts of different DR price elasticity characteristics on the stability performance: a closed-loop iterative simulation method and a non-iterative method based on the contraction mapping theorem. This thesis also analyzes the financial stability of DR load consumers, by incorporating

  2. Electricity use patterns in cotton gins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy costs are the second largest source of variable costs for cotton gins, with electricity accounting for 18% of variable costs. Energy use has typically not been a major consideration in gin design and previous studies of energy use have utilized instantaneous readings or aggregated season-lon...

  3. A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework

    PubMed Central

    Hernández, Luis; Baladrón, Carlos; Aguiar, Javier M.; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Cook, Diane J.; Chinarro, David; Gómez, Jorge

    2012-01-01

    One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.

  4. Demand-Side Management and Integrated Resource Planning: Findings from a Survey of 24 Electric Utilities

    SciTech Connect

    Schweitzer, M.

    1991-01-01

    Integrated resource planning differs from traditional utility planning practices primarily in its increased attention to demand-side management (DSM) programs and its integration of supply- and demand-side resources into a combined resource portfolio. This report details the findings from an Oak Ridge National Laboratory (ORNL) survey of 24 electric utilities that have well-developed integrated planning processes. These utilities account for roughly one-third of total capacity, electricity generation, and DSM-program expenditures nationwide. The ORNL survey was designed to obtain descriptive data on a national sample of utilities and to test a number of hypothesized relationships between selected utility characteristics and the mix of resources selected for the integrated plan, with an emphasis on the use of DSM resources and the processes by which they are chosen. The survey solicited information on each utility's current and projected resource mix, operating environment, procedures used to screen potential DSM resources, techniques used to obtain public input and to integrate supply- and demand-side options into a unified plan, and procedures used in the final selection of resources for the plan.

  5. Temporalization of peak electric generation particulate matter emissions during high energy demand days.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Baker, Kirk R; Rodgers, Mark; Carlton, Annmarie G

    2015-04-07

    Underprediction of peak ambient pollution by air quality models hinders development of effective strategies to protect health and welfare. The U.S. Environmental Protection Agency's community multiscale air quality (CMAQ) model routinely underpredicts peak ozone and fine particulate matter (PM2.5) concentrations. Temporal misallocation of electricity sector emissions contributes to this modeling deficiency. Hourly emissions are created for CMAQ by use of temporal profiles applied to annual emission totals unless a source is matched to a continuous emissions monitor (CEM) in the National Emissions Inventory (NEI). More than 53% of CEMs in the Pennsylvania-New Jersey-Maryland (PJM) electricity market and 45% nationally are unmatched in the 2008 NEI. For July 2006, a United States heat wave with high electricity demand, peak electric sector emissions, and elevated ambient PM2.5 mass, we match hourly emissions for 267 CEM/NEI pairs in PJM (approximately 49% and 12% of unmatched CEMs in PJM and nationwide) using state permits, electricity dispatch modeling and CEMs. Hourly emissions for individual facilities can differ up to 154% during the simulation when measurement data is used rather than default temporalization values. Maximum CMAQ PM2.5 mass, sulfate, and elemental carbon predictions increase up to 83%, 103%, and 310%, at the surface and 51%, 75%, and 38% aloft (800 mb), respectively.

  6. Controlling market power and price spikes in electricity networks: Demand-side bidding

    PubMed Central

    Rassenti, Stephen J.; Smith, Vernon L.; Wilson, Bart J.

    2003-01-01

    In this article we report an experiment that examines how demand-side bidding can discipline generators in a market for electric power. First we develop a treatment without demand-side bidding; two large firms are allocated baseload and intermediate cost generators such that either firm might unilaterally withhold the capacity of its intermediate cost generators from the market to benefit from the supracompetitive prices that would result from only selling its baseload units. In a converse treatment, ownership of some of the intermediate cost generators is transferred from each of these firms to two other firms such that no one firm could unilaterally restrict output to spawn supracompetitive prices. Having established a well controlled data set with price spikes paralleling those observed in the naturally occurring economy, we also extend the design to include demand-side bidding. We find that demand-side bidding completely neutralizes the exercise of market power and eliminates price spikes even in the presence of structural market power. PMID:16576750

  7. Controlling market power and price spikes in electricity networks: Demand-side bidding.

    PubMed

    Rassenti, Stephen J; Smith, Vernon L; Wilson, Bart J

    2003-03-04

    In this article we report an experiment that examines how demand-side bidding can discipline generators in a market for electric power. First we develop a treatment without demand-side bidding; two large firms are allocated baseload and intermediate cost generators such that either firm might unilaterally withhold the capacity of its intermediate cost generators from the market to benefit from the supracompetitive prices that would result from only selling its baseload units. In a converse treatment, ownership of some of the intermediate cost generators is transferred from each of these firms to two other firms such that no one firm could unilaterally restrict output to spawn supracompetitive prices. Having established a well controlled data set with price spikes paralleling those observed in the naturally occurring economy, we also extend the design to include demand-side bidding. We find that demand-side bidding completely neutralizes the exercise of market power and eliminates price spikes even in the presence of structural market power.

  8. Reducing Gridlock on the Grid: Utility Trends in Managing Peak Electric Load through Residential Demand Response

    NASA Astrophysics Data System (ADS)

    McDonald, Betsy

    Utilities across the United States are piloting residential demand response programs to help manage peak electric demand. Using publicly available program evaluations, this thesis analyzes nine such programs to uncover and synthesize the range of program offerings, goals, enrollment strategies, and customer experiences. This review reveals that program participation, components, and results differ based on a variety of factors, including geographic characteristics, program goals, and implementation strategies. The diversity of program designs and evaluation findings suggests an underlying tension between the need to generate cost-effective program impacts and the desire to increase accessibility so that program benefits are not exclusive to certain segments of the population. For more significant and impactful engagement, program goals may need to shift. State level policy support could help shift program goals toward increasing program accessibility. Future research should explore creative strategies that target existing barriers and allow for more inclusive deployment.

  9. Fine resolution drop-on-demand electrohydrodynamic patterning of conductive silver tracks on glass substrate

    NASA Astrophysics Data System (ADS)

    Rahman, Khalid; Ali, Kamran; Muhammad, Nauman M.; Hyun, Myung-taek; Choi, Kyung-hyun

    2013-05-01

    This paper presents the fine resolution printing of the silver patterns on the thick glass substrates, deposited through drop-on-demand electrohydrodynamic jetting by applying the pulsed voltage. The patterning is performed by ejecting ink containing silver nanoparticles through a 10 μm internal diameter glass capillary. The variations in patterns sizes are studied by changing the operating parameters and after sintering of deposited patterns on a 500 μm thick glass substrate. The minimum droplet diameter achieved is approximately 3.6 μm after the sintering process, which is 2.78 times smaller than the size of the capillary's internal diameter. The patterns are formed by suitable overlapping of droplets by adjusting the substrate speed and minimum pattern width achieved is 6.5 μm, which is the major attraction of electrohydrodynamic printing technology. The functionality of the deposited silver patterns is measured through I-V curve and shows linear Ohmic behavior with good resistivity. The experimental results indicate that the electrohydrodynamic printing can be used for fabricating fine resolution patterns of conductive tracks on thick substrate for printed electronics applications.

  10. Water demand for generating electricity: A mathematical programming approach with application in Poland

    NASA Astrophysics Data System (ADS)

    Stone, J. C.; Singleton, F. D., Jr.; Salewicz, A.; Gadkowski, M.; Sikorski, W.

    1982-04-01

    A resource use model for a coal fired power plant on a river was developed. The model optimizes plant design and operation in a number of user defined seasons. Alternative modes of coal transport, railroad, and slurry pipeline are modeled. Air and water quality dominate optimization. Coefficients are specified using matrix generators. Demand curves for water withdrawals and heat discharges, a water loss-withdrawal tradeoff, and the effects on the marginal and average costs of electricity due to reducing water withdrawals are calculated.

  11. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  12. Natural graphite demand and supply - Implications for electric vehicle battery requirements

    USGS Publications Warehouse

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  13. The battery designer's challenge — satisfying the ever-increasing demands of vehicle electrical systems

    NASA Astrophysics Data System (ADS)

    Pierson, John R.; Johnson, Richard T.

    The automotive battery designer of the 1990s and beyond will encounter an unprecedented array of complex challenges imposed by consumer desires, governmental mandates, and vehicle manufacturers' specifications. It is predicted that enhanced feature content in the areas of safety, convenience, performance, and guidance will result in a three- to six-fold increase in electrical power consumption in vehicles by the year 2000. In the absence of major break-throughs in vehicle electrical systems, these new loads will significantly modify the duty cycle to which the battery is subjected. The micro- and macro-environment in which the battery must survive will significantly impact the product's design and material specifications. Severe weight and size limits will be imposed on batteries in an attempt to meet mandated Corporate Average Fuel Economy (CAFE) requirements and additional pre-start electrical loads may be introduced to reduce objectionable emissions. Finally, quality and reliability levels of vehicles and their component parts must undergo continuous improvement. In order to respond to these diverse and sometimes contradictory demands, the battery designer must participate as an integral part of the vehicle electrical system development team. Design considerations for the future must include elevated and multiple voltages, multiple batteries per vehicle designed for specific functions, and further improvements in power and energy density, as well as cycle-life.

  14. Optoelectrofluidic printing system for fabricating hydrogel sheets with on-demand patterned cells and microparticles.

    PubMed

    Gi, Hyun Ji; Han, Dongsik; Park, Je-Kyun

    2017-01-16

    This paper presents a novel optoelectrofluidic printing system that facilitates not only the optoelectrofluidic patterning of microparticles and mammalian cells but also the harvesting of the patterned microparticles encapsulated within poly(ethylene glycol) dicarylate (PEGDA) hydrogel sheets. Although optoelectrofluidic technology has numerous advantages for programmable and on-demand patterning and the feasibility of manipulating single microparticles, practical applications using existing laboratory infrastructure in biological and clinical research fields have been strictly restricted due to the impossibility of recovering the final patterned product. In order to address these harvesting limitations, PEGDA was employed to utilize optoelectrofluidic printing. The Clausius-Mossotti factor was calculated to investigate the dielectrophoretic mobility of the microparticle and the cell in the PEGDA precursor solution. As a proof of concept, three basic controllabilities of the optoelectrofluidic printing system were characterized: the number of microparticles, the distance between the microparticle columns, and the ratio of two different microparticles. Furthermore, the optoelectrofluidic patterning and printing of human liver carcinoma cells (HepG2) were demonstrated in 5 min with a single-cell level of resolution. The appropriate ranges of frequency were experimentally defined based on the calculated result of the dielectrophoretic mobility of HepG2 cells. Finally, optoelectrofluidically cell-patterned hydrogel sheets were successfully recovered under a highly viable physiological condition.

  15. High-resolution temperature fields to evaluate the response of Italian electricity demand to meteorological variables: an example of climate service for the energy sector

    NASA Astrophysics Data System (ADS)

    Scapin, Simone; Apadula, Francesco; Brunetti, Michele; Maugeri, Maurizio

    2016-08-01

    The dependence of Italian daily electricity demand on cooling degree-days, heating degree-days and solar radiation is investigated by means of a regression model applied to 12 consecutive 2-year intervals in the 1990-2013 period. The cooling and heating degree-days records used in the model are obtained by (i) estimating, by means of a network of 92 synoptic stations and high-resolution gridded temperature climatologies, a daily effective temperature record for all urbanised grid points of a high-resolution grid covering Italy; (ii) using these records to calculate corresponding grid point degree-days records; and (iii) averaging them to get national degree-days records representative of urban areas. The solar radiation record is obtained with the same averaging approach, with grid point solar radiation estimated from the corresponding daily temperature range. The model is based on deterministic components related to the weekly cyclical pattern of demand and to long-term demand changes and on weather-sensitive components related to cooling degree-days, heating degree-days and solar radiation. It establishes a strong contribution of cooling degree-days to the Italian electricity demand, with values peaking in summer months of the latest years up to 211 GWh day-1 (i.e. about 23 % of the corresponding average Italian electricity demand). This contribution shows a strong positive trend in the period considered here: the coefficient of the cooling degree-days term in the regression models increases from the first 2-year period (1990-1991) to the last one (2012-2013) by a factor 3.5, which is much greater than the increase of the Italian total electricity demand.

  16. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.

    PubMed

    O'Shea, R; Wall, D; Murphy, J D

    2016-09-01

    Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system.

  17. Application of a reduced area electrical test pattern to precise pattern registration measurements

    NASA Astrophysics Data System (ADS)

    Rominger, James P.

    1991-03-01

    A new reduced area electrically probed registration measurement pattern is described. The pattern is compatible with the Prometrix data acquisition and analysis system, and offers advantages over standard patterns in terms of patten area and versatility of use. The results of the application of the pattern to the measurement of reticle and stepper overlay are presented. With careful analysis of the data, inter- and intrafield reticle overlay errors are determined. Horizontal and vertical measurements of pattern placement within a single field and between fields showed an accuracy of greater than 67 nm and a repeatability of better than 14 nm (3 sigma).

  18. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography.

    PubMed

    Grasland-Mongrain, Pol; Destrempes, François; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-05-07

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an 'acousto-electrical speckle' in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging.

  19. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, Pol; Destrempes, François; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-05-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging.

  20. On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity.

    PubMed

    Erogbogbo, Folarin; Lin, Tao; Tucciarone, Phillip M; LaJoie, Krystal M; Lai, Larry; Patki, Gauri D; Prasad, Paras N; Swihart, Mark T

    2013-02-13

    We demonstrate that nanosize silicon (~10 nm diameter) reacts with water to generate hydrogen 1000 times faster than bulk silicon, 100 times faster than previously reported Si structures, and 6 times faster than competing metal formulations. The H(2) production rate using 10 nm Si is 150 times that obtained using 100 nm particles, dramatically exceeding the expected effect of increased surface to volume ratio. We attribute this to a change in the etching dynamics at the nanoscale from anisotropic etching of larger silicon to effectively isotropic etching of 10 nm silicon. These results imply that nanosilicon could provide a practical approach for on-demand hydrogen production without addition of heat, light, or electrical energy.

  1. US East Coast offshore wind energy resources and their relationship to time-varying electricity demand

    NASA Astrophysics Data System (ADS)

    Dvorak, M. J.; Corcoran, B. A.; Ten Hoeve, J. E.; Jacobson, M. Z.; McIntyre, N.

    2011-12-01

    This study characterizes the annual-mean US East Coast (USEC) offshore wind energy (OWE) resource based on 5 years of skillful, high resolution mesoscale model (WRF-ARW) results at the turbine hub height of 90 m. Model output was validated buoys and offshore towers, which provides insight into the relative errors of forecasting winds in the region. The most suitable locations for OWE are prescribed, based on their wind resource, shallow bathymetry, low hurricane risk, and peak-power generation potential. The offshore region from Maine to Virginia was found to have exceptional overall resource the best wind resource, shallow water, and low hurricane risk. The region east of Long Island, NY to Cape Cod, MA has the best summertime peak resource, due to regional upwelling that often strengthens the sea breeze. Overall, the resource from Maine to Florida out to 200-m depth, using turbine capacity factor cutoffs of 45% and 40% is between 1175-1672 TWh (134-191 GW avg.). Between 30-42% of the electricity demand for the entire US (2009) could be provided using USEC OWE alone and 93-133% of Maine to Florida (2008) demand.

  2. Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts

    SciTech Connect

    Eto, J.H.; Moezzi, M.M.

    1992-06-01

    It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

  3. Optimal Ozone Control with Inclusion of Spatiotemporal Marginal Damages and Electricity Demand.

    PubMed

    Mesbah, S Morteza; Hakami, Amir; Schott, Stephan

    2015-07-07

    Marginal damage (MD), or damage per ton of emission, is a policy metric used for effective pollution control and reducing the corresponding adverse health impacts. However, for a pollutant such as NOx, the MD varies by the time and location of the emissions, a complication that is not adequately accounted for in the currently implemented economic instruments. Policies accounting for MD information would aim to encourage emitters with large MDs to reduce their emissions. An optimization framework is implemented to account for NOx spatiotemporal MDs calculated through adjoint sensitivity analysis and to simulate power plants' behavior under emission and simplified electricity constraints. The results from a case study of U.S. power plants indicate that time-specific MDs are high around noon and low in the evening. Furthermore, an emissions reduction of about 40% and a net benefit of about $1200 million can be gained for this subset of power plants if a larger fraction of the electricity demand is supplied by power plants at low-damage times and in low-damage locations. The results also indicate that the consideration of temporal effects in NOx control policies results in a comparable net benefit to the consideration of spatial or spatiotemporal effects, thus providing a promising option for policy development.

  4. High ozone concentrations on hot days: The role of electric power demand and NOx emissions

    NASA Astrophysics Data System (ADS)

    He, Hao; Hembeck, Linda; Hosley, Kyle M.; Canty, Timothy P.; Salawitch, Ross J.; Dickerson, Russell R.

    2013-10-01

    ambient temperatures intensify photochemical production of tropospheric ozone, leading to concerns that global warming may exacerbate smog episodes. This widely observed phenomenon has been termed the climate penalty factor (CPF). A variety of meteorological and photochemical processes have been suggested to explain why surface ozone increases on hot days. Here, we quantify an anthropogenic factor previously overlooked: the rise of ozone precursor emissions on hot summer days due to high electricity demand. Between 1997 and 2011, power plant emissions of NOx in the eastern U.S. increased by ~2.5-4.0%/°C, raising surface NOx concentrations by 0.10-0.25 ppb/°C. Given an ozone production efficiency (OPE) of ~8 mol/mol based on the 2011 NASA DISCOVER-AQ campaign, at least one third of the CPF observed in the eastern U.S. can be attributed to the temperature dependence of NOx emissions. This finding suggests that controlling emissions associated with electricity generation on hot summer days can mitigate the CPF.

  5. Important Factors for Early Market Microgrids: Demand Response and Plug-in Electric Vehicle Charging

    NASA Astrophysics Data System (ADS)

    White, David Masaki

    Microgrids are evolving concepts that are growing in interest due to their potential reliability, economic and environmental benefits. As with any new concept, there are many unresolved issues with regards to planning and operation. In particular, demand response (DR) and plug-in electric vehicle (PEV) charging are viewed as two key components of the future grid and both will likely be active technologies in the microgrid market. However, a better understanding of the economics associated with DR, the impact DR can have on the sizing of distributed energy resource (DER) systems and how to accommodate and price PEV charging is necessary to advance microgrid technologies. This work characterizes building based DR for a model microgrid, calculates the DER systems for a model microgrid under DR through a minimization of total cost, and determines pricing methods for a PEV charging station integrated with an individual building on the model microgrid. It is shown that DR systems which consist only of HVAC fan reductions provide potential economic benefits to the microgrid through participation in utility DR programs. Additionally, peak shaving DR reduces the size of power generators, however increasing DR capacity does not necessarily lead to further reductions in size. As it currently stands for a microgrid that is an early adopter of PEV charging, current installation costs of PEV charging equipment lead to a system that is not competitive with established commercial charging networks or to gasoline prices for plug-in hybrid electric vehicles (PHEV).

  6. Demands For Solar Electricity From The BRICS Countries In The Future

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2015-12-01

    BRICS countries are presently among the leading the economic powers globally, but their increasing demands for energy and sustainable future requires renewed technical progress on implementation of renewable energy (e.g., solar energy) and a sustainable solution rather than extracting finite natural resources. BRICS countries (Brazil, Russia, India, China and South Africa) face both social and environmental pressures as their economy keeps growing. The rapid development of technology in BRICS inevitably altered their culture and behavior, as reflected by education, gender equality, health, and other demographic/socio-economic indicators. These changes coupled with land use/land cover change have altered ecosystem services, as reflected by NEE (Net Ecosystem Exchange of CO2) and NDVI (Normalized Difference Vegetation Index). Global climatic changes also drives the demand for sustainable energy. With a focus on solar energy, we analyzed time series of energy consuming behaviors, government policies, and the ecosystem services. Structural equation modeling was applied to confirm the relationships among societal transition, ecosystem services, and climate change. We compared the energy consumption patterns for the five countries and forecasted the changes through 2025. We found that government policies significantly influenced energy consumption behaviors for BRICS and that solar energy usage would continue to increase to 2025 and beyond.

  7. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    SciTech Connect

    Heffner, Grayson C.

    2002-09-01

    The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

  8. Neural responses to electrical stimulation on patterned silk films.

    PubMed

    Hronik-Tupaj, Marie; Raja, Waseem Khan; Tang-Schomer, Min; Omenetto, Fiorenzo G; Kaplan, David L

    2013-09-01

    Peripheral nerve injury is a critical issue for patients with trauma. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 min each day for 7 days. Responses were compared with neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared with the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on days 5 and 7 compared with the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 min daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment.

  9. Process-based modelling of regional water demand for electricity, industry and municipal sectors in Integrated Assessment Models.

    NASA Astrophysics Data System (ADS)

    Bijl, David L.; Bogaart, Patrick W.; Kram, Tom; De Vries, Bert J. M.; Van Vuuren, Detlef P.

    2014-05-01

    Integrated Assessment Models (IAMs) are a prime tool for studying global scale interactions between the human and natural earth systems. Our research contributes to this field by modelling water, food and energy demand as outcomes of more physical processes and by adding links between them. As part of this ambition, we here describe a model for water demand in the electricity generation, industrial and municipal sectors, going beyond previous modelling efforts. For instance, by coupling water demand to energy inputs, the model directly couples water efficiency to fuel efficiency of power plants. We present electricity, industry and municipal water demand models and develop water demand projections for the new Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs) for climate research. Our regional-level demand models contribute to understanding the extent of crossing planetary boundaries and the scope for solutions such as virtual water trade or efficiency improvements. We also discuss how we plan to link demand and supply models, and how the usefulness for policy makers can be increased.

  10. A Study of Demand Response Effect of Thermal Storage Air-Conditioning Systems in Consideration of Electricity Market Prices

    NASA Astrophysics Data System (ADS)

    Omagari, Yuko; Sugihara, Hideharu; Tsuji, Kiichiro

    This paper evaluates the economic impact of the introduction of customer-owned Thermal Storage Air-conditioning (TSA) systems, in an electricity market, from the viewpoint of the load service entity. We perform simulations on the condition that several thousand customers install TSA systems and shift peak demand in an electricity market by one percent. Our numerical results indicate that the purchase cost of the LSE was reduced through load management of customers with TSA systems. The introduction of TSA systems also reduced the volatility of market clearing price and reduced the whole-trade cost in an electricity market.

  11. An Economic Evalution of Demand-side Energy Storage Systems by using a Multi-agent based Electricity Market

    NASA Astrophysics Data System (ADS)

    Furusawa, Ken; Sugihara, Hideharu; Tsuji, Kiichiro

    Opened wholesale electric power market in April 2005, deregulation of electric power industry in Japan has faced a new competitive environment. In the new environment, Independent Power Producer (: IPP), Power Producer and Supplier (: PPS), Load Service Entity (: LSE) and electric utility can trade electric energy through both bilateral contracts and single-price auction at the electricity market. In general, the market clearing price (: MCP) is largely changed by amount of total load demand in the market. The influence may cause price spike, and consequently the volatility of MCP will make LSEs and their customers to face a risk of revenue and cost. DSM is attracted as a means of load leveling, and has effect on decreasing MCP at peak load period. Introducing Energy Storage systems (: ES) is one of DSM in order to change demand profile at customer-side. In case that customers decrease their own demand at jumped MCP, a bidding strategy of generating companies may be changed their strategy. As a result, MCP is changed through such complex mechanism. In this paper the authors evaluate MCP by multi-agent. It is considered that customer-side ES has an effect on MCP fluctuation. Through numerical examples, this paper evaluates the influence on MCP by controlling customer-side ES corresponding to variation of MCP.

  12. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    SciTech Connect

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal

  13. Pattern of injuries in a hydro-electric project.

    PubMed

    Malhotra, P; Dhar, S; Dogra, S; Kaul, S; Raina, R K

    1995-05-01

    A study of work-related injuries at a hydro-electric project site (May 1991-April 1992) was undertaken to determine the incidence and pattern of the injuries out of a total number of 119 injuries in the year. A significant proportion of these were orthopaedic in nature and the commonest site of injury was limbs (both upper and lower limbs) like auto-amputations and head injuries. A large proportion of these accidents (24.37%) resulted in permanent disability likely to interfere in the normal activities or locomotion of those injured.

  14. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  15. Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts -- final report

    SciTech Connect

    Eto, J.H.; Moezzi, M.M.

    1993-12-01

    This report summarizes findings from a unique project to improve the end-use electricity load shape and peak demand forecasts made by the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). First, the direct incorporation of end-use metered data into electricity demand forecasting models is a new approach that has only been made possible by recent end-use metering projects. Second, and perhaps more importantly, the joint-sponsorship of this analysis has led to the development of consistent sets of forecasting model inputs. That is, the ability to use a common data base and similar data treatment conventions for some of the forecasting inputs frees forecasters to concentrate on those differences (between their competing forecasts) that stem from real differences of opinion, rather than differences that can be readily resolved with better data. The focus of the analysis is residential space cooling, which represents a large and growing demand in the PG&E service territory. Using five years of end-use metered, central air conditioner data collected by PG&E from over 300 residences, we developed consistent sets of new inputs for both PG&E`s and CEC`s end-use load shape forecasting models. We compared the performance of the new inputs both to the inputs previously used by PG&E and CEC, and to a second set of new inputs developed to take advantage of a recently added modeling option to the forecasting model. The testing criteria included ability to forecast total daily energy use, daily peak demand, and demand at 4 P.M. (the most frequent hour of PG&E`s system peak demand). We also tested the new inputs with the weather data used by PG&E and CEC in preparing their forecasts.

  16. A Study on Grid-Square Statistics Based Estimation of Regional Electricity Demand and Regional Potential Capacity of Distributed Generators

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Sugimoto, Hiroyuki; Suzuoki, Yasuo

    We established a procedure for estimating regional electricity demand and regional potential capacity of distributed generators (DGs) by using a grid square statistics data set. A photovoltaic power system (PV system) for residential use and a co-generation system (CGS) for both residential and commercial use were taken into account. As an example, the result regarding Aichi prefecture was presented in this paper. The statistical data of the number of households by family-type and the number of employees by business category for about 4000 grid-square with 1km × 1km area was used to estimate the floor space or the electricity demand distribution. The rooftop area available for installing PV systems was also estimated with the grid-square statistics data set. Considering the relation between a capacity of existing CGS and a scale-index of building where CGS is installed, the potential capacity of CGS was estimated for three business categories, i.e. hotel, hospital, store. In some regions, the potential capacity of PV systems was estimated to be about 10,000kW/km2, which corresponds to the density of the existing area with intensive installation of PV systems. Finally, we discussed the ratio of regional potential capacity of DGs to regional maximum electricity demand for deducing the appropriate capacity of DGs in the model of future electricity distribution system.

  17. Local Muscle Metabolic Demand Induced by Neuromuscular Electrical Stimulation and Voluntary Contractions at Different Force Levels: A NIRS Study

    PubMed Central

    Muthalib, Makii; Kerr, Graham; Nosaka, Kazunori; Perrey, Stephane

    2016-01-01

    Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL. PMID:27478574

  18. Local Muscle Metabolic Demand Induced by Neuromuscular Electrical Stimulation and Voluntary Contractions at Different Force Levels: A NIRS Study.

    PubMed

    Muthalib, Makii; Kerr, Graham; Nosaka, Kazunori; Perrey, Stephane

    2016-06-13

    Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL.

  19. Adult Attachment and Male Aggression in Couple Relationships: The Demand-Withdraw Communication Pattern and Relationship Satisfaction as Mediators

    ERIC Educational Resources Information Center

    Fournier, Benoit; Brassard, Audrey; Shaver, Phillip R.

    2011-01-01

    This study examines men's domestic aggression as a function of attachment insecurities, considering the mediating roles of the demand-withdraw communication pattern and relationship satisfaction. The sample included 55 Canadian men undergoing counseling for relationship difficulties including aggression. The men completed questionnaires assessing…

  20. Analysis of the electricity demand of Greece for optimal planning of a large-scale hybrid renewable energy system

    NASA Astrophysics Data System (ADS)

    Tyralis, Hristos; Karakatsanis, Georgios; Tzouka, Katerina; Mamassis, Nikos

    2015-04-01

    The Greek electricity system is examined for the period 2002-2014. The demand load data are analysed at various time scales (hourly, daily, seasonal and annual) and they are related to the mean daily temperature and the gross domestic product (GDP) of Greece for the same time period. The prediction of energy demand, a product of the Greek Independent Power Transmission Operator, is also compared with the demand load. Interesting results about the change of the electricity demand scheme after the year 2010 are derived. This change is related to the decrease of the GDP, during the period 2010-2014. The results of the analysis will be used in the development of an energy forecasting system which will be a part of a framework for optimal planning of a large-scale hybrid renewable energy system in which hydropower plays the dominant role. Acknowledgement: This research was funded by the Greek General Secretariat for Research and Technology through the research project Combined REnewable Systems for Sustainable ENergy DevelOpment (CRESSENDO; grant number 5145)

  1. Co-optimization of Energy and Demand-Side Reserves in Day-Ahead Electricity Markets

    NASA Astrophysics Data System (ADS)

    Surender Reddy, S.; Abhyankar, A. R.; Bijwe, P. R.

    2015-04-01

    This paper presents a new multi-objective day-ahead market clearing (DAMC) mechanism with demand-side reserves/demand response (DR) offers, considering realistic voltage-dependent load modeling. The paper proposes objectives such as social welfare maximization (SWM) including demand-side reserves, and load served error (LSE) minimization. In this paper, energy and demand-side reserves are cleared simultaneously through co-optimization process. The paper clearly brings out the unsuitability of conventional SWM for DAMC in the presence of voltage-dependent loads, due to reduction of load served (LS). Under such circumstances multi-objective DAMC with DR offers is essential. Multi-objective Strength Pareto Evolutionary Algorithm 2+ (SPEA 2+) has been used to solve the optimization problem. The effectiveness of the proposed scheme is confirmed with results obtained from IEEE 30 bus system.

  2. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  3. The structure of demand for electricity in the Gulf Cooperation Council countries

    SciTech Connect

    Eltony, M.N.; Mohammad, Y.H.

    1993-12-31

    Electricity is a vital ingredient for the economic and social advancement of all developing nations. The members of Gulf Cooperation Council (GCC) offer no exception. The quantity of electricity consumed in these countries has grown consistently since the 1970s. If past trends are extrapolated to the year 2000, the electricity consumption at the turn of the century will be at least 10-fold the level prevailing the 1970s.

  4. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  5. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-02

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  6. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

    PubMed

    Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G

    2017-01-11

    We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.

  7. Tangent least-squares fitting filtering method for electrical speckle pattern interferometry phase fringe patterns

    NASA Astrophysics Data System (ADS)

    Tang, Chen; Wang, Wenping; Yan, Haiqing; Gu, Xiaohui

    2007-05-01

    An efficient method is proposed to reduce the noise from electrical speckle pattern interferometry (ESPI) phase fringe patterns obtained by any technique. We establish the filtering windows along the tangent direction of phase fringe patterns. The x and y coordinates of each point in the established filtering windows are defined as the sine and cosine of the half-wrapped phase multiplied by a random quantity, then phase value is calculated using these points' coordinates based on a least-squares fitting algorithm. We tested the proposed methods on the computer-simulated speckle phase fringe patterns and the experimentally obtained phase fringe pattern, respectively, and compared them with the improved sine/cosine average filtering method [Opt. Commun. 162, 205 (1999)] and the least-squares phase-fitting method [Opt. Lett. 20, 931 (1995)], which may be the most efficient methods. In all cases, our results are even better than the ones obtained with the two methods. Our method can overcome the main disadvantages encountered by the two methods.

  8. Electric Demand Reduction for the U.S. Navy Public Works Center San Diego, California

    SciTech Connect

    Kintner-Meyer, Michael CW

    2000-09-30

    Pacific Northwest National Laboratory investigated the profitability of operating a Navy ship's generators (in San Diego) during high electricity price periods rather than the ships hooking up to the Base electrical system for power. Profitability is predicated on the trade-off between the operating and maintenance cost incurred by the Navy for operating the ship generators and the net profit associated with the sale of the electric power on the spot market. In addition, PNNL assessed the use of the ship's generators as a means to achieve predicted load curtailments, which can then be marketed to the California Independent System Operator.

  9. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy

  10. Direct Electricity from Heat: A Solution to Assist Aircraft Power Demands

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    A thermionic device produces an electrical current with the application of a thermal gradient whereby the temperature at one electrode provides enough thermal energy to eject electrons. The system is totally predicated on the thermal gradient and the work function of the electrode collector relative to the emitter electrode. Combined with a standard thermoelectric device high efficiencies may result, capable of providing electrical energy from the waste heat of gas turbine engines.

  11. The costs, air quality, and human health effects of meeting peak electricity demand with installed backup generators.

    PubMed

    Gilmore, Elisabeth A; Lave, Lester B; Adams, Peter J

    2006-11-15

    Existing generators installed for backup during blackouts could be operated during periods of peak electricity demand, increasing grid reliability and supporting electricity delivery. Many generators, however, have non-negligible air emissions and may potentially damage air quality and harm human health. To evaluate using these generators, we compare the levelized private and social (health) costs of diesel internal combustion engines (ICE) with and without diesel particulate filters (DPF), natural gas ICEs, and microturbines to a new peaking plant in New York, NY. To estimate the social cost, first we calculate the upper range emissions for each generator option from producing 36,000 megawatt-hours (MWh) of electricity over 3 days. We then convert the emissions into ambient concentrations with a 3-D chemical transport model, PMCAMx, and Gaussian dispersion plumes. Using a Monte Carlo approach to incorporate the uncertainties, we calculate the health endpoints using concentration-response functions and multiply the response by its economic value. While uncontrolled diesel ICEs would harm air quality and health, a generator with a DPF has a social cost, comparable to natural gas options. We conclude on a full cost basis that backup generators, including controlled diesel ICEs, are a cost-effective method of meeting peak demand.

  12. Long-term power generation expansion planning with short-term demand response: Model, algorithms, implementation, and electricity policies

    NASA Astrophysics Data System (ADS)

    Lohmann, Timo

    Electric sector models are powerful tools that guide policy makers and stakeholders. Long-term power generation expansion planning models are a prominent example and determine a capacity expansion for an existing power system over a long planning horizon. With the changes in the power industry away from monopolies and regulation, the focus of these models has shifted to competing electric companies maximizing their profit in a deregulated electricity market. In recent years, consumers have started to participate in demand response programs, actively influencing electricity load and price in the power system. We introduce a model that features investment and retirement decisions over a long planning horizon of more than 20 years, as well as an hourly representation of day-ahead electricity markets in which sellers of electricity face buyers. This combination makes our model both unique and challenging to solve. Decomposition algorithms, and especially Benders decomposition, can exploit the model structure. We present a novel method that can be seen as an alternative to generalized Benders decomposition and relies on dynamic linear overestimation. We prove its finite convergence and present computational results, demonstrating its superiority over traditional approaches. In certain special cases of our model, all necessary solution values in the decomposition algorithms can be directly calculated and solving mathematical programming problems becomes entirely obsolete. This leads to highly efficient algorithms that drastically outperform their programming problem-based counterparts. Furthermore, we discuss the implementation of all tailored algorithms and the challenges from a modeling software developer's standpoint, providing an insider's look into the modeling language GAMS. Finally, we apply our model to the Texas power system and design two electricity policies motivated by the U.S. Environment Protection Agency's recently proposed CO2 emissions targets for the

  13. Examination of the Regional Supply and Demand Balance for Renewable Electricity in the United States through 2015: Projecting from 2009 through 2015 (Revised)

    SciTech Connect

    Bird, L.; Hurlbut, D.; Donohoo, P.; Cory, K.; Kreycik, C.

    2010-06-01

    This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study that assessed the supply and demand balance on a national basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an integrated resource planning process or otherwise.

  14. Social Welfare implications of demand response programs in competitive electricity markets

    SciTech Connect

    Boisvert, Richard N.; Neenan, Bernard F.

    2003-08-01

    The price volatility exhibited by wholesale electricity markets has stymied the movement to restructure the industry, and may derail it altogether. Market designers argue that prices are superior to regulation for directing long-term investments to the proper location and function, and that price volatility is a natural manifestation of a robustly competitive market. However, episodes of prices that soar to previously unimaginable heights try customers' patience and cause policy makers to reconsider if the prize is worth the consequences.

  15. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.

    PubMed

    Xiang, Chenxiang; Kung, Sheng-Chin; Taggart, David K; Yang, Fan; Thompson, Michael A; Güell, Aleix G; Yang, Yongan; Penner, Reginald M

    2008-09-23

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M(1)=silver or nickel) layer, 5-100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A (+) photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut approximately 300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of the M(1) layer. Within this trench, a nanowire of metal M(2) is electrodeposited (M(2)=gold, platinum, palladium, or bismuth). Finally the PR layer and M(1) layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 microm sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowire-nanowire junctions.

  16. The geothermal analog of pumped storage for electrical demand load following

    SciTech Connect

    Brown, D.W.

    1996-09-01

    A 6 day cycle Load-Following Experiment, conducted in July 1995 at the Fenton Hill Hot Dry Rock (HDR) test site in New Mexico, has verified that an HDR geothermal reservoir has the capability for a significant, rapid increase in thermal power output upon demand. The objective was to study the behavior of the HDR reservoir in a high-production- backpressure (2200 psi) baseload operating condition when there was superimposed a demand for significantly increased power production for a 4 hour period each day. In practice, this enhanced production, an increase of 65%, was accomplished by a programmed decrease in the production well backpressure over 4 hours, from an initial 2200 psi down to 500 psi. The rapid depressurization of the wellbore during the period of enhanced production resulted in the draining of a portion of the fluid stored in the pressure dilated joints surrounding the production well. These joints were then gradually reinflated during the following 20-hour period of high backpressure baseload operation. In essence, the HDR reservoir was acting as a fluid capacitor, being discharged for 4 hours and then slowly recharged during the subsequent 20 hours of baseload operation. In this mode, there would be no increase in the reservoir size of number of wells (the {ital in situ} capital investment) for a significant amount of peaking power production for a few hours each day. Thus, one of the advantages of geothermal load following over utility options such as pumped storage or compressed air storage is that the HDR power plant would be operated during off-peak hours in a baseline mode, with an augmented return on investment compared to these other peaking systems which would normally not be operated during off-peak periods. The surface power plant and the geofluid reinjection pumps would need to be sized for the peak rate of thermal energy production, adding somewhat to the overall HDR system capital costs when compared to a simple baseload power plant design.

  17. The geothermal analog of pumped storage for electrical demand load following

    SciTech Connect

    Brown, D.W.

    1996-12-31

    A 6-day cyclic Load-Following Experiment, conducted in July 1995 at the Los Alamos National Laboratory`s Fenton Hill Hot Dry Rock (HDR) test site in north-central New Mexico, has verified that an HDR geothermal reservoir has the capability for a significant, and very rapid, increase in thermal power output upon demand. The objective of the Load-Following Experiment was to study the behavior of the Fenton Hill HDR reservoir in a high-production-backpressure (2,200 psi) baseload operating condition when there was superimposed a demand for significantly increased power production for a 4-hour period each day. In practice, this enhanced production--an increase of about 65%--was accomplished by a programmed decrease in the production well backpressure over 4 hours, from an initial value of 2,200 psi down to about 500 psi. This rapid depressurization of the wellbore during the period of enhanced production resulted in the draining of a portion of the fluid stored in the pressure-dilated joints surrounding the production well. These joints were then gradually reinflated during the following 20-hour period of high-backpressure baseload operation. In essence, the HDR reservoir was acting as a fluid capacitor, being discharged for 4 hours and then slowly recharged during the subsequent 20 hours of baseload operation. In this mode of operation, there would be no increase required in the reservoir size or number of wells for a significant amount of peaking power production for a few hours each day. Therefore, one of the advantages of geothermal load following over other utility options such as pumped storage or compressed air energy storage is that the HDR power plant would be operated during off-peak hours in a baseload mode, with an augmented return on investment compared to these other peaking systems which would normally not be operated during off-peak periods.

  18. Cross-Cultural Consistency of the Demand/Withdraw Interaction Pattern in Couples

    ERIC Educational Resources Information Center

    Christensen, Andrew; Eldridge, Kathleen; Catta-Preta, Adriana Bokel; Lim, Veronica R.; Santagata, Rossella

    2006-01-01

    In order to examine the cross-cultural consistency of several patterns of couple communication, 363 participants from four different countries (Brazil, Italy, Taiwan, and the United States) completed self-report measures about communication and satisfaction in their romantic relationships. Across countries, constructive communication was…

  19. Relationship functioning and home and work demands predict individual differences in diurnal cortisol patterns in women.

    PubMed

    Adam, E K; Gunnar, M R

    2001-02-01

    In 70 middle-class mothers of 2-year-old children, individual differences in mothers' morning cortisol levels, cortisol decreases across the day and average cortisol levels were predicted from demographic and medical control variables, maternal relationship functioning and home and work demands. For two days, salivary cortisol levels were measured in the morning immediately after wakeup, four times in the afternoon, and in the evening immediately prior to bedtime. Hierarchical linear modeling (HLM) growth curve analyses were used to estimate the intercept (early morning level), slope (steepness of decline in cortisol values across the day), and the average height of each mother's cortisol curve across the waking hours. HLM and multiple regression techniques were then used to predict individual differences in these parameters from the variables of interest. Time of day accounted for 72% of the variation in mothers' observed cortisol values across the day. After controlling for demographic and medical variables, positive relationship functioning was associated with higher morning cortisol levels and a steeper decline in cortisol across the day, while greater hours of maternal employment and a greater number of children in the household were associated with lower morning cortisol values and a less steep decline in cortisol levels across the day. Variables predicting higher morning values also predicted higher average cortisol levels, while variables predicting lower morning cortisol predicted lower average cortisol levels. The full model including selected control, relationship functioning and home and work demand variables accounted for 40% of the variance in mothers' morning cortisol values, 43% of the variance in cortisol slopes and 35% of the variability in mothers' average cortisol levels. This study presents the first evidence of associations between psychological variables and individual differences in the organization of cortisol levels across the waking day

  20. Determining marginal electricity for near-term plug-in and fuel cell vehicle demands in California: Impacts on vehicle greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    McCarthy, Ryan; Yang, Christopher

    California has taken steps to reduce greenhouse gas emissions from the transportation sector. One example is the recent adoption of the Low Carbon Fuel Standard, which aims to reduce the carbon intensity of transportation fuels. To effectively implement this and similar policies, it is necessary to understand well-to-wheels emissions associated with distinct vehicle and fuel platforms, including those using electricity. This analysis uses an hourly electricity dispatch model to simulate and investigate operation of the current California grid and its response to added vehicle and fuel-related electricity demands in the near term. The model identifies the "marginal electricity mix" - the mix of power plants that is used to supply the incremental electricity demand from vehicles and fuels - and calculates greenhouse gas emissions from those plants. It also quantifies the contribution from electricity to well-to-wheels greenhouse gas emissions from battery-electric, plug-in hybrid, and fuel cell vehicles and explores sensitivities of electricity supply and emissions to hydro-power availability, timing of electricity demand (including vehicle recharging), and demand location within the state. The results suggest that the near-term marginal electricity mix for vehicles and fuels in California will come from natural gas-fired power plants, including a significant fraction (likely as much as 40%) from relatively inefficient steam- and combustion-turbine plants. The marginal electricity emissions rate will be higher than the average rate from all generation - likely to exceed 600 gCO 2 equiv. kWh -1 during most hours of the day and months of the year - and will likely be more than 60% higher than the value estimated in the Low Carbon Fuel Standard. But despite the relatively high fuel carbon intensity of marginal electricity in California, alternative vehicle and fuel platforms still reduce emissions compared to conventional gasoline vehicles and hybrids, through improved

  1. Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power.

    SciTech Connect

    Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A.

    2011-07-01

    This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced.

  2. Responders to Wide-Pulse, High-Frequency Neuromuscular Electrical Stimulation Show Reduced Metabolic Demand: A 31P-MRS Study in Humans

    PubMed Central

    Wegrzyk, Jennifer; Fouré, Alexandre; Le Fur, Yann; Maffiuletti, Nicola A.; Vilmen, Christophe; Guye, Maxime; Mattei, Jean-Pierre; Place, Nicolas; Bendahan, David; Gondin, Julien

    2015-01-01

    Conventional (CONV) neuromuscular electrical stimulation (NMES) (i.e., short pulse duration, low frequencies) induces a higher energetic response as compared to voluntary contractions (VOL). In contrast, wide-pulse, high-frequency (WPHF) NMES might elicit–at least in some subjects (i.e., responders)–a different motor unit recruitment compared to CONV that resembles the physiological muscle activation pattern of VOL. We therefore hypothesized that for these responder subjects, the metabolic demand of WPHF would be lower than CONV and comparable to VOL. 18 healthy subjects performed isometric plantar flexions at 10% of their maximal voluntary contraction force for CONV (25 Hz, 0.05 ms), WPHF (100 Hz, 1 ms) and VOL protocols. For each protocol, force time integral (FTI) was quantified and subjects were classified as responders and non-responders to WPHF based on k-means clustering analysis. Furthermore, a fatigue index based on FTI loss at the end of each protocol compared with the beginning of the protocol was calculated. Phosphocreatine depletion (ΔPCr) was assessed using 31P magnetic resonance spectroscopy. Responders developed four times higher FTI’s during WPHF (99 ± 37 ×103 N.s) than non-responders (26 ± 12 ×103 N.s). For both responders and non-responders, CONV was metabolically more demanding than VOL when ΔPCr was expressed relative to the FTI. Only for the responder group, the ∆PCr/FTI ratio of WPHF (0.74 ± 0.19 M/N.s) was significantly lower compared to CONV (1.48 ± 0.46 M/N.s) but similar to VOL (0.65 ± 0.21 M/N.s). Moreover, the fatigue index was not different between WPHF (-16%) and CONV (-25%) for the responders. WPHF could therefore be considered as the less demanding NMES modality–at least in this subgroup of subjects–by possibly exhibiting a muscle activation pattern similar to VOL contractions. PMID:26619330

  3. Cognitive load and autonomic response patterns under negative priming demand in depersonalization-derealization disorder.

    PubMed

    Lemche, Erwin; Sierra-Siegert, Mauricio; David, Anthony S; Phillips, Mary L; Gasston, David; Williams, Steven C R; Giampietro, Vincent P

    2016-04-01

    Previous studies have yielded evidence for cognitive processing abnormalities and alterations of autonomic functioning in depersonalization-derealization disorder (DPRD). However, multimodal neuroimaging and psychophysiology studies have not yet been conducted to test for functional and effective connectivity under cognitive stress in patients with DPRD. DPRD and non-referred control subjects underwent a combined Stroop/negative priming task, and the neural correlates of Stroop interference effect, negative priming effect, error rates, cognitive load span and average amplitude of skin conductance responses were ascertained for both groups. Evoked haemodynamic responses for basic Stroop/negative priming activations were compared. For basic Stroop to neutral contrast, patients with DPRD differed in the location (inferior vs. superior lobule) of the parietal region involved, but showed similar activations in the left frontal region. In addition, patients with DPRD also co-activated the dorsomedial prefrontal cortex (BA9) and posterior cingulate cortex (BA31), which were also found to be the main between-group difference regions. These regions furthermore showed connectivity with frequency of depersonalization states. Evoked haemodynamic responses drawn from regions of interest indicated significant between-group differences in 30-40% of time points. Brain-behaviour correlations differed mainly in laterality, yet only slightly in regions. A reversal of autonomic patterning became evident in patients with DPRD for cognitive load spans, indicating less effective arousal suppression under cognitive stress - patients with DPRD showed positive associations of cognitive load with autonomic responses, whereas controls exhibit respective inverse association. Overall, the results of the present study show only minor executive cognitive peculiarities, but further support the notion of abnormalities in autonomic functioning in patients with DPRD.

  4. Statistical patterns in tropical tree cover explained by the different water demand of individual trees and grasses.

    PubMed

    Bertram, Jason; Dewar, Roderick C

    2013-10-01

    Tree cover varies enormously across tropical ecosystems-from arid savannas to closed rain forests-and yet a general predictive theory of tropical tree cover remains elusive. Here we use the maximum-entropy method to predict the most likely sample frequency distribution of ecosystems with different tree and grass fractional cover if balance between water supply and demand were the dominant constraint on community assembly. Assuming a hierarchy of individual plant water demand in which trees require more water than grasses, we reproduce observed trends in the means and the upper and lower limits of tropical tree and grass cover across the entire spectrum of tropical ecosystem water supply. Finer details not captured by our predictions indicate the influence of additional factors, such as disturbance. Our results challenge the view that tropical tree-grass coexistence is largely sustained by disturbances in moist environments ("unstable" coexistence) with water supply playing a dominant role only in arid conditions ("stable" coexistence). More generally, they suggest that macroecological patterns can be understood and predicted as the most likely outcome of a large number of stochastic processes being played out within a relatively small number of ecological constraints.

  5. Electrically robust silver nanowire patterns transferrable onto various substrates

    NASA Astrophysics Data System (ADS)

    Liu, Gui-Shi; Liu, Chuan; Chen, Hui-Jiuan; Cao, Wu; Qiu, Jing-Shen; Shieh, Han-Ping D.; Yang, Bo-Ru

    2016-03-01

    We report a facile technique for patterning and transferring silver nanowires (AgNWs) onto various substrates. By employing only UV/O3 and vapor treatment of hexamethyldisilazane (HMDS), we are able to accurately manipulate the surface energy via alternating the terminal groups of a polydimethylsiloxane (PDMS) substrate, so as to assist selective formation and exfoliation of AgNW films. A simple UV/O3 treatment on PDMS enables uniform, well-defined, and highly conductive patterns of AgNWs after spin-coating. A vapor treatment of HMDS lowers the surface energy of the oxidized PDMS so that the patterned AgNWs embedded in an epoxy resin (EPR) are cleanly transferred from the PDMS to the target substrate. It is found that the AgNW-EPR composite on polyethylene glycol terephthalate (PET) exhibits remarkable durability under the bending test, tape test, ultrasonic treatment in water, and immersion of chemical solvents. In addition, we demonstrate that the AgNW-EPR composite work well as conductive patterns on the oxidized PDMS, polyvinyl alcohol (PVA), paper, and curved glass. The facile technique extends the applicability of AgNWs in the field of electronics, and it is potentially applicable to other nanomaterials.We report a facile technique for patterning and transferring silver nanowires (AgNWs) onto various substrates. By employing only UV/O3 and vapor treatment of hexamethyldisilazane (HMDS), we are able to accurately manipulate the surface energy via alternating the terminal groups of a polydimethylsiloxane (PDMS) substrate, so as to assist selective formation and exfoliation of AgNW films. A simple UV/O3 treatment on PDMS enables uniform, well-defined, and highly conductive patterns of AgNWs after spin-coating. A vapor treatment of HMDS lowers the surface energy of the oxidized PDMS so that the patterned AgNWs embedded in an epoxy resin (EPR) are cleanly transferred from the PDMS to the target substrate. It is found that the AgNW-EPR composite on polyethylene

  6. Using backup generators for meeting peak electricity demand: a sensitivity analysis on emission controls, location, and health endpoints.

    PubMed

    Gilmore, Elisabeth A; Adams, Peter J; Lave, Lester B

    2010-05-01

    Generators installed for backup power during blackouts could help satisfy peak electricity demand; however, many are diesel generators with nonnegligible air emissions that may damage air quality and human health. The full (private and social) cost of using diesel generators with and without emission control retrofits for fine particulate matter (PM2.5) and nitrogen oxides (NOx) were compared with a new natural gas turbine peaking plant. Lower private costs were found for the backup generators because the capital costs are mostly ascribed to reliability. To estimate the social costs from air quality, the changes in ambient concentrations of ozone (O3) and PM2.5 were modeled using the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) chemical transport model. These air quality changes were translated to their equivalent human health effects using concentration-response functions and then into dollars using estimates of "willingness-to-pay" to avoid ill health. As a case study, 1000 MW of backup generation operating for 12 hr/day for 6 days in each of four eastern U.S. cities (Atlanta, Chicago, Dallas, and New York) was modeled. In all cities, modeled PM2.5 concentrations increased (up to 5 microg/m3) due mainly to primary emissions. Smaller increases and decreases were observed for secondary PM2.5 with more variation between cities. Increases in NOx, emissions resulted in significant nitrate formation (up to 1 microg/m3) in Atlanta and Chicago. The NOx emissions also caused O3 decreases in the urban centers and increases in the surrounding areas. For PM2.5, a social cost of approximately $2/kWh was calculated for uncontrolled diesel generators in highly populated cities but was under 10 cent/kWh with PM2.5 and NOx controls. On a full cost basis, it was found that properly controlled diesel generators are cost-effective for meeting peak electricity demand. The authors recommend NOx and PM2.5 controls.

  7. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    SciTech Connect

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  8. Demand response-enabled model predictive HVAC load control in buildings using real-time electricity pricing

    NASA Astrophysics Data System (ADS)

    Avci, Mesut

    A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.

  9. Surface patterning with natural and synthetic polymers via an inverse electron demand Diels-Alder reaction employing microcontact chemistry.

    PubMed

    Roling, Oliver; Mardyukov, Artur; Lamping, Sebastian; Vonhören, Benjamin; Rinnen, Stefan; Arlinghaus, Heinrich F; Studer, Armido; Ravoo, Bart Jan

    2014-10-21

    Bioorthogonal ligation methods are the focus of current research due to their versatile applications in biotechnology and materials science for post-functionalization and immobilization of biomolecules. Recently, inverse electron demand Diels-Alder (iEDDA) reactions employing 1,2,4,5-tetrazines as electron deficient dienes emerged as powerful tools in this field. We adapted iEDDA in microcontact chemistry (μCC) in order to create enhanced surface functions. μCC is a straightforward soft-lithography technique which enables fast and large area patterning with high pattern resolutions. In this work, tetrazine functionalized surfaces were reacted with carbohydrates conjugated with norbornene or cyclooctyne acting as strained electron rich dienophiles employing μCC. It was possible to create monofunctional as well as bifunctional substrates which were specifically addressable by proteins. Furthermore we structured glass supported alkene terminated self-assembled monolayers with a tetrazine conjugated atom transfer radical polymerization (ATRP) initiator enabling surface grafted polymerizations of poly(methylacrylate) brushes. The success of the surface initiated iEDDA via μCC as well as the functionalization with natural and synthetic polymers was verified via fluorescence and optical microscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).

  10. Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity

    NASA Astrophysics Data System (ADS)

    Bashash, Saeid; Moura, Scott J.; Forman, Joel C.; Fathy, Hosam K.

    This paper examines the problem of optimizing the charge pattern of a plug-in hybrid electric vehicle (PHEV), defined as the timing and rate with which the PHEV obtains electricity from the power grid. The optimization goal is to simultaneously minimize (i) the total cost of fuel and electricity and (ii) the total battery health degradation over a 24-h naturalistic drive cycle. The first objective is calculated for a previously-developed stochastic optimal PHEV power management strategy, whereas the second objective is evaluated through an electrochemistry-based model of anode-side resistive film formation in lithium-ion batteries. The paper shows that these two objectives are conflicting, and trades them off using a non-dominated sorting genetic algorithm. As a result, a Pareto front of optimal charge patterns is obtained. The effects of electricity price and trip schedule on the optimal Pareto points and the PHEV charge patterns are analyzed and discussed.

  11. Reappraisal and Distraction Emotion Regulation Strategies Are Associated with Distinct Patterns of Visual Attention and Differing Levels of Cognitive Demand

    PubMed Central

    Strauss, Gregory P.; Ossenfort, Kathryn L.; Whearty, Kayla M.

    2016-01-01

    Multiple emotion regulation strategies have been identified and found to differ in their effectiveness at decreasing negative emotions. One reason for this might be that individual strategies are associated with differing levels of cognitive demand and require distinct patterns of visual attention to achieve their effects. In the current study, we tested this hypothesis in a sample of psychiatrically healthy participants (n = 25) who attempted to down-regulate negative emotion to photographs from the International Affective Picture System using cognitive reappraisal or distraction. Eye movements, pupil dilation, and subjective reports of negative emotionality were obtained for reappraisal, distraction, unpleasant passive viewing, and neutral passive viewing conditions. Behavioral results indicated that reappraisal and distraction successfully decreased self-reported negative affect relative to unpleasant passive viewing. Successful down regulation of negative affect was associated with different patterns of visual attention across regulation strategies. During reappraisal, there was an initial increase in dwell time to arousing scene regions and a subsequent shift away from these regions during later portions of the trial, whereas distraction was associated with reduced total dwell time to arousing interest areas throughout the entire stimulus presentation. Pupil dilation was greater for reappraisal than distraction or unpleasant passive viewing, suggesting that reappraisal may recruit more effortful cognitive control processes. Furthermore, greater decreases in self-reported negative emotion were associated with a lower proportion of dwell time within arousing areas of interest. These findings suggest that different emotion regulation strategies necessitate different patterns of visual attention to be effective and that individual differences in visual attention predict the extent to which individuals can successfully decrease negative emotion using reappraisal

  12. Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison

    SciTech Connect

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet fewer studies have explored the physical impacts of climate change on the power sector. The present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  13. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    SciTech Connect

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  14. Erratum to: Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison

    SciTech Connect

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-07-07

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet fewer studies have explored the physical impacts of climate change on the power sector. The present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  15. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    DOE PAGES

    McFarland, James; Zhou, Yuyu; Clarke, Leon; ...

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less

  16. Electric vehicles performance estimation through a patterns extraction and classification methodology

    NASA Astrophysics Data System (ADS)

    Barré, Anthony; Suard, Frédéric; Gérard, Mathias; Riu, Delphine

    2015-01-01

    Direct estimation of battery performance is a major challenge as ageing process is a complex phenomenon not directly measurable. In this work a new methodology is provided to estimate global battery performances under real-life electric vehicle use. Such performances are estimated through battery signals patterns extraction. These signals patterns are used to identify physical degradation behavior of batteries. The analysis framework is composed of patterns extraction, clustering algorithms, summarizing data representation in the feature space of cluster distances and classification algorithms. This methodology is then applied on datasets, acquired from batteries used on electric vehicles, without controlled environmental conditions. The classification algorithm accuracy is studied on the obtained real data. The results suggest that battery signals patterns analysis provides an innovative technique for online estimation of the battery performance level. A detection of dysfunctions caused by ageing is also made, only based on battery signals pattern extracted during real vehicle accelerations.

  17. Classification of atmospheric discharges according to patterns of the near-surface electric field disturbances

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, Hripsime; Chilingarian, Ashot

    2016-04-01

    Registration of near surface electric field associated with thunderstorms and lightning are performed 24 h daily and 12 months yearly in three different locations of the Aragats Space Environmental Center. Such measurements have been used previously to understand charge distribution in the thundercloud. "Stormy" patterns of disturbances of the near surface electric field are attributed to different types of atmospheric discharges: negative or positive, intracloud or cloud to ground. In the presented report we discuss the patterns of the lightning occurrences as measured by the network of the electric mills located on the earth's surface, differences of positive and negative flashes and shapes of the recovery curves using data from a stormy day on Aragats - May 23, 2015. Our observations show that after- lightning near surface electric field recovery curves besides exponential shape sometimes has a form of power law or linear dependence. Positive discharges are stronger and have shorter duration comparing with negative ones.

  18. A High-Resolution Spatially Explicit Monte-Carlo Simulation Approach to Commercial and Residential Electricity and Water Demand Modeling

    SciTech Connect

    Morton, April M; McManamay, Ryan A; Nagle, Nicholas N; Piburn, Jesse O; Stewart, Robert N; Surendran Nair, Sujithkumar

    2016-01-01

    Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may therefore not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  19. An Agent-Based Optimization Framework for Engineered Complex Adaptive Systems with Application to Demand Response in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Haghnevis, Moeed

    The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

  20. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    SciTech Connect

    Rajnak, Michal; Kopcansky, Peter; Timko, Milan; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj

    2015-08-17

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  1. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    NASA Astrophysics Data System (ADS)

    Rajnak, Michal; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj; Kopcansky, Peter; Timko, Milan

    2015-08-01

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  2. Electricity decision-making: New techniques for calculating statewide economic impacts from new power supply and demand-side management programs

    NASA Astrophysics Data System (ADS)

    Tegen, Suzanne Isabel Helmholz

    This dissertation introduces new techniques for calculating and comparing statewide economic impacts from new coal, natural gas and wind power plants, as well as from demand-side management programs. The impetus for this work was two-fold. First, reviews of current literature and projects revealed that there was no standard way to estimate statewide economic impacts from new supply- and demand-side electricity options. Second, decision-makers who were interviewed stated that they were overwhelmed with data in general, but also lacked enough specific information about economic development impacts to their states from electricity, to make informed choices. This dissertation includes chapters on electricity decision-making and on economic impacts from supply and demand. The supply chapter compares different electricity options in three states which vary in natural resource content: Arizona, Colorado and Michigan. To account for differing capacity factors, resources are compared on a per-megawatt-hour basis. The calculations of economic impacts from new supply include: materials and labor for construction, operations, maintenance, fuel extraction, fuel transport, as well as property tax, financing and landowner revenues. The demand-side chapter compares residential, commercial and industrial programs in Iowa. Impact calculations include: incremental labor and materials for program planning, installation and operations, as well as sales taxes and electricity saved. Results from supply-side calculations in the three states analyzed indicate that adding new wind power can have a greater impact to a state's economy than adding new gas or coal power due to resource location, taxes and infrastructure. Additionally, demand-side management programs have a higher relative percentage of in-state dollar flow than supply-side solutions, though demand-side programs typically involve fewer MWh and dollars than supply-side generation. Methods for this dissertation include researching

  3. The Impact of Hybrid Electric Vehicles Incentives on Demand and the Determinants of Hybrid-Vehicle Adoption

    NASA Astrophysics Data System (ADS)

    Riggieri, Alison

    According to the Energy Information Administration, transportation currently accounts for over 60% of U.S. oil demand (E.I.A. 2010). Improving automobile energy efficiency could therefore reduce oil consumption and the negative environmental effects of automobile use. Subsidies for energy-efficient technologies such as hybrid-electric vehicles have gained political popularity since their introduction into the market and therefore have been implemented with increasing frequency. After the introduction of hybrid-electric vehicles into the U.S. market, the federal government initially implemented a 2000 federal tax deduction for these vehicles (later increased to a 3500 credit). Many states followed, offering various exemptions, such as high-occupancy vehicle (HOV) lane use, and excise-tax, sales-tax, and income-tax exemptions. Because not all states have implemented these subsidies, this policy topic is an ideal candidate for an outcome evaluation using an observational study postulation. States adopt incentives for different reasons based on factors that make adoption more attractive, however, so it is first necessary to identify these differences that predict policy adoption. This allows for the evaluative work to control for self selection bias. Three classes of internal determinants of policy adoption, political context, problem severity, and institutional support, and one type of external diffusion factor, are tested using logistic regression. Results suggest that the number of neighboring states that have already adopted incentives are consistently a determinant of diffusion for all three types of incentives test, HOV lane exemptions, sales-tax exemptions, and income-tax exemptions. In terms of internal factors, constituent support, a type of political context, predicts, sale-tax, income-tax, and HOV lane exemptions, but that the other two classes of determinants, problem severity and institutional support, were not universally significant across types of

  4. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  5. Essays on measurement and evaluation of demand side management programs in the electricity industry, and impacts of firm strategy on stock price in the biotechnology industry

    NASA Astrophysics Data System (ADS)

    Bandres Motola, Miguel A.

    Essay one estimates changes in small business customer energy consumption (kWh) patterns resulting from a seasonally differentiated pricing structure. Econometric analysis leverages cross-sectional time series data across the entire population of affected customers, from 2007 through the present. Observations include: monthly energy usage (kWh), relevant customer segmentations, local daily temperature, energy price, and region-specific economic conditions, among other variables. The study identifies the determinants of responsiveness to seasonal price differentiation. In addition, estimated energy consumption changes occurring during the 2010 summer season are reported for the average customer and in aggregate grouped by relevant customer segments, climate zone, and total customer base. Essay two develops an econometric modeling methodology to evaluate load impacts for short duration demand response events. The study analyzes time series data from a season of direct load control program tests aimed at integrating demand response into the wholesale electricity market. I have combined "fuzzy logic" with binary variables to create "fuzzy indicator variables" that allow for measurement of short duration events while using industry standard model specifications. Typically, binary variables for every hour are applied in load impact analysis of programs dispatched in hourly intervals. As programs evolve towards integration with the wholesale market, event durations become irregular and often occur for periods of only a few minutes. This methodology is innovative in that it conserves the degrees of freedom in the model while allowing for analysis of high frequency data using fixed effects. Essay three examines the effects of strategies, intangibles, and FDA news on the stocks of young biopharmaceutical firms. An event study methodology is used to explore those effects. This study investigates 20,839 announcements from 1990 to 2005. Announcements on drug development

  6. Electric Potential Patterns Deduced for the SUNDIAL Period of 23-26 September 1986

    DTIC Science & Technology

    1990-01-01

    present study, the initial Ottawa, Canada 58.5 356.2 Saint Johns, Canada 57.6 29.1 electric potential patterns in AMIE use the four Point Tunguska , USSR...regional changes shown in Figure 4. Figure 5 shows an event where the two-cell convection appears to be distorted by a general clockwise rotation and a

  7. Self-feedback electrically coupled spin-Hall oscillator array for pattern-matching operation

    NASA Astrophysics Data System (ADS)

    Kudo, Kiwamu; Morie, Takashi

    2017-04-01

    An oscillator array has been proposed for associative memory, in which the synchronization of multiple oscillators is utilized for pattern-matching operations. An input pattern is represented by a set of frequency shifts of the oscillators and the matching result is attributed to the degree of synchronization. Here, we propose an electrically coupled spin-Hall oscillator (SHO) array in which multiple SHOs exhibit synchronization by interacting with each other through self-feedback spin torques. We numerically demonstrate the pattern matching functionality of the proposed SHO array.

  8. Electric conductive pattern element fabricated using commercial inkjet printer for paper-based analytical devices.

    PubMed

    Matsuda, Yu; Shibayama, Shobu; Uete, Keigo; Yamaguchi, Hiroki; Niimi, Tomohide

    2015-06-02

    Herein, we proposed the addition of an inkjet-printed conductive pattern to paper-based analytical devices (PADs) in order to expand their applications. An electric conductive pattern was easily, quickly, and inexpensively fabricated using a commercial inkjet printer. The addition of a printed electric element will enhance the applications of PADs without the loss of properties such as cost efficiency, disposability, and portability. In this study, we applied an inkjet-printed heater to a piece of paper and investigated its characteristics. The use of the heater as a valve, concentrator, and heat source for chemical reactions on PADs was investigated. Previously, these functions were difficult to realize with PADs. The inkjet-printed heater was used as a valve and concentrator through evaporation of the working fluid and solvent, and was also found to be useful for providing heat for chemical reactions. Thus, the combination of printed electric circuits and PADs has many potential applications.

  9. Electric-field-induced Labyrinthine Patterns in Ferrofluids--- A Two Dimensional Diffusion Model

    NASA Astrophysics Data System (ADS)

    Riley, Brett; Duan, Xiaodong; Luo, Weili

    2001-03-01

    A two-dimension particle diffusion equation is derived to model the observed labyrinthine patterns induced by electric fields [1]. The numerical solution of the equation was obtained and it shows patterns similar to experiment. The stripe width increases with time in both experiment and calculation. The time increase can be described by a power law with exponent of 1/3. The field-induced phase separation is attributed to the competition between the electrostatic energy and the entropy. Reference [1] Xiaodong Duan and Weili Luo, "Electric-field-induced second order phase transition in a ferrofluid," Bull. Ame. Phys. Soc. Vol. 45, P 864; Xiaodong Duan, Weili Luo, Brent Wacaser and Robert C. Davis, "Field-Induced Universal Labyrinthine Patterns in Nanocolloids." Preprint , 2000.

  10. Prediction of Electric Field Effects on Defect-Free Self-Assembled Nano-Patterning of Block Copolymer.

    PubMed

    Kim, Sang-Kon

    2016-03-01

    For future semiconductor device scaling, self-assembly, directed self-assembly (DSA) of block copolymers (BCPs), is a promising method with simplified processing conditions; however, critical challenge is defect control for fine pattern. Electric field is a method for the defect control. In this paper, for electric field effects to jog defects, the electric field induced self-assembled patterns is modeled and simulated by using the Monte Carlo method of dielectric polymers, the self-consistent-field theory (SCFT), and the Navier-Stokes equation. Electric field effects are quantified by using defect degree. Defective patterns are forced to undergo a phase transition to lamellar phase under electric field. For the high electric field, the excess free energy for the defect-free state becomes small. Simulation results can help to optimize electric field and process time in terms of defect area.

  11. Acoustic patterning for 3D embedded electrically conductive wire in stereolithography

    NASA Astrophysics Data System (ADS)

    Erdem Yunus, Doruk; Sohrabi, Salman; He, Ran; Shi, Wentao; Liu, Yaling

    2017-04-01

    In this paper, we reported a new approach for particle assembly with acoustic tweezers during three-dimensional (3D) printing, for the fabrication of embedded conductive wires with 3D structures. A hexagon shaped acoustic tweezer was incorporated with a digital light processing based stereolithography printer to pattern conductive lines via aligning and condensing conductive nanoparticles. The effect of filler content on electrical resistivity and pattern thickness were studied for copper, magnetite nanoparticles, and carbon nanofiber reinforced nanocomposite samples. The obtained data was later used to produce examples of conductive 3D microstructures and embedded electronic components by using the suggested method.

  12. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    NASA Astrophysics Data System (ADS)

    Zietek, Slawomir; Ogrodnik, Piotr; Skowroński, Witold; Stobiecki, Feliks; van Dijken, Sebastiaan; Barnaś, Józef; Stobiecki, Tomasz

    2016-08-01

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  13. Voltage-Sensitive Dyes And Imaging Techniques Reveal New Patterns Of Electrical Activity In Heart Cortex

    NASA Astrophysics Data System (ADS)

    Salama, Guy

    1988-04-01

    Voltage-sensitive dyes bind to the plasms membrane of excitable cells (ie., muscle or nerve cells) and exhibit fluorescence and/or absorption changes that vary linearly with changes in transmembrane electrical potential. These potentiometric optical probes can be used to measure local changes in transmembrane potential by monitoring optical signals from dye molecules bound to the surface membrane. Consequently, when excitable cells are stained with such a dye and are stimulated to fire an electrical impulse (ie., an action potential (AP)), the changes in dye fluorescence have the characteristic shape and time course of APs recorded with an intracellular micro-electrode. Potentiometric dyes in conjuction with imaging techniques can now be used to visualize complex patterns and propagation of electrical activity. With photodiode arrays on video imaging techniques, patterns of biological electrical activity can be obtained with high temporal and spatial resolution which could not be obtained by conventional micro-electrodes. These methods reveal new details and offer powerful approaches to study fundamental problem in cardiac electrophysiology, communication in nerve networks, and the organization of cortical neurons.

  14. Patterns of U.S. Economic Growth. 1980 Projections of Final Demand, Interindustry Relationships, Output, Productivity, and Employment.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This report projects employment by industry for 1980, in order to provide a framework for an occupational outlook program. Included are detailed projections of the labor force, aggregate and industry demand, output, employment, and occupational projections. A 4.3 percent growth rate is projected for gross national product, reflecting an increased…

  15. Line-patterning of polyaniline coated MWCNT on stepped substrates using DC electric field

    PubMed Central

    Ko, Young Gun; Do, Tae Gu; Oh, Hyun Chul; Lee, Hyun Jeong; Han, Hung-gu; Kim, Choong Hyun; Choi, Ung Su

    2014-01-01

    Printing electronic components on a chip edge and a stepped substrate with functional inks are an attractive approach for achieving flexible and inexpensive circuits for applications such as flexible displays and large-area chemo/bio/radioactivity sensors. However, it is still challenging because a sufficient cover of the 100 μm high step at the chip edge with a high-resolution pattern is the hardest part of the layer assembling by inkjet printing. Herein, we present a simple and effective strategy to generate electrically conductive line-patterns on stepped substrates by applying the DC electric field. On the surface of flat polyimide substrate, the fine line-pattern (less than 850 nm in line width) is achieved with a polyaniline coated MWCNT dispersed ink. Furthermore, 9.9 μm of line width is successfully patterned on the high stepped poly(dimethylsiloxane) substrate, higher than 100 μm, by printing only 1 time. PMID:25325776

  16. Discrimination of Basic Taste Solutions and Soft Drinks on Electrical and Optical Response Patterns of Artificial Lipid Membrane

    NASA Astrophysics Data System (ADS)

    Mukai, Keiichi; Misawa, Kenji; Arisawa, Junji

    In this paper, electrical and optical characteristics of artificial lipid membrane for basic taste solutions and tea drinks were examined. The possibility of taste sensing on the electrical and optical response patterns of a single membrane was also discussed. As a result, in case of sour and sweet solutions with different concentration, the patterns of taste response were similar in shape. In case of the tea drinks on some commercial goods, the different shapes among the sample solutions were obtained. Furthermore, the strength of sour taste was reflected in the electrical axis of response pattern and the strength of sweet taste was reflected in the optical axis of response pattern. Therefore, it was found that the possibility of taste sensing using electrical and optical response patterns was obtained from a single membrane.

  17. Patterned indium tin oxide nanofiber films and their electrical and optical performance

    NASA Astrophysics Data System (ADS)

    Miftahul Munir, Muhammad; Widiyandari, Hendri; Iskandar, Ferry; Okuyama, Kikuo

    2008-09-01

    We report on the preparation and characterization of indium tin oxide (ITO) nanofiber films with a patterned architecture that are transparent and conductive with a uniform fiber size. ITO nanofiber films with a crisscross pattern were prepared by the electrospinning of a precursor solution containing ethanol, dimethyl formamide (DMF), indium chloride tetrahydrate, tin chloride pentahydrate and poly(vinyl pyrrolidone) (PVP K90) onto a metal mesh template, followed by calcinations after transfer to a glass substrate. The resulting ITO nanofibers had diameters of the order of 100 nm and were composed of single-crystalline nanoparticles that were pure in chemical composition. The morphology, crystallinity and performance of the resulting nanofibers could be controlled mainly by calcination. Optical and electrical investigations demonstrated that these nanofiber films are transparent conductors with an optical transmittance as high as 92%. The resulting patterned ITO nanofiber films would be suitable for applications such as solar cells, sensors and electromagnetic field filters.

  18. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States.

    PubMed

    Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H

    2017-02-21

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today's technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual.

  19. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States

    PubMed Central

    Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H.

    2017-01-01

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today’s technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual. PMID:28167756

  20. Use of the NII to study impacts of new technologies and policies on supply and demand of electric power

    SciTech Connect

    Munro, J.K. Jr.

    1995-04-01

    This paper describes a proposal to use an implementation of client-server technology on the Internet for simulating a number of aspects of electric power production, distribution, and consumption within a wholly new regulatory, financing, operating, and control environment. This approach would use a large number of people to generate strategies and decisions, in a real-time context, needed to drive the simulation. A World Wide Web server would provide background information about the simulation for those who chose to participate as actors in one of supported roles. Roles would be based on activities associated with different business areas and would include utility manager, independent power producer (entrepreneur), electric power futures trader, electric power futures investor, electric power wheeler, industrial customer, commercial customer, and residential customer. The simulation program would run on a system of high-performance computers (parallel computer system) that communicate between each other on a high speed communications bus. These computers would also be the server systems for the client programs used by the actors. People who want to be actors would be required to register before being given a client program, as a way to have some control over the simulation results. Each role will have its corresponding client program with graphical user interface. Each client program will support a common view of the simulation results and a role specific view.

  1. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development.

  2. Integrating Nano-patterned Ferromagnetic and Ferroelectric Thin Films for Electrically Tunable RF Applications

    SciTech Connect

    Wang, Tengxing; Peng, Yujia; Jiang, Wei; Huang, Yong Mao; Rahman, B.M. Farid; Divan, Ralu; Rosenmann, Daniel; Wang, Guoan

    2016-10-31

    Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% increment in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.

  3. Integrating Nano-patterned Ferromagnetic and Ferroelectric Thin Films for Electrically Tunable RF Applications

    DOE PAGES

    Wang, Tengxing; Peng, Yujia; Jiang, Wei; ...

    2016-10-31

    Tunable radio frequency (RF) components are pivotal elements in frequency-agile and multifunctional systems. However, there is a technical barrier to achieve miniaturized fully electrically tunable RF components. This paper provides and demonstrates the efficacy of a first unique design methodology in developing fully electrically tunable RF components by integrating ferromagnetic (e.g., Permalloy) and ferroelectric (e.g., Lead Zirconate Titanate: PZT) thin films patterns. Permalloy thin film has been patterned in nanometer scale to improve its ferromagnetic resonance frequency (FMR) for RF applications. Tunable inductors are developed with the utilization of different thickness of Permalloy thin film, which show over 50% incrementmore » in inductance and over 4% in tunability with DC current. More tunability can be achieved with multiple layers of Permalloy thin film and optimized thickness. A fully electrically tunable slow wave RF transmission line with simultaneously variable inductance and capacitance density has been implemented and thoroughly investigated for the first time. Measured results show that a fixed phase shift of 90° can be achieved from 1.5 GHz to 1.85 GHz continuously by applying external DC current from 0 to 200 mA and external DC voltage from 0 to 15 Volts, respectively.« less

  4. A statistical analysis of energy and power demand for the tractive purposes of an electric vehicle in urban traffic - an analysis of a short and long observation period

    NASA Astrophysics Data System (ADS)

    Slaski, G.; Ohde, B.

    2016-09-01

    The article presents the results of a statistical dispersion analysis of an energy and power demand for tractive purposes of a battery electric vehicle. The authors compare data distribution for different values of an average speed in two approaches, namely a short and long period of observation. The short period of observation (generally around several hundred meters) results from a previously proposed macroscopic energy consumption model based on an average speed per road section. This approach yielded high values of standard deviation and coefficient of variation (the ratio between standard deviation and the mean) around 0.7-1.2. The long period of observation (about several kilometers long) is similar in length to standardized speed cycles used in testing a vehicle energy consumption and available range. The data were analysed to determine the impact of observation length on the energy and power demand variation. The analysis was based on a simulation of electric power and energy consumption performed with speed profiles data recorded in Poznan agglomeration.

  5. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  6. On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position

    PubMed Central

    2016-01-01

    The ability to confine and manipulate light below the diffraction limit is a major goal of future multifunctional optoelectronic/plasmonic systems. Here, we demonstrate the design and realization of a tunable and localized electrical source of excitons coupled to surface plasmons based on a polymer light-emitting field-effect transistor (LEFET). Gold nanorods that are integrated into the channel support localized surface plasmons and serve as nanoantennas for enhanced electroluminescence. By precise spatial control of the near-infrared emission zone in the LEFET via the applied voltages the near-field coupling between electrically generated excitons and the nanorods can be turned on or off as visualized by a change of electroluminescence intensity. Numerical calculations and spectroscopic measurements corroborate significant local electroluminescence enhancement due to the high local density of photonic states in the vicinity of the gold nanorods. Importantly, the integration of plasmonic nanostructures hardly influences the electrical performance of the LEFETs, thus, highlighting their mutual compatibility in novel active plasmonic devices. PMID:26878028

  7. Patterns of high tension electrical injury in children and adolescents and their management.

    PubMed

    Burke, J F; Quinby, W C; Bondoc, C; McLaughlin, E; Trelstad, R L

    1977-04-01

    High tension electrical burn injury occurred in twenty-nine patients over a period of seven years, causing two deaths, and demonstrating two reasonably distinct patterns. Major surface thermal burns from involvement in an electric arc, augmented by flame burns of ignited clothing, occurred in eleven patients. By contrast, eighteen children demonstrated wounds of entrance and exit of current and varying effects of deep thermal injury along the path of the maximally conductive blood vessels and nerves of extremities. An aggressive surgical approach was taken in patients with both types of injury, with the objective of prompt identification and excision of devitalized tissues and closure of thw wound. In the deep condictuve type of injury, frozen section and subsequent histologic study served as a guide to adequacy of excision and preservation of viable tissue. Even so, amputation of fifteen extremities and four other major excisions were required in twelve patients.

  8. Effect of Patterned Electrical Neuromuscular Stimulation on Vertical Jump in Collegiate Athletes

    PubMed Central

    Gulick, Dawn T.; Castel, John C.; Palermo, Francis X.; Draper, David O.

    2011-01-01

    Background: Patterned electrical neuromuscular stimulation (PENS) uses the electrical stimulation of sensory and motor nerves to achieve a skeletal muscle contraction using an electromyogram-derived functional pattern. PENS is used extensively for neuromuscular reeducation and treatment of muscle disuse atrophy. Purpose: To explore the effectiveness of PENS as applied to the quadriceps muscles on the vertical jump of an athletic population. Study Design: Experimental with control and repeated measures over time. Methods: Healthy college athletes (54 women, 75 men) were divided into 3 groups (control, n = 30; jump, n = 33; and jump with PENS, n = 63). There was no difference among groups’ height and weight. Athletes performed a baseline standing vertical jump using a vertical jump system. The control group continued its normal daily activities with no jumping tasks included. The jump groups performed 3 sets of 12 repetitions with a 2-minute rest between sets at a frequency of 3 times per week. The PENS group did the jumping with the coordination of an electrical stimulation system. Vertical jump was retested after 6 weeks of intervention and 2 weeks after cessation. Results: A 3-way repeated measures analysis of variance for time (control, jump alone, jump with PENS) revealed a significant difference (P < 0.05) for time and an interaction between time and treatment, as well as a significant difference for the PENS group from baseline to posttest and for the jump group from posttest to follow-up jump. There was no significant difference between groups for the baseline vertical jump. Conclusions: This study demonstrated that 6 weeks of vertical jump training coordinated with PENS resulted in a greater increase than jumping only or control. This pattern of stimulation with PENS in combination with jump training may positively affect jumping. PMID:23016002

  9. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si

    DOE PAGES

    Norman, Justin; Kennedy, M. J.; Selvidge, Jennifer; ...

    2017-02-14

    High performance III-V lasers at datacom and telecom wavelengths on on-axis (001) Si are needed for scalable datacenter interconnect technologies. We demonstrate electrically injected quantum dot lasers grown on on-axis (001) Si patterned with {111} v-grooves lying in the [110] direction. No additional Ge buffers or substrate miscut was used. The active region consists of five InAs/InGaAs dot-in-a-well layers. Here, we achieve continuous wave lasing with thresholds as low as 36 mA and operation up to 80°C.

  10. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si.

    PubMed

    Norman, Justin; Kennedy, M J; Selvidge, Jennifer; Li, Qiang; Wan, Yating; Liu, Alan Y; Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; Lau, Kei May; Gossard, Arthur C; Bowers, John E

    2017-02-20

    High performance III-V lasers at datacom and telecom wavelengths on on-axis (001) Si are needed for scalable datacenter interconnect technologies. We demonstrate electrically injected quantum dot lasers grown on on-axis (001) Si patterned with {111} v-grooves lying in the [110] direction. No additional Ge buffers or substrate miscut was used. The active region consists of five InAs/InGaAs dot-in-a-well layers. We achieve continuous wave lasing with thresholds as low as 36 mA and operation up to 80°C.

  11. Sensitivity of Battery Electric Vehicle Economics to Drive Patterns, Vehicle Range, and Charge Strategies

    SciTech Connect

    Neubauer, J.; Brooker, A.; Wood, E.

    2012-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs discourage many potential purchasers. Making an economic comparison with conventional alternatives is complicated in part by strong sensitivity to drive patterns, vehicle range, and charge strategies that affect vehicle utilization and battery wear. Identifying justifiable battery replacement schedules and sufficiently accounting for the limited range of a BEV add further complexity to the issue. The National Renewable Energy Laboratory developed the Battery Ownership Model to address these and related questions. The Battery Ownership Model is applied here to examine the sensitivity of BEV economics to drive patterns, vehicle range, and charge strategies when a high-fidelity battery degradation model, financially justified battery replacement schedules, and two different means of accounting for a BEV's unachievable vehicle miles traveled (VMT) are employed. We find that the value of unachievable VMT with a BEV has a strong impact on the cost-optimal range, charge strategy, and battery replacement schedule; that the overall cost competitiveness of a BEV is highly sensitive to vehicle-specific drive patterns; and that common cross-sectional drive patterns do not provide consistent representation of the relative cost of a BEV.

  12. Performance enhanced miniaturized and electrically tunable patch antenna with patterned permalloy based magneto-dielectric substrate

    NASA Astrophysics Data System (ADS)

    Peng, Yujia; Farid Rahman, B. M.; Wang, Xuehe; Wang, Guoan

    2014-05-01

    Perspective magneto-dielectric materials with high permeability are potential substrates to miniaturize the patch antenna without deteriorating its performance. Besides its high permeability at high frequency, patterned Permalloy (Py) also presents tunable permeability by applying DC current. A performance enhanced miniaturized and electrically tunable patch antenna with patterned Py thin film is first presented and developed in this paper. To suppress the magnetic loss, the Py thin film layer is consisted of an array of 2 μm × 2 μm square Py patterns between the copper patch antenna and dielectric substrate. The DC current could be applied directly on Py patterns through the copper strip lines beneath the Py patterns along the length of patch antenna. The copper strip lines are specially designed with the same width of Py patterns and the thickness much less than the skin depth at the operating frequency, which can reduce their deteriorating effects to the performance of antenna. The structure of the antenna is presented and simulated with high frequency structure simulator. The results show that compared with non-magnetic antenna, the performance of Py thin film based antenna is improved with 50% bandwidth increase from 4 MHz to 8 MHz and 1.2 dB gain enhancement from 1.16 dB to 2.36 dB. The resonant frequency of the antenna could be continuously tuned from 937 MHz to 911 MHz with the permeability of Py thin film changing from 1750 to 1 900 by applying the DC current.

  13. A magnetron sputtering system for the preparation of patterned thin films and in situ thin film electrical resistance measurements

    SciTech Connect

    Arnalds, U. B.; Agustsson, J. S.; Ingason, A. S.; Eriksson, A. K.; Gylfason, K. B.; Gudmundsson, J. T.; Olafsson, S.

    2007-10-15

    We describe a versatile three gun magnetron sputtering system with a custom made sample holder for in situ electrical resistance measurements, both during film growth and ambient changes on film electrical properties. The sample holder allows for the preparation of patterned thin film structures, using up to five different shadow masks without breaking vacuum. We show how the system is used to monitor the electrical resistance of thin metallic films during growth and to study the thermodynamics of hydrogen uptake in metallic thin films. Furthermore, we demonstrate the growth of thin film capacitors, where patterned films are created using shadow masks.

  14. Diurnal patterns in brain biogenic amines of rats exposed to 60-Hz electric fields

    SciTech Connect

    Vasquez, B.J.; Anderson, L.E.; Lowery, C.I.; Adey, W.R.

    1988-01-01

    Levels of brain neurotransmitters and their metabolites, as well as concentrations of enzymes associated with their synthesis and metabolism, fluctuate during the day in patterns defined as circadian. The present study examined these rhythms in albino rats exposed to 60-Hz electric fields. Thirty-six animals were exposed to a 39 kV/m field for 4 weeks, 20 h/day, in a parallel-plate electrode system. A group of 36 sham animals was similarly handled and housed in a nonenergized exposure system. On the sampling day, animals were sacrificed at 4-h intervals throughout the 24-h day. Brains were removed, dissected, and kept frozen until chemically analyzed. The levels of biogenic amines and their acidic metabolites in the striatum, hypothalamus, and hippocampus were determined by high-performance liquid chromatography with electrochemical detection (HPLC-ECD) methods. Repeated exposure to 60-Hz electric fields produced significant alterations in the diurnal rhythms of several biogenic amines: dihydroxyphenylacetic acid (DOPAC, the primary metabolite of dopamine in the rat) in the striatum, and norepinephrine, dopamine, and 5-hydroxyindoleacetic acid (5-HIAA; serotonin metabolite) in the hypothalamus. Levels of serotonin in the striatum and hypothalamus showed clear circadian patterns that was not affected by the field. No diurnal or field-related changes were observed in the hippocampal amines.

  15. Decoding of retinal ganglion cell spike trains evoked by temporally patterned electrical stimulation.

    PubMed

    Ryu, Sang Baek; Ye, Jang Hee; Goo, Yong Sook; Kim, Chi Hyun; Kim, Kyung Hwan

    2010-08-12

    For successful restoration of vision by retinal prostheses, the neural activity of retinal ganglion cells (RGCs) evoked by electrical stimulation should represent the information of spatiotemporal patterns of visual input. We propose a method to evaluate the effectiveness of stimulation pulse trains so that the crucial temporal information of a visual input is accurately represented in the RGC responses as the amplitudes of pulse trains are modulated according to the light intensity. This was enabled by spike train decoding. The effectiveness of the stimulation was evaluated by the accuracy of decoding pulse amplitude from the RGC spike train, i.e., by the similarity between the original and the decoded pulse amplitude time series. When the parameters of stimulation were suitably determined, the RGC responses were reliably modulated by varying the amplitude of electrical pulses. Accordingly, the temporal pattern of pulse amplitudes could be successfully decoded from multiunit RGC spike trains. The range of pulse amplitude and the pulse rate were critical for accurate representation of input information in RGC responses. These results suggest that pulse amplitude modulation is a feasible means to encode temporal visual information by RGC spike trains and thus to implement stimulus encoding strategies for retinal prostheses.

  16. Impact of real world driving pattern and all-electric range on battery sizing and cost of plug-in hybrid electric two-wheeler

    NASA Astrophysics Data System (ADS)

    Amjad, Shaik; Rudramoorthy, R.; Neelakrishnan, S.; Varman, K. Sri Raja; Arjunan, T. V.

    2011-03-01

    This study addresses the impact of an actual drive pattern on the sizing and cost of a battery pack for a plug-in hybrid electric two-wheeler. To estimate the daily average travel distance in fixing the all-electric range of two wheelers, a study conducted in Coimbatore city is presented. A MATLAB simulation model developed for estimating the energy and power requirements in an all-electric strategy using an Indian driving cycle (IDC) and a real-world driving pattern are discussed. The simulation results reveal the impact of the real-world driving pattern on energy consumption and also the influence of all-electric range in sizing the battery pack. To validate the results, a plug-in hybrid electric two-wheeler developed by modifying a standard two-wheeler has been tested on the road with the help of the IDC simulator kit. An annual battery cost comparison shows that nickel-metal-hydride batteries are more economical and suitable for in plug-in hybrid electric two-wheelers.

  17. Controlling growth and electrical connectivity of neuronal cells patterned on surfaces

    NASA Astrophysics Data System (ADS)

    Beighley, Ross; Spedden, Elise; White, James; Staii, Cristian

    2012-02-01

    In the developing brain biochemical and geometrical cues are an essential source of information used by neurons when wiring up the nervous system. However, our current understanding of the mechanisms by which various guidance factors control the path that growing axons/dendrites follow to reach their targets and form functional electrical connections remains qualitative. A current limitation for the study of neural network formation is the ability to precisely control the growth and interconnectivity of small numbers of neurons. Here we present a combined Atomic Force Microscopy - Fluorescence Spectroscopy approach for patterning neurons on 2-dimensional substrates and precisely controlling their location, growth and interconnectivity. We demonstrate that this approach allows one to: a) form simple neuronal circuits in well-controlled geometries; b) guide the formation of functional synapses between neurons, and c) measure the electrical activity of small groups of neurons. We also discuss the implications of these results for our current understanding of the fundamental mechanisms that govern the development of electrical connections between neurons.

  18. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    PubMed

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  19. Forelimb kinematics and motor patterns of the slider turtle (Trachemys scripta) during swimming and walking: shared and novel strategies for meeting locomotor demands of water and land.

    PubMed

    Rivera, Angela R V; Blob, Richard W

    2010-10-15

    Turtles use their limbs during both aquatic and terrestrial locomotion, but water and land impose dramatically different physical requirements. How must musculoskeletal function be adjusted to produce locomotion through such physically disparate habitats? We addressed this question by quantifying forelimb kinematics and muscle activity during aquatic and terrestrial locomotion in a generalized freshwater turtle, the red-eared slider (Trachemys scripta), using digital high-speed video and electromyography (EMG). Comparisons of our forelimb data to previously collected data from the slider hindlimb allow us to test whether limb muscles with similar functional roles show qualitatively similar modulations of activity across habitats. The different functional demands of water and air lead to a prediction that muscle activity for limb protractors (e.g. latissimus dorsi and deltoid for the forelimb) should be greater during swimming than during walking, and activity in retractors (e.g. coracobrachialis and pectoralis for the forelimb) should be greater during walking than during swimming. Differences between aquatic and terrestrial forelimb movements are reflected in temporal modulation of muscle activity bursts between environments, and in some cases the number of EMG bursts as well. Although patterns of modulation between water and land are similar between the fore- and hindlimb in T. scripta for propulsive phase muscles (retractors), we did not find support for the predicted pattern of intensity modulation, suggesting that the functional demands of the locomotor medium alone do not dictate differences in intensity of muscle activity across habitats.

  20. Forelimb kinematics and motor patterns of the slider turtle (Trachemys scripta) during swimming and walking: shared and novel strategies for meeting locomotor demands of water and land

    PubMed Central

    Rivera, Angela R. V.; W. Blob, Richard

    2010-01-01

    Turtles use their limbs during both aquatic and terrestrial locomotion, but water and land impose dramatically different physical requirements. How must musculoskeletal function be adjusted to produce locomotion through such physically disparate habitats? We addressed this question by quantifying forelimb kinematics and muscle activity during aquatic and terrestrial locomotion in a generalized freshwater turtle, the red-eared slider (Trachemys scripta), using digital high-speed video and electromyography (EMG). Comparisons of our forelimb data to previously collected data from the slider hindlimb allow us to test whether limb muscles with similar functional roles show qualitatively similar modulations of activity across habitats. The different functional demands of water and air lead to a prediction that muscle activity for limb protractors (e.g. latissimus dorsi and deltoid for the forelimb) should be greater during swimming than during walking, and activity in retractors (e.g. coracobrachialis and pectoralis for the forelimb) should be greater during walking than during swimming. Differences between aquatic and terrestrial forelimb movements are reflected in temporal modulation of muscle activity bursts between environments, and in some cases the number of EMG bursts as well. Although patterns of modulation between water and land are similar between the fore- and hindlimb in T. scripta for propulsive phase muscles (retractors), we did not find support for the predicted pattern of intensity modulation, suggesting that the functional demands of the locomotor medium alone do not dictate differences in intensity of muscle activity across habitats. PMID:20889832

  1. A functional dissociation between language and multiple-demand systems revealed in patterns of BOLD signal fluctuations.

    PubMed

    Blank, Idan; Kanwisher, Nancy; Fedorenko, Evelina

    2014-09-01

    What is the relationship between language and other high-level cognitive functions? Neuroimaging studies have begun to illuminate this question, revealing that some brain regions are quite selectively engaged during language processing, whereas other "multiple-demand" (MD) regions are broadly engaged by diverse cognitive tasks. Nonetheless, the functional dissociation between the language and MD systems remains controversial. Here, we tackle this question with a synergistic combination of functional MRI methods: we first define candidate language-specific and MD regions in each subject individually (using functional localizers) and then measure blood oxygen level-dependent signal fluctuations in these regions during two naturalistic conditions ("rest" and story-comprehension). In both conditions, signal fluctuations strongly correlate among language regions as well as among MD regions, but correlations across systems are weak or negative. Moreover, data-driven clustering analyses based on these inter-region correlations consistently recover two clusters corresponding to the language and MD systems. Thus although each system forms an internally integrated whole, the two systems dissociate sharply from each other. This independent recruitment of the language and MD systems during cognitive processing is consistent with the hypothesis that these two systems support distinct cognitive functions.

  2. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite.

    PubMed

    Catros, Sylvain; Fricain, Jean-Christophe; Guillotin, Bertrand; Pippenger, Benjamin; Bareille, Reine; Remy, Murielle; Lebraud, Eric; Desbat, Bernard; Amédée, Joëlle; Guillemot, Fabien

    2011-06-01

    Developing tools to reproduce and manipulate the cell micro-environment, including the location and shape of cell patterns, is essential for tissue engineering. Parallel to inkjet printing and pressure-operated mechanical extruders, laser-assisted bioprinting (LAB) has emerged as an alternative technology to fabricate two- and three-dimensional tissue engineering products. The objective of this work was to determine laser printing parameters for patterning and assembling nano-hydroxyapatite (nHA) and human osteoprogenitors (HOPs) in two and three dimensions with LAB. The LAB workstation used in this study comprised an infrared laser focused on a quartz ribbon that was coated with a thin absorbing layer of titanium and a layer of bioink. The scanning system, quartz ribbon and substrate were piloted by dedicated software, allowing the sequential printing of different biological materials into two and/or three dimensions. nHA printing material (bioink) was synthesized by chemical precipitation and was characterized prior and following printing using transmission electron microscopy, Fourier transformed infrared spectroscopy and x-ray diffraction. HOP bioink was prepared using a 30 million cells ml(-1) suspension in culture medium and cells were characterized after printing using a Live/Dead assay and osteoblastic phenotype markers (alcaline phosphatase and osteocalcin). The results revealed that LAB allows printing and organizing nHA and HOPs in two and three dimensions. LAB did not alter the physico-chemical properties of nHA, nor the viability, proliferation and phenotype of HOPs over time (up to 15 days). This study has demonstrated that LAB is a relevant method for patterning nHA and osteoblastic cells in 2D, and is also adapted to the bio-fabrication of 3D composite materials.

  3. Prediction of drop-on-demand (DOD) pattern size in pulse voltage-applied electrohydrodynamic (EHD) jet printing of Ag colloid ink

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Beomsoo; Kim, Sang-Yoon; Hwang, Jungho

    2014-12-01

    Drop-on-demand printing is receiving a great deal of interest in industrial applications; however, the desired pattern sizes are realized by trial and error, through repeated printing experiments with varied materials (ink and suspended particles), operating conditions (voltage, flow rate, nozzle-to-plate distance, etc.), and substrate wettability. Since this approach requires a great deal of time, cost, and effort, a more convenient and efficient method that will predict pattern sizes with a minimal number of experiments is needed. In this study, we patterned a series of Ag dots and lines using a pulsed voltage-applied electrohydrodynamic jet printing system and measured their sizes with an optical microscope. We then applied a model suggested by Stringer and Derby (J Eur Ceram Soc 29:913-918, 2009) and Gao and Sonin (Proc R Soc Lond Ser A 444:533-554, 1994) to predict the pattern sizes, comparing these predictions with the measured sizes. Finally, we demonstrated our methodology on disconnected line repairing.

  4. Electrical Resistivity Tomography in the characterisation of wetting patterns of historical masonry

    NASA Astrophysics Data System (ADS)

    López-González, Laura; Gomez-Heras, Miguel; Ortiz de Cosca, Raquel Otero; García-Morales, Soledad

    2016-04-01

    Electrical Resistivity Tomography (ERT) is a geophysical technique widely used to identify subsurface structures based on electrical resistivity measurements made at the surface. In recent years this technique has been used for surveying historic buildings and characterise the subsurface of walls by using non-invasive EKG electrodes. This methods is used to locate wet areas based on the lower electrical resistivity wet materials have in relation to dry ones. A good knowledge of the wetting patterns of historic buildings during, for example, rainfalls is crucial to understand the decay processes that take place in the building and plan interventions. This paper presents results of transects of Electric Resistivity Tomography of walls of the Monastery of Santa Maria de Mave (Palencia, Spain), a 9th century Romanesque building, during rainfall. ERT transects were performed with a GeoTom device (Geolog2000) in areas with and without buttresses to understand how this architectural detail affected the wetting dynamics of the building. The ERT results were integrated with other resistivity-based techniques and Thermohygrometric survey in a GIS and showed how lower resistivity surface measurements ERT correspond with areas of higher humidity. Resistivity-based techniques measured and evaporation focal points take in the interior of the building mark the outer ground level. The highest moisture content measurements do not always correspond to the visibly most damaged areas of the wall. The consecutive ERT transects show the wall getting wetter as rainfall progresses. The comparison of the measurements obtained of a wall affected by water obtained with GIS mapping, allowed to quickly studying the development of moisture in the wall over time, which is essential for a correct diagnosis of the building. Research funded by Madrid's Regional Government project Geomateriales 2 S2013/MIT-2914

  5. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    NASA Astrophysics Data System (ADS)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of

  6. On-demand multi-batch self-assembly of hybrid MEMS by patterning solders of different melting points

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Lau, W. M.; Yang, Jun

    2007-11-01

    Self-assembly has been widely accepted as the next generation technology for integrating highly dense microelectromechanical systems (MEMS), in particular for complex and hybrid systems composed of sensing, actuating, optical, electronic, mechanical and fluidic components. In addition, some micro components may have the same material, size, shape and binding affinity, but different functions. Ideally, each micro component should bind and can only bind to a designated binding site with no recognition error even for similar sites. Due to the spontaneous nature of 'self'-assembly, challenges remain in controlling this process. In this work, a relatively simple controllable, fluid-based self-assembly method has been demonstrated, which is able to integrate hybrid MEMS in a multi-batch-wise manner. The essence of this method is to pattern solders with different melting points to designated binding sites, and to activate them separately and sequentially, even individually if needed, with appropriate processing steps at adequate temperatures. Thus, self-assembly of MEMS micro components becomes programmable.

  7. Reticular activating system of a central pattern generator: premovement electrical potentials.

    PubMed

    Tapia, Jesus A; Trejo, Argelia; Linares, Pablo; Alva, J Manuel; Kristeva, Rumyana; Manjarrez, Elias

    2013-10-01

    For the first time, here we characterize a bulbar reticular activating system (RAS) of neurons in decerebrate, deafferented and decerebellated cats producing a premovement electrical potential that we named obex slow potential (OSP). The OSP occurs about 0.8 ± 0.4 sec prior to the onset of a fictive-scratching-episode. Here, we describe two classes of bulbar neurons, off-on, which are silent but exhibit a 80 ± 56 Hz firing discharge at the beginning of (and during) the OSP, and on-off interneurons, with a 27 ± 14 Hz firing activity that stops at the beginning of (and during) the OSP. We suggest that these OSP-associated neurons belong to a descending RAS, which contributes to the activation of the spinal central pattern generators.

  8. Advanced two-photon photolithography for patterning of transparent, electrically conductive ionic liquid-polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Bakhtina, Natalia A.; MacKinnon, Neil; Korvink, Jan G.

    2016-04-01

    A key challenge in micro- and nanotechnology is the direct patterning of functional structures. For example, it is highly desirable to possess the ability to create three-dimensional (3D), conductive, and optically transparent structures. Efforts in this direction have, to date, yielded less than optimal results since the polymer composites had low optical transparency over the visible range, were only slightly conductive, or incompatible with high resolution structuring. We have previously presented the novel cross-linkable, conductive, highly transparent composite material based on a photoresist (IP-L 780, OrmoComp, or SU-8) and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. Material patterning by conventional and two-photon photolithography has been demonstrated as proof-of-concept. Aiming to increase the resolution and to extend the spectrum of exciting applications we continued our research into identifying new ionic liquid - polymer composites. In this paper, we report the precise 3D single-step structuring of optically transparent and electrically conductive ionic liquid - polymer nanostructures with the highest spatial resolution (down to 150 nm) achieved to date. This was achieved via the development of novel cross-linkable composite based on the photoresist IP-G 780 and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. The successful combination of the developed material with the advanced direct laser writing technique enabled the time- and cost-saving direct manufacturing of transparent, electrically conductive components. We believe that the excellent characteristics of the structured material will open a wider range of exciting applications.

  9. Electrically modulated attachment and detachment of animal cells cultured on an optically transparent patterning electrode.

    PubMed

    Koyama, Sumihiro

    2011-05-01

    The purpose of this study was to develop the modulation methods for the attachment and detachment of specifically positioned adhesive animal cells cultured on an electrode surface with the application of a weak electrical potential. A patterned indium tin oxide (ITO) optically transparent working electrode was placed on the bottom of a chamber slide with a counter-(Pt) and reference (Ag/AgCl) electrode. The ITO patterning was formed by a reticulate ITO region and arrayed square glass regions of varying size. Using the 3-electrode culture system, the author succeeded in modulation of the attachment and detachment of animal cells on the working electrode surface. Animal cells suspended in serum or sera containing medium were drawn to and attached on a reticulate ITO electrode region to which a +0.4-V vs. Ag/AgCl-positive potential was applied. Meanwhile, the cells were successfully placed on the square glass regions by -0.3-V vs. Ag/AgCl-negative potential application. Animal cells were detached not only from the ITO electrode but also from the square glass regions after the application of a ±10-mV vs. Ag/AgCl, 9-MHz [corrected] rectangular wave potential in PBS(-) for 30-60 min. Rectangular wave potential-induced cell detachment is almost completely noncytotoxic, and no statistical differences between trypsinization and the high frequency wave potential application were observed in HeLa cell growth. The electrical modulation of the specifically positioned cell attachment and detachment techniques holds potential for novel optical microscopic cell sorting analysis in lab-on-chip devices.

  10. Phase extracting and unwrapping algorithm of electrical speckle shearing phase-shifting pattern interferometry

    NASA Astrophysics Data System (ADS)

    Jing, Chao; Zhou, Ping; Zhang, Yimo

    2016-10-01

    Electrical Speckle Shearing Phase-shifting Pattern Interferometry (ESSPPI) has been used in the fields of nondestructive testing (NDT) and stress field analysis as a precise deformation measuring method. The general fixed-step phase extracting algorithms of ESSPPI, such as three-step algorithms, four-step algorithms, five-step algorithms, and their corresponding errors are analyzed. It is proved that the phase accuracy of ESSPPI with different algorithms are mainly affected by linear error of phase-shifting. Therefore the modified four-step phase-shifting extracting algorithm that isn't sensitive to linear error of phase-shifting is adopted in the paper. The filtering algorithm should be employed to reduce the influences of speckle noise and wrong data caused by errors during measurement. Then the least-squares phase-unwrapping algorithm based on fast discrete cosine transform (LPABFDCT) is adopted to search the least-squares solutions between phase difference value of adjacent pixels and unwrapped phase difference value of the pixels and the real phase distribution caused by object deformation is obtained. The Electrical Speckle Shearing Phase-shifting Pattern Interferometric images are captured with four-step phase-shifting method and the real phase distributing image is achieved with modified four-step phase-shifting extracting algorithm, denoising filter and the least-squares phase-unwrapping algorithm based on fast discrete cosine transform. It is proved with experiment results that the real phase distributing images are effective achieved by mean of combination of average filter and the least-squares phase-unwrapping algorithm based on fast discrete cosine transform.

  11. 46 CFR 169.689 - Demand loads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Demand loads. 169.689 Section 169.689 Shipping COAST... Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.689 Demand loads. Demand loads must meet § 111.60-7 of this chapter except that smaller demand loads for motor feeders...

  12. 46 CFR 169.689 - Demand loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Demand loads. 169.689 Section 169.689 Shipping COAST... Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.689 Demand loads. Demand loads must meet § 111.60-7 of this chapter except that smaller demand loads for motor feeders...

  13. Statistical analysis of plating variable effects on the electrical conductivity of electroless copper patterns on paper.

    PubMed

    Zabetakis, Daniel; Dressick, Walter J

    2012-05-01

    We describe a process for selective metallization of paper substrates bearing inkjet printed patterns of a commercial Pd/Sn colloidal catalyst ink plated using a commercial electroless Cu bath. The electrical conductivity of the Cu films is analyzed as a function of feature geometry (line dimensions (L) and spacing (S)), type of paper (P), age of the Pd/Sn patterns (A), plating time (T), and plating temperature (H) using a two-level factorial design. Conductivity is influenced predominantly by the P, T, and H factors, with lesser contributions attributed to pair-wise interactions among several of the variables studied. Increases in T and/or H enhance conductivity of the Cu films, whereas increases in P, corresponding to the use of rougher, more porous, paper substrates, yield Cu films exhibiting decreased conductivity. Our analysis leads to a model that predicts Cu film conductivity well over the ranges of variables examined, provides guidelines for identification of optimum conditions for plating highly conductive Cu films, and identifies areas for further process improvement.

  14. Imaging wet granules with different flow patterns by electrical capacitance tomography and microwave tomography

    NASA Astrophysics Data System (ADS)

    Wang, H. G.; Zhang, J. L.; Ramli, M. F.; Mao, M. X.; Ye, J. M.; Yang, W. Q.; Wu, Z. P.

    2016-11-01

    The moisture content of granules in fluidised bed drying, granulation and coating processes can typically be between 1%~25%, resulting in the change of permittivity and conductivity during the processes. Electrical capacitance tomography (ECT) has been used for this purpose, but has a limit because too much water can cause a problem in capacitance measurement. Considering that microwave tomography (MWT) has a wide range of frequency (1~2.5 GHz) and can be used to measure materials with high permittivity and conductivity, the objective of this research is to combine ECT and MWT together to investigate the solids concentration with different moisture content and different flow patterns. The measurement results show that both ECT and MWT are functions of moisture content as well as flow patterns, and their measurements are complementary to each other. This is the first time that these two tomography modalities have been combined together and applied to image the complex solids distribution. The obtained information may be used for the process control of fluidised bed drying, granulation and coating to improve operation efficiency.

  15. Demand Response Dispatch Tool

    SciTech Connect

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  16. Water Resource Impacts Embedded in the Western US Electrical Energy Trade; Current Patterns and Adaptation to Future Drought

    NASA Astrophysics Data System (ADS)

    Adams, E. A.; Herron, S.; Qiu, Y.; Tidwell, V. C.; Ruddell, B. L.

    2013-12-01

    Water resources are a key element in the global coupled natural-human (CNH) system, because they are tightly coupled with the world's social, environmental, and economic subsystems, and because water resources are under increasing pressure worldwide. A fundamental adaptive tool used especially by cities to overcome local water resource scarcity is the outsourcing of water resource impacts through substitutionary economic trade. This is generally understood as the indirect component of a water footprint, and as ';virtual water' trade. This work employs generalized CNH methods to reveal the trade in water resource impacts embedded in electrical energy within the Western US power grid, and utilizes a general equilibrium economic trade model combined with drought and demand growth constraints to estimate the future status of this trade. Trade in embedded water resource impacts currently increases total water used for electricity production in the Western US and shifts water use to more water-limited States. Extreme drought and large increases in electrical energy demand increase the need for embedded water resource impact trade, while motivating a shift to more water-efficient generation technologies and more water-abundant generating locations. Cities are the largest users of electrical energy, and in the 21st Century will outsource a larger fraction of their water resource impacts through trade. This trade exposes cities to risks associated with disruption of long-distance transmission and distant hydrological droughts.

  17. Interim Data Changes in the Short-term Energy Outlook Data Systems Related to Electric Power Sector and Natural Gas Demand Data Revisions (Released in the STEO December 2002)

    EIA Publications

    2002-01-01

    Beginning with the December 2002 issue of the Energy Information Administration's Short-Term Energy Outlook (STEO), electricity generation and related fuel consumption totals will be presented on a basis that is consistent with the definitions and aggregates used in the 2001 edition of EIA's Annual Energy Review (AER). Particularly affected by these changes are the demand and balancing item totals for natural

  18. Wafer-scale patterning of lead telluride nanowires: structure, characterization, and electrical properties.

    PubMed

    Yang, Yongan; Taggart, David K; Brown, Matthew A; Xiang, Chengxiang; Kung, Sheng-Chin; Yang, Fan; Hemminger, John C; Penner, Reginald M

    2009-12-22

    Nanowires of lead telluride (PbTe) were patterned on glass surfaces using lithographically patterned nanowire electrodeposition (LPNE). LPNE involved the fabrication by photolithography of a contoured nickel nanoband that is recessed by approximately 300 nm into a horizontal photoresist trench. Cubic PbTe was then electrodeposited from a basic aqueous solution containing Pb(2+) and TeO(3)(2-) at the nickel nanoband using a cyclic deposition/stripping potential program in which lead-rich PbTe was first deposited in a negative-going potential scan and excess lead was then anodically stripped from the nascent nanowire by scanning in the positive direction to produce near stoichiometric PbTe. Repeating this scanning procedure permitted PbTe nanowires 60-400 nm in width to be obtained. The wire height was controlled over the range of 20-100 nm based upon the nickel film thickness. Nanowires with lengths exceeding 1 cm were prepared in this study. We report the characterization of these nanowires using X-ray diffraction, transmission electron microscopy and electron diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). The surface chemical composition of PbTe nanowires was monitored by XPS as a function of time during the exposure of these nanowires to laboratory air. One to two monolayers of a mixed Pb and Te oxide are formed during a 24 h exposure. The electrical conductivity of PbTe nanowires was strongly affected by air oxidation, declining from an initial value of 2.0(+/-1.5) x 10 (4) S/m by 61% (for nanowires with a 20 nm thickness), 55% (for 40 nm), and 12% (for 60 nm).

  19. Electricity

    SciTech Connect

    Sims, B.

    1983-01-01

    Historical aspects of electricity are reviewed with individual articles on hydroelectric dams, coal-burning power plants, nuclear power plants, electricity distribution, and the energy future. A glossary is included. (PSB)

  20. Automated Demand Response and Commissioning

    SciTech Connect

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  1. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.

    PubMed

    Waddell, Joseph C; Rodríguez-Cattáneo, Alejo; Caputi, Angel A; Crampton, William G R

    2016-10-26

    Descriptions of the head-to-tail electric organ discharge (ht-EOD) waveform - typically recorded with electrodes at a distance of approximately 1-2 body lengths from the center of the subject - have traditionally been used to characterize species diversity in gymnotiform electric fish. However, even taxa with relatively simple ht-EODs show spatiotemporally complex fields near the body surface that are determined by site-specific electrogenic properties of the electric organ and electric filtering properties of adjacent tissues and skin. In Brachyhypopomus, a pulse-discharging genus in the family Hypopomidae, the regional characteristics of the electric organ and the role that the complex 'near field' plays in communication and/or electrolocation are not well known. Here we describe, compare, and discuss the functional significance of diversity in the ht-EOD waveforms and near-field spatiotemporal patterns of the electromotive force (emf-EODs) among a species-rich sympatric community of Brachyhypopomus from the upper Amazon.

  2. [Effect of air-electric fields on driving and reaction patterns. Test subjects in the car driving simulator (author's transl)].

    PubMed

    Anselm, D; Danner, M; Kirmaier, N; König, H L; Müller-Limmroth, W; Reis, A; Schauerte, W

    1977-06-10

    In the relevant frequency range of about 10 Hertz cars can be considered very largely as Faraday cages and consequently as screens against air-electric fields. This may have a negative influence on driving and reaction patterns as a result. In an extensive investigation 48 subjects in a driving simulator were exposed to definite artificially produced air-electric fields. The self-rating of the performance and concentration of the subjects, reaction times and driving errors were determined. While the reaction times remained practically constant, the driving behavior of the subjects improved.

  3. Sleep patterns in Amazon rubber tappers with and without electric light at home

    PubMed Central

    Moreno, C. R. C.; Vasconcelos, S.; Marqueze, E. C.; Lowden, A.; Middleton, B.; Fischer, F. M.; Louzada, F. M.; Skene, D. J.

    2015-01-01

    Today’s modern society is exposed to artificial electric lighting in addition to the natural light-dark cycle. Studies assessing the impact of electric light exposure on sleep and its relation to work hours are rare due to the ubiquitous presence of electricity. Here we report a unique study conducted in two phases in a homogenous group of rubber tappers living and working in a remote area of the Amazon forest, comparing those living without electric light (n = 243 in first phase; n = 25 in second phase) to those with electric light at home (n = 97 in first phase; n = 17 in second phase). Questionnaire data (Phase 1) revealed that rubber tappers with availability of electric light had significantly shorter sleep on work days (30 min/day less) than those without electric light. Analysis of the data from the Phase 2 sample showed a significant delay in the timing of melatonin onset in workers with electric light compared to those without electric light (p < 0.01). Electric lighting delayed sleep onset and reduced sleep duration during the work week and appears to interfere with alignment of the circadian timing system to the natural light/dark cycle. PMID:26361226

  4. Sleep patterns in Amazon rubber tappers with and without electric light at home.

    PubMed

    Moreno, C R C; Vasconcelos, S; Marqueze, E C; Lowden, A; Middleton, B; Fischer, F M; Louzada, F M; Skene, D J

    2015-09-11

    Today's modern society is exposed to artificial electric lighting in addition to the natural light-dark cycle. Studies assessing the impact of electric light exposure on sleep and its relation to work hours are rare due to the ubiquitous presence of electricity. Here we report a unique study conducted in two phases in a homogenous group of rubber tappers living and working in a remote area of the Amazon forest, comparing those living without electric light (n = 243 in first phase; n = 25 in second phase) to those with electric light at home (n = 97 in first phase; n = 17 in second phase). Questionnaire data (Phase 1) revealed that rubber tappers with availability of electric light had significantly shorter sleep on work days (30 min/day less) than those without electric light. Analysis of the data from the Phase 2 sample showed a significant delay in the timing of melatonin onset in workers with electric light compared to those without electric light (p < 0.01). Electric lighting delayed sleep onset and reduced sleep duration during the work week and appears to interfere with alignment of the circadian timing system to the natural light/dark cycle.

  5. Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue

    PubMed Central

    Hottowy, Paweł; Skoczeń, Andrzej; Gunning, Deborah E.; Kachiguine, Sergei; Mathieson, Keith; Sher, Alexander; Wiącek, Piotr; Litke, Alan M.; Dąbrowski, Władysław

    2012-01-01

    Objective Modern multielectrode array (MEA) systems can record the neuronal activity from thousands of electrodes, but their ability to provide spatio-temporal patterns of electrical stimulation is very limited. Furthermore, the stimulus-related artifacts significantly limit the ability to record the neuronal responses to the stimulation. To address these issues, we designed a multichannel integrated circuit for patterned MEA-based electrical stimulation and evaluated its performance in experiments with isolated mouse and rat retina. Approach The Stimchip includes 64 independent stimulation channels. Each channel comprises an internal digital-to-analog converter that can be configured as a current or voltage source. The shape of the stimulation waveform is defined independently for each channel by the real-time data stream. In addition, each channel is equipped with circuitry for reduction of the stimulus artifact. Main results Using a high-density MEA stimulation/recording system, we effectively stimulated individual retinal ganglion cells (RGCs) and recorded the neuronal responses with minimal distortion, even on the stimulating electrodes. We independently stimulated a population of RGCs in rat retina and, using a complex spatio-temporal pattern of electrical stimulation pulses, we replicated visually-evoked spiking activity of a subset of these cells with high fidelity. Significance Compared with current state-of-the-art MEA systems, the Stimchip is able to stimulate neuronal cells with much more complex sequences of electrical pulses and with significantly reduced artifacts. This opens up new possibilities for studies of neuronal responses to electrical stimulation, both in the context of neuroscience research and in the development of neuroprosthetic devices. PMID:23160018

  6. GnRH-Induced Ca2+ Signaling Patterns and Gonadotropin Secretion in Pituitary Gonadotrophs. Functional Adaptations to Both Ordinary and Extraordinary Physiological Demands

    PubMed Central

    Durán-Pastén, Maria Luisa; Fiordelisio, Tatiana

    2013-01-01

    Pituitary gonadotrophs are a small fraction of the anterior pituitary population, yet they synthesize gonadotropins: luteinizing (LH) and follicle-stimulating (FSH), essential for gametogenesis and steroidogenesis. LH is secreted via a regulated pathway while FSH release is mostly constitutive and controlled by synthesis. Although gonadotrophs fire action potentials spontaneously, the intracellular Ca2+ rises produced do not influence secretion, which is mainly driven by Gonadotropin-Releasing Hormone (GnRH), a decapeptide synthesized in the hypothalamus and released in a pulsatile manner into the hypophyseal portal circulation. GnRH binding to G-protein-coupled receptors triggers Ca2+ mobilization from InsP3-sensitive intracellular pools, generating the global Ca2+ elevations necessary for secretion. Ca2+ signaling responses to increasing (GnRH) vary in stereotyped fashion from subthreshold to baseline spiking (oscillatory), to biphasic (spike-oscillatory or spike-plateau). This progression varies somewhat in gonadotrophs from different species and biological preparations. Both baseline spiking and biphasic GnRH-induced Ca2+ signals control LH/FSH synthesis and exocytosis. Estradiol and testosterone regulate gonadotropin secretion through feedback mechanisms, while FSH synthesis and release are influenced by activin, inhibin, and follistatin. Adaptation to physiological events like the estrous cycle, involves changes in GnRH sensitivity and LH/FSH synthesis: in proestrus, estradiol feedback regulation abruptly changes from negative to positive, causing the pre-ovulatory LH surge. Similarly, when testosterone levels drop after orquiectomy the lack of negative feedback on pituitary and hypothalamus boosts both GnRH and LH secretion, gonadotrophs GnRH sensitivity increases, and Ca2+ signaling patterns change. In addition, gonadotrophs proliferate and grow. These plastic changes denote a more vigorous functional adaptation in response to an extraordinary functional

  7. GnRH-Induced Ca(2+) Signaling Patterns and Gonadotropin Secretion in Pituitary Gonadotrophs. Functional Adaptations to Both Ordinary and Extraordinary Physiological Demands.

    PubMed

    Durán-Pastén, Maria Luisa; Fiordelisio, Tatiana

    2013-09-30

    PITUITARY GONADOTROPHS ARE A SMALL FRACTION OF THE ANTERIOR PITUITARY POPULATION, YET THEY SYNTHESIZE GONADOTROPINS: luteinizing (LH) and follicle-stimulating (FSH), essential for gametogenesis and steroidogenesis. LH is secreted via a regulated pathway while FSH release is mostly constitutive and controlled by synthesis. Although gonadotrophs fire action potentials spontaneously, the intracellular Ca(2+) rises produced do not influence secretion, which is mainly driven by Gonadotropin-Releasing Hormone (GnRH), a decapeptide synthesized in the hypothalamus and released in a pulsatile manner into the hypophyseal portal circulation. GnRH binding to G-protein-coupled receptors triggers Ca(2+) mobilization from InsP3-sensitive intracellular pools, generating the global Ca(2+) elevations necessary for secretion. Ca(2+) signaling responses to increasing (GnRH) vary in stereotyped fashion from subthreshold to baseline spiking (oscillatory), to biphasic (spike-oscillatory or spike-plateau). This progression varies somewhat in gonadotrophs from different species and biological preparations. Both baseline spiking and biphasic GnRH-induced Ca(2+) signals control LH/FSH synthesis and exocytosis. Estradiol and testosterone regulate gonadotropin secretion through feedback mechanisms, while FSH synthesis and release are influenced by activin, inhibin, and follistatin. Adaptation to physiological events like the estrous cycle, involves changes in GnRH sensitivity and LH/FSH synthesis: in proestrus, estradiol feedback regulation abruptly changes from negative to positive, causing the pre-ovulatory LH surge. Similarly, when testosterone levels drop after orquiectomy the lack of negative feedback on pituitary and hypothalamus boosts both GnRH and LH secretion, gonadotrophs GnRH sensitivity increases, and Ca(2+) signaling patterns change. In addition, gonadotrophs proliferate and grow. These plastic changes denote a more vigorous functional adaptation in response to an extraordinary

  8. The growth pattern and fuel life cycle analysis of the electricity consumption of Hong Kong.

    PubMed

    To, W M; Lai, T M; Lo, W C; Lam, K H; Chung, W L

    2012-06-01

    As the consumption of electricity increases, air pollutants from power generation increase. In metropolitans such as Hong Kong and other Asian cities, the surge of electricity consumption has been phenomenal over the past decades. This paper presents a historical review about electricity consumption, population, and change in economic structure in Hong Kong. It is hypothesized that the growth of electricity consumption and change in gross domestic product can be modeled by 4-parameter logistic functions. The accuracy of the functions was assessed by Pearson's correlation coefficient, mean absolute percent error, and root mean squared percent error. The paper also applies the life cycle approach to determine carbon dioxide, methane, nitrous oxide, sulfur dioxide, and nitrogen oxide emissions for the electricity consumption of Hong Kong. Monte Carlo simulations were applied to determine the confidence intervals of pollutant emissions. The implications of importing more nuclear power are discussed.

  9. Diagnosis of the heating effect on the electrical resistivity of Ouargla (Algeria) dunes sand using XRD patterns and FTIR spectra

    NASA Astrophysics Data System (ADS)

    Mechri, Mohammed Laïd; Chihi, Smaïl; Mahdadi, Naouia; Beddiaf, Samiha

    2017-01-01

    XRD patterns and FTIR spectra have shown that dunes sand of Ouargla's region, in its natural state, is formed of a high percentage of quartz, gypsum and very low percentage of kaolinite and hematite, in addition to some organic compounds. The electrical resistivity of the natural sand has been measured, it was 6 × 1014 Ω cm. Six samples of the sand were heated separately at 200, 400, 600, 800, 1000 and 1200 °C. The XRD patterns and FTIR spectra of these samples were carried out. On the other hand, the electrical resistivities of these samples have been measured. The change of the electrical resistivity with heat shows a nonlinear behavior. The heated sample of sand at 200 °C has lost some water. Most of the gypsum in the 200 °C heated sample has transformed into anhydrite, and the rest has transformed into bassanite, and its electrical resistivity has fallen down to 3.5 × 1014 Ω cm. By heating at 400 °C, the gypsum has lost all its water and it has transformed entirely to anhydrite, and its electrical resistivity became 6.75 × 1012 Ω cm, it has the lowest measured resistivity. At 600 °C and 800 °C, in addition to anhydrite, the kaolinite transformed to meta-kaolin due to the continuous breaking of OH bond and formation of water vapor, and the electrical resistivity increased to (1.5-1.9) × 1014 Ω cm. Heating at 1000 °C leads to the initiation of the interaction between anhydrite and quartz, the wollastonite appears, and the meta-kaolin transforms to aluminum-silicon and cristobalite. The wollastonite is a good electrical insulator. It raises the electrical resistivity of sand to 2.6 × 1014 Ω cm. The heating at 1200 °C makes all anhydrite to interact with quartz due to the increasing of volume of wollastonite, the anhydrite disappears completely, the quartz transforms into cristobalite. The cristobalite increases due to the dissociation of aluminium-silicon into mullite and cristobalite, as well as the transformation of quartz into cristobalite at

  10. Harnessing the power of demand

    SciTech Connect

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  11. Textbook Factor Demand Curves.

    ERIC Educational Resources Information Center

    Davis, Joe C.

    1994-01-01

    Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)

  12. Pattern classification of Myo-Electrical signal during different Maximum Voluntary Contractions: A study using BSS techniques

    NASA Astrophysics Data System (ADS)

    Naik, Ganesh R.; Kumar, Dinesh K.; Arjunan, Sridhar P.

    2010-01-01

    The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when the level of muscle contraction is very low. Due to this the current applications of surface electromyogram (sEMG) are infeasible and unreliable in pattern classification. This research reports a new technique of sEMG using Independent Component Analysis (ICA). The technique uses blind source separation (BSS) methods to classify the patterns of Myo-electrical signals during different Maximum Voluntary Contraction (MVCs) at different low level finger movements. The results of the experiments indicate that patterns using ICA of sEMG is a reliable (p<0.001) measure of strength of muscle contraction even when muscle activity is only 20% MVC. The authors propose that ICA is a useful indicator of muscle properties and is a useful indicator of the level of muscle activity.

  13. Demanding Satisfaction

    ERIC Educational Resources Information Center

    Oguntoyinbo, Lekan

    2010-01-01

    It was the kind of crisis most universities dread. In November 2006, a group of minority student leaders at Indiana University-Purdue University Indianapolis (IUPUI) threatened to sue the university if administrators did not heed demands that included providing more funding for multicultural student groups. This article discusses how this threat…

  14. Climate Action Benefits: Electricity

    EPA Pesticide Factsheets

    This page provides background on the relationship between electricity and climate change and describes what the CIRA Electricity analyses cover. It provides links to the subsectors Electricity Demand and Electricity Supply.

  15. Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity

    PubMed Central

    Zavadzkas, Juozas A.; Rivers, William T.; McLean, Julie E.; Chang, Eileen I.; Bouges, Shenikqua; Matthews, Robert G.; Koval, Christine N.; Stroud, Robert E.; Spinale, Francis G.

    2010-01-01

    Increased matrix metalloproteinase (MMP) abundance occurs with adverse left ventricular (LV) remodeling in a number of cardiac disease states, including those induced by long-standing arrhythmias. However, whether regionally contained aberrant electrical activation of the LV, with consequent dyskinesia, alters interstitial MMP activation remained unknown. Electrical activation of the LV of pigs (n = 10, 30–35 kg) was achieved by pacing (150 beats/min) at left atrial and LV sites such that normal atrioventricular activation (60 min) was followed by regional early LV activation for 60 min within 1.5 cm of the paced site and restoration of normal atrioventricular pacing for 120 min. Regional shortening (piezoelectric crystals) and interstitial MMP activity (microdialysis with MMP fluorogenic substrate) at the LV pacing site and a remote LV site were monitored at 30-min intervals. During aberrant electrical stimulation, interstitial MMP activity at the paced site was increased (122 ± 4%) compared with the remote region (100%, P < 0.05). Restoration of atrioventricular pacing after the 60-min period of aberrant electrical activation normalized segmental shortening (8.5 ± 0.4%), but MMP activity remained elevated (121 ± 6%, P < 0.05). This study demonstrates that despite the restoration of mechanical function, disturbances in electrical conduction, in and of itself, can cause acute increases in regional in vivo MMP activation and, therefore, contribute to myocardial remodeling. PMID:20472759

  16. Short-term disruption in regional left ventricular electrical conduction patterns increases interstitial matrix metalloproteinase activity.

    PubMed

    Mukherjee, Rupak; Zavadzkas, Juozas A; Rivers, William T; McLean, Julie E; Chang, Eileen I; Bouges, Shenikqua; Matthews, Robert G; Koval, Christine N; Stroud, Robert E; Spinale, Francis G

    2010-07-01

    Increased matrix metalloproteinase (MMP) abundance occurs with adverse left ventricular (LV) remodeling in a number of cardiac disease states, including those induced by long-standing arrhythmias. However, whether regionally contained aberrant electrical activation of the LV, with consequent dyskinesia, alters interstitial MMP activation remained unknown. Electrical activation of the LV of pigs (n = 10, 30-35 kg) was achieved by pacing (150 beats/min) at left atrial and LV sites such that normal atrioventricular activation (60 min) was followed by regional early LV activation for 60 min within 1.5 cm of the paced site and restoration of normal atrioventricular pacing for 120 min. Regional shortening (piezoelectric crystals) and interstitial MMP activity (microdialysis with MMP fluorogenic substrate) at the LV pacing site and a remote LV site were monitored at 30-min intervals. During aberrant electrical stimulation, interstitial MMP activity at the paced site was increased (122 +/- 4%) compared with the remote region (100%, P < 0.05). Restoration of atrioventricular pacing after the 60-min period of aberrant electrical activation normalized segmental shortening (8.5 +/- 0.4%), but MMP activity remained elevated (121 +/- 6%, P < 0.05). This study demonstrates that despite the restoration of mechanical function, disturbances in electrical conduction, in and of itself, can cause acute increases in regional in vivo MMP activation and, therefore, contribute to myocardial remodeling.

  17. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    SciTech Connect

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  18. Patterns of Brain-Electrical Activity during Declarative Memory Performance in 10-Month-Old Infants

    ERIC Educational Resources Information Center

    Morasch, Katherine C.; Bell, Martha Ann

    2009-01-01

    This study of infant declarative memory concurrently examined brain-electrical activity and deferred imitation performance in 10-month-old infants. Continuous electroencephalogram (EEG) measures were collected throughout the activity-matched baseline, encoding (modeling) and retrieval (delayed test) phases of a within-subjects deferred imitation…

  19. Apparatus for sensing patterns of electrical field variations across a surface

    SciTech Connect

    Warren, William L.; Devine, Roderick A. B.

    2001-01-01

    An array of nonvolatile field effect transistors used to sense electric potential variations. The transistors owe their nonvolatility to the movement of protons within the oxide layer that occurs only in response to an externally applied electric potential between the gate on one side of the oxide and the source/drain on the other side. The position of the protons within the oxide layer either creates or destroys a conducting channel in the adjacent source/channel/drain layer below it, the current in the channel being measured as the state of the nonvolatile memory. The protons can also be moved by potentials created by other instrumentalities, such as charges on fingerprints or styluses above the gates, pressure on a piezoelectric layer above the gates, light shining upon a photoconductive layer above the gates. The invention allows sensing of fingerprints, handwriting, and optical images, which are converted into digitized images thereof in a nonvolatile format.

  20. Pattern of high voltage electrical injuries in the Kashmir valley: a 10-year single centre experience

    PubMed Central

    Kasana, R.A.; Baba, P.U.F.; Wani, A.H.

    2016-01-01

    Summary The objective was to study the clinical profile of high voltage electrical injuries in Kashmir, and various prevention and safety measures to bring down the incidence of such injuries in the future. All patients (176) with high voltage electrical injuries reporting to our centre from January 2001 to December 2010 were included in the study. The most common age group was 20-40 years, with mean age of 29.77 ± 8.98 years. Incidence was higher among the rural population (68.75%) than in urban areas (31.25%), and in the winter months. Electricians comprised 47.16% of victims. The most common mode of injury was touching a live wire directly or indirectly, and was seen in 63.64% of victims. Average total body surface burned was 15.27 ± 10.15 percent. Right upper limb was most commonly involved (64.20% of patients). Compartment syndrome was seen in 40.34% of patients, and fasciotomies on all the affected limbs saved around half of them. An average of 3.91 surgical procedures per patient were performed. Around one-third of the victims required major amputations. Reconstructive procedures were required in 49.43% of patients. Average hospital stay was 26.81 days. Average mortality rate was 2.27%. High voltage electrical injuries are not uncommon in the Kashmir Valley, and electrical workers are at higher risk. The incidence of high voltage injuries would not be so high if the workers were properly trained, hazards of high-tension lines were explained and the use of safety equipment was made mandatory. PMID:28289358

  1. Analysis of Household Electricity Consumption Patterns and Economy of Water Heating Shifting and Saving Bulbs

    NASA Astrophysics Data System (ADS)

    Rosin, Argo; Moller, Taavi; Lehtla, Madis; Hoimoja, Hardi

    2010-01-01

    This article analyses household electricity consumption based on an object in Estonia. Energy consumption of workday and holiday by loads (including high and low tariff energy consumption) is discussed. The final part describes the evaluation of profitability of common investments of consumption shifting and replacing inefficient devices with more efficient ones. Additionally it describes shifting problems and shifting equipment profitability in real-time tariff system.

  2. Patterns of Reinforcement and the Essential Values of Brands: I. Incorporation of Utilitarian and Informational Reinforcement into the Estimation of Demand

    ERIC Educational Resources Information Center

    Yan, Ji; Foxall, Gordon R.; Doyle, John R.

    2012-01-01

    Essential value is defined by Hursh and Silberberg (2008) as the value of reinforcers, presented in an exponential model (Equation 1). This study extends previous research concerned with animal behavior or human responding in therapeutic situations. We applied 9 available demand curves to consumer data that included 10,000+ data points collected…

  3. A computational method for the detection of activation/deactivation patterns in biological signals with three levels of electric intensity.

    PubMed

    Guerrero, J A; Macías-Díaz, J E

    2014-02-01

    In the present work, we develop a computational technique to approximate the changes of phase in temporal series associated to electric signals of muscles which perform activities at three different levels of intensity. We suppose that the temporal series are samples of independent, normally distributed random variables with mean equal to zero, and variance equal to one of three possible values, each of them associated to a certain degree of electric intensity. For example, these intensity levels may represent a leg muscle at rest, or active during a light activity (walking), or active during a highly demanding performance (jogging). The model is presented as a maximum likelihood problem involving discrete variables. In turn, this problem is transformed into a continuous one via the introduction of continuous variables with penalization parameters, and it is solved recursively through an iterative numerical method. An a posteriori treatment of the results is used in order to avoid the detection of relatively short periods of silence or activity. We perform simulations with synthetic data in order to assess the validity of our technique. Our computational results show that the method approximates well the occurrence of the change points in synthetic temporal series, even in the presence of autocorrelated sequences. In the way, we show that a generalization of a computational technique for the change-point detection of electric signals with two phases of activity (Esquivel-Frausto et al., 2010 [40]), may be inapplicable in cases of temporal series with three levels of intensity. In this sense, the method proposed in the present manuscript improves previous efforts of the authors.

  4. High Frequency Electric Stimulation of Retinal Neurons Elicits Physiological Signaling Patterns

    PubMed Central

    Fried, Shelley I.; Cai, Changsi; Ren, Qiushi

    2013-01-01

    The effectiveness of retinal prosthetics will depend on their ability to elicit patterns of neural activity that can be recognized by the visual cortex. While conventional short-duration pulses activate retinal neurons effectively, many nearby neurons are thought to respond similarly to a given pulse train – a situation that is non-physiological. Use of pulse trains delivered at rates > 1000 pulses per second (PPS) in cochlear prosthetics help to avoid phase-locked responses but have not been evaluated in the retina; here, we explored the response to trains of 2000 PPS. We found that ganglion cells respond robustly to these stimuli but that the properties of the response were highly sensitive to stimulus amplitude. At low amplitudes the response patterns were burst-like while at higher amplitudes elicited spikes had intervals that were more uniform. Because burst responses were insensitive to synaptic blockers, our results suggest that they arise from direct activation. This was surprising because previous studies indicated that burst responses arise only through indirect activation. Thus, our results suggest multiple mechanisms of burst creation may exist. Further, histograms of interspike intervals revealed that the response properties were different in different types of ganglion cells. While further testing is needed, the ability to create different patterns of activity in different types of ganglion cells raises the possibility that more natural spike patterns can be created. PMID:22254500

  5. Patterns of gas and liquid reflux during transient lower oesophageal sphincter relaxation: a study using intraluminal electrical impedance

    PubMed Central

    Sifrim, D; Silny, J; Holloway, R; Janssens, J

    1999-01-01

    Background—Belching has been proposed as a major mechanism underlying acid gastro-oesophageal reflux in normal subjects. However, the presence of oesophageal gas has not been measured directly but only inferred from manometry. 
Aims—To investigate, using intraluminal electrical impedance, the patterns of gas and liquid reflux during transient lower oesophageal sphincter (LOS) relaxations, the main mechanism of acid reflux in normal subjects. 
Methods—Impedance changes associated with the passage of gas were studied in vitro, and in vivo in cats. Oesophageal manometry, pH, and intraluminal electrical impedance measurements were performed in 11 normal subjects after a meal. 
Results—Gas reflux caused a sudden increase in impedance that propagated rapidly to the proximal oesophagus whereas liquid reflux induced a retrogressively propagated fall in impedance. Impedance showed gas or liquid reflux during most (102/141) transient LOS relaxations. When acid reflux occurred, impedance showed evidence of intraoesophageal retrograde flow of liquid in the majority (78%) of events. Evidence of gas retroflow was found in almost half (47%) of acid reflux episodes. When present together, however, liquid preceded gas on 44% of occasions. Overall, gas reflux occurred as the initial event in only 25% of acid reflux episodes. 
Conclusions—These findings suggest that in upright normal subjects, although belching can precipitate acid reflux, most acid reflux occurs as a primary event. 

 Keywords: belching; gastro-oesophageal reflux disease; oesophageal manometry; intraluminal electrical impedance; lower oesophageal sphincter PMID:9862825

  6. Local modification of the microstructure and electrical properties of multifunctional Au-YSZ nanocomposite thin films by laser interference patterning.

    PubMed

    Gries, Thomas; Catrin, Rodolphe; Migot, Sylvie; Soldera, Flavio; Endrino, Jose-Luis; Landa-Canovas, Angel R; Cleymand, Franck; Mangin, Denis; Mücklich, Frank; Horwat, David

    2014-08-27

    Nanocomposite films consisting of gold nanoparticles embedded in an yttria-stabilized zirconia matrix (Au-YSZ) have been synthesized with different gold loadings by reactive magnetron sputtering followed by ex situ annealing in air or laser interference patterning (LIP) treatment. It is shown that the electrical conductivity of the nanocomposite films can be modified to a large extent by changing the gold loading, by thermal annealing, or by LIP. The structural and microstructural analyses evidenced the segregation of metallic gold in crystalline form for all synthesis conditions and treatments applied. Thermal annealing above 400 °C is observed to trigger the growth of pre-existing nanoparticles in the volume of the films. Moreover, pronounced segregation of gold to the film surface is observed for Au/(Au + Zr + Y) ratios above 0.40, which may prevent the use of thermal annealing to functionalize gold-rich Au-YSZ coatings. In contrast, significant modifications of the microstructure were detected within the interference spot (spot size close to 2 × 2 mm) of LIP treatments only for the regions corresponding to constructive interference. As a consequence, besides its already demonstrated ability to modify the friction behavior of Au-YSZ films, the LIP treatment enables local tailoring of their electrical resistivity. The combination of these characteristics can be of great interest for sliding electrical contacts.

  7. 46 CFR 169.689 - Demand loads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Demand loads. 169.689 Section 169.689 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.689 Demand loads....

  8. 46 CFR 169.689 - Demand loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Demand loads. 169.689 Section 169.689 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.689 Demand loads....

  9. 46 CFR 169.689 - Demand loads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Demand loads. 169.689 Section 169.689 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.689 Demand loads....

  10. Examining diel patterns of soil and xylem moisture using electrical resistivity imaging

    NASA Astrophysics Data System (ADS)

    Mares, Rachel; Barnard, Holly R.; Mao, Deqiang; Revil, André; Singha, Kamini

    2016-05-01

    The feedbacks among forest transpiration, soil moisture, and subsurface flowpaths are poorly understood. We investigate how soil moisture is affected by daily transpiration using time-lapse electrical resistivity imaging (ERI) on a highly instrumented ponderosa pine and the surrounding soil throughout the growing season. By comparing sap flow measurements to the ERI data, we find that periods of high sap flow within the diel cycle are aligned with decreases in ground electrical conductivity and soil moisture due to drying of the soil during moisture uptake. As sap flow decreases during the night, the ground conductivity increases as the soil moisture is replenished. The mean and variance of the ground conductivity decreases into the summer dry season, indicating drier soil and smaller diel fluctuations in soil moisture as the summer progresses. Sap flow did not significantly decrease through the summer suggesting use of a water source deeper than 60 cm to maintain transpiration during times of shallow soil moisture depletion. ERI captured spatiotemporal variability of soil moisture on daily and seasonal timescales. ERI data on the tree showed a diel cycle of conductivity, interpreted as changes in water content due to transpiration, but changes in sap flow throughout the season could not be interpreted from ERI inversions alone due to daily temperature changes.

  11. Electric-field-driven dynamics of magnetic domain walls in magnetic nanowires patterned on ferroelectric domains

    NASA Astrophysics Data System (ADS)

    Van de Wiele, Ben; Leliaert, Jonathan; Franke, Kévin J. A.; van Dijken, Sebastiaan

    2016-03-01

    Strong coupling of magnetic domain walls onto straight ferroelastic boundaries of a ferroelectric layer enables full and reversible electric-field control of magnetic domain wall motion. In this paper, the dynamics of this new driving mechanism is analyzed using micromagnetic simulations. We show that transverse domain walls with a near-180° spin structure are stabilized in magnetic nanowires and that electric fields can move these walls with high velocities. Above a critical velocity, which depends on material parameters, nanowire geometry and the direction of domain wall motion, the magnetic domain walls depin abruptly from the ferroelastic boundaries. Depinning evolves either smoothly or via the emission and annihilation of a vortex or antivortex core (Walker breakdown). In both cases, the magnetic domain wall slows down after depinning in an oscillatory fashion and eventually comes to a halt. The simulations provide design rules for hybrid ferromagnetic-ferroelectric domain-wall-based devices and indicate that material disorder and structural imperfections only influence Walker-breakdown-like depinning at high domain wall velocities.

  12. Water works, electric utilities, and cable television: Contrasting historical patterns of ownership and regulation

    SciTech Connect

    Jacobson, C.D.

    1988-01-01

    This dissertation explicates some of the factors that have, in practice, shaped the choice and functioning of forms of government involvement in the provision of different goods and services. The inquiry focuses on the evolution of government involvement in three different urban public utility industries - water works, electric utilities, and cable television. Because they each employ fixed, specialized, and networked distribution systems, the three industries manifest similar natural monopoly forms of market failure. From similar beginnings, however, forms of government involvement in the three industries have evolved differently. In water works, the predominant trend has been to direct provision under municipal ownership; in electric utilities the trend has been toward continued private provision under state regulation; in cable television, franchise contracting has thus far survived, but in vitiated form. Detailed examinations of case studies as well as broad trend analyses are employed to help explain this outcome. It is found that neither direct competition between operating firms nor short-term contracting and recurrent bidding arrangements can be relied upon to consistently protect public interests in these services.

  13. Demand Response Spinning Reserve Demonstration

    SciTech Connect

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  14. Electrical heating of soils using high efficiency electrode patterns and power phases

    DOEpatents

    Buettner, Harley M.

    1999-01-01

    Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

  15. Bifurcation Diagram and Pattern Formation of Phase Slip Centers in Superconducting Wires Driven with Electric Currents

    NASA Astrophysics Data System (ADS)

    Rubinstein, J.; Sternberg, P.; Ma, Q.

    2007-10-01

    We provide here new insights into the classical problem of a one-dimensional superconducting wire exposed to an applied electric current using the time-dependent Ginzburg-Landau model. The most striking feature of this system is the well-known appearance of oscillatory solutions exhibiting phase slip centers (PSC’s) where the order parameter vanishes. Retaining temperature and applied current as parameters, we present a simple yet definitive explanation of the mechanism within this nonlinear model that leads to the PSC phenomenon and we establish where in parameter space these oscillatory solutions can be found. One of the most interesting features of the analysis is the evident collision of real eigenvalues of the associated PT-symmetric linearization, leading as it does to the emergence of complex elements of the spectrum.

  16. Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions

    SciTech Connect

    Jeong, J. H.; Endoh, T.; Kim, Y.; Kim, W. K.; Park, S. O.

    2014-05-07

    To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50 s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5 kΩ to 39 kΩ. Moreover, an additional 500 s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5 kΩ to 13.9 kΩ. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8 nm and 12.8 nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20 nm.

  17. The electric organ discharge of pulse gymnotiforms: the transformation of a simple impulse into a complex spatio-temporal electromotor pattern

    PubMed

    Caputi

    1999-05-01

    An understanding of how the nervous system processes an impulse-like input to yield a stereotyped, species-specific electromotor output is relevant for electric fish physiology, but also for understanding the general mechanisms of coordination of effector patterns. In pulse gymnotids, the electromotor system is repetitively activated by impulse-like signals generated by a pacemaker nucleus in the medulla. This nucleus activates a set of relay cells whose axons descend along the spinal cord and project to electromotor neurones which, in turn, project to electrocytes. Relay neurones, electromotor neurones and electrocytes may be considered as layers of a network arranged with a lattice hierarchy. This network is able to coordinate a spatio-temporal pattern of postsynaptic and action currents generated by the electrocyte membranes. Electrocytes may be innervated at their rostral face, at their caudal face or at both faces, depending on the site of the organ and the species. Thus, the species-specific electric organ discharge patterns depend on the electric organ innervation pattern and on the coordinated activation of the electrocyte faces. The activity of equally oriented faces is synchronised by a synergistic combination of delay lines. The activation of oppositely oriented faces is coordinated in a precise sequence resulting from the orderly recruitment of subsets of electromotor neurones according to the 'size principle' and to their position along the spinal cord. The body of the animal filters the electric organ output electrically, and the whole fish is transformed into a distributed electric source.

  18. Electrical and optical characterization and nanoscale patterning of gallium nitrogen arsenide synthesized by energetic beams

    NASA Astrophysics Data System (ADS)

    Kim, Taeseok

    Two dimensionally patterned GaNxA1- x nanostructures were produced using ion implantation and pulsed laser melting followed by rapid thermal annealing. A systematic investigation of the band structure of the alloys and a nanoscale characterization of the designed band gap reduction were performed using ballistic electron emission microscopy (BEEM). The evolution of the nitrogen-concentration depth profile during the laser melting was found to be consistent with liquid-phase diffusion, solute trapping at the rapidly moving solidification front, and surface evaporation. The reduction of the Schottky barrier height of the Gamma-like threshold at nitrogen compositions up to x = 0.016 was studied with BEEM and determined quantitatively using the second voltage derivative (SD) BEEM spectra to be -191 +/- 63 meV per x = 0.01, which is close to the corresponding slope for samples grown by low-temperature molecular beam epitaxy. This slope is also consistent with the band gap narrowing measured on the same samples by photomodulated reflectance and is consistent with the band anti-crossing model for the splitting of the conduction band in GaNxAs1-x alloys. Lithographically patterned GaNxAs 1-x dots were imaged by BEEM. Analysis of BEEM spectra of the locally confined dots indicates an alloying-induced decrease in the Schottky barrier height of four times the thermal energy at room temperature.

  19. The alchemy of demand response: turning demand into supply

    SciTech Connect

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  20. Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles

    SciTech Connect

    Yamaguchi, Nobuyuki; Han, Junqiao; Ghatikar, Girish; Piette, Mary Ann; Asano, Hiroshi; Kiliccote, Sila

    2009-06-28

    This paper provides new regression models for demand reduction of Demand Response programs for the purpose of ex ante evaluation of the programs and screening for recruiting customer enrollment into the programs. The proposed regression models employ load sensitivity to outside air temperature and representative load pattern derived from cluster analysis of customer baseline load as explanatory variables. The proposed models examined their performances from the viewpoint of validity of explanatory variables and fitness of regressions, using actual load profile data of Pacific Gas and Electric Company's commercial and industrial customers who participated in the 2008 Critical Peak Pricing program including Manual and Automated Demand Response.

  1. Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing.

    PubMed

    Ghosh, Souvik; Yang, Rui; Kaumeyer, Michelle; Zorman, Christian A; Rowan, Stuart J; Feng, Philip X-L; Sankaran, R Mohan

    2014-03-12

    We describe a direct-write process for producing electrically conductive metal patterns at the surface of polymers. Thin films of poly(acrylic acid) (PAA) loaded with Ag ions are reduced by a scanning, atmospheric-pressure microplasma to form crystalline Ag features with a line width of 300 μm. Materials analysis reveals that the metallization occurs in a thin layer of ∼5 μm near the film surface, suggesting that the Ag ions diffuse to the surface. Sheet resistances of 1-10 Ω/sq are obtained independent of film thickness and Ag volume concentration, which is desirable for producing surface conductivity on polymers while minimizing metal loading.

  2. Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene

    NASA Astrophysics Data System (ADS)

    Poumirol, Jean-Marie; Liu, Peter Q.; Slipchenko, Tetiana M.; Nikitin, Alexey Y.; Martin-Moreno, Luis; Faist, Jérôme; Kuzmenko, Alexey B.

    2017-03-01

    The magnetic circular dichroism and the Faraday rotation are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials, the strength and the sign of these effects can be only controlled by the field value and its orientation. Furthermore, the terahertz range is lacking materials having the ability to affect the polarization state of the light in a non-reciprocal manner. Here we demonstrate, using broadband terahertz magneto-electro-optical spectroscopy, that in graphene both the magnetic circular dichroism and the Faraday rotation can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field. In addition, we observe strong magneto-plasmonic resonances in a patterned array of graphene antidots, which potentially allows exploiting these magneto-optical phenomena in a broad THz range.

  3. Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene

    PubMed Central

    Poumirol, Jean-Marie; Liu, Peter Q.; Slipchenko, Tetiana M.; Nikitin, Alexey Y.; Martin-Moreno, Luis; Faist, Jérôme; Kuzmenko, Alexey B.

    2017-01-01

    The magnetic circular dichroism and the Faraday rotation are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials, the strength and the sign of these effects can be only controlled by the field value and its orientation. Furthermore, the terahertz range is lacking materials having the ability to affect the polarization state of the light in a non-reciprocal manner. Here we demonstrate, using broadband terahertz magneto-electro-optical spectroscopy, that in graphene both the magnetic circular dichroism and the Faraday rotation can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field. In addition, we observe strong magneto-plasmonic resonances in a patterned array of graphene antidots, which potentially allows exploiting these magneto-optical phenomena in a broad THz range. PMID:28266509

  4. Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene.

    PubMed

    Poumirol, Jean-Marie; Liu, Peter Q; Slipchenko, Tetiana M; Nikitin, Alexey Y; Martin-Moreno, Luis; Faist, Jérôme; Kuzmenko, Alexey B

    2017-03-07

    The magnetic circular dichroism and the Faraday rotation are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials, the strength and the sign of these effects can be only controlled by the field value and its orientation. Furthermore, the terahertz range is lacking materials having the ability to affect the polarization state of the light in a non-reciprocal manner. Here we demonstrate, using broadband terahertz magneto-electro-optical spectroscopy, that in graphene both the magnetic circular dichroism and the Faraday rotation can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field. In addition, we observe strong magneto-plasmonic resonances in a patterned array of graphene antidots, which potentially allows exploiting these magneto-optical phenomena in a broad THz range.

  5. Adaptive fuzzy logic restriction rules for error correction and safe stimulation patterns during functional electrical stimulation.

    PubMed

    Hansen, M; Haugland, M K

    2001-01-01

    Adaptive restriction rules based on fuzzy logic have been developed to eliminate errors and to increase stimulation safety in the foot-drop correction application, specifically when using adaptive logic networks to provide a stimulation control signal based on neural activity recorded from peripheral sensory nerve branches. The fuzzy rules were designed to increase flexibility and offer easier customization, compared to earlier versions of restriction rules. The rules developed quantified the duration of swing and stance phases into states of accepting or rejecting new transitions, based on the cyclic nature of gait and statistics on the current gait patterns. The rules were easy to custom design for a specific application, using linguistic terms to model the actions of the rules. The rules were tested using pre-recorded gait data processed through a gait event detector and proved to reduce detection delay and the number of errors, compared to conventional rules.

  6. Generation of complex motor patterns in american grasshopper via current-controlled thoracic electrical interfacing.

    PubMed

    Giampalmo, Susan L; Absher, Benjamin F; Bourne, W Tucker; Steves, Lida E; Vodenski, Vassil V; O'Donnell, Peter M; Erickson, Jonathan C

    2011-01-01

    Micro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities. Recently, several groups have demonstrated the feasibility of radio-controlled flight in the hawkmoth and beetle via electrical neural interfaces. Here, we report a method for eliciting the "jump" response in the American grasshopper (S. Americana). We found that stimulating the metathoracic T3 ganglion with constant-current square wave pulses with amplitude 186 ± 40 μA and frequency 190 ± 13 Hz reproducibly evoked (≥95% success rate) the desired motor activity in N=3 test subjects. To the best of our knowledge, this is the first report of an insect cyborg with a synchronous neuromuscular system.

  7. Spatial and Temporal Patterns of Apparent Electrical Conductivity: DUALEM vs. Veris Sensors for Monitoring Soil Properties

    PubMed Central

    Serrano, João; Shahidian, Shakib; da Silva, José Marques

    2014-01-01

    The main objective of this study was to compare two apparent soil electrical conductivity (ECa) sensors (Veris 2000 XA and DUALEM 1S) for mapping variability of soil properties in a Mediterranean shallow soil. This study also aims at studying the effect of soil cover vegetation on the ECa measurement by the two types of sensors. The study was based on two surveys carried out under two very different situations: in February of 2012, with low soil moisture content (SMC) and with high and differentiated vegetation development (non grazed pasture), and in February of 2013, with high SMC and with short and relatively homogeneous vegetation development (grazed pasture). The greater temporal stability of Veris sensor, despite the wide variation in the SMC and vegetation ground cover indicates the suitability of using this sensor for monitoring soil properties in permanent pastures. The survey carried out with the DUALEM sensor in 2012 might have been affected by the presence of a 0.20 m vegetation layer at the soil surface, masking the soil properties. These differences should be considered in the selection of ECa sensing systems for a particular application. PMID:24915182

  8. The computer simulation of automobile use patterns for defining battery requirements for electric cars

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1976-01-01

    A Monte Carlo simulation process was used to develop the U.S. daily range requirements for an electric vehicle from probability distributions of trip lengths and frequencies and average annual mileage data. The analysis shows that a car in the U.S. with a practical daily range of 82 miles (132 km) can meet the needs of the owner on 95% of the days of the year, or at all times other than his long vacation trips. Increasing the range of the vehicle beyond this point will not make it more useful to the owner because it will still not provide intercity transportation. A daily range of 82 miles can be provided by an intermediate battery technology level characterized by an energy density of 30 to 50 watt-hours per pound (66 to 110 W-hr/kg). Candidate batteries in this class are nickel-zinc, nickel-iron, and iron-air. The implication of these results for the research goals of far-term battery systems suggests a shift in emphasis toward lower cost and greater life and away from high energy density.

  9. The computer simulation of automobile use patterns for defining battery requirements for electric cars

    NASA Technical Reports Server (NTRS)

    Schwartz, H.-J.

    1976-01-01

    The modeling process of a complex system, based on the calculation and optimization of the system parameters, is complicated in that some parameters can be expressed only as probability distributions. In the present paper, a Monte Carlo technique was used to determine the daily range requirements of an electric road vehicle in the United States from probability distributions of trip lengths, frequencies, and average annual mileage data. The analysis shows that a daily range of 82 miles meets to 95% of the car-owner requirements at all times with the exception of long vacation trips. Further, it is shown that the requirement of a daily range of 82 miles can be met by a (intermediate-level) battery technology characterized by an energy density of 30 to 50 Watt-hours per pound. Candidate batteries in this class are nickel-zinc, nickel-iron, and iron-air. These results imply that long-term research goals for battery systems should be focused on lower cost and longer service life, rather than on higher energy densities

  10. Bioenergetic model estimates of interannual and spatial patterns in consumption demand and growth potential of juvenile pink salmon (Oncorhynchus gorbuscha) in the Gulf of Alaska

    USGS Publications Warehouse

    Moss, J.H.; Beauchamp, D.A.; Cross, A.D.; Farley, E.V.; Murphy, J.M.; Helle, J.H.; Walker, R.V.; Myers, K.W.

    2009-01-01

    A bioenergetic model of juvenile pink salmon (Oncorhynchus gorbuscha) was used to estimate daily prey consumption and growth potential of four ocean habitats in the Gulf of Alaska during 2001 and 2002. Growth potential was not significantly higher in 2002 than in 2001 at an alpha level of 0.05 (P=0.073). Average differences in growth potential across habitats were minimal (slope habitat=0.844 g d-1, shelf habitat=0.806 g d-1, offshore habitat=0.820 g d-1, and nearshore habitat=0.703 g d-1) and not significantly different (P=0.630). Consumption demand differed significantly between hatchery and wild stocks (P=0.035) when examined within year due to the interaction between hatchery verses wild origin and year. However, the overall effect of origin across years was not significant (P=0.705) due to similar total amounts of prey consumed by all juvenile pink salmon in both study years. We anticipated that years in which ocean survival was high would have had high growth potential, but this relationship did not prove to be true. Therefore, modeled growth potential may not be useful as a tool for forecasting survival of Prince William Sound hatchery pink salmon stocks. Significant differences in consumption demand and a two-fold difference in nearshore abundance during 2001 of hatchery and wild pink salmon confirmed the existence of strong and variable interannual competition and the importance of the nearshore region as being a potential competitive bottleneck.

  11. Using multivariate geostatistics to assess patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties.

    PubMed

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0-0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging.

  12. Using Multivariate Geostatistics to Assess Patterns of Spatial Dependence of Apparent Soil Electrical Conductivity and Selected Soil Properties

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging. PMID:25614893

  13. Characterization of electrical linewidth test structures patterned in (100) Silicon-on-Insulator for use as CD standards

    SciTech Connect

    CRESSWELL,M.W.; ALLEN,R.A.; GHOSHTAGORE,R.N.; GUILLAUME,N.M.P.; SHEA,PATRICK J.; EVERIST,SARAH C.; LINHOLM,L.W.

    2000-02-29

    This paper describes the fabrication and measurement of the linewidths of the reference segments of cross-bridge resistors patterned in (100) Bonded and Etched Back Silicon-on-Insulator (BESOI) material. The critical dimensions (CD) of the reference segments of a selection of the cross-bridge resistor test structures were measured both electrically and by Scanning-Electron Microscopy (SEM) cross-section imaging. The reference-segment features were aligned with <110> directions in the BESOI surface material and had drawn linewidths ranging from 0.35 to 3.0 {micro}m. They were defined by a silicon micro-machining process which results in their sidewalls being atomically-planar and smooth and inclined at 54.737{degree} to the surface (100) plane of the substrate. This (100) implementation may usefully complement the attributes of the previously-reported vertical-sidewall one for selected reference-material applications. For example, the non-orthogonal intersection of the sidewalls and top-surface planes of the reference-segment features may alleviate difficulties encountered with atomic-force microscope measurements. In such applications it has been reported that it may be difficult to maintain probe-tip control at the sharp 90{degree} outside corner of the sidewalls and the upper surface. A second application is refining to-down image-processing algorithms and checking instrument performance. Novel aspects of the (100) SOI implementation that are reported here include the cross-bridge resistor test-structure architecture and details of its fabrication. The long-term goal is to develop a technique for the determination of the absolute dimensions of the trapezoidal cross-sections of the cross-bridge resistors' reference segments, as a prelude to developing them for dimensional reference applications. This is believed to be the first report of electrical CD measurements made on test structures of the cross-bridge resistor type that have been patterned in (100) SOI

  14. Forward-Masking Patterns Produced by Symmetric and Asymmetric Pulse Shapes in Electric Hearing

    PubMed Central

    MACHEREY, OLIVIER; van WIERINGEN, ASTRID; CARLYON, ROBERT P.; DHOOGE, INGEBORG; WOUTERS, JAN

    2010-01-01

    Two forward-masking experiments were conducted with six cochlear implant listeners to test whether asymmetric pulse shapes would improve the place-specificity of stimulation compared to symmetric ones. The maskers were either cathodic-first symmetric biphasic, pseudomonophasic (i.e. with a second anodic phase longer and lower in amplitude than the first phase), or “delayed pseudomonophasic” (identical to pseudomonophasic but with an inter-phase gap) stimuli. In Experiment 1, forward-masking patterns for monopolar maskers were obtained by keeping each masker fixed on a middle electrode of the array and measuring the masked thresholds of a monopolar signal presented on several other electrodes. The results were very variable and no difference between pulse shapes was found. In Experiment 2, six maskers were used in a wide bipolar (BP + 9) configuration: the same three pulse shapes as in Experiment 1, either cathodic-first relative to the most apical or relative to the most basal electrode of the bipolar channel. The pseudomonophasic masker showed a stronger excitation proximal to the electrode of the bipolar pair for which the short, high-amplitude phase was anodic. However, no difference was obtained with the symmetric and, more surprisingly, with the delayed pseudomonophasic maskers. Implications for cochlear implant design are discussed. PMID:20058980

  15. Functional electrical stimulation: a MatLab based tool for designing stimulation patterns.

    PubMed

    Dosen, Strahinja; Popović, Dejan B

    2006-01-01

    We developed user-friendly software that generates stimulation profiles by using user-customized model-based control of walking. The model is a multi-segment structure with pin and ball joints. A pair of an agonist and an antagonistic muscles acts at each joint. Each muscle is modeled by a three-compartment multiplicative model. The control is based on optimization that uses a cost function that minimizes the tracking error of the joint angles and levels of muscles activations. The inputs to the simulation are trajectories and user characteristic model parameters. The outputs of the simulation are levels of muscle activations vs. time. The software allows for interactive testing of various walking trajectories and model parameters since the simulation is integrated into a database of individuals and reference trajectories. The simulation was realized in the MatLab environment with multiple windows graphical user interface. Here we present an example: stimulation patterns for the shank-foot system that is applicable for walking control in hemiplegic individuals.

  16. Recognition of Fibrotic Infarct Density by the Pattern of Local Systolic-Diastolic Myocardial Electrical Impedance

    PubMed Central

    Amorós-Figueras, Gerard; Jorge, Esther; García-Sánchez, Tomás; Bragós, Ramón; Rosell-Ferrer, Javier; Cinca, Juan

    2016-01-01

    Myocardial electrical impedance is a biophysical property of the heart that is influenced by the intrinsic structural characteristics of the tissue. Therefore, the structural derangements elicited in a chronic myocardial infarction should cause specific changes in the local systolic-diastolic myocardial impedance, but this is not known. This study aimed to characterize the local changes of systolic-diastolic myocardial impedance in a healed myocardial infarction model. Six pigs were successfully submitted to 150 min of left anterior descending (LAD) coronary artery occlusion followed by reperfusion. 4 weeks later, myocardial impedance spectroscopy (1–1000 kHz) was measured at different infarction sites. The electrocardiogram, left ventricular (LV) pressure, LV dP/dt, and aortic blood flow (ABF) were also recorded. A total of 59 LV tissue samples were obtained and histopathological studies were performed to quantify the percentage of fibrosis. Samples were categorized as normal myocardium (<10% fibrosis), heterogeneous scar (10–50%) and dense scar (>50%). Resistivity of normal myocardium depicted phasic changes during the cardiac cycle and its amplitude markedly decreased in dense scar (18 ± 2 Ω·cm vs. 10 ± 1 Ω·cm, at 41 kHz; P < 0.001, respectively). The mean phasic resistivity decreased progressively from normal to heterogeneous and dense scar regions (285 ± 10 Ω·cm, 225 ± 25 Ω·cm, and 162 ± 6 Ω·cm, at 41 kHz; P < 0.001 respectively). Moreover, myocardial resistivity and phase angle correlated significantly with the degree of local fibrosis (resistivity: r = 0.86 at 1 kHz, P < 0.001; phase angle: r = 0.84 at 41 kHz, P < 0.001). Myocardial infarcted regions with greater fibrotic content show lower mean impedance values and more depressed systolic-diastolic dynamic impedance changes. In conclusion, this study reveals that differences in the degree of myocardial fibrosis can be detected in vivo by local measurement of phasic systolic

  17. Role of H2O2 in the fluctuating patterns of COD (chemical oxygen demand) during the treatment of palm oil mill effluent (POME) using pilot scale triple frequency ultrasound cavitation reactor.

    PubMed

    Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar

    2014-07-01

    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.

  18. Energy demand forecasting by means of Statistical Modelling: Assessing Benefits of Climate Information

    NASA Astrophysics Data System (ADS)

    De Felice, M.; Alessandri, A.; Ruti, P. M.

    2012-04-01

    Energy demand forecasting is a critical task and it allows to anticipate any problems that might affect power systems operators, especially during periods with high demand peaks. The difficulties of this task are due to the complexity of the systems involved: energy usage patterns are particularly variable and influenced by many factors, such as weather conditions, social, economic and political aspects (i.e. national regulations, international relations). The strong influence of weather on electricity demand in Italy is due to the wide use of residential air-conditioning devices and, more in general, refrigeration and ventilation equipments. For this reasons, accurate climate information may help in obtaining precise energy demand forecasts, usually performed with statistical methods which show their effectiveness particularly where large amount of data is available. We present a study with the aim of assess the effects of the quality of weather data on statistical modelling performance on energy demand forecasting, using data provided by national transmission grid operator.

  19. Application of the surface azimuthal electrical resistivity survey method to determine patterns of regional joint orientation in glacial tills

    USGS Publications Warehouse

    Carlson, D.

    2010-01-01

    Joints within unconsolidated material such as glacial till can be primary avenues for the flow of electrical charge, water, and contaminants. To facilitate the siting and design of remediation programs, a need exists to map anisotropic distribution of such pathways within glacial tills by determining the azimuth of the dominant joint set. The azimuthal survey method uses standard resistivity equipment with a Wenner array rotated about a fixed center point at selected degree intervals that yields an apparent resistivity ellipse. From this ellipse, joint set orientation can be determined. Azimuthal surveys were conducted at 21 sites in a 500-km2 (193 mi2) area around Milwaukee, Wisconsin, and more specifically, at sites having more than 30 m (98 ft) of glacial till (to minimize the influence of underlying bedrock joints). The 26 azimuthal surveys revealed a systematic pattern to the trend of the dominant joint set within the tills, which is approximately parallel to ice flow direction during till deposition. The average orientation of the joint set parallel with the ice flow direction is N77??E and N37??E for the Oak Creek and Ozaukee tills, respectively. The mean difference between average direct observation of joint set orientations and average azimuthal resistivity results is 8??, which is one fifth of the difference of ice flow direction between the Ozaukee and Oak Creek tills. The results of this study suggest that the surface azimuthal electrical resistivity survey method used for local in situ studies can be a useful noninvasive method for delineating joint sets within shallow geologic material for regional studies. Copyright ?? 2010 The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  20. The costs of a big brain: extreme encephalization results in higher energetic demand and reduced hypoxia tolerance in weakly electric African fishes.

    PubMed

    Sukhum, Kimberley V; Freiler, Megan K; Wang, Robert; Carlson, Bruce A

    2016-12-28

    A large brain can offer several cognitive advantages. However, brain tissue has an especially high metabolic rate. Thus, evolving an enlarged brain requires either a decrease in other energetic requirements, or an increase in overall energy consumption. Previous studies have found conflicting evidence for these hypotheses, leaving the metabolic costs and constraints in the evolution of increased encephalization unclear. Mormyrid electric fishes have extreme encephalization comparable to that of primates. Here, we show that brain size varies widely among mormyrid species, and that there is little evidence for a trade-off with organ size, but instead a correlation between brain size and resting oxygen consumption rate. Additionally, we show that increased brain size correlates with decreased hypoxia tolerance. Our data thus provide a non-mammalian example of extreme encephalization that is accommodated by an increase in overall energy consumption. Previous studies have found energetic trade-offs with variation in brain size in taxa that have not experienced extreme encephalization comparable with that of primates and mormyrids. Therefore, we suggest that energetic trade-offs can only explain the evolution of moderate increases in brain size, and that the energetic requirements of extreme encephalization may necessitate increased overall energy investment.

  1. Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.

    PubMed

    García, Paul S; Wright, Terrence M; Cunningham, Ian R; Calabrese, Ronald L

    2008-09-01

    Previously we presented a quantitative description of the spatiotemporal pattern of inhibitory synaptic input from the heartbeat central pattern generator (CPG) to segmental motor neurons that drive heartbeat in the medicinal leech and the resultant coordination of CPG interneurons and motor neurons. To begin elucidating the mechanisms of coordination, we explore intersegmental and side-to-side coordination in an ensemble model of all heart motor neurons and their known synaptic inputs and electrical coupling. Model motor neuron intrinsic properties were kept simple, enabling us to determine the extent to which input and electrical coupling acting together can account for observed coordination in the living system in the absence of a substantive contribution from the motor neurons themselves. The living system produces an asymmetric motor pattern: motor neurons on one side fire nearly in synchrony (synchronous), whereas on the other they fire in a rear-to-front progression (peristaltic). The model reproduces the general trends of intersegmental and side-to-side phase relations among motor neurons, but the match with the living system is not quantitatively accurate. Thus realistic (experimentally determined) inputs do not produce similarly realistic output in our model, suggesting that motor neuron intrinsic properties may contribute to their coordination. By varying parameters that determine electrical coupling, conduction delays, intraburst synaptic plasticity, and motor neuron excitability, we show that the most important determinant of intersegmental and side-to-side phase relations in the model was the spatiotemporal pattern of synaptic inputs, although phasing was influenced significantly by electrical coupling.

  2. DNA Electrophoretic Migration Patterns Change after Exposure of Jurkat Cells to a Single Intense Nanosecond Electric Pulse

    PubMed Central

    Romeo, Stefania; Zeni, Luigi; Sarti, Maurizio; Sannino, Anna; Scarfì, Maria Rosaria; Vernier, P. Thomas; Zeni, Olga

    2011-01-01

    Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake). Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns. PMID:22164287

  3. Spatiotemporal Regulation of an Hcn4 Enhancer Defines a Role for Mef2c and HDACs in Cardiac Electrical Patterning

    PubMed Central

    Vedantham, Vasanth; Evangelista, Melissa; Huang, Yu; Srivastava, Deepak

    2012-01-01

    Regional differences in cardiomyocyte automaticity permit the sinoatrial node (SAN) to function as the leading cardiac pacemaker and the atrioventricular (AV) junction as a subsidiary pacemaker. The regulatory mechanisms controlling the distribution of automaticity within the heart are not understood. To understand regional variation in cardiac automaticity, we carried out an in vivo analysis of cis-regulatory elements that control expression of the hyperpolarization-activated cyclic-nucleotide gated ion channel 4 (Hcn4). Using transgenic mice, we found that spatial and temporal patterning of Hcn4 expression in the AV conduction system required cis-regulatory elements with multiple conserved fragments. One highly conserved region, which contained a myocyte enhancer factor 2C (Mef2C) binding site previously described in vitro, induced reporter expression specifically in the embryonic non-chamber myocardium and the postnatal AV bundle in a Mef2c-dependent manner in vivo. Inhibition of histone deacetylase (HDAC) activity in cultured transgenic embryos showed expansion of reporter activity to working myocardium. In adult animals, hypertrophy induced by transverse aortic constriction, which causes translocation of HDACs out of the nucleus, resulted in ectopic activation of the Hcn4 enhancer in working myocardium, recapitulating pathological electrical remodeling. These findings reveal mechanisms that control the distribution of automaticity among cardiomyocytes during development and in response to stress. PMID:23085412

  4. Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids

    PubMed Central

    Ali, S. M.; Mehmood, C. A; Khan, B.; Jawad, M.; Farid, U; Jadoon, J. K.; Ali, M.; Tareen, N. K.; Usman, S.; Majid, M.; Anwar, S. M.

    2016-01-01

    In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion. PMID:27314229

  5. Stochastic and Statistical Analysis of Utility Revenues and Weather Data Analysis for Consumer Demand Estimation in Smart Grids.

    PubMed

    Ali, S M; Mehmood, C A; Khan, B; Jawad, M; Farid, U; Jadoon, J K; Ali, M; Tareen, N K; Usman, S; Majid, M; Anwar, S M

    2016-01-01

    In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion.

  6. Immediate Effect of Patterned Electrical Neuromuscular Stimulation on Pain and Muscle Activation in Individuals With Patellofemoral Pain

    PubMed Central

    Glaviano, Neal R.; Saliba, Susan A.

    2016-01-01

    Context:  For individuals with patellofemoral pain (PFP), altered muscle activity and pain are common during functional tasks. Clinicians often seek interventions to improve muscle activity and reduce impairments. One intervention that has not been examined in great detail is electrical stimulation. Objective:  To determine whether a single patterned electrical neuromuscular stimulation (PENS) treatment would alter muscle activity and pain in individuals with PFP during 2 functional tasks, a single-legged squat and a lateral step down. Design:  Cohort study. Setting:  Sports medicine research laboratory. Patients of Other Participants:  A total of 22 individuals with PFP (15 women, 7 men; age = 26.0 ± 7.9 years, height = 173.8 ± 8.1 cm, mass = 75.1 ± 17.9 kg). Intervention(s):  Participants were randomized into 2 intervention groups: a 15-minute PENS treatment that produced a strong motor response or a 15-minute 1-mA subsensory (sham) treatment. Main Outcome Measure(s):  Before and immediately after the intervention, we assessed normalized electromyography amplitude, percentage of activation time across functional tasks, and onset of activation for the vastus medialis oblique, vastus lateralis, gluteus medius, adductor longus, biceps femoris, and medial gastrocnemius muscles during a single-legged squat and a lateral step down. Scores on the visual analog scale for pain were recorded before and after the intervention. Results:  After a single treatment of PENS, the percentage of gluteus medius activation increased (0.024) during the lateral step down. Visual analog scores decreased during both the single-legged squat (PENS: preintervention = 2.7 ± 1.9, postintervention = 0.9 ± 0.7; sham: preintervention = 3.2 ± 1.6, postintervention = 2.8 ± 1.9; group × time interaction: P = .041) and lateral step down (PENS: preintervention = 3.4 ± 2.4, postintervention = 1.1 ± 0.8; sham: preintervention = 3.9 ± 1.7, postintervention = 3.3 ± 2.0; group

  7. Reversing-pulse electric birefringence of multicomponent systems: the formulation and signal simulation for two axially symmetric components in equilibrium and the appearance of unusual signal patterns.

    PubMed

    Yamaoka, Kiwamu

    2007-04-15

    This paper consists of two parts on reversing-pulse electric birefringence (RPEB) signal patterns. The first is the theoretical formulation of two axially symmetric models coexisting in equilibrium in solution. The present RPEB theory is based on the original Tinoco-Yamaoka theory with classical electric dipole moments, which was recently modified and extended by Yamaoka, Sasai, and Kohno to include various electric and optical parameters and most importantly the ion-fluctuation dipole moment (1/2) along the longitudinal direction of axially symmetric molecules. The theory contains the electric polarizability anisotropy Deltaalpha', which can be either positive or negative in relation to the shape of components. The overall signal can be expressed as the sum of the fractions of two components in proportions to the coefficient F(1) or F(2) (=1-F(1)). The second part is the simulation of theoretical RPEB curves for the two-component system with various sets of electric and hydrodynamic parameters for hypothetical but interesting cases. In consideration of the decay behavior, calculated decay curves were compared with experimentally conceivable signals, classifying them into three categories according to cases: F(1)>1, 0/ktDeltaalpha(') is the crucial factor that controls the pattern of RPEB signals. If q value of one component is positive and the other is negative, the simulated RPEB curves are characterized by three cases: q>0, q<-1, and -10 or q<-1, the resultant patterns are often encountered with experimental signals. If -1patterns appears.

  8. How does an external electrical field affect adsorption patterns of thiol and thiolate on the gold substrate?

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Ge; Williams, Quinton L.

    2009-02-01

    The responsive behavior of methanethiol and methylthiolate molecules on the Au(111) surface with an applied electrical potential is studied, and it is shown how the sulfur adsorption site, the S-H bond orientation and the interacting energy change with an external electric field strength. The electron charge density corresponding to an electric field minus that obtained in zero field, with zero-field optimal geometry, is calculated to explain the responsive behavior. The interacting energy for the intact methanethiol adsorption is larger than that for the dissociative one, showing that an external electric field cannot make the hydrogen dissociate from the sulfur.

  9. Groundwater temperature and electrical conductivity as tools to characterize flow patterns in carbonate aquifers: The Sierra de las Nieves karst aquifer, southern Spain

    NASA Astrophysics Data System (ADS)

    Liñán Baena, C.; Andreo, B.; Mudry, J.; Carrasco Cantos, F.

    2009-06-01

    In carbonate massifs, flow patterns are conditioned by karstification processes which develop a conduit network and preserve low permeability microfractured blocks. The Sierra de las Nieves karst massif (southern Spain) is subjected to a given climatic and geological context, and thus it is possible to analyse the spatial and temporal variability of the water temperature and electrical conductivity at its main karst outlets, which display different responses to rainfall episodes. In this experimental field area, conduit flow and diffuse flow drainage patterns have been distinguished by combining groundwater temperature and electrical conductivity data. Both parameters show large variations in water coming from conduit flow systems and low variations in water drained by springs draining diffuse flow systems. However, groundwater temperature displays the smallest variations, which seems to indicate that this parameter is less sensitive as regards characterising the degree of karstification, which is a key question in characterising the aquifer functioning.

  10. Emergency Preparedness: Balancing Electrical Supply and Demand

    ERIC Educational Resources Information Center

    Rose, Mary Annette

    2006-01-01

    Integrating technology learning goals and activities with recent experiences created by natural disasters is a valuable motivational strategy. The newfound appreciation that exists for personal emergency preparedness generates unique and sustained interest in alternative energy technologies and conservation. As described in this article, an ice…

  11. Exposures of Sus scrofa to a TASER(®) conducted electrical weapon: no effects on 2-dimensional gel electrophoresis patterns of plasma proteins.

    PubMed

    Jauchem, James R; Cerna, Cesario Z; Lim, Tiffany Y; Seaman, Ronald L

    2014-12-01

    In an earlier study, we found significant changes in red-blood-cell, leukocyte, and platelet counts, and in red-blood-cell membrane proteins, following exposures of anesthetized pigs to a conducted electrical weapon. In the current study, we examined potential changes in plasma proteins [analyzed via two-dimensional gel electrophoresis (2-DGE)] following two 30 s exposures of anesthetized pigs (Sus scrofa) to a TASER (®) C2 conducted electrical weapon. Patterns of proteins, separated by 2-DGE, were consistent and reproducible between animals and between times of sampling. We determined that the blood plasma collection, handling, storage, and processing techniques we used are suitable for swine blood. There were no statistically significant changes in plasma proteins following the conducted-electrical-weapon exposures. Overall gel patterns of fibrinogen were similar to results of other studies of both pigs and humans (in control settings, not exposed to conducted electrical weapons). The lack of significant changes in plasma proteins may be added to the body of evidence regarding relative safety of TASER C2 device exposures.

  12. Strategies for Demand Response in Commercial Buildings

    SciTech Connect

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  13. Factor demand in Swedish manufacturing industry with special reference to the demand for energy. Instantaneous adjustment models; some results

    NASA Astrophysics Data System (ADS)

    Sjoeholm, K. R.

    1981-02-01

    The dual approach to the theory of production is used to estimate factor demand functions of the Swedish manufacturing industry. Two approximations of the cost function, the translog and the generalized Leontief models, are used. The price elasticities of the factor demand do not seem to depend on the choice of model. This is at least true as to the sign pattern and as to the inputs capital, labor, total energy and other materials. Total energy is separated into solid fuels, gasoline, fuel oil, electricity and a residual. Fuel oil and electricity are found to be substitutes by both models. Capital and energy are shown to be substitutes. This implies that Swedish industry will save more energy if the capital cost can be reduced. Both models are, in the best versions, able to detect an inappropriate variable. The assumption of perfect competition on the product market, is shown to be inadequate by both models. When this assumption is relaxed, the normal substitution pattern among the inputs is resumed.

  14. Automated Demand Response Approaches to Household Energy Management in a Smart Grid Environment

    NASA Astrophysics Data System (ADS)

    Adika, Christopher Otieno

    The advancement of renewable energy technologies and the deregulation of the electricity market have seen the emergence of Demand response (DR) programs. Demand response is a cost-effective load management strategy which enables the electricity suppliers to maintain the integrity of the power grid during high peak periods, when the customers' electrical load is high. DR programs are designed to influence electricity users to alter their normal consumption patterns by offering them financial incentives. A well designed incentive-based DR scheme that offer competitive electricity pricing structure can result in numerous benefits to all the players in the electricity market. Lower power consumption during peak periods will significantly enhance the robustness of constrained networks by reducing the level of power of generation and transmission infrastructure needed to provide electric service. Therefore, this will ease the pressure of building new power networks as we avoiding costly energy procurements thereby translating into huge financial savings for the power suppliers. Peak load reduction will also reduce the inconveniences suffered by end users as a result of brownouts or blackouts. Demand response will also drastically lower the price peaks associated with wholesale markets. This will in turn reduce the electricity costs and risks for all the players in the energy market. Additionally, DR is environmentally friendly since it enhances the flexibility of the power grid through accommodation of renewable energy resources. Despite its many benefits, DR has not been embraced by most electricity networks. This can be attributed to the fact that the existing programs do not provide enough incentives to the end users and, therefore, most electricity users are not willing to participate in them. To overcome these challenges, most utilities are coming up with innovative strategies that will be more attractive to their customers. Thus, this dissertation presents various

  15. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    NASA Astrophysics Data System (ADS)

    Yuksel, Tugce; Tamayao, Mili-Ann M.; Hendrickson, Chris; Azevedo, Inês M. L.; Michalek, Jeremy J.

    2016-04-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally.

  16. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  17. Coordination of Energy Efficiency and Demand Response

    SciTech Connect

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  18. 46 CFR 111.60-7 - Demand loads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Demand loads. 111.60-7 Section 111.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-7 Demand loads. Generator, feeder, and bus-tie cables...

  19. 46 CFR 111.60-7 - Demand loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Demand loads. 111.60-7 Section 111.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-7 Demand loads. Generator, feeder, and bus-tie cables...

  20. Dependence of B1+ and B1− Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency

    PubMed Central

    Vaidya, Manushka V.; Collins, Christopher M.; Sodickson, Daniel K.; Brown, Ryan; Wiggins, Graham C.; Lattanzi, Riccardo

    2016-01-01

    In high field MRI, the spatial distribution of the radiofrequency magnetic (B1) field is usually affected by the presence of the sample. For hardware design and to aid interpretation of experimental results, it is important both to anticipate and to accurately simulate the behavior of these fields. Fields generated by a radiofrequency surface coil were simulated using dyadic Green’s functions, or experimentally measured over a range of frequencies inside an object whose electrical properties were varied to illustrate a variety of transmit (B1+) and receive (B1−) field patterns. In this work, we examine how changes in polarization of the field and interference of propagating waves in an object can affect the B1 spatial distribution. Results are explained conceptually using Maxwell’s equations and intuitive illustrations. We demonstrate that the electrical conductivity alters the spatial distribution of distinct polarized components of the field, causing “twisted” transmit and receive field patterns, and asymmetries between |B1+| and |B1−|. Additionally, interference patterns due to wavelength effects are observed at high field in samples with high relative permittivity and near-zero conductivity, but are not present in lossy samples due to the attenuation of propagating EM fields. This work provides a conceptual framework for understanding B1 spatial distributions for surface coils and can provide guidance for RF engineers. PMID:27795697

  1. Electricity Market Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the Electricity Market Module as it was used for the Annual Energy Outlook 2013. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

  2. Realizing the electric-vehicle revolution

    NASA Astrophysics Data System (ADS)

    Tran, Martino; Banister, David; Bishop, Justin D. K.; McCulloch, Malcolm D.

    2012-05-01

    Full battery electric vehicles (BEVs) have become an important policy option to mitigate climate change, but there are major uncertainties in the scale and timing of market diffusion. Although there has been substantial work showing the potential energy and climate benefits of BEVs, demand-side factors, such as consumer behaviour, are less recognized in the debate. We show the importance of assessing BEV diffusion from an integrated perspective, focusing on key interactions between technology and behaviour across different scales, including power-system demand, charging infrastructure, vehicle performance, driving patterns and individual adoption behaviour.

  3. Demand Response Analysis Tool

    SciTech Connect

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  4. Essays in energy economics: The electricity industry

    NASA Astrophysics Data System (ADS)

    Martinez-Chombo, Eduardo

    Electricity demand analysis using cointegration and error-correction models with time varying parameters: The Mexican case. In this essay we show how some flexibility can be allowed in modeling the parameters of the electricity demand function by employing the time varying coefficient (TVC) cointegrating model developed by Park and Hahn (1999). With the income elasticity of electricity demand modeled as a TVC, we perform tests to examine the adequacy of the proposed model against the cointegrating regression with fixed coefficients, as well as against the spuriousness of the regression with TVC. The results reject the specification of the model with fixed coefficients and favor the proposed model. We also show how some flexibility is gained in the specification of the error correction model based on the proposed TVC cointegrating model, by including more lags of the error correction term as predetermined variables. Finally, we present the results of some out-of-sample forecast comparison among competing models. Electricity demand and supply in Mexico. In this essay we present a simplified model of the Mexican electricity transmission network. We use the model to approximate the marginal cost of supplying electricity to consumers in different locations and at different times of the year. We examine how costs and system operations will be affected by proposed investments in generation and transmission capacity given a forecast of growth in regional electricity demands. Decomposing electricity prices with jumps. In this essay we propose a model that decomposes electricity prices into two independent stochastic processes: one that represents the "normal" pattern of electricity prices and the other that captures temporary shocks, or "jumps", with non-lasting effects in the market. Each contains specific mean reverting parameters to estimate. In order to identify such components we specify a state-space model with regime switching. Using Kim's (1994) filtering algorithm

  5. Third-order electric-field-induced dipolar resonances from patterned barium-strontium-titanate thin-films

    NASA Astrophysics Data System (ADS)

    Toonen, Ryan C.; Cole, M. W.

    2012-05-01

    Using microwave reflection spectroscopy, the complex permittivities of etch defined, 240 nm thick, (Ba0.6Sr0.4)TiO3, thin films have been measured over the frequency range of (1 to 4) GHz. Anomalous electric-field-induced electro-acoustic resonances were observed and characterized as a function of extrinsic electric field magnitude, ambient temperature, and sample diameter. The real and imaginary parts of the measured permittivities were fit to frequency-dependent functions derived from the Lorentz oscillator model. From these functions, extracted static dielectric constants were found to display excellent agreement with a closed-form expression derived by calculating third-order nonlinear susceptibility from the Landau-Devonshire-Ginzberg model.

  6. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films.

    PubMed

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel

    2015-08-01

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the material in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.

  7. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films

    NASA Astrophysics Data System (ADS)

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel

    2015-08-01

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the material in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.

  8. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films

    SciTech Connect

    Álvarez, Ángel Luis; Coya, Carmen; García-Vélez, Miguel

    2015-08-15

    We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the material in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indium tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.

  9. The effect of surface modifications of carbon nanotubes on the electrical properties of inkjet-printed SWNT/PEDOT-PSS composite line patterns.

    PubMed

    Najeeb, C K; Lee, Jae-Hyeok; Chang, Jingbo; Kim, Jae-Ho

    2010-09-24

    We prepared nanocomposite inks of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) filled with single-walled carbon nanotubes (SWNTs) purified by acidic treatment, carboxylated by chemical oxidation and carboxyl-functionalized nanotubes physically modified with a natural gum, gum arabic. Inkjet printing of line patterns with a feature size of 100 microm width and lengths ranging from 1 to 5 cm was performed on glass substrates with a piezoelectric inkjet printer. The carboxyl-functionalized SWNT-based composite demonstrated a significant decrease (fourfold) of electrical resistance for the line patterns compared to that with a purified CNT-based composite due to improved dispersability of nanotubes in the polymer matrix. The use of gum arabic for the dispersion of carboxyl-functionalized nanotubes demonstrated a further drastic decrease (18-fold) of the resistance compared with a purified CNT-based composite owing to the formation of an extended continuous network within the line pattern. The inkjet-printed conductive patterns can be applied in various fields, such as flexible high speed transistors, high efficiency solar cells and transparent electrodes.

  10. Efficacy of electrical stimulation of retinal ganglion cells with temporal patterns resembling light-evoked spike trains.

    PubMed

    Wong, Raymond C S; Garrett, David J; Grayden, David B; Ibbotson, Michael R; Cloherty, Shaun L

    2014-01-01

    People with degenerative retinal diseases such as retinitis pigmentosa lose most of their photoreceptors but retain a significant proportion (~30%) of their retinal ganglion cells (RGCs). Microelectronic retinal prostheses aim to bypass the lost photoreceptors and restore vision by directly stimulating the surviving RGCs. Here we investigate the extent to which electrical stimulation of RGCs can evoke neural spike trains with statistics resembling those of normal visually-evoked responses. Whole-cell patch clamp recordings were made from individual cat RGCs in vitro. We first recorded the responses of each cell to short sequences of visual stimulation. These responses were converted to trains of electrical stimulation that we then presented to the same cell via an epiretinal stimulating electrode. We then quantified the efficacy of the electrical stimuli and the latency of the evoked spikes. In all cases, spikes were evoked with sub-millisecond latency (0.55 ms, median, ON cells, n = 8; 0.75 ms, median, OFF cells, n = 6) and efficacy ranged from 0.4-1.0 (0.79, median, ON cells; 0.97, median, OFF cells). These data demonstrate that meaningful spike trains, resembling normal responses of RGCs to visual stimulation, can be reliably evoked by epiretinal prostheses.

  11. Interference patterns of scattering light induced by orientational fluctuations in an electric-field-biased nematic liquid-crystal film.

    PubMed

    Shen, Y; Chen, S H; Hsu, C H; Lai, Y

    1998-06-15

    A new light-scattering phenomenon from a planar aligned nematic liquid-crystal film is observed and studied. This new phenomenon exhibits ring patterns in the orthogonal polarization. A simple model based on optical interference has been developed, and its predictions agree well with experimental observation.

  12. Towards 50% wind electricity in Denmark: Dilemmas and challenges

    NASA Astrophysics Data System (ADS)

    Bach, Paul-Frederik

    2016-05-01

    Electricity and heat supply systems are essential contributors to a fossil-free future in Denmark. The combined production of heat and power (CHP) and the production of wind energy are already well developed in Denmark. Combined heat and power covers about 40% of the demand for space heating in Denmark, and the production of wind energy is supposed to exceed 50% of the demand for electricity by 2020. The changing electricity and heat production has some consequences already now: i) Decreasing wholesale prices in Denmark and in other countries. ii) Thermal power plants are closing down. Denmark is no longer self-sufficient with electricity under all conditions. iii) The electricity production pattern does not match the demand pattern. The result is that the neighbouring countries must absorb the variations from wind and solar power. Essential challenges: i) The future of combined heat and power in Denmark is uncertain. ii) Denmark will need new backup capacity for filling the gaps in wind power and solar cell output. iii) Flexible electricity consumers are supposed to contribute to balancing the future power systems. There is still a long way to go before the Smart Grid visions are implemented in large scale. iv) The transformation of the power system will create new risks of power failures.

  13. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields.

    PubMed

    Ruffini, Giulio; Fox, Michael D; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-04-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint on the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general

  14. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields

    PubMed Central

    Ruffini, Giulio; Fox, Michael D.; Ripolles, Oscar; Miranda, Pedro Cavaleiro; Pascual-Leone, Alvaro

    2014-01-01

    Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint of the maximal number of electrodes, a solution can be produced with the optimal currents and locations of the electrodes. The method described here relies on a fast calculation of multifocal tCS electric fields (including components normal and tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can be defined in terms of the component of the electric field normal to the cortical surface. Solutions are found using constrained least squares to optimize current intensities, while electrode number and their locations are selected using a genetic algorithm. For direct current tCS (tDCS) applications, we provide some examples of this technique using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in stroke and depression. Finally, we extend these ideas to more general

  15. Distributed control system for demand response by servers

    NASA Astrophysics Data System (ADS)

    Hall, Joseph Edward

    Within the broad topical designation of smart grid, research in demand response, or demand-side management, focuses on investigating possibilities for electrically powered devices to adapt their power consumption patterns to better match generation and more efficiently integrate intermittent renewable energy sources, especially wind. Devices such as battery chargers, heating and cooling systems, and computers can be controlled to change the time, duration, and magnitude of their power consumption while still meeting workload constraints such as deadlines and rate of throughput. This thesis presents a system by which a computer server, or multiple servers in a data center, can estimate the power imbalance on the electrical grid and use that information to dynamically change the power consumption as a service to the grid. Implementation on a testbed demonstrates the system with a hypothetical but realistic usage case scenario of an online video streaming service in which there are workloads with deadlines (high-priority) and workloads without deadlines (low-priority). The testbed is implemented with real servers, estimates the power imbalance from the grid frequency with real-time measurements of the live outlet, and uses a distributed, real-time algorithm to dynamically adjust the power consumption of the servers based on the frequency estimate and the throughput of video transcoder workloads. Analysis of the system explains and justifies multiple design choices, compares the significance of the system in relation to similar publications in the literature, and explores the potential impact of the system.

  16. Demand Side Bidding. Final Report

    SciTech Connect

    Spahn, Andrew

    2003-12-31

    This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

  17. Single-unit activity patterns in nuclei that control the electromotor command nucleus during spontaneous electric signal production in the mormyrid Brienomyrus brachyistius.

    PubMed

    Carlson, Bruce A

    2003-11-05

    Mormyrid fish generate weak electric organ discharges (EODs) used for communication and navigation. EODs are initiated in the medullary command nucleus (CN), which receives dense projections from the mesencephalic precommand nucleus (PCN) and the adjacent thalamic dorsal posterior nucleus (DP), plus a minor projection from the ventral edge of the toral ventroposterior nucleus (VPv). The dorsal region of the ventroposterior nucleus (VPd) projects to DP-PCN and receives input from the electric organ corollary discharge pathway. I recorded extracellularly from single units within DP-PCN and VPd and correlated their activity patterns with electromotor output to generate hypotheses on electromotor control mechanisms. DP-PCN neurons show an oscillatory pattern of activity, firing within a window of 10-200 msec before each EOD, while remaining silent for 50-150 msec after each EOD. VPd neurons only fire during the silent period of DP-PCN neurons, suggesting that they provide recurrent inhibition to DP-PCN. During "scallops", only DP-PCN neurons with high baseline firing rates increase their activity, whereas during "accelerations", only neurons with low baseline firing rates show a strong increase in activity. Thus, the generation of different displays likely results from the activation of different groups of neurons projecting to CN. The activity of VPd neurons decreases during both displays, suggesting that disinhibition plays an important role in their generation. The mormyrid electromotor network shares many functional properties with central pattern generators (CPGs) found in relatively simple motor systems, indicating that it may be an excellent model system for studying CPG function in vertebrate communication.

  18. Automation of energy demand forecasting

    NASA Astrophysics Data System (ADS)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  19. Electrical and terahertz magnetospectroscopy studies of laser-patterned micro- and nanostructures on InAs-based heterostructures

    SciTech Connect

    Chiatti, O. Buchholz, S. S.; Fischer, S. F.; Heyn, Ch.; Hansen, W.; Pakmehr, M.; McCombe, B. D.

    2015-02-02

    Nanostructures fabricated from narrow-gap semiconductors with strong spin-orbit interaction (SOI), such as InAs, can be used to filter momentum modes of electrons and offer the possibility to create and detect spin-polarized currents entirely by electric fields. Here, we present magnetotransport and THz magnetospectroscopy investigations of Hall-bars with back-gates made from in InGaAs/InAlAs quantum well structures with a strained 4 nm InAs-inserted channel. The two-dimensional electron gas is at 53 nm depth and has a carrier density of about 6 × 10{sup 11 }cm{sup −2} and mobility of about 2 × 10{sup 5} cm{sup 2}/Vs, after illumination. Electrical and THz optical transport measurements at low temperatures and in high magnetic fields reveal an effective mass of 0.038m{sub 0} and an anisotropic g-factor of up to 20, larger than for bulk InAs or InAs-based heterostructures. We demonstrate that quasi-one-dimensional channels can be formed by micro-laser lithography. The population of subbands is controlled by in-plane gates. Contrary to previous reports, symmetric and asymmetric in-plane gate voltages applied to quasi-one dimensional channels did not show indications of SOI-induced anomalies in the conductance.

  20. Vacuum-ultraviolet photoreduction of graphene oxide: Electrical conductivity of entirely reduced single sheets and reduced micro line patterns

    SciTech Connect

    Tu, Yudi; Ichii, Takashi; Utsunomiya, Toru; Sugimura, Hiroyuki

    2015-03-30

    We here report a scanning probe method to locally and directly research the electrical properties of vacuum-ultraviolet (VUV) reduced graphene oxide. The measured electrical conductivity of individual VUV-reduced GO (VUV-rGO) sheets by using conductive atomic force microscopy (CAFM) reached 0.20 S·m{sup −1} after 64 min irradiation, which was clearly enhanced compared with the pristine GO. According to the X-ray photoelectron spectroscopy results, the recovered conductivity of VUV-rGO could be ascribed to the partial elimination of oxygen-containing functional groups and the rapid reconstruction of the C=C bonds. Heterogeneously distributed low- and high-conductivity domains (with a diameter of tens of nanometer to ca. 500 nm) were found from current mapping of the VUV-rGO sheet. By applying photomask lithography, rGO regions were drawn into single GO sheet and were researched by CAFM. The in-plane lateral conductivity of rGO regions increased obviously compared with pristine GO regions.

  1. Assessing Patterns in the Surface Electric Field Prior to First CG Flashes and After Last CG Flashes in Air-Mass Thunderstorms

    NASA Astrophysics Data System (ADS)

    Williams, D. E.; Beasley, W. H.; Hyland, P. T.

    2007-12-01

    In an effort to elicit patterns in the temporal and spatial evolution of the contours of surface electric field relevant to the occurrence of cloud-to-ground (CG) lightning, we have analyzed data from the network of 31 electric-field mills jointly operated by the John F. Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). To identify cases of interest, we used lightning ground-strike data, maps of in-cloud lightning discharges, rainfall data, and radar data. In particular, we have focused on two critical problems: 1) estimation of when and where the first CG flash in a storm might occur and 2) assessment of the likelihood of CG flashes occurring late in a storm after a long period without a CG flash. Our long-term goal is to understand the evolution of surface contours of electric field for periods of 30 minutes or more before the first flash of any kind and 30 minutes or more before and after the last flash of any kind. For practical reasons, we are reporting here on analysis of data for periods of 30 minutes before the first CG flash and 30 minutes after the last CG flash in each storm of interest. We have analyzed electric-field data from isolated air-mass convective storms that developed over KSC/CCAFS from late May through early September, 2004-2006. To identify thunderstorms that fit the air-mass, or "pop-up" criteria, we started by examining rainfall and CG lightning data, then looked at radar data. Then, for the storms selected, we performed a two-pass Barnes objective analysis on the electric-field data. Each analysis cycle resulted in one contour plot of 20-second averaged data, yielding 90 plots for each 30 minute interval, which we then animated. This resulted in 58 animations of the field contours prior to first CG flashes and 62 animations of the field contours after last CG flashes. Preliminary impressions from examinations of these cases suggest that the electric-field contours before the first flash exhibit a smooth transition

  2. Automated Demand Response Strategies and Commissioning CommercialBuilding Controls

    SciTech Connect

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-05-01

    California electric utilities have been exploring the use of dynamic critical peak pricing (CPP) and other demand response programs to help reduce peaks in customer electric loads. CPP is a new electricity tariff design to promote demand response. This paper begins with a brief review of terminology regarding energy management and demand response, followed by a discussion of DR control strategies and a preliminary overview of a forthcoming guide on DR strategies. The final section discusses experience to date with these strategies, followed by a discussion of the peak electric demand savings from the 2005 Automated CPP program. An important concept identified in the automated DR field tests is that automated DR will be most successful if the building commissioning industry improves the operational effectiveness of building controls. Critical peak pricing and even real time pricing are important trends in electricity pricing that will require new functional tests for building commissioning.

  3. Drivers of U.S. mineral demand

    USGS Publications Warehouse

    Sznopek, John L.

    2006-01-01

    Introduction: The word 'demand' has different meanings for different people. To some, it means their 'wants and needs,' to others it is what they consume. Yet, when considering economics, demand refers to the specific amounts of goods or services that individuals will purchase at various prices. Demand is measured over a given time period. It is determined by a number of factors including income, tastes, and the price of complementary and substitute goods. In this paper, the term consumption is used fairly synonymously with the term demand. Most mineral commodities, like iron ore, copper, zinc, and gravel, are intermediate goods, which means that they are used in the production of other goods, called final goods. Demand for intermediate goods is called derived demand because such demand is derived from the demand for final goods. When demand increases for a commodity, generally the price rises. With everything else held constant, this increases the profits for those who provide this commodity. Normally, this would increase profits of existing producers and attract new producers to the market. When demand for a commodity decreases, generally the price falls. Normally, this would cause profits to fall and, as a consequence, the least efficient firms may be forced from the industry. Demand changes for specific materials as final goods or production techniques are reengineered while maintaining or improving product performance, for example, the use of aluminum in the place of copper in long distance electrical transmission lines or plastic replacing steel in automobile bumpers. Substitution contributes to efficient material usage by utilizing cheaper or technically superior materials. In this way, it may also alleviate materials scarcity. If a material becomes relatively scarce (and thus more expensive), a more abundant (and less expensive) material generally replaces it (Wagner and others, 2003, p. 91).

  4. Effect of the electric field pattern on the generation of fast electrons in front of lower hybrid launchers

    SciTech Connect

    Valade, Laurent Ekedahl, Annika; Colas, Laurent; Goniche, Marc; Hillairet, Julien; Fuchs, Vladimir; Petrzilka, Vaclav; Li, Miaohui; Zhang, Bin

    2015-12-10

    The effect of the detailed waveguide spectrum on the electron acceleration has been studied for the 3.7 GHz LHCD launchers in Tore Supra, i.e. the ITER-like passive-active multijunction (PAM) launcher and the fully-active-multijunction (FAM) launcher, using test electron modelling technique. The detailed launched antenna wave spectrum is used as input to the code that computes the dynamics of the electrons in the electric field. Comparison with the LHCD launchers in EAST, operating at 2.45 GHz and 4.6 GHz, has also been made. The simulations show that the PAM-design generates lower flux of fast electrons than FAM-launchers, this could be the consequence of the wider waveguide of PAM-launcher (14.65 mm for Tore-Supra) than FAM-launcher (8 mm for Tore-Supra)

  5. Demand or Request: Will Load Behave?

    SciTech Connect

    Widergren, Steven E.

    2009-07-30

    Power planning engineers are trained to design an electric system that satisfies predicted electrical demand under stringent conditions of availability and power quality. Like responsible custodians, we plan for the provision of electrical sustenance and shelter to those in whose care regulators have given us the responsibility to serve. Though most customers accept this nurturing gladly, a growing number are concerned with the economic costs and environmental impacts of service at a time when technology (particularly distributed generation, storage, automation, and information networks) offers alternatives for localized control and competitive service. As customers’ and their systems mature, a new relationship with the electricity provider is emerging. Demand response is perhaps the first unsteady step where the customer participates as a partner in system operations. This paper explores issues system planners need to consider as demand response matures to significant levels beyond direct load control and toward a situation where service is requested and bargains are reached with the electricity provider based on desired load behavior. On one hand, predicting load growth and behavior appears more daunting than ever. On the other, for the first time load becomes a new resource whose behavior can be influenced during system operations to balance system conditions.

  6. Reproduction and Feeding of the Electric Fish Brachyhypopomus gauderio (Gymnotiformes: Hypopomidae) and the Discussion of a Life History Pattern for Gymnotiforms from High Latitudes

    PubMed Central

    Giora, Julia; Tarasconi, Hellen M.; Fialho, Clarice B.

    2014-01-01

    The reproductive biology and feeding habits of the electric fish Brachyhypopomus gauderio were studied. The species has seasonal reproductive behavior, with breeding occurring during the Southern Hemisphere spring and summer, and having a positive relation with the photoperiod variation. Brachyhypopomus gauderio was defined as a fractional spawner, with low relative fecundity and high first maturation size. Sexual dimorphism was registered, males undergoing hypertrophy of the distal portion of caudal filament. The results on reproductive biology herein obtained are in agreement with data concerning gymnotiforms from Southern Brazil and Uruguay, pointing to an ecological pattern for the species from high latitudes, differing from species with tropical distribution. According to the analysis of the food items, B. gauderio feed mainly on autochthonous insects, likewise the other gymnotiforms previously investigated, leading to conclude that there is no variation on the diet of the species of the order related to climatic conditions or even to habitat of occurrence. PMID:25207924

  7. Reproduction and feeding of the electric fish Brachyhypopomus gauderio (Gymnotiformes: Hypopomidae) and the discussion of a life history pattern for gymnotiforms from high latitudes.

    PubMed

    Giora, Julia; Tarasconi, Hellen M; Fialho, Clarice B

    2014-01-01

    The reproductive biology and feeding habits of the electric fish Brachyhypopomus gauderio were studied. The species has seasonal reproductive behavior, with breeding occurring during the Southern Hemisphere spring and summer, and having a positive relation with the photoperiod variation. Brachyhypopomus gauderio was defined as a fractional spawner, with low relative fecundity and high first maturation size. Sexual dimorphism was registered, males undergoing hypertrophy of the distal portion of caudal filament. The results on reproductive biology herein obtained are in agreement with data concerning gymnotiforms from Southern Brazil and Uruguay, pointing to an ecological pattern for the species from high latitudes, differing from species with tropical distribution. According to the analysis of the food items, B. gauderio feed mainly on autochthonous insects, likewise the other gymnotiforms previously investigated, leading to conclude that there is no variation on the diet of the species of the order related to climatic conditions or even to habitat of occurrence.

  8. Progress toward Producing Demand-Response-Ready Appliances

    SciTech Connect

    Hammerstrom, Donald J.; Sastry, Chellury

    2009-12-01

    This report summarizes several historical and ongoing efforts to make small electrical demand-side devices like home appliances more responsive to the dynamic needs of electric power grids. Whereas the utility community often reserves the word demand response for infrequent 2 to 6 hour curtailments that reduce total electrical system peak load, other beneficial responses and ancillary services that may be provided by responsive electrical demand are of interest. Historically, demand responses from the demand side have been obtained by applying external, retrofitted, controlled switches to existing electrical demand. This report is directed instead toward those manufactured products, including appliances, that are able to provide demand responses as soon as they are purchased and that require few, or no, after-market modifications to make them responsive to needs of power grids. Efforts to be summarized include Open Automated Demand Response, the Association of Home Appliance Manufacturer standard CHA 1, a simple interface being developed by the U-SNAP Alliance, various emerging autonomous responses, and the recent PinBus interface that was developed at Pacific Northwest National Laboratory.

  9. Impact of Energy Demands

    ERIC Educational Resources Information Center

    Cambel, Ali B.

    1970-01-01

    The types of pollutants associated with the process of power production are identified. A nine-point proposal is presented on the ways the increase in power demands might be achieved with the minimum threat to the environment. (PR)

  10. Latin American demand

    SciTech Connect

    1994-12-01

    From Mexico to Argentina, independent power companies are finding great demand for their services in Latin America. But while legal and economic conditions are increasingly favorable, political and financial uncertainties make power development challenging.

  11. Grid Integration of Aggregated Demand Response, Part 2: Modeling Demand Response in a Production Cost Model

    SciTech Connect

    Hummon, Marissa; Palchak, David; Denholm, Paul; Jorgenson, Jennie; Olsen, Daniel J.; Kiliccote, Sila; Matson, Nance; Sohn, Michael; Rose, Cody; Dudley, Junqiao; Goli, Sasank; Ma, Ookie

    2013-12-01

    This report is one of a series stemming from the U.S. Department of Energy (DOE) Demand Response and Energy Storage Integration Study. This study is a multi-national-laboratory effort to assess the potential value of demand response (DR) and energy storage to electricity systems with different penetration levels of variable renewable resources and to improve our understanding of associatedmarkets and institutions. This report implements DR resources in the commercial production cost model PLEXOS.

  12. Third-Order Electric-Field-Induced Dipolar Resonances from Patterned Barium-Strontium-Titanate Thin-Films

    NASA Astrophysics Data System (ADS)

    Toonen, Ryan; Will Cole, Melanie; Ivill, Mathew; Hirsch, S.; Integrated Electromagnetic Materials Team Team

    2013-03-01

    Using microwave reflection spectroscopy, the complex permittivities of etch-defined, 240 nm thick, [Ba(0.6)Sr(0.4)]TiO(3), thin films were measured over the frequency range of (1 to 4) GHz. The observed electro-acoustic resonances were characterized as a function of extrinsic electric field magnitude, ambient temperature, and sample diameter. The real and imaginary parts of the measured permittivities were fit to frequency-dependent functions derived from the Lorentz oscillator model. From these functions, extracted static dielectric constants were found to display excellent agreement with a closed-form expression derived by calculating third-order nonlinear susceptibility from the Landau-Devonshire-Ginzberg model [R. C. Toonen and M. W. Cole, Appl. Phys. Lett. 100, 222908 (2012)]. By investigating the behavior of these loss mechanisms in response to external stimuli, we have gained insight with respect to how such effects can be reduced or even eliminated. It is also possible that these loss mechanisms could be exploited for the purpose of engineering micro-/nano-electro-mechanical resonators and super-compact high-quality-factor frequency-selective filters. Funding for these efforts was provided by an award from the ARL Director's Research Initiative (FY10-WMR-27).

  13. Electric Power annual 1996: Volume II

    SciTech Connect

    1997-12-01

    This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

  14. Using Soil Apparent Electrical Conductivity to Optimize Sampling of Soil Penetration Resistance and to Improve the Estimations of Spatial Patterns of Soil Compaction

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6 ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from −0.36 to −0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50 m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5 MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging. PMID:25610899

  15. Oxygen content modulation by nanoscale chemical and electrical patterning in epitaxial SrCoO3-δ (0 < δ ≤ 0.5) thin films

    NASA Astrophysics Data System (ADS)

    Hu, S.; Seidel, J.

    2016-08-01

    Fast controllable redox reactions in solid materials at room temperature are a promising strategy for enhancing the overall performance and lifetime of many energy technology materials and devices. Easy control of oxygen content is a key concept for the realisation of fast catalysis and bulk diffusion at room temperature. Here, high quality epitaxial brownmillerite SrCoO2.5 thin films have been oxidised to perovskite (P) SrCoO3 with NaClO. X-ray diffraction, scanning probe microscopy and x-ray photoelectron spectroscopy measurements were performed to investigate the structural and electronic changes of the material. The oxidised thin films were found to exhibit distinct morphological changes from an atomically flat terrace structure to forming small nanosized islands with boundaries preferentially in [100] or [010] directions all over the surface, relaxing the in-plane strain imposed by the substrate. The conductivity, or oxygen content, of each single island is confined by these textures, which can be locally patterned even further with electric poling. The high charging level at the island boundaries indicates a magnified electric capacity of SCO thin films, which could be exploited in future device geometries. This finding represents a new way of oxygen modulation with associated self-assembled charge confinement to nanoscale boundaries, offering interesting prospects in nanotechnology applications.

  16. Using soil apparent electrical conductivity to optimize sampling of soil penetration resistance and to improve the estimations of spatial patterns of soil compaction.

    PubMed

    Machado Siqueira, Glécio; Dafonte Dafonte, Jorge; Bueno Lema, Javier; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    This study presents a combined application of an EM38DD for assessing soil apparent electrical conductivity (ECa) and a dual-sensor vertical penetrometer Veris-3000 for measuring soil electrical conductivity (ECveris) and soil resistance to penetration (PR). The measurements were made at a 6 ha field cropped with forage maize under no-tillage after sowing and located in Northwestern Spain. The objective was to use data from ECa for improving the estimation of soil PR. First, data of ECa were used to determine the optimized sampling scheme of the soil PR in 40 points. Then, correlation analysis showed a significant negative relationship between soil PR and ECa, ranging from -0.36 to -0.70 for the studied soil layers. The spatial dependence of soil PR was best described by spherical models in most soil layers. However, below 0.50 m the spatial pattern of soil PR showed pure nugget effect, which could be due to the limited number of PR data used in these layers as the values of this parameter often were above the range measured by our equipment (5.5 MPa). The use of ECa as secondary variable slightly improved the estimation of PR by universal cokriging, when compared with kriging.

  17. Global impacts of energy demand on the freshwater resources of nations.

    PubMed

    Holland, Robert Alan; Scott, Kate A; Flörke, Martina; Brown, Gareth; Ewers, Robert M; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Scharlemann, Jörn P W; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-12-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well--being-energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.

  18. Global impacts of energy demand on the freshwater resources of nations

    PubMed Central

    Holland, Robert Alan; Scott, Kate A.; Flörke, Martina; Brown, Gareth; Ewers, Robert M.; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-01-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well-being—energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy. PMID:26627262

  19. Spatiotemporal patterns of electrocorticographic very fast oscillations (>80 Hz) consistent with a network model based on electrical coupling between principal neurons

    PubMed Central

    Traub, Roger D.; Duncan, Roderick; Russell, Aline J.C.; Baldeweg, Torsten; Tu, Yuhai; Cunningham, Mark O.; Whittington, Miles A.

    2010-01-01

    SUMMARY Purpose We sought to characterize spatial and temporal patterns of electrocorticography (ECoG) very fast oscillations (> ~80 Hz, VFOs) prior to seizures in human frontotemporal neocortex, and to develop a testable network model of these patterns. Methods ECoG data were recorded with subdural grids from two preoperative patients with seizures of frontal lobe onset in an epilepsy monitoring unit. VFOs were recorded from rat neocortical slices. A “cellular automaton” model of network oscillations was developed, extending ideas of Traub et al. (Neuroscience, 92, 1999, 407) and Lewis & Rinzel (Network: Comput Neural Syst, 11, 12000, 299); this model is based on postulated electrical coupling between pyramidal cell axons. Results Layer 5 of rat neocortex, in vitro, can generate VFOs when chemical synapses are blocked. Human epileptic neocortex, in situ, produces preseizure VFOs characterized by the sudden appearance of “blobs” of activity that evolve into spreading wavefronts. When wavefronts meet, they coalesce and propagate perpendicularly but never pass through each other. This type of pattern has been described by Lewis & Rinzel in cellular automaton models with spatially localized connectivity, and is demonstrated here with 120,000- to 5,760,000-cell models. We provide a formula for estimating VFO period from structural parameters and estimate the spatial scale of the connectivity. Discussion These data provide further evidence, albeit indirect, that preseizure VFOs are generated by networks of pyramidal neurons coupled by gap junctions, each predominantly confined to pairs of neurons having somata separated by < ~1–2 mm. Plausible antiepileptic targets are tissue mechanisms, such as pH regulation, that influence gap-junction conductance. PMID:20002152

  20. 76 FR 16657 - Demand Response Compensation in Organized Wholesale Energy Markets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ...\\ Demand response means a reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to incentive payments designed to induce lower consumption of electric energy. 18 CFR 35.28(b)(4) (2010). \\3\\ Demand response...

  1. Capacitance enhancement via electrode patterning

    NASA Astrophysics Data System (ADS)

    Ho, Tuan A.; Striolo, Alberto

    2013-11-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  2. Capacitance enhancement via electrode patterning

    SciTech Connect

    Ho, Tuan A.; Striolo, Alberto

    2013-11-28

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  3. Travel Demand Modeling

    SciTech Connect

    Southworth, Frank; Garrow, Dr. Laurie

    2011-01-01

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

  4. Interoperability of Demand Response Resources Demonstration in NY

    SciTech Connect

    Wellington, Andre

    2014-03-31

    The Interoperability of Demand Response Resources Demonstration in NY (Interoperability Project) was awarded to Con Edison in 2009. The objective of the project was to develop and demonstrate methodologies to enhance the ability of customer sited Demand Response resources to integrate more effectively with electric delivery companies and regional transmission organizations.

  5. Modelling alternative residential peak-load electricity rate structures

    SciTech Connect

    Caves, D.W.; Christensen, L.R.; Herriges, J.A.

    1982-01-01

    Implementation of optimal peak-load pricing schemes requires information on how customers will change their usage patterns in response to alternative rate structures. The authors propose a modelling framework that can be employed to estimate the effects of a wide range of residential peak-load pricing schemes, including those with a maximum demand charge. The framework is based on the neoclassical theory of consumer behavior and employs a flexible functional form, the generalized Leontief. Estimates are developed using data from the Wisconsin Residential Electricity Pricing Experiment. They find significant, and remarkably similar, changes in patterns of household electricity usage induced by energy-based and maximum demand-based peak-load pricing structures. 17 references, 5 tables.

  6. Comparison of fMRI BOLD Response Patterns by Electrical Stimulation of the Ventroposterior Complex and Medial Thalamus of the Rat

    PubMed Central

    Yang, Pai-Feng; Chen, You-Yin; Chen, Der-Yow; Hu, James W.; Chen, Jyh-Horng; Yen, Chen-Tung

    2013-01-01

    The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD) activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP) and medial (MT) thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA) and frequencies (1 Hz to 12 Hz). BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL) after VP stimulation and in the ipsilateral cingulate cortex (iCC) after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu). Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways. PMID:23826146

  7. Demanding Divestment from Sudan

    ERIC Educational Resources Information Center

    Asquith, Christina

    2006-01-01

    Bowing to student demands to "stop supporting genocide," the University of California regents voted earlier this year to divest millions of dollars from companies working in the war-torn African nation of Sudan, the first major public university in the nation to take such action. Since student protests on the subject began at Harvard…

  8. Demand, Growth, and Evolution

    ERIC Educational Resources Information Center

    Hoskins, Barbara

    2011-01-01

    The paradigm shift to engaged and collaborative learning delivered via distance education technologies has been led by practitioners in adult and continuing education. Online and blended courses are experiencing increased demand and continued growth at all levels of higher education, professional development, and K-12 education. Adult and…

  9. Drop-on-demand printing of carbon black ink by electrohydrodynamic jet printing.

    PubMed

    Back, Sung Yul; Song, Chi Ho; Yu, Seongil; Lee, Hyoung Jin; Kim, Beom Soo; Yang, Nam Yeo; Jeong, Soo Hoa; Ahn, Heejoon

    2012-01-01

    Electrohydrodynamic (EHD) jet printing is a technique using electric fields to eject inks through nozzle apertures. EHD jet printing is very attractive due to its non-contacting nature and compatibility with diverse materials and substrates. In this research, we have fabricated micron-sized dot arrays and line patterns with carbon black ink on Si wafer substrates using EHD jet printing. The effect of operating conditions such as applied voltage, working distance and stage speed on the size and shape of the jetted patterns and jetting cycles is investigated by using optical microscope, high speed camera and atomic force microscopy (AFM). We have also demonstrated the drop-on-demand feature of the EHD jet printing system by patterning carbon black ink lines with various widths and dot arrays with desired diameters and spacing by controlling the operating conditions.

  10. Intermittent Demand Forecasting in a Tertiary Pediatric Intensive Care Unit.

    PubMed

    Cheng, Chen-Yang; Chiang, Kuo-Liang; Chen, Meng-Yin

    2016-10-01

    Forecasts of the demand for medical supplies both directly and indirectly affect the operating costs and the quality of the care provided by health care institutions. Specifically, overestimating demand induces an inventory surplus, whereas underestimating demand possibly compromises patient safety. Uncertainty in forecasting the consumption of medical supplies generates intermittent demand events. The intermittent demand patterns for medical supplies are generally classified as lumpy, erratic, smooth, and slow-moving demand. This study was conducted with the purpose of advancing a tertiary pediatric intensive care unit's efforts to achieve a high level of accuracy in its forecasting of the demand for medical supplies. On this point, several demand forecasting methods were compared in terms of the forecast accuracy of each. The results confirm that applying Croston's method combined with a single exponential smoothing method yields the most accurate results for forecasting lumpy, erratic, and slow-moving demand, whereas the Simple Moving Average (SMA) method is the most suitable for forecasting smooth demand. In addition, when the classification of demand consumption patterns were combined with the demand forecasting models, the forecasting errors were minimized, indicating that this classification framework can play a role in improving patient safety and reducing inventory management costs in health care institutions.

  11. Ligand and electrically induced acitivation patterns in myenteric neuronal networks. Confocal calcium imaging as a bridge between basic and human physiology.

    PubMed

    Bisschops, R

    2008-01-01

    Confocal imaging in combination with fluorescent calcium indicators provides the possibility to study neuronal activation in entire neuronal networks. The experiments presented in this essay aimed at applying confocal calcium imaging to study activation patterns in neuronal networks of myenteric ganglia in situ. First we studied the response to electrical train stimulation (ETS). ETS induced Ca2+ transients in 52.2% and 65.4% of the neurons when applied orally and aborally respectively. We observed more responses during aboral ETS which is not in line with the hypothesis of neuronal polarity, suggesting complex neuronal activation patterns and neuronal interaction in ETS-induced activation in myenteric ganglia. We demonstrated that ghrelin has a direct excitatory effect on myenteric neurons in situ via ghrelin receptor activation. Ghrelin induced Ca2+ transients in one third of the myenteric neurons, involving release of Ca2+ from intracellular stores and direct GHS-receptor activation. We found that CRF activates one fifth of the myenteric neurons, via CRF1 receptor activation. These CRF induced Ca2+ signals involved somatic influx through (mainly R-type) voltage operated Ca2+ channels. Finally we set up human studies in healthy volunteers and dyspeptic patients to test the effect of ghrelin on gastrointestinal motility. Intravenous administration of ghrelin induced a premature phase 3 activity front that originated in the stomach and an increase in gastric tone. Ghrelin decreased gastric emptying time for fluids and reduced symptom scores for fullness and pain. These studies provide further evidence for a role of ghrelin in the regulation of gastrointestinal motility, and possibly provide new therapeutic approaches. Our studies show that confocal calcium imaging allows to assess neuronal activation of myenteric neurons. The influence of new hormones or new pharmaceutical compounds on the myenteric plexus can hereby be easily assessed.

  12. The past, present, and future of U.S. utility demand-side management programs

    SciTech Connect

    Eto, J.

    1996-12-01

    Demand-side management or DSM refers to active efforts by electric and gas utilities to modify customers` energy use patterns. The experience in the US shows that utilities, when provided with appropriate incentives, can provide a powerful stimulus to energy efficiency in the private sector. This paper describes the range and history of DSM programs offered by US electric utilities, with a focus on the political, economic, and regulatory events that have shaped their evolution. It also describes the changes these programs are undergoing as a result of US electricity industry restructuring. DSM programs began modestly in the 1970s in response to growing concerns about dependence on foreign sources of oil and environmental consequences of electricity generation, especially nuclear power. The foundation for the unique US partnership between government and utility interests can be traced first to the private-ownership structure of the vertically integrated electricity industry and second to the monopoly franchise granted by state regulators. Electricity industry restructuring calls into question both of these basic conditions, and thus the future of utility DSM programs for the public interest. Future policies guiding ratepayer-funded energy-efficiency DSM programs will need to pay close attention to the specific market objectives of the programs and to the balance between public and private interests.

  13. Atoms to Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and the role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: the role of nuclear power; the role of electricity; generating electricity with the…

  14. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  15. Demand Response as a System Reliability Resource

    SciTech Connect

    Eto, Joseph H.; Lewis, Nancy Jo; Watson, David; Kiliccote, Sila; Auslander, David; Paprotny, Igor; Makarov, Yuri

    2012-12-31

    The Demand Response as a System Reliability Resource project consists of six technical tasks: • Task 2.1. Test Plan and Conduct Tests: Contingency Reserves Demand Response (DR) Demonstration—a pioneering demonstration of how existing utility load-management assets can provide an important electricity system reliability resource known as contingency reserve. • Task 2.2. Participation in Electric Power Research Institute (EPRI) IntelliGrid—technical assistance to the EPRI IntelliGrid team in developing use cases and other high-level requirements for the architecture. • Task 2.3. Research, Development, and Demonstration (RD&D) Planning for Demand Response Technology Development—technical support to the Public Interest Energy Research (PIER) Program on five topics: Sub-task 1. PIER Smart Grid RD&D Planning Document; Sub-task 2. System Dynamics of Programmable Controllable Thermostats; Sub-task 3. California Independent System Operator (California ISO) DR Use Cases; Sub-task 4. California ISO Telemetry Requirements; and Sub-task 5. Design of a Building Load Data Storage Platform. • Task 2.4. Time Value of Demand Response—research that will enable California ISO to take better account of the speed of the resources that it deploys to ensure compliance with reliability rules for frequency control. • Task 2.5. System Integration and Market Research: Southern California Edison (SCE)—research and technical support for efforts led by SCE to conduct demand response pilot demonstrations to provide a contingency reserve service (known as non-spinning reserve) through a targeted sub-population of aggregated residential and small commercial customers enrolled in SCE’s traditional air conditioning (AC) load cycling program, the Summer Discount Plan. • Task 2.6. Demonstrate Demand Response Technologies: Pacific Gas and Electric (PG&E)—research and technical support for efforts led by PG&E to conduct a demand response pilot demonstration to provide non

  16. Automated Demand Response for Energy Sustainability

    DTIC Science & Technology

    2015-05-01

    ahead price incentives to customers for reducing energy consumption during a DBP Event. The DR controlled electric loads at Fort Irwin consisted of...offers Day-Ahead price incentives to customers for reducing energy consumption during a DBP Event. A Day-Ahead DBP Event may be called at SCE’s...sometimes struggle to meet customer demands, which can cause instability, rolling blackouts, and high energy prices . This technology enables the

  17. Estimating Reduced Consumption for Dynamic Demand Response

    SciTech Connect

    Chelmis, Charalampos; Aman, Saima; Saeed, Muhammad Rizwan; Frincu, Marc; Prasanna, Viktor K.

    2015-01-30

    Growing demand is straining our existing electricity generation facilities and requires active participation of the utility and the consumers to achieve energy sustainability. One of the most effective and widely used ways to achieve this goal in the smart grid is demand response (DR), whereby consumers reduce their electricity consumption in response to a request sent from the utility whenever it anticipates a peak in demand. To successfully plan and implement demand response, the utility requires reliable estimate of reduced consumption during DR. This also helps in optimal selection of consumers and curtailment strategies during DR. While much work has been done on predicting normal consumption, reduced consumption prediction is an open problem that is under-studied. In this paper, we introduce and formalize the problem of reduced consumption prediction, and discuss the challenges associated with it. We also describe computational methods that use historical DR data as well as pre-DR conditions to make such predictions. Our experiments are conducted in the real-world setting of a university campus microgrid, and our preliminary results set the foundation for more detailed modeling.

  18. Demand surge following earthquakes

    USGS Publications Warehouse

    Olsen, Anna H.

    2012-01-01

    Demand surge is understood to be a socio-economic phenomenon where repair costs for the same damage are higher after large- versus small-scale natural disasters. It has reportedly increased monetary losses by 20 to 50%. In previous work, a model for the increased costs of reconstruction labor and materials was developed for hurricanes in the Southeast United States. The model showed that labor cost increases, rather than the material component, drove the total repair cost increases, and this finding could be extended to earthquakes. A study of past large-scale disasters suggested that there may be additional explanations for demand surge. Two such explanations specific to earthquakes are the exclusion of insurance coverage for earthquake damage and possible concurrent causation of damage from an earthquake followed by fire or tsunami. Additional research into these aspects might provide a better explanation for increased monetary losses after large- vs. small-scale earthquakes.

  19. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  20. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  1. Dividends with Demand Response

    SciTech Connect

    Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

    2003-10-31

    To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

  2. Northeastern Summer Electricity Market Alert

    EIA Publications

    2013-01-01

    The National Weather Service declared an excessive-heat warning for much of the Mid-Atlantic and northeastern United States, including major electric markets covering Philadelphia, Boston, Washington, D.C., and New York City. This report highlights the wholesale electricity market activity occurring in response to the higher-than-normal electricity demand caused by the heat wave.

  3. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    SciTech Connect

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  4. Climate policy implications for agricultural water demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.

  5. Demand illumination control apparatus

    NASA Technical Reports Server (NTRS)

    Warren, Carl (Inventor); Arline, Jimmie (Inventor); LaPalme, Julius (Inventor)

    1981-01-01

    Solar illuminating compensating apparatus is disclosed whereby the interior of a building is illuminated to a substantially constant, predetermined level of light intensity by a combination of natural illumination from the sun and artificial illumination from electricity wherein the intensity of said artificial illumination is controlled by fully electronic means which increases the level of artificial illumination when the natural illumination is inadequate and vice versa.

  6. Energy demand on dairy farms in Ireland.

    PubMed

    Upton, J; Humphreys, J; Groot Koerkamp, P W G; French, P; Dillon, P; De Boer, I J M

    2013-10-01

    Reducing electricity consumption in Irish milk production is a topical issue for 2 reasons. First, the introduction of a dynamic electricity pricing system, with peak and off-peak prices, will be a reality for 80% of electricity consumers by 2020. The proposed pricing schedule intends to discourage energy consumption during peak periods (i.e., when electricity demand on the national grid is high) and to incentivize energy consumption during off-peak periods. If farmers, for example, carry out their evening milking during the peak period, energy costs may increase, which would affect farm profitability. Second, electricity consumption is identified in contributing to about 25% of energy use along the life cycle of pasture-based milk. The objectives of this study, therefore, were to document electricity use per kilogram of milk sold and to identify strategies that reduce its overall use while maximizing its use in off-peak periods (currently from 0000 to 0900 h). We assessed, therefore, average daily and seasonal trends in electricity consumption on 22 Irish dairy farms, through detailed auditing of electricity-consuming processes. To determine the potential of identified strategies to save energy, we also assessed total energy use of Irish milk, which is the sum of the direct (i.e., energy use on farm) and indirect energy use (i.e., energy needed to produce farm inputs). On average, a total of 31.73 MJ was required to produce 1 kg of milk solids, of which 20% was direct and 80% was indirect energy use. Electricity accounted for 60% of the direct energy use, and mainly resulted from milk cooling (31%), water heating (23%), and milking (20%). Analysis of trends in electricity consumption revealed that 62% of daily electricity was used at peak periods. Electricity use on Irish dairy farms, therefore, is substantial and centered around milk harvesting. To improve the competitiveness of milk production in a dynamic electricity pricing environment, therefore, management

  7. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  8. Open Automated Demand Response Communications Specification (Version 1.0)

    SciTech Connect

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

    2009-02-28

    The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

  9. Two essays on real-time pricing of electric power

    NASA Astrophysics Data System (ADS)

    Gupta, Nainish Kumar

    1997-09-01

    This dissertation contains two essays on a new innovative pricing mechanism in the electric power industry known as Real Time Pricing (RTP). RTP is a method of pricing electric power wherein at least one component of the price is set at or near levels that reflect the marginal costs of providing power during each time-specific interval. These prices vary in accord with time-specific, incremental supplier costs. RTP allows customers to manage their own bills by adjusting their consumption as spot prices and supplier costs vary, which may amount during a single day from 2 cents to 85 cents for one kilowatt hour (kWh) of usage. Using 1995 data the hypothesis that industrial customers shift their usage patterns of electricity in response to real time prices is tested. To measure customer responsiveness to real time electric rates, econometric techniques are applied to estimate demand elasticities.

  10. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  11. Opportunities for Automated Demand Response in California Agricultural Irrigation

    SciTech Connect

    Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  12. Economics of electricity

    NASA Astrophysics Data System (ADS)

    Erdmann, G.

    2015-08-01

    The following text is an introduction into the economic theory of electricity supply and demand. The basic approach of economics has to reflect the physical peculiarities of electric power that is based on the directed movement of electrons from the minus pole to the plus pole of a voltage source. The regular grid supply of electricity is characterized by a largely constant frequency and voltage. Thus, from a physical point of view electricity is a homogeneous product. But from an economic point of view, electricity is not homogeneous. Wholesale electricity prices show significant fluctuations over time and between regions, because this product is not storable (in relevant quantities) and there may be bottlenecks in the transmission and distribution grids. The associated non-homogeneity is the starting point of the economic analysis of electricity markets.

  13. Analyzing the Effects of Temporal Wind Patterns on the Value ofWind-Generated Electricity at Different Sites in California and theNorthwest

    SciTech Connect

    Fripp, Matthias; Wiser, Ryan

    2006-05-31

    Wind power production varies on a diurnal and seasonal basis. In this report, we use wind speed data modeled by TrueWind Solutions, LLC (now AWS Truewind) to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwest. (Data from this dataset are referred to as ''TrueWind data'' throughout this report.) The intra-annual wind speed variations reported in the TrueWind datasets have not previously been used in published work, however, so we also compare them to a collection of anemometer wind speed measurements and to a limited set of actual wind farm production data. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in the Northwest and California with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. Based on our research, we reach three key conclusions. (1) Temporal patterns have a moderate impact on the wholesale market value of wind power and a larger impact on the capacity factor during peak hours. The best-timed wind power sites have a wholesale market value that is up to 4 percent higher than the average market price, while the worst-timed sites have a market value that is up to 11 percent below the average market price. The best-timed wind sites could produce as much as 30-40 percent more power during peak hours than they do on average during the year, while the worst timed sites may produce 30-60 percent less power during peak hours. (2

  14. Energy technologies and their impact on demand

    SciTech Connect

    Drucker, H.

    1995-06-01

    Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

  15. Aviation Frontiers: On-Demand Aircraft

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.

    2010-01-01

    Throughout the 20th Century, NASA has defined the forefront of aeronautical technology, and the aviation industry owes much of its prosperity to this knowledge and technology. In recent decades, centralized aeronautics has become a mature discipline, which raises questions concerning the future aviation innovation frontiers. Three transformational aviation capabilities, bounded together by the development of a Free Flight airspace management system, have the potential to transform 21st Century society as profoundly as civil aviation transformed the 20th Century. These mobility breakthroughs will re-establish environmental sustainable centralized aviation, while opening up latent markets for civil distributed sensing and on-demand rural and regional transportation. Of these three transformations, on-demand aviation has the potential to have the largest market and productivity improvement to society. The information system revolution over the past 20 years shows that vehicles lead, and the interconnecting infrastructure to make them more effective follows; that is, unless on-demand aircraft are pioneered, a distributed Air Traffic Control system will likely never be established. There is no single technology long-pole that will enable on-demand vehicle solutions. However, fully digital aircraft that include electric propulsion has the potential to be a multi-disciplinary initiator of solid state technologies that can provide order of magnitude improvements in the ease of use, safety/reliability, community and environmental friendliness, and affordability.

  16. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21

    Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed

  17. Characteristics of power demand in Tokyo

    SciTech Connect

    Meguro, Kimiro; Yamazaki, Fumio; Katayama, Tsuneo; Soejima, Michiyo

    1995-12-31

    Modern societies suffer functional damage due to power outage when natural disasters strike. As the first step for developing a new methodology for estimating the effects of power outage on city functions considering the characteristics of the area, and time and duration of outage, a database is made which consists of regional characteristics and electric power demand in the Tokyo metropolis using geographic information system (GIS). Power demand is examined as a function of time, season and region. With a statistical technique, four elemental load curves of residential, office, industrial and entertainment components are calculated. Assuming that every load curve is a combination of the four elemental curves, the contribution rate of the four elements in each area is calculated. Then the areas could be classified based on the contribution rate.

  18. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    PubMed

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  19. Model documentation: Electricity Market Module, Electricity Capacity Planning submodule

    SciTech Connect

    Not Available

    1994-04-07

    The National Energy Modeling System (NEMS) is a computer modeling system developed by the Energy Information Administration (EIA). The NEMS produces integrated forecasts for energy markets in the United States by achieving a general equilibrium solution for energy supply and demand. Currently, for each year during the period from 1990 through 2010, the NEMS describes energy supply, conversion, consumption, and pricing. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The supply of electricity is a conversion activity since electricity is produced from other energy sources (e.g., fossil, nuclear, and renewable). The EMM represents the generation, transmission, and pricing of electricity. The EMM consists of four main submodules: Electricity Capacity Planning (ECP), Electricity Fuel Dispatching (EFD), Electricity Finance and Pricing (EFP), and Load and Demand-Side Management (LDSM). The ECP evaluates changes in the mix of generating capacity that are necessary to meet future demands for electricity and comply with environmental regulations. The EFD represents dispatching (i.e., operating) decisions and determines how to allocate available capacity to meet the current demand for electricity. Using investment expenditures from the ECP and operating costs from the EFD, the EFP calculates the price of electricity, accounting for state-level regulations involving the allocation of costs. The LDSM translates annual demands for electricity into distributions that describe hourly, seasonal, and time-of-day variations. These distributions are used by the EFD and the ECP to determine the quantity and types of generating capacity that are required to insure reliable and economical supplies of electricity. The EMM also represents nonutility suppliers and interregional and international transmission and trade. These activities are included in the EFD and the ECP.

  20. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect

    2012-02-11

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  1. Demand Responsive Lighting: A Scoping Study

    SciTech Connect

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and

  2. Electric power annual 1995. Volume II

    SciTech Connect

    1996-12-01

    This document summarizes pertinent statistics on various aspects of the U.S. electric power industry for the year and includes a graphic presentation. Data is included on electric utility retail sales and revenues, financial statistics, environmental statistics of electric utilities, demand-side management, electric power transactions, and non-utility power producers.

  3. Demand-Side Response from Industrial Loads

    SciTech Connect

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  4. A hybrid inventory management system respondingto regular demand and surge demand

    SciTech Connect

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

  5. The interpersonal process model of demand/withdraw behavior.

    PubMed

    Baucom, Brian R; Dickenson, Janna A; Atkins, David C; Baucom, Donald H; Fischer, Melanie S; Weusthoff, Sarah; Hahlweg, Kurt; Zimmermann, Tanja

    2015-02-01

    The demand/withdraw interaction pattern is a destructive cycle of relationship communication behavior that is associated with negative individual and relationship outcomes. Demand/withdraw behavior is thought to be strongly linked to partners' emotional reactions, but current theories are inconsistent with empirical findings. The current study proposes the interpersonal process model of demand/withdraw behavior, which includes linkages between each partners' emotional reactions and the interpersonal behavior of demanding and withdrawing. Data come from problem solving discussions of 55 German couples with observationally coded demand/withdraw behavior and fundamental frequency (f₀) to measure vocally encoded emotional arousal. Actor-partner interdependence models (Kenny, Kashy, & Cook, 2006) were used to examine associations among demand/withdraw behavior and f₀ in the overall discussion and 5-min segments. Significant cross-partner associations emerged for demanding and withdrawing behavior across the whole conversation as well as within 5-min segments, and these associations are partially accounted for by each individual's f₀. When behaviorally coded demanders expressed more vocal arousal, they demanded more and withdrew less while their partners withdrew more. In contrast, when behaviorally coded withdrawers expressed more vocal arousal, their partners demanded less and withdrew more. Findings demonstrate that demand/withdraw behavior varies between couples (i.e., some couples engage in a stronger demand/withdraw cycle than others) and between segments (i.e., when 1 partner increases demanding, the other increases withdrawing). Findings support key elements of the interpersonal process model, showing intra- and interpersonal pathways linking demand/withdraw behavior and emotion and demonstrate the importance of partners' behavioral roles in these linkages.

  6. Electrical Load Profile Analysis Using Clustering Techniques

    NASA Astrophysics Data System (ADS)

    Damayanti, R.; Abdullah, A. G.; Purnama, W.; Nandiyanto, A. B. D.

    2017-03-01

    Data mining is one of the data processing techniques to collect information from a set of stored data. Every day the consumption of electricity load is recorded by Electrical Company, usually at intervals of 15 or 30 minutes. This paper uses a clustering technique, which is one of data mining techniques to analyse the electrical load profiles during 2014. The three methods of clustering techniques were compared, namely K-Means (KM), Fuzzy C-Means (FCM), and K-Means Harmonics (KHM). The result shows that KHM is the most appropriate method to classify the electrical load profile. The optimum number of clusters is determined using the Davies-Bouldin Index. By grouping the load profile, the demand of variation analysis and estimation of energy loss from the group of load profile with similar pattern can be done. From the group of electric load profile, it can be known cluster load factor and a range of cluster loss factor that can help to find the range of values of coefficients for the estimated loss of energy without performing load flow studies.

  7. Demands, values, and burnout

    PubMed Central

    Leiter, Michael P.; Frank, Erica; Matheson, Timothy J.

    2009-01-01

    OBJECTIVE T o explore the interaction between workload and values congruence (personal values with health care system values) in the context of burnout and physician engagement and to explore the relative importance of these factors by sex, given the distinct work patterns of male and female physicians. DESIGN National mailed survey. SETTING Canada. PARTICIPANTS A random sample of 8100 Canadian physicians (response rate 40%, N = 3213); 2536 responses (from physicians working more than 35 hours per week) were analyzed. MAIN OUTCOME MEASURES Levels of burnout, values congruence, and workload, by sex, measured by the Maslach Burnout Inventory—General Scale and the Areas of Worklife Scale. RESULTS Results showed a moderate level of burnout among Canadian physicians, with relatively positive scores on exhaustion, average scores on cynicism, and mildly negative scores on professional efficacy. A series of multiple regression analyses confirmed parallel main effect contributions from manageable workload and values congruence. Both workload and values congruence predicted exhaustion and cynicism for men and women (P = .001). Only values congruence provided a significant prediction of professional efficacy for both men and women (P = .001) These predictors interacted for women on all 3 aspects of burnout (exhaustion, cynicism, and diminished efficacy). Howevever, overall levels of the burnout indicators departed only modestly from normative levels. CONCLUSION W orkload and values congruence make distinct contributions to physician burnout. Work overload contributes to predicting exhaustion and cynicism; professional values crises contribute to predicting exhaustion, cynicism, and low professional efficacy. The interaction of values and workload for women in particular has implications for the distinct work-life patterns of male and female physicians. Specifically, the congruence of individual values with values inherent in the health care system appeared to be of greater

  8. Results and commissioning issues from an automated demand responsepilot

    SciTech Connect

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-08-05

    This paper describes a research project to develop and test Automated Demand Response hardware and software technology in large facilities. We describe the overall project and some of the commissioning and system design problems that took place. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability purposes, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. There were a number of specific commissioning challenges in conducting this test including software compatibility, incorrect time zones, IT and EMCS failures, and hardware issues. The knowledge needed for this type of system commissioning combines knowledge of building controls with network management and knowledge of emerging information technologies.

  9. Electric power annual 1993

    SciTech Connect

    Not Available

    1994-12-08

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  10. Home Network Technologies and Automating Demand Response

    SciTech Connect

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated

  11. An integrated communications demand model

    NASA Astrophysics Data System (ADS)

    Doubleday, C. F.

    1980-11-01

    A computer model of communications demand is being developed to permit dynamic simulations of the long-term evolution of demand for communications media in the U.K. to be made under alternative assumptions about social, economic and technological trends in British Telecom's business environment. The context and objectives of the project and the potential uses of the model are reviewed, and four key concepts in the demand for communications media, around which the model is being structured are discussed: (1) the generation of communications demand; (2) substitution between media; (3) technological convergence; and (4) competition. Two outline perspectives on the model itself are given.

  12. Demand Activated Manufacturing Architecture

    SciTech Connect

    Bender, T.R.; Zimmerman, J.J.

    2001-02-07

    Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts

  13. An Informatics Approach to Demand Response Optimization in Smart Grids

    SciTech Connect

    Simmhan, Yogesh; Aman, Saima; Cao, Baohua; Giakkoupis, Mike; Kumbhare, Alok; Zhou, Qunzhi; Paul, Donald; Fern, Carol; Sharma, Aditya; Prasanna, Viktor K

    2011-03-03

    Power utilities are increasingly rolling out “smart” grids with the ability to track consumer power usage in near real-time using smart meters that enable bidirectional communication. However, the true value of smart grids is unlocked only when the veritable explosion of data that will become available is ingested, processed, analyzed and translated into meaningful decisions. These include the ability to forecast electricity demand, respond to peak load events, and improve sustainable use of energy by consumers, and are made possible by energy informatics. Information and software system techniques for a smarter power grid include pattern mining and machine learning over complex events and integrated semantic information, distributed stream processing for low latency response,Cloud platforms for scalable operations and privacy policies to mitigate information leakage in an information rich environment. Such an informatics approach is being used in the DoE sponsored Los Angeles Smart Grid Demonstration Project, and the resulting software architecture will lead to an agile and adaptive Los Angeles Smart Grid.

  14. CAREER GUIDE FOR DEMAND OCCUPATIONS.

    ERIC Educational Resources Information Center

    LEE, E.R.; WELCH, JOHN L.

    THIS PUBLICATION UPDATES THE "CAREER GUIDE FOR DEMAND OCCUPATIONS" PUBLISHED IN 1959 AND PROVIDES COUNSELORS WITH INFORMATION ABOUT OCCUPATIONS IN DEMAND IN MANY AREAS WHICH REQUIRE PREEMPLOYMENT TRAINING. IT PRESENTS, IN COLUMN FORM, THE EDUCATION AND OTHER TRAINING USUALLY REQUIRED BY EMPLOYERS, HIGH SCHOOL SUBJECTS OF PARTICULAR PERTINENCE TO…

  15. Demand Response for Ancillary Services

    SciTech Connect

    Alkadi, Nasr E; Starke, Michael R

    2013-01-01

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  16. Atoms to Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle, and role of nuclear energy as one of the domestic energy resources being developed to meet the national energy demand. Major topic areas discussed include: (1) "The Role of Nuclear Power"; (2) "The Role of Electricity"; (3)…

  17. Atoms to electricity. [Booklet

    SciTech Connect

    Not Available

    1987-11-01

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for over 16 percent of the US electric energy supply in 1986 and was second only to coal as a source of our electric power. In the 1990s, nuclear energy is expected to provide almost 20 percent of the Nation's electricity. 38 figs., 5 tabs.

  18. ELECTRICAL LOAD ANTICIPATOR AND RECORDER

    DOEpatents

    Werme, J.E.

    1961-09-01

    A system is described in which an indication of the prevailing energy consumption in an electrical power metering system and a projected power demand for one demand in terval is provided at selected increments of time within the demand interval. Each watt-hour meter in the system is provided with an impulse generator that generates two impulses for each revolution of the meter disc. In each demand interval, for example, one half-hour, of the metering system, the total impulses received from all of the meters are continuously totaled for each 5-minute interval and multiplied by a number from 6 to 1 depending upon which 5- minute interval the impulses were received. This value is added to the total pulses received in the intervals preceding the current 5-minute interval within the half-hour demand interval tc thereby provide an indication of the projected power demand every 5 minutes in the demand interval.

  19. Electric vehicles: Driving range

    NASA Astrophysics Data System (ADS)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  20. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    SciTech Connect

    Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish; Koch, Ed; Hennage, Dan; Hernandez, John; Chiu, Albert; Sezgen, Osman; Goodin, John

    2009-11-06

    The Pacific Gas and Electric Company (PG&E) is conducting a pilot program to investigate the technical feasibility of bidding certain demand response (DR) resources into the California Independent System Operator's (CAISO) day-ahead market for ancillary services nonspinning reserve. Three facilities, a retail store, a local government office building, and a bakery, are recruited into the pilot program. For each facility, hourly demand, and load curtailment potential are forecasted two days ahead and submitted to the CAISO the day before the operation as an available resource. These DR resources are optimized against all other generation resources in the CAISO ancillary service. Each facility is equipped with four-second real time telemetry equipment to ensure resource accountability and visibility to CAISO operators. When CAISO requests DR resources, PG&E's OpenADR (Open Automated DR) communications infrastructure is utilized to deliver DR signals to the facilities energy management and control systems (EMCS). The pre-programmed DR strategies are triggered without a human in the loop. This paper describes the automated system architecture and the flow of information to trigger and monitor the performance of the DR events. We outline the DR strategies at each of the participating facilities. At one site a real time electric measurement feedback loop is implemented to assure the delivery of CAISO dispatched demand reductions. Finally, we present results from each of the facilities and discuss findings.

  1. Opportunities for Automated Demand Response in California’s Dairy Processing Industry

    SciTech Connect

    Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  2. Dramatic Demand Reduction In The Desert Southwest

    SciTech Connect

    Boehm, Robert; Hsieh, Sean; Lee, Joon; Baghzouz, Yahia; Cross, Andrew; Chatterjee, Sarah

    2015-07-06

    This report summarizes a project that was funded to the University of Nevada Las Vegas (UNLV), with subcontractors Pulte Homes and NV Energy. The project was motivated by the fact that locations in the Desert Southwest portion of the US demonstrate very high peak electrical demands, typically in the late afternoons in the summer. These high demands often require high priced power to supply the needs, and the large loads can cause grid supply problems. An approach was proposed through this contact that would reduce the peak electrical demands to an anticipated 65% of what code-built houses of the similar size would have. It was proposed to achieve energy reduction through four approaches applied to a development of 185 homes in northwest part of Las Vegas named Villa Trieste. First, the homes would all be highly energy efficient. Secondly, each house would have a PV array installed on it. Third, an advanced demand response technique would be developed to allow the resident to have some control over the energy used. Finally, some type of battery storage would be used in the project. Pulte Homes designed the houses. The company considered initial cost vs. long-term savings and chose options that had relatively short paybacks. HERS (Home Energy Rating Service) ratings for the homes are approximately 43 on this scale. On this scale, code-built homes rate at 100, zero energy homes rate a 0, and Energy Star homes are 85. In addition a 1.764 Wp (peak Watt) rated PV array was used on each house. This was made up of solar shakes that were in visual harmony with the roofing material used. A demand response tool was developed to control the amount of electricity used during times of peak demand. While demand response techniques have been used in the utility industry for some time, this particular approach is designed to allow the customer to decide the degree of participation in the response activity. The temperature change in the residence can be decided by the residents by

  3. Modeling the Demand for Cocaine

    DTIC Science & Technology

    1994-01-01

    the Demand for Cocaine Susan S. Everingham C. Peter Rydell Pre~redfor the Office of NatinalDrug Control Policy United States Army DRUG POLICY...Demand for Cocaine . 60 50- sm 40- squared 30- delta prevalence 20- 10- 0.2 0 0.15 0.15 󈧄 b C; 0 i Sum squared delta 0.2 prevalence 0.195 EQ 50-50 0,19...model of the demand for cocaine that was fit to 20 years of data on the current cocaine epidemic in the United States. It also describes the analysis

  4. Electrical Assessment, Capacity, and Demand Study for Fort Wainwright, Alaska

    DTIC Science & Technology

    2007-09-01

    80 ERDC/CERL TR-07-36 xv 28 Tieline and STG VAR change over time (1 year) ................................................................84...posi- tive non-zero values is 0.89. Having only this limited set of data, a tieline power factor of 0.85 seems to be a reasonable analytical basis...factor from 1 January 2004 to 4 May 2006. In fact, the local utility (GVEA) requires that the tieline operate at a PF of 0.85 or higher, or GVEA

  5. Evaluation of the Demand Response Performance of Electric Water Heaters

    SciTech Connect

    Mayhorn, Ebony T.; Widder, Sarah H.; Parker, Steven A.; Pratt, Richard M.; Chassin, Forrest S.

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  6. Electrical Load Modeling and Simulation

    SciTech Connect

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  7. Water demands for expanding energy development

    USGS Publications Warehouse

    Davis, G.H.; Wood, Leonard A.

    1974-01-01

    Water is used in producing energy for mining and reclamation of mined lands, onsite processing, transportation, refining, and conversion of fuels to other forms of energy. In the East, South, Midwest, and along the seacoasts, most water problems are related to pollution rather than to water supply. West of about the 100th meridian, however, runoff is generally less than potential diversions, and energy industries must compete with other water users. Water demands for extraction of coal, oil shale, uranium, and oil and gas are modest, although large quantities of water are used in secondary recovery operations for oil. The only significant use of water for energy transportation, aside from in-stream navigation use, is for slurry lines. Substantial quantities of water are required in the retorting and the disposal of spent oil shale. The conversion of coal to synthetic gas or oil or to electric power and the generation of electric power with nuclear energy require large quantities of water, mostly for cooling. Withdrawals for cooling of thermal-electric plants is by far the largest category of water use in energy industry, totaling about 170 billion gallons (644 million m3) per day in 1970. Water availability will dictate the location and design of energy-conversion facilities, especially in water deficient areas of the West.

  8. The welfare effects of integrating renewable energy into electricity markets

    NASA Astrophysics Data System (ADS)

    Lamadrid, Alberto J.

    The challenges of deploying more renewable energy sources on an electric grid are caused largely by their inherent variability. In this context, energy storage can help make the electric delivery system more reliable by mitigating this variability. This thesis analyzes a series of models for procuring electricity and ancillary services for both individuals and social planners with high penetrations of stochastic wind energy. The results obtained for an individual decision maker using stochastic optimization are ambiguous, with closed form solutions dependent on technological parameters, and no consideration of the system reliability. The social planner models correctly reflect the effect of system reliability, and in the case of a Stochastic, Security Constrained Optimal Power Flow (S-SC-OPF or SuperOPF), determine reserve capacity endogenously so that system reliability is maintained. A single-period SuperOPF shows that including ramping costs in the objective function leads to more wind spilling and increased capacity requirements for reliability. However, this model does not reflect the inter temporal tradeoffs of using Energy Storage Systems (ESS) to improve reliability and mitigate wind variability. The results with the multiperiod SuperOPF determine the optimum use of storage for a typical day, and compare the effects of collocating ESS at wind sites with the same amount of storage (deferrable demand) located at demand centers. The collocated ESS has slightly lower operating costs and spills less wind generation compared to deferrable demand, but the total amount of conventional generating capacity needed for system adequacy is higher. In terms of the total system costs, that include the capital cost of conventional generating capacity, the costs with deferrable demand is substantially lower because the daily demand profile is flattened and less conventional generation capacity is then needed for reliability purposes. The analysis also demonstrates that the

  9. Speech measures indicating workload demand.

    PubMed

    Brenner, M; Doherty, E T; Shipp, T

    1994-01-01

    Heart rate and six speech measures were evaluated using a manual tracking task under different workload demands. Following training, 17 male subjects performed three task trials: a difficult trial, with a $50 incentive for successful performance at a very demanding level; an easy trial, with a $2 incentive for successful performance at a simple level; and a baseline trial, in which there was physiological monitoring but no tracking performance. Subjects counted aloud during the trials. It was found that heart rate, speaking fundamental frequency (pitch), and vocal intensity (loudness) increased significantly with workload demands. Speaking rate showed a marginal increase, while vocal jitter and vocal shimmer did not show reliable changes. A derived speech measure, which statistically combined information from all other speech measures except shimmer, was also evaluated. It increased significantly with workload demands and was surprisingly robust in showing differences for individual subjects. It appears that speech analysis can provide practical workload information.

  10. Industrial Demand Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  11. Residential Demand Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  12. Electric power annual 1992

    SciTech Connect

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  13. Rates and technologies for mass-market demand response

    SciTech Connect

    Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

    2002-07-21

    Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory, system-operator controlled, contingency program, and (2) a voluntary, customer controlled, bill management program with rate-based incentives. Any demand response program based on this system could consist of either or both of these components. Ideally, these programs would be bundled, providing automatic load management through customer-programmed price response, plus up to 10 GW of emergency load shedding capability in California. Finally, we discuss options for and barriers to implementation of such a program in California.

  14. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo

    2016-07-01

    This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.

  15. Systematic Modification of Electrical and Superconducting Properties of YBCO and Nano-Patterning of High-Tc Superconducting Thin Films by Light-Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Pedarnig, J. D.; Bodea, M. A.; Steiger, B.; Markowitsch, W.; Lang, W.

    Irradiation of high-temperature superconducting (HTS) YBa2Cu3O7-d (YBCO) thin films with 75 keV He+ ions leads to a quasi-exponential increase of the in-plane (ρab) and the out-of-plane (ρc) resistivity in the normal state and to a non-linear decrease of the critical temperature Tc with ion dose. In situ electrical measurements at room temperature reveal an irradiation-induced reduction of resistivity anisotropy ρc/ρab and a slight relaxation of film resistivity after the ion irradiation is stopped. Ex situ measurements show a stretched-exponential relaxation of Tc and normal state resistivity that continues for several weeks after the ion irradiation. Irradiation of YBCO thin films by low-energy He+ ions through stencil masks results in local modification of the electrical and superconducting properties of the HTS material. We demonstrate that masked ion-beam lithography enables to produce structures smaller than 100 nm in size that have potential for applications in future superconducting nano-electronics.

  16. Effects of Temporal Wind Patterns on the Value of Wind-GeneratedElectricity at Different Sites in California and the Northwest

    SciTech Connect

    Fripp, Matthias; Wiser, Ryan

    2006-08-04

    Wind power production varies on a diurnal and seasonal basis. In this paper, we use wind speed data from three different sources to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwestern United States. By ''value'', we refer to either the contribution of wind power to meeting the electric system's peak loads, or the financial value of wind power in electricity markets. Sites for wind power projects are often screened or compared based on the annual average power production that would be expected from wind turbines at each site (Baban and Parry 2001; Brower et al. 2004; Jangamshetti and Rau 2001; Nielsen et al. 2002; Roy 2002; Schwartz 1999). However, at many locations, variations in wind speeds during the day and year are correlated with variations in the electric power system's load and wholesale market prices (Burton et al. 2001; Carlin 1983; Kennedy and Rogers 2003; Man Bae and Devine 1978; Sezgen et al. 1998); this correlation may raise or lower the value of wind power generated at each location. A number of previous reports address this issue somewhat indirectly by studying the contribution of individual wind power sites to the reliability or economic operation of the electric grid, using hourly wind speed data (Fleten et al.; Kahn 1991; Kirby et al. 2003; Milligan 2002; van Wijk et al. 1992). However, we have not identified any previous study that examines the effect of variations in wind timing across a broad geographical area on wholesale market value or capacity contribution of those different wind power sites. We have done so, to determine whether it is important to consider wind-timing when planning wind power development, and to try to identify locations where timing would have a more positive or negative effect. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value

  17. Energy supply and demand in California

    NASA Technical Reports Server (NTRS)

    Griffith, E. D.

    1978-01-01

    The author expresses his views on future energy demand on the west coast of the United States and how that energy demand translates into demand for major fuels. He identifies the major uncertainties in determining what future demands may be. The major supply options that are available to meet projected demands and the policy implications that flow from these options are discussed.

  18. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  19. Radius fracture from an electrical injury involving an electric guitar.

    PubMed

    Pappano, Dante

    2010-03-01

    Electrical injury ranges widely from simple shock and mild burns to more extensive superficial injury, internal injury, and mortality. Bony fracture from electrically-induced tetanic muscle contraction is a rare but recognized injury. We report the case of a 14-year-old boy who suffered a minor burn and radius fracture related to an electrical injury involving his electric guitar. An interesting pattern is emerging from available case reports of similar injuries.

  20. China's rising hydropower demand challenges water sector.

    PubMed

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P W; Guan, Dabo

    2015-07-09

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 10(9) m(3) (Gm(3)), or 22% of China's total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm(3) yr(-1) or 3.6 m(3) of water to produce a GJ (10(9) J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability.

  1. Demand Forecasting and Revenue Requirements, with Implications for Consideration in British Columbia,

    DTIC Science & Technology

    1983-05-01

    Econometric Study of Electricity Demand by Manufacturing Industries," NUREG /CR-11358, Oak Ridge, Tennessee: Energy Division, Oak Ridge National...Load for States and Utility Service Areas," NUREG /CR-2692, ORNL/TM- 7947, Oak Ridge, Tennessee: Energy Division, Oak Ridge National Laboratory, May...1982. Just, Richard E. and Chang, Hui S., "A Varying Elasticity Model of Electricity Demand with Given Appliance Saturation," NUREG /CR- 1956, ORNL/ NUREG

  2. Fundamental Travel Demand Model Example

    NASA Technical Reports Server (NTRS)

    Hanssen, Joel

    2010-01-01

    Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.

  3. Turkey's energy demand and supply

    SciTech Connect

    Balat, M.

    2009-07-01

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  4. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  5. International Oil Supplies and Demands

    SciTech Connect

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  6. National Economic Value Assessment of Plug-in Electric Vehicles: Volume I

    SciTech Connect

    Melaina, Marc; Bush, Brian; Eichman, Joshua; Wood, Eric; Stright, Dana; Krishnan, Venkat; Keyser, David; Mai, Trieu; McLaren, Joyce

    2016-12-01

    The adoption of plug-in electric vehicles (PEVs) can reduce household fuel expenditures by substituting electricity for gasoline while reducing greenhouse gas emissions and petroleum imports. A scenario approach is employed to provide insights into the long-term economic value of increased PEV market growth across the United States. The analytic methods estimate fundamental costs and benefits associated with an economic allocation of PEVs across households based upon household driving patterns, projected vehicle cost and performance attributes, and simulations of a future electricity grid. To explore the full technological potential of PEVs and resulting demands on the electricity grid, very high PEV market growth projections from previous studies are relied upon to develop multiple future scenarios.

  7. Computational Imaging in Demanding Conditions

    DTIC Science & Technology

    2015-11-18

    interest in nanoscience in many research fields like  physics,  chemistry , and biology, including the  environmental  fate of the  produced nano-objects...to the Air Force; namely, the removal of disturbances due to demanding physical and environmental conditions. We considered degradations of interest...of  disturbances due to demanding physical and  environmental  conditions. We considered  degradations of interest that can be caused by a number of

  8. Demand-withdraw interaction in couples with a violent husband.

    PubMed

    Berns, S B; Jacobson, N S; Gottman, J M

    1999-10-01

    This study examined the relationship between demand-withdraw interaction and battering in couples with a violent husband. The authors compared the interaction patterns of 47 couples with a violent husband with the interaction patterns of 28 distressed but nonviolent couples and 16 happily married nonviolent couples. All couples engaged in videotaped discussions of problem areas in their marriage. Both batterers and battered women showed less positive communication and more negative communication than did their nonviolent counterparts. Additionally, batterers showed significantly higher levels of both demanding and withdrawing than did other men. Battered women demanded more change than did women in nonviolent marriages but were significantly less inclined to withdraw than were their husbands. The discussion of these findings focuses on the interactional dynamics between batterers and battered women and how these interactions might be understood.

  9. Forecasting urban water demand: A meta-regression analysis.

    PubMed

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike.

  10. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.

    PubMed

    Liu, Liang; Ma, Siyuan; Pei, Yunheng; Xiong, Xiao; Sivakumar, Preeth; Singler, Timothy J

    2016-08-24

    We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 μm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive

  11. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: The effects of current-path patterns on magnetotransport in spatially-confined structures by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Chun; Sun, Hua; Li, Zhen-Ya

    2009-11-01

    Simulations are performed on clusters of finite size to study the effects of size and current-path structure on magnetotransport in spatially-confined samples. Magnetotransport networks are established and calculated based on fractal structures including Koch curves and percolation backbones extracted from regular lattices. The structure pattern of clusters is shown to play an important role in the magnetotransport behaviours by affecting the magnetoresistance fluctuations due to spin disorder in the systems of small size, which suggests the possibility of controlling the magnetotransport by the design of current-path configurations.

  12. Testing simulation and structural models with applications to energy demand

    NASA Astrophysics Data System (ADS)

    Wolff, Hendrik

    2007-12-01

    This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality

  13. Alaska Village Electric Load Calculator

    SciTech Connect

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  14. A Passion for Pattern

    ERIC Educational Resources Information Center

    Venola, Penelope

    2012-01-01

    Popular culture is a relatively new area of study in the artroom, and combining it with the demands of a rigorous curriculum requires some thought. Combining threads from several sources was the key to an exciting exploration of pattern inspired by a newspaper headline. In 2006, a landmark case was settled in Austria, which repatriated five famous…

  15. Towards Real Information on Demand.

    ERIC Educational Resources Information Center

    Barker, Philip

    The phrase "information on demand" is often used to describe situations in which digital electronic information can be delivered to particular points of need at times and in ways that are determined by the specific requirements of individual consumers or client groups. The advent of "mobile" computing equipment now makes the…

  16. Employer Demands from Business Graduates

    ERIC Educational Resources Information Center

    McMurray, Stephen; Dutton, Matthew; McQuaid, Ronald; Richard, Alec

    2016-01-01

    Purpose: The purpose of this paper is to report on research carried out with employers to determine demand for business and management skills in the Scottish workforce. Design/methodology/approach: The research used a questionnaire in which employers were interviewed (either telephone or face to face), completed themselves and returned by e-mail,…

  17. Smart Buildings and Demand Response

    NASA Astrophysics Data System (ADS)

    Kiliccote, Sila; Piette, Mary Ann; Ghatikar, Girish

    2011-11-01

    Advances in communications and control technology, the strengthening of the Internet, and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems in buildings. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto-DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (OpenADR). Basic building energy science and control issues in this approach begin with key building components, systems, end-uses and whole building energy performance metrics. The paper presents a framework about when energy is used, levels of services by energy using systems, granularity of control, and speed of telemetry. DR, when defined as a discrete event, requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

  18. Commercial Demand Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  19. Sparks fly over electric cars

    SciTech Connect

    Griffith, V.

    1994-10-01

    While the US automobile industry scrambles to meet 1998 deadlines to put electric vehicles on the market, controversy about the environmental benefits and commercial viability of battery-operated cars is mounting. Circumstances in the US increasingly favor the electric car. Air quality laws in California and Massachusetts now demand that {open_quotes}zero-emission{close_quotes} vehicles comprise 2 percent of total sales in the car market by 1998. Electric cars are the only vehicles to meet such standards so far. Other states are considering similar laws. This article examines the pros and cons of electric vehicle use.

  20. Demand Controlled Ventilation and Classroom Ventilation

    SciTech Connect

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2012-05-01

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  1. Power demand estimates may be low, Yergin warns

    SciTech Connect

    Simpson, J.

    1993-02-01

    Electricity demand growth, once overestimated in the 1970s and early 1980s, now may be underestimated, particularly if the economy emerges from recession, said Daniel Yergin, president of Cambridge Energy Research Associates, in an apperance at the National Press Club. He warned that the prospect of premature shutdowns of existing nuclear power plants due to high costs and uncertainties about the cost of replacing new equipment to meet new Nuclear Regulatory Commission standards could result in a surprise for the electric supply system. Yergin also predicted the Clinton administration is likely to propose a moderate gasoline tax as part of a budget deficit reduction package.

  2. Micromachined electrical cauterizer

    DOEpatents

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.

    1999-08-31

    A micromachined electrical cauterizer is disclosed. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 {mu}m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures. 7 figs.

  3. Micromachined electrical cauterizer

    DOEpatents

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen

    1999-01-01

    A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

  4. Electrical injury

    MedlinePlus

    ... damage, especially to the heart, muscles, or brain. Electric current can cause injury in three ways: Cardiac arrest ... How long you were in contact with the electricity How the electricity moved through your body Your ...

  5. Electricity Customers

    EPA Pesticide Factsheets

    This page discusses key sectors and how they use electricity. Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity.

  6. Electricity energy outlook in Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, C. S.; Maragatham, K.; Leong, Y. P.

    2013-06-01

    Population and income growth are the key drivers behind the growing demand for energy. Demand for electricity in Malaysia is always growing in tandem with its Gross Domestic Product (GDP) growth. The growth for electricity in Malaysia forecasted by Economic Planning Unit (EPU) has shown an increase of 3.52% in 2012 compared to 3.48% in 2011. This growth has been driven by strong demand growth from commercial and domestic sectors. The share of electricity consumption to total energy consumption has increased from 17.4% in 2007 to 21.7% in 2012. The total electricity production was reported at 122.12TWh in 2012, where gas is still the major fuel source contributing to 52.7% of the total generation fuel mix of electricity followed by Coal, 38.9%, hydro, 7.3%, oil, 1% and others, 0.2%. This paper aims to discuss the energy outlook particularly the electricity production and ways toward greener environment in electricity production in Malaysia

  7. Laughing: a demanding exercise for trunk muscles.

    PubMed

    Wagner, Heiko; Rehmes, Ulrich; Kohle, Daniel; Puta, Christian

    2014-01-01

    Social, psychological, and physiological studies have provided evidence indicating that laughter imposes an increased demand on trunk muscles. It was the aim of this study to quantify the activation of trunk muscles during laughter yoga in comparison with crunch and back lifting exercises regarding the mean trunk muscle activity. Muscular activity during laughter yoga exercises was measured by surface electromyography of 5 trunk muscles. The activation level of internal oblique muscle during laughter yoga is higher compared to the traditional exercises. The multifidus, erector spinae, and rectus abdominis muscles were nearly half activated during laughter yoga, while the activation of the external oblique muscle was comparable with the crunch and back lifting exercises. Our results indicate that laughter yoga has a positive effect on trunk muscle activation. Thus, laughter seems to be a good activator of trunk muscles, but further research is required whether laughter yoga is a good exercise to improve neuromuscular recruitment patterns for spine stability.

  8. Electricity from biogas

    SciTech Connect

    Augenstein, D.; Benemann, J.; Hughes, E.

    1994-12-31

    Biogas is a medium-Btu methane and carbon dioxide mix produced by bacterial decomposition of organic matter. Its sources include landfills, waste water sludges, and animal wastes. It can fuel energy applications, of which electricity generation is a frequently-preferred option. The greatest current U.S. biogas recovery and energy use is at landfills, where biogas at about 80 landfill sites fuels a total of approximately 300 MWe. Wastewater treatment plants and confined animal waste management systems support additional electric power production. Generation of electricity from biogas can present difficulties due to the generally small scale of the generating facility, variable energy content of the gas, fluctuating availability, contaminant problems, and often-demanding control needs. However, such difficulties are being successfully addressed and economics for electricity generation are often favorable as biogas can be essentially {open_quotes}free{close_quotes} fuel. Biogas recovery and use has the additional advantage of mitigating a potent greenhouse gas. Biogas from U.S. landfills alone could fuel about 1% of U.S. electrical generation while giving climate change benefit equivalent to reducing CO{sub 2} emissions in the electricity sector by more than 10%. Growth in landfill gas use will be facilitated by recent regulations, advances in equipment, and improved management techniques such as {open_quotes}controlled landfilling{close_quotes}. The potential for biogas recovery and electricity production from sewage sludges, animal wastes and other organic resources such as agricultural residues is uncertain but probably exceeds the estimate for landfills.

  9. Modeling the influence of the VV delay for CRT on the electrical activation patterns in absence of conduction through the AV node

    NASA Astrophysics Data System (ADS)

    Romero, D. A.; Sebastián, Rafael; Plank, Gernot; Vigmond, Edward J.; Frangi, Alejandro F.

    2008-03-01

    From epidemiological studies, it has been shown that 0.2% of men and 0.1% of women suffer from a degree of atrioventricular (AV) block. In recent years, the palliative treatment for third degree AV block has included Cardiac Resynchronization Therapy (CRT). It was found that patients show more clinical improvement in the long term with CRT compared with single chamber devices. Still, an important group of patients does not improve their hemodynamic function as much as could be expected. A better understanding of the basis for optimizing the devices settings (among which the VV delay) will help to increase the number of responders. In this work, a finite element model of the left and right ventricles was generated using an atlas-based approach for their segmentation, which includes fiber orientation. The electrical activity was simulated with the electrophysiological solver CARP, using the Ten Tusscher et al. ionic model for the myocardium, and the DiFrancesco-Noble for Purkinje fibers. The model is representative of a patient without dilated or ischemic cardiomyopathy. The simulation results were analyzed for total activation times and latest activated regions at different VV delays and pre-activations (RV pre-activated, LV pre-activated). To optimize the solution, simulations are compared against the His-Purkinje network activation (normal physiological conduction), and interventricular septum activation (as collision point for the two wave fronts). The results were analyzed using Pearson's coefficient of correlation for point to point comparisons between simulation cases. The results of this study contribute to gain insight on the VV delay and how its adjustment might influence response to CRT and how it can be used to optimize the treatment.

  10. Apparatus producing constant cable tension for intermittent demand

    DOEpatents

    Lauritzen, T.

    1984-05-23

    This invention relates to apparatus for producing constant tension in cable or the like when it is unreeled and reeled from a drum or spool under conditions of intermittent demand. The invention is particularly applicable to the handling of superconductive cable, but the invention is also applicable to the unreeling and reeling of other strands, such as electrical cable, wire, cord, other cables, fish line, wrapping paper and numerous other materials.

  11. Textile industry: Profile and DSM (demand-side management) options

    SciTech Connect

    Not Available

    1990-07-01

    The Textile Industry Guidebook provides electric utility planning, marketing, and customer service staff with a practical tool to better understand the textile industry and the challenges it faces; its manufacturing processes, technologies, and energy use; and its opportunities for demand-site management (DSM). The Guidebook concludes with guidance and summary data for developing and evaluating DSM plans to realize such opportunities. 5 refs., 37 figs., 52 tabs.

  12. New coal plant technologies will demand more water

    SciTech Connect

    Peltier, R.; Shuster, E.; McNemar, A.; Stiegel, G.J.; Murphy, J.

    2008-04-15

    Population shifts, growing electricity demand, and greater competition for water resources have heightened interest in the link between energy and water. The US Energy Information Administration projects a 22% increase in US installed generating capacity by 2030. Of the 259 GE of new capacity expected to have come on-line by then, more than 192 GW will be thermoelectric and thus require some water for cooling. Our challenge will become balancing people's needs for power and for water. 1 ref., 7 figs.

  13. Trends in international electricity markets

    SciTech Connect

    Toner, P.; Vera, I.

    1995-12-31

    The electric power industry is expected to continue experiencing significant changes throughout the beginning of the next century as the world becomes increasingly dependent on electricity. Three major trends characterize the industry worldwide: growth in demand, changes in its structure, and shifts in generation fuel mix. Electricity will remain the fastest growing form of end-use energy worldwide throughout 2010. Non-OECD countries will experience the largest growth in electricity demand as governments attempt to satisfy electricity requirements indispensable to ensure economic development. Increasing world dependence on electricity is accompanied by dramatic changes in the electric power industry in key areas such as regulation structure, and ownership. These changes imply more competitive environments and greater efficiency. Another important trend expected to continue is the shifts in the fuel mix of world electricity generation. The next 15 years will be characterized by increasing shares of natural gas and renewable fuel consumption while nuclear, oil and coal shares will decrease. This paper summarizes major trends in international electricity markets and describes important developments in world regions such as North America, Europe, Asia and Central and South America.

  14. Advertising increases demand for vasectomy.

    PubMed

    Mehta, M; Mckenzie, M

    1996-01-01

    The recent evaluation of a 2-year no-scalpel vasectomy (NSV) training program providing on-site, hands-on training for physicians working in 43 publicly funded health centers in 17 states found that demand for vasectomy in low-income and minority communities in the US increased following the implementation of innovative advertising strategies. The program also provided sites with surgical instruments, training materials, a press kit, and some help with public information activities. Participating clinics used a range of formal and informal advertising strategies, including radio and printed advertisements, to inform potential clients about vasectomy services. Many interested clients presented to clinics to undergo vasectomy once they had been made aware of the service and its availability. Several providers even stated that advertising caused the demand for vasectomy to exceed their capacity to provide services. The provision of low- or no-cost procedures helped to attract new clients.

  15. Advertising media and cigarette demand.

    PubMed

    Goel, Rajeev K

    2011-01-01

    Using state-level panel data for the USA spanning three decades, this research estimates the demand for cigarettes. The main contribution lies in studying the effects of cigarette advertising disaggregated across five qualitatively different groups. Results show cigarette demand to be near unit elastic, the income effects to be generally insignificant and border price effects and habit effects to be significant. Regarding advertising effects, aggregate cigarette advertising has a negative effect on smoking. Important differences across advertising media emerge when cigarette advertising is disaggregated. The effects of public entertainment and Internet cigarette advertising are stronger than those of other media. Anti-smoking messages accompanying print cigarette advertising seem relatively more effective. Implications for smoking control policy are discussed.

  16. Patterns of Broken Patterns

    NASA Astrophysics Data System (ADS)

    Field, R. W.; Park, G. B.; Changala, P. B.; Baraban, J. H.; Stanton, J. F.; Merer, A. J.

    2013-06-01

    Spectroscopy - it is all about patterns. Some patterns look so indescribably complicated that, unlike pornography, you do not know one when you see one. It is tempting to say that, at high vibrational excitation, interactions among normal mode basis states are so strong and widespread that all patterns are obliterated. But this is not true. When normal mode frequencies are in near integer multiple ratios, polyads emerge. A polyad is a robust pattern often comprising many vibrational eigenstates. Each such pattern might span many hundreds of cm^{-1}, and it is inevitable that several unrelated polyad patterns overlap. When polyads overlap, it might seem impossible to disentangle them. However, the key to disentanglement is that polyads come in families in which successive generations are related by harmonic oscillator matrix element selection and scaling rules. Families of polyads are described by families of scaling-based effective Hamiltonian matrices, {H}^{{eff}}. No matter how complex and overlapped, the polyad {H}^{{eff}} serves as a magic decoder for picking out the polyad pattern. Sometimes the polyad patterns are systematically broken (a meta-pattern), owing to proximity to an isomerization barrier, as occurs in highly excited bending levels of the S_{1} state of HCCH, which encode the trans-cis minimum energy isomerization path. Quantum Chemists often dismiss {H}^{{eff}} models, precisely because they are models that do not express the full dimensionality of the complete Hamiltonian. But an {H}^{{eff}} explains rather than describes. Shunning {H}^{{eff}}s is like throwing out the baby with the bath water. Don't do it!

  17. Disruptive innovation: the demand side.

    PubMed

    Havighurst, Clark C

    2008-01-01

    The notion of disruptive innovation provides a welcome framework for considering the prospects for low-cost alternatives in American medicine. Such innovations as have been seen, however, are largely the result of demand by patients paying their own bills because they have high-deductible coverage or are uninsured. Many other cost-saving innovations are discouraged by financing systems that are themselves largely immune to competition from disruptive innovators.

  18. Electric sales and revenue, 1990

    SciTech Connect

    Not Available

    1992-02-21

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. Previous publications presented data on typical electric bills at specified consumption levels as well as sales, revenues, and average revenue. The sales, revenue, and average revenue per kilowatthour provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1990. The electric revenue reported by each electric utility includes the revenue billed for the amount of kilowatthours sold, revenue from income, unemployment and other State and local taxes, energy or demand charges, consumer services charges, environmental surcharges, franchise fees, fuel adjustments, and other miscellaneous charges. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.

  19. Energy demand and population change.

    PubMed

    Allen, E L; Edmonds, J A

    1981-09-01

    During the post World War 2 years energy consumption has grown 136% while population grew about 51%; per capita consumption of energy expanded, therefore, about 60%. For a given population size, demographic changes mean an increase in energy needs; for instance the larger the group of retirement age people, the smaller their energy needs than are those for a younger group. Estimates indicate that by the year 2000 the energy impact will be toward higher per capita consumption with 60% of the population in the 19-61 age group of workers. Rising female labor force participation will increase the working group even more; it has also been found that income and energy grow at a proportional rate. The authors predict that gasoline consumption within the US will continue to rise with availability considering the larger number of female drivers and higher per capita incomes. The flow of illegal aliens (750,000/year) will have a major impact on income and will use greater amounts of energy than can be expected. A demographic change which will lower energy demands will be the slowdown of the rate of household formation caused by the falling number of young adults. The response of energy demand to price changes is small and slow but incomes play a larger role as does the number of personal automobiles and social changes affecting household formation. Households, commercial space, transportation, and industry are part of every demand analysis and population projections play a major role in determining these factors.

  20. Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest

    SciTech Connect

    Piette, Mary Ann; Kiliccote, Sila; Dudley, Junqiao H.

    2011-11-11

    There are growing strains on the electric grid as cooling peaks grow and equipment ages. Increased penetration of renewables on the grid is also straining electricity supply systems and the need for flexible demand is growing. This paper summarizes results of a series of field test of automated demand response systems in large buildings in the Pacific Northwest. The objective of the research was two fold. One objective was to evaluate the use demand response automation technologies. A second objective was to evaluate control strategies that could change the electric load shape in both winter and summer conditions. Winter conditions focused on cold winter mornings, a time when the electric grid is often stressed. The summer test evaluated DR strategies in the afternoon. We found that we could automate both winter and summer control strategies with the open automated demand response communication standard. The buildings were able to provide significant demand response in both winter and summer events.

  1. United States/Mexico electricity exchanges. [History, incentives, and constraints

    SciTech Connect

    None,

    1980-05-01

    As a result of the agreement between the respective presidents, a joint study was undertaken to analyze the possibilities of increasing the international electricity exchange between the two countries. Responsibility for this undertaking was assigned to the United States Department of Energy (DOE) and to the Direccion de Energia de Mexico (DEM) through the Comision Federal de Electricidad (CFE). Representatives from Mexico and the US were chosen from the regional utilities along the border between the two countries and made up working groups that particiated in the study. With the support of both governments, and a high degree of cooperation between the two countries, work on the study was completed within fourteen months The completion of the study has been a major step in broadening the base of bilateral energy relations. the study highlights the opportunities for increased electricity exchanges, which could increase cooperation along the common border. Expansion of electricity interchange could offer substantial economic benefit to both countries, both directly and indirectly. Direct benefits include increased reliability of electric power and cost savings through economies of scale and diversity of peak demand patterns. Indirect benefits include improved economic and employment opportunities, especially in the border areas of both countries. This report provides background on the history of past exchanges and the characteristics of the US and Mexico electric systems, a summary of opportunities and incentives, and suggestions for procedures to remove obstacles and constraints.

  2. Perspectives on the future of the electric utility industry

    SciTech Connect

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  3. Modeling of the Electric Ship

    DTIC Science & Technology

    2010-06-01

    POWER SYSTEMS The segregated power system that the Navy employs today was initially fa- vored because it proved more efficient than an electric drive...and the linac are driven by a shared RF source consisting of either klystron banks or inductive output tubes operating on the 45kVDC bus. 25 Power ...electrical grid to power every system aboard a ship, including propulsion and weapons. Some concerns with this design are estimating the power demands

  4. Electrical Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    The purpose of this electrical program is to prepare students for service, repair, and assembly of electrically driven or controlled devices. The program theory and application includes mechanical assemblies, electrical circuitry, and electronic principles including basic digital circuitry. The electrical program manual includes the following…

  5. Impacts of Climate Change on Electric Transmission Capacity and Peak Electricity Load in the United States

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M. D.; Eisenberg, D. A.; Gorman, B.; Johnson, N.

    2015-12-01

    Climate change may hinder future electricity reliability by reducing electric transmission capacity while simultaneously increasing electricity demand. This study estimates potential climate impacts to electric transmission capacity and peak electricity load in the United States. Electric power cables suffer decreased transmission capacity as they get hotter; similarly, during the summer peak period, electricity demand typically increases with hotter ambient air temperatures due to increased cooling loads. As atmospheric carbon concentrations increase, higher air temperatures may strain power infrastructure by reducing transmission capacity and increasing peak electricity loads. Taken together, these coincident impacts may have unpredictable consequences for electric power reliability. We estimate the effects of climate change on both the rated capacity of transmission infrastructure and expected electricity demand for 120 electrical utilities across the United States. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with downscaled CMIP5 temperature projections to determine the relative change in rated ampacity over the twenty-first century. Next, we assess the impact of climate change on electricity demand by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We use downscaled temperature projections from 11 CMIP5 GCM models under 3 atmospheric carbon scenarios. We find that by mid-century (2040-2060), climate change may reduce average summertime transmission capacity by 4-6% relative to the 1990-2010 reference period. At the same time, peak summertime loads may rise by roughly 2-12% on average due to increases in daily maximum air temperature. In the absence of energy efficiency gains, demand-side management programs

  6. A Nonlinear Dynamics Approach for Incorporating Wind-Speed Patterns into Wind-Power Project Evaluation

    PubMed Central

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind—the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns. PMID:25617767

  7. Rates and technologies for mass-market demand response

    SciTech Connect

    Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

    2002-07-21

    Demand response programs are often quickly and poorlycrafted in reaction to an energy crisis and disappear once the crisissubsides, ensuring that the electricity system will be unprepared whenthe next crisis hits. In this paper, we propose to eliminate theevent-driven nature of demand response programs by considering demandresponsiveness a component of the utility obligation to serve. As such,demand response can be required as a condition of service, and theoffering of demand response rates becomes a requirement of utilities asan element of customer service. Using this foundation, we explore thecosts and benefits of a smart thermostat-based demand response systemcapable of two types of programs: (1) a mandatory, system-operatorcontrolled, contingency program, and (2) a voluntary, customercontrolled, bill management program with rate-based incentives. Anydemand response program based on this system could consist of either orboth of these components. Ideally, these programs would be bundled,providing automatic load management through customer-programmed priceresponse, plus up to 10 GW of emergency load shedding capability inCalifornia. Finally, we discuss options for and barriers toimplementation of such a program in California.

  8. Unlocking the potential for efficiency and demand response throughadvanced metering

    SciTech Connect

    Levy, Roger; Herter, Karen; Wilson, John

    2004-06-30

    Reliance on the standard cumulative kilowatt-hour meter substantially compromises energy efficiency and demand response programs. Without advanced metering, utilities cannot support time-differentiated rates or collect the detailed customer usage information necessary to (1)educate the customer to the economic value of efficiency and demand response options, or (2) distribute load management incentives proportional to customer contribution. These deficiencies prevent the customer feedback mechanisms that would otherwise encourage economically sound demand-side investments and behaviors. Thus, the inability to collect or properly price electricity usage handicaps the success of almost all efficiency and demand response options. Historically, implementation of the advanced metering infrastructure (AMI) necessary for the successful efficiency and demand response programs has been prevented by inadequate cost-benefit analyses. A recent California effort has produced an expanded cost-effectiveness methodology for AMI that introduces previously excluded benefits. In addition to utility-centric costs and benefits, the new model includes qualitative and quantitative costs and benefits that accrue to both customers and society.

  9. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect

    Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

    2010-03-17

    The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides

  10. Long-term impacts of battery electric vehicles on the German electricity system

    NASA Astrophysics Data System (ADS)

    Heinrichs, H. U.; Jochem, P.

    2016-05-01

    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.

  11. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations

    SciTech Connect

    Kirby, Brendan J

    2006-07-01

    Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second

  12. Evaluation of Demand Prediction Techniques

    DTIC Science & Technology

    1987-03-01

    Road Bethesda, Maryland 20817 5886 JiZ A q C64 ACKNOWLEDGMENTS Robert Arnberg of LMI deserves credit for assembling many files cf D041 data for...the best techniques of those we studied. • Use of a Poisson or constant variance-to-mean ratio (VMR) leads to poor allocation of resources. Treating...the program element is not in the D041 record or is zero for some quarters with positive demand, or has apparent errors that lead to a less stable

  13. A Generalized Formulation of Demand Response under Market Environments

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Y.; Nguyen, Duc M.

    2015-06-01

    This paper presents a generalized formulation of Demand Response (DR) under deregulated electricity markets. The problem is scheduling and controls the consumption of electrical loads according to the market price to minimize the energy cost over a day. Taking into account the modeling of customers' comfort (i.e., preference), the formulation can be applied to various types of loads including what was traditionally classified as critical loads (e.g., air conditioning, lights). The proposed DR scheme is based on Dynamic Programming (DP) framework and solved by DP backward algorithm in which the stochastic optimization is used to treat the uncertainty, if any occurred in the problem. The proposed formulation is examined with the DR problem of different loads, including Heat Ventilation and Air Conditioning (HVAC), Electric Vehicles (EVs) and a newly DR on the water supply systems of commercial buildings. The result of simulation shows significant saving can be achieved in comparison with their traditional (On/Off) scheme.

  14. Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market

    ERIC Educational Resources Information Center

    Berry, Steven; Levinsohn, James; Pakes, Ariel

    2004-01-01

    In this paper, we consider how rich sources of information on consumer choice can help to identify demand parameters in a widely used class of differentiated products demand models. Most important, we show how to use "second-choice" data on automotive purchases to obtain good estimates of substitution patterns in the automobile industry. We use…

  15. Growth in Malaysian Demand for Business Education--the Australian Response.

    ERIC Educational Resources Information Center

    Lewis, Philip E. T.; Pratt, Graham R.

    1996-01-01

    Increasing Malaysian demand for business education is examined from the perspective of Australia, one of the largest suppliers to the region. Topics discussed include: origins and nature of the demand; Malaysian enrollment patterns in Australia; "twinning programs," in which a Malaysian college and a foreign university collaborate to…

  16. Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.

    SciTech Connect

    Starke, Michael R; Kirby, Brendan J; Kueck, John D; Todd, Duane; Caulfield, Michael; Helms, Brian

    2009-02-01

    Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power

  17. Development of S-ARIMA Model for Forecasting Demand in a Beverage Supply Chain

    NASA Astrophysics Data System (ADS)

    Mircetic, Dejan; Nikolicic, Svetlana; Maslaric, Marinko; Ralevic, Nebojsa; Debelic, Borna

    2016-11-01

    Demand forecasting is one of the key activities in planning the freight flows in supply chains, and accordingly it is essential for planning and scheduling of logistic activities within observed supply chain. Accurate demand forecasting models directly influence the decrease of logistics costs, since they provide an assessment of customer demand. Customer demand is a key component for planning all logistic processes in supply chain, and therefore determining levels of customer demand is of great interest for supply chain managers. In this paper we deal with exactly this kind of problem, and we develop the seasonal Autoregressive IntegratedMoving Average (SARIMA) model for forecasting demand patterns of a major product of an observed beverage company. The model is easy to understand, flexible to use and appropriate for assisting the expert in decision making process about consumer demand in particular periods.

  18. Water supply and demand in an energy supply model

    SciTech Connect

    Abbey, D; Loose, V

    1980-12-01

    This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

  19. Flexible Demand Management under Time-Varying Prices

    NASA Astrophysics Data System (ADS)

    Liang, Yong

    In this dissertation, the problem of flexible demand management under time-varying prices is studied. This generic problem has many applications, which usually have multiple periods in which decisions on satisfying demand need to be made, and prices in these periods are time-varying. Examples of such applications include multi-period procurement problem, operating room scheduling, and user-end demand scheduling in the Smart Grid, where the last application is used as the main motivating story throughout the dissertation. The current grid is experiencing an upgrade with lots of new designs. What is of particular interest is the idea of passing time-varying prices that reflect electricity market conditions to end users as incentives for load shifting. One key component, consequently, is the demand management system at the user-end. The objective of the system is to find the optimal trade-off between cost saving and discomfort increment resulted from load shifting. In this dissertation, we approach this problem from the following aspects: (1) construct a generic model, solve for Pareto optimal solutions, and analyze the robust solution that optimizes the worst-case payoffs, (2) extend to a distribution-free model for multiple types of demand (appliances), for which an approximate dynamic programming (ADP) approach is developed, and (3) design other efficient algorithms for practical purposes of the flexible demand management system. We first construct a novel multi-objective flexible demand management model, in which there are a finite number of periods with time-varying prices, and demand arrives in each period. In each period, the decision maker chooses to either satisfy or defer outstanding demand to minimize costs and discomfort over a certain number of periods. We consider both the deterministic model, models with stochastic demand or prices, and when only partial information about the stochastic demand or prices is known. We first analyze the stochastic

  20. Demand Response Valuation Frameworks Paper

    SciTech Connect

    Heffner, Grayson

    2009-02-01

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.