DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, Annika; Heath, Garvin A
The generation capacity of small-scale (less than one megawatt) fossil-fueled electricity in the United States is anticipated to grow by threefold to twenty-fold from 2015 to 2040. However, in adherence with internationally agreed upon carbon accounting methods, the Environmental Protection Agency's (EPA's) U.S. Greenhouse Inventory (GHGI) does not currently attribute greenhouse gases (GHGs) from these small-scale distributed generation sources to the electric power sector and instead accounts for these emissions in the sector that uses the distributed generation (e.g., the commercial sector). In addition, no other federal electric-sector GHG emission data product produced by the EPA or the U.S. Energymore » Information Administration (EIA) can attribute these emissions to electricity. We reviewed the technical documentation for eight federal electric-sector GHG emission data products, interviewed the data product owners, collected their GHG emission estimates, and analyzed projections for growth in fossil-fueled distributed generation. We show that, by 2040, these small-scale generators could account for at least about 1%- 5% of total CO2 emissions from the U.S. electric power sector. If these emissions fall outside the electric power sector, the United States may not be able to completely and accurately track changes in electricity-related CO2 emissions, which could impact how the country sets GHG reduction targets and allocates mitigation resources. Because small-scale, fossil-fueled distributed generation is expected to grow in other countries as well, the results of this work also have implications for global carbon accounting.« less
Environmental effects of interstate power trading on electricity consumption mixes.
Marriott, Joe; Matthews, H Scott
2005-11-15
Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. We create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these "consumption mixes" can provide a more accurate assessment of electricity use in life-cycle analyses. We conclude that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy--such as resource extraction and material processing sectors--are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses.
2017-01-01
The annual report presents data tables describing the electricity industry in each State. Data include: summary statistics; the 10 largest plants by generating capacity; the top five entities ranked by sector; electric power industry generating capacity by primary energy source; electric power industry generation by primary energy source; utility delivered fuel prices for coal, petroleum, and natural gas; electric power industry emissions estimates; retail sales, revenue, and average retail price by sector; retail electricity sales statistics; and supply and disposition of electricity; net metering counts and capacity by technology and customer type; and advanced metering counts by customer type.
Environmental effects of interstate power trading on electricity consumption mixes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joe Marriott; H. Scott Matthews
2005-11-15
Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. The authors create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these 'consumption mixes' can provide a more accurate assessment of electricity usemore » in life-cycle analyses. It is concluded that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy - such as resource extraction and material processing sectors - are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses. 16 refs., 7 figs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodson, Elke L.; Brown, Maxwell; Cohen, Stuart
We study the impact of achieving technology innovation goals, representing significant technology cost reductions and performance improvements, in both the electric power and end-use sectors by comparing outputs from four energy-economic models through the year 2050. We harmonize model input assumptions and then compare results in scenarios that vary natural gas prices, technology cost and performance metrics, and the implementation of a representative national electricity sector carbon dioxide (CO 2) policy. Achieving the representative technology innovation goals decreases CO 2 emissions in all models, regardless of natural gas price, due to increased energy efficiency and low-carbon generation becoming more costmore » competitive. For the models that include domestic natural gas markets, achieving the technology innovation goals lowers wholesale electricity prices, but this effect diminishes as projected natural gas prices increase. Higher natural gas prices lead to higher wholesale electricity prices but fewer coal capacity retirements. Some of the models include energy efficiency improvements as part of achieving the high-technology goals. Absent these energy efficiency improvements, low-cost electricity facilitates greater electricity consumption. The effect of implementing a representative electricity sector CO 2 policy differs considerably depending on the cost and performance of generating and end-use technologies. The CO 2 policy influences electric sector evolution in the cases with reference technology assumptions but has little to no influence in the cases that achieve the technology innovation goals. This outcome implies that meeting the representative technology innovation goals achieves a generation mix with similar CO 2 emissions to the representative CO 2 policy but with smaller increases to wholesale electricity prices. Finally, higher natural gas prices, achieving the representative technology innovation goals, and the combination of the two, increases the amount of renewable generation that is cost-effective to build and operate while slowing the growth of natural-gas fired generation, which is the predominant generation type in 2050 under reference conditions.« less
Hodson, Elke L.; Brown, Maxwell; Cohen, Stuart; ...
2018-03-22
We study the impact of fuel prices, technology innovation, and a CO 2 emissions reduction policy on both the electric power and end-use sectors by comparing outputs from four U.S. energyeconomic models through the year 2050. Achieving innovation goals decreases CO 2 emissions in all models, regardless of natural gas price, due to increased energy efficiency and low-carbon generation becoming more cost competitive. For the models that include domestic natural gas markets, achieving innovation goals lowers wholesale electricity prices, but this effect diminishes as projected natural gas prices increase. Higher natural gas prices lead to higher wholesale electricity prices butmore » fewer coal capacity retirements. A CO 2 electric power sector emissions cap influences electric sector evolution under reference technology assumptions but has little to no incremental influence when added to innovation goals. Long-term, meeting innovation goals achieves a generation mix with similar CO 2 emissions compared to the CO 2 policy but with smaller increases to wholesale electricity prices. In the short-term, the relative effect on wholesale prices differs by model. Finally, higher natural gas prices, achieving innovation goals, and the combination of the two, increases the amount of renewable generation that is cost-effective to build and operate while slowing the growth of natural-gas fired generation, which is the predominant generation type in 2050 under reference conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodson, Elke L.; Brown, Maxwell; Cohen, Stuart
We study the impact of fuel prices, technology innovation, and a CO 2 emissions reduction policy on both the electric power and end-use sectors by comparing outputs from four U.S. energyeconomic models through the year 2050. Achieving innovation goals decreases CO 2 emissions in all models, regardless of natural gas price, due to increased energy efficiency and low-carbon generation becoming more cost competitive. For the models that include domestic natural gas markets, achieving innovation goals lowers wholesale electricity prices, but this effect diminishes as projected natural gas prices increase. Higher natural gas prices lead to higher wholesale electricity prices butmore » fewer coal capacity retirements. A CO 2 electric power sector emissions cap influences electric sector evolution under reference technology assumptions but has little to no incremental influence when added to innovation goals. Long-term, meeting innovation goals achieves a generation mix with similar CO 2 emissions compared to the CO 2 policy but with smaller increases to wholesale electricity prices. In the short-term, the relative effect on wholesale prices differs by model. Finally, higher natural gas prices, achieving innovation goals, and the combination of the two, increases the amount of renewable generation that is cost-effective to build and operate while slowing the growth of natural-gas fired generation, which is the predominant generation type in 2050 under reference conditions.« less
NASA Astrophysics Data System (ADS)
Izard, Catherine Finlay
The electricity sector is responsible for producing 35% of US greenhouse gas (GHG) emissions. Estimates suggest that ideally, the electricity sector would be responsible for approximately 85% of emissions abatement associated with climate polices such as America's Clean Energy and Security Act (ACES). This is equivalent to ˜50% cumulative emissions reductions below projected cumulative business-as-usual (BAU) emissions. Achieving these levels of emissions reductions will require dramatic changes in the US electricity generating infrastructure: almost all of the fossil-generation fleet will need to be replaced with low-carbon sources and society is likely to have to maintain a high build rate of new capacity for decades. Unfortunately, the inertia in the electricity sector means that there may be physical constraints to the rate at which new electricity generating capacity can be built. Because the build rate of new electricity generating capacity may be limited, the timing of regulation is critical---the longer the U.S. waits to start reducing GHG emissions, the faster the turnover in the electricity sector must occur in order to meet the same target. There is a real, and thus far unexplored, possibility that the U.S. could delay climate change policy implementation for long enough that it becomes infeasible to attain the necessary rate of turnover in the electricity sector. This dissertation investigates the relationship between climate policy timing and infrastructure turnover in the electricity sector. The goal of the dissertation is to answer the question: How long can we wait before constraints on infrastructure turnover in the electricity sector make achieving our climate goals impossible? Using the Infrastructure Flow Assessment Model, which was developed in this work, this dissertation shows that delaying climate change policy increases average retirements rates by 200-400%, increases average construction rates by 25-85% and increases maximum construction rates by 50-300%. It also shows that delaying climate policy has little effect on the age of retired plants or the stranded costs associated with premature retirement. In order for the electricity sector to reduce emissions to a level required by ACES while limiting construction rates to within achievable levels, it is necessary to start immediately. Delaying the process of decarbonization means that more abatement will be necessary from other sectors or geoengineering. By not starting emissions abatement early, therefore, the US forfeits its most accessible abatement potential and increases the challenge of climate change mitigation unnecessarily.
Carbon dioxide emissions from the electricity sector in major countries: a decomposition analysis.
Li, Xiangzheng; Liao, Hua; Du, Yun-Fei; Wang, Ce; Wang, Jin-Wei; Liu, Yanan
2018-03-01
The electric power sector is one of the primary sources of CO 2 emissions. Analyzing the influential factors that result in CO 2 emissions from the power sector would provide valuable information to reduce the world's CO 2 emissions. Herein, we applied the Divisia decomposition method to analyze the influential factors for CO 2 emissions from the power sector from 11 countries, which account for 67% of the world's emissions from 1990 to 2013. We decompose the influential factors for CO 2 emissions into seven areas: the emission coefficient, energy intensity, the share of electricity generation, the share of thermal power generation, electricity intensity, economic activity, and population. The decomposition analysis results show that economic activity, population, and the emission coefficient have positive roles in increasing CO 2 emissions, and their contribution rates are 119, 23.9, and 0.5%, respectively. Energy intensity, electricity intensity, the share of electricity generation, and the share of thermal power generation curb CO 2 emissions and their contribution rates are 17.2, 15.7, 7.7, and 2.8%, respectively. Through decomposition analysis for each country, economic activity and population are the major factors responsible for increasing CO 2 emissions from the power sector. However, the other factors from developed countries can offset the growth in CO 2 emissions due to economic activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawood, A.A.
1994-12-01
This presentation examines the development of the power generation and transmission capacity of the power system of Oman. The topics of the presentation include economic development of Oman; growth of the electricity sector including capacity generation, transmission and distribution and load characteristics; involvement of the private sector; power interconnections and exchanges; privatization; and training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Daniel; Bielen, Dave; Eichman, Josh
Electrification of end-use services in the transportation, buildings, and industrial sectors coupled with decarbonization of electricity generation has been identified as one of the key pathways to achieving a low-carbon future in the United States. By lowering the carbon intensity of the electricity generation and substituting electricity for higher-emissions fossil fuels in end-use sectors, significant reductions in carbon dioxide emissions can be achieved. This report describes a preliminary analysis that examines the potential impacts of widespread electrification on the U.S. energy sector. We develop a set of exploratory scenarios under which electrification is aggressively pursued across all end-use sectors andmore » examine the impacts of achieving these electrification levels on electricity load patterns, total fossil energy consumption, carbon dioxide emissions, and the evolution of the U.S. power system.« less
Overall review of feed-in tariff and renewable portfolio standard policy: A perspective of China
NASA Astrophysics Data System (ADS)
Yan, Q. Y.; Zhang, Q.; Yang, L.; Wang, X.
2016-08-01
A major share of China's total carbon dioxide (CO2) emissions is from the electric power sector. To solve this problem, Chinese government has implemented many renewable energy policies in the electric power sector. In China, the most popular renewable energy policies are Feed-in tariff (FIT) and renewable portfolio standard (RPS). This paper first introduces the current development of renewable electricity generation. Second the design plan and implement of FIT and RPS in China's thermal electricity generation sector are summarized in this paper. Third this paper establishes a complementary mode of FIT and RPS which can provide a stable environment to make the FIT and RPS work together. Finally, based on the above analysis, this paper proposes relative suggestions for the implementation of FIT and RPS in China making recommendation for the development of electricity generation from renewable energy.
Effects of California's Climate Policy in Facilitating CCUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, Elizabeth
California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less
Effects of California's Climate Policy in Facilitating CCUS
Burton, Elizabeth
2014-12-31
California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less
Water Use in the US Electric Power Sector: Energy Systems Level Perspectives
This presentation reviews the water demands of long-range electricity scenarios. It addresses questions such as: What are the aggregate water requirements of the U.S. electric power sector? How could water requirements evolve under different long-range regional generation mixes? ...
NREL Updates Baseline Cost and Performance Data for Electricity Generation
Technologies | News | NREL Updates Baseline Cost and Performance Data for Electricity Generation Technologies News Release: NREL Updates Baseline Cost and Performance Data for Electricity generation technology cost and performance data used to support and inform electric sector analysis in the
Energy and resource consumption
NASA Technical Reports Server (NTRS)
1973-01-01
The present and projected energy requirements for the United States are discussed. The energy consumption and demand sectors are divided into the categories: residential and commercial, transportation, and industrial and electrical generation (utilities). All sectors except electrical generation use varying amounts of fossile fuel resources for non-energy purposes. The highest percentage of non-energy use by sector is industrial with 71.3 percent. The household and commercial sector uses 28.4 percent, and transportation about 0.3 percent. Graphs are developed to project fossil fuel demands for non-energy purposes and the perdentage of the total fossil fuel used for non-energy needs.
Water Use in the US Electric Power Sector: Energy Systems ...
This presentation reviews the water demands of long-range electricity scenarios. It addresses questions such as: What are the aggregate water requirements of the U.S. electric power sector? How could water requirements evolve under different long-range regional generation mixes? It also looks at research addressing the electricity generation water demand from a life cycle perspective, such as water use for the fuel cycle (natural gas, coal, uranium, etc.) and water use for the materials/equipment/manufacturing of new power plants. The presentation is part of panel session on the Water-Energy Nexus at the World Energy Engineering Congress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerka, M.
1998-07-01
The main objective of this presentation is to describe the current reform of the Polish electric power sector being under the transition from a state-owned and controlled system to the broadly liberalized, competitive and market-oriented industry structure. The Polish electric power system integration with Western European systems (UCPTE) in 1995, and the process of Poland accession to EU brings closer the issue of international competition, which the sector must be ready to face very soon. In the context of Polish aspiration for membership in the European Union, the electric power sector has many attributes that give one grounds to assumemore » that it is capable of meeting challenges posed by integration and may also facilitate the indispensable transformation in other areas of the Polish economy. Among the most important attributes the following should be mentioned: the implementation of new competition-promoting Energy Law determining the separation of three functions (creation of energy policy, regulation and ownership activities); implementation of the principle of regulated third party access to the grid ensuring the complete deregulation of electricity market; restructuring of the electric power sector with transparent determination of functioning of electric power sub sectors : generation, transmission and distribution; electricity market organization (determination of the position of PSE SA as the future Transmission System Operator and Pool Operator); determination of principles for the development of electricity generation sub sector with licensing procedures; co-operation with UCPTE and the development of co-operation within the CENTREL group (new CENTREL ad hoc group on hadronization of electricity markets).« less
Diversity of fuel sources for electricity generation in an evolving U.S. power sector
NASA Astrophysics Data System (ADS)
DiLuccia, Janelle G.
Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.
2016 Standard Scenarios Report: A U.S. Electricity Sector Outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley; Mai, Trieu; Logan, Jeffrey
This is the webinar presentation deck used to present the 2016 Standard Scenarios work. It discusses the Annual Technology Baseline (ATB) detailed cost and performance projections for electricity-generating technologies and the standard scenarios of the power sector modeling using ATB inputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeager, L.; Mills, C.
1997-12-31
This glossary is arranged in alphabetical order in three sections: Electrical planning and generation terms; electrical power and nuclear generation acronyms and abbreviations; and radiological quantities and units. The glossary provides a handy reference for those interested in policy issues involving the electricity sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-01
The paper outlines the World Bank's new policies for the energy sector. It recommends several new policies to improve the performance of the electric power sector in developing countries. Bank loans for electric power will go first to countries clearly committed to improving the performance of their power sectors. The Bank will also discourage subsidies on energy prices and will encourage private investment in utilities. And it will provide financing to help the least developed countries import power where local generation is not practical.
Enablers towards establishing and growing South Africa's waste to electricity industry.
Amsterdam, Heinrich; Thopil, George Alex
2017-10-01
In South Africa the electricity generation mix is relatively un-diverse whereas globally the transformation of the sector is advancing rapidly. Coal remains the predominant fuel source and limited success has to date been achieved in the renewable energy sector. The electricity generation sector is therefore hindered from moving towards an electricity generation landscape where alternative fuel sources is utilised. This research is aimed at gaining insight into the enablers that led towards an increasing trend (observed globally) in exploiting waste as a fuel for electricity generation, and to outline the presence of obstacles that hinder separation of waste for electricity use in the South African context. Furthermore it is an attempt at informing what appropriate interventions (operational and policy) may be considered suitable for South Africa to overcome these barriers in order to enable a sustainable South African waste to electricity (WTE) Industry. Findings show that numerous barriers to a WTE exists in the South African context, however overcoming these barriers is not as simple as adopting the European model with the aim to modify the electricity generation mix and waste management landscape. Selected enablers deemed appropriate in the South African context are adapted from the European model, and are greatly influenced by the prevailing socio-economic status of South Africa. Primary enablers identified were, (i) government support is needed especially in the form of subsidisation for green energy, (ii) increase landfill costs through the implementation of a landfill tax, (iii) streamline the process for Independent Private Power Producers (IPPPs) to connect to the national grid with off-take guaranteed and the inclusion of WTE into an electricity roadmap (effectively government's strategy). The proposed enabling interventions would help in overcoming the barriers for a South African WTE industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley; Beppler, Ross; Zinaman, Owen
Natural gas generation in the U.S. electricity sector has grown substantially in recent years, while the sector's carbon dioxide (CO2) emissions have generally declined. This relationship highlights the concept of natural gas as a potential enabler of a transition to a lower-carbon future. This work considers that concept by using the National Renewable Energy Laboratory (NREL) Renewable Energy Deployment System (ReEDS) model. ReEDS is a long-term capacity expansion model of the U.S. electricity sector. We examine the role of natural gas within the ReEDS modeling framework as increasingly strict carbon emission targets are imposed on the electricity sector. In additionmore » to various natural gas price futures, we also consider scenarios that emphasize a low-carbon technology in order to better understand the role of natural gas if that low-carbon technology shows particular promise. Specifically, we consider scenarios with high amounts of energy efficiency (EE), low nuclear power costs, low renewable energy (RE) costs, and low carbon capture and storage (CCS) costs. Within these scenarios we find that requiring the electricity sector to lower CO2 emissions over time increases near-to-mid-term (through 2030) natural gas generation (see Figure 1 - left). The long-term (2050) role of natural gas generation in the electricity sector is dependent on the level of CO2 emission reduction required. Moderate reductions in long-term CO2 emissions have relatively little impact on long-term natural gas generation, while more stringent CO2 emission limits lower long-term natural gas generation (see Figure 1 - right). More stringent carbon targets also impact other generating technologies, with the scenarios considered here seeing significant decreases in coal generation, and new capacity of nuclear and renewable energy technologies over time. Figure 1 also demonstrates the role of natural gas in the context of scenarios where a specific low-carbon technology is advantaged. In 2030, natural gas generation in the technology scenarios is quite similar to that in the reference scenarios, indicating relatively little change in the role of natural gas in the near-to-mid-term due to advancements in those technology areas. The 2050 natural gas generation shows more significant differences, suggesting that technology advancements will likely have substantial impacts on the role of natural gas in the longer-term timeframe. Natural gas generation differences are most strongly driven by alternative natural gas price trajectories--changes in natural gas generation in the Low NG Price and High NG Price scenarios are much larger than in any other scenario in both the 2030 and 2050 timeframes. The only low-carbon technology scenarios that showed any increase in long-term natural gas generation relative to the reference case were the Low CCS cost scenarios. Carbon capture and storage technology costs are currently high, but have the potential to allow fossil fuels to play a larger role in low-carbon grid. This work considers three CCS cost trajectories for natural gas and coal generators: a baseline trajectory and two lower cost trajectories where CO2 capture costs reach $40/metric ton and $10/metric ton, respectively. We find that in the context of the ReEDS model and with these assumed cost trajectories, CCS can increase the long-term natural gas generation under a low carbon target (see Figure 2). Under less stringent carbon targets we do not see ReEDS electing to use CCS as part of its electricity generating portfolio for the scenarios considered in this work.« less
Energy consumption renewable energy development and environmental impact in Algeria - Trend for 2030
NASA Astrophysics Data System (ADS)
Sahnoune, F.; Imessad, K.; Bouakaz, D. M.
2017-02-01
The study provides a detailed analysis of the energy production and consumption in Algeria and the associated CO2 emissions. Algeria is an important energy producer (oil and natural gas). The production is currently around 155 MToe. The total primary energy consumption amounted to about 58 MToe equivalent to 1.46 Toe/capita. The energy demand is still increasing, an average annual growth rate of more than 6% per year during the last decade. The growth rate for electricity production was almost twice that of the total energy consumption. In 2015, the installed capacity of the electricity generation plants reached 17.6 GW. Electricity consumption was 64.6 TWh and is expected to reach at least 75 TWh in 2020 and 130 TWh in 2030. The already high electricity demand will double by 2030. In the structure of final energy consumption, the transport sector ranks first (36%), natural gas consumption ranks second (28.5%), followed by electricity production (27.7%). By activity, the energy sector is the main source of CO2 emissions, about ¾ of the total and this sector has the most important potential for mitigation measures. CO2 emissions from this energy sector amounted to 112.2 MT CO2 as follows: 33% transport, 31% electricity production and 26% from natural gas combustion for residential use. The integration of renewable sources in the energy mix represents for Algeria a major challenge. In 2015, Algeria adopted an ambitious program for development of renewable energy. The target is to achieve 22 GW capacity of electricity from renewable by 2030 to reach a rate of 27 % of national electricity generation through renewable sources. By implementing this program, CO2 emissions of power generation will be reduced by more than 18% in 2030.
NASA Astrophysics Data System (ADS)
Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.
2017-12-01
The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and reliability of different configurations of the US electric grid subject to changing climate conditions.
Electricity Generation Baseline Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, Jeffrey; Marcy, Cara; McCall, James
This report was developed by a team of national laboratory analysts over the period October 2015 to May 2016 and is part of a series of studies that provide background material to inform development of the second installment of the Quadrennial Energy Review (QER 1.2). The report focuses specifically on U.S. power sector generation. The report limits itself to the generation sector and does not address in detail parallel issues in electricity end use, transmission and distribution, markets and policy design, and other important segments. The report lists 15 key findings about energy system needs of the future.
NASA Astrophysics Data System (ADS)
Although electricity is not a natural resource in the sense of coal or oil and gas, the electric utility industry is an integral part of the energy sector of the economy. Electricity is derived by converting one type of energy resource (oil, gas, coal, uranium) into a usable energy form (electricity) and thus has unique properties as a source of energy for the end user. Electrical energy, however, is not only important to New Mexico because electric utilities consume a portion of the natural gas and a large portion of coal resources extracted in the state, but also because electricity affects industrial growth in both the energy and non-energy sectors of the state's economy.
NASA Astrophysics Data System (ADS)
Veselov, F. V.; Novikova, T. V.; Khorshev, A. A.
2015-12-01
The paper focuses on economic aspects of the Russian thermal generation sector's renovation in a competitive market environment. Capabilities of the existing competitive electricity and capacity pricing mechanisms, created during the wholesale market reform, to ensure the wide-scale modernization of thermal power plants (TPPs) are estimated. Some additional stimulating measures to focus the investment process on the renovation of the thermal generation sector are formulated, and supplementing and supporting costs are assessed. Finally, the systemic effect of decelerating wholesale electricity prices caused by efficiency improvements at thermal power plants is analyzed depending on the scales of renovation and fuel prices.
Natural Gas Based Electricity Production and Low Carbon Technology Options
Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...
NASA Astrophysics Data System (ADS)
Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott
2015-03-01
A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.
NASA Astrophysics Data System (ADS)
Carley, Sanya
In response to mounting concerns about climate change and an over-dependence on fossil fuels, U.S. state governments have assumed leadership roles in energy policy. State leaders across the country have constructed policies that target electricity sector operations, and aim to increase the percentage of renewable electricity generation, increase the use of distributed generation, and decrease carbon footprints. The policy literature, however, lacks compelling empirical evidence that state initiatives toward these ends are effective. This research seeks to contribute empirical insights that can help fill this void in the literature, and advance policy knowledge about the efficacy of these instruments. This three-essay dissertation focuses on the assessment of state energy policy instruments aimed at the diversification, decentralization, and decarbonization of the U.S. electricity sector. The first essay considers the effects of state efforts to diversify electricity portfolios via increases in renewable energy. This essay asks: are state-level renewable portfolio standards (RPS) effective at increasing renewable energy deployment, as well as the share of renewable energy out of the total generation mix? Empirical results demonstrate that RPS policies so far are effectively encouraging total renewable energy deployment, but not the percentage of renewable energy generation. The second essay considers state policy efforts to decentralize the U.S. electricity sector via instruments that remove barriers to distributed generation (DG) deployment. The primary question this essay addresses is whether the removal of legal barriers acts as a primary motivating factor for DG deployment. Empirical results reveal that net metering policies are positively associated with DG deployment; interconnection standards significantly increase the likelihood that end-users will adopt DG capacity; and utility DG adoption is related to standard market forces. The third essay asks: what are the potential effects of state energy policy portfolios on carbon emissions within the U.S. electricity sector? The results from an electricity modeling scenario analysis reveal that state policy portfolios have modest to minimal carbon mitigation effects in the long run if surrounding states do not adopt similar portfolios as well. The effectiveness of state-level policy portfolios can increase significantly if surrounding states adopt similar portfolios, or with the introduction of a national carbon price.
Electricity generation and transmission planning in deregulated power markets
NASA Astrophysics Data System (ADS)
He, Yang
This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the transmission network operator depends on the characteristic of the power market and the topology of the transmission network. Also, the second model, which considers interactions between generation and transmission sectors, yields higher social welfare in the electric power market, than the third model where generation firms and transmission network operator make investment decisions separately.
NASA Astrophysics Data System (ADS)
Anderson, N. J.; Whiteford, E. J.; Jones, V.; Fritz, S. C.; Yang, H.; Appleby, P.; Bindler, R.
2014-12-01
In order to overcome the potential damages associated with climate change, a massive reduction in greenhouse gas emissions is necessary. Achieving these levels of emissions reductions will require dramatic changes in the U.S. electricity generating infrastructure: almost all of the fossil-generation fleet will need to be replaced with low-carbon sources and society would have to maintain a high build rate of new capacity for decades. Because the build rate of new electricity generating capacity may be limited, the timing of regulation is critical—the longer the U.S. waits to start reducing emissions, the faster the turnover in the electricity sector must occur in order to meet the same target. We investigate the relationship between climate policy timing and infrastructure turnover in the electricity sector. How long can we wait before constraints on infrastructure turnover in the electricity sector make achieving our climate goals impossible? We show that delaying climate change policy increases average construction rates by 25% to 85% and increases maximum construction rates by 50% to 300%. We also show that delaying climate policy has little effect on the age of retired plants or the stranded costs associated with premature retirement. We show that as we delay policy action, some goals won't be possible for attain. For example, unless we enable emissions reductions today, reducing cumulative emissions between now and 2040 by 50% when compared to a no-policy scenario is not possible.
Liberian energy consumption and sectoral distribution for 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuels, G.
1985-02-01
This report is one of a series of project papers providing background information for an assessment of energy options for Liberia, West Africa; it summarizes 1981 Liberian energy consumption data collected during 1982. Total Liberian primary energy consumption in 1981 was equivalent to 11,400,000 barrels of crude oil (BCOE) - 64% from wood, 31% from petroleum, and 5% from hydro. About 71% (8,100,000 BCOE) entered the domestic market. The difference represents exports (400,000 BCOE), refining losses (200,000 BCOE), and losses in converting wood to charcoal (2,600,000 BCOE). Of the 8,100,000 BCOE entering the domestic market, 58% was in the formmore » of wood and charcoal, 35% petroleum products, and 7% hydro. Excluding wood and charcoal, electricity generation consumed 59% of the energy entering the domestic market. The three iron ore mining companies accounted for 60% of all electricity production; the Liberia Electricity Corporation for 35%, and private organizations and individuals for 5%. The mining operations (including electricity generation and transportation uses) consumed about 60% of all petroleum products. The transportation sector consumed 30% of all petroleum of which 85% was for road transport, 12% for the railroads owned and operated by the mining companies, and 3% for sea and air transport. Nontransportation energy use in the industrial, commercial, government, and agriculture and forestry sectors is small. Together, these sectors account for less than 10% of the petroleum products consumed. Wood and charcoal were used almost entirely by the residential sector, which also consumed an additional 530,000 BCOE of other fuels. Over 90% of the 530,000 BCOE was for electricity and 290,000 (56%) was from petroleum. Over half of the petroleum (150,000 BCOE) was for generation at the mines for their associated communities. 8 references, 10 tables.« less
Operationalizing clean development mechanism baselines: A case study of China's electrical sector
NASA Astrophysics Data System (ADS)
Steenhof, Paul A.
The global carbon market is rapidly developing as the first commitment period of the Kyoto Protocol draws closer and Parties to the Protocol with greenhouse gas (GHG) emission reduction targets seek alternative ways to reduce their emissions. The Protocol includes the Clean Development Mechanism (CDM), a tool that encourages project-based investments to be made in developing nations that will lead to an additional reduction in emissions. Due to China's economic size and rate of growth, technological characteristics, and its reliance on coal, it contains a large proportion of the global CDM potential. As China's economy modernizes, more technologies and processes are requiring electricity and demand for this energy source is accelerating rapidly. Relatively inefficient technology to generate electricity in China thereby results in the electrical sector having substantial GHG emission reduction opportunities as related to the CDM. In order to ensure the credibility of the CDM in leading to a reduction in GHG emissions, it is important that the baseline method used in the CDM approval process is scientifically sound and accessible for both others to use and for evaluation purposes. Three different methods for assessing CDM baselines and environmental additionality are investigated in the context of China's electrical sector: a method based on a historical perspective of the electrical sector (factor decomposition), a method structured upon a current perspective (operating and build margins), and a simulation of the future (dispatch analysis). Assessing future emission levels for China's electrical sector is a very challenging task given the complexity of the system, its dynamics, and that it is heavily influenced by internal and external forces, but of the different baseline methods investigated, dispatch modelling is best suited for the Chinese context as it is able to consider the important regional and temporal dimensions of its economy and its future development. For China, the most promising options for promoting sustainable development, one of the goals of the Kyoto Protocol, appear to be tied to increasing electrical end-use and generation efficiency, particularly clean coal technology for electricity generation since coal will likely continue to be a dominant primary fuel.
Snapshot of photovoltaics - February 2018
NASA Astrophysics Data System (ADS)
Jäger-Waldau, Arnulf
2018-05-01
Solar photovoltaic electricity generation is the fastest growing power generation source world-wide. The significant cost reduction of solar PV over the last decade, and the zero fuel cost volatility have increased the attractiveness. In 2017, the newly installed solar PV power of over 90 GW was more than all the world-wide cumulative installed PV capacity until the mid of 2012. China was again the main driver behind this strong growth with more than 50 GW of annual installations in 2017. Apart from the electricity sector, renewable energy sources for the generation of heat and environmental friendly synthetic-fuels for the transport sector will become more and more important in the future.
Implications of Lower Natural Gas Prices for Electric Generators in the Southeast, The
2009-01-01
This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows.
Electric Sector Integration | Energy Analysis | NREL
investigates the potential impacts of expanding renewable technology deployment on grid operations and Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure Generation Our grid integration studies use state-of-the-art modeling and analysis to evaluate the impacts of
NASA Astrophysics Data System (ADS)
Newmark, R. L.; Cohen, S. M.; Averyt, K.; Macknick, J.; Meldrum, J.; Sullivan, P.
2014-12-01
Climate change has the potential to exacerbate reliability concerns for the power sector through changes in water availability and air temperatures. The power sector is responsible for 41% of U.S. freshwater withdrawals, primarily for power plant cooling needs, and any changes in the water available for the power sector, given increasing competition among water users, could affect decisions about new power plant builds and reliable operations for existing generators. Similarly, increases in air temperatures can reduce power plant efficiencies, which in turn increases fuel consumption as well as water withdrawal and consumption rates. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory's (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water runoff projections from Coupled Model Intercomparison Project 5 (CMIP5) data are applied to surface water available to generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water availability for the 134 electricity balancing regions in the ReEDS model. In addition, air temperature changes are considered for their impacts on electricity load, transmission capacity, and power plant efficiencies and water use rates. Mean climate projections have only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water access to offset climate impacts. Climate impacts are notable in southwestern states, which experience reduced water access purchases and a greater share of water acquired from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sarah L; Hotchkiss, Elizabeth L; Bilello, Daniel E
Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growingmore » electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.« less
JPRS Report: East Asia Southeast Asia.
1993-07-26
private sector companies and will be set up on a BOO basis. Speaking in Jakarta on 2 June, Habibie said : "Thus far several companies from the United...private sector the construction of the "Muria" generator on a BOO basis. He said : "Why should we turn over the nuclear powered electricity generator... said that the plan to offer this construction project to the private sector on a BOO basis is quite realistic. However, he quickly added that the
Water withdrawal and consumption reduction analysis for electrical energy generation system
NASA Astrophysics Data System (ADS)
Nouri, Narjes
There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.
The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector
NASA Astrophysics Data System (ADS)
Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.
2017-12-01
Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.
Trends in Renewable Energy Consumption and Electricity
2012-01-01
Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.
Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios
NASA Astrophysics Data System (ADS)
Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.
2015-12-01
Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.
NASA Astrophysics Data System (ADS)
Woldeyesus, Tibebe Argaw
Water supply constraints can significantly restrict electric power generation, and such constraints are expected to worsen with future climate change. The overarching goal of this thesis is to incorporate stochastic water-climate interactions into electricity portfolio models and evaluate various pathways for water savings in co-managed water-electric utilities. Colorado Springs Utilities (CSU) is used as a case study to explore the above issues. The thesis consists of three objectives: Characterize seasonality of water withdrawal intensity factors (WWIF) for electric power generation and develop a risk assessment framework due to water shortages; Incorporate water constraints into electricity portfolio models and evaluate the impact of varying capital investments (both power generation and cooling technologies) on water use and greenhouse gas emissions; Compare the unit cost and overall water savings from both water and electric sectors in co-managed utilities to facilitate overall water management. This thesis provided the first discovery and characterization of seasonality of WWIF with distinct summertime and wintertime variations of +/-17% compared to the power plant average (0.64gal/kwh) which itself is found to be significantly higher than the literature average (0.53gal/kwh). Both the streamflow and WWIF are found to be highly correlated with monthly average temperature (r-sq = 89%) and monthly precipitation (r-sq of 38%) enabling stochastic simulation of future WWIF under moderate climate change scenario. Future risk to electric power generation also showed the risk to be underestimated significantly when using either the literature average or the power plant average WWIF. Seasonal variation in WWIF along with seasonality in streamflow, electricity demand and other municipal water demands along with storage are shown to be important factors for more realistic risk estimation. The unlimited investment in power generation and/or cooling technologies is also found to save water and GHG emissions by 68% and 75% respectively at a marginal levelized cost increase of 12%. In contrast, the zero investment scenarios (which optimizes exiting technologies to address water scarcity constraints on power generation) shows 50% water savings and 23% GHG emissions reduction at a relatively high marginal levelized cost increase of 37%. Water saving strategies in electric sector show very high cost of water savings (48,000 and 200,000)/Mgal-year under unlimited investment and zero investment scenarios respectively, but they have greater water saving impacts of 6% to CSU municipal water demand; while the individual water saving strategies from water sector have low cost of water savings ranging from (37-1,500)/Mgal-year but with less than 0.5% water reduction impact to CSU due to their low penetration. On the other hand, use of reclaimed water for power plant cooling systems have shown great water savings of up to 92% against the BAU and cost of water saving from (0-73,000)/Mgal-year when integrated with unlimited investment and zero investment water minimizing scenarios respectively in the electric sector. Overall, cities need to focus primarily on use of reclaimed water and in new generation technologies' investment including cooling system retrofits while focusing on expanding the penetration rate of individual water saving strategies in the water sector.
Liberalization of the Spanish electricity sector: An advanced model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unda, J.I.
1998-06-01
Spain`s electricity industry is being restructured to provide a competitive generation market, a regulated, open access transmission and distribution system, and phased-in customer choice. But while the reform is radical in its objectives, it will be gradual in its implementation. This article briefly describes the current state of affairs within the Spanish electricity sector and details the reform plans set out in the act, focusing on the adopted institutional design and the established transition period. It also offers an overview of the role that the regulatory authority will play throughout the process.
Exploring harmonization between integrated assessment and capacity expansion models
NASA Astrophysics Data System (ADS)
Iyer, G.; Brown, M.; Cohen, S.; Macknick, J.; Patel, P.; Wise, M. A.; Horing, J.
2017-12-01
Forward-looking quantitative models of the electric sector are extensively used to provide science-based strategic decision support to national, international and private-sector entities. Given that these models are used to inform a wide-range of stakeholders and influence policy decisions, it is vital to examine how the models' underlying data and structure influence their outcomes. We conduct several experiments harmonizing key model characteristics between ReEDS—an electric sector only model, and GCAM—an integrated assessment model—to understand how different degrees of harmonization impact model outcomes. ReEDS has high spatial, temporal, and process detail but lacks electricity demand elasticity and endogenous representations of other economic sectors, while GCAM has internally consistent representations of energy (including the electric sector), agriculture, and land-use systems but relatively aggregate representations of the factors influencing electric sector investments . We vary the degree of harmonization in electricity demand, fuel prices, technology costs and performance, and variable renewable energy resource characteristics. We then identify the prominent sources of divergence in key outputs (electricity capacity, generation, and price) across the models and study how the convergence between models can be improved with permutations of harmonized characteristics. The remaining inconsistencies help to establish how differences in the models' underlying data, construction, perspective, and methodology play into each model's outcome. There are three broad contributions of this work. First, our study provides a framework to link models with similar scope but different resolutions. Second, our work provides insight into how the harmonization of assumptions contributes to a unified and robust portrayal of the US electricity sector under various potential futures. Finally, our study enhances the understanding of the influence of structural uncertainty on consistency of outcomes.
NASA Astrophysics Data System (ADS)
Averyt, K.; Macknick, J.; Rogers, J.; Madden, N.; Fisher, J.; Meldrum, J.; Newmark, R.
2013-03-01
Water use by the electricity sector represents a significant portion of the United States water budget (41% of total freshwater withdrawals; 3% consumed). Sustainable management of water resources necessitates an accurate accounting of all water demands, including water use for generation of electricity. Since 1985, the Department of Energy (DOE) Energy Information Administration (EIA) has collected self-reported data on water consumption and withdrawals from individual power generators. These data represent the only annual collection of water consumption and withdrawals by the electricity sector. Here, we compile publically available information into a comprehensive database and then calculate water withdrawals and consumptive use for power plants in the US. In effect, we evaluate the quality of water use data reported by EIA for the year 2008. Significant differences between reported and calculated water data are evident, yet no consistent reason for the discrepancies emerges.
NASA Astrophysics Data System (ADS)
Clack, C.; MacDonald, A. E.; Wilczak, J. M.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Picciano, P.; Paine, J.; Terry, L.; Marquis, M.
2015-12-01
The importance of weather-driven renewable energies for the United States energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The Cooperative Institute for the Research in Environmental Sciences at the University of Colorado collaborated with the Earth Systems Research Laboratory of the National Oceanic and Atmospheric Administration to construct a mathematical optimization of a reduced form of the US electric sector. Care was taken to retain salient features of the electric sector, while allowing for detailed weather and power data to be incorporated for wind and solar energies. The National Energy with Weather System (NEWS) simulator was created. With the NEWS simulator tests can be performed that are unique and insightful. The simulator can maintain the status quo and build out a system following costs or imposed targets for carbon dioxide emission reductions. It can find the least cost electric sector for each state, or find a national power system that incorporates vast amounts of variable generation. In the current presentation, we will focus on one of the most unique aspects of the NEWS simulator; the ability to specify a specific amount of wind and/or solar each hour for a three-year historical period for the least total cost. The simulator can find where to place wind and solar to reduce variability (ramping requirements for back-up generators). The amount of variable generation each hour is very different to an RPS type standard because the generators need to work in concert for long periods of time. The results indicate that for very similar costs the amount of back-up generation (natural gas or storage) can be reduced significantly.
NASA Astrophysics Data System (ADS)
Herrera-Estrada, J. E.; Sheffield, J.
2016-12-01
The electricity sector relies heavily on water, as it is needed for hydroelectric generation and to cool thermoelectric power plants. Droughts decrease river and reservoir levels, reducing the affected region's capacity for electricity generation. These cuts in electricity supply have to be replaced by more expensive alternatives with potentially higher associated greenhouse gas emissions (e.g. coal, natural gas, or imports) to meet the region's demand. To date, the quantification of the impacts of droughts on the electricity sector tends to be restricted to individual events, such as the recent California drought. In this work, the impacts of droughts on electricity prices paid by consumers and on greenhouse gas emissions from the electricity sector are calculated over the American West from 2001 to 2014 using monthly data. This region was selected because it falls within the Western Interconnection power grid, because of its important reliance on hydropower, and because it has large areas that are vulnerable to droughts due to their semi-arid climates. Furthermore, this regional approach allows us to quantify the effects of non-local droughts, i.e. droughts in neighboring states that affect electricity imports into a given state. Results show large heterogeneities in the effects of droughts across the region, given the diversity of energy sources used in each state. As expected, the effect of a local drought event on hydroelectricity is largest in California, Oregon, and Washington since they have the highest hydropower capacity. California and Oregon tend to replace a large portion of their lost hydroelectricity with natural gas, while Washington appears to rely more on imports from its neighbors. On the other hand, Montana, Nevada, and Utah, tend to rely more heavily on coal. The results also show that consumers in the residential, commercial, and industrial sectors may sometimes pay millions of dollars more for their electricity use at the state level due to the effects of a drought on the state's energy mix, as has been the case in California.
NASA Astrophysics Data System (ADS)
Meng, M.; Macknick, J.; Tidwell, V. C.; Zagona, E. A.; Magee, T. M.; Bennett, K.; Middleton, R. S.
2017-12-01
The U.S. electricity sector depends on large amounts of water for hydropower generation and cooling thermoelectric power plants. Variability in water quantity and temperature due to climate change could reduce the performance and reliability of individual power plants and of the electric grid as a system. While studies have modeled water usage in power systems planning, few have linked grid operations with physical water constraints or with climate-induced changes in water resources to capture the role of the energy-water nexus in power systems flexibility and adequacy. In addition, many hydrologic and hydropower models have a limited representation of power sector water demands and grid interaction opportunities of demand response and ancillary services. A multi-model framework was developed to integrate and harmonize electricity, water, and climate models, allowing for high-resolution simulation of the spatial, temporal, and physical dynamics of these interacting systems. The San Juan River basin in the Southwestern U.S., which contains thermoelectric power plants, hydropower facilities, and multiple non-energy water demands, was chosen as a case study. Downscaled data from three global climate models and predicted regional water demand changes were implemented in the simulations. The Variable Infiltration Capacity hydrologic model was used to project inflows, ambient air temperature, and humidity in the San Juan River Basin. Resulting river operations, water deliveries, water shortage sharing agreements, new water demands, and hydroelectricity generation at the basin-scale were estimated with RiverWare. The impacts of water availability and temperature on electric grid dispatch, curtailment, cooling water usage, and electricity generation cost were modeled in PLEXOS. Lack of water availability resulting from climate, new water demands, and shortage sharing agreements will require thermoelectric generators to drastically decrease power production, as much as 50% during intensifying drought scenarios, which can have broader electricity sector system implications. Results relevant to stakeholder and power provider interests highlight the vulnerabilities in grid operations driven by water shortage agreements and changes in the climate.
Modeling water resources as a constraint in electricity capacity expansion models
NASA Astrophysics Data System (ADS)
Newmark, R. L.; Macknick, J.; Cohen, S.; Tidwell, V. C.; Woldeyesus, T.; Martinez, A.
2013-12-01
In the United States, the electric power sector is the largest withdrawer of freshwater in the nation. The primary demand for water from the electricity sector is for thermoelectric power plant cooling. Areas likely to see the largest near-term growth in population and energy usage, the Southwest and the Southeast, are also facing freshwater scarcity and have experienced water-related power reliability issues in the past decade. Lack of water may become a barrier for new conventionally-cooled power plants, and alternative cooling systems will impact technology cost and performance. Although water is integral to electricity generation, it has long been neglected as a constraint in future electricity system projections. Assessing the impact of water resource scarcity on energy infrastructure development is critical, both for conventional and renewable energy technologies. Efficiently utilizing all water types, including wastewater and brackish sources, or utilizing dry-cooling technologies, will be essential for transitioning to a low-carbon electricity system. This work provides the first demonstration of a national electric system capacity expansion model that incorporates water resources as a constraint on the current and future U.S. electricity system. The Regional Electricity Deployment System (ReEDS) model was enhanced to represent multiple cooling technology types and limited water resource availability in its optimization of electricity sector capacity expansion to 2050. The ReEDS model has high geographic and temporal resolution, making it a suitable model for incorporating water resources, which are inherently seasonal and watershed-specific. Cooling system technologies were assigned varying costs (capital, operations and maintenance), and performance parameters, reflecting inherent tradeoffs in water impacts and operating characteristics. Water rights supply curves were developed for each of the power balancing regions in ReEDS. Supply curves include costs and availability of freshwater (surface and groundwater) and alternative water resources (municipal wastewater and brackish groundwater). In each region, a new power plant must secure sufficient water rights for operation before being built. Water rights constraints thus influence the type of power plant, cooling system, or location of new generating capacity. Results indicate that the aggregate national generating capacity by fuel type and associated carbon dioxide emissions change marginally with the inclusion of water rights. Water resource withdrawals and consumption, however, can vary considerably. Regional water resource dynamics indicate substantial differences in the location where power plant-cooling system technology combinations are built. These localized impacts highlight the importance of considering water resources as a constraint in the electricity sector when evaluating costs, transmission infrastructure needs, and externalities. Further scenario evaluations include assessments of how climate change could affect the availability of water resources, and thus the development of the electricity sector.
Impact of Clean Energy R&D on the U.S. Power Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donohoo-Vallett, Paul; Mai, Trieu; Mowers, Matthew
The U.S. government, along with other governments, private corporations and organizations, invests significantly in research, development, demonstration and deployment (RDD&D) activities in clean energy technologies, in part to achieve the goal of a clean, secure, and reliable energy system. While specific outcomes and breakthroughs resulting from RDD&D investment are unpredictable, it can be instructive to explore the potential impacts of clean energy RDD&D activities in the power sector and to place those impacts in the context of current and anticipated market trends. This analysis builds on and leverages analysis by the U.S. Department of Energy (DOE) titled “Energy CO 2more » Emissions Impacts of Clean Energy Technology Innovation and Policy” (DOE 2017). Similar to DOE (2017), we explore how additional improvements in cost and performance of clean energy technologies could impact the future U.S. energy system; however, unlike the economy-wide modeling used in DOE (2017) our analysis is focused solely on the electricity sector and applies a different and more highly spatially-resolved electric sector model. More specifically, we apply a scenario analysis approach to explore how assumed further advancements in clean electricity technologies would impact power sector generation mix, electricity system costs, and power sector carbon dioxide (CO 2) emissions.« less
Electric power and the global economy: Advances in database construction and sector representation
NASA Astrophysics Data System (ADS)
Peters, Jeffrey C.
The electricity sector plays a crucial role in the global economy. The sector is a major consumer of fossil fuel resources, producer of greenhouse gas emissions, and an important indicator and correlate of economic development. As such, the sector is a primary target for policy-makers seeking to address these issues. The sector is also experiencing rapid technological change in generation (e.g. renewables), primary inputs (e.g. horizontal drilling and hydraulic fracturing), and end-use efficiency. This dissertation seeks to further our understanding of the role of the electricity sector as part of the dynamic global energy-economy, which requires significant research advances in both database construction and modeling techniques. Chapter 2 identifies useful engineering-level data and presents a novel matrix balancing method for integrating these data in global economic databases. Chapter 3 demonstrates the relationship between matrix balancing method and modeling results, and Chapter 4 presents the full construction methodology for GTAP-Power, the foremost, publicly-available global computable general equilibrium database. Chapter 5 presents an electricity-detailed computational equilibrium model that explicitly and endogenously captures capacity utilization, capacity expansion, and their interdependency - important aspects of technological substitution in the electricity sector. The individual, but interrelated, research contributions to database construction and electricity modeling in computational equilibrium are placed in the context of analyzing the US EPA Clean Power Plan (CPP) CO 2 target of 32 percent reduction of CO2 emissions in the US electricity sector from a 2005 baseline by 2030. Assuming current fuel prices, the model predicts an almost 28 percent CO2 reduction without further policy intervention. Next, a carbon tax and investment subsidies for renewable technologies to meet the CPP full targets are imposed and compared (Chapter 6). The carbon tax achieves the target via both utilization and expansion, while the renewable investment subsidies lead to over-expansion and compromises some of the possibilities via utilization. In doing so, this dissertation furthers our understanding of the role of the electricity sector as part of the dynamic global energy-economy.
Effect of nuclear power on CO₂ emission from power plant sector in Iran.
Kargari, Nargess; Mastouri, Reza
2011-01-01
It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.
Fuel cell programs in the United States for stationary power applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M.
1996-04-01
The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued governmentmore » and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.« less
Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China
NASA Astrophysics Data System (ADS)
Yan, Shaomin; Wu, Guang
2016-09-01
Specification of PM2.5 spatial and temporal characteristics is important for understanding PM2.5 adverse effects and policymaking. We applied network analysis to studying the dataset MIX, which contains PM2.5 emissions recorded from 2168 monitoring stations in China in 2008 and 2010. The results showed that for PM2.5 emissions from industrial sector 8 clusters were found in 2008 but they merged together into a huge cluster in 2010, suggesting that industrial sector underwent an integrating process. For PM2.5 emissions from electricity generation sector, strong locality of clusters was revealed, implying that each region had its own electricity generation system. For PM2.5 emissions from residential sector, the same pattern of 10 clusters was uncovered in both years, implicating the household energy consumption unchanged from 2008 to 2010. For PM2.5 emissions from transportation sector, the same pattern of 5 clusters with many connections in-between was unraveled, indicating the high-speed development of transportation nationalwidely. Except for the known elements, mercury (Hg) surfaced as an element for particle nucleation. To our knowledge, this is the first network study in this field.
NASA Astrophysics Data System (ADS)
O'Connell, M.; Macknick, J.; Voisin, N.; Fu, T.
2017-12-01
The western US electric grid is highly dependent upon water resources for reliable operation. Hydropower and water-cooled thermoelectric technologies represent 67% of generating capacity in the western region of the US. While water resources provide a significant amount of generation and reliability for the grid, these same resources can represent vulnerabilities during times of drought or low flow conditions. A lack of water affects water-dependent technologies and can result in more expensive generators needing to run in order to meet electric grid demand, resulting in higher electricity prices and a higher cost to operate the grid. A companion study assesses the impact of changes in water availability and air temperatures on power operations by directly derating hydro and thermo-electric generators. In this study we assess the sensitivities and tipping points of water availability compared with higher fuel prices in electricity sector operations. We evaluate the impacts of varying electricity prices by modifying fuel prices for coal and natural gas. We then analyze the difference in simulation results between changes in fuel prices in combination with water availability and air temperature variability. We simulate three fuel price scenarios for a 2010 baseline scenario along with 100 historical and future hydro-climate conditions. We use the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions under each combination of fuel price and water constraint. Some of the metrics evaluated are total production cost, generation type mix, emissions, transmission congestion, and reserve procurement. These metrics give insight to how strained the system is, how much flexibility it still has, and to what extent water resource availability or fuel prices drive changes in the electricity sector operations. This work will provide insights into current electricity operations as well as future cases of increased penetration of variable renewable generation technologies such as wind and solar.
State energy data report 1996: Consumption estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide themore » historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.« less
Quantifying Co-benefits of Renewable Energy through Integrated Electricity and Air Quality Modeling
NASA Astrophysics Data System (ADS)
Abel, D.
2016-12-01
This work focuses on the coordination of electricity sector changes with air quality and health improvement strategies through the integration of electricity and air quality models. Two energy models are used to calculate emission perturbations associated with changes in generation technology (20% generation from solar photovoltaics) and demand (future electricity use under a warmer climate). Impacts from increased solar PV penetration are simulated with the electricity model GridView, in collaboration with the National Renewable Energy Laboratory (NREL). Generation results are used to scale power plant emissions from an inventory developed by the Lake Michigan Air Directors Consortium (LADCO). Perturbed emissions and are used to calculate secondary particulate matter with the Community Multiscale Air Quality (CMAQ) model. We find that electricity NOx and SO2 emissions decrease at a rate similar to the total fraction of electricity supplied by solar. Across the Eastern U.S. region, average PM2.5 is reduced 5% over the summer, with highest reduction in regions and on days of greater PM2.5. A similar approach evaluates the air quality impacts of elevated electricity demand under a warmer climate. Meteorology is selected from the North American Regional Climate Change Assessment Program (NARCCAP) and input to a building energy model, eQUEST, to assess electricity demand as a function of ambient temperature. The associated generation and emissions are calculated on a plant-by-plant basis by the MyPower power sector model. These emissions are referenced to the 2011 National Emissions Inventory to be modeled in CMAQ for the Eastern U.S. and extended to health impact evaluation with the Environmental Benefits Mapping and Analysis Program (BenMAP). All results focus on the air quality and health consequences of energy system changes, considering grid-level changes to meet climate and air quality goals.
Power and process: The politics of electricity sector reform in Uganda
NASA Astrophysics Data System (ADS)
Gore, Christopher David
In 2007, Uganda had one of the lowest levels of access to electricity in the world. Given the influence of multilateral and bilateral agencies in Uganda; the strong international reputation and domestic influence of its President; the country's historic achievements in public sector and economic reform; and the intimate connection between economic performance, social well-being and access to electricity, the problems with Uganda's electricity sector have proven deeply frustrating and, indeed, puzzling. Following increased scholarly attention to the relationship between political change, policymaking, and public sector reform in sub-Saharan Africa and the developing world generally, this thesis examines the multilevel politics of Uganda's electricity sector reform process. This study contends that explanations for Uganda's electricity sector reform problems generally, and hydroelectric dam construction efforts specifically, must move beyond technical and financial factors. Problems in this sector have also been the result of a model of reform (promoted by the World Bank) that failed adequately to account for the character of political change. Indeed, the model of reform that was promoted and implemented was risky and it was deeply antagonistic to domestic and international civil society organizations. In addition, it was presented as a linear, technical, apolitical exercise. Finally the model was inconsistent with key principles the Bank itself, and public policy literature generally, suggest are needed for success. Based on this analysis, the thesis contends that policymaking and reform must be understood as deeply political processes, which not only define access to services, but also participation in, and exclusion from, national debates. Future approaches to reform and policymaking must anticipate the complex, multilevel, non-linear character of 'second-generation' policy issues like electricity, and the political and institutional capacity needed to increase the potential for success. At the heart of this approach is a need to carefully consider how the character of state-society relations in the country---"governance"---will influence reform processes and outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, Jeffrey S; Zinaman, Owen R; Littell, David
Performance-based regulation (PBR) enables regulators to reform hundred-year-old regulatory structures to unleash innovations within 21st century power systems. An old regulatory paradigm built to ensure safe and reliable electricity at reasonable prices from capital-intensive electricity monopolies is now adjusting to a new century of disruptive technological advances that change the way utilities make money and what value customers expect from their own electricity company. Advanced technologies are driving change in power sectors around the globe. Innovative technologies are transforming the way electricity is generated, delivered, and consumed. These emerging technology drivers include renewable generation, distributed energy resources such as distributedmore » generation and energy storage, demand-side management measures such as demand-response, electric vehicles, and smart grid technologies and energy efficiency (EE). PBR enables regulators to recognize the value that electric utilities bring to customers by enabling these advanced technologies and integrating smart solutions into the utility grid and utility operations. These changes in the electric energy system and customer capacities means that there is an increasing interest in motivating regulated entities in other areas beyond traditional cost-of-service performance regulation. This report addresses best practices gleaned from more than two decades of PBR in practice, and analyzes how those best practices and lessons can be used to design innovative PBR programs. Readers looking for an introduction to PBR may want to focus on Chapters 1-5. Chapters 6 and 7 contain more detail for those interested in the intricate workings of PBR or particularly innovative PBR.« less
Fuel switching in the electricity sector under the EU ETS: Review and prospective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delarue, E.; Voorspools, K.; D'haeseleer, W.
2008-06-15
The European Union has implemented the European Union emission trading scheme (EU ETS) as an instrument to facilitate greenhouse gas (GHG) emission abatement stipulated in the Kyoto protocol. Empirical data show that in the early stages of the EU ETS, the value of a ton of CO{sub 2} has already led to emission abatement through switching from coal to gas in the European electric power sector. In the second part of this paper, an electricity generation simulation model is used to perform simulations on the switching behavior in both the first and the second trading periods of the EU ETS.more » In 2005, the reduction in GHG emissions in the electric power sector due to EU ETS is estimated close to 88 Mton. For the second trading period, a European Union allowance (EUA) price dependent GHG reduction curve has been determined. The obtained switching potential turns out to be significant, up to 300 Mton/year, at sufficiently high EUA prices.« less
Renewable Electricity Futures Study | Energy Analysis | NREL
reductions in electric sector greenhouse gas emissions and water use. The direct incremental cost associated with high renewable generation is comparable to published cost estimates of other clean energy scenarios. Improvement in the cost and performance of renewable technologies is the most impactful lever for
Climate Change Impacts on Rivers and Implications for Electricity Generation in the United States
NASA Astrophysics Data System (ADS)
Miara, A.; Vorosmarty, C. J.; Macknick, J.; Corsi, F.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Prousevitch, A.
2015-12-01
The contemporary power sector in the United States is heavily reliant on water resources to provide cooling water for thermoelectric generation. Efficient thermoelectric plant operations require large volumes of water at sufficiently cool temperatures for their cooling process. The total amount of water that is withdrawn or consumed for cooling and any potential declines in efficiencies are determined by the sector's fuel mix and cooling technologies. As such, the impact of climate change, and the extent of impact, on the power sector is shaped by the choice of electricity generation technologies that will be built over the coming decades. In this study, we model potential changes in river discharge and temperature in the contiguous US under a set of climate scenarios to year 2050 using the Water Balance Model-Thermoelectric Power and Thermal Pollution Model (WBM-TP2M). Together, these models quantify, in high-resolution (3-min), river temperatures, discharge and power plant efficiency losses associated with changes in available cooling water that incorporates climate, hydrology, river network dynamics and multi-plant impacts, on both single power plant and regional scales. Results are used to assess the aptness and vulnerability of contemporary and alternative electricity generation pathways to changes in climate and water availability for cooling purposes, and the concomitant impacts on power plant operating efficiencies. We assess the potential impacts by comparing six regions (Northeast, Southeast, Midwest, Great Plains, Southwest, Northwest as in the National Climate Assessment (2014)) across the US. These experiments allow us to assess tradeoffs among electricity-water-climate to provide useful insight for decision-makers managing regional power production and aquatic environments.
Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, S. M.; Macknick, J.; Averyt, K.
2014-05-01
Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact onmore » national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.« less
Post, Richard F.
2010-11-16
A sub-module consists of a set of two outer sets of stationary fan-blade-shaped sectors. These outer sectors include conductive material and are maintained at ground potential in several examples. Located midway between them is a set of stationary sector plates with each plate being electrically insulated from the others. An example provides that the inner sector plates are connected together alternately, forming two groups of parallel-connected condensers that are then separately connected, through high charging circuit resistances, to a source of DC potential with respect to ground, with an additional connecting lead being provided for each group to connect their output as an AC output to a load. These same leads can he used, when connected to a driver circuit, to produce motor action.
ReEDS-Mexico: A Capacity Expansion Model of the Mexican Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Jonathan L; Cole, Wesley J; Spyrou, Evangelia
This report documents the ReEDS-Mexico capacity expansion model, which is an extension of the ReEDS model to the Mexican power system. In recent years Mexico’s power sector has undergone considerable reform that has significant potential to impact the future electricity mix (Alpizar–Castro and Rodríguez–Monroy 2016). Day-ahead and real-time trading in Mexico’s power markets opened in early 2016. In addition to this reform, Mexico is striving to ensure that 35% of its electricity is generated from clean energy sources by 2024, 40% by 2035, and 50% by 2050 (Presidencia de la República 2016). These rapid changes in both the market andmore » the generation mix create a need for robust tools that can help electricity sector stakeholders make informed decisions. The purpose of this report is to document the extension of the National Renewable Energy Laboratory’s (NREL’s) Regional Energy Deployment System (ReEDS) model (Eurek et al. 2016) to cover the Mexico power system. This extension, which we will refer to throughout this paper as ReEDS-Mexico, provides a model of the Mexico power sector using a system-wide, least-cost optimization framework.« less
Concept Overview & Preliminary Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruth, Mark
2017-07-12
'H2@Scale' is an opportunity for wide-scale use of hydrogen as an intermediate that carries energy from various production options to multiple uses. It is based on identifying and developing opportunities for low-cost hydrogen production and investigating opportunities for using that hydrogen across the electricity, industrial, and transportation sectors. One of the key production opportunities is use of low-cost electricity that may be generated under high penetrations of variable renewable generators such as wind and solar photovoltaics. The technical potential demand for hydrogen across the sectors is 60 million metric tons per year. The U.S. has sufficient domestic renewable resources somore » that each could meet that demand and could readily meet the demand using a portfolio of generation options. This presentation provides an overview of the concept and the technical potential demand and resources. It also motivates analysis and research on H2@Scale.« less
Electric Industry Structure and Regulatory Responses in a High Distributed Energy Resources Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corneli, Steve; Kihm, Steve; Schwartz, Lisa
The emergence of distributed energy resources (DERs) that can generate, manage and store energy on the customer side of the electric meter is widely recognized as a transformative force in the power sector. This report focuses on two key aspects of that transformation: structural changes in the electric industry and related changes in business organization and regulation that are likely to result from them. Both industry structure and regulation are inextricably linked. History shows that the regulation of the power sector has responded primarily to innovation in technologies and business models that created significant structural changes in the sector’s costmore » and organizational structure.« less
NASA Astrophysics Data System (ADS)
Singh, Bipulendu
Five South Asian countries-- India, Pakistan, Bangladesh, Nepal and Sri Lanka -- embarked on electricity market reforms in the 1990's. The dissertation uses the framework of New Institutional Economics to assess the effects on electricity sector performance of both observables elements of reform (i.e. privatization, unbundling, establishment of independent regulatory agencies etc.) as well as the unobservable elements (informal beliefs, habit, norms and culture of the actors involved in reforms). The first part of the dissertation -- econometric analysis of the relationship between observable electricity market reform measures and performance indicators -- finds that for the most part electricity market reforms in South Asia are having a positive impact on the performance of the sector. This is particularly the case for reforms that have increased private sector participation in generation and distribution and have vertically unbundled utilities into generation, transmission and distribution entities. Many of the reforms are positively correlated with higher tariffs, indicating a cost to the consumers from the reforms. The relationship between independent regulation and performance indicators , however, is not established. The second part of the dissertation - analytical narrative of the reform experiences of Gujarat and Nepal -- examines the informal elements (such as beliefs, norms, culture) that motivate behavior and explains how and why reform outcomes differed in these two places. The dissertation finds that the strength of formal institutions rules and the nature of social norms and customs have a significant influence on the outcome of reforms. Aided by the strength of its formal institutional framework and more evolved social norms and customs that encouraged people to follow formal rules, reforms in the Indian state of Gujarat were a success. The weakness of the formal institutional framework and the predominance of relation-based norms and customs in Nepal that led to limited compliance with formal rules, by contrast, limited the success of power sector reforms there. Efforts to reform the electricity sector in South Asia undertaken by governments with the assistance of development agencies such as the World Bank and the Asian Development Bank have focused to a large extent on getting the content of electricity market reform measures such as unbundling, privatization, and establishment of a power market right. The analysis in this dissertation suggests that such measures will be more successful in places with relatively robust formal rule based systems. Countries that are planning to carry out significant reforms in the electricity sector will benefit from the explicit consideration of the informal norms, habits and customs of the actors that will be affected by the reforms.
Johnson, T L; Keith, D W
2001-10-01
The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.
Johnson, Timothy L; Keith, David W
2001-10-01
The decoupling of fossil-fueled electricity production from atmospheric CO 2 emissions via CO 2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO 2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO 2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.
2017 Standard Scenarios Report: A U.S. Electricity Sector Outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley; Mai, Trieu; Richards, James
This report summarizes the results of 26 forward-looking “standard scenarios” of the U.S. power sector simulated by the National Renewable Energy Laboratory (NREL) using the Regional Energy Deployment System (ReEDS) and Distributed Generation (dGen) capacity expansion models. The annual Standard Scenarios, which are now in their third year, have been designed to capture a range of possible power system futures considering a variety of factors that impact power sector evolution.
NASA Astrophysics Data System (ADS)
Tarroja, Brian
The convergence of increasing populations, decreasing primary resource availability, and uncertain climates have drawn attention to the challenge of shifting the operations of key resource sectors towards a sustainable paradigm. This is prevalent in California, which has set sustainability-oriented policies such as the Renewable Portfolio Standards and Zero-Emission Vehicle mandates. To meet these goals, many options have been identified to potentially carry out these shifts. The electricity sector is focusing on accommodating renewable power generation, the transportation sector on alternative fuel drivetrains and infrastructure, and the water supply sector on conservation, reuse, and unconventional supplies. Historical performance evaluations of these options, however, have not adequately taken into account the impacts on and constraints of co-dependent infrastructures that must accommodate them and their interactions with other simultaneously deployed options. These aspects are critical for optimally choosing options to meet sustainability goals, since the combined system of all resource sectors must satisfy them. Certain operations should not be made sustainable at the expense of rendering others as unsustainable, and certain resource sectors should not meet their individual goals in a way that hinders the ability of the entire system to do so. Therefore, this work develops and utilizes an integrated platform of the electricity, transportation, and water supply sectors to characterize the performance of emerging technology and management options while taking into account their impacts on co-dependent infrastructures and identify synergistic or detrimental interactions between the deployment of different options. This is carried out by first evaluating the performance of each option in the context of individual resource sectors to determine infrastructure impacts, then again in the context of paired resource sectors (electricity-transportation, electricity-water), and finally in the context of the combined tri-sector system. This allows a more robust basis for composing preferred option portfolios to meet sustainability goals and gives a direction for coordinating the paradigm shifts of different resource sectors. Overall, it is determined that taking into account infrastructure constraints and potential operational interactions can significantly change the evaluation of the preferred role that different technologies should fulfill in contributing towards satisfying sustainability goals in the holistic context.
40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors
Code of Federal Regulations, 2014 CFR
2014-07-01
... Applications Electric Lamps Electron Tubes Electronic Capacitors Electronic Coils & Transformers Electronic..., Hydraulic Turbines, Generator Units Switchgear & Switchboard Apparatus Textile Machinery Transformers...
Major challenges loom for natural gas industry, study says
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Driscoll, M.
The 1994 edition of Natural Gas Trends, the annual joint study by Cambridge Energy Research Associates and Arthur Anderson Co., says that new oil-to-gas competition, price risks and the prospect of unbundling for local distribution companies loom as major challenges for the natural gas industry. With a tighter supply-demand balance in the past two years compounded by the fall in oil prices, gas is in head-to-head competition with oil for marginal markets, the report states. And with higher gas prices in 1993, industrial demand growth slowed while utility demand for gas fell. Some of this was related to fuel switching,more » particularly in the electric utility sector. Total electric power demand for gas has risen slightly due to the growth in industrial power generation, but there has yet to be a pronounced surge in gas use during the 1990s - a decade in which many had expected gas to make major inroads into the electric power sector, the report states. And while utilities still have plans to add between 40,000 and 45,000 megawatts of gas-fired generating capacity, gas actually has lost ground in the utility market to coal and nuclear power: In 1993, electricity output from coal and nuclear rose, while gas-fired generation fell to an estimated 250 billion kilowatt-hours - the lowest level since 1986, when gas generated 246 billion kwh.« less
Energy Security of Army Installations & Islanding Methodologies
2012-01-16
islanding of energy generation and distribution networks including electricity, natural gas , steam , liquid fuel, water, and others for the diverse...in geopolitics and war/peace/terrorism Breakthrough in reformation process of synthetic fuel production Hydrogen focused energy sector Oil and gas ...of synthetic AMf Q production Hydrogen focused energy sector D Of and gas remain available and cost-effective Natural Gas prices cut In
Climate impacts on hydropower and consequences for global electricity supply investment needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.
Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore the possible consequences of these impacts for the electricity supply sector. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations derived from sixteen general circulation models. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). Changes in hydropower generation resulting from climate change can shift power demands onto andmore » away from carbon intensive technologies, resulting in significant impacts on power sector CO2 emissions for certain world regions—primarily those located in Latin America, as well as Canada and parts of Europe. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity—meaning impacts on power sector investment costs are similar for high and low emissions scenarios. Individual countries where impacts on investment costs imply significant risks or opportunities are identified.« less
Assessment of On-Site Power Opportunities in the Industrial Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, T.
2001-10-08
The purpose of this report is to identify the potential for on-site power generation in the U.S. industrial sector with emphasis on nine industrial groups called the ''Industries of the Future'' (IOFs) by the U.S. Department of Energy (DOE). Through its Office of Industrial Technologies (OIT), the DOE has teamed with the IOFs to develop collaborative strategies for improving productivity, global competitiveness, energy usage and environmental performance. Total purchases for electricity and steam for the IOFs are in excess of $27 billion annually. Energy-related costs are very significant for these industries. The nine industrial groups are (1) Agriculture (SIC 1);more » (2) Forest products; (3) Lumber and wood products (SIC 24); (4) Paper and allied products (SIC 26); (5) Mining (SIC 11, 12, 14); (6) Glass (SIC 32); (7) Petroleum (SIC 29); (8) Chemicals (SIC 28); and (9) Metals (SIC 33): Steel, Aluminum, and Metal casting. Although not currently part of the IOF program, the food industry is included in this report because of its close relationship to the agricultural industry and its success with on-site power generation. On-site generation provides an alternative means to reduce energy costs, comply with environmental regulations, and ensure a reliable power supply. On-site generation can ease congestion in the local utility's electric grid. Electric market restructuring is exacerbating the price premium for peak electricity use and for reliability, creating considerable market interest in on-site generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkisson, Mary A.; Qualls, A. L.
The Southeast United States consumes approximately one billion megawatt-hours of electricity annually; roughly two-thirds from carbon dioxide (CO 2) emitting sources. The balance is produced by non-CO 2 emitting sources: nuclear power, hydroelectric power, and other renewables. Approximately 40% of the total CO 2 emissions come from the electric grid. The CO 2 emitting sources, coal, natural gas, and petroleum, produce approximately 372 million metric tons of CO 2 annually. The rest is divided between the transportation sector (36%), the industrial sector (20%), the residential sector (3%), and the commercial sector (2%). An Energy Mix Modeling Analysis (EMMA) tool wasmore » developed to evaluate 100-year energy mix strategies to reduce CO 2 emissions in the southeast. Current energy sector data was gathered and used to establish a 2016 reference baseline. The spreadsheet-based calculation runs 100-year scenarios based on current nuclear plant expiration dates, assumed electrical demand changes from the grid, assumed renewable power increases and efficiency gains, and assumed rates of reducing coal generation and deployment of new nuclear reactors. Within the model, natural gas electrical generation is calculated to meet any demand not met by other sources. Thus, natural gas is viewed as a transitional energy source that produces less CO 2 than coal until non-CO 2 emitting sources can be brought online. The annual production of CO 2 and spent nuclear fuel and the natural gas consumed are calculated and summed. A progression of eight preliminary scenarios show that nuclear power can substantially reduce or eliminate demand for natural gas within 100 years if it is added at a rate of only 1000 MWe per year. Any increases in renewable energy or efficiency gains can offset the need for nuclear power. However, using nuclear power to reduce CO 2 will result in significantly more spent fuel. More efficient advanced reactors can only marginally reduce the amount of spent fuel generated in the next 100 years if they are assumed to be available beginning around 2040. Thus closing the nuclear fuel cycle to reduce nuclear spent fuel inventories should be considered. Future work includes the incorporation of economic features into the model and the extension of the evaluation to the industrial sector. It will also be necessary to identify suitable sites for additional reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, J.A.
A mission to Honduras invited by the Government of Honduras and sponsored by the Organization of American States addressed the generation of employment in various areas of interest to the country. The mission was made up of experts from numerous countries and international agencies. In the energy sector, the mission recommended consolidating the sector under a coordinating body; carrying out projects to promote reforestation, tree farms, and rational forest utilization; encouraging industrial energy conservation; developing alternative energy sources; and promoting rural electrification and expansion of the electrical grid. In the mining sector, the mission supported promotion and technical assistance formore » small gold-leaching and placer operations, the national mineral inventory, detailed exploration of promising sites, and the development of a mining school. 13 refs., 7 tabs.« less
RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.M. Bragg-Sitton; R. Boardman
2014-12-01
The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “allmore » of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.« less
NASA Astrophysics Data System (ADS)
Griffith, Steven
This thesis is an interpretive analysis of experts' perspectives on the climate implications of New England's reliance on natural gas for electricity generation. Specifically, this research, conducted through interviews and literature review, examines experts' opinions on the desired role of natural gas within the regional electricity sector, alternative energy resources, and state and regional policy opportunities toward the achievement of New England's ambitious long-term greenhouse gas reduction goals. Experts expressed concern about the climate dilemma posed by a dependence on natural gas. However, interviews revealed that short-term reliability and cost considerations are paramount for many experts, and therefore a reliance on natural gas is the existing reality. To incentivize renewable generation technologies for the purposes of long-term climate stabilization, experts advocated for the expanded implementation of renewable portfolio standard, net metering, and feed-in tariff policies. More broadly, interviewees expressed the need for an array of complementary state and regional policies.
Venezuela 2000 restructures its electric power sector to ensure competitiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, C.E.
1999-11-01
Today, it is well known that the countries that are best equipped to develop their production are not those with the most natural resources but those who have the best trained people, most technical resources and that base their development on competitiveness. The State model is, definitely, not one that offers the greatest advantages, and Venezuela is an example of this. Even when, thanks to the economic boom the country enjoyed in the 70s and 80s, it was able to cost the investments required to develop its infrastructure and to prepare a first class human contingent, over the long term,more » competition was discouraged and waste encouraged. The result was that, even when Venezuela had vast economic resources compared to its relatively small population, it was not able to become the exception to the rule and succeed in applying this model--now considered obsolete in many countries--indefinitely. Another model based on private ownership has begun to take its place, one that has made it possible to cost the increasingly large investments required, involves opening up these sectors to private capital, and uses the phenomenon of globalization--a major driving force behind competition and one that has wrought considerable change in all corners of the increasingly smaller planet. This paper describes the steps that different sectors in the country have been taking to implement this new model in the electric power sector, such as developing draft legislation for regulating the Sector, very shortly to culminate in the passing of an electric power law by Congress; opening up the Sector to private investors (privatization); dividing the electric power industry into four business units (generation, transmission, distribution and marketing); the electric power market; and other innovations currently being implemented.« less
Essays on Mathematical Optimization for Residential Demand Response in the Energy Sector
NASA Astrophysics Data System (ADS)
Palaparambil Dinesh, Lakshmi
In the electric utility industry, it could be challenging to adjust supply to match demand due to large generator ramp up times, high generation costs and insufficient in-house generation capacity. Demand response (DR) is a technique for adjusting the demand for electric power instead of the supply. Direct Load Control (DLC) is one of the ways to implement DR. DLC program participants sign up for power interruption contracts and are given financial incentives for curtailing electricity usage during peak demand time periods. This dissertation studies a DLC program for residential air conditioners using mathematical optimization models. First, we develop a model that determines what contract parameters to use in designing contracts between the provider and residential customers, when to turn which power unit on or off and how much power to cut during peak demand hours. The model uses information on customer preferences for choice of contract parameters such as DLC financial incentives and energy usage curtailment. In numerical experiments, the proposed model leads to projected cost savings of the order of 20%, compared to a current benchmark model used in practice. We also quantify the impact of factors leading to cost savings and study characteristics of customers picked by different contracts. Second, we study a DLC program in a macro economic environment using a Computable General Equilibrium (CGE) model. A CGE model is used to study the impact of external factors such as policy and technology changes on different economic sectors. Here we differentiate customers based on their preference for DLC programs by using different values for price elasticity of demand for electricity commodity. Consequently, DLC program customers could substitute demand for electricity commodity with other commodities such as transportation sector. Price elasticity of demand is calculated using a novel methodology that incorporates customer preferences for DLC contracts from the first model. The calculation of elasticity based on our methodology is useful since the prices of commodities are not only determined by aggregate demand and supply but also by customers' relative preferences for commodities. In addition to this we quantify the indirect substitution and rebound effects on sectoral activity levels, incomes and prices based on customer differences, when DLC is implemented.
Investigating the water consumption for electricity generation at Turkish power plants
NASA Astrophysics Data System (ADS)
El-Khozondar, Balkess; Aydinalp Koksal, Merih
2017-11-01
The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.
76 FR 19766 - Agency Information Collection Activities OMB Responses
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
...; NSPS for Small Industrial-Commercial- Institutional Steam Generating Units; 40 CFR part 60, subparts A... Number 1053.10; NSPS for Electric Utility Steam Generating Units; 40 CFR part 60, subparts A and Da; was... Petroleum Refineries Sector Residual Risk and Technology Review (New Collection); was approved on 03/28/2011...
Microinstallations Based on Renewable Energy Sources in the Construction Sector
NASA Astrophysics Data System (ADS)
Kurzak, Lucjan
2017-10-01
The focus of this paper is on the status and prognoses of the use of microinstallations based on renewable energy sources to supply heat and power. The technologies that have been important in Europe and Poland for microgeneration of electricity include photovoltaic systems, micro wind turbines and co-generation systems. Solar collectors, heat pumps and biomass have also been used to generate heat. Microinstallations for renewable energy sources represent the initial point and the foundation for the development of micro networks, intelligent networks and the whole prosumer energy sector.
NASA Astrophysics Data System (ADS)
Sun, Y.; Eurek, K.; Macknick, J.; Steinberg, D. C.; Averyt, K.; Badger, A.; Livneh, B.
2017-12-01
Climate change has the potential to affect the supply and demands of the U.S. power sector. Rising air temperatures can affect the seasonal and total demand for electricity, alter the thermal efficiency of power plants, and lower the maximum capacity of electric transmission lines. Changes in hydrology can affect seasonal and total availability of water used for power plant operations. Prior studies have examined some climate impacts on the electricity sector, but there has been no systematic study quantifying and comparing the importance of these climate-induced effects in isolation and in combination. Here, we perform a systematic assessment using the Regional Energy Deployment System (ReEDS) electricity sector model in combination with downscaled climate results from four models in the CMIP5 archive that provide contrasting temperature and precipitation trends for key regions in the U.S. The ReEDS model captures dynamic climate and hydrological resource data .when choosing the cost optimal mix of generation resources necessary to balance supply and demand for electricity. We examine how different climate-induced changes in air temperature and water availability, considered in isolation and in combination, may affect energy and economic outcomes at a regional and national level from the present through 2050. Results indicate that temperature-induced impacts on electricity consumption show consistent trends nationwide across all climate scenarios. Hydrological impacts and variability differ by model and tend to have a minor effect on national electricity trends, but can be important determinants regionally. Taken together, this suggests that isolated climate change impacts on the electricity system depend on the geographic scale of interest - the effect of rising temperatures on demand, which is qualitatively robust to the choice of climate model, largely determines impacts on generation, capacity and cost at the national level, whereas other impact pathways may dominate at regional level.
NASA Astrophysics Data System (ADS)
Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.
2017-08-01
This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.
Accelerating investments in power in sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Eberhard, Anton; Gratwick, Katharine; Morello, Elvira; Antmann, Pedro
2017-02-01
Private sector investments in African power generation play an increasingly important role in addressing the continent's electricity supply shortages. Our analysis of investment trends in sub-Saharan Africa reveals some key success factors.
Samaras, Constantine; Meisterling, Kyle
2008-05-01
Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.
China power - thermal coal and clean coal technology export. Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binsheng Li
1996-12-31
China is the world`s fourth largest electric power producer, and is expected to surpass Japan within the next two years to become the third largest power producer. During the past 15 years, China`s total electricity generation more than tripled, increasing from about 300 TWh to about 1,000 TWh. Total installed generating capacity grew at an average of 8.2 percent per year, increasing from 66 to 214 GW. The share of China`s installed capacity in Asia increased from 21 to 31 percent. The Chinese government plans to continue China`s rapid growth rate in the power sector. Total installed capacity is plannedmore » to reach 300 GW by 2000, which will generate 1,400 TWh of electricity per year. China`s long-term power sector development is subject to great uncertainty. Under the middle scenario, total capacity is expected to reach 700 GW by 2015, with annual generation of 3,330 TWh. Under the low and high scenarios, total capacity will reach 527-1,005 GW by 2015. The high scenario representing possible demand. To achieve this ambitious scenario, dramatic policy changes in favor of power development are required; however, there is no evidence that such policy changes will occur at this stage. Even under the high scenario, China`s per capita annual electricity consumption would be only 3,000 kWh by 2015, less than half of the present per capita consumption for OECD countries. Under the low scenario, electricity shortages will seriously curb economic growth.« less
Water-energy nexus in the Sava River Basin: energy security in a transboundary perspective
NASA Astrophysics Data System (ADS)
Ramos, Eunice; Howells, Mark
2016-04-01
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources spans over different nations. This paper focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin (SRB), using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technology types dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin's water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the response of the regional energy systems in simulated trade conditions.
Impact of climate change on electricity systems and markets
NASA Astrophysics Data System (ADS)
Chandramowli, Shankar N.
Climate change poses a serious threat to human welfare. There is now unequivocal scientific evidence that human actions are the primary cause of climate change. The principal climate forcing factor is the increasing accumulation of atmospheric carbon dioxide (CO2) due to combustion of fossil fuels for transportation and electricity generation. Generation of electricity account for nearly one-third of the greenhouse (GHG) emissions globally (on a CO2-equivalent basis). Any kind of economy-wide mitigation or adaptation effort to climate change must have a prominent focus on the electric power sector. I have developed a capacity expansion model for the power sector called LP-CEM (Linear Programming based Capacity Expansion Model). LP-CEM incorporates both the long-term climate change effects and the state/regional-level macroeconomic trends. This modeling framework is demonstrated for the electric power system in the Northeast region of United States. Some of the methodological advances introduced in this research are: the use of high-resolution temperature projections in a power sector capacity expansion model; the incorporation of changes in sectoral composition of electricity demand over time; the incorporation of the effects of climate change and variability on both the demand and supply-side of power sector using parameters estimated in the literature; and an inter-model coupling link with a macroeconomic model to account for price elasticity of demand and other effects on the broader macro-economy. LP-CEM-type models can be of use to state/regional level policymakers to plan for future mitigation and adaptation measures for the electric power sector. From the simulation runs, it is shown that scenarios with climate change effects and with high economic growth rates have resulted in higher capacity addition, optimal supply costs, wholesale/retail prices and total ratepayers' costs. LP-CEM is also adapted to model the implications of the proposed Clean Power Plan (Section 111 (d)) rules for the U.S. Northeast region. This dissertation applies an analytical model and an optimization model to investigate the implications of co-implementing an emission cap and an RPS policy for this region. A simplified analytical model of LP-CEM is specified and the first order optimality conditions are derived. The results from this analytical model are corroborated by running LP-CEM simulations under different carbon cap and RPS policy assumptions. A combination of these policies is shown to have a long-term beneficial effect for the final ratepayers in the region. This research conceptually explores the future implications of climate change and extreme weather events on the regional electricity market framework. The significant findings from this research and future policy considerations are discussed in the conclusion chapter.
Assessment of the Electrification of the Road Transport Sector on Net System Emissions
NASA Astrophysics Data System (ADS)
Miller, James
As worldwide environmental consciousness grows, electric vehicles (EVs) are becoming more common and despite the incredible potential for emissions reduction, the net emissions of the power system supply side plus the transportation system are dependent on the generation matrix. Current EV charging patterns tend to correspond directly with the peak consumption hours and have the potential to increase demand sharply allowing for only a small penetration of Electric Vehicles. Using the National Household Travel Survey (NHTS) data a model is created for vehicle travel patterns using trip chaining. Charging schemes are modeled to include uncontrolled residential, uncontrolled residential/industrial charging, optimized charging and optimized charging with vehicle to grid discharging. A charging profile is then determined based upon the assumption that electric vehicles would directly replace a percentage of standard petroleum-fueled vehicles in a known system. Using the generation profile for the specified region, a unit commitment model is created to establish not only the generation dispatch, but also the net CO2 profile for variable EV penetrations and charging profiles. This model is then used to assess the impact of the electrification of the road transport sector on the system net emissions.
Gauge invariance, quantization and integration of heavy modes in a gauge Kaluza-Klein theory
NASA Astrophysics Data System (ADS)
Novales-Sánchez, H.
This dissertation examines topics at the intersection of environmental and energy economics. The first two chapters explore how policies can induce more efficient use of the energy sources available for generating electricity. The electricity sector is a major source of a wide variety of harmful pollutants. To mitigate the environmental impacts of electricity production, a variety of policies are being implemented to increase the quantity of generation from clean, renewable energy sources. The first chapter identifies the short-run reductions in emissions caused by generation from a particular renewable technology; wind turbines. Using the estimates of the pollution offset by the renewable production, I explore the efficiency of the incentives created by the current set of renewable energy policies. The second chapter examines the impact adding bulk electricity storage capacity will have on the full social costs of generating electricity. The third chapter explores the impact of various gasoline tax structures on both retail price volatility and state revenue volatility.
A Multi-Sector Assessment of the Effects of Climate Change at the Energy-Water-Land Nexus in the US
NASA Astrophysics Data System (ADS)
McFarland, J.; Sarofim, M. C.; Martinich, J.
2017-12-01
Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Colin A.; Boardman, Richard; McKellar, Michael
The industrial sector was the third-largest source of direct U.S. greenhouse gas (GHG) emissions in 2014 behind electricity generation and transportation and accounted for roughly 20% of total emissions (EPA 2016). The Energy Information Administration (EIA) projects that total U.S. energy consumption will grow to about 108 exajoules (1 EJ = 10 18 J) or 102 quads (1 quad = 10 15 British thermal units) in 2025, with nearly all of the growth coming from the industrial sector (DOE 2015b). Energy consumption in the industrial sector is forecast to increase to 39.5 EJ (37.4 quads)—a 22% increase, exceeding 36% ofmore » total energy consumption in the United States. Therefore, it is imperative that industrial GHG emissions be considered in any strategy intent on achieving deep decarbonization of the energy sector as a whole. It is important to note that unlike the transportation sector and electrical grid, energy use by industry often involves direct conversion of primary energy sources to thermal and electrical energy at the point of consumption. About 52% of U.S. industrial direct GHG emissions are the result of fuel combustion (EPA 2016) to produce hot gases and steam for process heating, process reactions, and process evaporation, concentration, and drying. The heterogeneity and variations in scale of U.S. industry and the complexity of modern industrial firms’ global supply chains are among the sector’s unique challenges to minimizing its GHG emissions. A combination of varied strategies—such as energy efficiency, material efficiency, and switching to low-carbon fuels—can help reduce absolute industrial GHG emissions. This report provides a complement to process-efficiency improvement to consider how clean energy delivery and use by industry could reduce GHG emissions. Specifically, it considers the possibility of replacing fossil-fuel combustion in industry with nuclear (specifically small modular reactors [SMRs]), solar thermal (referred to herein as solar industrial process heat [SIPH]), and geothermal energy sources. The possibility of applying electrical heating and greater use of hydrogen is also considered, although these opportunities are not discussed in as much detail.« less
This modeling study tests a hypothetical scenario to see what air quality might have looked like if no emission controls had been placed on electric generating units, as required by the NOx State Implementation Plan (SIP) Call required in 2004. Results showed that ozone levels w...
Quantifying the water-energy nexus in Greece
NASA Astrophysics Data System (ADS)
Ziogou, Isidoros; Zachariadis, Theodoros
2017-11-01
In this paper we provide an assessment of the water-energy nexus for Greece. More specifically, the amount of freshwater consumed per unit of energy produced is determined: for both conventional (lignite, diesel and fuel oil-fired) and advanced (combined operation of gas turbine) thermal power plants in the electricity generation sector; for extraction and refining activities in the primary energy production sector; and for the production of biodiesel that is used as a blend in the ultimately delivered automotive diesel fuel. In addition, the amount of electricity consumed for the purposes of water supply and sewerage is presented. In view of the expected effects of climate change in the Mediterranean region, the results of this study highlight the need for authorities to prepare a national strategy that will ensure climate resilience in both energy and water sectors of the country.
Climate impacts on hydropower and consequences for global electricity supply investment needs
Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.; ...
2017-11-15
Climate change is projected to increase hydropower generation in some parts of the world and decrease it in others. Here we explore the possible consequences of these impacts for the electricity supply sector at the global scale. Regional hydropower projections are developed by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). We find that climate-driven changes in hydropower generation may shift power demands onto and away from carbon intensive technologies. This then causes significantlymore » altered power sector CO 2 emissions in several hydro-dependent regions, although the net global impact is modest. For drying regions, we estimate a global, cumulative investment need of approximately one trillion dollars (±$500 billion) this century to make up for deteriorated hydropower generation caused by climate change. Total investments avoided are of a similar magnitude across regions projected to experience increased precipitation. Investment risks and opportunities are concentrated in hydro-dependent countries for which significant climate change is expected. Various countries throughout the Balkans, Latin America and Southern Africa are most vulnerable, whilst Norway, Canada, and Bhutan emerge as clear beneficiaries.« less
Climate impacts on hydropower and consequences for global electricity supply investment needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.
Climate change is projected to increase hydropower generation in some parts of the world and decrease it in others. Here we explore the possible consequences of these impacts for the electricity supply sector at the global scale. Regional hydropower projections are developed by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). We find that climate-driven changes in hydropower generation may shift power demands onto and away from carbon intensive technologies. This then causes significantlymore » altered power sector CO 2 emissions in several hydro-dependent regions, although the net global impact is modest. For drying regions, we estimate a global, cumulative investment need of approximately one trillion dollars (±$500 billion) this century to make up for deteriorated hydropower generation caused by climate change. Total investments avoided are of a similar magnitude across regions projected to experience increased precipitation. Investment risks and opportunities are concentrated in hydro-dependent countries for which significant climate change is expected. Various countries throughout the Balkans, Latin America and Southern Africa are most vulnerable, whilst Norway, Canada, and Bhutan emerge as clear beneficiaries.« less
Utility Sector Impacts of Reduced Electricity Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlin, Katie
2014-12-01
This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes tomore » capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.« less
Designing effective power sector reform: A road map for the republic of Georgia
NASA Astrophysics Data System (ADS)
Kurdgelashvili, Lado
Around the world, network utilities (i.e., electricity, natural gas, railway, telecommunications, and water supply industries) are undergoing major structural transformation. A new wave of market liberalization, together with rapid technological changes, has challenged the previously dominant monopoly organization of these industries. A global trend toward deregulation and restructuring is evident in countries at different levels of social and economic development. The challenges of transition from a monopolistic to an open market competitive structure are numerous. Understanding these problems and finding solutions are essential to successful restructuring. In developing countries and economies in transition (i.e., the Eastern Europe and the former Soviet Union), government-owned utilities are often considered to be highly inefficient. The dominant power sector restructuring strategies seek to promote economic efficiency through a gradual introduction of competition into the power sector. Five components of power sector reform are commonly proposed by the World Bank and others for these countries: commercialization, privatization, establishment of an independent regulatory agency, unbundling and gradual introduction of competition in generation and retail markets. The Republic of Georgia, like many economies in transition (e.g., Hungary, Ukraine, and Kazakhstan) has followed this reform model. However, outcomes of the reform have not been as promised. The acute economic problems facing Georgia after it regained independence have compounded problems in the power sector. A review of Georgia's utility reforms reveals that the country has undertaken electricity industry restructuring without giving substantial consideration to the problems that these reforms might have created within the industry or society. The main task of this dissertation is to find the restructuring model, which can best serve economic, social and environmental goals under circumstances similar to those in economies of transition. The dissertation provides a guide for policy makers in the energy sector for implementing power sector reform. At first the dissertation offers a general overview of different models of power sector organization, regulatory frameworks and market arrangements, and the potential impact of reform on social welfare. This knowledge is then applied for analysis of power sector reform in the Republic of Georgia. Social welfare analysis (SWA) is a major analytical tool used in the research for assessing the potential impacts of different power sector organization models on various stakeholders. Through the research it was identified that power industry arrangements in different countries have their particularities; however, after some level of simplification, power sector organization models can fit into one of three broad categories: (1) Government control and regulation of generation and retail segments of the power industry. (2) Full scale competition in the generation segment and retail choice. (3) Partial government control of the generation segment and limited retail choice. For SWA of different power market arrangement scenarios, electricity supply and demand curves had to be derived; for this purpose electricity demand forecasting and power supply evaluation methodologies were developed. This dissertation combines SWA, accepted demand forecasting methods and established power supply evaluation techniques to assess power sector performance under specified policy scenarios relevant to the circumstances of economies in transition such as the Republic of Georgia. Detailed analyses are performed for understanding possible outcomes with the introduction of different reform models. In addition, specific options for incorporating sustainable energy alternatives in the energy planning process are identified and assessed in economic, environmental and social terms. Special attention is given to market-based instruments for promoting sustainable energy options (e.g., renewable portfolio standards, energy conservation and energy efficiency programs) and social policies (e.g., lifeline rates, local employment). Results obtained from the detailed analysis of policy options for Georgia guide recommendations for a reform of the power sector.
NASA Technical Reports Server (NTRS)
Marriott, A.
1980-01-01
The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.
Cofiring biomass with coal: Opportunities for Malaysia
NASA Astrophysics Data System (ADS)
Rahman, A. A.; Shamsuddin, A. H.
2013-06-01
Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.
76 FR 57723 - Electricity Sector Cybersecurity Risk Management Process Guideline
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... DEPARTMENT OF ENERGY Electricity Sector Cybersecurity Risk Management Process Guideline AGENCY... public comment on DOE's intent to publish the Electricity Sector Cybersecurity Risk Management Process... electricity sector organizations and adds to the body of resources that help refine the definition and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.
Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and landmore » use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.« less
Implications of water constraints for electricity capacity expansion in the United States
NASA Astrophysics Data System (ADS)
Liu, L.; Hejazi, M. I.; Iyer, G.; Forman, B. A.
2017-12-01
U.S. electricity generation is vulnerable to water supply since water is required for cooling. Constraints on the availability of water will therefore necessitate adaptive planning by the power generation sector. Hence, it is important to integrate restrictions in water availability in electricity capacity planning in order to better understand the economic viability of alternative capacity planning options. The study of the implications of water constraints for the U.S. power generation system is limited in terms of scale and robustness. We extend previous studies by including physical water constraints in a state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA). We focus on the implications of such constraints for the U.S. electricity capacity expansion, integrating both supply and demand effects under a consistent framework. Constraints on the availability of water have two general effects across the U.S. First, water availability constraints increase the cost of electricity generation, resulting in reduced electrification of end-use sectors. Second, water availability constraints result in forced retirements of water-intensive technologies such as thermoelectric coal- and gas- fired technologies before the end of their natural lifetimes. The demand for electricity is then met by an increase in investments in less water-dependent technologies such as wind and solar photovoltaic. Our results show that the regional patterns of the above effects are heterogeneous across the U.S. In general, the impacts of water constraints on electricity capacity expansion are more pronounced in the West than in the East. This is largely because of lower water availability in the West compared to the East due to lower precipitation in the Western states. Constraints on the availability of water might also have important implications for U.S. electricity trade. For example, under severe constraints on the availability of water, some states flip from being net exporters of electricity to becoming net importers and vice versa. Our study demonstrates the impacts of water availability constraints on electricity capacity expansion in the U.S. and highlights the need to integrate such constraints into decision-making so as to better understand state-level challenges.
NASA Astrophysics Data System (ADS)
Lanshina, T. A.; Kulakov, A. V.
2017-07-01
The article reviews a state policy of China, due to which the country has managed to develop the world's largest sector of renewable energy sources (RES). Basic aspects of the formation and development of a comprehensive system of state support for the sector, i.e., the creation of scientific and technological advancement, stimulation of renewable energy equipment manufacturing, and support for RES electricity generation, are studied. Key programs implemented in specific stages are analyzed. Considerable attention is paid to the role and characteristics of foreign technology transfers. The dynamics of China's RES sector and the results of its rapid growth with the active participation of the state are researched. On the basis of the analysis, it is concluded that, in general, China's experience in development of RES is successful. Using the example of China, it is safe to say that, in the presence of a balanced state policy, a country is able to create in a decade a strong renewable energy equipment industry and to become a leader in the area of RES electricity generation. Specific features and main problems of the Russian RES sector are considered. On the basis of China's experience, recommendations for improving the state policy in RES are made for Russia. According to the authors, first of all, a sharp increase in state support for scientific research and development (R&D), pilot and demonstration projects, recognition of RES as a part of the fuel and energy sector at all tiers of authority, guarantees of state support for RES in the long run, ensuring access to long-term funds, and the creation of state programs supporting households participation in the distributed power generation are needed.
NASA Astrophysics Data System (ADS)
Abeygunawardane, Saranga Kumudu
2018-02-01
Any electrical utility prefers to implement demand side management and change the shape of the demand curve in a beneficial manner. This paper aims to assess the financial gains (or losses) to the generating sector through the implementation of demand side management programs. An optimization algorithm is developed to find the optimal generation mix that minimizes the daily total generating cost. This daily total generating cost includes the daily generating cost as well as the environmental damage cost. The proposed optimization algorithm is used to find the daily total generating cost for the base case and for several demand side management programs using the data obtained from the Sri Lankan power system. Results obtained for DSM programs are compared with the results obtained for the base case to assess the financial benefits of demand side management to the generating sector.
The SunShot Initiative’s 2030 Goal: 3¢ per Kilowatt Hour for Solar Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In 2011, when solar power comprised less than 0.1% of the U.S. electricity supply, the U.S. Department of Energy (DOE) launched the SunShot Initiative with the goal of making solar electricity cost-competitive with traditionally generated electricity by 2020 without subsidies. At the time, this meant reducing photovoltaic (PV) and concentrating solar power (CSP) prices by approximately 75% across the residential, commercial, and utility-scale sectors. For utility-scale solar, this target is a levelized cost of energy (LCOE) of 6¢ per kilowatt hour (kWh)1. Rapid progress has been made in accelerating achievement of these cost reductions, and DOE’s Solar Energy Technologies Officemore » (SETO) sees clear pathways to meeting the SunShot 2020 cost targets on schedule.2 Enabled by the cost reductions to date, solar-generated electricity has become mainstream. In 2014 and 2015, solar represented about one-third of new electrical generating capacity installed in the United States Halfway through 2016, solar was supplying 1% of U.S. electricity demand and growing with an installed capacity of 30 gigawatts.« less
NASA Astrophysics Data System (ADS)
Morgan, M. G.; Vaishnav, P.; Azevedo, I. L.; Dowlatabadi, H.
2016-12-01
Rising temperatures and changing precipitation patterns due to climate change are projected to alter many sectors of the US economy. A growing body of research has examined these effects in the energy, water, and agricultural sectors. Rising summer temperatures increase the demand for electricity. Changing precipitation patterns effect the availability of water for hydropower generation, thermo-electric cooling, irrigation, and municipal and industrial consumption. A combination of changes to temperature and precipitation alter crop yields and cost-effective farming practices. Although a significant body of research exists on analyzing impacts to individual sectors, fewer studies examine the effects using a common set of assumptions (e.g., climatic and socio-economic) within a coupled modeling framework. The present analysis uses a multi-sector, multi-model framework with common input assumptions to assess the projected effects of climate change on energy, water, and land-use in the United States. The analysis assesses the climate impacts for across 5 global circulation models for representative concentration pathways (RCP) of 8.5 and 4.5 W/m2. The energy sector models - Pacific Northwest National Lab's Global Change Assessment Model (GCAM) and the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) - show the effects of rising temperature on energy and electricity demand. Electricity supply in ReEDS is also affected by the availability of water for hydropower and thermo-electric cooling. Water availability is calculated from the GCM's precipitation using the US Basins model. The effects on agriculture are estimated using both a process-based crop model (EPIC) and an agricultural economic model (FASOM-GHG), which adjusts water supply curves based on information from US Basins. The sectoral models show higher economic costs of climate change under RCP 8.5 than RCP 4.5 averaged across the country and across GCM's.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Patrick; Logan, Jeffrey; Bird, Lori
This paper analyzes potential impacts of proposed national renewable electricity standard (RES) legislation. An RES is a mandate requiring certain electricity retailers to provide a minimum share of their electricity sales from qualifying renewable power generation. The analysis focuses on draft bills introduced individually by Senator Jeff Bingaman and Representative Edward Markey, and jointly by Representative Henry Waxman and Markey. The analysis uses NREL's Regional Energy Deployment System (ReEDS) model to evaluate the impacts of the proposed RES requirements on the U.S. energy sector in four scenarios.
Natural Gas and the Transformation of the U.S. Energy Sector: Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, J.; Heath, G.; Macknick, J.
The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; andmore » 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, Joyce; Miller, John; O'Shaughnessy, Eric
With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for fourmore » charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.« less
Overview of the National Energy-Water System (NEWS) Assessment Framework Study
NASA Astrophysics Data System (ADS)
Vorosmarty, C. J.; Miara, A.; Rosenzweig, B.; Corsi, F.; Piasecki, M.; Celicourt, P.; Fekete, B. M.; Macknick, J.; Melillo, J. M.; Newmark, R. L.; Tidwell, V. C.; Suh, S.; Prousevitch, A.
2015-12-01
In practical terms, strategic planning for the nation's economic, social and environmental future increasingly centers on issues relating to fresh water. U.S. energy security is highly dependent on electricity generated by the nation's fleet of thermoelectric power stations, which today contribute 90% to total electricity production. This presentation summarizes the overall structure and recent progress on a study devoted to climate adaptation and the reliability of power sector infrastructure and operations, when viewed through the lens of strategic water issues. The focus is on electric power infrastructure, i.e., the types, spatial distributions and levels of investment in technologies that deliver or could deliver electricity to the U.S. economy. The work is guided by a central hypothesis, that today's portfolio of electric power sector infrastructure is unsustainable in the context of satisfying its water needs under anticipated climate change and rising electricity demands. Insofar as water-mediated feedbacks reverberate throughout the national economy, we include macro-economic perspectives as well. The work is organized around the technical development of the NEWS framework which is then used to evaluate, in the context of anticipated climate, economic change and regulatory context: the performance of the nation's electricity sector, the feasibility of alternative pathways to improve climate adaptation, and impacts of energy technology. Scenarios are co-designed with a stakeholder community, and investment tradeoffs are considered with respect to the productivity of the economy, water availability and aquatic ecosystem condition.
Main trends in electricity markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pariente-Davied, S.
1998-07-01
Liberalization and restructuring of electricity markets are leading to a globalization of the industry. The electricity sector is moving from state dominance to private participation, from monopoly structures to competition. Greenfield investments in generation capacity are increasingly dominated by private operators; 53% of the 780 GW global capacity additions needed by 2007 will be independent power facilities. Existing power generation assets are changing hands, either through privatization or utility divestitures; 250 GW of capacity is expected to be privatized by 2007 and 310 GW of utility spin-offs are anticipated in the US. The structure of the industry will evolve frommore » fragmentation, with many players operating in national markets, to a few global players operating across borders.« less
Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley; Frew, Bethany; Mai, Trieu
Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision-makers. With the recent surge in variable renewable energy (VRE) generators — primarily wind and solar photovoltaics — the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. This report summarizes the analyses and model experiments that were conducted as part of two workshops on modeling VRE for national-scale capacity expansion models. It discusses the various methods for treatingmore » VRE among four modeling teams from the Electric Power Research Institute (EPRI), the U.S. Energy Information Administration (EIA), the U.S. Environmental Protection Agency (EPA), and the National Renewable Energy Laboratory (NREL). The report reviews the findings from the two workshops and emphasizes the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making. This research is intended to inform the energy modeling community on the modeling of variable renewable resources, and is not intended to advocate for or against any particular energy technologies, resources, or policies.« less
A weather regime characterisation of Irish wind generation and electricity demand in winters 2009–11
NASA Astrophysics Data System (ADS)
Cradden, Lucy C.; McDermott, Frank
2018-05-01
Prolonged cold spells were experienced in Ireland in the winters of 2009–10 and 2010–11, and electricity demand was relatively high at these times, whilst wind generation capacity factors were low. Such situations can cause difficulties for an electricity system with a high dependence on wind energy. Studying the atmospheric conditions associated with these two winters offers insights into the large-scale drivers for cold, calm spells, and helps to evaluate if they are rare events over the long-term. The influence of particular atmospheric patterns on coincidental winter wind generation and weather-related electricity demand is investigated here, with a focus on blocking in the North Atlantic/European sector. The occurrences of such patterns in the 2009–10 and 2010–11 winters are examined, and 2010–11 in particular was found to be unusual in a long-term context. The results are discussed in terms of the relevance to long-term planning and investment in the electricity system.
The potential contribution of geothermal energy to electricity supply in Saudi Arabia
NASA Astrophysics Data System (ADS)
Chandrasekharam, D.; Lashin, Aref; Al Arifi, Nassir
2016-10-01
With increase in demand for electricity at 7.5% per year, the major concern of Saudi Arabia is the amount of CO2 being emitted. The country has the potential of generating 200×106 kWh from hydrothermal sources and 120×106 terawatt hour from Enhanced Geothermal System (EGS) sources. In addition to electricity generation and desalination, the country has substantial source for direct application such as space cooling and heating, a sector that consumes 80% of the electricity generated from fossil fuels. Geothermal energy can offset easily 17 million kWh of electricity that is being used for desalination. At least a part of 181,000 Gg of CO2 emitted by conventional space cooling units can also be mitigated through ground-source heat pump technology immediately. Future development of EGS sources together with the wet geothermal systems will make the country stronger in terms of oil reserves saved and increase in exports.
Near-term implications of a ban on new coal-fired power plants in the United States.
Newcomer, Adam; Apt, Jay
2009-06-01
Large numbers of proposed new coal power generators in the United States have been canceled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO2 emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changes in dispatch order, CO2 emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO2 reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies.
NASA Astrophysics Data System (ADS)
Pérez Gutiérrez, B. R.; Vera-Rivera, F. H.; Niño, E. D. V.
2016-08-01
Estimate the ionic charge generated in electrical discharges will allow us to know more accurately the concentration of ions implanted on the surfaces of nonmetallic solids. For this reason, in this research a web application was developed to allow us to calculate the ionic charge generated in an electrical discharge from the experimental parameters established in an ion implantation process performed in the JUPITER (Joint Universal Plasma and Ion Technologies Experimental Reactor) reactor. The estimated value of the ionic charge will be determined from data acquired on an oscilloscope, during startup and shutdown of electrical discharge, which will then be analyzed and processed. The study will provide best developments with regard to the application of ion implantation in various industrial sectors.
Contract-based electricity markets in developing countries: Overcoming inefficiency constraints
NASA Astrophysics Data System (ADS)
Perera, M. N. Susantha
The electric utility sector throughout the world has been undergoing significant changes. It is changing from its traditional, central-station generation model managed under a vertically integrated monopoly to a more market-dependent business. In the rich industrialized countries, this change has progressed rapidly with the emergence of competitive markets---not only in the area of electricity generation, but also in the extension of such markets down to the level of retail domestic consumer. Developing countries, on the other hand, are trying to attract much-needed investment capital for their power sector expansion activities, particularly for the expansion of generating capacity, through the involvement of the private sector. Unlike their industrialized counterparts, they are facing many limitations in transforming the mostly government-owned monopolies into market-driven businesses, thereby creating an environment that is conducive to private sector participation. Amongst these limitations are the lack of a well-developed, local private sector or domestic financial market that can handle the sophisticated power sector financing; inadequate legal and regulatory frameworks that can address the many complexities of private power development; and numerous risk factors including political risks. This dissertation research addresses an important inefficiency faced by developing countries in the new contract-based market structure that has emerged within these countries. It examines the inefficiencies brought on by restrictions in the contracts, specifically those arising from the guaranteed purchase conditions that are typically included in contracts between the purchasing utility and independent power producers in this new market. The research attempts to provide a solution for this problem and proposes a methodology that enables the parties to conduct their businesses in a cost-efficient manner within a cooperative environment. The situation described above is modeled as a cooperative game based on the relationships that typically exist in power pools. This model draws its mathematical basis from game theory. This research demonstrates that the proposed model has a theoretical solution that yields an efficient allocation of resources. Furthermore, this solution has a significant practical validity as a tool that can be employed by developing country governments faced with similar market situations. In the case study presented here, the model is tested using data from a small developing country.
Impact of warmer weather on electricity sector emissions due to building energy use
NASA Astrophysics Data System (ADS)
Meier, Paul; Holloway, Tracey; Patz, Jonathan; Harkey, Monica; Ahl, Doug; Abel, David; Schuetter, Scott; Hackel, Scott
2017-06-01
Most US energy consumption occurs in buildings, with cooling demands anticipated to increase net building electricity use under warmer conditions. The electricity generation units that respond to this demand are major contributors to sulfur dioxide (SO2) and nitrogen oxides (NOx), both of which have direct impacts on public health, and contribute to the formation of secondary pollutants including ozone and fine particulate matter. This study quantifies temperature-driven changes in power plant emissions due to increased use of building air conditioning. We compare an ambient temperature baseline for the Eastern US to a model-calculated mid-century scenario with summer-average temperature increases ranging from 1 C to 5 C across the domain. We find a 7% increase in summer electricity demand and a 32% increase in non-coincident peak demand. Power sector modeling, assuming only limited changes to current generation resources, calculated a 16% increase in emissions of NOx and an 18% increase in emissions of SO2. There is a high level of regional variance in the response of building energy use to climate, and the response of emissions to associated demand. The East North Central census region exhibited the greatest sensitivity of energy demand and associated emissions to climate.
Domingos, Hélde Araujo; De Melo Faria, Alexandre Magno; Fuinhas, José Alberto; Marques, António Cardoso
2017-08-01
In the last two decades, there has been a rich debate about the environmental degradation that results from exposure to solid urban waste. Growing public concern with environmental issues has led to the implementation of various strategic plans for waste management in several developed countries, especially in the European Union. In this paper, the relationships were assessed between economic growth, renewable energy extraction and greenhouse gas (GHG) emissions in the waste sector. The Environmental Kuznets Curve hypothesis was analysed for the member states of the European Union, in the presence of electricity generation, landfill and GHG emissions for the period 1995 to 2012. The results revealed that there is no inverted-U-shaped relationship between income and GHG emissions in European Union countries. The renewable fuel extracted from waste contributes to a reduction in GHG, and although the electricity produced also increases emissions somewhat, they would be far greater if the waste-based generation of renewable energy did not take place. The waste sector needs to strengthen its political, economic, institutional and social communication instruments to meet its aims for mitigating the levels of pollutants generated by European economies. To achieve the objectives of the Horizon 2020 programme, currently in force in the countries of the European Union, it will be necessary to increase the share of renewable energy in the energy mix.
NASA Astrophysics Data System (ADS)
Miara, A.; Macknick, J.; Vorosmarty, C. J.; Cohen, S. M.; Rosenzweig, B.
2014-12-01
The Northeastern United States (NE) relies heavily on thermoelectric power plants (90% of total capacity) to provide electricity to more than 70 million people. This region's power plants require consistent, large volumes of water at sufficiently cold temperatures to generate electricity efficiently, and withdraw approximately 10.5 trillion gallons of water annually. Previous findings indicate that assessments of future electricity pathways must account for water availability, water temperature and the changing climate, as changes in these conditions may limit operational efficiency in the future. To account for such electric system vulnerabilities, we have created a link between an electricity system capacity expansion model (ReEDS) and a hydrologic model that is coupled to a power plant simulation model (FrAMES-TP2M) that allows for a new approach to analyze electricity system development, performance, and environmental impacts. Together, these coupled tools allow us to estimate electricity development and operations in the context of a changing climate and impacts on the seasonal spatial and temporal variability of water resources, downstream thermal effluents that cause plant-to-plant interferences and harm aquatic habitat, economic costs of water conservation methods and associated carbon emissions. In this study, we test and compare a business-as-usual strategy with three alternative water management scenarios that include changes in cooling technologies and water sources utilized for the years 2014-2050. Results of these experiments can provide useful insight into the feasibility of the electricity expansion scenarios in terms of associated water use and thermal impacts, carbon emissions, the cost of generating electricity, and also highlight the importance of accounting for water resources in future power sector planning and performance assessments.
Regional Responses to Constrained Water Availability
NASA Astrophysics Data System (ADS)
Cui, Y.; Calvin, K. V.; Hejazi, M. I.; Clarke, L.; Kim, S. H.; Patel, P.
2017-12-01
There have been many concerns about water as a constraint to agricultural production, electricity generation, and many other human activities in the coming decades. Nevertheless, how different countries/economies would respond to such constraints has not been explored. Here, we examine the responding mechanism of binding water availability constraints at the water basin level and across a wide range of socioeconomic, climate and energy technology scenarios. Specifically, we look at the change in water withdrawals between energy, land-use and other sectors within an integrated framework, by using the Global Change Assessment Model (GCAM) that also endogenizes water use and allocation decisions based on costs. We find that, when water is taken into account as part of the production decision-making, countries/basins in general fall into three different categories, depending on the change of water withdrawals and water re-allocation between sectors. First, water is not a constraining factor for most of the basins. Second, advancements in water-saving technologies of the electricity generation cooling systems are sufficient of reducing water withdrawals to meet binding water availability constraints, such as in China and the EU-15. Third, water-saving in the electricity sector alone is not sufficient and thus cannot make up the lowered water availability from the binding case; for example, many basins in Pakistan, Middle East and India have to largely reduce irrigated water withdrawals by either switching to rain-fed agriculture or reducing production. The dominant responding strategy for individual countries/basins is quite robust across the range of alternate scenarios that we test. The relative size of water withdrawals between energy and agriculture sectors is one of the most important factors that affect the dominant mechanism.
NASA Astrophysics Data System (ADS)
Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.
2014-12-01
The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Colin; Boardman, Richard; McKellar, Michael
Changes are occurring throughout the U.S. economy, especially in regard to how energy is generated and used in the electricity, buildings, industrial, and transportation sectors. These changes are being driven by environmental and energy security concerns and by economics. The electric-sector market share of natural gas and variable renewable generation, such as wind and solar photovoltaics (PV), continues to grow. The buildings sector is evolving to meet efficiency standards, the transportation sector is evolving to meet efficiency and renewable fuels standards, and the industrial sector is evolving to reduce emissions. Those changes are driving investment and utilization strategies for generationmore » and other assets. Nuclear and renewable energy sources are important to consider in the energy sector’s evolution because both are considered to be clean and non-carbon-emitting energy sources. The Idaho National Laboratory (INL) and the National Renewable Energy Laboratory (NREL) are jointly investigating potential synergies between technologies exploiting nuclear and renewable energy sources. The two laboratories have held several joint workshops since 2011. Those workshops brought together experts in both areas to identify synergies and potential opportunities to work together. Workshop participants identified nuclear-renewable hybrid energy systems (N-R HESs) as one of the opportunities and recommended investigating whether N-R HESs could both generate dispatchable electricity without carbon emissions and provide clean energy to industrial processes. They also recommended analyzing the potential for N-R HESs to provide dispatchable capacity to a grid with high penetrations of non-dispatchable resources and to investigate whether real inertia provided by thermal power cycles within N-R HESs provides value to the grid. This report is one of a series of reports INL and NREL are producing to investigate the technical and economic aspects of N-R HESs. Previous reports focused on tightly coupled N-R HESs. Previously, INL analyzed the dynamic performance of two hypothetical N-R HESs and NREL analyzed the optimal economic configurations and operation of the same two N-R HESs. The first of those two is a Texas-synthetic gasoline scenario that includes four subsystems: a nuclear reactor, thermal power cycle, wind power plant, and synthetic gasoline production technology. The second hypothetical N-R HES is an Arizona-desalination scenario with four subsystems: a nuclear reactor, thermal power cycle, PV, and a desalination plant. INL analyzed the technical performance of the same two N-R HESs in another report. In another report NREL used the Texas-synthetic gasoline scenario provides the basis; however, the industrial process was removed. Instead, that N-R HES sells heat directly to an industrial customer. Subsystems that convert electricity to heat were also included. Future analyses are planned for other N-R HES options including one where hydrogen is produced within an N-R HES. This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources, such as N-R HESs, to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements.« less
Evaluating the CO 2 emissions reduction potential and cost of power sector re-dispatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Daniel C.; Bielen, David A.; Townsend, Aaron
Prior studies of the U.S. electricity sector have recognized the potential to reduce carbon dioxide (CO2) emissions by substituting generation from coal-fired units with generation from under-utilized and lower-emitting natural gas-fired units; in fact, this type of 're-dispatch' was invoked as one of the three building blocks used to set the emissions targets under the Environmental Protection Agency's Clean Power Plan. Despite the existence of surplus natural gas capacity in the U.S., power system operational constraints not often considered in power sector policy analyses, such as transmission congestion, generator ramping constraints, minimum generation constraints, planned and unplanned generator outages, andmore » ancillary service requirements, could limit the potential and increase the cost of coal-to-gas re-dispatch. Using a highly detailed power system unit commitment and dispatch model, we estimate the maximum potential for re-dispatch in the Eastern Interconnection, which accounts for the majority of coal capacity and generation in the U.S. Under our reference assumptions, we find that maximizing coal-to-gas re-dispatch yields emissions reductions of 230 million metric tons (Mt), or 13% of power sector emissions in the Eastern Interconnection, with a corresponding average abatement cost of $15-$44 per metric ton of CO2, depending on the assumed supply elasticity of natural gas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Bolinger, Mark; Heath, Garvin
We model scenarios of the U.S. electric sector in which wind generation reaches 10% of end-use electricity demand in 2020, 20% in 2030, and 35% in 2050. As shown in a companion paper, achieving these penetration levels would have significant implications for the wind industry and the broader electric sector. Compared to a baseline that assumes no new wind deployment, under the primary scenario modeled, achieving these penetrations imposes an incremental cost to electricity consumers of less than 1% through 2030. These cost implications, however, should be balanced against the variety of environmental and social implications of such a scenario.more » Relative to a baseline that assumes no new wind deployment, our analysis shows that the high-penetration wind scenario yields potential greenhouse-gas benefits of $85-$1,230 billion in present-value terms, with a central estimate of $400 billion. Air-pollution-related health benefits are estimated at $52-$272 billion, while annual electric-sector water withdrawals and consumption are lower by 15% and 23% in 2050, respectively. We also find that a high-wind-energy future would have implications for the diversity and risk of energy supply, local economic development, and land use and related local impacts on communities and ecosystems; however, these additional impacts may not greatly affect aggregate social welfare owing to their nature, in part, as resource transfers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Lori; Davidson, Carolyn; McLaren, Joyce
With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset,more » on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.« less
Electric home heating: Substitution for oil and gas
NASA Astrophysics Data System (ADS)
Burwell, C. C.; Devine, W. D., Jr.; Phung, D. L.
1982-03-01
The objective of the research is to determine the potential for substituting electricity generated with surplus coal and nuclear capacity for gas and oil used for home heating. The relative effectiveness of electric heating was determined by an analysis of the purposes of extra winter sales of electricity to the residential sector compared to a similar analysis for extra winter sales of natural gas. The price of electricity for heating is determined based on utility rate structures for selected utilities (primarily located in the north and south central portions of the country) having surplus coal and nuclear capacity throughout the decade of the 1980s. It is found that, on the average, the overall efficiency of fuel use for heating homes electrically is comparable to the use of combustion systems in the home and that electric heating is substantially less costly than direct heating with oil in regions where coal and uranium are the primary fuels used for power generation.
Investigations of conjugate MSTIDS over the Brazilian sector during daytime
NASA Astrophysics Data System (ADS)
Jonah, O. F.; Kherani, E. A.; De Paula, E. R.
2017-09-01
This study focuses on the daytime medium-scale traveling ionospheric disturbances (MSTIDs) observed at conjugate hemispheres. It is the first time that the geomagnetical conjugate daytime MSTIDs are observed over the South America sector. To observe the MSTID characteristics, we used detrended total electron content (TEC) derived from Global Navigation Satellite Systems receivers located at Brazilian sector covering the Northern and Southern Hemispheres along the same magnetic meridian. The geographic grid of 1°N to 14°S in latitude and 60°S to 50°S in longitude was selected for this study. The cross-correlation method between two latitudes and longitudes in time was used to observe the propagation of the MSTID waves. The following features are noted: (a) MSTIDs are well developed at both hemispheres; (b) the peak MSTIDs amplitudes vary from one hemisphere to another; hence, we suppose that MSTIDs generated in Southern Hemisphere or Northern Hemisphere mirrored in the conjugate hemisphere; (c) the gravity wave-induced electric fields from one hemisphere map along the field lines and generate the mirrored MSTIDs in the conjugate region. To investigate the hemispheric mapping mechanism, a rough approximation for the integrated field line conductivity ratio of E and F regions is calculated using digisonde E and F region parameters. We noted that during the period of mapping the decrease in E region conductivity results in an increase in total conductivity. This shows that the E region was partially short circuited; hence, electric field generated at F region could map to the conjugate hemisphere during daytime: daytime MSTIDs at conjugate regions; mechanisms responsible for daytime electrified MSTIDs; gravity wave-induced electric field role in daytime MSTIDs.
The Water-Use Implications of a Changing Power Sector
NASA Astrophysics Data System (ADS)
Peer, R.; Sanders, K.
2016-12-01
Changing policies, declining natural gas prices due to shale production and, growing pressure for cleaner energy sources are causing significant shifts in the fuels and technologies utilized for US electricity generation. These shifts have already impacted the volumes of water required for cooling thermal power plants, imposing consequences for watersheds that have yet to be quantified. This research investigates how these regulatory, economic, and socially-driven changes in the power sector have impacted cooling water usage across the US, which currently represents nearly half of US water withdrawals. This study uses plant-specific fuel consumption, generation, and cooling water data to assess water usage trends in the power sector from 2008 to 2014 across HUC-8 hydrologic units. Over this period, transitions from steam-cycle coal and nuclear units towards combined-cycle natural gas units and renewables, as well as transitions from once-through cooling towards wet recirculating tower and dry cooling systems resulted in large shifts in water usage. Trends towards non-traditional cooling water sources such as recycled water reduced freshwater consumption in some watersheds. Although US cooling water withdrawals and consumption increased from 2008 to 2014 largely due to electricity demand growth, the average water withdrawn and consumed per unit of electricity generated decreased and remained similar in magnitude, respectively. Changes at the watershed scale were not uniform, with some experiencing significant water use reductions and environmental benefits, especially due to coal-fired power plant retirements. Results highlight the importance of evaluating both water withdrawals and consumption at local spatial scales, as these shifts have varying consequences on water availability and quality for downstream users and ecosystems. This analysis underscores the importance of prioritizing local water security in global climate change adaptation and mitigation efforts.
A view to the future of natural gas and electricity: An integrated modeling approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J.; Medlock, Kenneth B.; Jani, Aditya
This paper demonstrates the value of integrating two highly spatially resolved models: the Rice World Gas Trade Model (RWGTM) of the natural gas sector and the Regional Energy Deployment System (ReEDS) model of the U.S. electricity sector. The RWGTM passes electricity-sector natural gas prices to the ReEDS model, while the ReEDS model returns electricity-sector natural gas demand to the RWGTM. The two models successfully converge to a solution under reference scenario conditions. We present electricity-sector and natural gas sector evolution using the integrated models for this reference scenario. This paper demonstrates that the integrated models produced similar national-level results asmore » when running in a stand-alone form, but that regional and state-level results can vary considerably. As we highlight, these regional differences have potentially significant implications for electric sector planners especially in the wake of substantive policy changes for the sector (e.g., the Clean Power Plan).« less
A view to the future of natural gas and electricity: An integrated modeling approach
Cole, Wesley J.; Medlock, Kenneth B.; Jani, Aditya
2016-03-17
This paper demonstrates the value of integrating two highly spatially resolved models: the Rice World Gas Trade Model (RWGTM) of the natural gas sector and the Regional Energy Deployment System (ReEDS) model of the U.S. electricity sector. The RWGTM passes electricity-sector natural gas prices to the ReEDS model, while the ReEDS model returns electricity-sector natural gas demand to the RWGTM. The two models successfully converge to a solution under reference scenario conditions. We present electricity-sector and natural gas sector evolution using the integrated models for this reference scenario. This paper demonstrates that the integrated models produced similar national-level results asmore » when running in a stand-alone form, but that regional and state-level results can vary considerably. As we highlight, these regional differences have potentially significant implications for electric sector planners especially in the wake of substantive policy changes for the sector (e.g., the Clean Power Plan).« less
NASA Astrophysics Data System (ADS)
Frischauf, Norbert; Acosta-Iborra, Beatriz; Harskamp, Frederik; Moretto, Pietro; Malkow, Thomas; Honselaar, Michel; Steen, Marc; Hovland, Scott; Hufenbach, Bernhard; Schautz, Max; Wittig, Manfred; Soucek, Alexander
2013-07-01
Hydrogen will assume a key role in Europe's effort to adopt its energy dependent society to satisfy its needs without releasing vast amounts of greenhouse gases. The paradigm shift is so paramount that one speaks of the "Hydrogen Economy", as the energy in this new and ecological type of economy is to be distributed by hydrogen. However, H2 is not a primary energy source but rather an energy carrier, a means of storing, transporting and distributing energy, which has to be generated by other means. Various H2 storage methods are possible; however industries' favourite is the storage of gaseous hydrogen in high pressure tanks. The biggest promoter of this storage methodology is the automotive industry, which is currently preparing for the generation change from the fossil fuel internal combustion engines to hydrogen based fuel cells. The current roadmaps foresee a market roll-out by 2015, when the hydrogen supply infrastructure is expected to have reached a critical mass. The hydrogen economy is about to take off as being demonstrated by various national mobility strategies, which foresee several millions of electric cars driving on the road in 2020. Fuel cell cars are only one type of "electric car", battery electric as well as hybrid cars - all featuring electric drive trains - are the others. Which type of technology is chosen for a specific application depends primarily on the involved energy storage and power requirements. These considerations are very similar to the ones in the aerospace sector, which had introduced the fuel cell already in the 1960s. The automotive sector followed only recently, but has succeeded in moving forward the technology to a level, where the aerospace sector is starting considering to spin-in terrestrial hydrogen technologies into its technology portfolio. Target areas are again high power/high energy applications like aviation, manned spaceflight and exploration missions, as well as future generation high power telecommunication satellites. Similar trends can be expected in the future for RADAR Earth Observation satellites and space infrastructure concepts of great scale. This paper examines current activities along the hydrogen value chain, both in the terrestrial and the aerospace sector. A general assessment of the synergy potential is complemented by a thorough analysis of specific applications serving as role models like a lunar manned base or pressurised rover, an aircraft APU or a high power telecommunications satellite. Potential performance improvements and cost savings serve as key performance indicators in these comparisons and trade-offs.
NASA Astrophysics Data System (ADS)
Lohmann, Timo
Electric sector models are powerful tools that guide policy makers and stakeholders. Long-term power generation expansion planning models are a prominent example and determine a capacity expansion for an existing power system over a long planning horizon. With the changes in the power industry away from monopolies and regulation, the focus of these models has shifted to competing electric companies maximizing their profit in a deregulated electricity market. In recent years, consumers have started to participate in demand response programs, actively influencing electricity load and price in the power system. We introduce a model that features investment and retirement decisions over a long planning horizon of more than 20 years, as well as an hourly representation of day-ahead electricity markets in which sellers of electricity face buyers. This combination makes our model both unique and challenging to solve. Decomposition algorithms, and especially Benders decomposition, can exploit the model structure. We present a novel method that can be seen as an alternative to generalized Benders decomposition and relies on dynamic linear overestimation. We prove its finite convergence and present computational results, demonstrating its superiority over traditional approaches. In certain special cases of our model, all necessary solution values in the decomposition algorithms can be directly calculated and solving mathematical programming problems becomes entirely obsolete. This leads to highly efficient algorithms that drastically outperform their programming problem-based counterparts. Furthermore, we discuss the implementation of all tailored algorithms and the challenges from a modeling software developer's standpoint, providing an insider's look into the modeling language GAMS. Finally, we apply our model to the Texas power system and design two electricity policies motivated by the U.S. Environment Protection Agency's recently proposed CO2 emissions targets for the power sector.
Electricity reform and sustainable development in China
NASA Astrophysics Data System (ADS)
Williams, James H.; Kahrl, Fredrich
2008-10-01
Reducing the environmental impact of supplying electricity is a key to China's sustainable development, and a focus of both domestic and international concerns with greenhouse gas emissions. The environmental performance of the electricity sector is strongly affected by its institutional arrangements: regulatory frameworks, wholesale markets, pricing mechanisms, planning and coordination, and enforcement and incentive mechanisms. These arrangements are set to change as electricity reforms inaugurated in 2002, but sidetracked by several years of supply shortages, are being resumed. In this paper we examine the impact of electricity reform on environmental sustainability by analyzing case studies of four environmental initiatives in the electricity sector: retirement of inefficient generators, installation of pollution control equipment, renewable energy development, and efforts to promote energy efficiency. We find that implementation of these policies falls short of objectives for two main underlying reasons: conflicting priorities between central and provincial governments, and ineffective regulation. Sustainability will be best served not by redoubling short-term supply-oriented, market-based reforms, but by better aligning central and provincial government incentives, and by developing competent, independent regulation at the provincial level. China's central government and sub-national governments in industrialized countries can both contribute to the latter goal.
The Benefits of Internalizing Air Quality and Greenhouse Gas Externalities in the US Energy System
NASA Astrophysics Data System (ADS)
Brown, Kristen E.
The emission of pollutants from energy use has effects on both local air quality and the global climate, but the price of energy does not reflect these externalities. This study aims to analyze the effect that internalizing these externalities in the cost of energy would have on the US energy system, emissions, and human health. In this study, we model different policy scenarios in which fees are added to emissions related to generation and use of energy. The fees are based on values of damages estimated in the literature and are applied to upstream and combustion emissions related to electricity generation, industrial energy use, transportation energy use, residential energy use, and commercial energy use. The energy sources and emissions are modeled through 2055 in five-year time steps. The emissions in 2045 are incorporated into a continental-scale atmospheric chemistry and transport model, CMAQ, to determine the change in air quality due to different emissions reduction scenarios. A benefit analysis tool, BenMAP, is used with the air quality results to determine the monetary benefit of emissions reductions related to the improved air quality. We apply fees to emissions associated with health impacts, climate change, and a combination of both. We find that the fees we consider lead to reductions in targeted emissions as well as co-reducing non-targeted emissions. For fees on the electric sector alone, health impacting pollutant (HIP) emissions reductions are achieved mainly through control devices while Greenhouse Gas (GHG) fees are addressed through changes in generation technologies. When sector specific fees are added, reductions come mainly from the industrial and electricity generation sectors, and are achieved through a mix of energy efficiency, increased use of renewables, and control devices. Air quality is improved in almost all areas of the country with fees, including when only GHG fees are applied. Air quality tends to improve more in regions with larger emissions reductions, especially for PM2.5.
Three essays on U.S. electricity restructuring
NASA Astrophysics Data System (ADS)
Sergici, Sanem I.
2008-04-01
The traditional structure of the electricity sector in the U.S. has been that of large vertically integrated companies with sole responsibility for distributing power to end users within a franchise area. The restructuring of this sector that has occurred in the past 10-20 years has profoundly altered this picture. This dissertation examines three aspects of that restructuring process. First chapter of my dissertation investigates the impacts of divestitures of generation, an important part of the process of restructuring, on the efficiency of distribution systems. We find that while all divestitures as a group do not significantly affect distribution efficiency, those mandated by state public utility commissions have resulted in large and statistically significant adverse effects on distribution efficiency. Second chapter of my dissertation explores whether independent system operator (ISO) formation in New York has led to operating efficiencies at the unit and the system level. ISOs oversee the centralized management of the grid and the energy market and are expected to promote more efficient power generation. We test these efficiencies focusing on the generation units in New York ISO region from 1998 to 2004 and find that the NYISO formation has introduced limited efficiencies at the unit and the system level. Restructuring in the electricity industry has spawned a new wave of mergers, both raising questions and providing opportunities to examine these mergers. Third chapter of my dissertation investigates the drivers of electric utility mergers consummated between 1992 and 2004. My results provide support for disturbance theory of mergers, size hypothesis, and inefficient management hypothesis as drivers of electric utility mergers. I also find that the adjacency of the service territories is the most noteworthy determinant of the pairings between IOUs.
Importance of hard coal in electricity generation in Poland
NASA Astrophysics Data System (ADS)
Plewa, Franciszek; Strozik, Grzegorz
2017-11-01
Polish energy sector is facing a number of challenges, in particular as regards the reconstruction of production potential, diversification of energy sources, environmental issues, adequate fuels supplies and other. Mandatory implementation of Europe 2020 strategy in terms of “3x20” targets (20% reduction of greenhouse gases, 20% of energy from renewable sources, and 20% increase of efficiency in energy production) requires fast decision, which have to be coordinated with energetic safety issues, increasing demands for electric energy, and other factors. In Poland almost 80% of power is installed in coal fired power plants and energy from hard coals is relatively less expensive than from other sources, especially renewable. The most of renewable energy sources power plants are unable to generate power in amounts which can be competitive with coal fires power stations and are highly expensive, what leads o high prices of electric energy. Alternatively, new generation of coal fired coal power plants is able to significantly increase efficiency, reduce carbon dioxide emission, and generate less expensive electric power in amounts adequate to the demands of a country.
Energy from wood biomass: The experience of the Brazilian forest sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couto, L.; Graca, L.R.; Betters, D.R.
Wood biomass is one of the most significant renewable sources of energy in Brazil. Fuelwood and charcoal play a very important role not only for household energy consumption but also for the cement, iron and steel industries. Wood is used as an energy source by the pulp and paper, composite board and other industries of the country, mainly for steam and electricity generation. Ethanol, lignin-based coke and methanol from wood were produced at experimental units in Brazil but were not implemented on a commercial scale. Currently, a new experimental plant using a technology developed in the US is being builtmore » in the state of Bahia to generate electricity from Eucalyptus. This technology is a Biomass Integrated Gasification/Gas Turbine process which is expected to make the use of wood biomass economically feasible for electricity generation. Forest plantations are the main source of wood biomass for energy consumption by the Brazilian industrial sector. Fiscal incentives in the 1960s helped the country to begin a massive reforestation program mainly using Eucalyptus and Pinus species. A native species, bracatinga (Mimosa scabrella) has also been used extensively for wood energy plantations in southern Brazil. Technical, economic, social and environmental impacts of these plantation forests are discussed along with a forecast of the future wood energy utilization in Brazil.« less
Near-term implications of a ban on new coal-fired power plants in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam Newcomer; Jay Apt
2009-06-15
Large numbers of proposed new coal power generators in the United States have been cancelled, and some states have prohibited new coal power generators. We examine the effects on the U.S. electric power system of banning the construction of coal-fired electricity generators, which has been proposed as a means to reduce U.S. CO{sub 2} emissions. The model simulates load growth, resource planning, and economic dispatch of the Midwest Independent Transmission System Operator (ISO), Inc., Electric Reliability Council of Texas (ERCOT), and PJM under a ban on new coal generation and uses an economic dispatch model to calculate the resulting changesmore » in dispatch order, CO{sub 2} emissions, and fuel use under three near-term (until 2030) future electric power sector scenarios. A national ban on new coal-fired power plants does not lead to CO{sub 2} reductions of the scale required under proposed federal legislation such as Lieberman-Warner but would greatly increase the fraction of time when natural gas sets the price of electricity, even with aggressive wind and demand response policies. 50 refs., 5 figs., 4 tabs.« less
NASA Astrophysics Data System (ADS)
Chen, M.; Lemon, C.; Hecht, J. H.; Evans, J. S.; Boyd, A. J.
2016-12-01
We investigate how scattering of electrons by waves and of ions by field-line curvature in the inner magnetosphere affect precipitating energy flux distributions and how the precipitating particles modify the ionospheric conductivity and electric potentials during magnetic storms. We examine how particle precipitation in the evening sector affects the development of the Sub-Auroral Polarization Stream (SAPS) electric field that is observed at sub-auroral latitudes in that sector as well as the electric field in the morning sector. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the stormtime precipitating particle distributions and the electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are employed. Our description for the rate of ion scattering is more simplistic. We assume that the ions are scattered at a fraction of strong pitch-angle scattering where the fraction is scaled by epsilon, the ratio of the gyroradius to the field-line radius of curvature, when epsilon is greater than 0.1. We compare simulated trapped and precipitating electron/ion flux distributions with measurements from Van Allen Probes/MagEIS, POES and DMSP, respectively, to validate the particle loss models. DMSP observations of electric fields are compared with the simulation results. We discuss the effect of precipitating electrons and ions on the SAPS and the inner magnetospheric electric field through the data-model comparisons.
Economic implications of climate-driven trends in global hydropower generation
NASA Astrophysics Data System (ADS)
Turner, S. W. D.; Galelli, S.; Hejazi, M. I.; Clarke, L.; Edmonds, J.; Kim, S. H.
2017-12-01
Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore how these impacts could affect the composition of global electricity supply, and what those changes could mean for power sector emissions and investment needs in the 21st century. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model (1593 major hydropower dams; 54% global installed capacity) with downscaled, bias-corrected climate realizations derived from sixteen General Circulation Models (GCMs). To incorporate possible non-linearity in hydropower response to climate change, dam simulations incorporate plant specifications (e.g., maximum turbine flow), reservoir storage dynamics, reservoir bathymetry, evaporation losses and bespoke, site specific operations. Consequent impacts on regional and global-level electricity generation and associated emissions and investment costs are examined using the Global Change Assessment Model (GCAM). We show that changes in hydropower generation resulting from climate change can shift power demands onto and away from carbon intensive technologies, resulting in significant impacts on CO2 emissions for several regions. Many of these countries are also highly vulnerable to investment impacts (costs of new electricity generating facilities to make up for shortfalls in hydro), which in some cases amount to tens of billions of dollars by 2100. The Balkans region—typified by weak economies in a drying region that relies heavily on hydropower—emerges as the most vulnerable. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity (low emissions requires greater uptake of clean generating technologies, which are more expensive). This means impacts on power sector investment costs are similar for high and low emissions scenarios.
[Demography perspectives and forecasts of the demand for electricity].
Roy, L; Guimond, E
1995-01-01
"Demographic perspectives form an integral part in the development of electric load forecasts. These forecasts in turn are used to justify the addition and repair of generating facilities that will supply power in the coming decades. The goal of this article is to present how demographic perspectives are incorporated into the electric load forecasting in Quebec. The first part presents the methods, hypotheses and results of population and household projections used by Hydro-Quebec in updating its latest development plan. The second section demonstrates applications of such demographic projections for forecasting the electric load, with a focus on the residential sector." (SUMMARY IN ENG AND SPA) excerpt
NASA Astrophysics Data System (ADS)
1981-01-01
The critical issues for the electricity sector in California were presented. Adopted level of electricity demand and adopted policies and supply criteria are included. These form the basis for planning and certification of electric generation and transmission facilities by the energy commission. Estimates of the potential contributions of conservation and various conventional and alternative supply sources, critiques of utility supply plans, and determinations of how much new capacity is required are also included. Policy recommendations for directing public and private investments into preferred energy options, for spreading the benefits and costs of these options broadly and fairly among California's citizens, and for removing remaining obstacles to the development of all acceptable energy sources are presented.
NASA Astrophysics Data System (ADS)
Mohan, Riya Rachel
2018-04-01
Green House Gas (GHG) emissions are the major cause of global warming and climate change. Carbon dioxide (CO2) is the main GHG emitted through human activities, at the household level, by burning fuels for cooking and lighting. As per the 2006 methodology of the Inter-governmental Panel on Climate Change (IPCC), the energy sector is divided into various sectors like electricity generation, transport, fugitive, 'other' sectors, etc. The 'other' sectors under energy include residential, commercial, agriculture and fisheries. Time series GHG emission estimates were prepared for the residential, commercial, agriculture and fisheries sectors in India, for the time period 2005 to 2014, to understand the historical emission changes in 'other' sector. Sectoral activity data, with respect to fuel consumption, were collected from various ministry reports like Indian Petroleum and Natural Gas Statistics, Energy Statistics, etc. The default emission factor(s) from IPCC 2006 were used to calculate the emissions for each activity and sector-wise CO2, CH4, N2O and CO2e emissions were compiled. It was observed that the residential sector generates the highest GHG emissions, followed by the agriculture/fisheries and commercial sector. In the residential sector, LPG, kerosene, and fuelwood are the major contributors of emissions, whereas diesel is the main contributor to the commercial, agriculture and fisheries sectors. CO2e emissions have been observed to rise at a cumulative annual growth rate of 0.6%, 9.11%, 7.94% and 5.26% for the residential, commercial, agriculture and fisheries sectors, respectively. In addition to the above, a comparative study of the sectoral inventories from the national inventories, published by Ministry of Environment, Forest and Climate Change, for 2007 and 2010 was also performed.
Innovative energy technologies and climate policy in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Katja; Sands, Ronald D.
2006-12-01
Due to the size and structure of its economy, Germany is one of the largest carbon emitters in the European Union. However, Germany is facing a major renewal and restructuring process in electricity generation. Within the next two decades, up to 50% of current electricity generation capacity may retire because of end-of-plant lifetime and the nuclear phase-out pact of 1998. Substantial opportunities therefore exist for deployment of advanced electricity generating technologies in both a projected baseline and in alternative carbon policy scenarios. We simulate the potential role of coal integrated gasification combined cycle (IGCC), natural gas combined cycle (NGCC), carbonmore » dioxide capture and storage (CCS), and wind power within a computable general equilibrium of Germany from the present through 2050. These advanced technologies and their role within a future German electricity system are the focus of this paper. We model the response of greenhouse gas emissions in Germany to various technology and carbon policy assumptions over the next few decades. In our baseline scenario, all of the advanced technologies except CCS provide substantial contributions to electricity generation. We also calculate the carbon price where each fossil technology, combined with CCS, becomes competitive. Constant carbon price experiments are used to characterize the model response to a carbon policy. This provides an estimate of the cost of meeting an emissions target, and the share of emissions reductions available from the electricity generation sector.« less
Energy Requirements by the Water Sector in the Southwestern US: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Averyt, K.; Yates, D. N.; Meldrum, J.
2014-12-01
Climate, energy, and water are fundamentally linked such that shifts in one sector have cascading impacts on the others. Consideration of the integrated system is necessary to fully understand the individual risk profile of each sector. In defining vulnerabilities and potential adaptations, the policy and regulatory environment must be considered alongside the biological and physical systems. Take, for example, the Southwestern U.S., a naturally arid system, where water availability is declining as a consequence of climate change and population growth. Adaptations by the water sector to convey, store, and develop new water sources (e.g. desalination, groundwater pumping, water-reuse) are strategies designed to enhance sustainability of the sector. But, the energy requirements embedded in these management techniques pose challenges to electric utilities. West wide, approximately 20% of total electricity generation goes toward supplying and heating water. If future investments made by the water sector to deal with changing supply and demand regimes continue to follow current trends, the dependence of water on energy availability will grow, meaning that the water supply will be increasingly reliant on the electricity system. Here, we use the example of long-term aridity and the recent drought in the Western US to illustrate the tradeoffs and challenges inherent at the nexus between energy and water. We present long-term trends in the energy intensity of water supplies in the Southwestern US, with a specific focus on groundwater systems. Projected energy requirements for proposed and future conveyance systems are discussed. The potential impacts of reduced flows on the Colorado River on the energy demands for groundwater pumping in the Lower Colorado River Basin are highlighted.
Strategic responses to CO2 emission reduction targets drive shift in U.S. electric sector water use
The reliance of the U.S. electric sector on water makes this sector vulnerable to climate change and variability. We use the EPAUS9r MARKAL model to investigate changes in U.S. electric sector water withdrawal and consumption through 2055 under alternative energy system-wide CO2...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, Vaibhav; Clarke, Leon E.; Edmonds, James A.
Electrification plays a crucial role in cost-effective greenhouse gas emissions mitigation strategies. Such strategies in turn carry implications for financial capital markets. This paper explores the implication of climate mitigation policy for capital investment demands by the electric power sector on decade to century time scales. We go further to explore the implications of technology performance and the stringency of climate policy for capital investment demands by the power sector. Finally, we discuss the regional distribution of investment demands. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that wouldmore » be need in the absence of climate policy, in the range of 16 to 29 Trillion US$ (60-110%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 8 to21 Trillion US$ (default technology assumptions), depending on climate policy scenario with higher savings being obtained under the most stringent climate policy. The heaviest investments in power generation were observed in the China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century.« less
3 CFR - Power Sector Carbon Pollution Standards
Code of Federal Regulations, 2014 CFR
2014-01-01
... gas emissions of new cars and light trucks through 2025 and heavy duty trucks through 2018. The EPA..., established fuel efficiency standards for cars and trucks as part of a harmonized national program. Both... Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units,” 77 Fed. Reg. 22392...
78 FR 39533 - Power Sector Carbon Pollution Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
..., issuing Clean Air Act standards limiting the greenhouse gas emissions of new cars and light trucks through... Department of Transportation, which, at the same time, established fuel efficiency standards for cars and... Sources: Electric Utility Generating Units,'' 77 Fed. Reg. 22392. In light of the information conveyed in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, R.M.; Biswas, W.K.; Jalal, A.I.
1998-11-01
This paper assesses the potential of selected efficient electrical appliances for avoiding power generation and for mitigation of selected air pollutants from the power sector in Pakistan from technical as well as national, utility and user perspectives. The study shows that about 14, 21 and 35% of the total CO{sub 2}, SO{sub 2} and NO{sub x} emissions in the business as usual (BAU) case could be avoided by the adoption of selected efficient appliances during 1997--2015 from the national perspective, while the corresponding figures from the user perspective are 12, 17 and 29%, respectively. All selected efficient appliances would bemore » cost effective to the users if electricity prices were set at the long-run marginal cost of supply.« less
NASA Astrophysics Data System (ADS)
Viola, J.; Aceros, C.
2016-07-01
Smart Grids are a technology that can be used to implement a sustainable energy scheme of a country. Therefore, this paper proposes the development of a prospective analysis of Smart Grids as a tool to ensure energetic security in Colombia in 2050. Using LEAP software, a base scenario for Colombian energy demand has developed according to current policies, with a time horizon from 2012 to 2050. The energy analysis is based on three scenarios, taking into account the impact of cogeneration in the residential and industrial sector using renewable energy and the power quality indicators. The results show that the implementation of Smart Grids generate energy savings and increasing the coverage of the national electricity system, ensuring energetic security of the country by 2050.
Energy transition in transport sector from energy substitution perspective
NASA Astrophysics Data System (ADS)
Sun, Wangmin; Yang, Xiaoguang; Han, Song; Sun, Xiaoyang
2017-10-01
Power and heating generation sector and transport sector contribute a highest GHG emissions and even air pollutions. This paper seeks to investigate life cycle costs and emissions in both the power sector and transport sector, and evaluate the cost-emission efficient (costs for one unit GHG emissions) of the substitution between new energy vehicles and conventional gasoline based vehicles under two electricity mix scenarios. In power sector, wind power and PV power will be cost comparative in 2030 forecasted with learning curve method. With high subsidies, new energy cars could be comparative now, but it still has high costs to lower GHG emissions. When the government subsidy policy is reversible, the emission reduction cost for new energy vehicle consumer will be 900/ton. According to the sensitive analysis, the paper suggests that the government implement policies that allocate the cost to the whole life cycle of energy production and consumption related to transport sector energy transition and policies that are in favor of new energy vehicle consumers but not the new energy car producers.
NASA Astrophysics Data System (ADS)
Szabó, Sándor; Moner-Girona, Magda; Kougias, Ioannis; Bailis, Rob; Bódis, Katalin
2016-10-01
Pioneering approaches are needed to accelerate universal access to electricity while simultaneously transitioning to reliable, sustainable and affordable energy systems. In sub-Saharan Africa (SSA), the challenges lie in attracting the private sector to complement public investments. Here, we present an integrated ‘low-hanging-fruit’ approach aimed at boosting private investment and speeding up the deployment of renewable energy systems in SSA. We analyse the potential of existing energy infrastructure, where a significant upfront investment has already been made, to be exploited for electricity generation. We develop a comprehensive methodology to identify and select suitable locations in SSA and estimate their potential for exploitation. These locations have been further analysed in terms of power capacity potential, electricity output, investments needed and population to be benefited. This strategy to attract additional finance can easily be reproduced, engaging private investors while simultaneously helping to achieve the United Nations (UN) Sustainable Development Goals on energy.
NASA Astrophysics Data System (ADS)
Newmark, R. L.; Vorosmarty, C. J.; Miara, A.; Cohen, S.; Macknick, J.; Sun, Y.; Corsi, F.; Fekete, B. M.; Tidwell, V. C.
2017-12-01
Climate change impacts on air temperatures and water availability have the potential to alter future electricity sector investment decisions as well as the reliability and performance of the power sector. Different electricity sector configurations are more or less vulnerable to climate-induced changes. For example, once-through cooled thermal facilities are the most cost-effective and efficient technologies under cooler and wetter conditions, but can be substantially affected by and vulnerable to warmer and drier conditions. Non-thermal renewable technologies, such as PV and wind, are essentially "drought-proof" but have other integration and reliability challenges. Prior efforts have explored the impacts of climate change on electric sector development for a limited set of climate and electricity scenarios. Here, we provide a comprehensive suite of scenarios that evaluate how different electricity sector pathways could be affected by a range of climate and water resource conditions. We use four representative concentration pathway (RCP) scenarios under five global circulation models (GCM) as climate drivers to a Water Balance Model (WBM), to provide twenty separate future climate-water conditions. These climate-water conditions influence electricity sector development from present day to 2050 as determined using the Regional Energy Deployment Systems (ReEDS) model. Four unique electricity sector pathways will be considered, including business-as-usual, carbon cap, high renewable energy technology costs, and coal reliance scenarios. The combination of climate-water and electricity sector pathway scenarios leads to 80 potential future cases resulting in different national and regional electricity infrastructure configurations. The vulnerability of these configurations in relation to climate change (including in-stream thermal pollution impacts and environmental regulations) is evaluated using the Thermoelectric Power and Thermal Pollution (TP2M) model, providing quantitative estimates of the power sector's ability to meet loads, given changes in air temperature, water temperature, and water availability.
Household energy use in Asian cities: Responding to development success
NASA Astrophysics Data System (ADS)
Tyler, Stephen R.
In the past 10-15 years, gains in household income and urban development in many countries in Asia have led to significant shifts in household use of fuels away from traditional, biomass-based household fuels to modern, fossil fuels. These results suggest that, while the global atmospheric emissions implications need further analysis, the local air quality effects of urban household fuel use changes have been positive. These changes also demonstrate improvements in living conditions, particularly for poor women and children most affected by indoor air quality. However, for electricity use, where there is evidence of dramatic increases in household consumption, the longer term implications for atmospheric emissions are more troubling. Rapid demand growth in the urban household sector is contributing to huge increases in thermal electric generating capacity needs in Asia. Improving technologies of electricity use in the household sector appears to be easily achievable and could be stimulated through market and policy mechanisms which have been used elsewhere. These measures offer the prospect of real environmental and economic gains without sacrificing lifestyle advantages of electrical appliance use in households.
Penetration of Large Scale Electric Field to Inner Magnetosphere
NASA Astrophysics Data System (ADS)
Chen, S. H.; Fok, M. C. H.; Sibeck, D. G.; Wygant, J. R.; Spence, H. E.; Larsen, B.; Reeves, G. D.; Funsten, H. O.
2015-12-01
The direct penetration of large scale global electric field to the inner magnetosphere is a critical element in controlling how the background thermal plasma populates within the radiation belts. These plasma populations provide the source of particles and free energy needed for the generation and growth of various plasma waves that, at critical points of resonances in time and phase space, can scatter or energize radiation belt particles to regulate the flux level of the relativistic electrons in the system. At high geomagnetic activity levels, the distribution of large scale electric fields serves as an important indicator of how prevalence of strong wave-particle interactions extend over local times and radial distances. To understand the complex relationship between the global electric fields and thermal plasmas, particularly due to the ionospheric dynamo and the magnetospheric convection effects, and their relations to the geomagnetic activities, we analyze the electric field and cold plasma measurements from Van Allen Probes over more than two years period and simulate a geomagnetic storm event using Coupled Inner Magnetosphere-Ionosphere Model (CIMI). Our statistical analysis of the measurements from Van Allan Probes and CIMI simulations of the March 17, 2013 storm event indicate that: (1) Global dawn-dusk electric field can penetrate the inner magnetosphere inside the inner belt below L~2. (2) Stronger convections occurred in the dusk and midnight sectors than those in the noon and dawn sectors. (3) Strong convections at multiple locations exist at all activity levels but more complex at higher activity levels. (4) At the high activity levels, strongest convections occur in the midnight sectors at larger distances from the Earth and in the dusk sector at closer distances. (5) Two plasma populations of distinct ion temperature isotropies divided at L-Shell ~2, indicating distinct heating mechanisms between inner and outer radiation belts. (6) CIMI simulations reveal alternating penetration and shielding electric fields during the main phase of the geomagnetic storm, indicating an impulsive nature of the large scale penetrating electric field in regulating the gain and loss of radiation belt particles. We will present the statistical analysis and simulations results.
Renewable Electricity: Insights for the Coming Decade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Camila; Pless, Jacquelyn; Logan, Jeffrey
2015-02-01
A sophisticated set of renewable electricity (RE) generation technologies is now commercially available. Globally, RE captured approximately half of all capacity additions since 2011. The cost of RE is already competitive with fossil fuels in some areas around the world, and prices are anticipated to continue to decline over the next decade. RE options, led by wind and solar, are part of a suite of technologies and business solutions that are transforming electricity sectors around the world. Renewable deployment is expected to continue due to: increasingly competitive economics; favorable environmental characteristics such as low water use, and minimal local airmore » pollution and greenhouse gas (GHG) emissions; complementary risk profiles when paired with natural gas generators; strong support from stakeholders. Despite this positive outlook for renewables, the collapse in global oil prices since mid-2014 and continued growth in natural gas supply in the United States--due to the development of low-cost shale gas--raise questions about the potential impacts of fossil fuel prices on RE. Today, oil plays a very minor role in the electricity sectors of most countries, so direct impacts on RE are likely to be minimal (except where natural gas prices are indexed on oil). Natural gas and RE generating options appear to be more serious competitors than oil and renewables. Low gas prices raise the hurdle for RE to be cost competitive. Additionally, although RE emits far less GHG than natural gas, both natural gas and RE offer the benefits of reducing carbon relative to coal and oil (see Section 4.1 for more detail on the GHG intensity of electricity technologies). However, many investors and decision makers are becoming aware of the complementary benefits of pairing natural gas and renewables to minimize risk of unstable fuel prices and maintain the reliability of electricity to the grid.« less
. Areas of Expertise Capacity expansion modeling of the U.S. electricity sector Renewable energy models Interaction of rooftop PV deployment with the greater electricity sector Impacts of policies on the evolution of the electricity sector Interactions of the natural gas supply chain with the
2002-01-01
Beginning with the December 2002 issue of the Energy Information Administration's Short-Term Energy Outlook (STEO), electricity generation and related fuel consumption totals will be presented on a basis that is consistent with the definitions and aggregates used in the 2001 edition of EIA's Annual Energy Review (AER). Particularly affected by these changes are the demand and balancing item totals for natural
Scenarios for low carbon and low water electric power plant ...
In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under
Natural Gas and the Transformation of the U.S. Energy Sector: Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, Jeffrey; Heath, Garvin; Macknick, Jordan
2012-11-01
Domestic natural gas production was largely stagnant from the mid-1970s until about 2005. However, beginning in the late 1990s, advances linking horizontal drilling techniques with hydraulic fracturing allowed drilling to proceed in shale and other formations at much lower cost. The result was a slow, steady increase in unconventional gas production. The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset from the wider dialogue on natural gas; regarding the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels usedmore » to generate electricity; existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and changes in response to the rapid industry growth and public concerns; natural gas production companies changing their water-related practices; and demand for natural gas in the electric sector.« less
Pacsi, Adam P; Kimura, Yosuke; McGaughey, Gary; McDonald-Buller, Elena C; Allen, David T
2015-03-17
The combined emissions and air quality impacts of electricity generation in the Texas grid and natural gas production in the Eagle Ford shale were estimated at various natural gas price points for the power sector. The increased use of natural gas in the power sector, in place of coal-fired power generation, drove reductions in average daily maximum 8 h ozone concentration of 0.6-1.3 ppb in northeastern Texas for a high ozone episode used in air quality planning. The associated increase in Eagle Ford upstream oil and gas production nitrogen oxide (NOx) emissions caused an estimated local increase, in south Texas, of 0.3-0.7 ppb in the same ozone metric. In addition, the potential ozone impacts of Eagle Ford emissions on nearby urban areas were estimated. On the basis of evidence from this work and a previous study on the Barnett shale, the combined ozone impact of increased natural gas development and use in the power sector is likely to vary regionally and must be analyzed on a case by case basis.
Current and Future Environmental Balance of Small-Scale Run-of-River Hydropower.
Gallagher, John; Styles, David; McNabola, Aonghus; Williams, A Prysor
2015-05-19
Globally, the hydropower (HP) sector has significant potential to increase its capacity by 2050. This study quantifies the energy and resource demands of small-scale HP projects and presents methods to reduce associated environmental impacts based on potential growth in the sector. The environmental burdens of three (50-650 kW) run-of-river HP projects were calculated using life cycle assessment (LCA). The global warming potential (GWP) for the projects to generate electricity ranged from 5.5-8.9 g CO2 eq/kWh, compared with 403 g CO2 eq/kWh for UK marginal grid electricity. A sensitivity analysis accounted for alternative manufacturing processes, transportation, ecodesign considerations, and extended project lifespan. These findings were extrapolated for technically viable HP sites in Europe, with the potential to generate 7.35 TWh and offset over 2.96 Mt of CO2 from grid electricity per annum. Incorporation of ecodesign could provide resource savings for these HP projects: avoiding 800 000 tonnes of concrete, 10 000 tonnes of steel, and 65 million vehicle miles. Small additional material and energy contributions can double a HP system lifespan, providing 39-47% reductions for all environmental impact categories. In a world of finite resources, this paper highlights the importance of HP as a resource-efficient, renewable energy system.
NASA Astrophysics Data System (ADS)
Dedinec, A.; Jovanovski, B.; Gajduk, A.; Markovska, N.; Kocarev, L.
2016-05-01
We consider an integration of renewable energy into transport and electricity sectors through vehicle to grid (V2G) technologies for an energy system that is predominantly based on lignite. The national energy system of Macedonia is modeled using EnergyPLAN which integrates energy for electricity, transport and heat, and includes hourly fluctuations in human needs and the environment. We show that electric-vehicles can provide the necessary storage enabling a fully renewable energy profile for Macedonia that can match the country's growing demand for energy. Furthermore, a large penetration of electric vehicles leads to a dramatic reduction of 47% of small particles and other air pollutants generated by car traffic in 2050.
NASA Astrophysics Data System (ADS)
Winijkul, E.; Bond, T. C.
2011-12-01
In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with current emission in residential sector can be estimated, based on the cleanest plausible fuels and stove availability.
NASA Astrophysics Data System (ADS)
Buică, G.; Beiu, C.; Antonov, A.; Dobra, R.; Păsculescu, D.
2017-06-01
The protecting electrical equipment in use are subject to various factors generated by the use, maintenance, storage and working environment, which may change the characteristics of protection against electric shock. The study presents the results of research on the behaviour over time of protective characteristics of insulating covers of material of work equipment in use, in order to determine the type and periodicity of safety tests. There were tested and evaluated safety equipment with plastic and insulating rubber covers used in operations of verifying functionality, safety and maintenance of machinery used in manufacturing industries and specific services from electric, energy and food sector.
Our analysis examines emission trade-offs between electricity and natural gas use in the buildings sector at the system level, including upstream emissions from the electric sector and natural gas mining emissions.
The creation of a global electricity market
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePinto, D.; Anderson, A.
1998-07-01
The global embrace of market-based economics has led to significant growth and prosperity resulting in increased needs for electricity. The burgeoning demand for energy has created requirements for capital investment at time when the state-owned energy companies cannot provide it. Governments, busy trying to find ways to manage already inflated debt burdens, have little capacity for funding the capital needed to expand energy production. In these strategic industries, governments are beginning to embrace the principles of free market capitalism and private ownership, recognizing the significant benefits to be realized: reduced national deficits, a more efficient energy sector, access to foreignmore » capital, greater internal capital generation, and more energy to fuel economic growth. This is driving the governments to embrace privatization and is creating a market for the sale of electric utilities. On the other side of this equation are the fast developing global electric companies that are prepared to expand in both developing and developed countries through significant acquisitions of either companies or strategic assets. This scenario is further enhanced as the Independent Power Developers chase projects from Brazil to China and bring competition to the development of new generation. Never before has there been such a movement to the complete transformation of the energy industry. Countries on every continent are exploring how they can reform and restructure the energy sector. The analysis will address: Global transformation sweeping the various regions of the world; Impact on developers and the strategy required for success; Global electric companies and their impact on the transformation process; and Future of the electric power industry: Will it bring the world closer together?« less
NASA Astrophysics Data System (ADS)
Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya; Tang, Qiuhong; Vernon, Chris; Leng, Guoyong; Liu, Yaling; Döll, Petra; Eisner, Stephanie; Gerten, Dieter; Hanasaki, Naota; Wada, Yoshihide
2018-04-01
Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971-2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971-2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.
Puliafito, S Enrique; Allende, David G; Castesana, Paula S; Ruggeri, Maria F
2017-12-01
This study presents a 2014 high-resolution spatially disaggregated emission inventory (0.025° × 0.025° horizontal resolution), of the main activities in the energy sector in Argentina. The sub-sectors considered are public generation of electricity, oil refineries, cement production, transport (maritime, air, rail and road), residential and commercial. The following pollutants were included: greenhouse gases (CO 2 , CH 4 , N 2 O), ozone precursors (CO, NOx, VOC) and other specific air quality indicators such as SO 2 , PM10, and PM2.5. This work could contribute to a better geographical allocation of the pollutant sources through census based population maps. Considering the sources of greenhouse gas emissions, the total amount is 144 Tg CO2eq, from which the transportation sector emits 57.8 Tg (40%); followed by electricity generation, with 40.9 Tg (28%); residential + commercial, with 31.24 Tg (22%); and cement and refinery production, with 14.3 Tg (10%). This inventory shows that 49% of the total emissions occur in rural areas: 31% in rural areas of medium population density, 13% in intermediate urban areas and 7% in densely populated urban areas. However, if emissions are analyzed by extension (per square km), the largest impact is observed in medium and densely populated urban areas, reaching more than 20.3 Gg per square km of greenhouse gases, 297 Mg/km 2 of ozone precursors gases and 11.5 Mg/km 2 of other air quality emissions. A comparison with the EDGAR global emission database shows that, although the total country emissions are similar for several sub sectors and pollutants, its spatial distribution is not applicable to Argentina. The road and residential transport emissions represented by EDGAR result in an overestimation of emissions in rural areas and an underestimation in urban areas, especially in more densely populated areas. EDGAR underestimates 60 Gg of methane emissions from road transport sector and fugitive emissions from refining activities.
Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Alvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier
2011-01-01
In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the "Smart Grid" which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called "MagicBox" equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.
Initiatives and outcomes of green supply chain management implementation by Chinese manufacturers.
Zhu, Qinghua; Sarkis, Joseph; Lai, Kee-hung
2007-10-01
This paper aims to explore the green supply chain management (GSCM) initiatives (implementation) of various manufacturing industrial sectors in China and examine the links between GSCM initiatives and performance outcomes. We conducted a survey to collect data from four typical manufacturing industrial sectors in China, namely, power generating, chemical/petroleum, electrical/electronic and automobile, and received 171 valid organizational responses for data analysis. Analysis of variance (ANOVA) was used to analyze the data. The results are consistent with our prediction that the different manufacturing industry types display different levels of GSCM implementation and outcomes. We specifically found that the electrical/electronic industry has relatively higher levels of GSCM implementation and achieves better performance outcomes than the other three manufacturer types. Implications of the results are discussed and suggestions for further research on the implementation of GSCM are offered.
Efficiency dilution: long-term exergy conversion trends in Japan.
Williams, Eric; Warr, Benjamin; Ayres, Robert U
2008-07-01
This analysis characterizes century-scale trends in exergy efficiency in Japan. Exergy efficiency captures the degree to which energy inputs (such as coal) are converted into useful work (such as electricity or power to move a vehicle). This approach enables the estimation of net efficiencies which aggregate different technologies. Sectors specifically analyzed are electricity generation, transport, steel production, and residential space heating. One result is that the aggregate exergy efficiency of the Japanese economy declined slightly over the last half of the 20th century, reaching a high of around 38% in the late 1970s and falling to around 33% by 1998. The explanation for this is that while individual technologies improved dramatically over the century, less exergy-efficient ones were progressively adopted, yielding a net stabilization or decline. In the electricity sector, for instance, adoption of hydropower was followed by fossil-fired plants and then by nuclear power, each technology being successively less efficient from an exergy perspective. The underlying dynamic of this trend is analogous to declining ore grades in the mining sector. Increasing demand for exergy services requires expended utilization of resources from which it is more difficult to extract utility (e.g., falling water versus coal). We term this phenomenon efficiency dilution.
NASA Astrophysics Data System (ADS)
Chen, M.; Lemon, C. L.; Sazykin, S. Y.; Wolf, R.; Hecht, J. H.; Walterscheid, R. L.; Boyd, A. J.; Turner, D. L.
2015-12-01
We investigate how scattering of electrons by waves in the plasma sheet and plasmasphere affects precipitating energy flux distributions and how the precipitating electrons modify the ionospheric conductivity and electric potentials during the large 17 March 2013 magnetic storm. Of particular interest is how electron precipitation in the evening sector affects the development of the Sub-auroral Polarization Stream (SAPS) electric field that is observed at sub-auroral latitudes in that sector. Our approach is to use the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere to simulate the stormtime precipitating electron distributions and the electric field. We use parameterized rates of whistler-generated electron pitch-angle scattering from Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time (MLT) outside the simulated plasmasphere. Inside the plasmasphere, parameterized scattering rates due to hiss [Orlova et al., GRL, 2014] are used. We compare simulated trapped and precipitating electron flux distributions with measurements from Van Allen Probes/MagEIS, POES/TED and MEPED, respectively, to validate the electron loss model. Ground-based (SuperDARN) and in-situ (Van Allen Probes/EFW) observations of electric fields are compared with the simulation results. We discuss the effect of precipitating electrons on the SAPS and inner magnetospheric electric field through the data-model comparisons.
Economic and Market Challenges Facing the U.S. Nuclear Commercial Fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szilard, Ronaldo; Sharpe, Phil; Kee, Edward
This report identifies underlying economic and electricity market factors that have led to early retirements of U.S. operating nuclear power plants, assesses the Gap between operating revenues and operating costs for selected nuclear power plants, and discusses a range of actions that might be taken to stop early retirement of operating nuclear power plants. The Kewaunee and Vermont Yankee nuclear power plants were retired early for economic and financial reasons. Early retirement has been announced or proposed for Clinton and Quad Cities in Illinois, Fitzpatrick and Ginna in New York, Fort Calhoun in Nebraska. Other nuclear power plants, including Palisades,more » Davis-Besse, Prairie Island, and Three Mile Island Unit 1, have been identified as facing financial stress that might lead to early retirement. The early retirement of operating nuclear power plants will mean the loss of a large amount of zero-emission electricity, inconsistent with the goal of reducing carbon emissions in the electricity sector. This report provides a high-level view of the major factors driving early retirement: • The U.S. market and private ownership approach to the electricity sector; • Low electricity market prices resulting from low natural gas prices, low demand growth, increased penetration of renewable generation, and negative electricity market prices; and • No compensation to nuclear power plants for public benefits including zero-emission electricity.« less
National Electric Sector Cybersecurity Organization Resource (NESCOR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, P.; Eurek, K.; Margolis, R.
2014-07-01
Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.
Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States
NASA Astrophysics Data System (ADS)
Zhou, Yuyu; Gurney, Kevin Robert
2011-09-01
Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.
NASA Astrophysics Data System (ADS)
Rogers, J. H.; Frumhoff, P. C.; Averyt, K.; Newmark, R. L.
2012-12-01
In 2011, nearly 90 percent of U.S. electricity came from thermoelectric (steam-producing) power plants that use water for cooling. These water demands can tax rivers and aquifers, threaten fish and wildlife, and spark conflicts between power plants and other water users. Climate change, driven by in large part by emissions from fossil fuel-based electricity generation, is adding to the strain. Higher temperatures raise electricity demand and lower cooling-system efficiency, while drought and changes in precipitation patterns may make freshwater supplies less reliable. Here we report new findings on the impacts, present and projected, of power-plant water use on local water stress across the United States, and its implications for understanding what constitutes "water-smart" energy decision making. This work was carried out under the auspices of the Energy and Water in a Warming World initiative (EW3), a research and outreach collaboration designed to inform and motivate U.S. public awareness and science-based public policy at the energy-water nexus. The research has involved cataloguing the water use characteristics of virtually every U.S. power generator in the nation to develop a robust assessment of the water resource implications of cooling the nation's power plants. By analyzing local water supply and demand conditions across the nation, we identified water basins where current power plant water use appears to contribute strongly to local water supply stress, and where water-intensive electricity choices could substantially exacerbate water stress. We also identified other potential approaches to considering stress, particularly related to water temperature. The research has also involved analyzing the water implications of different electricity pathways in the United States over the next 40 years. We used a high-resolution electricity model to generate a range of electricity mixes, particularly in the context of a carbon budget, and assessed the water implications of the mixes at water-relevant scales. We then examined how the different scenarios fared under changing water conditions, particular in the face of droughts and increases in water temperature. Our findings help enhance understanding within the general public, electricity-sector decision makers, and elected officials, and provide science-based information to inform decisions about new power plants, plant retirements, and cooling technology choices. We discuss the results of outreach to date around these findings, and opportunities to inform and motivate a more sustainable energy, water, and climate future.
Field-aligned currents, convection electric fields, and ULF-ELF waves in the cusp
NASA Technical Reports Server (NTRS)
Saflekos, N. A.; Potemra, T. A.; Kintner, P. M., Jr.; Green, J. L.
1979-01-01
Nearly simultaneous observations from the Triad and Hawkeye satellites over the Southern Hemisphere, at low altitudes near the noon meridian and close to the usual polar cusp latitudes, show that in and near the polar cusp there exist several relationships between field-aligned currents (FACs), convection electric fields, ULF-ELF magnetic noise, broadband electrostatic noise and interplanetary magnetic fields. The most important findings are (1) the FACs directed into the ionosphere in the noon-to-dusk local time sector and directed away from the ionosphere in the noon-to-dawn local time sector and identified as region-1 permanent FACs (Iijima and Potemra, 1976a) and are located equatorward of the regions of antisunward (westward) convection; (2) the observations are consistent with a two-cell convection pattern symmetric in one case (throat positioned at noon) and asymmetric in another (throat located in a sector on the forenoon side in juxtaposition to the region of strong convection on the afternoon side); and (3) fine-structure FACs are responsible for the generation of ULF-ELF noise in the polar cusp.
Annual Technology Baseline and Standard Scenarios | Energy Analysis | NREL
electric sector analysis in the United States. NREL analysts consistently apply the products of this work Scenarios Annual Report and A U.S. Electric Sector Outlook - This annual report presents an outlook of the U.S. electricity sector based on a suite of standard scenarios with their associated assumptions
Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J.; Frew, Bethany A.; Mai, Trieu T.
Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision makers. With the recent surge in variable renewable energy (VRE) generators - primarily wind and solar photovoltaics - the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. To assess current best practices, share methods and data, and identify future research needs for VRE representation in capacity expansion models, four capacity expansion modeling teams from the Electric Powermore » Research Institute, the U.S. Energy Information Administration, the U.S. Environmental Protection Agency, and the National Renewable Energy Laboratory conducted two workshops of VRE modeling for national-scale capacity expansion models. The workshops covered a wide range of VRE topics, including transmission and VRE resource data, VRE capacity value, dispatch and operational modeling, distributed generation, and temporal and spatial resolution. The objectives of the workshops were both to better understand these topics and to improve the representation of VRE across the suite of models. Given these goals, each team incorporated model updates and performed additional analyses between the first and second workshops. This report summarizes the analyses and model 'experiments' that were conducted as part of these workshops as well as the various methods for treating VRE among the four modeling teams. The report also reviews the findings and learnings from the two workshops. We emphasize the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making.« less
NASA Astrophysics Data System (ADS)
Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.
2017-12-01
Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water availability conditions. We provide insight on how this information can be used to support resource adequacy and grid expansion studies over the Western U.S. in the context of inter-annual variability and climate change.
Erratum: Correction to: The sTOF, a Favorable Geometry for a Time-of-Flight Analyzer
NASA Astrophysics Data System (ADS)
Murphy, Daniel M.
2018-05-01
In the article "The sTOF, a Favorable Geometry for a Time-of-Flight Analyzer", the electric sectors in the prototype analyzer used to generate the data in Figure 4 were mistakenly listed as having a radius of 165 mm. The correct size is a diameter of 165 mm.
ERIC Educational Resources Information Center
Chang, Huei-Chun
2013-01-01
Purpose: The purpose of this paper is to address the issue of managing the major environmental costs from an accounting perspective. The current state of practices for managing the costs associated with the consumption of electricity, water and paper, as well as the generation of wastes within three universities in Taiwan, was investigated. The…
Hydrogen Energy Storage and Power-to-Gas: Establishing Criteria for Successful Business Cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichman, Joshua; Melaina, Marc
As the electric sector evolves and increasing amounts of variable generation are installed on the system, there are greater needs for system flexibility, sufficient capacity and greater concern for overgeneration. As a result there is growing interest in exploring the role of energy storage and demand response technologies to support grid needs. Hydrogen is a versatile feedstock that can be used in a variety of applications including chemical and industrial processes, as well as a transportation fuel and heating fuel. Traditionally, hydrogen technologies focus on providing services to a single sector; however, participating in multiple sectors has the potential tomore » provide benefits to each sector and increase the revenue for hydrogen technologies. The goal of this work is to explore promising system configurations for hydrogen systems and the conditions that will make for successful business cases in a renewable, low-carbon future. Current electricity market data, electric and gas infrastructure data and credit and incentive information are used to perform a techno-economic analysis to identify promising criteria and locations for successful hydrogen energy storage and power-to-gas projects. Infrastructure data will be assessed using geographic information system applications. An operation optimization model is used to co-optimizes participation in energy and ancillary service markets as well as the sale of hydrogen. From previous work we recognize the great opportunity that energy storage and power-to-gas but there is a lack of information about the economic favorability of such systems. This work explores criteria for selecting locations and compares the system cost and potential revenue to establish competitiveness for a variety of equipment configurations. Hydrogen technologies offer unique system flexibility that can enable interactions between multiple energy sectors including electric, transport, heating fuel and industrial. Previous research established that hydrogen technologies, and in particular electrolyzers, can respond fast enough and for sufficient duration to participate in electricity markets. This work recognizes that participation in electricity markets and integration with the gas system can enhance the revenue streams available for hydrogen storage systems and quantifies the economic competitiveness and of these systems. A few of the key results include 1) the most valuable revenue stream for hydrogen systems is to sell the produced hydrogen, 2) participation in both energy and ancillary service markets yields the greatest revenue and 3) electrolyzers acting as demand response devices are particularly favorable.« less
Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, D.
1997-01-01
Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package thatmore » is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.« less
NASA Astrophysics Data System (ADS)
Phadke, Amol Anant
This dissertation explores issues related to competition in and regulation of electricity sectors in developing countries on the backdrop of fundamental reforms in their electricity sectors. In most cases, electricity sector reforms promoted privatization based on the rationale that it will lower prices and improve quality. In Chapter 2, I analyze this rationale by examining the stated capital cost of independent (private) power producer's (IPPs) power projects in eight developing countries and find that the stated capital cost of projects selected via competitive bidding is on an average about 40% to 60% lower than that of the projects selected via negotiations, which, I argue, represents the extent to which the costs of negotiated projects are overstated. My results indicate that the policy of promoting private sector without an adequate focus on improving competition or regulation has not worked in most cases in terms of getting competitively priced private sector projects. Given the importance of facilitating effective competition or regulation, In Chapter 3, I examine the challenges and opportunities of establishing a competitive wholesale electricity market in a developing country context. I model a potential wholesale electricity market in Maharashtra (MH) state, India and find that it would be robustly competitive even in a situation of up-to five percent of supply shortage, when opportunities for demand response are combined with policies such as divestiture and requiring long-term contracts. My results indicate that with appropriate policies, some developing countries could establish competitive wholesale electricity markets. In Chapter 4, I focus on the demand side and analyze the cost effectiveness of improving end-use efficiency in an electricity sector with subsidized tariffs and electricity shortages and show that they offer the least expensive way of reducing shortages in Maharashtra State, India. In Chapter 5, I examine the costs of reducing carbon dioxide emissions in the Indian power sector and find that the costs are higher than those in the US because of mark-ups in the Indian gas based power projects. Overall, this dissertation shows the importance of facilitating effective competition and regulation and pursuing end-use efficiency improvements in electricity sectors of developing countries.
Integrating Renewable Generation into Grid Operations: Four International Experiences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weimar, Mark R.; Mylrea, Michael E.; Levin, Todd
International experiences with power sector restructuring and the resultant impacts on bulk power grid operations and planning may provide insight into policy questions for the evolving United States power grid as resource mixes are changing in response to fuel prices, an aging generation fleet and to meet climate goals. Australia, Germany, Japan and the UK were selected to represent a range in the level and attributes of electricity industry liberalization in order to draw comparisons across a variety of regions in the United States such as California, ERCOT, the Southwest Power Pool and the Southeast Reliability Region. The study drawsmore » conclusions through a literature review of the four case study countries with regards to the changing resource mix and the electricity industry sector structure and their impact on grid operations and planning. This paper derives lessons learned and synthesizes implications for the United States based on answers to the above questions and the challenges faced by the four selected countries. Each country was examined to determine the challenges to their bulk power sector based on their changing resource mix, market structure, policies driving the changing resource mix, and policies driving restructuring. Each countries’ approach to solving those changes was examined, as well as how each country’s market structure either exacerbated or mitigated the approaches to solving the challenges to their bulk power grid operations and planning. All countries’ policies encourage renewable energy generation. One significant finding included the low- to zero-marginal cost of intermittent renewables and its potential negative impact on long-term resource adequacy. No dominant solution has emerged although a capacity market was introduced in the UK and is being contemplated in Japan. Germany has proposed the Energy Market 2.0 to encourage flexible generation investment. The grid operator in Australia proposed several approaches to maintaining synchronous generation. Interconnections to other regions provides added opportunities for balancing that would not be available otherwise, and at this point, has allowed for integration of renewables.« less
Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph; Lackner, Klaus S.
2012-02-01
Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Mai, Trieu; Millstein, Dev
Compared with fossil fuel generators, photovoltaics (PV) and concentrating solar power (CSP) produce far lower lifecycle levels of greenhouse gas (GHG) emissions and harmful pollutants including fine particular matter (PM2.5), sulfur dioxide (SO 2), and nitrogen oxides (NO x). In this report, we monetize the emission reductions from achieving the U.S. Department of Energy's SunShot deployment goals: 14% of U.S. electricity demand met by solar in 2030 and 27% in 2050. We estimate that achieving these goals could reduce cumulative power-sector GHG emissions by 10% between 2015 and 2050, resulting in savings of $238-$252 billion. This is equivalent to 2.0-2.2more » cents per kilowatt-hour of solar installed (cents/kWh-solar). Similarly, realizing these levels of solar deployment could reduce cumulative power-sector emissions of PM2.5 by 8%, SO 2 by 9%, and NOx by 11% between 2015 and 2050. This could produce $167 billion in savings from lower future health and environmental damages, or 1.4 cents/kWh-solar--while also preventing 25,000-59,000 premature deaths. To put this in perspective, this estimated combined benefit of 3.5 cents/kWh-solar due to SunShot-level solar deployment is approximately equal to the additional levelized cost of electricity reduction needed to make unsubsidized utility-scale solar competitive with conventional generators today. In addition, the analysis shows that achieving the SunShot goals could save 4% of total power-sector water withdrawals and 9% of total power-sector water consumption over the 2015-2050 period--a particularly important consideration for arid states where substantial solar will be deployed. These results have potential implications for policy innovation and the economic competitiveness of solar and other generation technologies.« less
High-Resolution Atmospheric Emission Inventory of the Argentine Enery Sector
NASA Astrophysics Data System (ADS)
Puliafito, Salvador Enrique; Castesana, Paula; Allende, David; Ruggeri, Florencia; Pinto, Sebastián; Pascual, Romina; Bolaño Ortiz, Tomás; Fernandez, Rafael Pedro
2017-04-01
This study presents a high-resolution spatially disaggregated inventory (2.5 km x 2.5 km), updated to 2014, of the main emissions from energy activities in Argentina. This inventory was created with the purpose of improving air quality regional models. The sub-sectors considered are public electricity and heat production, cement production, domestic aviation, road and rail transportation, inland navigation, residential and commercial, and fugitive emissions from refineries and fuel expenditure. The pollutants considered include greenhouse gases and ozone precursors: CO2, CH4, NOx, N2O VOC; and other gases specifically related to air quality including PM10, PM2.5, SOx, Pb and POPs. The uncertainty analysis of the inventories resulted in a variability of 3% for public electricity generation, 3-6% in the residential, commercial sector, 6-12% terrestrial transportation sector, 10-20% in oil refining and cement production according to the considered pollutant. Aviation and maritime navigation resulted in a higher variability reaching more than 60%. A comparison with the international emission inventory EDGAR shows disagreements in the spatial distribution of emissions, probably due to the finer resolution of the map presented here, particularly as a result of the use of new spatially disaggregated data of higher resolution that is currently available.
Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Álvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier
2011-01-01
In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency. PMID:22247680
Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Carolyn; Gagnon, Pieter; Denholm, Paul
2015-10-01
The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation inmore » retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.« less
Impact of a CP-violating Higgs sector: from LHC to baryogenesis.
Shu, Jing; Zhang, Yue
2013-08-30
We observe a generic connection between LHC Higgs data and electroweak baryogenesis: the particle that contributes to the CP-odd hgg or hγγ vertex would provide the CP-violating source during a first-order phase transition. It is illustrated in the two Higgs doublet model that a common complex phase controls the lightest Higgs properties at the LHC, electric dipole moments, and the CP-violating source for electroweak baryogenesis. We perform a general parametrization of Higgs effective couplings and a global fit to the LHC Higgs data. Current LHC measurements prefer a nonzero phase for tanβ≲1 and electric dipole moment constraints still allow an order-one phase for tanβ∼1, which gives sufficient room to generate the correct cosmic baryon asymmetry. We also give some prospects in the direct measurements of CP violation in the Higgs sector at the LHC.
Photovoltaic electricity generation: Value for residential and commercial sectors
NASA Astrophysics Data System (ADS)
Bhattacharjee, Ujjwal
The photovoltaic (PV) industry in the US has seen an upsurge in recent years, and PV holds great promise as a renewable technology with no greenhouse gas emissions with its use. We aim to assess the value of PV based electricity for users in the residential and commercial sectors focusing on the financial impacts it has, which may not be greatly recognized. Specifically, we pursue two goals. First, the emerging 'renewable portfolio standard (RPS)' adopted in several states in the country has been a driving force for large scale PV deployment, but financial incentives offered to PV in different RPS states differ considerably. We use life cycle cost model to estimate the cost of PV based electricity for thirty-two RPS states in the country. Results indicate that the levelized cost of PV electricity is high (40 to 60 Cents/kWh). When the contribution of the financial incentives (along with the cost of energy saved) is taken into account, the cost of PV based electricity is negative in some RPS states such as California, New Jersey, New York, while for most of the RPS states the cost of PV electricity continues to remain high. In addition, the states with negative or low cost of PV electricity have been driving the PV diffusion in the residential sector. Therefore, a need to adjust the financial incentive structure in different RPS states is recommended for homogenous development of the residential PV market in the country. Second, we assess the value of the PV in reducing the highest peak load demand in commercial buildings and hence the high value demand charge. The Time-of-Use (TOU) based electricity tariff is widely used by electric utilities in the commercial sector. Energy and peak load are two important facets of the TOU tariff regime. Tools are well established to estimate the energy contribution from a PV system (installed in a commercial building), but not power output on a short time interval. A joint conditional probability model has been developed that enables estimation of the PV contribution towards the peak load reduction for a given high building load. Results indicate a significant cost saving (15% to 40%) with application of the model. This will encourage commercial entities (building owners) to adopt PV as a distributed energy source. The tool would be useful for energy modelers and green building architects as it will enable them to estimate cost savings due to PV deployment in commercial buildings. Moreover, the model tested for three different commercial buildings indicates that school buildings show the best promise for PV deployment followed, respectively, by office buildings and manufacturing facilities. This will help PV incentive programs in the country to use resources effectively to enhance the diffusion of PV in the commercial sector.
Gao, Hang; Van Biesebroeck, Johannes
2014-01-01
The restructuring of the Chinese electricity sector in 2002 reshaped the market structure by vertically unbundling the dominant integrated firm and started the process of wholesale price liberalization. We estimate factor demands to study whether these reforms boosted productivity in the generation segment of the industry. Controlling explicitly for price‐heterogeneity across firms and unobservable productivity shocks, we find that the reforms are associated with reductions in labor and material use of 7 and 5 per cent, respectively. These effects only appear two years after the reforms and are robust to many specification checks. The absolute magnitudes of the estimated restructuring effects vary in intuitive ways by location, firm size or age, and for different definitions of restructured firms. PMID:27076686
Informing Mexico's Distributed Generation Policy with System Advisor Model (SAM) Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aznar, Alexandra Y; Zinaman, Owen R; McCall, James D
The Government of Mexico recognizes the potential for clean distributed generation (DG) to meaningfully contribute to Mexico's clean energy and emissions reduction goals. However, important questions remain about how to fairly value DG and foster inclusive and equitable market growth that is beneficial to investors, electricity ratepayers, electricity distributors, and society. The U.S. National Renewable Energy Laboratory (NREL) has partnered with power sector institutions and stakeholders in Mexico to provide timely analytical support and expertise to help inform policymaking processes on clean DG. This document describes two technical assistance interventions that used the System Advisor Model (SAM) to inform Mexico'smore » DG policymaking processes with a focus on rooftop solar regulation and policy.« less
Modeling and Economic Analysis of Power Grid Operations in a Water Constrained System
NASA Astrophysics Data System (ADS)
Zhou, Z.; Xia, Y.; Veselka, T.; Yan, E.; Betrie, G.; Qiu, F.
2016-12-01
The power sector is the largest water user in the United States. Depending on the cooling technology employed at a facility, steam-electric power stations withdrawal and consume large amounts of water for each megawatt hour of electricity generated. The amounts are dependent on many factors, including ambient air and water temperatures, cooling technology, etc. Water demands from most economic sectors are typically highest during summertime. For most systems, this coincides with peak electricity demand and consequently a high demand for thermal power plant cooling water. Supplies however are sometimes limited due to seasonal precipitation fluctuations including sporadic droughts that lead to water scarcity. When this occurs there is an impact on both unit commitments and the real-time dispatch. In this work, we model the cooling efficiency of several different types of thermal power generation technologies as a function of power output level and daily temperature profiles. Unit specific relationships are then integrated in a power grid operational model that minimizes total grid production cost while reliably meeting hourly loads. Grid operation is subject to power plant physical constraints, transmission limitations, water availability and environmental constraints such as power plant water exit temperature limits. The model is applied to a standard IEEE-118 bus system under various water availability scenarios. Results show that water availability has a significant impact on power grid economics.
The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities
NASA Astrophysics Data System (ADS)
Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.
2015-12-01
The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.
Electricity savings potentials in the residential sector of Bahrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.
1996-08-01
Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to themore » peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.« less
The Portuguese electric system and the role of the Portuguese regulatory entity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santana, J.
1998-07-01
According to the organization model of the Portuguese Electric System, there is the coexistence of two subsystems with different characteristics: the Public Electric System, which has public service obligations and the Independent Electric System which does not have such obligations, and part of it obeys a market logic. Nowadays, the Public Electric System is the main component of the electric sector, however there are reasons to believe that the Independent System can increase its participation. The 1995 Portuguese legislation established the existence of an independent structure to regulate the electric sector: the Electric Sector Regulatory Entity. In this paper, themore » organization of this entity is described, as well as its objectives and main powers.« less
Cyber Threat and Vulnerability Analysis of the U.S. Electric Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn, Colleen; Sterbentz, Dane; Wright, Aaron
With utilities in the U.S. and around the world increasingly moving toward smart grid technology and other upgrades with inherent cyber vulnerabilities, correlative threats from malicious cyber attacks on the North American electric grid continue to grow in frequency and sophistication. The potential for malicious actors to access and adversely affect physical electricity assets of U.S. electricity generation, transmission, or distribution systems via cyber means is a primary concern for utilities contributing to the bulk electric system. This paper seeks to illustrate the current cyber-physical landscape of the U.S. electric sector in the context of its vulnerabilities to cyber attacks,more » the likelihood of cyber attacks, and the impacts cyber events and threat actors can achieve on the power grid. In addition, this paper highlights utility perspectives, perceived challenges, and requests for assistance in addressing cyber threats to the electric sector. There have been no reported targeted cyber attacks carried out against utilities in the U.S. that have resulted in permanent or long term damage to power system operations thus far, yet electric utilities throughout the U.S. have seen a steady rise in cyber and physical security related events that continue to raise concern. Asset owners and operators understand that the effects of a coordinated cyber and physical attack on a utility’s operations would threaten electric system reliability–and potentially result in large scale power outages. Utilities are routinely faced with new challenges for dealing with these cyber threats to the grid and consequently maintain a set of best practices to keep systems secure and up to date. Among the greatest challenges is a lack of knowledge or strategy to mitigate new risks that emerge as a result of an exponential rise in complexity of modern control systems. This paper compiles an open-source analysis of cyber threats and risks to the electric grid, utility best practices for prevention and response to cyber threats, and utility suggestions about how the federal government can aid utilities in combating and mitigating risks.« less
Quadrennial Technology Review 2015: Technology Assessments--Hydropower
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sam Baldwin, Gilbert Bindewald, Austin Brown, Charles Chen, Kerry Cheung, Corrie Clark, Joe Cresko,
Hydropower has provided reliable and flexible base and peaking power generation in the United States for more than a century, contributing on average 10.5% of cumulative U.S. power sector net generation over the past six and one-half decades (1949–2013). It is the nation’s largest source of renewable electricity, with 79 GW of generating assets and 22 GW of pumped-storage assets in service, with hydropower providing half of all U.S. renewable power-sector generation (50% in 2014). In addition to this capacity, the U.S. Department of Energy (DOE) has identified greater than 80 GW of new hydropower resource potential: at least 5more » GW from rehabilitation and expansion of existing generating assets, up to 12 GW of potential at existing dams without power facilities, and over 60 GW of potential low-impact new development (LIND) in undeveloped stream reaches. However, despite this growth potential, hydropower capacity and production growth have stalled in recent years, with existing assets even experiencing decreases in capacity and production from lack of sustaining investments in infrastructure and increasing constraints on water use.« less
NGNP Project 2011 Status and Path Forward
DOE Office of Scientific and Technical Information (OSTI.GOV)
L.E. Demick
2011-12-01
High Temperature Gas Reactor (HTGR) technology can play an important role in the United States’ energy future by extending the use of nuclear energy for non-electricity energy production missions as well as continuing to provide a considerable base load electric power generation capability. Extending nuclear energy into the industrial and transportation sectors through the co-production of process heat and electricity provides safe and reliable energy for these sectors in an environmentally responsible manner. The safety case for the modular HTGR provides a substantial improvement in nuclear plant safety for the protection of the public and the environment, and supports collocationmore » of the HTGR with major industrial facilities. The NGNP Project at the Idaho National Laboratory has been working toward an objective of commercializing the HTGR technology under DOE direction since 2006. The Project is undergoing a quantum shift in direction and scope as a result of recent DOE decisions. This paper summarizes where the Project has been, where it is at the time of this writing and what is needed in future activities to commercialize HTGR technology.« less
In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle a...
Sanders, Kelly T; Blackhurst, Michael F; King, Carey W; Webber, Michael E
2014-06-17
We utilize a unit commitment and dispatch model to estimate how water use fees on power generators would affect dispatching and water requirements by the power sector in the Electric Reliability Council of Texas' (ERCOT) electric grid. Fees ranging from 10 to 1000 USD per acre-foot were separately applied to water withdrawals and consumption. Fees were chosen to be comparable in cost to a range of water supply projects proposed in the Texas Water Development Board's State Water Plan to meet demand through 2050. We found that these fees can reduce water withdrawals and consumption for cooling thermoelectric power plants in ERCOT by as much as 75% and 23%, respectively. To achieve these water savings, wholesale electricity generation costs might increase as much as 120% based on 2011 fuel costs and generation characteristics. We estimate that water saved through these fees is not as cost-effective as conventional long-term water supply projects. However, the electric grid offers short-term flexibility that conventional water supply projects do not. Furthermore, this manuscript discusses conditions under which the grid could be effective at "supplying" water, particularly during emergency drought conditions, by changing its operational conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, T. D.; Jacobs, D.; Rickerson, W.
A number of policies have been used historically in order to stimulate the growth of the renewable electricity sector. This paper examines four of these policy instruments: competitive tendering, sometimes called renewable electricity auctions, feed-in tariffs, net metering and net billing, and tradable renewable energy certificates. In recent years, however, a number of changes to both market circumstances and to policy priorities have resulted in numerous policy innovations, including the emergence of policy hybrids. With no common language for these evolving policy mechanisms, policymakers have generally continued to use the same traditional policy labels, occasionally generating confusion as many ofmore » these new policies no longer look, or act, like their traditional predecessors. In reviewing these changes, this paper makes two separate but related claims: first, policy labels themselves are breaking down and evolving. As a result, policy comparisons that rely on the conventional labels may no longer be appropriate, or advisable. Second, as policymakers continue to adapt, we are in effect witnessing the emergence of the next generation of renewable electricity policies, a change that could have significant impacts on investment, as well as on market growth in both developed and developing countries.« less
NREL Manages Program to Transform Mexico's Power Sector | Integrated Energy
. Through 21CPP, NREL is helping Mexico with: Long-range planning of the power system for transmission , generation, and integration of renewable energy How best to operate the electric grid as Mexico increases the deep energy efficiency and smart grid solutions. Impact Mexico is on the brink of a major energy reform
Carbon-Nanotube-Based Thermoelectric Materials and Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburn, Jeffrey L.; Ferguson, Andrew J.; Cho, Chungyeon
Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specificmore » energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.« less
Carbon-Nanotube-Based Thermoelectric Materials and Devices
Blackburn, Jeffrey L.; Ferguson, Andrew J.; Cho, Chungyeon; ...
2018-01-22
Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specificmore » energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.« less
Carbon-Nanotube-Based Thermoelectric Materials and Devices.
Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C
2018-03-01
Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?
Lebeau, Philippe; De Cauwer, Cedric; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry
2015-01-01
Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile. PMID:26236769
Conventional, Hybrid, or Electric Vehicles: Which Technology for an Urban Distribution Centre?
Lebeau, Philippe; De Cauwer, Cedric; Van Mierlo, Joeri; Macharis, Cathy; Verbeke, Wouter; Coosemans, Thierry
2015-01-01
Freight transport has an important impact on urban welfare. It is estimated to be responsible for 25% of CO2 emissions and up to 50% of particles matters generated by the transport sector in cities. Facing that problem, the European Commission set the objective of reaching free CO2 city logistics by 2030 in major urban areas. In order to achieve this goal, electric vehicles could be an important part of the solution. However, this technology still faces a number of barriers, in particular high purchase costs and limited driving range. This paper explores the possible integration of electric vehicles in urban logistics operations. In order to answer this research question, the authors have developed a fleet size and mix vehicle routing problem with time windows for electric vehicles. In particular, an energy consumption model is integrated in order to consider variable range of electric vehicles. Based on generated instances, the authors analyse different sets of vehicles in terms of vehicle class (quadricycles, small vans, large vans, and trucks) and vehicle technology (petrol, hybrid, diesel, and electric vehicles). Results show that a fleet with different technologies has the opportunity of reducing costs of the last mile.
Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-12-31
The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary,more » as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.« less
Ionospheric Storm Effects and Equatorial Plasma Irregularities During the 17-18 March 2015 Event
NASA Technical Reports Server (NTRS)
Zhou, Yun-Liang; Luhr, Hermann; Xiong, Chao; Pfaff, Robert F.
2016-01-01
The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (E (sub m)). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/pre-noon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the post-sunset sector. As a response to a short-lived decline of E (sub m), EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 hours. Only after the onset of recovery phase does EPI activity start again in the post-midnight sector, lasting more than 7 hours.This comprehensive view of ionospheric storm effects and plasma irregularities adds to our understanding of conditions that lead to ionospheric instabilities.
Ionospheric storm effects and equatorial plasma irregularities during the 17-18 March 2015 event
NASA Astrophysics Data System (ADS)
Zhou, Yun-Liang; Lühr, Hermann; Xiong, Chao; Pfaff, Robert F.
2016-09-01
The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (Em). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/prenoon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the postsunset sector. As a response to a short-lived decline of Em, EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 h. Only after the onset of recovery phase does EPI activity start again in the postmidnight sector, lasting more than 7 h. This comprehensive view of ionospheric storm effects and plasma irregularities adds to our understanding of conditions that lead to ionospheric instabilities.
2017 Standard Scenarios Report: A U.S. Electricity Sector Outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley J.; Mai, Trieu T.; Richards, James
The 2017 Standard Scenarios includes a suite of U.S. electricity sector scenarios. The report explores four power sector storylines, including the growth in natural gas and renewable energy, the relative competitiveness of wind and solar PV, the potential impact of low-cost battery storage, and the impact of nuclear lifetimes on the capacity expansion of the power sector.
Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyu; Gurney, Kevin R.
2011-07-01
Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are drivenmore » by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy« less
Hydropower Modeling Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoll, Brady; Andrade, Juan; Cohen, Stuart
Hydropower facilities are important assets for the electric power sector and represent a key source of flexibility for electric grids with large amounts of variable generation. As variable renewable generation sources expand, understanding the capabilities and limitations of the flexibility from hydropower resources is important for grid planning. Appropriately modeling these resources, however, is difficult because of the wide variety of constraints these plants face that other generators do not. These constraints can be broadly categorized as environmental, operational, and regulatory. This report highlights several key issues involving incorporating these constraints when modeling hydropower operations in terms of production costmore » and capacity expansion. Many of these challenges involve a lack of data to adequately represent the constraints or issues of model complexity and run time. We present several potential methods for improving the accuracy of hydropower representation in these models to allow for a better understanding of hydropower's capabilities.« less
Higgs C P violation from vectorlike quarks
Chen, Chien-Yi; Dawson, S.; Zhang, Yue
2015-10-20
We explore CP violating aspects in the Higgs sector of models where new vectorlike quarks carry Yukawa couplings mainly to the third generation quarks of the Standard Model. We point out that in the simplest model, Higgs CP violating interactions only exist in the hWW channel. At low energy, we nd that rare B decays can place similarly strong constraints as those from electric dipole moments on the source of CP violation. These observations offer a new handle to discriminate from other Higgs CP violating scenarios such as scalar sector extensions of the Standard Model, and imply an interesting futuremore » interplay among limits from different experiments.« less
Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya; ...
2018-04-06
Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation,more » domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. Here, the reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya
Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation,more » domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. Here, the reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhongwei; Hejazi, Mohamad; Li, Xinya
Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation,more » domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.
The United States has articulated a deep decarbonization strategy for achieving a reduction in economy-wide greenhouse gas (GHG) emissions of 80% below 2005 levels by 2050. Achieving such deep emissions reductions will entail a major transformation of the energy system and of the electric power sector in particular. , This study uses a detailed state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA) to demonstrate pathways for the evolution of the U.S. electric power sector that achieve 80% economy-wide reductions in GHG emissions by 2050. The pathways presented in this report are based onmore » feedback received during a workshop of experts organized by the U.S. Department of Energy’s Office of Energy Policy and Systems Analysis. Our analysis demonstrates that achieving deep decarbonization by 2050 will require substantial decarbonization of the electric power sector resulting in an increase in the deployment of zero-carbon and low-carbon technologies such as renewables and carbon capture utilization and storage. The present results also show that the degree to which the electric power sector will need to decarbonize and low-carbon technologies will need to deploy depends on the nature of technological advances in the energy sector, the ability of end-use sectors to electrify and level of electricity demand.« less
NASA Astrophysics Data System (ADS)
Kern, J.
2015-12-01
Electric power utilities are increasingly cognizant of the risks water scarcity and rising temperatures pose for generators that use water as a "fuel" (i.e., hydroelectric dams) and generators that use water for cooling (i.e., coal, natural gas and nuclear). At the same time, utilities are under increasing market and policy pressure to retire coal-fired generation, the primary source of carbon emissions in the electric power sector. Due to falling costs of renewables and low natural gas prices, retiring coal fired generation is mostly being replaced with combined cycle natural gas, wind and solar. An immediate benefit of this shift has been a reduction in water withdrawals per megawatt-hour and reduced thermal impacts in surface water systems. In the process of retiring older coal-fired power plants, many of which use water intensive open-loop cooling systems, utilities are making their systems less vulnerable to water scarcity and higher water temperatures. However, it is not clear whether financial risks from water scarcity will decrease as result of this change. In particular, the choice to replace coal with natural gas combined cycle plants leaves utilities financially exposed to natural gas prices, especially during droughts when natural gas generation is used to replace lost hydropower production. Utility-scale solar, while more expensive than natural gas combined cycle generation, gives utilities an opportunity to simultaneously reduce their exposure to water scarcity and fuel price risk. In this study, we assess how switching from coal to natural gas and solar changes a utility's financial exposure to drought. We model impacts on retail prices and a utility's rate of return under current conditions and non-stationarity in natural gas prices and temperature and streamflows to determine whether increased exposure to natural gas prices offsets corresponding gains in water use efficiency. We also evaluate whether utility scale solar is an effective hedge against the combined effects of drought and natural gas price volatility—one that increases costs on average but reduces exposure to large drought-related losses.
Impacts of Groundwater Constraints on Saudi Arabia's Low-Carbon Electricity Supply Strategy.
Parkinson, Simon C; Djilali, Ned; Krey, Volker; Fricko, Oliver; Johnson, Nils; Khan, Zarrar; Sedraoui, Khaled; Almasoud, Abdulrahman H
2016-02-16
Balancing groundwater depletion, socioeconomic development and food security in Saudi Arabia will require policy that promotes expansion of unconventional freshwater supply options, such as wastewater recycling and desalination. As these processes consume more electricity than conventional freshwater supply technologies, Saudi Arabia's electricity system is vulnerable to groundwater conservation policy. This paper examines strategies for adapting to long-term groundwater constraints in Saudi Arabia's freshwater and electricity supply sectors with an integrated modeling framework. The approach combines electricity and freshwater supply planning models across provinces to provide an improved representation of coupled infrastructure systems. The tool is applied to study the interaction between policy aimed at a complete phase-out of nonrenewable groundwater extraction and concurrent policy aimed at achieving deep reductions in electricity sector carbon emissions. We find that transitioning away from nonrenewable groundwater use by the year 2050 could increase electricity demand by more than 40% relative to 2010 conditions, and require investments similar to strategies aimed at transitioning away from fossil fuels in the electricity sector. Higher electricity demands under groundwater constraints reduce flexibility of supply side options in the electricity sector to limit carbon emissions, making it more expensive to fulfill climate sustainability objectives. The results of this analysis underscore the importance of integrated long-term planning approaches for Saudi Arabia's electricity and freshwater supply systems.
NASA Astrophysics Data System (ADS)
Nyangon, Joseph
Expansion of distributed energy resources (DERs) including solar photovoltaics, small- and medium-sized wind farms, gas-fired distributed generation, demand-side management, and energy storage poses significant complications to the design, operation, business model, and regulation of electricity systems. Using statistical regression analysis, this dissertation assesses if increased use of natural gas results in reduced renewable energy capacity, and if natural gas growth is correlated with increased or decreased non-fossil renewable fuels demand. System Generalized Method of Moments (System GMM) estimation of the dynamic relationship was performed on the indicators in the econometric model for the ten states with the fastest growth in solar generation capacity in the U.S. (e.g., California, North Carolina, Arizona, Nevada, New Jersey, Utah, Massachusetts, Georgia, Texas, and New York) to analyze the effect of natural gas on renewable energy diffusion and the ratio of fossil fuels increase for the period 2001-2016 to policy driven solar demand. The study identified ten major drivers of change in electricity systems, including growth in distributed energy generation systems such as intermittent renewable electricity and gas-fired distributed generation; flat to declining electricity demand growth; aging electricity infrastructure and investment gaps; proliferation of affordable information and communications technologies (e.g., advanced meters or interval meters), increasing innovations in data and system optimization; and greater customer engagement. In this ongoing electric power sector transformation, natural gas and fast-flexing renewable resources (mostly solar and wind energy) complement each other in several sectors of the economy. The dissertation concludes that natural gas has a positive impact on solar and wind energy development: a 1% rise in natural gas capacity produces 0.0304% increase in the share of renewable energy in the short-run (monthly) compared to the long-term effect estimated at 0.9696% (15-year period). Evidence from the main policy, environmental, and economic indicators for solar and wind-power development such as feed-in tariffs, state renewable portfolio standards, public benefits fund, net metering, interconnection standards, environmental quality, electricity import ratio, per-capita energy-related carbon dioxide emissions, average electricity price, per-capita real gross domestic product, and energy intensity are discussed and evaluated in detail in order to elucidate their effectiveness in supporting the utility industry transformation. The discussion is followed by a consideration of a plausible distributed utility framework that is tailored for major DERs development that has emerged in New York called Reforming the Energy Vision. This framework provides a conceptual base with which to imagine the utility of the future as well as a practical solution to study the potential of DERs in other states. The dissertation finds this grid and market modernization initiative has considerable influence and importance beyond New York in the development of a new market economy in which customer choice and distributed utilities are prominent.
The fact of uncertainty, the uncertainty of facts and the cultural resonance of doubt.
Oreskes, Naomi
2015-11-28
Sixty years after industry executives first decided to fight the facts of tobacco, the exploitation of doubt and uncertainty as a defensive tactic has spread to a diverse set of industries and issues with an interest in challenging scientific evidence. However, one can find examples of doubt-mongering before tobacco. One involves the early history of electricity generation in the USA. In the 1920s, the American National Electric Light Association ran a major propaganda campaign against public sector electricity generation, focused on the insistence that privately generated electricity was cheaper and that public power generation was socialistic and therefore un-American. This campaign included advertisements, editorials (generally ghost-written), the rewriting of textbooks and the development of high school and college curricula designed to cast doubt on the cost-effectiveness of public electricity generation and extol the virtues of laissez-faire capitalism. It worked in large part by finding, cultivating and paying experts to endorse the industry's claims in the mass media and the public debate, and to legitimatize the alterations to textbooks and curricula. The similarities between the electric industry strategy and the defence of tobacco, lead paint and fossil fuels suggests that these strategies work for reasons that are not specific to the particular technical claims under consideration. This paper argues that a reason for the cultural persistence of doubt is what we may label the 'fact of uncertainty'. Uncertainty is intrinsic to science, and this creates vulnerabilities that interested parties may, and commonly do, exploit, both by attempting to challenge the specific conclusions of technical experts and by implying that those conclusions threaten other social values. © 2015 The Author(s).
Electrical Power Conversion of a River and Tidal Power Generator: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan
As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern;more » thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).« less
Electrical Power Conversion of River and Tidal Power Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan
As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern;more » thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).« less
McFarland, James; Zhou, Yuyu; Clarke, Leon; ...
2015-06-10
The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less
Hydro-economic modeling of integrated solutions for the water-energy-land nexus in Africa
NASA Astrophysics Data System (ADS)
Parkinson, S.; Kahil, M.; Wada, Y.; Krey, V.; Byers, E.; Johnson, N. A.; Burek, P.; Satoh, Y.; Willaarts, B.; Langan, S.; Riahi, K.
2017-12-01
This study focused on the development of the Extended Continental-scale Hydro-economic Optimization model (ECHO) and its application to the analysis of long-term water, energy and land use pathways for Africa. The framework is important because it integrates multi-decadal decisions surrounding investments into new water infrastructure, electric power generation and irrigation technologies. The improved linkages in ECHO reveal synergies between water allocation strategies across sectors and the greenhouse gas emissions resulting from electricity supply. The African case study features a reduced-form transboundary river network and associated environmental flow constraints covering surface and groundwater withdrawals. Interactions between local water constraints and the continental-scale economy are captured in the model through the combination of regional electricity markets. Spatially-explicit analysis of land availability is used to restrict future reservoir expansion. The analysis demonstrates the massive investments required to ensure rapidly expanding water, energy and food demands in Africa aligned with human development objectives are met in a sustainable way. Modeled constraints on environmental flows in line with presumptive ecological guidelines trigger diffusion of energy-intensive water supply technologies in water-stressed regions, with implications for the cost and speed of the electricity sector decarbonization required to achieve climate targets.
Nuss, Philip; Gardner, Kevin H; Jambeck, Jenna R
2013-04-02
With the goal to move society toward less reliance on fossil fuels and the mitigation of climate change, there is increasing interest and investment in the bioenergy sector. However, current bioenergy growth patterns may, in the long term, only be met through an expansion of global arable land at the expense of natural ecosystems and in competition with the food sector. Increasing thermal energy recovery from solid waste reduces dependence on fossil- and biobased energy production while enhancing landfill diversion. Using inventory data from pilot processes, this work assesses the cradle-to-gate environmental burdens of plasma gasification as a route capable of transforming construction and demolition (C&D) derived biomass (CDDB) and forest residues into electricity. Results indicate that the environmental burdens associated with CDDB and forest residue gasification may be similar to conventional electricity generation. Land occupation is lowest when CDDB is used. Environmental impacts are to a large extent due to coal cogasified, coke used as gasifier bed material, and fuel oil cocombusted in the steam boiler. However, uncertainties associated with preliminary system designs may be large, particularly the heat loss associated with pilot scale data resulting in overall low efficiencies of energy conversion to electricity; a sensitivity analysis assesses these uncertainties in further detail.
Long-term impacts of battery electric vehicles on the German electricity system
NASA Astrophysics Data System (ADS)
Heinrichs, H. U.; Jochem, P.
2016-05-01
The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow.
Northeast Heating Fuel Market The, Assessment and Options
2000-01-01
In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast
Transitioning to Zero Freshwater Withdrawal for Thermoelectric Generation
NASA Astrophysics Data System (ADS)
Macknick, J.; Tidwell, V. C.; Zemlick, K. M.; Sanchez, J.; Woldeyesus, T.
2013-12-01
The electricity sector is the largest withdrawer of freshwater in the United States. The primary demand for water from the electricity sector is for cooling thermoelectric power plants. Droughts and potential changes in water resources resulting from climate change pose important risks to thermoelectric power production in the United States. Power plants can minimize risk in a variety of ways. One method of reducing risk is to move away from dependency on freshwater resources. Here a scoping level analysis is performed to identify the technical tradeoffs and initial cost estimates for retrofitting all existing steam-powered generation to achieve zero freshwater withdrawal. Specifically, the conversion of existing freshwater-cooled plants to dry cooling or a wet cooling system utilizing non-potable water is considered. The least cost alternative is determined for each of the 1,178 freshwater using power plants in the United States. The use of non-potable water resources, such as municipal wastewater and shallow brackish groundwater, is considered based on the availability and proximity of those resources to the power plant, as well as the costs to transport and treat those resources to an acceptable level. The projected increase in levelized cost of electricity due to power plant retrofits ranges roughly from 0.20 to 20/MWh with a median value of 3.53/MWh. With a wholesale price of electricity running about 35/MWh, many retrofits could be accomplished at levels that would add less than 10% to current power plant generation expenses. Such retrofits could alleviate power plant vulnerabilities to thermal discharge limits in times of drought (particularly in the East) and would save 3.2 Mm3/d of freshwater consumption in watersheds with limited water availability (principally in the West). The estimated impact of retrofits on wastewater and brackish water supply is minimal requiring only a fraction of the available resource. Total parasitic energy requirements to achieve zero freshwater withdrawal are estimated at 140 million MWh or roughly 4.5% of the initial production from the retrofitted plants.
China and the United States - A Comparison of Green Energy Programs and Policies
2010-06-14
China to add an average of 53 gigawatts (GW) of electric capacity each year over the last ten years to its power generation capabilities. China...power capacity has gone from 0.567 GW in 2003 to 12.2 GW in 2008. Plans already exist to grow China’s wind power capacity to 100 GW by 2020. A similar...goal exists for the solar photovoltaic power sector which China intends to increase generating capacity from 0.14 GW as of 2009 to over 1.8 GW by
NASA Astrophysics Data System (ADS)
Oda, Takuya; Akisawa, Atushi; Kashiwagi, Takao
If the economic activity in the commercial and residential sector continues to grow, improvement in energy conversion efficiencies of energy supply systems is necessary for CO2 mitigation. In recent years, the electricity driven hot water heat pump (EDHP) and the solar photo voltaic (PV) are commercialized. The fuel cell (FC) of co-generation system (CGS) for the commercial and residential sector will be commercialized in the future. The aim is to indicate the ideal energy supply system of the users sector, which both manages the economical cost and CO2 mitigation, considering the grid power system. In the paper, cooperative Japanese energy supply systems are modeled by linear-programming. It includes the grid power system and energy systems of five commercial sectors and a residential sector. The demands of sectors are given by the objective term for 2005 to 2025. 24 hours load for each 3 annual seasons are considered. The energy systems are simulated to be minimize the total cost of energy supply, and to be mitigate the CO2 discharge. As result, the ideal energy system at 2025 is shown. The CGS capacity grows to 30% (62GW) of total power system, and the EDHP capacity is 26GW, in commercial and residential sectors.
Economic Assessment of Hydrogen Technologies Participating in California Electricity Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichman, Joshua; Townsend, Aaron; Melaina, Marc
As the electric sector evolves and increasing amounts of variable renewable generation are installed on the system, there are greater needs for system flexibility and sufficient capacity, and greater concern for overgeneration from renewable sources not well matched in time with electric loads. Hydrogen systems have the potential to support the grid in each of these areas. However, limited information is available about the economic competitiveness of hydrogen system configurations. This paper quantifies the value for hydrogen energy storage and demand response systems to participate in select California wholesale electricity markets using 2012 data. For hydrogen systems and conventional storagemore » systems (e.g., pumped hydro, batteries), the yearly revenues from energy, ancillary service, and capacity markets are compared to the yearly cost to establish economic competitiveness. Hydrogen systems can present a positive value proposition for current markets. Three main findings include: (1) For hydrogen systems participating in California electricity markets, producing and selling hydrogen was found to be much more valuable than producing and storing hydrogen to later produce electricity; therefore systems should focus on producing and selling hydrogen and opportunistically providing ancillary services and arbitrage. (2) Tighter integration with electricity markets generates greater revenues (i.e., systems that participate in multiple markets receive the highest revenue). (3) More storage capacity, in excess of what is required to provide diurnal shifting, does not increase competitiveness in current California wholesale energy markets. As more variable renewable generation is installed, the importance of long duration storage may become apparent in the energy price or through additional markets, but currently, there is not a sufficiently large price differential between days to generate enough revenue to offset the cost of additional storage. Future work will involve expanding to consider later year data and multiple regions to establish more generalized results.« less
NASA Astrophysics Data System (ADS)
Newcomer, Adam
Increasing demand for electricity and an aging fleet of generators are the principal drivers behind an increasing need for a large amount of capital investments in the US electric power sector in the near term. The decisions (or lack thereof) by firms, regulators and policy makers in response to this challenge have long lasting consequences, incur large economic and environmental risks, and must be made despite large uncertainties about the future operating and business environment. Capital investment decisions are complex: rates of return are not guaranteed; significant uncertainties about future environmental legislation and regulations exist at both the state and national levels---particularly about carbon dioxide emissions; there is an increasing number of shareholder mandates requiring public utilities to reduce their exposure to potentially large losses from stricter environmental regulations; and there are significant concerns about electricity and fuel price levels, supplies, and security. Large scale, low carbon electricity generation facilities using coal, such as integrated gasification combined cycle (IGCC) facilities coupled with carbon capture and sequestration (CCS) technologies, have been technically proven but are unprofitable in the current regulatory and business environment where there is no explicit or implicit price on carbon dioxide emissions. The paper examines two separate scenarios that are actively discussed by policy and decision makers at corporate, state and national levels: a future US electricity system where coal plays a role; and one where the role of coal is limited or nonexistent. The thesis intends to provide guidance for firms and policy makers and outline applications and opportunities for public policies and for private investment decisions to limit financial risks of electricity generation capital investments under carbon constraints.
Hedging becomes popular in electricity sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-07-01
Electricity price hedging is getting popular among many energy companies due to the onslaught of deregulation in the electricity sector. Price hedging most often is used to manage power supply costs or to engage in arbitrage opportunities and is becoming a major ingredient in companies` risk management strategies.
Projecting Electricity Demand in 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.
2014-07-01
This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly datamore » for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.« less
The climate impacts of bioenergy systems depend on market and regulatory policy contexts.
Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M
2010-10-01
Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.
Operational Merits of Maritime Superconductivity
NASA Astrophysics Data System (ADS)
Ross, R.; Bosklopper, J. J.; van der Meij, K. H.
The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more adequate than cheaper systems.
NASA Astrophysics Data System (ADS)
Liu, J.; Angelopoulos, V.; Zhang, X. J.; Turner, D. L.; Gabrielse, C.; Runov, A.; Funsten, H. O.; Spence, H. E.
2015-12-01
Dipolarizing flux bundles (DFBs) are small flux tubes (typically < 3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background field. Although DFBs are known to accelerate particles to create energetic particle injections, their acceleration mechanism and importance in generating injections inside geosynchronous orbit remain open questions. To answer these questions, we investigate DFBs in the inner magnetosphere by conducting a statistical study with data from the Van Allen Probes. The results show that just like DFBs outside geosynchronous orbit, those inside that orbit occur most often in the pre-midnight sector. Half the DFBs are accompanied by energetic particle injection. Statistically, DFBs with injection have an electric field three times that of those without. All the injections accompanying DFBs appear dispersionless within the temporal and energy resolution considered. These findings suggest that the injections are ushered or locally produced by the DFB, and the DFB's strong electric field is an important aspect of the injection generation mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.H.
The separation of the Czech and Slovak Republics has highlighted differences in regional energy development activities, specifically, the privatization of electric power projects. It has also highlighted differences in the investment opportunities in electric power generating projects. Although the terms of the velvet divorce are now relatively final, one area where some sharing, use or investment in common assets will continue to occur is in the energy sector. The main reason is it serves neither party to completely separate its assets, and both republics have some strategic leverage over the other regarding energy matters. Strategic/financial cooperation is necessary for bothmore » republics to move forward efficiently, but especially for Slovakia since it is the less resource-rich. On the other hand, Slovakia maintains the right-of-way for crucial pipelines from the Ukraine that supply both republics. There is no question though, the Czech region is the greater beneficiary of foreign investment in electric generation, transmission and distribution, retrofitting, environmental rehabilitation, and fuel supply development projects.« less
NASA Astrophysics Data System (ADS)
Johnson, Timothy Lawrence
2002-09-01
Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model-driven assessment by considering issues of risk, geological storage capacity, and regulation. Extensive experience with offshore oil and gas operations suggests that the technical uncertainties associated with OCS sequestration are not large. The legality of seabed CO 2 disposal under US law and international environmental agreements, however, is ambiguous, and the OCS may be the first region where these regulatory regimes clash over CO2 sequestration.
Systems modeling and analysis for Saudi Arabian electric power requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Mohawes, N.A.
This thesis addresses the long-range generation planning problem in Saudi Arabia up to the year 2000. The first part presents various models for electric energy consumption in the residential and industrial sectors. These models can be used by the decision makers for the purposes of policy analysis, evaluation, and forecasting. Forecasts of energy in each sector are obtained from two different models for each sector. These models are based on two forecasting techniques: (1) Hybrid econometric/time series model. The idea of adaptive smoothing was utilized to produce forecasts under several scenarios. (2) Box-Jenkins time series technique. Box-Jenkins models and forecastsmore » are developed for the monthly number of electric consumers and the monthly energy consumption per consumer. The results obtained indicate that high energy consumption is expected during the coming two decades which necessitate serious energy assessment and optimization. Optimization of a mix of energy sources was considered using the group multiattribute utility (MAU) function. The results of MAU for three classes of decision makers (managerial, technical, and consumers) are developed through personal interactions. The computer package WASP was also used to develop a tentative optimum plan. According to this plan, four heavy-water nuclear power plants (800 MW) and four light-water nuclear power plants (1200 MW) have to be introduced by the year 2000 in addition to sixteen oil-fired power plants (400 MW) and nine gas turbines (100 MW).« less
Advanced secondary batteries: Their applications, technological status, market and opportunity
NASA Astrophysics Data System (ADS)
Yao, M.
1989-03-01
Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.
Regulation and competition without privatization: Norway`s experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moen, J.; Hamrin, J.
The competitive market for the hydro-based Norwegian electricity system is working well, with end-user prices only slightly above the wholesale market. Pool prices are reflecting only weather-related variations, and no market power abuses are evident. The challenge now is to restructure ownership of the wires and retail suppliers to lower wheeling costs and avoid cross-subsidization. Since the Norwegian Energy Act came into effect in 1991, the electricity industry in Norway has operated as one of the most deregulated electricity industries in the world. The Energy Act introduced third party access to the retail market and competition in electricity production. Themore » generation, sale and purchase of electricity is now highly competitive, with customers free to buy electricity from any generator, trader or the electricity Pool. Transmission pricing was separated from power purchasing arrangements, so that the buying and selling of electricity as a product is distinct from the transmission of electricity as a service. Transmission and distribution networks continue to maintain natural monopolies, with network owners providing wheeling service across their networks to customers who are connected to them. These monopoly sectors of the industry are subject to regulation by the government-appointed regulatory body, Norwegian Water Resources and Energy Administration (NVE). Regulation is on a cost-of-service basis, with the revenue allowance determined by NVE. The main force behind the Norwegian reform was the desire for efficiency gains to be achieved through a total restructure of the commercial character of the energy service industry (ESI). Unlike the U.K., in Norway the monopoly franchise for both generation and retail supply was removed in one step without any transition period, and the old pool was reformed to provide the needed structure for this new competitive energy market.« less
Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph J.; Lackner, Klaus S.
2011-04-01
Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.
Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap
NASA Astrophysics Data System (ADS)
Hu, Zheng
China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.
NASA Astrophysics Data System (ADS)
McLeod, Jeffrey
The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production and use by illustrating links between relevant economic and environmental variables.
Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization
NASA Astrophysics Data System (ADS)
Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.
2016-12-01
Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences in optimal transmission decisions due to different locations of air pollution and water stress in China (severe in the east and north respectively). To achieve both co-benefits simultaneously, it is therefore critical to coordinate policies that reduce air pollution (pollution tax) and water use (water pricing) with power sector planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Mai, Trieu; Millstein, Dev
Monetizing the environmental health benefits of solar could add ~3.5¢/kWh to the value of solar energy (see Wiser et al. 2016). The monetary impacts due to environmental degradation and public health impacts seem far removed from the apparent “sticker price” of electricity. Yet quantifying these impacts is essential to understanding the true costs and benefits of solar and conventional generating technologies. Compared with fossil fuel generators, PV and CSP produce far lower lifecycle levels of greenhouse gas (GHG) emissions and harmful pollutants including fine particular matter (PM2.5), sulfur dioxide (SO2), and nitrogen oxides (NOx). Achieving the SunShot-level solar deployment targets—14%more » of U.S. electricity demand met by solar in 2030 and 27% in 2050—could reduce cumulative power-sector GHG emissions by 10% between 2015 and 2050, resulting in savings of $238–$252 billion. This is equivalent to 2.0–2.2 cents per kilowatt-hour of solar installed (¢/kWh-solar). Similarly, realizing these levels of solar deployment could reduce cumulative power-sector emissions of PM2.5 by 8%, SO2 by 9%, and NOx by 11% between 2015 and 2050. This could produce $167 billion in savings from lower future health and environmental damages, or 1.4¢/kWh-solar—while also preventing 25,000–59,000 premature deaths. To put this in perspective, the estimated 3.5¢/kWh-solar in benefits due to SunShot-level solar deployment is approximately equal to the additional LCOE reduction needed to make unsubsidized utility-scale solar competitive with conventional generators today. In addition, water savings from achieving the SunShot goals, could result in the 2015–2050 cumulative savings of 4% of total power-sector withdrawals and 9% of total power-sector consumption—a particularly important consideration for arid states where substantial solar will be deployed. Improving public health and the environment is but one aspect of solar’s many costs and benefits. Clearly, however, the assignment of value« less
The energy sector is considered to be one of the most vulnerable to climate change. This study is a first-order analysis of the potential climate change impacts on the U.S. electric power sector, measuring the energy, environmental, and economic impacts of power system changes du...
Demand and supply of hydrogen as chemical feedstock in USA
NASA Technical Reports Server (NTRS)
Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.
1979-01-01
Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.
Electric power restructuring in iran: achievements and challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khosroshahi, Kaveh Aflaki; Jadid, Shahram; Shahidehpour, Mohammad
2009-03-15
Although the power market in Iran is not fully constructed, several key steps have been taken to meet privatization and restructuring objectives. The addition of a power exchange sector has placed the power market on par with that in other countries. Operational concerns that still need to be addressed include technical and non-technical losses, enhancing new investment, and providing incentives for introducing energy efficiency and promoting green power generation. (author)
Itaipu royalties: The role of the hydroelectric sector in water resource management.
Lorenzon, Alexandre Simões; Alvares Soares Ribeiro, Carlos Antonio; Rosa Dos Santos, Alexandre; Marcatti, Gustavo Eduardo; Domingues, Getulio Fonseca; Soares, Vicente Paulo; Martins de Castro, Nero Lemos; Teixeira, Thaisa Ribeiro; Martins da Costa de Menezes, Sady Júnior; Silva, Elias; de Oliveira Barros, Kelly; Amaral Dino Alves Dos Santos, Gleissy Mary; Ferreira da Silva, Samuel; Santos Mota, Pedro Henrique
2017-02-01
For countries dependent on hydroelectricity, water scarcity poses a real risk. Hydroelectric plants are among the most vulnerable enterprises to climate change. Investing in the conservation of the hydrographic basin is a solution found by the hydropower sector. Given the importance of the Itaipu plant to the energy matrix of Brazil and Paraguay, the aim of this study is to review the current distribution of royalties from Itaipu, using the hydrographic basin as a of criterion of analysis. Approximately 98.73% of the Itaipu basin is in Brazil. The flow contributes 99% of the total electricity generated there, while the drop height of the water contributes only 1%. Under the current policy, royalties are shared equally between Brazil and Paraguay. In the proposed approach, each country would receive a percentage for their participation in the drop height and water flow in the output of the turbines, which are intrinsic factors for electricity generation. Thus, Brazil would receive 98.35% of the royalties and Paraguay, 1.65%. The inclusion of the hydrographic basin as a criterion for the distribution of royalties will promote more efficient water resource management, since the payment will be distributed throughout the basin of the plant. The methodology can be applied to hydroelectric projects worldwide. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, L.; Patel, P. L.; Hejazi, M. I.; Kyle, P.; Davies, E. G.; Zhou, Y.; Clarke, L.; Edmonds, J.
2013-12-01
Water withdrawals for thermoelectric power plants account for approximately half of the total water use in the United States. With growing electricity demands in the future and limited water supplies in many water-scarce states in the U.S., grasping the trade-off between energy and water requires an integrated modeling approach that can capture the interactions among energy, water availability, climate, technology, and economic factors at various scales. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, with 14 geopolitical regions that are further dissaggregated into up to 18 agro-ecological zones, was extended to model the electricity and water systems at the state level in the U.S. More specifically, GCAM was employed to estimate future state-level electricity generation and demands, and the associated water withdrawals and consumptions under a set of six scenarios with extensive levels of details on generation fuel portfolio, cooling technology mix, and water use intensities. The state-level estimates were compared against available inventories where good agreement was achieved on national and regional levels. We then explored the electric-sector water use up to 2095, focusing on implications from: 1) socioeconomics and growing demands, 2) the adoption of climate mitigation policy (e.g., RCP4.5 W/m2 vs. a reference scenario), 3) the transition of cooling systems, 4) constraints on electricity trading across states (full trading vs. limited trading), and 5) the adoption of water saving technologies. Overall, the fast retirement of once-through cooling, together with the gradual transition from fossil fuels dominant to a mixture of different fuels, accelerate the decline of water withdrawals and correspondingly compensate consumptive water use. Results reveal that U.S. electricity generation expands significantly as population grows, while U.S. electric-sector water withdrawals are projected to decline by 8.6% - 89% by 2095 and water consumptions are projected to increase by 14% - 101%. Some regional patterns could be observed when analyzing the state-level results spatially. Under the climate mitigation policy (RCP4.5) scenario, nuclear power plants contribute heavily to total electric-sector water withdrawal and consumption in Eastern U.S., while under the reference scenario, coal power plants are the primary water users in Eastern U.S. In the reference scenario, Eastern U.S. is projected to experience substantial drops in water withdrawals, while the Western U.S. will likely endure a moderate increase over the century. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S. Although this study is focused on the U.S., it is performed in the context of the global framework of GCAM where local changes can propagate to influence decisions in other regions outside of the U.S. and vice versa.
Strategy for development of the Polish electricity sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dybowski, J.
1995-12-01
This paper represents the strategy for development of the Polish Electricity Sector dealing with specific problems which are common for all of East Central Europe. In 1990 Poland adopted a restructuring program for the entire energy sector. Very ambitious plans were changed several times but still the main direction of change was preserved. The most difficult period of transformation is featured by several contradictions which have to be balanced. Electricity prices should increase in order to cover the modernization and development program but the society is not able to take this burden in such a short time. Furthermore the newmore » environment protection standards force the growth of capital investment program which sooner or later has to be transferred through the electricity prices. New economic mechanisms have to be introduced to the electricity sector to replace the old ones noneffective, centrally planned. This process has to follow slow management changes. Also, introduction of new electricity market is limited by those constraints. However, this process of change would not be possible without parallel governmental initiation like preparation of new energy law and regulatory frames.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, H.; Wang, M.; Elgowainy, A.
Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors inmore » the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.« less
NASA Technical Reports Server (NTRS)
Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.
1989-01-01
The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.
On the impact of CO{sub 2} emission-trading on power generation emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chappin, E.J.L.; Dijkema, G.P.J.
2009-03-15
In Europe one of the main policy instruments to meet the Kyoto reduction targets is CO{sub 2} emission-trading (CET), which was implemented as of January 2005. In this system, companies active in specific sectors must be in the possession of CO{sub 2} emission rights to an amount equal to their CO{sub 2} emission. In Europe, electricity generation accounts for one-third of CO{sub 2} emissions. Since the power generation sector has been liberalized, reregulated and privatized in the last decade, around Europe autonomous companies determine the sectors' CO{sub 2} emission. Short-term they adjust their operation, long-term they decide on (dis) investmentmore » in power generation facilities and technology selection. An agent-based model is presented to elucidate the effect of CET on the decisions of power companies in an oligopolistic market. Simulations over an extensive scenario-space show that there CET does have an impact. A long-term portfolio shift towards less-CO{sub 2} intensive power generation is observed. However, the effect of CET is relatively small and materializes late. The absolute emissions from power generation rise under most scenarios. This corresponds to the dominant character of current capacity expansion planned in the Netherlands (50%) and in Germany (68%), where companies have announced many new coal based power plants. Coal is the most CO{sub 2} intensive option available and it seems surprising that even after the introduction of CET these capacity expansion plans indicate a preference for coal. Apparently in power generation the economic effect of CO{sub 2} emission-trading is not sufficient to outweigh the economic incentives to choose for coal.« less
Life cycle water use for electricity generation: a review and harmonization of literature estimates
NASA Astrophysics Data System (ADS)
Meldrum, J.; Nettles-Anderson, S.; Heath, G.; Macknick, J.
2013-03-01
This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.
NASA Astrophysics Data System (ADS)
Voisin, N.; Kintner-Meyer, M.; Skaggs, R.; Xie, Y.; Wu, D.; Nguyen, T. B.; Fu, T.; Zhou, T.
2016-12-01
Heat waves and droughts are projected to be more frequent and intense. We have seen in the past the effects of each of those extreme climate events on electricity demand and constrained electricity generation, challenging power system operations. Our aim here is to understand the compounding effects under historical conditions. We present a benchmark of Western US grid performance under 55 years of historical climate, and including droughts, using 2010-level of water demand and water management infrastructure, and 2010-level of electricity grid infrastructure and operations. We leverage CMIP5 historical hydrology simulations and force a large scale river routing- reservoir model with 2010-level sectoral water demands. The regulated flow at each water-dependent generating plants is processed to adjust water-dependent electricity generation parameterization in a production cost model, that represents 2010-level power system operations with hourly energy demand of 2010. The resulting benchmark includes a risk distribution of several grid performance metrics (unserved energy, production cost, carbon emission) as a function of inter-annual variability in regional water availability and predictability using large scale climate oscillations. In the second part of the presentation, we describe an approach to map historical heat waves onto this benchmark grid performance using a building energy demand model. The impact of the heat waves, combined with the impact of droughts, is explored at multiple scales to understand the compounding effects. Vulnerabilities of the power generation and transmission systems are highlighted to guide future adaptation.
McDonald, Robert I; Olden, Julian D; Opperman, Jeffrey J; Miller, William M; Fargione, Joseph; Revenga, Carmen; Higgins, Jonathan V; Powell, Jimmie
2012-01-01
Rising energy consumption in coming decades, combined with a changing energy mix, have the potential to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future water use based on various energy scenarios and examine implications for freshwater ecosystems. Annual water withdrawn/manipulated would increase by 18-24%, going from 1,993,000-2,628,000 Mm(3) in 2010 to 2,359,000-3,271,000 Mm(3) in 2035 under the Reference Case of the Energy Information Administration (EIA). Water consumption would more rapidly increase by 26% due to increased biofuel production, going from 16,700-46,400 Mm(3) consumption in 2010 to 21,000-58,400 Mm(3) consumption in 2035. Regionally, water use in the Southwest and Southeast may increase, with anticipated decreases in water use in some areas of the Midwest and Northeast. Policies that promote energy efficiency or conservation in the electric sector would reduce water withdrawn/manipulated by 27-36 m(3)GJ(-1) (0.1-0.5 m(3)GJ(-1) consumption), while such policies in the liquid fuel sector would reduce withdrawal/manipulation by 0.4-0.7 m(3)GJ(-1) (0.2-0.3 m(3)GJ(-1) consumption). The greatest energy sector withdrawal/manipulation are for hydropower and thermoelectric cooling, although potential new EPA rules that would require recirculating cooling for thermoelectric plants would reduce withdrawal/manipulation by 441,000 Mm(3) (20,300 Mm(3) consumption). The greatest consumptive energy sector use is evaporation from hydroelectric reservoirs, followed by irrigation water for biofuel feedstocks and water used for electricity generation from coal. Historical water use by the energy sector is related to patterns of fish species endangerment, where water resource regions with a greater fraction of available surface water withdrawn by hydropower or consumed by the energy sector correlated with higher probabilities of imperilment. Since future increases in energy-sector surface water use will occur in areas of high fish endemism (e.g., Southeast), additional management and policy actions will be needed to minimize further species imperilment.
Indonesia’s Electricity Demand Dynamic Modelling
NASA Astrophysics Data System (ADS)
Sulistio, J.; Wirabhuana, A.; Wiratama, M. G.
2017-06-01
Electricity Systems modelling is one of the emerging area in the Global Energy policy studies recently. System Dynamics approach and Computer Simulation has become one the common methods used in energy systems planning and evaluation in many conditions. On the other hand, Indonesia experiencing several major issues in Electricity system such as fossil fuel domination, demand - supply imbalances, distribution inefficiency, and bio-devastation. This paper aims to explain the development of System Dynamics modelling approaches and computer simulation techniques in representing and predicting electricity demand in Indonesia. In addition, this paper also described the typical characteristics and relationship of commercial business sector, industrial sector, and family / domestic sector as electricity subsystems in Indonesia. Moreover, it will be also present direct structure, behavioural, and statistical test as model validation approach and ended by conclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurlbut, David; Haase, Scott; Barrows, Clayton
This study for the U.S. Bureau of Reclamation examines conditions in the electricity sector that are likely to affect federal decisions with respect to Navajo Generating Station (NGS), the largest coal-fired power plant operating in the western United States. The federal government owns 24.3% of the 2.25-gigawatt plant, which amounts to 547 megawatts (MW) of capacity. By focusing on the unique public interests that depend on the federal share of NGS, this baseline study can help the federal government develop a road map for meeting all of its goals with respect to water delivery, clean energy, emission reduction, and economicmore » development. There is no recommendation for action in this report. Rather, its aim is to provide a credible, thorough description of baseline conditions that might affect federal decisions regarding NGS. It describes facts and trends embedded in current data, but there are no conclusions about how Reclamation or DOI should respond to the trends. The interdependencies among the many sectoral trends and federal goals are complex, and the aim of this study is to provide a foundation from which options can be tested in a deliberate manner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
This 13th edition presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1994; thus, this report is well-suited to long-term trend analyses. It covers all major energy activities, including consumption, production, trade, stocks, and prices for all major energy commodities, including fossil fuels and electricity. Statistics on renewable energy sources are also included: this year, for the first time, usage of renewables by other consumers as well as by electric utilities is included. Also new is a two-part, comprehensive presentation of data on petroleum products supplied by sector formore » 1949 through 1994. Data from electric utilities and nonutilities are integrated as ``electric power industry`` data; nonutility power gross generation are presented for the first time. One section presents international statistics (for more detail see EIA`s International Energy Annual).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beenstock, M.; Goldin, E.; Haitovsky, Y.
1997-05-01
The economic cost of power outages is a central parameter in the cost-benefit analysis of electric power reliability and the design of electric power systems. The authors present a new methodology for estimating the cost of power outages in the business and public sections and illustrate with data for Israel. The methodology is based on the principle of revealed preference, the cost of an outage may be inferred from the actions taken by consumers to mitigate losses induced by unsupplied electricity. If outages impose costs on businesses, managers are likely to invest in back-up power to mitigate the losses thatmore » are incurred when electricity is not supplied. Investment in back-up generators may then be used to impute the mitigated and unmitigated damage from outages. 12 refs., 3 figs., 7 tabs.« less
Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?
Wallington, T J; Grahn, M; Anderson, J E; Mueller, S A; Williander, M I; Lindgren, K
2010-04-01
The title question was addressed using an energy model that accounts for projected global energy use in all sectors (transportation, heat, and power) of the global economy. Global CO(2) emissions were constrained to achieve stabilization at 400-550 ppm by 2100 at the lowest total system cost (equivalent to perfect CO(2) cap-and-trade regime). For future scenarios where vehicle technology costs were sufficiently competitive to advantage either hydrogen or electric vehicles, increased availability of low-cost, low-CO(2) electricity/hydrogen delayed (but did not prevent) the use of electric/hydrogen-powered vehicles in the model. This occurs when low-CO(2) electricity/hydrogen provides more cost-effective CO(2) mitigation opportunities in the heat and power energy sectors than in transportation. Connections between the sectors leading to this counterintuitive result need consideration in policy and technology planning.
Availability Based Tariff and its impact On different Industry Players-A Review
NASA Astrophysics Data System (ADS)
Holmukhe, R. M.; Pawar, Yogini; Desai, R. S.; Hasarmani, T. S.
2010-10-01
ABT is a performance-based tariff for the supply of electricity by generators owned and controlled by the central government. It is also a new system of scheduling and dispatch, which requires both generators and beneficiaries to commit to day-ahead schedules. It is a system of rewards and penalties seeking to enforce day ahead pre-committed schedules, though variations are permitted if notified One and one half hours in advance. The order emphasizes prompt payment of dues. ABT (Availability Based Tariff) along with the Electricity Act of 2003 is perhaps the most significant and definitive step taken in the Indian power sector so far to bring more efficiency and focus to this vital infrastructure. The ABT mechanism is based on financial principles. ABT scheme is for unscheduled interchange of power. The paper reviews ABT issues, its components, clauses, mechanism, benefits and the impact of grid on different players like generation utilities, grid operator, consumers involved in power generation, transmission and distribution. While the proposed tariff structure has wide implications for each player, this deals exclusively with the technology challenges/opportunities thrown up by ABT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, M.T.
1995-07-01
Vietnam is moving fast. Facing the need to double its installed power generation capacity by the year 2000, Vietnam is pursuing a range of development alternatives to add an estimated 3,000 MW of new power plants. As part of the country`s progress toward a market economy, Vietnam has relaxed its rules regarding investment in power plants. The country enacted a new electricity law early in 1995, paving the way for private participation in the power sector.
NASA Astrophysics Data System (ADS)
Morrow, William Russell, III
Reduction of the negative environmental and human health externalities resulting from both the electricity and transportation sectors can be achieved through technologies such as clean coal, natural gas, nuclear, hydro, wind, and solar photovoltaic technologies for electricity; reformulated gasoline and other fossil fuels, hydrogen, and electrical options for transportation. Negative externalities can also be reduced through demand reductions and efficiency improvements in both sectors. However, most of these options come with cost increases for two primary reasons: (1) most environmental and human health consequences have historically been excluded from energy prices; (2) fossil energy markets have been optimizing costs for over 100 years and thus have achieved dramatic cost savings over time. Comparing the benefits and costs of alternatives requires understanding of the tradeoffs associated with competing technology and lifestyle choices. As bioenergy is proposed as a large-scale feedstock within the United States, a question of "best use" of bioenergy becomes important. Bioenergy advocates propose its use as an alternative energy resource for electricity generation and transportation fuel production, primarily focusing on ethanol. These advocates argue that bioenergy offers environmental and economic benefits over current fossil energy use in each of these two sectors as well as in the U.S. agriculture sector. Unfortunately, bioenergy research has offered very few comparisons of these two alternative uses. This thesis helps fill this gap. This thesis compares the economics of bioenergy utilization by a method for estimating total financial costs for each proposed bioenergy use. Locations for potential feedstocks and bio-processing facilities (co-firing switchgrass and coal in existing coal fired power plants and new ethanol refineries) are estimated and linear programs are developed to estimate large-scale transportation infrastructure costs for each sector. Each linear program minimizes required bioenergy distribution and infrastructure costs. Truck and rail are the only two transportation modes allowed as they are the most likely bioenergy transportation modes. Switchgrass is chosen as a single bioenergy feedstock. All resulting costs are presented in units which reflect current energy markets price norms (¢/kWh, $/gal). The use of a common metric, carbon-dioxide emissions, allows a comparison of the two proposed uses. Additional analysis is provided to address aspects of each proposed use which are not reflected by a carbon-dioxide reduction metric. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Peer, R.; Sanders, K.
2017-12-01
The optimization function that governs the dispatching of power generators to meet electricity demand minimizes the marginal cost of electricity generation without regard to the environmental or public health damages caused by power production. Although technologies exist for reducing the externalities resulting from electricity generation at power plants, current solutions typically raise the cost of power production or introduce operational challenges for the grid. This research quantifies the trade-offs and couplings between the cooling water, greenhouse gas emissions, and air quality impacts of different power generating technologies under business as usual market conditions, as well as a series of market-based interventions aimed to reduce the production of those externalities. Using publicly available data from the US Environmental Protection Agency (EPA) and the US Energy Information Administration (EIA) for power plant water use and emissions, a unit commitment and dispatch power market simulation model is modified to evaluate the production of environmental externalities from power production. Scenarios are developed to apply a set of fees for cooling water, carbon dioxide, nitrous oxide and sulfur oxide emissions, respectively. Trade-offs between environmental performance, overall generation costs, and shifts in the power plants dispatched to meet demand are quantified for each power market simulation. The results from this study will provide insight into the development of a novel market-based framework that modifies the optimization algorithms governing the dispatching of electricity onto the grid in efforts to achieve cost-effective improvements in its environmental performance without the need for new infrastructure investments.
Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, William R.; Marano, John; Sathaye, Jayant
2013-02-01
Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less
Accounting for climate and air quality damages in future U.S. electricity generation scenarios.
Brown, Kristen E; Henze, Daven K; Milford, Jana B
2013-04-02
The EPA-MARKAL model of the U.S. electricity sector is used to examine how imposing emissions fees based on estimated health and environmental damages might change electricity generation. Fees are imposed on life-cycle emissions of SO(2), nitrogen oxides (NO(x)), particulate matter, and greenhouse gases (GHG) from 2015 through 2055. Changes in electricity production, fuel type, emissions controls, and emissions produced under various fees are examined. A shift in fuels used for electricity production results from $30/ton CO(2)-equivalent GHG fees or from criteria pollutant fees set at the higher-end of the range of published damage estimates, but not from criteria pollutant fees based on low or midrange damage estimates. With midrange criteria pollutant fees assessed, SO(2) and NOx emissions are lower than the business as usual case (by 52% and 10%, respectively), with larger differences in the western U.S. than in the eastern U.S. GHG emissions are not significantly impacted by midrange criteria pollutant fees alone; conversely, with only GHG fees, NO(x) emissions are reduced by up to 11%, yet SO(2) emissions are slightly higher than in the business as usual case. Therefore, fees on both GHG and criteria pollutants may be needed to achieve significant reductions in both sets of pollutants.
Water demand for electricity in deep decarbonisation scenarios: a multi-model assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouratiadou, I.; Bevione, M.; Bijl, D. L.
This study assesses the effects of deep electricity decarbonisation and shifts in the choice of power plant cooling technologies on global electricity water demand, using a suite of five integrated assessment models. We find that electricity sector decarbonisation results in co-benefits for water resources primarily due to the phase-out of water-intensive coal-based thermoelectric power generation, although these co-benefits vary substantially across decarbonisation scenarios. Wind and solar photovoltaic power represent a win-win option for both climate and water resources, but further expansion of nuclear or fossil- and biomass-fuelled power plants with carbon capture and storage may result in increased pressures onmore » the water environment. Further to these results, the paper provides insights on the most crucial factors of uncertainty with regards to future estimates of water demand. These estimates varied substantially across models in scenarios where the effects of decarbonisation on the electricity mix were less clear-cut. Future thermal and water efficiency improvements of power generation technologies and demand-side energy efficiency improvements were also identified to be important factors of uncertainty. We conclude that in order to ensure positive effects of decarbonisation on water resources, climate policy should be combined with technology-specific energy and/or water policies.« less
Quantifying the Impacts of Large Scale Integration of Renewables in Indian Power Sector
NASA Astrophysics Data System (ADS)
Kumar, P.; Mishra, T.; Banerjee, R.
2017-12-01
India's power sector is responsible for nearly 37 percent of India's greenhouse gas emissions. For a fast emerging economy like India whose population and energy consumption are poised to rise rapidly in the coming decades, renewable energy can play a vital role in decarbonizing power sector. In this context, India has targeted 33-35 percent emission intensity reduction (with respect to 2005 levels) along with large scale renewable energy targets (100GW solar, 60GW wind, and 10GW biomass energy by 2022) in INDCs submitted at Paris agreement. But large scale integration of renewable energy is a complex process which faces a number of problems like capital intensiveness, matching intermittent loads with least storage capacity and reliability. In this context, this study attempts to assess the technical feasibility of integrating renewables into Indian electricity mix by 2022 and analyze its implications on power sector operations. This study uses TIMES, a bottom up energy optimization model with unit commitment and dispatch features. We model coal and gas fired units discretely with region-wise representation of wind and solar resources. The dispatch features are used for operational analysis of power plant units under ramp rate and minimum generation constraints. The study analyzes India's electricity sector transition for the year 2022 with three scenarios. The base case scenario (no RE addition) along with INDC scenario (with 100GW solar, 60GW wind, 10GW biomass) and low RE scenario (50GW solar, 30GW wind) have been created to analyze the implications of large scale integration of variable renewable energy. The results provide us insights on trade-offs involved in achieving mitigation targets and investment decisions involved. The study also examines operational reliability and flexibility requirements of the system for integrating renewables.
Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025.
Islas, Jorge; Manzini, Fabio; Martínez, Manuel
2002-02-01
This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracho, Riccardo; Linvill, Carl; Sedano, Richard
With the vision to transform the power sector, Mexico included in the new laws and regulations deployment of smart grid technologies and provided various attributes to the Ministry of Energy and the Energy Regulatory Commission to enact public policies and regulation. The use of smart grid technologies can have a significant impact on the integration of variable renewable energy resources while maintaining reliability and stability of the system, significantly reducing technical and non-technical electricity losses in the grid, improving cyber security, and allowing consumers to make distributed generation and demand response decisions. This report describes for Mexico's Ministry of Energymore » (SENER) an overall approach (Optimal Feasible Pathway) for moving forward with smart grid policy development in Mexico to enable increasing electric generation from renewable energy in a way that optimizes system stability and reliability in an efficient and cost-effective manner.« less
Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.
Peer, Rebecca A M; Garrison, Jared B; Timms, Craig P; Sanders, Kelly T
2016-04-19
The US power sector is a leading contributor of emissions that affect air quality and climate. It also requires a lot of water for cooling thermoelectric power plants. Although these impacts affect ecosystems and human health unevenly in space and time, there has been very little quantification of these environmental trade-offs on decision-relevant scales. This work quantifies hourly water consumption, emissions (i.e., carbon dioxide, nitrogen oxides, and sulfur oxides), and marginal heat rates for 252 electricity generating units (EGUs) in the Electric Reliability Council of Texas (ERCOT) region in 2011 using a unit commitment and dispatch model (UC&D). Annual, seasonal, and daily variations, as well as spatial variability are assessed. When normalized over the grid, hourly average emissions and water consumption intensities (i.e., output per MWh) are found to be highest when electricity demand is the lowest, as baseload EGUs tend to be the most water and emissions intensive. Results suggest that a large fraction of emissions and water consumption are caused by a small number of power plants, mainly baseload coal-fired generators. Replacing 8-10 existing power plants with modern natural gas combined cycle units would result in reductions of 19-29%, 51-55%, 60-62%, and 13-27% in CO2 emissions, NOx emissions, SOx emissions, and water consumption, respectively, across the ERCOT region for two different conversion scenarios.
Lertsatitthanakorn, C
2007-05-01
The use of biomass cook stoves is widespread in the domestic sector of developing countries, but the stoves are not efficient. To advance the versatility of the cook stove, we investigated the feasibility of adding a commercial thermoelectric (TE) module made of bismuth-telluride based materials to the stove's side wall, thereby creating a thermoelectric generator system that utilizes a proportion of the stove's waste heat. The system, a biomass cook stove thermoelectric generator (BITE), consists of a commercial TE module (Taihuaxing model TEP1-1264-3.4), a metal sheet wall which acts as one side of the stove's structure and serves as the hot side of the TE module, and a rectangular fin heat sink at the cold side of the TE module. An experimental set-up was built to evaluate the conversion efficiency at various temperature ranges. The experimental set-up revealed that the electrical power output and the conversion efficiency depended on the temperature difference between the cold and hot sides of the TE module. At a temperature difference of approximately 150 degrees C, the unit achieved a power output of 2.4W. The conversion efficiency of 3.2% was enough to drive a low power incandescent light bulb or a small portable radio. A theoretical model approximated the power output at low temperature ranges. An economic analysis indicated that the payback period tends to be very short when compared with the cost of the same power supplied by batteries. Therefore, the generator design formulated here could be used in the domestic sector. The system is not intended to compete with primary power sources but serves adequately as an emergency or backup source of power.
NASA Astrophysics Data System (ADS)
Hennig, R. J.; Friedrich, J.; Malaguzzi Valeri, L.; McCormick, C.; Lebling, K.; Kressig, A.
2016-12-01
The Power Watch project will offer open data on the global electricity sector starting with power plants and their impacts on climate and water systems; it will also offer visualizations and decision making tools. Power Watch will create the first comprehensive, open database of power plants globally by compiling data from national governments, public and private utilities, transmission grid operators, and other data providers to create a core dataset that has information on over 80% of global installed capacity for electrical generation. Power plant data will at a minimum include latitude and longitude, capacity, fuel type, emissions, water usage, ownership, and annual generation. By providing data that is both comprehensive, as well as making it publically available, this project will support decision making and analysis by actors across the economy and in the research community. The Power Watch research effort focuses on creating a global standard for power plant information, gathering and standardizing data from multiple sources, matching information from multiple sources on a plant level, testing cross-validation approaches (regional statistics, crowdsourcing, satellite data, and others) and developing estimation methodologies for generation, emissions, and water usage. When not available from official reports, emissions, annual generation, and water usage will be estimated. Water use estimates of power plants will be based on capacity, fuel type and satellite imagery to identify cooling types. This analysis is being piloted in several states in India and will then be scaled up to a global level. Other planned applications of of the Power Watch data include improving understanding of energy access, air pollution, emissions estimation, stranded asset analysis, life cycle analysis, tracking of proposed plants and curtailment analysis.
Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.
Gingerich, Daniel B; Mauter, Meagan S
2015-07-21
Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, Jeffrey S
Performance-based regulations (PBRs) provide a regulatory framework to connect goals, targets, and measures to utility performance or executive compensation. Well-designed PBRs provide incentives for utility performance, benefiting consumers and utility owners alike. This report considers the role of both PBRs and more discrete performance incentive mechanisms (PIMs) in 21st century power sector transformation. Innovative technologies are transforming the way electricity is generated, delivered, and consumed. PBRs have the potential to realign utility, investor, and consumer incentives and mitigate emerging challenges to the utility business model, renewable integration, and even cyber security.The goals of PBRs in the form of multi-year ratemore » plans are in many respects the same in terms of providing reasonably priced and reliable service to customers. However, today's technologies have changed, and there is more emphasis on clean energy. Thus, the pathways and the potential outcomes are different than they were in the 20th century when centralized generator stations and large infrastructure additions dominated the utility landscape. Given unprecedented changes underway in the electricity sector, PBRs - by specifying expectations of utility performance and outcomes for consumers, while staying agnostic to the exact means of delivery - constitute a form of prescient regulation that harnesses disruption. PBRs are one tool in a broader toolbox in the transition toward flexible regulatory and market structures that rewards utilities that adapt or evolve in reaction to market and technology change. PBRs and PIMs have great value for the electric industry when designed well and can be applied to many different situations. How exactly PBR mechanisms are most effectively enacted will vary based on the utility ownership model, institutional arrangements, and a variety of other local factors. PBRs should be tailored to the needs and goals of each jurisdiction, and perhaps each utility, to most effectively achieve the needs of a 21st century power grid in that jurisdiction. Presented in three volumes, this report highlights the lessons learned from their evolving history, explores essential elements of their design and implementation as well as considerations for how they may be best applied, and examines leading examples of PBRs from the United Kingdom, New York, Denmark, Mexico, and South Africa. The full report, 'Next-Generation Performance Based Regulation - Emphasizing Utility Performance to Unleash Power Sector Innovation,' published in September 2017, can be accessed at https://www.nrel.gov/docs/fy17osti/68512.pdf.« less
NASA Astrophysics Data System (ADS)
Choi, Jino
Numerous studies have examined the elasticities of electricity demand---residential as well as commercial and industrial---in the private sector. However, no one appears to have examined the behavior of the public sector demand. This study aims to fill that gap and to provide insights into the electricity demand in the public sector, using the U.S. Navy bases as a case study. This study examines electricity demand data of 38 Navy activities within the United States for a 16-year time period from 1985 through 2000. The Navy maintains a highly diverse shore infrastructure to conduct its mission and to support the fleet. The types of shore facilities include shipyards, air stations, aviation depots, hospital, and many others. These Navy activities are analogous to commercial or industrial organizations in the private sector. In this study, I used a number of analytical approaches to estimate short-run and long-run elasticities of electricity demand. Estimation using pooled data was rejected because it failed the test for homogeneity. Estimation using the time series data of each Navy activity had several wrong signs for coefficients. The Stein-rule estimator did not differ significantly from the separate cross-section estimates because of the strong rejection of the homogeneity assumption. The iterative Bayesian shrinkage estimator provided the most reasonable results. The empirical findings from this study are as follows. First, the Navy's electricity demand is price elastic. Second, the price elasticities appear to be lower than those of the private sector. The short-run price elasticities for the Navy activities ranged from -0.083 to -0.157. The long-run price elasticities ranged from -0.151 to -0.769.
NASA Astrophysics Data System (ADS)
Liu, Jiang; Angelopoulos, V.; Zhang, Xiao-Jia; Turner, D. L.; Gabrielse, C.; Runov, A.; Li, Jinxing; Funsten, H. O.; Spence, H. E.
2016-02-01
Dipolarizing flux bundles (DFBs) are small flux tubes (typically <3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background. Although DFBs are known to accelerate particles, creating energetic particle injections outside geosynchronous orbit (trans-GEO), the nature of the acceleration mechanism and the importance of DFBs in generating injections inside geosynchronous orbit (cis-GEO) are unclear. Our statistical study of cis-GEO DFBs using data from the Van Allen Probes reveals that just like trans-GEO DFBs, cis-GEO DFBs occur most often in the premidnight sector, but their occurrence rate is ~1/3 that of trans-GEO DFBs. Half the cis-GEO DFBs are accompanied by an energetic particle injection and have an electric field 3 times stronger than that of the injectionless half. All DFB injections are dispersionless within the temporal resolution considered (11 s). Our findings suggest that these injections are ushered or produced locally by the DFB, and the DFB's strong electric field is an important aspect of the injection generation mechanism.
NASA Astrophysics Data System (ADS)
Sobral Mourao, Zenaida; Konadu, Daniel Dennis; Damoah, Richard; Li, Pei-hao
2017-04-01
The UK has a binding obligation to reduce GHG emission by 80% (based on 1990 levels) by 2050. Meeting this target requires extensive decarbonisation of the UK energy system. Different pathways that achieve this target at the lowest system costs are being explored at different levels of policy and decisions on future energy infrastructure. Whilst benefits of decarbonisation are mainly focused on the impacts on climate change, there are other potential environmental and health impacts such as air-quality. In particular, a decrease in fossil fuel use by directly substituting current systems with low-carbon technologies could lead to significant reductions in the concentrations of SO2, NOX, CO and other atmospheric pollutants. So far, the proposed decarbonisation pathways tend to target the electricity sector first, followed by a transition in transport and heating technologies and use. However, the spatial dimension of where short term changes in the energy sector occur in relation to high density population areas is not taken into account when defining the energy transition strategies. This may lead to limited short-term improvements in air quality within urban areas, where use of fossil fuels for heating and transport is the main contribution to overall atmospheric pollutant levels. It is therefore imperative to explore decarbonisation strategies that prioritise transition in sectors of the energy system that produce immediate improvements in air quality in key regions of the UK. This study aims to use a combination of Remote Sensing observations and atmospheric chemistry/transport modelling approaches to estimate and map the impact on NOx of the traditional approach of decarbonising electricity first compared to a slower transition in the electricity sector, but faster change in the transport sector. This is done by generating a set of alternative energy system pathways with a higher share of zero emissions vehicles in 2030 than the energy system optimization model would choose if the only goal was the 80% GHG emissions reduction. Our overarching goal is to provide an additional standard to compare future energy system pathways beyond the traditional metrics of cost and GHG emissions reductions.
Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Emmanuel
Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controlsmore » can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key findings and research suggestions discussed at the event. Discussions at the workshop will aid DOE in developing a set of distinct initiatives that can be pursued by government and industry to realize promising technological pursuits. DOE plans to use the results of the Dialogue coupled with ongoing technical analysis of efficiency opportunities within the coal-fired fleet, and additional studies to develop a comprehensive strategy for capitalizing on thermal efficiency improvements. Expected Power Plant Efficiency Improvements include developing cost-effective, efficient, and reliable technologies for boilers, turbines, and sensors and controls to improve the reliability and efficiency of existing coal-based power plants. The Office of Fossil Energy at DOE plans to work with industry to develop knowledge pertaining to advanced technologies and systems that industry can subsequently develop. These technologies and systems will increase reliability, add operational flexibility and improve efficiency, thereby providing more robust power generation infrastructure. The following table lists the research suggestions and questions for further investigation that were identified by participants in each session of the dialogue.« less
NASA Technical Reports Server (NTRS)
1982-01-01
Technologies that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and government applications at a cost per watt that is competitive with other means is investigated. Silicon refinement processes, advanced silicon sheet growth techniques, solar cell development, encapsulation, automated fabrication process technology, advanced module/array design, and module/array test and evaluation techniques are developed.
Impacts of Federal Tax Credit Extensions on Renewable Deployment and Power Sector Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu; Cole, Wesley; Lantz, Eric
Federal tax credits for renewable energy (RE) have served as one of the primary financial incentives for RE deployment over the last two decades in the United States. In December 2015, the wind power production tax credit and solar investment tax credits were extended for five years as part of the Consolidated Appropriations Act of 2016. This report explores the impact that these tax credit extensions might have on future RE capacity deployment and power sector carbon dioxide (CO2) emissions. The analysis examines the impacts of the tax credit extensions under two distinct natural gas price futures as natural gasmore » prices have been key factors in influencing the economic competitiveness of new RE development. The analysis finds that, in both natural gas price futures, RE tax credit extensions can spur RE capacity investments at least through the early 2020s and can help lower emissions from the U.S. electricity system. More specifically, the RE tax credit extensions are estimated to drive a net peak increase of 48-53 GW in installed RE capacity in the early 2020s -- longer term impacts are less certain. In the longer term after the tax credits ramp down, greater RE capacity is driven by a combination of assumed RE cost declines, rising fossil fuel prices, and other clean energy policies such as the Clean Power Plan. The tax credit extension-driven acceleration in RE capacity development can reduce fossil fuel-based generation and lower electric sector CO2 emissions. Cumulative emissions reductions over a 15-year period (spanning 2016-2030) as a result of the tax credit extensions are estimated to range from 540 to 1420 million metric tonnes CO2. These findings suggest that tax credit extensions can have a measurable impact on future RE deployment and electric sector CO2 emissions under a range of natural gas price futures.« less
NASA Astrophysics Data System (ADS)
Binder, Kyle Edwin
The U.S. energy sector has undergone continuous change in the regulatory, technological, and market environments. These developments show no signs of slowing. Accordingly, it is imperative that energy market regulators and participants develop a strong comprehension of market dynamics and the potential implications of their actions. This dissertation contributes to a better understanding of the past, present, and future of U.S. energy market dynamics and interactions with policy. Advancements in multivariate time series analysis are employed in three related studies of the electric power sector. Overall, results suggest that regulatory changes have had and will continue to have important implications for the electric power sector. The sector, however, has exhibited adaptability to past regulatory changes and is projected to remain resilient in the future. Tests for constancy of the long run parameters in a vector error correction model are applied to determine whether relationships among coal inventories in the electric power sector, input prices, output prices, and opportunity costs have remained constant over the past 38 years. Two periods of instability are found, the first following railroad deregulation in the U.S. and the second corresponding to a number of major regulatory changes in the electric power and natural gas sectors. Relationships among Renewable Energy Credit prices, electricity prices, and natural gas prices are estimated using a vector error correction model. Results suggest that Renewable Energy Credit prices do not completely behave as previously theorized in the literature. Potential reasons for the divergence between theory and empirical evidence are the relative immaturity of current markets and continuous institutional intervention. Potential impacts of future CO2 emissions reductions under the Clean Power Plan on economic and energy sector activity are estimated. Conditional forecasts based on an outlined path for CO2 emissions are developed from a factor-augmented vector autoregressive model for a large dataset. Unconditional and conditional forecasts are compared for U.S. industrial production, real personal income, and estimated factors. Results suggest that economic growth will be slower under the Clean Power Plan than it would otherwise; however, CO2 emissions reductions and economic growth can be achieved simultaneously.
Is your electric process heater safe?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiras, C.S.
2000-04-01
Over the past 35 years, electric process heaters (EPHs) have been used to heat flowing fluids in different sectors of the energy industry: oil and gas exploration and production, refineries, petrochemical plants, pipeline compression facilities and power-generation plants. EPHs offer several advantages over fired heaters and shell-and-tube exchangers, which have been around for many years, including: smaller size, lighter weight, cleaner operation, lower capital costs, lower maintenance costs, no emissions or leakage, better control and improved safety. However, while many industrial standards have addressed safety concerns of fired heaters and shell-and-tube exchangers (API, TEMA, NFPA, OSHA and NEC), no standardsmore » address EPHs. The paper presents a list of questions that plant operators need to ask about the safety of their electric process heaters. The answers are also given.« less
Equatorial ionospheric response to the 2015 St. Patrick's Day magnetic storm
NASA Astrophysics Data System (ADS)
Huang, C.; Wilson, G. R.; Hairston, M. R.; Zhang, Y.; Wang, W.; Liu, J.
2016-12-01
The geomagnetic storm on 17 March 2015 was the strongest storm during solar cycle 24 and caused significant disturbances in the global ionosphere. We present measurements of the Defense Meteorological Satellite Program satellites and identify the dynamic response of the equatorial ionosphere to the storm. Large penetration and disturbance dynamo electric fields are detected in both the dusk and the dawn sectors, and the characteristics of the electric fields are dramatically different in the two local time sectors. Penetration electric field is strong in the evening sector, but disturbance dynamo electric field is dominant in the dawn sector. The dynamo process is first observed in the post-midnight sector 4 hours after the beginning of the storm main phase and lasts for 31 hours, covering the major part of the storm main phase and the initial 20 hours of the recovery phase. The dynamo vertical ion drift is upward (up to 200 m/s) in the post-midnight sector and downward (up to 80 m/s) in the early morning sector. The dynamo zonal ion drift is westward at these locations and reaches 100 m/s. The dynamo process causes large enhancements of the oxygen ion concentration, and the variations of the oxygen ion concentration are well correlated with the vertical ion drift. The observations suggest that disturbance dynamo becomes dominant in the post-midnight equatorial ionosphere even during the storm main phase when disturbance neutral winds arrive there. The results provide new insight into storm-time equatorial ionospheric dynamics.
NASA Astrophysics Data System (ADS)
Seligman, Jason Scott
2002-01-01
Three essays in the field of public economics are included in this thesis. Chapter 1 begins this work with an introduction to public economics and places the remaining chapters in context. Like all economic agents, the government must manage its cash position. Chapter 2 considers this activity. Short-term financial requirements cause the government to solicit the market for bills not previously scheduled (Cash Management Bills). Using data from the US Treasury's Proprietary Domestic Finance Database, this chapter shows that these bills have higher costs than normal bills, suggesting that both Treasury and financial markets appreciate that demand is more inelastic for these instruments. In addition, this research identifies several factors that increase finance costs for Treasury in meeting short-term financial need. Chapter 3 explores location choices for generation investment in a re-regulated electricity market. Recently, there have been significant changes in the regulation of electricity in the State of California. These changes may affect generation investment behavior within the State, an important consideration for policy makers. This work identifies the impact of public sector regulatory change on private sector investment outcomes, by comparing the location and scope of electricity generation projects before and after two specific regulatory changes in air quality management and transmission tariff charges, while controlling for expected population growth patterns within the State. Significant changes in location preference are identified using factors for the northern and southern transmission zones, NP15 and SP15, the intermediate zone ZP26, and for areas outside of ISO control. Chapter 4 considers Disability Insurance and individual public pension investment accounts. Current debate on the Social Security Administration's long-term finance of benefits includes proposals for independent private investment via individual accounts. The author investigates what implications disability might have for account balances. A behavioral model is developed to consider incentives for early retirement when a defined benefit program for disability insurance continues to be available. The included simulation uses historic wage series, historic equity market performance, and current OASDI regulations.
Penn, Stefani L; Arunachalam, Saravanan; Woody, Matthew; Heiger-Bernays, Wendy; Tripodis, Yorghos; Levy, Jonathan I
2017-03-01
Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM 2.5 ) and ozone (O 3 ). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM 2.5 and O 3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration-response functions to calculate associated health impacts. We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM 2.5 . More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM 2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM 2.5 - and O 3 -related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125:324-332; http://dx.doi.org/10.1289/EHP550.
Thermophotovoltaic systems for civilian and industrial applications in Japan
NASA Astrophysics Data System (ADS)
Yugami, Hiroo; Sasa, Hiromi; Yamaguchi, Masafumi
2003-05-01
The potential market for thermophotovoltaic (TPV) applications has been studied for civilian and industrial sectors in Japan. Comparing the performance of gas engines or turbines, as well as the underdeveloped power generation technologies such as fuel cells or chemical batteries, we have discussed the feasible application field of TPV systems to compete with those power generations. From the point of view of applicability for TPV systems in Japan, portable generators, co-generation systems and solar power plants are selected for our system analysis. The cost and performance targets of TPV systems for co-generation are also discussed by assuming a typical daily profile of electricity and hot water demands in Japanese homes. A progress report on the recent TPV research activities is given as well as a feasibility study concerning such TPV systems in Japan.
González Pericot, N; Villoria Sáez, P; Del Río Merino, M; Liébana Carrasco, O
2014-11-01
The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites. Copyright © 2014 Elsevier Ltd. All rights reserved.
The state of the art of thin-film photovoltaics
NASA Astrophysics Data System (ADS)
Surek, T.
1993-10-01
Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.
NASA Astrophysics Data System (ADS)
Rout, Diptiranjan; Chakrabarty, D.; Sarkhel, S.; Sekar, R.; Fejer, B. G.; Reeves, G. D.; Kulkarni, Atul S.; Aponte, Nestor; Sulzer, Mike; Mathews, John D.; Kerr, Robert B.; Noto, John
2018-05-01
On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. The responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigated using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545-0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ˜40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. This result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, Terri; Rai, Neha; Esterly, Sean
Government policy is one of the most important factors in engaging the private sector in providing universal access to electricity. In particular, the private sector is well positioned to provide decentralized electricity products and services. While policy uncertainty and regulatory barriers can keep enterprises and investors from engaging in the market, targeted policies can create opportunities to leverage private investment and skills to expand electricity access. However, creating a sustainable market requires policies beyond traditional electricity regulation. The report reviews the range of policy issues that impact the development and expansion of a market for decentralized electricity services from establishingmore » an enabling policy environment to catalyzing finance, building human capacity, and integrating energy access with development programs. The case studies in this report show that robust policy frameworks--addressing a wide range of market issues--can lead to rapid transformation in energy access. The report highlights examples of these policies in action Bangladesh, Ethiopia, Mali, Mexico, and Nepal.« less
Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming
NASA Astrophysics Data System (ADS)
Tobin, I.; Greuell, W.; Jerez, S.; Ludwig, F.; Vautard, R.; van Vliet, M. T. H.; Bréon, F.-M.
2018-04-01
The electricity sector is currently considered mainly on the emission side of the climate change equation. In order to limit climate warming to below 2 °C, or even 1.5 °C, it must undergo a rapid transition towards carbon neutral production by the mid-century. Simultaneously, electricity generating technologies will be vulnerable to climate change. Here, we assess the impacts of climate change on wind, solar photovoltaic, hydro and thermoelectric power generation in Europe using a consistent modelling approach across the different technologies. We compare the impacts for different global warming scenarios: +1.5 °C, +2 °C and +3 °C. Results show that climate change has negative impacts on electricity production in most countries and for most technologies. Such impacts remain limited for a 1.5 °C warming, and roughly double for a 3 °C warming. Impacts are relatively limited for solar photovoltaic and wind power potential which may reduce up to 10%, while hydropower and thermoelectric generation may decrease by up to 20%. Generally, impacts are more severe in southern Europe than in northern Europe, inducing inequity between EU countries. We show that a higher share of renewables could reduce the vulnerability of power generation to climate change, although the variability of wind and solar PV production remains a significant challenge.
NASA Astrophysics Data System (ADS)
Millstein, D.; Zhai, P.; Menon, S.
2011-12-01
Over the past decade significant reductions of NOx and SOx emissions from coal burning power plants in the U.S. have been achieved due to regulatory action and substitution of new generation towards natural gas and wind power. Low natural gas prices, ever decreasing solar generation costs, and proposed regulatory changes, such as to the Cross State Air Pollution Rule, promise further long-run coal power plant emission reductions. Reduced power plant emissions have the potential to affect ozone and particulate air quality and influence regional climate through aerosol cloud interactions and visibility effects. Here we investigate, on a national scale, the effects on future (~2030) air quality and regional climate of power plant emission regulations in contrast to and combination with policies designed to aggressively promote solar electricity generation. A sophisticated, economic and engineering based, hourly power generation dispatch model is developed to explore the integration of significant solar generation resources (>10% on an energy basis) at various regions across the county, providing detailed estimates of substitution of solar generation for fossil fuel generation resources. Future air pollutant emissions from all sectors of the economy are scaled based on the U.S. Environmental Protection Agency's National Emission Inventory to account for activity changes based on population and economic projections derived from county level U.S. Census data and the Energy Information Administration's Annual Energy Outlook. Further adjustments are made for technological and regulatory changes applicable within various sectors, for example, emission intensity adjustments to on-road diesel trucking due to exhaust treatment and improved engine design. The future year 2030 is selected for the emissions scenarios to allow for the development of significant solar generation resources. A regional climate and air quality model (Weather Research and Forecasting, WRF model) is used to investigate the effects of the various solar generation scenarios given emissions projections that account for changing regulatory environment, economic and population growth, and technological change. The results will help to quantify the potential air quality benefits of promotion of solar electricity generation in regions containing high penetration of coal-fired power generation. Note current national solar incentives that are based only on solar generation capacity. Further investigation of changes to regional climate due to emission reductions of aerosols and relevant precursors will provide insight into the environmental effects that may occur if solar power generation becomes widespread.
NASA Astrophysics Data System (ADS)
Borries, Claudia; Mahrous, Ayman M.; Ellahouny, Nada M.; Badeke, Ronny
2016-11-01
Strong ionospheric perturbations were generated by the intense geomagnetic storm on 17 March 2015. In this article, we are studying perturbations in the European-African sector observed in the total electron content (TEC). Focal points are wavelike phenomena considered as large-scale traveling ionospheric disturbances (LSTIDs). In the European-African sector, the storm produced three different types of LSTIDs: (1) a concurrent TEC perturbation at all latitudes simultaneously; (2) one LSTID propagating toward the equator, having very large wave parameters (wavelength: ≈3600 km, period: ≈120 min, and speed: ≈500 m/s); and (3) several LSTIDs propagating toward the equator with typical wave parameters (wavelength: ≈2100 km, period: ≈60 min, and speed ≈600 m/s). The third type of LSTIDs is considered to be exited as most LSTIDs either due to variations in the Joule heating or variations in the Lorentz force, whereas the first two perturbation types are rather unusual in their appearance. They occurred during the partial recovery phase when the geomagnetic perturbations were minor and the interplanetary magnetic field turned northward. A westward prompt penetration electric field is considered to excite the first perturbation signature, which indicates a sudden TEC depletion. For the second LSTID type, variations in the Lorentz force because of perturbed electric fields and a minor particle precipitation effect are extracted as possible excitation mechanisms.
The Impact of CO2 Emission Reduction on U.S. Electric Sector Water Use
The electric power sector is currently one of the largest water withdrawers and fastest growing water consumers in the U.S. Water supply in the United States is becoming increasingly stressed due to growth in population, per capita energy consumption and industrial water use. A...
The Impact of CO2 Emission Reductions on U.S. Electric Sector Water Use
The electric power sector is currently one of the largest water withdrawers and fastest growing water consumers in the U.S. Water supply in the United States is becoming increasingly stressed due to growth in population, per capita energy consumption and industrial water use. At ...
NASA Astrophysics Data System (ADS)
Farkas, C. M.; Moeller, M.; Carlton, A. G.
2013-12-01
Photochemical transport models routinely under predict peak air quality events. This deficiency may be due, in part, to inadequate temporalization of emissions from the electric generating sector. The National Emissions Inventory (NEI) reports emissions from Electric Generating Units (EGUs) by either Continuous Emission Monitors (CEMs) that report hourly values or as an annual total. The Sparse Matrix Operator Kernel Emissions preprocessor (SMOKE), used to prepare emissions data for modeling with the CMAQ air quality model, allocates annual emission totals throughout the year using specific monthly, weekly, and hourly weights according to standard classification code (SCC) and location. This approach represents average diurnal and seasonal patterns of electricity generation but does not capture spikes in emissions due to episodic use as with peaking units or due to extreme weather events. In this project we use a combination of state air quality permits, CEM data, and EPA emission factors to more accurately temporalize emissions of NOx, SO2 and particulate matter (PM) during the extensive heat wave of July and August 2006. Two CMAQ simulations are conducted; the first with the base NEI emissions and the second with improved temporalization, more representative of actual emissions during the heat wave. Predictions from both simulations are evaluated with O3 and PM measurement data from EPA's National Air Monitoring Stations (NAMS) and State and Local Air Monitoring Stations (SLAMS) during the heat wave, for which ambient concentrations of criteria pollutants were often above NAAQS. During periods of increased photochemistry and high pollutant concentrations, it is critical that emissions are most accurately represented in air quality models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye, Jayant A.
2000-04-01
Integrated assessment (IA) modeling of climate policy is increasingly global in nature, with models incorporating regional disaggregation. The existing empirical basis for IA modeling, however, largely arises from research on industrialized economies. Given the growing importance of developing countries in determining long-term global energy and carbon emissions trends, filling this gap with improved statistical information on developing countries' energy and carbon-emissions characteristics is an important priority for enhancing IA modeling. Earlier research at LBNL on this topic has focused on assembling and analyzing statistical data on productivity trends and technological change in the energy-intensive manufacturing sectors of five developing countries,more » India, Brazil, Mexico, Indonesia, and South Korea. The proposed work will extend this analysis to the agriculture and electric power sectors in India, South Korea, and two other developing countries. They will also examine the impact of alternative model specifications on estimates of productivity growth and technological change for each of the three sectors, and estimate the contribution of various capital inputs--imported vs. indigenous, rigid vs. malleable-- in contributing to productivity growth and technological change. The project has already produced a data resource on the manufacturing sector which is being shared with IA modelers. This will be extended to the agriculture and electric power sectors, which would also be made accessible to IA modeling groups seeking to enhance the empirical descriptions of developing country characteristics. The project will entail basic statistical and econometric analysis of productivity and energy trends in these developing country sectors, with parameter estimates also made available to modeling groups. The parameter estimates will be developed using alternative model specifications that could be directly utilized by the existing IAMs for the manufacturing, agriculture, and electric power sectors.« less
NASA Technical Reports Server (NTRS)
Lin, E. I. H.
1982-01-01
Findings of a survey concerning salt ponds are summarized. The residential, commercial, and institutional buildings sector is discussed. The industrial process heat sector is considered. The agricultural process heat sector is examined. The electrical power sector is reviewed. The desalinization sector is considered.
McDonald, Robert I.; Olden, Julian D.; Opperman, Jeffrey J.; Miller, William M.; Fargione, Joseph; Revenga, Carmen; Higgins, Jonathan V.; Powell, Jimmie
2012-01-01
Rising energy consumption in coming decades, combined with a changing energy mix, have the potential to increase the impact of energy sector water use on freshwater biodiversity. We forecast changes in future water use based on various energy scenarios and examine implications for freshwater ecosystems. Annual water withdrawn/manipulated would increase by 18–24%, going from 1,993,000–2,628,000 Mm3 in 2010 to 2,359,000–3,271,000 Mm3 in 2035 under the Reference Case of the Energy Information Administration (EIA). Water consumption would more rapidly increase by 26% due to increased biofuel production, going from 16,700–46,400 Mm3 consumption in 2010 to 21,000–58,400 Mm3 consumption in 2035. Regionally, water use in the Southwest and Southeast may increase, with anticipated decreases in water use in some areas of the Midwest and Northeast. Policies that promote energy efficiency or conservation in the electric sector would reduce water withdrawn/manipulated by 27–36 m3GJ−1 (0.1–0.5 m3GJ−1 consumption), while such policies in the liquid fuel sector would reduce withdrawal/manipulation by 0.4–0.7 m3GJ−1 (0.2–0.3 m3GJ−1 consumption). The greatest energy sector withdrawal/manipulation are for hydropower and thermoelectric cooling, although potential new EPA rules that would require recirculating cooling for thermoelectric plants would reduce withdrawal/manipulation by 441,000 Mm3 (20,300 Mm3 consumption). The greatest consumptive energy sector use is evaporation from hydroelectric reservoirs, followed by irrigation water for biofuel feedstocks and water used for electricity generation from coal. Historical water use by the energy sector is related to patterns of fish species endangerment, where water resource regions with a greater fraction of available surface water withdrawn by hydropower or consumed by the energy sector correlated with higher probabilities of imperilment. Since future increases in energy-sector surface water use will occur in areas of high fish endemism (e.g., Southeast), additional management and policy actions will be needed to minimize further species imperilment. PMID:23185581
NASA Astrophysics Data System (ADS)
Friedrich, J.; Kressig, A.; Van Groenou, S.; McCormick, C.
2017-12-01
Challenge The lack of transparent, accessible, and centralized power sector data inhibits the ability to research the impact of the global power sector. information gaps for citizens, analysts, and decision makers worldwide create barriers to sustainable development efforts. The need for transparent, accessible, and centralized information is especially important to enhance the commitments outlined in the recently adopted Paris Agreement and Sustainable Development Goals. Offer Power Watch will address this challenge by creating a comprehensive, open-source platform on the world's power systems. The platform hosts data on 85% of global installed electrical capacity and for each power plant will include data points on installed capacity, fuel type, annual generation, commissioning year, with more characteristics like emissions, particulate matter, annual water demand and more added over time. Most of the data is reported from national level sources, but annual generation and other operational characteristiscs are estimated via Machine Learning modeling and remotely sensed data when not officially reported. In addition, Power Watch plans to provide a suite of tools that address specific decision maker needs, such as water risk assessments and air pollution modeling. Impact Through open data, the platform and its tools will allow reserachers to do more analysis of power sector impacts and perform energy modeling. It will help catalyze accountability for policy makers, businesses, and investors and will inform and drive the transition to a clean energy future while reaching development targets.
Globalization and sustainable development an E7 point of view
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strassburg, W.
1998-07-01
The energy sector is a crucial feedstock to economic development. One example of this industry sector's contribution towards sustainable development is the so-called E7 initiative on sustainable energy development of some of the biggest electric utilities. E7 members from Canada, France, Germany, Italy, Japan and the US are demonstrating the functioning of the requested globally synchronized approach between developed and developing countries. E7 members focus their activities on (1) the efficient use of primary energy resources, (2) maximizing the use of renewable energy resources, (3) maximizing efficiency in the generation, delivery, and use of electricity, (4) minimizing environmental impacts ofmore » energy production and use and, (5) implementing innovative options to promote win-win benefits for the environment and the economy through their network of expertise on a pro bono basis. A main emphasis lies in the consistent Joint Implementation given the fact that innovative and efficient Green House Gas reduction measures will be the core of future E7 activities. Especially commercial projects will provide valuable contributions to Green House Gas reductions as well as to economic development of the recipient country. Other instruments, such Emission Trading and Clean Development Mechanism will have to be investigated appropriately in terms of their practicability for Green House Gas reductions so that their will be a notification by the international climate protection regime. Therefore Emission Trading and Clean Development Mechanism are of importance for E7 members' future operations, too. With respect to Sustainable Development industry, energy and environmental policy in leading industry countries must be more closely aligned to a global approach than has so far been the case. The electricity sector is called on to make a major contribution.« less
NASA Astrophysics Data System (ADS)
Jaramillo, P.; Venkatesh, A.; Griffin, M.; Matthews, S.
2012-12-01
Increased production of unconventional natural gas resources in the U.S. has drastically reduced the price of natural gas. While in 2005 prices went above 10/MMBtu, since 2011 they have been below 3/MMBtu. These low prices have encouraged the increase of natural gas utilization in the United States electricity sector. Natural gas can offset coal for power generation, reducing emissions such as greenhouse gases, sulfur and nitrogen oxides. In quantifying the benefit of offsetting coal by using natural gas, life cycle assessment (LCA) studies have shown up to 50% reductions in life cycle greenhouse gas (GHG) emissions can be expected. However, these studies predominantly use limited system boundaries that contain single individual coal and natural gas power plants. They do not consider (regional) fleets of power plants that are dispatched on the basis of their short-run marginal costs. In this study, simplified economic dispatch models (representing existing power plants in a given region) are developed for three U.S. regions - ERCOT, MISO and PJM. These models, along with historical load data are used to determine how natural gas utilization will increase in the short-term due to changes in natural gas price. The associated changes in fuel mix and life cycle GHG emissions are estimated. Results indicate that life cycle GHG emissions may, at best, decrease by 5-15% as a result of low natural gas prices, compared to almost 50% reductions estimated by previous LCAs. This study thus provides more reasonable estimates of potential reductions in GHG emissions from using natural gas instead of coal in the electricity sector in the short-term.
NASA Astrophysics Data System (ADS)
Rodríguez-Serrano, Irene; Caldés, Natalia; Oltra, Christian; Sala, Roser
2017-06-01
The aim of this paper is to conduct a comprehensive sustainability assessment of the electricity generation with two alternative electricity generation technologies by estimating its economic, environmental and social impacts through the "Framework for Integrated Sustainability Assessment" (FISA). Based on a Multiregional Input Output (MRIO) model linked to a social risk database (Social Hotspot Database), the framework accounts for up to fifteen impacts across the three sustainability pillars along the supply chain of the electricity production from Solar Thermal Electricity (STE) and Natural Gas Combined Cycle (NGCC) technologies in Mexico. Except for value creation, results show larger negative impacts for NGCC, particularly in the environmental pillar. Next, these impacts are transformed into "Aggregated Sustainability Endpoints" (ASE points) as a way to support the decision making in selecting the best sustainable project. ASE points obtained are later compared to the resulting points weighted by the reported priorities of Mexican decision makers in the energy sector obtained from a questionnaire survey. The comparison shows that NGCC achieves a 1.94 times worse negative score than STE, but after incorporating decision makerś priorities, the ratio increases to 2.06 due to the relevance given to environmental impacts such as photochemical oxidants formation and climate change potential, as well as social risks like human rights risks.
Byproduct mineral commodities used for the production of photovoltaic cells
Bleiwas, Donald I.
2010-01-01
Rising fossil fuel costs, environmental concerns relating to global climate change, and Government policy to signifcantly increase our Nation's energy independence have placed greater emphasis on the generation of electricity from renewable sources, such as the Sun (light and heat), water, and wind, which for all intents and purposes are inexhaustible resources. Although the total amount of electricity generated from the direct conversion of sunlight through photovoltaic cells is relatively small compared with that from other forms of renewable energy, the rate of growth in the sector is signifcant. The total value of energy of photovoltaic cells produced worldwide increased to nearly 7 gigawatts (GW) in 2008 from 45 megawatts (MW) in 1990, a compound annual growth rate of about 30 percent. In the United States, manufacturing of photovoltaic cells has grown exponentially to about 480 MW in 2008, accounting for 6 percent of world production, from less than 10 MW of photovoltaic capacity in 1990 (Benner, 2007; U.S. Department of Energy, Energy Information Administration, 2010), a compound annual growth rate of approxi-mately 23 percent. A production capacity of 1 GW of electricity [or 8,760 gigawatthours1 (GWh)] is equivalent to the annual electricity requirements for roughly 800,000 average households in the United States (U.S. Department of Energy, Energy Information Administration, 2010). This estimate does not include losses of electricity, such as during transmission through power lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon M.; Boardman, Richard; Ruth, Mark
2016-08-01
An international workshop was organized in June 2016 to explore synergies between nuclear and renewable energy sources. Synergies crossing electricity, transportation, and industrial sectors were the focus of the workshop, recognizing that deep decarbonization will require efforts that go far beyond the electricity sector alone. This report summarizes the key points made within each presentation and highlights outcomes that were arrived at in the discussions.
Water constraints on European power supply under climate change: impacts on electricity prices
NASA Astrophysics Data System (ADS)
van Vliet, Michelle T. H.; Vögele, Stefan; Rübbelke, Dirk
2013-09-01
Recent warm, dry summers showed the vulnerability of the European power sector to low water availability and high river temperatures. Climate change is likely to impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power production. Here, we show the impacts of climate change and changes in water availability and water temperature on European electricity production and prices. Using simulations of daily river flows and water temperatures under future climate (2031-2060) in power production models, we show declines in both thermoelectric and hydropower generating potential for most parts of Europe, except for the most northern countries. Based on changes in power production potentials, we assess the cost-optimal use of power plants for each European country by taking electricity import and export constraints into account. Higher wholesale prices are projected on a mean annual basis for most European countries (except for Sweden and Norway), with strongest increases for Slovenia (12-15%), Bulgaria (21-23%) and Romania (31-32% for 2031-2060), where limitations in water availability mainly affect power plants with low production costs. Considering the long design life of power plant infrastructures, short-term adaptation strategies are highly recommended to prevent undesired distributional and allocative effects.
NASA Astrophysics Data System (ADS)
Pereira, A. J.; Saraiva, J. T.
2012-10-01
This paper describes a Dynamic Model of the electricity sector that can be used to simulate the evolution of some key variables on the long term, namely the evolution of the electricity price, of the demand and of the capacity factors of the technologies in the generation mix. This model can be used in different ways and by several agents, for instance to estimate the impact on the electricity price of the increasing presence of renewable power stations, namely using wind power and PV systems. In several countries these stations are paid feed-in tariffs with a fixed price but in some cases this scheme is under discussion and there are opinions that payments determined by the market price are more adequate and would bring fewer costs to final consumers. Such a change has to be carefully evaluated given that the presence of renewable stations bidding at an infra marginal price will affect the price itself. The model described in this paper can be used in a profitable way both by governmental agencies when preparing or studying alternative remuneration schemes to renewable stations or by promoters themselves to get more insight to the profitability of their investments, namely if the fixed feed-in tariffs in force in several countries are changed.
Episodic air quality impacts of plug-in electric vehicles
NASA Astrophysics Data System (ADS)
Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott
2016-07-01
In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.
NASA Astrophysics Data System (ADS)
Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul
2018-02-01
We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of 13.1 billion (95% CI: 0.6 billion, 43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark
The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizesmore » energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and roadmap development to identify and prioritize component, subsystem and system testing that will lead to prototype demonstration.« less
Key Residential Building Equipment Technologies for Control and Grid Support PART I (Residential)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starke, Michael R; Onar, Omer C; DeVault, Robert C
2011-09-01
Electrical energy consumption of the residential sector is a crucial area of research that has in the past primarily focused on increasing the efficiency of household devices such as water heaters, dishwashers, air conditioners, and clothes washer and dryer units. However, the focus of this research is shifting as objectives such as developing the smart grid and ensuring that the power system remains reliable come to the fore, along with the increasing need to reduce energy use and costs. Load research has started to focus on mechanisms to support the power system through demand reduction and/or reliability services. The powermore » system relies on matching generation and load, and day-ahead and real-time energy markets capture most of this need. However, a separate set of grid services exist to address the discrepancies in load and generation arising from contingencies and operational mismatches, and to ensure that the transmission system is available for delivery of power from generation to load. Currently, these grid services are mostly provided by generation resources. The addition of renewable resources with their inherent variability can complicate the issue of power system reliability and lead to the increased need for grid services. Using load as a resource, through demand response programs, can fill the additional need for flexible resources and even reduce costly energy peaks. Loads have been shown to have response that is equal to or better than generation in some cases. Furthermore, price-incentivized demand response programs have been shown to reduce the peak energy requirements, thereby affecting the wholesale market efficiency and overall energy prices. The residential sector is not only the largest consumer of electrical energy in the United States, but also has the highest potential to provide demand reduction and power system support, as technological advancements in load control, sensor technologies, and communication are made. The prevailing loads based on the largest electrical energy consumers in the residential sector are space heating and cooling, washer and dryer, water heating, lighting, computers and electronics, dishwasher and range, and refrigeration. As the largest loads, these loads provide the highest potential for delivering demand response and reliability services. Many residential loads have inherent flexibility that is related to the purpose of the load. Depending on the load type, electric power consumption levels can either be ramped, changed in a step-change fashion, or completely removed. Loads with only on-off capability (such as clothes washers and dryers) provide less flexibility than resources that can be ramped or step-changed. Add-on devices may be able to provide extra demand response capabilities. Still, operating residential loads effectively requires awareness of the delicate balance of occupants health and comfort and electrical energy consumption. This report is Phase I of a series of reports aimed at identifying gaps in automated home energy management systems for incorporation of building appliances, vehicles, and renewable adoption into a smart grid, specifically with the intent of examining demand response and load factor control for power system support. The objective is to capture existing gaps in load control, energy management systems, and sensor technology with consideration of PHEV and renewable technologies to establish areas of research for the Department of Energy. In this report, (1) data is collected and examined from state of the art homes to characterize the primary residential loads as well as PHEVs and photovoltaic for potential adoption into energy management control strategies; and (2) demand response rules and requirements across the various demand response programs are examined for potential participation of residential loads. This report will be followed by a Phase II report aimed at identifying the current state of technology of energy management systems, sensors, and communication technologies for demand response and load factor control applications for the residential sector. The purpose is to cover the gaps that exist in the information captured by the sensors for energy management system to be able to provide demand response and load factor control. The vision is the development of an energy management system or other controlling enterprise hardware and software that is not only able to control loads, PHEVs, and renewable generation for demand response and load factor control, but also to do so with consumer comforts in mind and in an optimal fashion.« less
The transmission system as main actor in electricity market development in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrescu, A.M.; Mihailescu, F.
1998-07-01
At the beginning of 1998, Romanian Electricity Authority (RENEL) was a fully integrated generation, transmission and distribution company, which managed all aspects of planning, design, and operation of Romania' s electricity sector. This form of vertically integrated organization has enabled to develop the high voltage transmission system in order to transfer electricity from the large power plants on indigenous coal (lignite) to the deficit electricity areas. An analysis based on specific characteristics of Romanian Transmission System allows the identification of a suitable model cost for transmission services evaluation. The transmission electricity tariff as a market tool has become a necessitymore » for the heterogeneous Romanian power systems from the repartition of the generation against the demand location point of view. The experience of the power system development planner shows that the most suitable model for the transmission electricity system cost assessment is the rated zones in order to reflect the geographical imbalance of generation and demand and the ability of the transmission system to accommodate this imbalance. Setting principles for the cost evaluation has to be sustained by the service evaluation on the grid nodes at the interface between transmission system and distribution system. This cost evaluation under the form of incentives for new producers has to be reconsidered year by year taking into account the evolution in time both production side and demand side. The incentives have to be addressed directly to the producers and must be strong enough to provide an efficient reliable operation of the whole power system. Transmission planners have to develop new approaches to deal with the uncertainties of the market; a combination of market forces and regulation seems to ensure the best way for the quality and security of the power system beside of the efficiency of all actors from the electricity market.« less
Multi-model Effort Highlights Progress, Future Needs in Renewable Energy
January 9, 2018 Models of the U.S. electricity sector are relied upon by sector stakeholders and decision of VRE technologies. The report also documents differences in modeling methodologies and shows how long-term planning and decision-making, both for the respective agencies and for other electricity
76 FR 59003 - Energy Conservation Program: Compliance Certification for Electric Motors
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
... effects of Federal regulatory actions on State, local, and Tribal governments and the private sector. For... Tribal governments, in the aggregate, or by the private sector, of $100 million or more (adjusted... provides a new means for manufacturers of electric motors and their private labelers to prepare and submit...
Feasible Electricity Infrastructure Pathways in the Context of Climate-Water Change Constraints
NASA Astrophysics Data System (ADS)
Miara, A.; Vorosmarty, C. J.; Macknick, J.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Fekete, B. M.; Corsi, F.; Sun, Y.; Proussevitch, A. A.; Glidden, S.
2017-12-01
The carbon and water intensity of US electricity generation has recently decreased due to the natural gas revolution and deployment of renewable technologies. Yet, power plants that require water for cooling still provide 80% of electricity generation and projected climate-water conditions may limit their power output and affect reliability. Understanding the connections and tradeoffs across water, electricity and climate systems is timely, as the nation tries to mitigate and adapt to a changing climate. Electricity expansion models are used to provide insight on power sector pathways given certain policy goals and economic conditions, but do not typically account for productivity limitations due to physical climate-water constraints. Here, we account for such constraints by coupling an electricity expansion model (Regional Energy Deployment System - ReEDS) with the combined Water Balance and Thermoelectric Power and Thermal Pollution Models (WBM-TP2M), which calculate the available capacity at power plants as a function of hydrologic flows, climate conditions, power plant technology and environmental regulations. To fully capture and incorporate climate-water impacts into ReEDS, a specific rule-set was designed for the temporal and spatial downscaling and up-scaling of ReEDS results into WBM-TP2M inputs and visa versa - required to achieve a modeling `loop' that will enable convergence on a feasible solution in the context of economic and geophysical constraints and opportunities. This novel modeling approach is the next phase of research for understanding electricity system vulnerabilities and adaptation measures using energy-water-climate modeling, which to-date has been limited by a focus on individual generators without analyzing power generation as a collective regional system. This study considers four energy policy/economic pathways under future climate-water resource conditions, designed under the National Energy Water System assessment framework. Results highlight the importance of linking Earth-system and economic modeling tools and provide insight on potential electricity infrastructure pathways that are sustainable, in terms lowering both water use and carbon emissions, and reliable in the face of future climate-water resource constraints.
NASA Astrophysics Data System (ADS)
Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Brunius, Alfredas; Cekas, Elingas; Baltrusaitis, Valentinas; Sakalys, Rokas
2017-06-01
Microresonators are fundamental components integrated in hosts of MEMS applications: covering the automotive sector, the telecommunication industry, electronic equipment for surface/material characterization and motion sensing, and etc. The aim of this paper is to investigate the mechanical and electrical properties of PZT film fabricated with three binding materials: polyvinyl butyral (PVB), polymethyl methacrylate (PMMA) and polystyrene (PS) and to evaluate applicability in control of microresonators Q factor. Micro particles of PZT powder were mixed with 20% solution of PVB, PMMA and PS in benzyl alcohol. For investigation of mechanical and electrical properties multilayer cantilevers were made. Obtained PZT and polymer paste was screen printed on copper (thickness 40 μm) using polyester monofilament screen meshes (layer thickness 50 μm) and dried for 30 min at 100°C. Electric dipoles of the PZT particles in composite material were aligned using high voltage generator (5 kV) and a custom-made holder. Electric field was held for 30 min. Surfaces of the applied films were investigated by Atomic Force Microscope NanoWizard(R)3 NanoScience. Dynamic and electrical characteristics of the multilayer were investigated using laser triangular displacement sensor LK-G3000. The measured vibration amplitude and generated electrical potential was collected with USB oscilloscope PicoScope 3424. As the results showed, these cantilevers were able to transform mechanical strain energy into electric potential and, v.v. However, roughness of PZT coatings with PMMA and PS were higher, what could be the reason of the worse quality of the top electrode. However, the main advantage of the created composite piezoelectric material is the possibility to apply it on any uniform or non-uniform vibrating surface and to transform low frequency vibrations into electricity.
NASA Technical Reports Server (NTRS)
Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.
1988-01-01
The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.
A multi-period optimization model for energy planning with CO(2) emission consideration.
Mirzaesmaeeli, H; Elkamel, A; Douglas, P L; Croiset, E; Gupta, M
2010-05-01
A novel deterministic multi-period mixed-integer linear programming (MILP) model for the power generation planning of electric systems is described and evaluated in this paper. The model is developed with the objective of determining the optimal mix of energy supply sources and pollutant mitigation options that meet a specified electricity demand and CO(2) emission targets at minimum cost. Several time-dependent parameters are included in the model formulation; they include forecasted energy demand, fuel price variability, construction lead time, conservation initiatives, and increase in fixed operational and maintenance costs over time. The developed model is applied to two case studies. The objective of the case studies is to examine the economical, structural, and environmental effects that would result if the electricity sector was required to reduce its CO(2) emissions to a specified limit. Copyright 2009 Elsevier Ltd. All rights reserved.
Customer and service profitability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballaban, M.; Kelly, K.; Wisniewski, L.
1996-03-01
The rapid pace of competitive change in the generation sector has pushed electric utilities to rethink the concept of being obligated to serve all customers and with this change, the notion of measuring customer profitability is also being redefined. Traditionally, uniform services were provided to all customers. Rates were based on each customer classes` contribution to average costs, and consequently return was equally allocated across all customer segments. Profitability was defined strictly on an aggregate basis. The increasing demand for choice by electric customers will require electricity providers to redefine if not who they serve, than certainly how they providemore » differentiated services tailored to specific customer segments. Utilities are beginning to analyze the value, or profitability, of offering these services. Aggregate data no longer provides an accurate assessment of how resources should be allocated most efficiently. As services are unbundled, so too must costs be disaggregated to effectively measure the profitability of various options.« less
Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, J.; Heath, G.; Macknick, J.
In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.
NASA Astrophysics Data System (ADS)
Alabbas, Nabeel H.
Despite holding 16% of proved oil reserves in the world, Saudi Arabia might be on an unsustainable path to become a net oil importer by the 2030s. Decades of domestic energy subsidies accompanied by a high population growth rate have encouraged inefficient production and high domestic consumption of fossil fuel energy, which has resulted in environmental degradation, and significant social and economic consequences. In addition, the government's dependence on oil as a main source of revenue (89%) to finance its development programs cannot be sustained due to oil's exhaustible nature and rapidly increasing domestic consumption. The electricity and water sectors consume more energy than other sectors. The literature review revealed that electricity use in Saudi Arabia is following an unsustainable path (7-8% annual growth over the last decade). The water sector is another major energy consumer due to an unprecedented demand for water in the Kingdom (18% of world's total desalinated water output with per capita consumption is twice the world average). Multiple entities have been involved in fragmented planning activities on the supply-side as well as to a certain extent on the demand-side; moreover, comprehensive integrated resource strategic plans have been lacking at the national level. This dissertation established an integrated resource strategic planning (IRSP) model for Saudi Arabia's electricity and water sectors. The IRSP can clearly determine the Kingdom's future vision of its utility sector, including goals, policies, programs, and an execution timetable, taking into consideration economic, environmental and social benefits. Also, a weather-based hybrid end-use econometric demand forecasting model was developed to project electricity demand until 2040. The analytical economic efficiency and technical assessments reveal that Saudi Arabia can supply almost 75% of its electricity from renewable energy sources with a significant achievable potential for saving 26% of peak demand by 2040. However, the development of sustainable energy systems in the country's utility sector will not occur automatically. Thus, several actions are proposed for developing the sustainable energy roadmap, strategies, and policies for Saudi Arabia's utility sector, supporting its position as a new vehicle of growth that facilitates national and socio-economic development and economic diversification plan.
An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Lemoine, D. M.; Kammen, D. M.; Farrell, A. E.
2008-01-01
Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.
Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conzelmann, G.; Koritarov, V.; Decision and Information Sciences
2008-02-28
Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associatedmore » with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.« less
An Evaluation of Energy Storage Options for Nuclear Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin L.; Bragg-Sitton, Shannon M.; Dufek, Eric J.
Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advancedmore » nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and examination of energy storage options that could be integrated with nuclear generation. Figure 1 provides an overview of the 2015 energy mix by sector, which shows that NPPs are currently used exclusively for electricity generation that is ultimately consumed in the residential, commercial, and industrial sectors. Some areas for NPP energy growth in the future include power generation for electrified transportation and thermal generation for storage and industrial applications. Currently, most industrial thermal energy users combust fossil resources (i.e., coal or natural gas) to meet the energy needs of the processes, but heat from nuclear operations could also be used in certain specific applications.« less
NASA Astrophysics Data System (ADS)
Kies, Alexander
2018-02-01
To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.
Potentiality of wind power generation along the Bangladesh coast
NASA Astrophysics Data System (ADS)
Shaikh, Md. Akramuzzaman; Chowdhury, K. M. Azam; Sen, Sukanta; Islam, Mohammad Masudul
2017-12-01
Nowadays Bangladesh is facing the problem with electricity as the production is less comparing to the demand. A significant amount of electricity is consumed in urban areas especially by industries whereas in rural or coastal areas most of the people are not having it. Around 40 millions of people living in the 724 km long coast in Bangladesh. Moreover, it is surprising that throughout the year there is sufficient wind blow in coastal areas by which we can produce a massive amount of electricity. However, day by day the utilization of wind energy is increasing in the world which reduces costs of renewable energy technology, improves efficiency. It would be a good alternative solution instead of dependency on natural gas. Wind energy is mainly potential in coastal and offshore areas with strong wind regimes. Wind energy is vital for ensuring a green energy for the future. The agricultural land of Bangladesh needs the supply of water at right time for better yielding. The installation of windmills will be very much convenient for operating the water supply pumps. This research highlights the possibility of wind energy and describes the necessary steps to implement and develop wind energy sector in Bangladesh by using other's successful ideas. Supportive policies, rules, and decree can be applied to make government, non-government organization, and donor organizations work together to develop wind energy sector in Bangladesh.
NASA Astrophysics Data System (ADS)
Bolorinos, J.; Ajami, N.; Yu, Y.; Rajagopal, R.
2016-12-01
Urban water supply and energy systems in the arid Southwestern United States are closely linked. Freshwater use by the electricity sector in particular represents a sizable portion of total water consumption in the region. Nonetheless, the dispatch of water and energy resources is managed separately, and no research to-date has examined the water conservation potential presented by the electricity sector. This study gauges the potential water savings that could be achieved including water use in the power dispatch process in Southern California by simulating a DC Optimal Power Flow for a simplified model of the region's power network. The simulation uses historical power consumption data, historical power production data and water use data from the US Geological Survey, the California Energy Commission and the US Energy Information Administration to estimate freshwater consumption by the region's thermoelectric power generation fleet. Preliminary results indicate that power system freshwater consumption could be reduced by as much as 20% at a minimal cost penalty, with potential for even greater savings. Model results show that Southern California's power system has the ability to competitively shift the use of some of the region's water resources from electricity to urban consumption, and suggests that water use should be incorporated into the policy-making process to enhance the efficient use of the state's interconnected water and energy resources.
NASA Astrophysics Data System (ADS)
Su, S. Y.; Nayak, C.; Tsai, L. C.; Caton, R. G.; Groves, K. M.
2016-12-01
Variations of zonal drift and ionospheric VHF scintillations observed by a SCINDA station in Southern Taiwan during the St. Patrick's day geomagnetic storm are studied. Although scintillations were observed for 6 consecutive days before the storm, they were absence during the storm period. Data from VHF receivers, ionosonde and in situ plasma density observations from ESA's SWARM constellation are used to study the ionospheric irregularity/scintillation events in the Taiwanese sector to compare with what happened in the Indian sectors. The absence of scintillation in the Taiwanese sector during the storm period seems to be caused by a reduced pre-reversal enhancement (PRE) electric field from a westward prompt-penetration electric field (PPEF) during the storm. A low post-sunset ionosphere thus becomes unfavorable for the Rayleigh-Taylor instability to occur. On the contrary, the PPEFs were found to strongly enhance the PRE electric field in the Indian sector to cause the ionospheric irregularities/scintillations in the post-sunset sector. Zonal drift variations during the storm time are also discussed in conjunction with the irregularity/scintillation occurrences.
NASA Astrophysics Data System (ADS)
Chentouf, M.; Allouch, M.
2018-05-01
Producing electricity at an affordable price while taking into account environmental concerns has become a major challenge in Morocco. Moreover, the technical and financial issues related to renewable electricity plants are still hindering their efficient integration in the country. In fact, the energy sector (both electricity and heat) accounted for more than half of all Greenhouse Gases (GHG) emissions in the kingdom due to the major reliance on fossil fuels for answering the growing local demand. The key strategies to alleviate this critical situation include the integration of more renewable energies in the total energy mix and the enhancement of energy efficiency measures in different sectors. This paper strives to (1) evaluate the potential of carbon dioxide mitigation in Moroccan electricity sector following the actual and projected strategies and (2) highlight the policy schemes to be taken in order to achieve the ambitious carbon dioxide mitigation targets in the mid-term. A system dynamics model was built in order to simulate different scenarios of carbon dioxide mitigation policies up to 2030. The results shows that the achievement of renewable energies projects by 2030 could save 228.143 MtCO2 between 2020 and 2030 and an additional 18.127 MtCO2 could be avoided in the same period by enhancing energy efficiency measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you maymore » report them separately or capture and report the total effects on an entity-wide report.« less
NASA Astrophysics Data System (ADS)
Ofori-Boadu, Andrea N. Y. A.
High energy consumption in the United States has been influenced by populations, climates, income and other contextual factors. In the past decades, U.S. energy policies have pursued energy efficiency as a national strategy for reducing U.S. environmental degradation and dependence on foreign oils. The quest for improved energy efficiency has led to the development of energy efficient technologies and programs. The implementation of energy programs in the complex U.S. socio-technical environment is believed to promote the diffusion of energy efficiency technologies. However, opponents doubt the fact that these programs have the capacity to significantly reduce U.S. energy consumption. In order to contribute to the ongoing discussion, this quantitative study investigated the relationships existing among electricity consumption/ intensity, energy programs and contextual factors in the U.S. buildings sector. Specifically, this study sought to identify the significant predictors of electricity consumption and intensity, as well as estimate the overall impact of selected energy programs on electricity consumption and intensity. Using state-level secondary data for 51 U.S. states from 2006 to 2009, seven random effects panel data regression models confirmed the existence of significant relationships among some energy programs, contextual factors, and electricity consumption/intensity. The most significant predictors of improved electricity efficiency included the price of electricity, public benefits funds program, building energy codes program, financial and informational incentives program and the Leadership in Energy and Environmental Design (LEED) program. Consistently, the Southern region of the U.S. was associated with high electricity consumption and intensity; while the U.S. commercial sector was the greater benefactor from energy programs. On the average, energy programs were responsible for approximately 7% of the variation observed in electricity consumption and intensity, over and above the variation associated with the contextual factors. This study also had implications in program implementation theory, and revealed that resource availability, stringency and adherence had significant impacts on program outcomes. Using seven classification tables, this study categorized and matched the predictors of electricity consumption and intensity with the specific energy sectors in which they demonstrated significance. Project developers, energy advocates, policy makers, program administrators, building occupants and other stakeholders could use study findings in conjunction with other empirical findings, to make informed decisions regarding the adoption, continuation or discontinuation of energy programs, while taking contextual factors into consideration. The adoption and efficient implementation of the most significant programs could reduce U.S. electricity consumption, and in the long term, probably reduce U.S. energy waste, environmental degradation, energy imports, energy prices, and demands for expanding energy generation and distribution infrastructure.
Compensation Rules for Climate Policy in the Electricity Sector
ERIC Educational Resources Information Center
Burtraw, Dallas; Palmer, Karen
2008-01-01
Most previous cap and trade programs have distributed emission allowances for free to incumbent producers. However, in the electricity sector the value of CO[subscript 2] allowances may be far in excess of costs to industry and giving them away to firms diverts allowance value from other purposes. Using a detailed simulation model, this paper…
Global financial crisis making a V-shaped fluctuation in NO2 pollution over the Yangtze River Delta
NASA Astrophysics Data System (ADS)
Du, Yin; Xie, Zhiqing
2017-04-01
The Yangtze River Delta (YRD), China's main cultural and economic center, has become one of the most seriously polluted areas in the world with respect to nitrogen oxides (NOx), owing to its rapid industrialization and urbanization, as well as substantial coal consumption. On the basis of nitrogen dioxide (NO2) density data from ozone monitoring instrument (OMI) and ground-based observations, the effects of industrial fluctuations due to the financial crisis on local NO2 pollution were quantitatively assessed. The results were as follows. (1) A distinct V-shaped fluctuation of major industrial products, thermal generating capacity, electricity consumption, and tropospheric NO2 densities was associated with the global financial crisis from May 2007 to December 2009, with the largest anomalies 1.5 times more than standard deviations at the height of the crisis period from November 2008 to February 2009. (2) Among all industrial sectors, thermal power plants were mainly responsible for fluctuations in local NO2 pollution during the crisis period. Thermal generating capacity had its greatest decrease of 12.10% at the height of the crisis compared with that during November 2007-February 2008, leading to local tropospheric NO2 density decreasing by 16.97%. As the crisis appeased, thermal generating capacity increased by 29.63% from November 2009 to February 2010, and tropospheric NO2 densities correspondingly increased by 30.07%. (3) Among all industrial sectors in the YRD, the thermal power sector has the greatest coal consumption of about 65.96%. A decline in thermal power of about 10% can induce a decrease of about 30% in NOx emissions and NO2 densities, meaning that a relative small fluctuation in industrial production can lead to a large decrease in tropospheric NO2 densities over industrially developed areas like the YRD region. Since electricity is mainly obtained from local coal-burning thermal plants without NOx-processing equipment, installing NOx-removal devices for all thermal power plants is an important and feasible way of controlling local NOx pollution at present.
Opportunities and challenges for a sustainable energy future.
Chu, Steven; Majumdar, Arun
2012-08-16
Access to clean, affordable and reliable energy has been a cornerstone of the world's increasing prosperity and economic growth since the beginning of the industrial revolution. Our use of energy in the twenty-first century must also be sustainable. Solar and water-based energy generation, and engineering of microbes to produce biofuels are a few examples of the alternatives. This Perspective puts these opportunities into a larger context by relating them to a number of aspects in the transportation and electricity generation sectors. It also provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.
Gutfleisch, Oliver; Willard, Matthew A; Brück, Ekkes; Chen, Christina H; Sankar, S G; Liu, J Ping
2011-02-15
A new energy paradigm, consisting of greater reliance on renewable energy sources and increased concern for energy efficiency in the total energy lifecycle, has accelerated research into energy-related technologies. Due to their ubiquity, magnetic materials play an important role in improving the efficiency and performance of devices in electric power generation, conditioning, conversion, transportation, and other energy-use sectors of the economy. This review focuses on the state-of-the-art hard and soft magnets and magnetocaloric materials, with an emphasis on their optimization for energy applications. Specifically, the impact of hard magnets on electric motor and transportation technologies, of soft magnetic materials on electricity generation and conversion technologies, and of magnetocaloric materials for refrigeration technologies, are discussed. The synthesis, characterization, and property evaluation of the materials, with an emphasis on structure-property relationships, are discussed in the context of their respective markets, as well as their potential impact on energy efficiency. Finally, considering future bottlenecks in raw materials, options for the recycling of rare-earth intermetallics for hard magnets will be discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Max; Greenblatt, Jeffrey; Donovan, Sally
2014-06-01
This study provides an updated analysis of long-term energy system scenarios for California consistent with the State meeting its 2050 climate goal, including detailed analysis and assessment of electricity system build-out, operation, and costs across the Western Electricity Coordinating Council (WECC) region. Four key elements are found to be critical for the State to achieve its 2050 goal of 80 percent greenhouse (GHG) reductions from the 1990 level: aggressive energy efficiency; clean electricity; widespread electrification of passenger vehicles, building heating, and industry heating; and large-scale production of low-carbon footprint biofuels to largely replace petroleum-based liquid fuels. The approach taken heremore » is that technically achievable energy efficiency measures are assumed to be achieved by 2050 and aggregated with the other key elements mentioned above to estimate resultant emissions in 2050. The energy and non-energy sectors are each assumed to have the objective of meeting an 80 percent reduction from their respective 1990 GHG levels for the purposes of analysis. A different partitioning of energy and non-energy sector GHG greenhouse reductions is allowed if emission reductions in one sector are more economic or technically achievable than in the other. Similarly, within the energy or non-energy sectors, greater or less than 80 percent reduction from 1990 is allowed for sub-sectors within the energy or non-energy sectors as long as the overall target is achieved. Overall emissions for the key economy-wide scenarios are considered in this report. All scenarios are compliant or nearly compliant with the 2050 goal. This finding suggests that multiple technical pathways exist to achieve the target with aggressive policy support and continued technology development of largely existing technologies.« less
Modeling the value of integrated U.S. and Canadian power sector expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiter, Philipp; Cole, Wesley J.; Steinberg, Daniel C.
The U.S.-Canadian power system has evolved into a highly integrated grid. Cross-border transmission and coordination of system operations create an interconnected power system with combined imports and exports of electricity of greater than 77 TWh per year. Currently, more than 5 GW of new international transmission lines are in various stages of permitting and development. These transmission lines may enable even greater integration and coordination of the U.S. and Canadian systems, which can in turn increase the reliability and flexibility of North America's electricity grid and help address challenges associated with integrating high levels of variable renewables. Using a versionmore » of the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that incorporates Canada, this analysis quantifies the differences in the evolution of the power system under scenarios in which cross-border transmission capacity is restricted to today's levels, and scenarios in which new transmission is less restricted. These impacts are analyzed under a 'business-as-usual' reference scenario and a scenario in which deep cuts in power sector carbon dioxide emissions levels are achieved. A set of key impact metrics is analyzed, including 1) the composition of generating capacity by technology, 2) system costs, 3) wholesale electricity prices, 4) international electricity exports and imports, 5) transmission capacity, and 6) carbon dioxide emission levels. When new cross-border transmission is not allowed, the United States needs additional capacity (primarily natural gas and renewable energy) to meet domestic needs, while total Canadian capacity is lower because less capacity is needed to export to the United States. This effect is amplified under the carbon cap scenario. Impacts vary on a regional basis, largely due to the different relative sizes of the generation portfolio between countries and regions and the relative impact from cross-border electricity trade. The total impact from restricting cross-border trade on carbon emissions and average wholesale electricity prices is limited, due to the relative size of the domestic power systems and the cross-border trade volume. Lastly, cross-border transmission capacity is projected to more than double under the unrestricted transmission capacity scenarios, which exceeds the rate of projected domestic transmission capacity additions in each country.« less
Modeling the value of integrated U.S. and Canadian power sector expansion
Beiter, Philipp; Cole, Wesley J.; Steinberg, Daniel C.
2017-03-15
The U.S.-Canadian power system has evolved into a highly integrated grid. Cross-border transmission and coordination of system operations create an interconnected power system with combined imports and exports of electricity of greater than 77 TWh per year. Currently, more than 5 GW of new international transmission lines are in various stages of permitting and development. These transmission lines may enable even greater integration and coordination of the U.S. and Canadian systems, which can in turn increase the reliability and flexibility of North America's electricity grid and help address challenges associated with integrating high levels of variable renewables. Using a versionmore » of the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that incorporates Canada, this analysis quantifies the differences in the evolution of the power system under scenarios in which cross-border transmission capacity is restricted to today's levels, and scenarios in which new transmission is less restricted. These impacts are analyzed under a 'business-as-usual' reference scenario and a scenario in which deep cuts in power sector carbon dioxide emissions levels are achieved. A set of key impact metrics is analyzed, including 1) the composition of generating capacity by technology, 2) system costs, 3) wholesale electricity prices, 4) international electricity exports and imports, 5) transmission capacity, and 6) carbon dioxide emission levels. When new cross-border transmission is not allowed, the United States needs additional capacity (primarily natural gas and renewable energy) to meet domestic needs, while total Canadian capacity is lower because less capacity is needed to export to the United States. This effect is amplified under the carbon cap scenario. Impacts vary on a regional basis, largely due to the different relative sizes of the generation portfolio between countries and regions and the relative impact from cross-border electricity trade. The total impact from restricting cross-border trade on carbon emissions and average wholesale electricity prices is limited, due to the relative size of the domestic power systems and the cross-border trade volume. Lastly, cross-border transmission capacity is projected to more than double under the unrestricted transmission capacity scenarios, which exceeds the rate of projected domestic transmission capacity additions in each country.« less
NASA Astrophysics Data System (ADS)
Letendre, Steven Emery
The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables through the pricing system. Based on past policy experience, it is unlikely that such an approach would allow PV to compete in Delaware as an energy supply option in the next ten to twenty years. Alternatively, a market-based, or green pricing, approach will not create significant market opportunities for PV as a centralized energy supply option. However, structural policies designed to encourage the explicit recognition of the localized benefits of distributed resources could result in PV being introduced into the electrical system early in the next century.
Renewable Electricity Use by the U.S. Information and Communication Technology (ICT) Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John; Bird, Lori; Heeter, Jenny
The information and communication technology (ICT) sector continues to witness rapid growth and uptake of ICT equipment and services at both the national and global levels. The electricity consumption associated with this expansion is substantial, although recent adoptions of cloudcomputing services, co-location data centers, and other less energy-intensive equipment and operations have likely reduced the rate of growth in this sector. This paper is intended to aggregate existing ICT industry data and research to provide an initial look at electricity use, current and future renewable electricity acquisition, as well as serve as a benchmark for future growth and trends inmore » ICT industry renewable electricity consumption.« less
Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity, although it could increase.
Realizing the geothermal electricity potential—water use and consequences
NASA Astrophysics Data System (ADS)
Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia
2011-07-01
Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.
SWOT analysis of the renewable energy sources in Romania - case study: solar energy
NASA Astrophysics Data System (ADS)
Lupu, A. G.; Dumencu, A.; Atanasiu, M. V.; Panaite, C. E.; Dumitrașcu, Gh; Popescu, A.
2016-08-01
The evolution of energy sector worldwide triggered intense preoccupation on both finding alternative renewable energy sources and environmental issues. Romania is considered to have technological potential and geographical location suitable to renewable energy usage for electricity generation. But this high potential is not fully exploited in the context of policies and regulations adopted globally, and more specific, European Union (EU) environmental and energy strategies and legislation related to renewable energy sources. This SWOT analysis of solar energy source presents the state of the art, potential and future prospects for development of renewable energy in Romania. The analysis concluded that the development of solar energy sector in Romania depends largely on: viability of legislative framework on renewable energy sources, increased subsidies for solar R&D, simplified methodology of green certificates, and educating the public, investors, developers and decision-makers.
Outlooks for Wind Power in the United States: Drivers and Trends under a 2016 Policy Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu; Lantz, Eric; Ho, Jonathan
Over the past decade, wind power has become one of the fastest growing electricity generation sources in the United States. Despite this growth, the U.S. wind industry continues to experience year-to-year fluctuations across the manufacturing and supply chain as a result of dynamic market conditions and changing policy landscapes. Moreover, with advancing wind technologies, ever-changing fossil fuel prices, and evolving energy policies, the long-term future for wind power is highly uncertain. In this report, we present multiple outlooks for wind power in the United States, to explore the possibilities of future wind deployment. The future wind power outlooks presented relymore » on high-resolution wind resource data and advanced electric sector modeling capabilities to evaluate an array of potential scenarios of the U.S. electricity system. Scenario analysis is used to explore drivers, trends, and implications for wind power deployment over multiple periods through 2050. Specifically, we model 16 scenarios of wind deployment in the contiguous United States. These scenarios span a wide range of wind technology costs, natural gas prices, and future transmission expansion. We identify conditions with more consistent wind deployment after the production tax credit expires as well as drivers for more robust wind growth in the long run. Conversely, we highlight challenges to future wind deployment. We find that the degree to which wind technology costs decline can play an important role in future wind deployment, electric sector CO 2 emissions, and lowering allowance prices for the Clean Power Plan.« less
NASA Astrophysics Data System (ADS)
Mahara, Aditya; Khan, Shadab; Schned, Alan R.; Hyams, Elias S.; Halter, Ryan J.
2015-03-01
Positive surgical margins (PSMs) found following prostate cancer surgery are a significant risk factor for post-operative disease recurrence. Noxious adjuvant radiation and chemical-based therapies are typically offered to men with PSMs. Unfortunately, no real-time intraoperative technology is currently available to guide surgeons to regions of suspicion during the initial prostatectomy where immediate surgical excisions could be used to reduce the chance of PSMs. A microendoscopic electrical impedance sensing probe was developed with the intention of providing real-time feedback regarding margin status to surgeons during robot-assisted laparoscopic prostatectomy (RALP) procedures. A radially configured 17-electrode microendoscopic probe was designed, constructed, and initially evaluated through use of gelatin-based phantoms and an ex vivo human prostate specimen. Impedance measurements are recorded at 10 frequencies (10 kHz - 100 kHz) using a high-speed FPGA-based electrical impedance tomography (EIT) system. Tetrapolar impedances are recorded from a number of different electrode configurations strategically chosen to sense tissue in a pre-defined sector underlying the probe face. A circular electrical impedance map (EIM) with several color-coded pie-shaped sectors is created to represent the impedance values of the probed tissue. Gelatin phantom experiments show an obvious distinction in the impedance maps between high and low impedance regions. Similarly, the EIM generated from the ex vivo prostate case shows distinguishing features between cancerous and benign regions. Based on successful development of this probe and these promising initial results, EIMs of additional prostate specimens are being collected to further evaluate this approach for intraoperative surgical margin assessment during RALP procedures.
Food and energy choices for India: a programming model with partial endogenous energy requirements.
Parikh, K S; Srinivasan, T N
1980-09-01
This paper presents a mathematical model for all matter-energy processing subsystems at the level of the society, specifically India. It explores India's choices in the food and energy sectors over the coming decades. Alternative land intensive, irrigation energy intensive, and fertilizer intensive techniques of food production are identified using a nonlinear programming model. The land saved is devoted to growing firewood. The optimum combination of railway (steam, diesel, and electric traction) and road (automobiles, diesel trucks, and diesel and gasoline buses) transport is determined. For the oil sector, two alternative sources of supply of crude oil and petroleum products are included, namely, domestic production and imports. The optimum choice is determined through a linear programming model. While the model is basically a static one, designed to determine the optimal choice for the target year of 2000-2001, certain intertemporal detail is incorporated for electricity generation. The model minimizes the costs of meeting the needs for food, transport in terms of passenger kilometers and goods per ton per kilometer, energy needs for domestic cooking and lighting, and the energy needs of the rest of the economy.
NASA Astrophysics Data System (ADS)
Yang, Junnan; Li, Xiaoyuan; Peng, Wei; Wagner, Fabian; Mauzerall, Denise L.
2018-06-01
Solar photovoltaic (PV) electricity generation can greatly reduce both air pollutant and greenhouse gas emissions compared to fossil fuel electricity generation. The Chinese government plans to greatly scale up solar PV installation between now and 2030. However, different PV development pathways will influence the range of air quality and climate benefits. Benefits depend on how much electricity generated from PV is integrated into power grids and the type of power plant displaced. Using a coal-intensive power sector projection as the base case, we estimate the climate, air quality, and related human health benefits of various 2030 PV deployment scenarios. We use the 2030 government goal of 400 GW installed capacity but vary the location of PV installation and the extent of inter-provincial PV electricity transmission. We find that deploying distributed PV in the east with inter-provincial transmission maximizes potential CO2 reductions and air quality-related health benefits (4.2% and 1.2% decrease in national total CO2 emissions and air pollution-related premature deaths compared to the base case, respectively). Deployment in the east with inter-provincial transmission results in the largest benefits because it maximizes displacement of the dirtiest coal-fired power plants and minimizes PV curtailment, which is more likely to occur without inter-provincial transmission. We further find that the maximum co-benefits achieved with deploying PV in the east and enabling inter-provincial transmission are robust under various maximum PV penetration levels in both provincial and regional grids. We find large potential benefits of policies that encourage distributed PV deployment and facilitate inter-provincial PV electricity transmission in China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, Pieter; Margolis, Robert; Melius, Jennifer
We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m 2 ofmore » suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft 2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.« less
Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; ...
2018-01-05
We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m 2 ofmore » suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft 2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.« less
NASA Astrophysics Data System (ADS)
Gagnon, Pieter; Margolis, Robert; Melius, Jennifer; Phillips, Caleb; Elmore, Ryan
2018-02-01
We provide a detailed estimate of the technical potential of rooftop solar photovoltaic (PV) electricity generation throughout the contiguous United States. This national estimate is based on an analysis of select US cities that combines light detection and ranging (lidar) data with a validated analytical method for determining rooftop PV suitability employing geographic information systems. We use statistical models to extend this analysis to estimate the quantity and characteristics of roofs in areas not covered by lidar data. Finally, we model PV generation for all rooftops to yield technical potential estimates. At the national level, 8.13 billion m2 of suitable roof area could host 1118 GW of PV capacity, generating 1432 TWh of electricity per year. This would equate to 38.6% of the electricity that was sold in the contiguous United States in 2013. This estimate is substantially higher than a previous estimate made by the National Renewable Energy Laboratory. The difference can be attributed to increases in PV module power density, improved estimation of building suitability, higher estimates of total number of buildings, and improvements in PV performance simulation tools that previously tended to underestimate productivity. Also notable, the nationwide percentage of buildings suitable for at least some PV deployment is high—82% for buildings smaller than 5000 ft2 and over 99% for buildings larger than that. In most states, rooftop PV could enable small, mostly residential buildings to offset the majority of average household electricity consumption. Even in some states with a relatively poor solar resource, such as those in the Northeast, the residential sector has the potential to offset around 100% of its total electricity consumption with rooftop PV.
Strategic prospects of the electric power industry of Russia
NASA Astrophysics Data System (ADS)
Makarov, A. A.; Veselov, F. V.; Makarova, A. S.; Novikova, T. V.; Pankrushina, T. G.
2017-11-01
The prospects for the development of the electric power industry of Russia adopted at a regular stage of working out the Energy Strategy and the General Plan of Distribution of the Electric Power Facilities are discussed. The monitoring of the progress in the implementation of the Energy Strategies for the periods until 2020 and 2030 adopted in 2003 and 2009 has, in general, validated the correctness of the estimated volumes of the energy resource production under overestimation of the expected domestic demand owing to an excessively optimistic forecast of the real development of the economy. The priority lines of the national energy policy in electric power and allied industries proposed in the Energy Strategy for the period until 2035 are considered. The tools for implementation of most of the proposals and the effectiveness of their implementation have yet to be defined more concretely. The development of the energy sector and the electric power industry under the conservative and optimistic scenarios of the development of the country's economy has been predicted using the SCANER modeling and information system, viz., the dynamics of the domestic consumption, export, and production of the primary energy and the electric power has been determined and the commissioning and structure of the required generating capacities and the consumption of the basic types of the energy resources by the electric power industry and the centralized heat supply systems has been optimized. Changes in the economic efficiency of the nuclear and thermal power plants under the expected improvements on their cost and performance characteristics and an increase in the domestic fuel prices are presented. The competitiveness of the wind and solar power production under Russian conditions has been evaluated considering the necessity of reservation and partial duplication of their capacities when operated in the power supply systems. When optimizing the electric power industry as a subsystem of the country's energy sector, the required amounts of capital investments in the industry have been assessed. Based on the obtained data and the predicted prices of fuel in the main pricing zones of Russia, the ranges of changes in the prices of the electric power in agreement with the macroeconomic restrictions on their dynamics have been calculated.
NASA Astrophysics Data System (ADS)
Thabrew, L.
2012-12-01
Climate change is expected to cause significant changes in water quantity and water quality in river basins throughout the world, with particularly significant impacts in developing regions. Climate change effects are often exacerbated by other simultaneous activities in developing countries, such as population growth, reliance on subsistence agriculture, and expanding provision of electricity. Each of these activities requires access to readily-available freshwater. For example, population growth requires more water for irrigation as food production needs increase. Additionally, water is needed for generating electricity in hydropower facilities as well as other facilities, which require water to run steam turbines or to cool facilities. As such, many developing countries face the real and immediate need to anticipate and adapt to climatic stresses on water resources in both the agricultural and residential sectors. Water withdrawal in both of these sectors is largely driven by individual behaviors, such as electricity use in the home and irrigation practices on farmland, aggregated at the household, community, and regional level. Our ongoing project in Sri Lanka focuses on understanding aforementioned issues in coupled natural and human systems in the Mahaweli River Watershed (MWR) to inform decision-makers to streamline policies and strategies for effective adaptation to worsening drought conditions. MWR produces more than 60% of the rice demand and nearly 40% of the energy requirement of the country. Although irrigation is currently the sector that withdraws the most water, with government plans for resettling farmer communities and developing new urban centers in the region by 2030, electricity production is expected to compete for water against irrigation in the future. Thus, understanding the water-energy nexus is crucial to planning for conservation and efficiency. Through a pilot survey conducted by our interdisciplinary research team, in five locations in MWR, we collect information on household and farm level water and energy use, demand-side water management practices, and farmers' willingness and capacities to practice them. We use these self-reported pilot data together with water and energy utility company data to model increasing water-energy stresses in the watershed, and its effect on existing water allocation issues related to irrigation and power generation. Drawing upon the preliminary results of this work, this paper presents the emerging water-energy issues and plausible adaptation measures in MWR. This work will pave the way to understand the inherent interconnectivities of water energy stresses in multi-purpose watersheds in the developing world.
Castillo-Rosa, Juan; Suárez-Cebador, Manuel; Rubio-Romero, Juan Carlos; Aguado, Jose Antonio
2017-03-01
Occupational accidents caused by electrical contact are a major concern worldwide due to their severe consequences. The study conducted is based on an analysis of the evolution of incidence rates and dependence between variables for 14,022 electrical accidents occurring in Spain between 2003 and 2012. The results show that electrical accidents as a whole are 3.6 times more likely to have severe consequences than the rest of the accidents in the country. This proportion is even nine times greater in the case of fatal accidents. They also confirm a significant relationship between the severity of this type of accidents and the economic sector in which they occur. On the other hand, there is a positive trend in the reduction of the incidence rate, especially in relation to direct contact, although unexpectedly the rate of accidents due to indirect contact is on the rise. Thus, preventing electrical occupational accidents requires efforts to guarantee adequate training adapted to the needs of workers in the various economic sectors. Furthermore, those responsible for safety should work to implement mechanisms to monitor and control compliance with efficient protective measures against electrical contact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Nils; Strubegger, Manfred; McPherson, Madeleine
In many climate change mitigation scenarios, integrated assessment models of the energy and climate systems rely heavily on renewable energy technologies with variable and uncertain generation, such as wind and solar PV, to achieve substantial decarbonization of the electricity sector. However, these models often include very little temporal resolution and thus have difficulty in representing the integration costs that arise from mismatches between electricity supply and demand. The global integrated assessment model, MESSAGE, has been updated to explicitly model the trade-offs between variable renewable energy (VRE) deployment and its impacts on the electricity system, including the implications for electricity curtailment,more » backup capacity, and system flexibility. These impacts have been parameterized using a reduced-form approach, which allows VRE integration impacts to be quantified on a regional basis. In addition, thermoelectric technologies were updated to include two modes of operation, baseload and flexible, to better account for the cost, efficiency, and availability penalties associated with flexible operation. In this paper, the modeling approach used in MESSAGE is explained and the implications for VRE deployment in mitigation scenarios are assessed. Three important stylized facts associated with integrating high VRE shares are successfully reproduced by our modeling approach: (1) the significant reduction in the utilization of non-VRE power plants; (2) the diminishing role for traditional baseload generators, such as nuclear and coal, and the transition to more flexible technologies; and (3) the importance of electricity storage and hydrogen electrolysis in facilitating the deployment of VRE.« less
Liu, Shiyuan; Wang, Can; Shi, Lei; Cai, Wenjia; Zhang, Lixiao
2018-08-01
Low-carbon transition in the non-electric energy sector, which includes transport and heating energy, is necessary for achieving the 2 °C target. Meanwhile, as non-electric energy accounts for over 60% of total water consumption in the energy supply sector, it is vital to understand future water trends in the context of decarbonization. However, few studies have focused on life-cycle water impacts for non-electric energy; besides, applying conventional LCA methodology to assess non-electric energy has limitations. In this paper, a Multi-Regional Hybrid Life-Cycle Assessment (MRHLCA) model is built to assess total CO 2 emissions and water consumption of 6 non-electric energy technologies - transport energy from biofuel and gasoline, heat supply from natural gas, biogas, coal, and residual biomass, within 7 major emitting economies. We find that a shift to natural gas and residual biomass heating can help economies reduce 14-65% CO 2 and save more than 21% water. However, developed and developing economies should take differentiated technical strategies. Then we apply scenarios from IMAGE model to demonstrate that if economies take cost-effective 2 °C pathways, the water conservation synergy for the whole energy supply sector, including electricity, can also be achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mikkelson, Daniel; Chang, Chih -Wei; Cetiner, Sacit M.; ...
2015-10-01
Here, the U.S. Department of Energy (DOE) supports research and development (R&D) that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet grid demand and industrial thermal energy needs [1]. One hybridization approach being investigated by the DOE Offices of Nuclear Energy (NE) and the DOE Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources to better manage overall energy use for the combined electricity, industrial manufacturing, and transportation sectors.
Estimated United States Residential Energy Use in 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C A; Johnson, D M; Simon, A J
2011-12-12
A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy.more » The flow patterns represent a comprehensive systems view of energy used within the residential sector.« less
THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Marnay, Chris; Cardoso, Goncalo
2009-12-31
The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) todetermine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e. ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in costmore » minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site?s annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB?s assumed utilization is far higher than is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inlandareas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27 percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.« less
ImSET: Impact of Sector Energy Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.
2005-07-19
This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential featuresmore » of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.« less
Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta
Duan, Jun; Lynch, Rachel
2016-01-01
This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%. PMID:27902712
Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta.
van Kooten, G Cornelis; Duan, Jun; Lynch, Rachel
2016-01-01
This paper explores the viability of relying on wind power to replace upwards of 60% of electricity generation in Alberta that would be lost if coal-fired generation is phased out. Using hourly wind data from 17 locations across Alberta, we are able to simulate the potential wind power output available to the Alberta grid when modern, 3.5 MW-capacity wind turbines are spread across the province. Using wind regimes for the years 2006 through 2015, we find that available wind power is less than 60% of installed capacity 98% of the time, and below 30% of capacity 74% of the time. There is only a small amount of correlation between wind speeds at different locations, but yet it remains necessary to rely on fossil fuel generation. Then, based on the results from a grid allocation model, we find that CO2 emissions can be reduced by about 30%, but only through a combination of investment in wind energy and reliance on purchases of hydropower from British Columbia. Only if nuclear energy is permitted into the generation mix would Alberta be able to meet its CO2-emissions reduction target in the electricity sector. With nuclear power, emissions can be reduced by upwards of 85%.
Assessment of agricultural biomass potential to electricity generation in Riau Province
NASA Astrophysics Data System (ADS)
Papilo, P.; Kusumanto, I.; Kunaifi, K.
2017-05-01
Utilization of biomass as a source of electrical power is one potential solution that can be developed in order to increase of the electrification ratio and to Achieve the national energy security. However, now it is still difficult, to Determine the amount of potential energy that can be used as an alternative power generation. Therefore, as a preliminary step to assess the feasibility of biomass development as a power generation source, an analysis of potential resources are required, especially from some of the main commodities, both of residues of agriculture and plantation. This study aims to assessing the potential of biomass-based supply from unutilized resources that can be Obtained from the residues of agricultural and plantations sectors, such as rice straw and rice husk; Dry straw and chaff of rice; corn stalks and cobs; stalks of cassava; and fiber, shell, empty fruit Bunches, kernels and liquid wastes in the palm oil factories. More research is focused on the theoretical energy potential measurements using a statistical approach which has been developed by Biomass Energy Europe (BEE). Results of the assessment has been done and showed that the total theoretical biomass energy that can be produced is equal to 77,466,754.8 Gj year -1. Theoretically, this potential is equivalent to generate electricityof year 21,518,542.8 MWh -1.
Wu, Grace C; Torn, Margaret S; Williams, James H
2015-02-17
The land-use implications of deep decarbonization of the electricity sector (e.g., 80% below 1990 emissions) have not been well-characterized quantitatively or spatially. We assessed the operational-phase land-use requirements of different low-carbon scenarios for California in 2050 and found that most scenarios have comparable direct land footprints. While the per MWh footprint of renewable energy (RE) generation is initially higher, that of fossil and nuclear generation increases over time with continued fuel use. We built a spatially explicit model to understand the interactions between resource quality and environmental constraints in a high RE scenario (>70% of total generation). We found that there is sufficient land within California to meet the solar and geothermal targets, but areas with the highest quality wind and solar resources also tend to be those with high conservation value. Development of some land with lower conservation value results in lower average capacity factors, but also provides opportunity for colocation of different generation technologies, which could significantly improve land-use efficiency and reduce permitting, leasing, and transmission infrastructure costs. Basing siting decisions on environmentally-constrained long-term RE build-out requirements produces significantly different results, including better conservation outcomes, than implied by the current piecemeal approach to planning.
2016 Standard Scenarios Report: A U.S. Electricity Sector Outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Wesley; Mai, Trieu; Logan, Jeffrey
The National Renewable Energy Laboratory is conducting a study sponsored by the Office of Energy Efficiency and Renewable Energy (EERE) that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis.
Boosting CSP Production with Thermal Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denholm, P.; Mehos, M.
2012-06-01
Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PVmore » electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.« less
Penn, Stefani L.; Arunachalam, Saravanan; Woody, Matthew; Heiger-Bernays, Wendy; Tripodis, Yorghos; Levy, Jonathan I.
2016-01-01
Background: Residential combustion (RC) and electricity generating unit (EGU) emissions adversely impact air quality and human health by increasing ambient concentrations of fine particulate matter (PM2.5) and ozone (O3). Studies to date have not isolated contributing emissions by state of origin (source-state), which is necessary for policy makers to determine efficient strategies to decrease health impacts. Objectives: In this study, we aimed to estimate health impacts (premature mortalities) attributable to PM2.5 and O3 from RC and EGU emissions by precursor species, source sector, and source-state in the continental United States for 2005. Methods: We used the Community Multiscale Air Quality model employing the decoupled direct method to quantify changes in air quality and epidemiological evidence to determine concentration–response functions to calculate associated health impacts. Results: We estimated 21,000 premature mortalities per year from EGU emissions, driven by sulfur dioxide emissions forming PM2.5. More than half of EGU health impacts are attributable to emissions from eight states with significant coal combustion and large downwind populations. We estimate 10,000 premature mortalities per year from RC emissions, driven by primary PM2.5 emissions. States with large populations and significant residential wood combustion dominate RC health impacts. Annual mortality risk per thousand tons of precursor emissions (health damage functions) varied significantly across source-states for both source sectors and all precursor pollutants. Conclusions: Our findings reinforce the importance of pollutant-specific, location-specific, and source-specific models of health impacts in design of health-risk minimizing emissions control policies. Citation: Penn SL, Arunachalam S, Woody M, Heiger-Bernays W, Tripodis Y, Levy JI. 2017. Estimating state-specific contributions to PM2.5- and O3-related health burden from residential combustion and electricity generating unit emissions in the United States. Environ Health Perspect 125:324–332; http://dx.doi.org/10.1289/EHP550 PMID:27586513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less
NASA Astrophysics Data System (ADS)
Born, Joshua
The purpose of this research was to examine the cyber-security posture for the United States' electrical grid, which comprises a major component of critical infrastructure for the country. The United States electrical sector is so vast, that the Department of Homeland Security (DHS) estimates, it contains more than 6,413 power plants (this includes 3,273 traditional electric utilities and 1,738 nonutility power producers) with approximately 1,075 gigawatts of energy produced on a daily basis. A targeted cyber-security attack against the electric grid would likely have catastrophic results and could even serve as a precursor to a physical attack against the United States. A recent report by the consulting firm Black and Veatch found that one of the top five greatest concerns for United States electric utilities is the risk that cybersecurity poses to their industry and yet, only one-third state they are currently prepared to meet the increasingly likely threat. The report goes on to state, "only 32% of electric utilities surveyed had integrated security systems with the proper segmentation, monitoring and redundancies needed for cyber threat protection. Another 48 % said they did not" Recent estimates indicate that a large-scale cyber-attack against this sector could cost the United States economy as much as a trillion dollars within a weeks' time. Legislative efforts in the past have primarily been focused on creating mandates that encourage public and private partnership, which have been not been adopted as quickly as desired. With 85 % of all electric utilities being privately owned, it is key that the public and private sector partner in order to mitigate risks and respond as a cohesive unit in the event of a major attack. Keywords: Cybersecurity, Professor Riddell, cyber security, energy, intelligence, outlook, electrical, compliance, legislation, partnerships, critical infrastructure.
Feasibility of a 90° electric sector energy analyzer for low energy ion beam characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahinay, C. L. S., E-mail: cmahinay@nip.upd.edu.ph; Ramos, H. J.; Wada, M.
2015-02-15
A simple formula to calculate refocusing by locating the output slit at a specific distance away from the exit of 90° ion deflecting electric sector is given. Numerical analysis is also performed to calculate the ion beam trajectories for different values of the initial angular deviation of the beam. To validate the theory, a compact (90 mm × 5.5 mm × 32 mm) 90° sector ESA is fabricated which can fit through the inner diameter of a conflat 70 vacuum flange. Experimental results show that the dependence of resolution upon the distance between the sector exit and the Faraday cupmore » agrees with the theory. The fabricated 90° sector electrostatic energy analyzer was then used to measure the space resolved ion energy distribution functions of an ion beam with the energy as low as 600 eV.« less
An integrated Biophysical CGE model to provide Sustainable Development Goal insights
NASA Astrophysics Data System (ADS)
Sanchez, Marko; Cicowiez, Martin; Howells, Mark; Zepeda, Eduardo
2016-04-01
Future projected changes in the energy system will inevitably result in changes to the level of appropriation of environmental resources, particularly land and water, and this will have wider implications for environmental sustainability, and may affect other sectors of the economy. An integrated climate, land, energy and water (CLEW) system will provide useful insights, particularly with regard to the environmental sustainability. However, it will require adequate integration with other tools to detect economic impacts and broaden the scope for policy analysis. A computable general equilibrium (CGE) model is a well suited tool to channel impacts, as detected in a CLEW analysis, onto all sectors of the economy, and evaluate trade-offs and synergies, including those of possible policy responses. This paper will show an application of such integration in a single-country CGE model with the following key characteristics. Climate is partly exogenous (as proxied by temperature and rainfall) and partly endogenous (as proxied by emissions generated by different sectors) and has an impact on endogenous variables such as land productivity and labor productivity. Land is a factor of production used in agricultural and forestry activities which can be of various types if land use alternatives (e.g., deforestation) are to be considered. Energy is an input to the production process of all economic sectors and a consumption good for households. Because it is possible to allow for substitution among different energy sources (e.g. renewable vs non-renewable) in the generation of electricity, the production process of energy products can consider the use of natural resources such as oil and water. Water, data permitting, can be considered as an input into the production process of agricultural sectors, which is particularly relevant in case of irrigation. It can also be considered as a determinant of total factor productivity in hydro-power generation. The integration of a CLEW system and a CGE model can be critical to inform analyses on different climate impacts and ways to "secure" pathways of sustainable natural resource use and energy generation. Cost and benefits for establishing sustainable pathways through different investments and their macroeconomic feasibility and impacts on economic growth and employment are also captured. This information is critical to inform strategies to achieve sustainable development goals.
NASA Astrophysics Data System (ADS)
Yang, J.; Mauzerall, D. L.; Wagner, F.; Li, X.
2016-12-01
Solar photovoltaic (PV) technology can greatly reduce both air pollution and GHG emissions from the power sector. The Chinese government has plans to scale up solar PV installation between now and 2030. However, there is little analysis of how deployment strategies will influence the range of benefits. Here we conduct the first integrated assessment study that quantifies the climate, air quality, and related human health benefits of various solar PV development strategies in 2030 China. Our results indicate that both the location of PV deployment, which coal power plants are replaced, and the extent of inter-provincial transmission greatly influence the co-benefits. We compare CO2 and PM2.5 reductions from two PV installation scenarios both with the 2030 government target of 400 GW national installed capacity. First, we assume all solar PV is utilized within the province in which it is generated and that it can not exceed 30% of total provincial electricity generation. We find that deploying more solar PV in locations near load centers via distributed PV systems has larger benefits and could lead to approximately 20,500 (between 8000 - 32,400, high and low bounds) annual avoided premature deaths, 15% more than building utility-scale solar PV plants in the sunny, yet sparsely populated northwest. The difference occurs because in the northwest a lower population and cleaner air leads to smaller reductions in air pollution related premature mortalities. Also greater potential for PV curtailment exists in the west. In terms of CO2 reduction, deploying PV near load centers leads to 12% greater reductions in CO2 emissions from the power sector - approximately 5% of China's total CO2 emission in 2030. Second, we enable inter-provincial transmission of PV electricity within each of China's six regional grids which allows greater use of abundant sunlight in the northwest. Our results for 2030 show that by expanding to the regional grid, curtailment rates in the northwest would drop from 25% to 14%, and additional reductions of 30% SO2 and 25% NOxfrom the power sector would result. Thus our study demonstrates substantial air quality and climate co-benefits of developing solar PV in China. We also find that expanding inter-provincial electricity transmission would both reduce curtailment and increase air quality benefits.
Adom, Philip Kofi; Kwakwa, Paul Adjei; Amankwaa, Afua
2018-07-15
This study examines the long-run drivers of potential and actual CO 2 emissions in Ghana, a sub-Saharan Africa country. The use of the former helps address the reverse causality problem and capture the true long-run effects. The Stock-Watson dynamic OLS is used with data from 1970 to 2014. The result shows that potential CO 2 emissions improve model efficiency. Income (except in "other sector") and financial development (except in manufacturing and construction sector) have compelling positive and negative effects on actual and potential CO 2 emissions, respectively. A higher price (oil and electricity) reduces actual and potential CO 2 emissions, but electricity price is more vital in residential, buildings and commercial and public services sector, while oil price is crucial in the transport sector. Democracy lowers actual and potential CO 2 emissions in the aggregate (insignificant) and transport sectors but raises it in the manufacturing and construction sector. The effect is, however, inconsistent for the remaining sectors. Urbanization raises aggregate actual and potential CO 2 emissions, but the effect is inconsistent for the transport sector. The findings have important implications for policy formulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biomass enables the transition to a carbon-negative power system across western North America
NASA Astrophysics Data System (ADS)
Sanchez, Daniel L.; Nelson, James H.; Johnston, Josiah; Mileva, Ana; Kammen, Daniel M.
2015-03-01
Sustainable biomass can play a transformative role in the transition to a decarbonized economy, with potential applications in electricity, heat, chemicals and transportation fuels. Deploying bioenergy with carbon capture and sequestration (BECCS) results in a net reduction in atmospheric carbon. BECCS may be one of the few cost-effective carbon-negative opportunities available should anthropogenic climate change be worse than anticipated or emissions reductions in other sectors prove particularly difficult. Previous work, primarily using integrated assessment models, has identified the critical role of BECCS in long-term (pre- or post-2100 time frames) climate change mitigation, but has not investigated the role of BECCS in power systems in detail, or in aggressive time frames, even though commercial-scale facilities are starting to be deployed in the transportation sector. Here, we explore the economic and deployment implications for BECCS in the electricity system of western North America under aggressive (pre-2050) time frames and carbon emissions limitations, with rich technology representation and physical constraints. We show that BECCS, combined with aggressive renewable deployment and fossil-fuel emission reductions, can enable a carbon-negative power system in western North America by 2050 with up to 145% emissions reduction from 1990 levels. In most scenarios, the offsets produced by BECCS are found to be more valuable to the power system than the electricity it provides. Advanced biomass power generation employs similar system design to advanced coal technology, enabling a transition strategy to low-carbon energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loulou, Richard; Waaub, Jean-Philippe; Zaccour, Georges
2005-07-01
This volume on energy and environmental modeling describes a broad variety of modeling methodologies. It includes chapters covering: The Sustainability of Economic Growth by Cabo, Martin-Herran & Martinez-Garcia; Abatement Scenarios in the Swiss Housing Sector by L. Drouet and others; Support and Planning for Off-Site Emergency Management, by Geldermann and others; Hybrid Energy-Economy Models, by Jaccard; The World-MARKAL Model and Its Application, by Kanudia and others; Methodology for Evaluating a Market of Tradable CO{sub 2}-Permits, by Kunsch and Springael; MERGE - A Model for Global Climate Change, by Manne and Richels; A Linear Programming Model for Capacity Expansion in anmore » Autonomous Power Generation System, by Mavrotas and Diakoulaki; Transport and Climate Policy Modeling in the Transport Sector, by Paltsev and others; Analysis of Ontario Electricity Capacity Requirements and Emissions, by Pineau and Schott; Environmental Damage in Energy/Environmental Policy Evaluation, by Van Regemorter. 71 figs.« less
The Northeast heating fuel market: Assessment and options
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over themore » next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.« less
The Impact of CCS Readiness on the Evolution of China's Electric Power Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahowski, Robert T.; Davidson, Casie L.; Yu, Sha
In this study, GCAM-China is exercised to examine the impact of CCS availability on the projected evolution of China’s electric power sector under the Paris Increased Ambition policy scenario developed by Fawcett et al. based on the Intended Nationally Determined Contributions (INDCs) submitted under the COP-21 Paris Agreement. This policy scenario provides a backdrop for understanding China’s electric generation mix over the coming century under several CCS availability scenarios: CCS is fully available for commercial-scale deployment by 2025; by 2050; by 2075; and CCS is unavailable for use in meeting the modelled mitigation targets through 2100. Without having CCS available,more » the Chinese electric power sector turns to significant use of nuclear, wind, and solar to meet growing demands and emissions targets, at a cost. Should large-scale CCS deployment be delayed in China by 25 years, the modeled per-ton cost of climate change mitigation is projected to be roughly $420/tC (2010 US dollars) by 2050, relative to $360/tC in the case in which CCS is available to deploy by 2025, a 16% increase. Once CCS is available for commercial use, mitigation costs for the two cases converge, equilibrating by 2085. However, should CCS be entirely unavailable to deploy in China, the mitigation cost spread, compared to the 2025 case, doubles by 2075 ($580/tC and $1130/tC respectively), and triples by 2100 ($1050/tC vs. $3200/tC). However, while delays in CCS availability may have short-term impacts on China’s overall per-ton cost of meeting the emissions reduction target evaluated here, as well as total mitigation costs, the carbon price is likely to approach the price path associated with the full CCS availability case within a decade of CCS deployment. Having CCS available before the end of the century, even under the delays examined here, could reduce the total amount of nuclear and renewable energy that must deploy, reducing the overall cost of meeting the emissions mitigation targets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
González Pericot, N., E-mail: natalia.gpericot@upm.es; Villoria Sáez, P., E-mail: paola.villoria@upm.es; Del Río Merino, M., E-mail: mercedes.delrio@upm.es
2014-11-15
Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste hasmore » been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.« less
Tracing Primary PM2.5 emissions via Chinese supply chains
NASA Astrophysics Data System (ADS)
Meng, Jing; Liu, Junfeng; Xu, Yuan; Tao, Shu
2015-05-01
In this study, we examine a supply-chain approach to more effectively mitigate primary PM2.5 emissions in China from the perspectives of production, consumption and their linkages using structural path analysis. We identify the pattern of all supply chain paths using principal component analysis. To address the severe haze problems in China, it is important to understand how final demand purchase initiates production processes and ultimately leads to primary PM2.5 emission. We found that consumers’ demands on power and transportation mainly induce direct emissions, quite different from the demands on construction, industry and service products which largely drive emissions in upstream activities. We also found that nearly 80% of the economic sectors in China follow a similar pattern in generating primary PM2.5 emissions in electricity, cement and the ferrous metal industries; but only the construction sector increases the release of PM2.5 due to the production of non-metallic mineral products. These findings indicate that further reduction of end-of-pipe emissions in the power and transportation sectors will facilitate cleaner production in almost all the economic sectors. However, for urbanization induced emissions, China should mitigate PM2.5 emissions through the supply chain of construction, either severely reducing its life-cycle intensity or carefully planning to avoid extensive, unnecessary building activity.
Hybrid Energy: Combining Nuclear and Other Energy Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Suk; Garcia, Humberto E.
2015-02-01
The leading cause of global climate change is generally accepted to be growing emissions of greenhouse gas (GHG) as a result of increased use of fossil fuels [1]. Among various sources of GHG, the global electricity supply sector generates the largest share of GHG emissions (37.5% of total CO2 emissions) [2]. Since the current electricity production heavily relies on fossil fuels, it is envisioned that bolstering generation technologies based on non-emitting energy sources, i.e., nuclear and/or renewables could reduce future GHG emissions. Integrated nuclear-renewable hybrid energy systems HES) are very-low-emitting options, but they are capital-intensive technologies that should operate atmore » full capacities to maximize profits. Hence, electricity generators often pay the grid to take electricity when demand is low, resulting in negative profits for many hours per year. Instead of wasting an excess generation capacity at negative profit during off-peak hours when electricity prices are low, nuclear-renewable HES could result in positive profits by storing and/or utilizing surplus thermal and/or electrical energy to produce useful storable products to meet industrial and transportation demands. Consequently, it is necessary (1) to identify key integrated system options based on specific regions and (2) to propose optimal operating strategy to economically produce products on demand. In prioritizing region-specific HES options, available resources, markets, existing infrastructures, and etc. need to be researched to identify attractive system options. For example, the scarcity of water (market) and the availability of abundant solar radiation make solar energy (resource) a suitable option to mitigate the water deficit the Central-Southern region of the U.S. Thus, a solar energy-driven desalination process would be an attractive option to be integrated into a nuclear power plant to support the production of fresh water in this region. In this work, we introduce a particular HES option proposed for a specific U.S. region and briefly describe our modeling assumptions and procedure utilized for its analysis. Preliminary simulation results are also included addressing several technical characteristics of the proposed nuclear-renewable HES.« less
NASA Astrophysics Data System (ADS)
Kressig, A.
2017-12-01
BACKGROUND The Greenhouse Gas Protocol (GHGP), Scope 2 Guidance standardizes how companies measure greenhouse gas emissions from purchased or independently generated electricity (called "scope 2 emissions"). Additionally, the interlinkages between industrial or commercial (nonresidential) energy requirements and water demands have been studied extensively, mostly at the national or provincial scale, focused on industries involved in power generation. However there is little guidance available for companies to systematically and effectively quantify water withdrawals and consumption (herein referred to as "water demand") associated with purchased or acquired electricity(what we call "Scope 2 Water"). This lack of guidance on measuring a company's water demand from electricity use is due to a lack of data on average consumption and withdrawal rates of water associated with purchased electricity. OBJECTIVE There is growing demand from companies in the food, beverage, manufacturing, information communication and technology, and other sectors for a methodology to quantify Scope 2 water demands. By understanding Scope 2 water demands, companies could evaluate their exposure to water-related risks associated with purchased or acquired electricity, and quantify the water benefits of changing to less water-intensive sources of electricity and energy generation such as wind and solar. However, there has never been a way of quantifying Scope 2 Water consumption and withdrawals for a company across its international supply chain. Even with interest in understanding exposure to water related risk and measuring water use reductions, there has been no quantitative way of measuring this information. But WRI's Power Watch provides the necessary data to allow for the Scope 2 Water accounting, because it will provide water withdrawal and consumption rates associated with purchased electricity at the power plant level. By calculating the average consumption and withdrawal rates per unit of electricity produced across a grid region, companies can measure their water demand from facilities in that region. WRI is now developing a global dataset of grid level water consumption rates and developing a guidance for companies to report water demand across their supply chain and measure their reductions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abel, David; Holloway, Tracey; Harkey, Monica
We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a fullmore » accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of $13.1 billion (95% CI: $0.6 billion, $43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.« less
Keshavarzmohammadian, Azadeh; Henze, Daven K; Milford, Jana B
2017-06-20
This study investigates emission impacts of introducing inexpensive and efficient electric vehicles into the US light duty vehicle (LDV) sector. Scenarios are explored using the ANSWER-MARKAL model with a modified version of the Environmental Protection Agency's (EPA) 9-region database. Modified cost and performance projections for LDV technologies are adapted from the National Research Council (2013) optimistic case. Under our optimistic scenario (OPT) we find 15% and 47% adoption of battery electric vehicles (BEVs) in 2030 and 2050, respectively. In contrast, gasoline vehicles (ICEVs) remain dominant through 2050 in the EPA reference case (BAU). Compared to BAU, OPT gives 16% and 36% reductions in LDV greenhouse gas (GHG) emissions for 2030 and 2050, respectively, corresponding to 5% and 9% reductions in economy-wide emissions. Total nitrogen oxides, volatile organic compounds, and SO 2 emissions are similar in the two scenarios due to intersectoral shifts. Moderate, economy-wide GHG fees have little effect on GHG emissions from the LDV sector but are more effective in the electricity sector. In the OPT scenario, estimated well-to-wheels GHG emissions from full-size BEVs with 100-mile range are 62 gCO 2 -e mi -1 in 2050, while those from full-size ICEVs are 121 gCO 2 -e mi -1 .
Challenges of deploying nuclear energy for power generation in Malaysia
NASA Astrophysics Data System (ADS)
Jaafar, Mohd Zamzam; Nazaruddin, Nurul Huda; Lye, Jonathan Tan Thiam
2017-01-01
Under the 10th Malaysia Plan (2010-2015) and the Economic Transformation Programme (ETP), nuclear energy was identified as a potential long-term option to be explored for electricity generation in Peninsular Malaysia. The energy sector in Malaysia currently faces several concerns including depleting domestic gas supply which will affect security and reliability of supply as well as overdependance on fossil fuels - mainly gas and imported coal, and nuclear energy may offer a possible solution to these issues as well as global climate change concern. Pursuing the nuclear option, Malaysia Nuclear Power Corporation (MNPC) is undertaking a series of comprehensive studies to facilitate an informed Government decision on the matter. This paper aims to discuss the many challenges towards the peaceful use of nuclear energy for electricity generation in the context of the New Energy Policy 2010 to achieve a balanced and sustainable energy mix. This effort will continue in the 11th Malaysia Plan (2016-2020) with emphasis on implementing a comprehensive communications plan and public awareness programme for the potential use of nuclear energy in the future. In analysing the challenges for the development of nuclear energy in Malaysia, the traditional triple bottom line (TBL) framework for sustainability, encompassing economic, social and environmental objectives is utilized. An additional factor, technical, is also included in the analysis to provide a more holistic view. It is opined that the main challenges of developing nuclear energy for electricity generation in a newcomer country like Malaysia can be attributed primarily to domestic non-technical factors compared to the technical factor.
US fossil fuel technologies for developing countries: Costa Rica country packet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Costa Rica presents long-term opportunities for US participation in the power generation sector. A growing industrial base, high economic growth, and an increasing living standard will continue to require more reliable electric generation. Although the country has depended upon hydropower to meet much of its energy needs, coal could become a more reliable form of energy in the near term, based on estimated indigenous resources and proximity to food quality imports. Thus, trade opportunities exist for the United States, in the electric power sector, for the US advanced fossil fuel technologies and related services. This report describes the Costa Ricanmore » energy situation; examines the financial, economic, and trade issues; and discusses project opportunities in Costa Rica. Costa Rica appears to have a positive climate for trade and investment activities, stimulated by the Caribbean Basin Initiative. Although the economy has recently slowed, the economic outlook appears healthy. Application for membership in the General Agreement on Tariffs and Trade is pending. Due to an unexpectedly large growth in electricity demand, the Costa Rican utility Instituto Costarricense de Electricidad is evaluating the need for construction of a coal-fired power plant in the size range of 60 to 125 MW, with an in-service data of the mid-1990s. A decision is expected by the end of 1988 concerning the required size, source of coal, and timing of this coal-fired plant. Based on conditions in Costa Rica, US advanced fossil-fuel technologies were chosen for continued study in conjunction with the identified potential project opportunities. These technologies are the atmospheric fluidized bed combustor and coal-water mixtures. They could play a major role in meeting the utility expansion and/or industrial conversion opportunities summarized in Table I.1. The value of such projects could approximate US $160 million.« less
Exploring the energy-water-food-climate nexus for the Indian Economy in 2030
NASA Astrophysics Data System (ADS)
Taheripour, F.; Hertel, T. W.; Gopalakrishnan, B. N.
2014-12-01
The economy of India is expected to face serious environmental challenges over the coming decades. Population growth, coupled with economic growth of nearly 7%/year to 2030 will translate into strong growth in energy demands - particularly electricity. The electricity sector's claim on total available water could grow from 4% to more than 10% in India in 2030, if the use of wet cooling technologies persists (IGES 2013). Water-saving, dry cooling technologies are available for coal-fired power plants, but this requires significant investment and must be done at the time of construction. Growing water demands from electricity generation, when coupled with industrial, residential and commercial demands, are projected to result in water shortages for irrigation in some key river basins such as Indus, Ganges, Subernarekha, Krishna, and Chotanagpui (Rosegrant et al., 2013). The resulting pressure on agricultural production is likely to be exacerbated by climate change, which itself may increase demands for irrigation as an adaptation strategy to higher temperatures and more variable rainfall (AgMIP, 2013). In this paper we examine the impact of water scarcity on economic growth, food, and energy security in India using an enhanced version of the GTAP-AEZ-WATER model. We find that investments in water-saving technology in the electricity sector are less costly than developing new water supply. However, even when these technologies are implemented, we project shortfalls in water available for irrigated agriculture. These shortfalls result in the contraction of irrigated area and diminished food production relative to the unconstrained baseline. However, trade could help India to mitigate a portion of this pressure by importing more food products from water abundant regions. In addition, allowing for the trading of water within river basins helps to alleviate some of the consequences of water scarcity.
Intelligent emission-sensitive routing for plugin hybrid electric vehicles.
Sun, Zhonghao; Zhou, Xingshe
2016-01-01
The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.
Restructuring and performance in India's electricity sector
NASA Astrophysics Data System (ADS)
Panda, Arun Kumar
Restructuring and privatization, used as major tools in electricity sector reform, are often viewed as part of the same process and the terms used interchangeably. Although related, they represent quite different dimensions of change and reform. Privatization is the result of change in the management/ownership. Restructuring, on the other hand, refers to changes in structure such as the unbundling of vertically integrated utilities, and the introduction of competition. Most studies attempt to assess the impact of privatization of the electric utilities on their tariff structure, performance and efficiency. They have not tried to estimate the effect of restructuring on the performance of the unbundled utilities. Using panel data on the state electricity boards and the thermal power plants, and employing variance-component fixed effects and random effects models, this study examines the effects of restructuring and ownership on the performance of India's electricity sector. We also study the effects of absolute majority of political parties on performance. The study also uses a cross-country-comparison-framework to compare the electricity sector reforms of India with those of Chile, Hungary and Norway. Results show that restructuring has significantly positive effects on such performance indicators as plant availability, plant load factor, forced outage, average tariff collection, and sales revenue as a ratio of cost. With regard to labor efficiency indicators, we find mixed results. Restructuring also appears to entail reduction in the extent of cross-subsidization. However, the cost of supply seems to be unaffected by restructuring. Absolute majority of the party in government shows adverse effects on costs, sales revenue as a ratio of cost, and labor efficiency. The effects of ownership are somewhat mixed, with state ownership (as opposed to federal or private) indicating adverse effects on plant performance. Interestingly, after controlling for location-specific effects, we do not find significant difference between privately owned plants and other plants in areas like plant availability, and plant load factor. In a developing country like India with a long tradition of public ownership and vertical integration in electricity sector, this has important policy implications.
Impact of Climate Change on Energy Production, Distribution, and Consumption in Russia
NASA Astrophysics Data System (ADS)
Klimenko, V. V.; Klimenko, A. V.; Tereshin, A. G.; Fedotova, E. V.
2018-05-01
An assessment of the overall impact of the observed and expected climatic changes on energy production, distribution, and consumption in Russia is presented. Climate model results of various complexity and evaluation data on the vulnerability of various energy production sectors to climate change are presented. It is shown that, due to the increase of air temperature, the efficiency of electricity production at thermal and nuclear power plants declines. According to the climate model results, the production of electricity at TPPs and NPPs by 2050 could be reduced by 6 billion kW h due to the temperature increase. At the same time, as a result of simulation, the expected increase in the rainfall amount and river runoff in Russia by 2050 could lead to an increase in the output of HPP by 4-6% as compared with the current level, i.e., by 8 billion kW h. For energy transmission and distribution, the climate warming will mean an increase in transmission losses, which, according to estimates, may amount to approximately 1 billion kW h by 2050. The increase of air temperature in summer will require higher energy consumption for air conditioning, which will increase by approximately 6 billion kW h by 2050. However, in total, the optimal energy consumption in Russia, corresponding to the postindustrial level, will decrease by 2050 by approximately 150 billion kW h as a result of climate- induced changes. The maximum global warming impact is focused on the heat demand sector. As a result of a decrease in the heating degree-days by 2050, the need for space heating is expected to fall by 10-15%, which will cause a fuel conservation sufficient for generating approximately 140 billion kW h of electricity. Hence, a conclusion about the positive direct impact of climate change on the Russia's energy sector follows, which is constituted in the additional available energy resource of approximately 300 billion kW h per year.
The past, present, and future of U.S. utility demand-side management programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, J.
Demand-side management or DSM refers to active efforts by electric and gas utilities to modify customers` energy use patterns. The experience in the US shows that utilities, when provided with appropriate incentives, can provide a powerful stimulus to energy efficiency in the private sector. This paper describes the range and history of DSM programs offered by US electric utilities, with a focus on the political, economic, and regulatory events that have shaped their evolution. It also describes the changes these programs are undergoing as a result of US electricity industry restructuring. DSM programs began modestly in the 1970s in responsemore » to growing concerns about dependence on foreign sources of oil and environmental consequences of electricity generation, especially nuclear power. The foundation for the unique US partnership between government and utility interests can be traced first to the private-ownership structure of the vertically integrated electricity industry and second to the monopoly franchise granted by state regulators. Electricity industry restructuring calls into question both of these basic conditions, and thus the future of utility DSM programs for the public interest. Future policies guiding ratepayer-funded energy-efficiency DSM programs will need to pay close attention to the specific market objectives of the programs and to the balance between public and private interests.« less
Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H
2016-11-01
Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.
Location of EMIC Wave Events Relative to the Plasmapause: Van Allen Probes Observations
NASA Astrophysics Data System (ADS)
Tetrick, S.; Engebretson, M. J.; Posch, J. L.; Kletzing, C.; Smith, C. W.; Wygant, J. R.; Gkioulidou, M.; Reeves, G. D.; Fennell, J. F.
2015-12-01
Many early theoretical studies of electromagnetic ion cyclotron (EMIC) waves generated in Earth's magnetosphere predicted that the equatorial plasmapause (PP) would be a preferred location for their generation. However, several large statistical studies in the past two decades, most notably Fraser and Nguyen [2001], have provided little support for this location. In this study we present a survey of the most intense EMIC waves observed by the EMFISIS fluxgate magnetometer on the Van Allen Probes-A spacecraft (with apogee at 5.9 RE) from its launch through the end of 2014, and have compared their location with simultaneous electron density data obtained by the EFW electric field instrument and ring current ion flux data obtained by the HOPE and RBSPICE instruments. We show distributions of these waves as a function of distance inside or outside the PP as a function of local time sector, frequency band (H+, He+, or both), and timing relative to magnetic storms and substorms. Most EMIC waves in this data set occurred within 1 RE of the PP in all local time sectors, but very few were limited to ± 0.1 RE, and most of these occurred in the 06-12 MLT sector during non-storm conditions. The majority of storm main phase waves in the dusk sector occurred inside the PP. He+ band waves dominated at most local times inside the PP, and H+ band waves were never observed there. Although the presence of elevated fluxes of ring current protons was common to all events, the configuration of lower energy ion populations varied as a function of geomagnetic activity and storm phase.
[Which colours can we hear?: light stimulation of the hearing system].
Wenzel, G I; Lenarz, T; Schick, B
2014-02-01
The success of conventional hearing aids and electrical auditory prostheses for hearing impaired patients is still limited in noisy environments and for sounds more complex than speech (e. g. music). This is partially due to the difficulty of frequency-specific activation of the auditory system using these devices. Stimulation of the auditory system using light pulses represents an alternative to mechanical and electrical stimulation. Light is a source of energy that can be very exactly focused and applied with little scattering, thus offering perspectives for optimal activation of the auditory system. Studies investigating light stimulation of sectors along the auditory pathway have shown stimulation of the auditory system is possible using light pulses. However, further studies and developments are needed before a new generation of light stimulation-based auditory prostheses can be made available for clinical application.
Electric dipole moments with and beyond flavor invariants
NASA Astrophysics Data System (ADS)
Smith, Christopher; Touati, Selim
2017-11-01
In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U (1) phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.
Present and Future Energy Scenario in India
NASA Astrophysics Data System (ADS)
Kumar, S.; Bhattacharyya, B.; Gupta, V. K.
2014-09-01
India's energy sector is one of the most critical components of an infrastructure that affects India's economic growth and therefore is also one of the largest industries in India. India has the 5th largest electricity generating capacity and is the 6th largest energy consumer amounting for around 3.4 % of global energy consumption. India's energy demand has grown at 3.6 % pa over the past 30 years. The consumption of the energy is directly proportional to the progress of manpower with ever growing population, improvement in the living standard of the humanity and industrialization of the developing countries. Very recently smart grid technology can attribute important role in energy scenario. Smart grid refers to electric power system that enhances grid reliability and efficiency by automatically responding to system disturbances. This paper discusses the new communication infrastructure and scheme designed to integrate data.
Zhai, Haibo; Rubin, Edward S
2016-04-05
Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.
Lantz, Eric; Mai, Trieu; Wiser, Ryan H.; ...
2016-07-22
This paper evaluates potential changes in the power system associated with sustained growth in wind generation in the United States to 35% of end-use demand by 2050; Wiser et al. (forthcoming) evaluates societal benefits and other impacts for this same scenario. Under reference or central conditions, the analysis finds cumulative wind capacity of 404 GW would be required to reach this level and drive 2050 incremental electricity rate and cumulative electric sector savings of 2% and 3%, respectively, relative to a scenario with no new wind capacity additions. Greater savings are estimated under higher fossil fuel costs or with greatermore » advancements in wind technologies. Conversely, incremental costs are found when fossil fuel costs are lower than central assumptions or wind technology improvements are more-limited. Through 2030 the primary generation sources displaced by new wind capacity include natural gas and coal-fired generation. By 2050 wind could displace other renewables. Incremental new transmission infrastructure totaling 29 million MW-miles is estimated to be needed by 2050. In conjunction with related societal benefits, this work demonstrates that 35% wind energy by 2050 is plausible, could support enduring benefits, and could result in long-term consumer savings, if nearer-term (pre-2030) cost barriers are overcome; at the same time, these opportunities are not anticipated to be realized in their full form under “business-as-usual” conditions.« less
Vehicle's lightweight design vs. electrification from life cycle assessment perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayyas, Ahmad; Omar, Mohammed; Hayajneh, Mohammed
Lightwiegh materials and vehicles' electrification are among the most viable and economic solutions to improve fuel ecocnmoy of vehicles and reduce environmental impacts in the operational phase of typical vehicle's life cycle span. This study aims to shed more light on the combined effect of lightweighing and electrification by assessing different lightweight designs and electric powetrians from the environmental perspective using a life cycle analysis coupled with an emphasis on energy expenditures and carbon dioxide emissions. This article discusses the life cycle assessment for several advanced powertrains namely; plug-in hybrid electric vehicles (PHEV), battery electric vehicles (BEV) and hybrid electricmore » vehicles (HEV) relative to the conventional gasoline operated internal combustion engine based power train vehicles. The main focus will be on the energy greenhouse gas emissions (GHG) in the material extraction and resources phase, manufacturing phase and use phase (operation and maintenance). While most of the current studies focus on the use phase that does not reflect the correct environmental impacts associated with advanced powertrains, thus the presented text applies a holistic LCA approach that covers pre-manufacturing, manufacturing, operational and end-of-life phases, plus another indirect phase to account for fuel extraction, refining and transportation to the end-users or customers. Based on the LCA emissions results, one may infer that environmental policies that reduce emissions rates from the electricity sector can mitigate this effect without completely eliminating it. Interestingly, the analysis show that lightweight vehicles with internal combustion engines have less impacts on the environment as a direct result of upstream emissions associated with electricity generation in United States. This scenario can differ in other countries with higher renewable and sustainable energy generated electric powers.« less
Vehicle's lightweight design vs. electrification from life cycle assessment perspective
Mayyas, Ahmad; Omar, Mohammed; Hayajneh, Mohammed; ...
2017-08-17
Lightwiegh materials and vehicles' electrification are among the most viable and economic solutions to improve fuel ecocnmoy of vehicles and reduce environmental impacts in the operational phase of typical vehicle's life cycle span. This study aims to shed more light on the combined effect of lightweighing and electrification by assessing different lightweight designs and electric powetrians from the environmental perspective using a life cycle analysis coupled with an emphasis on energy expenditures and carbon dioxide emissions. This article discusses the life cycle assessment for several advanced powertrains namely; plug-in hybrid electric vehicles (PHEV), battery electric vehicles (BEV) and hybrid electricmore » vehicles (HEV) relative to the conventional gasoline operated internal combustion engine based power train vehicles. The main focus will be on the energy greenhouse gas emissions (GHG) in the material extraction and resources phase, manufacturing phase and use phase (operation and maintenance). While most of the current studies focus on the use phase that does not reflect the correct environmental impacts associated with advanced powertrains, thus the presented text applies a holistic LCA approach that covers pre-manufacturing, manufacturing, operational and end-of-life phases, plus another indirect phase to account for fuel extraction, refining and transportation to the end-users or customers. Based on the LCA emissions results, one may infer that environmental policies that reduce emissions rates from the electricity sector can mitigate this effect without completely eliminating it. Interestingly, the analysis show that lightweight vehicles with internal combustion engines have less impacts on the environment as a direct result of upstream emissions associated with electricity generation in United States. This scenario can differ in other countries with higher renewable and sustainable energy generated electric powers.« less
McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B
2014-11-18
Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.
Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G
2015-04-21
We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.
Moon, Hyun Ho; Lee, Jong Joo; Choi, Sang Yule; Cha, Jae Sang; Kang, Jang Mook; Kim, Jong Tae; Shin, Myong Chul
2011-01-01
Recently there have been many studies of power systems with a focus on "New and Renewable Energy" as part of "New Growth Engine Industry" promoted by the Korean government. "New And Renewable Energy"-especially focused on wind energy, solar energy and fuel cells that will replace conventional fossil fuels-is a part of the Power-IT Sector which is the basis of the SmartGrid. A SmartGrid is a form of highly-efficient intelligent electricity network that allows interactivity (two-way communications) between suppliers and consumers by utilizing information technology in electricity production, transmission, distribution and consumption. The New and Renewable Energy Program has been driven with a goal to develop and spread through intensive studies, by public or private institutions, new and renewable energy which, unlike conventional systems, have been operated through connections with various kinds of distributed power generation systems. Considerable research on smart grids has been pursued in the United States and Europe. In the United States, a variety of research activities on the smart power grid have been conducted within EPRI's IntelliGrid research program. The European Union (EU), which represents Europe's Smart Grid policy, has focused on an expansion of distributed generation (decentralized generation) and power trade between countries with improved environmental protection. Thus, there is current emphasis on a need for studies that assesses the economic efficiency of such distributed generation systems. In this paper, based on the cost of distributed power generation capacity, calculations of the best profits obtainable were made by a Monte Carlo simulation. Monte Carlo simulations that rely on repeated random sampling to compute their results take into account the cost of electricity production, daily loads and the cost of sales and generate a result faster than mathematical computations. In addition, we have suggested the optimal design, which considers the distribution loss associated with power distribution systems focus on sensing aspect and distributed power generation.
The steps to forming a joint venture IPP in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Z.; Colligan, M.J.
Poland represents the largest market in Central Europe with 38 million people and an installed electrical generating capacity of about 32 gigawatts. Since 1989, when the process of governmental restructuring along free market principals began, the allure to IPP developers has been evident, but is of yet unrealized. The natural model for IPP development in Poland would seem to be joint ventures with Polish generating companies. These enterprises already have sites, franchises, and a going business to contribute to a joint company. There are a number of reasons why so few deals have been concluded in Poland to date, andmore » a number of barriers still exist that tend to hamper the realization of project finance funded power joint ventures. But, these barriers are not insurmountable. Overcoming them in the context of a joint venture relationship with a domestic partner requires patience, work, and an ability to bridge the gaps between the realities of working in a post-Communist environment and the practicalities of structuring projects that can be financed in the international capital markets. The new Energy Law in Poland establishes a framework for a viable private sector power generation business. But the enabling regulations are yet to be published or approved. There is still effective political risk on account of the uncertainty this creates. Pressure is mounting on the Polish Government, especially due to its expressed interest in joining the EU, to get the power sector to operate on private sector terms, if not in private hands. The trends are pointing in the direction of increased market driven policies and practices. The conclusion is that, despite the delays of the past, independent power projects will start to happen in Poland on a joint venture basis, with increasing frequency in the next years.« less
The paper describes a new way to estimate an efficient econometric model of global emissions of carbon dioxide (CO2) by nation, sector, and fuel type. Equations for fuel intensity are estimated for coal, oil, natural gas, electricity, and heat for six sectors: agricultural, indus...
How Critical Is Critical Infrastructure?
2015-09-01
electrical power, telecommunications, transportation, petroleum liquid , or natural gas as shown in Figure 34 from the National Infrastructure Protection...Natural Gas Segment Food and Agriculture Sector Government facilities Sector Healthcare and Public Health Sector Information Technology...514 religious meeting places, 127 gas 69 “Current United States GDP,” 2015, http
California energy flow in 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borg, I.Y.; Briggs, C.K.
1995-04-01
Energy consumption in the state of California decreased about 3% in 1993 reflecting continuation of the recession that was manifest in a moribund construction industry and a high state unemployment that ran counter to national recovery trends. Residential/commercial use decreased slightly reflecting a mild winter in the populous southern portion of the state, a decrease that was offset to some extent by an increase in the state population. Industrial consumption of purchased energy declined substantially as did production of self-generated electricity for in-house use. Consumption in the transportation sector decreased slightly. The amount of power transmitted by the utilities wasmore » at 1992 levels; however a smaller proportion was produced by the utilities themselves. Generation of electricity by nonutilities, primarily cogenerators and small power producers, was the largest of any state in the US. The growth in the number of private power producers combined with increased amounts of electricity sold to the public utilities set the stage for the sweeping proposals before the California Public Utility Commission to permit direct sales from the nonutilities to retail customers. California production of both oil and natural gas declined; however, to meet demand only the imports of natural gas increased. A break in the decade-long drought during the 1992--1993 season resulted in a substantial increase in the amount of hydroelectricity generated during the year. Geothermal energy`s contribution increased substantially because of the development of new resources by small power producers. Decline in steam production continued at The Geysers, the state`s largest field, principally owned and managed by a public utility. Increases in windpower constituted 1--1/2% of the total electric supply--up slightly from 1992. Several solar photo voltaic demonstration plants were in operation, but their contribution remained small.« less
California energy flow in 1993
NASA Astrophysics Data System (ADS)
Borg, I. Y.; Briggs, C. K.
1995-04-01
Energy consumption in the state of California decreased about 3% in 1993 reflecting continuation of the recession that was manifest in a moribund construction industry and a high state unemployment that ran counter to national recovery trends. Residential/commercial use decreased slightly reflecting a mild winter in the populous southern portion of the state, a decrease that was offset to some extent by an increase in the state population. Industrial consumption of purchased energy declined substantially as did production of self-generated electricity for in-house use. Consumption in the transportation sector decreased slightly. The amount of power transmitted by the utilities was at 1992 levels; however a smaller proportion was produced by the utilities themselves. Generation of electricity by nonutilities, primarily cogenerators and small power producers, was the largest of any state in the US. The growth in the number of private power producers combined with increased amounts of electricity sold to the public utilities set the stage for the sweeping proposals before the California Public Utility Commission to permit direct sales from the nonutilities to retail customers. California production of both oil and natural gas declined; however, to meet demand only the imports of natural gas increased. A break in the decade-long drought during the 1992-1993 season resulted in a substantial increase in the amount of hydroelectricity generated during the year. Geothermal energy's contribution increased substantially because of the development of new resources by small power producers. Decline in steam production continued at The Geysers, the state's largest field, principally owned and managed by a public utility. Increases in windpower constituted 1-1/2% of the total electric supply, up slightly from 1992. Several solar photovoltaic demonstration plants were in operation, but their contribution remained small.
NASA Astrophysics Data System (ADS)
Ambarita, H.
2018-03-01
The Government of Indonesia (GoI) has a strong commitment to the target of decreasing energy intensity and reducing Greenhouse gas emissions. One of the significant solutions to reach the target is increasing energy efficiency in the lighting system in the residential sector. The objective of this paper is twofold, to estimate the potency of energy saving and emission reduction from lighting in the residential sector. Literature related to the lighting system in Indonesia has been reviewed to provide sufficient data for the estimation of the energy saving and emission reduction. The results show that the in the year 2016, a total of 95.33 TWh of nationally produced electricity is used in the residential sector. This is equal to 44% of total produced electricity. The number of costumers is 64.78 million houses. The average number of lamps and average wattage of lamps used in Indonesia are 8.35 points and 13.8 W, respectively. The number of lighting and percentage of electricity used for lighting in the residential sector in Indonesia are 20.03 TWh (21.02 %) and 497 million lamps, respectively. The projection shows that in the year 2026 the total energy for lighting and number of lamps in the residential sector are 25.05 TWh and 619 million, respectively. By promoting the present technology of high efficient lamps (LED), the potency of energy saving and emission reduction in 2026 are 2.6 TWh and 2.1 million tons CO2eq, respectively.
NASA Astrophysics Data System (ADS)
Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.
2009-08-01
In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.
Evidence for lightning on Venus
NASA Technical Reports Server (NTRS)
Strangeway, R. J.
1992-01-01
Lightning is an interesting phenomenon both for atmospheric and ionospheric science. At the Earth lightning is generated in regions where there is strong convection. Lightning also requires the generation of large charge-separation electric fields. The energy dissipated in a lightning discharge can, for example, result in chemical reactions that would not normally occur. From an ionospheric point of view, lightning generates a broad spectrum of electromagnetic radiation. This radiation can propagate through the ionosphere as whistler mode waves, and at the Earth the waves propagate to high altitudes in the plasmasphere where they can cause energetic particle precipitation. The atmosphere and ionosphere of Venus are quite different from those on the Earth, and the presence of lightning at Venus has important consequences for our knowledge of why lightning occurs and how the energy is dissipated in the atmosphere and ionosphere. As discussed here, it now appears that lightning occurs in the dusk local time sector at Venus.
Lee, Ji Eun; Ahn, Ki Su; Park, Keun Heung; Pak, Kang Yeun; Kim, Hak Jin; Byon, Ik Soo; Park, Sung Who
2017-05-30
The discrepancy in the choroidal circulation between anatomy and function has remained unsolved for several decades. Postmortem cast studies revealed extensive anastomotic channels, but angiographic studies indicated end-arterial circulation. We carried out experimental fat embolism in cats and electric circuit simulation. Perfusion defects were observed in two categories. In the scatter perfusion defects suggesting an embolism at the terminal arterioles, fluorescein dye filled the non-perfused lobule slowly from the adjacent perfused lobule. In the segmental perfusion defects suggesting occlusion of the posterior ciliary arteries, the hypofluorescent segment became perfused by spontaneous resolution of the embolism without subsequent smaller infarction. The angiographic findings could be simulated with an electric circuit. Although electric currents flowed to the disconnected lobule, the level was very low compared with that of the connected ones. The choroid appeared to be composed of multiple sectors with no anastomosis to other sectors, but to have its own anastomotic arterioles in each sector. Blood flows through the continuous choriocapillaris bed in an end-arterial nature functionally to follow a pressure gradient due to the drainage through the collector venule.
Huo, Hong; Zhang, Qiang; Guan, Dabo; Su, Xin; Zhao, Hongyan; He, Kebin
2014-12-16
Two important reasons for China's air pollution are the high emission factors (emission per unit of product) of pollution sources and the high emission intensity (emissions per unit of GDP) of the industrial structure. Therefore, a wide variety of policy measures, including both emission abatement technologies and economic adjustment, must be implemented. To support such measures, this study used the production- and consumption-based emissions accounting approaches to simulate the SO2, NOx, PM2.5, and VOC emissions flows among producers and consumers. This study analyzed the emissions and GDP performance of 36 production sectors. The results showed that the equipment, machinery, and devices manufacturing and construction sectors contributed more than 50% of air pollutant emissions, and most of their products were used for capital formation and export. The service sector had the lowest emission intensities, and its output was mainly consumed by households and the government. In China, the emission intensities of production activities triggered by capital formation and export were approximately twice that of the service sector triggered by final consumption expenditure. This study suggests that China should control air pollution using the following strategies: applying end-of-pipe abatement technologies and using cleaner fuels to further decrease the emission factors associated with rural cooking, electricity generation, and the transportation sector; continuing to limit highly emission-intensive but low value-added exports; developing a plan to reduce construction activities; and increasing the proportion of service GDP in the national economy.
SAID-SAPS Paradigm: Beliefs and Reality
NASA Astrophysics Data System (ADS)
Mishin, E. V.
2016-12-01
Enhanced westward flows are the dominant feature of the plasma convection in the perturbed subauroral geospace. These include latitudinally-narrow "polarization jets" (PJ) or "subauroral ion drifts" (SAID) observed mainly in the premidnight MLT sector and broad flow channels on the duskside. The generic term "sub-auroral polarization streams" (SAPS) was introduced to unite both (narrow and broad) flows, taking for granted that their underlying mechanisms are quite similar, if not the same. The concept of voltage and current generators is believed to explain the SAPS major features. The generator paradigm treats hot, ≥1 keV, plasma sheet (PS) particles as single (test) particles driven by the dawn-to-dusk and co-rotation electric fields and gradient-curvature drift disregarding charge neutrality and concomitant polarization fields, inherent in slow plasma processes. In this approach, the inner boundary of the hot ion trajectories on the duskside extends earthward of that of the PS electrons by some distance increasing toward dusk. However, magnetically conjugate observations in the evening sector reveal that the generator paradigm fails to explain the substorm SAID features and that they are rather explained in terms of a short-circuiting of substorm-injected hot plasma jets over the plasmapause. This report presents multispacecraft magnetically conjugate observations of substorm-enhanced flows on the duskside showing that their features are hardly compatible with the (test particle) generator paradigm. It is suggested that they are causally related to the two-loop system of the westward traveling surge.
NASA Astrophysics Data System (ADS)
Almansour, Faris Abdullah
The advantages of Renewable Energy Sources (RES) are much more than the disadvantages, RES such as solar, wind energy, biomass, and geothermal, which can be used for generating distributed power but cannot directly replace the existing electric energy grid technologies. The latter are far too well established to abandon, while the new RES technologies are not sufficiently developed to meet the total energy demand. Therefore, it is sensible to gradually infuse RES into existing grids and transform the system over time Saudi Arabia (SA) is a semi-developed nation with a population of over twenty nine million people. It is the largest country in western Asia with an area of 2.225MKm2. SA's largest export is oil, owning 1/5 of the world's supply, and producing twelve million barrels a day. However, SA is far behind in developing a smart grid and RES. A lot of this is to do with lack of participation by both the government and the private business sector. Currently SA spends over $13B a year on generating electricity from oil. SA is the largest consumer of petroleum in the Middle East, due to the high demand for transportation and electricity generation. According to the Saudi electrical company, the total amount of generated power in 2011 was 190.280GW. In addition, SA's electricity consumption is currently growing 8% a year. SA aims to generate 55GW of renewable energy by 2020, in order to free up fossil fuels for export. 41GW of the 55GW will be generated from solar energy. Smart grid technologies are also under consideration in SA; this will allow an efficient and reliable way to control the energy in the future. In addition, the potential for wind and geothermal energy is very high. In this thesis, there is a full exploration of RES components which are critical to manage carbon emission and the limitations of the current grid to the new RES technologies, which face barriers to full-scale deployment. A study in Dhahran, SA has been simulated on a installing a Dual-Tariff PV system using HOMER. The result of the simulation has been discussed, analyzed, and plotted. We also give evidence in the thesis how useful the small PV systems can be as oppose to the larger scale system that must deal with location issues.
Informed public choices for low-carbon electricity portfolios using a computer decision tool.
Mayer, Lauren A Fleishman; Bruine de Bruin, Wändi; Morgan, M Granger
2014-04-01
Reducing CO2 emissions from the electricity sector will likely require policies that encourage the widespread deployment of a diverse mix of low-carbon electricity generation technologies. Public discourse informs such policies. To make informed decisions and to productively engage in public discourse, citizens need to understand the trade-offs between electricity technologies proposed for widespread deployment. Building on previous paper-and-pencil studies, we developed a computer tool that aimed to help nonexperts make informed decisions about the challenges faced in achieving a low-carbon energy future. We report on an initial usability study of this interactive computer tool. After providing participants with comparative and balanced information about 10 electricity technologies, we asked them to design a low-carbon electricity portfolio. Participants used the interactive computer tool, which constrained portfolio designs to be realistic and yield low CO2 emissions. As they changed their portfolios, the tool updated information about projected CO2 emissions, electricity costs, and specific environmental impacts. As in the previous paper-and-pencil studies, most participants designed diverse portfolios that included energy efficiency, nuclear, coal with carbon capture and sequestration, natural gas, and wind. Our results suggest that participants understood the tool and used it consistently. The tool may be downloaded from http://cedmcenter.org/tools-for-cedm/informing-the-public-about-low-carbon-technologies/ .
The role of capital costs in decarbonizing the electricity sector
NASA Astrophysics Data System (ADS)
Hirth, Lion; Steckel, Jan Christoph
2016-11-01
Low-carbon electricity generation, i.e. renewable energy, nuclear power and carbon capture and storage, is more capital intensive than electricity generation through carbon emitting fossil fuel power stations. High capital costs, expressed as high weighted average cost of capital (WACC), thus tend to encourage the use of fossil fuels. To achieve the same degree of decarbonization, countries with high capital costs therefore need to impose a higher price on carbon emissions than countries with low capital costs. This is particularly relevant for developing and emerging economies, where capital costs tend to be higher than in rich countries. In this paper we quantitatively evaluate how high capital costs impact the transformation of the energy system under climate policy, applying a numerical techno-economic model of the power system. We find that high capital costs can significantly reduce the effectiveness of carbon prices: if carbon emissions are priced at USD 50 per ton and the WACC is 3%, the cost-optimal electricity mix comprises 40% renewable energy. At the same carbon price and a WACC of 15%, the cost-optimal mix comprises almost no renewable energy. At 15% WACC, there is no significant emission mitigation with carbon pricing up to USD 50 per ton, but at 3% WACC and the same carbon price, emissions are reduced by almost half. These results have implications for climate policy; carbon pricing might need to be combined with policies to reduce capital costs of low-carbon options in order to decarbonize power systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, James; Mileva, Ana; Johnston, Josiah
2014-01-01
This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to themore » present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.« less
NASA Astrophysics Data System (ADS)
Ramos, Eunice; Sridharan, Vignesh; Howells, Mark
2017-04-01
The distribution of resources in Nicaragua is not even, as it is the case in many countries in the world. However, in the particular case of water resources, commonly used by different sectors and essential to basic human activities, their availability differs along the main drainage basins and is often mismatched with sectoral demands. For example, the population is distributed unevenly, with 80% being located in water scarce areas of the Pacific and Central region of Nicaragua. Agricultural activities also take place in regions where water resources are vulnerable. The spatial distribution of water and energy resources, population and land use in Nicaragua allowed for the identification of three target regions for the analysis: the Pacific coast, the Dry Corridor zone, and the Atlantic region. Each of these zones has different challenges on which the CLEWs assessment focused on. Water sources in the Pacific coast are mostly groundwater, and uncertainty exists related to the long-term availability of such source. This is also the region where most of the sugarcane, an important source of revenue for Nicaragua, is produced. As sugarcane needs to be irrigated, this increases the pressure on water resources. The Dry Corridor is an arid stretch in Central America cyclically affected by droughts that have a severe impact on the households whose economy and subsistence depends on agriculture of grains and coffee beans. It is expected that climate change will exacerbate further the food security problem. When water is lacking, also population experiences limited access to water for drinking and cooking. In addition, two major hydropower plants are located in this zone. Water resources are available both from surface and groundwater sources, however, due to their intensive use and vulnerability to climate, their availability can affect severely different sectors, presenting risks to food, water and energy security. Hydropower potential is foreseen to be exploited in the Matagalpa and Escondido River Basins draining to the Atlantic Ocean. Although competition for water resources in not as acute as in other regions due to abundant surface water and lower population density, climate change and the use of land for grazing could present risks to the exploitation of the renewable energy potential. This could have an impact on medium and long-term energy planning and the ambition of decreasing fuel imports for electricity generation and increase electricity access. To assess the potential implications of the previous challenges and provide insights on solutions where conflicts are more stringent, in line with sustainable development priorities, the CLEWs framework was used to perform the integration of resource systems models. WEAP was used for the representation of the water and land use systems, and then soft-linked with the energy systems model for Nicaragua, developed using the long-term energy planning tool OSeMOSYS. Hydropower expansion, the development of the electricity system, water availability for crop production, water allocation across sectors, sugarcane cultivation and bi-products use in electricity generation, and potential impacts of climate change, are amongst the issues investigated with the region-specific scenarios defined for the study.
The production of hydrogen fuel from renewable sources and its role in grid operations
NASA Astrophysics Data System (ADS)
Barton, John; Gammon, Rupert
Understanding the scale and nature of hydrogen's potential role in the development of low carbon energy systems requires an examination of the operation of the whole energy system, including heat, power, industrial and transport sectors, on an hour-by-hour basis. The Future Energy Scenario Assessment (FESA) software model used for this study is unique in providing a holistic, high resolution, functional analysis, which incorporates variations in supply resulting from weather-dependent renewable energy generators. The outputs of this model, arising from any given user-definable scenario, are year round supply and demand profiles that can be used to assess the market size and operational regime of energy technologies. FESA was used in this case to assess what - if anything - might be the role for hydrogen in a low carbon economy future for the UK. In this study, three UK energy supply pathways were considered, all of which reduce greenhouse gas emissions by 80% by 2050, and substantially reduce reliance on oil and gas while maintaining a stable electricity grid and meeting the energy needs of a modern economy. All use more nuclear power and renewable energy of all kinds than today's system. The first of these scenarios relies on substantial amounts of 'clean coal' in combination with intermittent renewable energy sources by year the 2050. The second uses twice as much intermittent renewable energy as the first and virtually no coal. The third uses 2.5 times as much nuclear power as the first and virtually no coal. All scenarios clearly indicate that the use of hydrogen in the transport sector is important in reducing distributed carbon emissions that cannot easily be mitigated by Carbon Capture and Storage (CCS). In the first scenario, this hydrogen derives mainly from steam reformation of fossil fuels (principally coal), whereas in the second and third scenarios, hydrogen is made mainly by electrolysis using variable surpluses of low-carbon electricity. Hydrogen thereby fulfils a double facetted role of Demand Side Management (DSM) for the electricity grid and the provision of a 'clean' fuel, predominantly for the transport sector. When each of the scenarios was examined without the use of hydrogen as a transport fuel, substantially larger amounts of primary energy were required in the form of imported coal. The FESA model also indicates that the challenge of grid balancing is not a valid reason for limiting the amount of intermittent renewable energy generated. Engineering limitations, economic viability, local environmental considerations and conflicting uses of land and sea may limit the amount of renewable energy available, but there is no practical limit to the conversion of this energy into whatever is required, be it electricity, heat, motive power or chemical feedstocks.
The impacts of meeting a tight CO2 performance standard on the electric power sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Donald; Schmalzer, David; Nichols, Christopher
This paper presents innovative modeling of complex interactions among gas-fired generators, coal-fired power plants, and renewables (wind and solar) when pushed hard to reduce CO2 emissions. A hypothetical CO2 technology performance standard, giving rise to a shadow price on CO2 emissions, was specified as part of the study design. In this work we see gas generation rapidly replacing coal generation. To understand the fate of coal based generation, it is important to examine trends at a granular level. An important feature of our model, the Electricity Supply and Investment Model (ESIM) is that it contains a unit inventory with unitmore » characteristics and a memory of how each unit is operated over time. Cycling damages that individual coal units incur are a function of cumulative wear and tear over time. The expected remaining life of a cycled coal unit will depend on the severity of the cycling and for how many years. Deteriorating operating characteristics of a cycled unit over time results in higher operating costs, slipping down the dispatch loading order, and hence an acceleration of cycling damage, that is, a viscous circle of decline. The rate of CFPP retirements will increase for lower gas prices, higher price on CO2 emissions, and greater penetration of variable and intermittent renewables. Published by Elsevier B.V.« less
NASA Astrophysics Data System (ADS)
Mohammed, Touseef Ahmed Faisal
Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source Distribution System Simulator developed by Electric Power Research Institute, to simulate grid voltage profile with a large scale PV system under quasi-static time series considering variations of PV output in seconds, minutes, and the average daily load variations. A 13 bus IEEE distribution feeder model is utilized with distributed residential and commercial scale PV at different buses for simulation studies. Time series simulations are discussed for various modes of operation considering dynamic PV penetration at different time periods in a day. In addition, this thesis demonstrates simulations taking into account the presence of moving cloud for solar forecasting studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.
2014-01-19
In this paper, we assess future water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors, by incorporating water demands into a technologically-detailed global integrated assessment model of energy, agriculture, and climate change – the Global Change Assessment Model (GCAM). Base-year water demands—both gross withdrawals and net consumptive use—are assigned to specific modeled activities in a way that maximizes consistency between bottom-up estimates of water demand intensities of specific technologies and practices, and top-down regional and sectoral estimates of water use. The energy, industrial, and municipal sectorsmore » are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. We assess future water demands representing six socioeconomic scenarios, with no constraints imposed by future water supplies. The scenarios observe increases in global water withdrawals from 3,578 km3 year-1 in 2005 to 5,987 – 8,374 km3 year-1 in 2050, and to 4,719 – 12,290 km3 year-1 in 2095. Comparing the projected total regional water withdrawals to the historical supply of renewable freshwater, the Middle East exhibits the highest levels of water scarcity throughout the century, followed by India; water scarcity increases over time in both of these regions. In contrast, water scarcity improves in some regions with large base-year electric sector withdrawals, such as the USA and Canada, due to capital stock turnover and the almost complete phase-out of once-through flow cooling systems. The scenarios indicate that: 1) water is likely a limiting factor in climate change mitigation policies, 2) many regions can be expected to increase reliance on non-renewable groundwater, water reuse, and desalinated water, but they also highlight an important role for development and deployment of water conservation technologies and practices.« less
Environmental pollution as engine of industrialization
NASA Astrophysics Data System (ADS)
Antoci, Angelo; Galeotti, Marcello; Sordi, Serena
2018-05-01
This paper analyzes the dynamics of a small open economy with two sectors (a farming sector and an industrial one), heterogeneous agents (workers and entrepreneurs) and free inter-sectoral labor mobility. Labor productivity in the first sector is negatively affected by environmental pollution generated by both sectors, whereas in the second sector it is positively affected by physical capital accumulated by entrepreneurs. Through a global analysis of the non-linear three-dimensional dynamic system of the model we derive conditions under which industrialization generates a decline in workers' revenues in both sectors.
NASA Astrophysics Data System (ADS)
Rhodes, James S., III
2007-12-01
Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("MtC"), equivalent to roughly 3% of U.S. GHG emissions. In the medium or longer term, integration of carbon capture and storage technologies with advanced bio-energy conversion technologies ("biomass-CCS"), in both liquid fuels production and electric sector applications, will likely be feasible. These systems are capable of generating useful energy products with negative net atmospheric carbon emissions at carbon prices between 100 and 200 per tC. Negative emissions from biomass-CCS could be applied to offset emissions sources that are difficult or expensive to abate directly. Such indirect mitigation may prove cost competitive and provide important flexibility in achieving stabilization of atmospheric GHG concentrations at desirable levels. With increasing deployments, alternate bio-energy systems will eventually compete for limited biomass resources and inputs to agricultural production--particularly land. In this context, resource allocation decisions will likely turn on the relative economic performance of alternate bio-energy systems in their respective energy markets. The relatively large uncertainty in forecasts of energy futures confounds reliable prediction of economically efficient uses for available biomass resources. High oil prices or large valuation of energy security benefits will likely enable bio-fuels production to dominate electric-sector options. In contrast, low oil prices and low valuation of energy security benefits will likely enable electric-sector applications to dominate. In the latter scenario, indirect mitigation of transportation-sector emissions via emissions offsets from electric-sector biomass-CCS could prove more efficient than direct fuel substitution with biofuels, both economically and in terms of the transportation-sector mitigation of available biomass resources [tC tbiomass-1]. The policy environment surrounding industrial bio-energy development is systematically examined. Specifically, the policy objectives that may be advanced with bio-energy and the challenges constraining deployment are examined to understand the extent to which public policy support is justified to accelerate development. Policy frameworks and specific policy instruments that have been proposed or enacted to support industrial bio-energy are evaluated to understand their current and potential future roles in shaping bio-energy development. This analysis indicates that deployment of industrial bio-energy systems to advance specified policy objectives has been compromised by inefficient and inconsistent public policies. Amending existing policies could substantially accelerate bio-energy deployment. More generally, public policies that set even prices across the economy for advancing targeted policy objectives should be developed. Industrial bio-energy systems can be expected to compete favorably in the context of such policies, including those valuing deep reductions in anthropogenic GHG emissions.
Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.
Tiwary, Abhishek; Colls, Jeremy
2010-01-01
This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seel, Joachim; Mills, Andrew D.; Wiser, Ryan H.
Increasing penetrations of variable renewable energy (VRE) can affect wholesale electricity price patterns and make them meaningfully different from past, traditional price patterns. Many long-lasting decisions for supply- and demand-side electricity infrastructure and programs are based on historical observations or assume a business-as-usual future with low shares of VRE. Our motivating question is whether certain electric-sector decisions that are made based on assumptions reflecting low VRE levels will still achieve their intended objective in a high VRE future. We qualitatively describe how various decisions may change with higher shares of VRE and outline an analytical framework for quantitatively evaluating themore » impacts of VRE on long-lasting decisions. We then present results from detailed electricity market simulations with capacity expansion and unit commitment models for multiple regions of the U.S. for low and high VRE futures. We find a general decrease in average annual hourly wholesale energy prices with more VRE penetration, increased price volatility and frequency of very low-priced hours, and changing diurnal price patterns. Ancillary service prices rise substantially and peak net-load hours with high capacity value are shifted increasingly into the evening, particularly for high solar futures. While in this report we only highlight qualitatively the possible impact of these altered price patterns on other demand- and supply-side electric sector decisions, the core set of electricity market prices derived here provides a foundation for later planned quantitative evaluations of these decisions in low and high VRE futures.« less
Renewable energy scenario in India: Opportunities and challenges
NASA Astrophysics Data System (ADS)
Sen, Souvik; Ganguly, Sourav; Das, Ayanangshu; Sen, Joyjeet; Dey, Sourav
2016-10-01
Majority of the power generation in India is carried out by conventional energy sources, coal and fossil fuels being the primary ones, which contribute heavily to greenhouse gas emission and global warming. The Indian power sector is witnessing a revolution as excitement grips the nation about harnessing electricity from various renewable energy sources. Electricity generation from renewable sources is increasingly recognized to play an important role for the achievement of a variety of primary and secondary energy policy goals, such as improved diversity and security of energy supply, reduction of local pollutant and global greenhouse gas emissions, regional and rural development, and exploitation of opportunities for fostering social cohesion, value addition and employment generation at the local and regional level. This focuses the solution of the energy crisis on judicious utilization of abundant the renewable energy resources, such as biomass, solar, wind, geothermal and ocean tidal energy. This paper reviews the renewable energy scenario of India as well as extrapolates the future developments keeping in view the consumption, production and supply of power. Research, development, production and demonstration have been carried out enthusiastically in India to find a feasible solution to the perennial problem of power shortage for the past three decades. India has obtained application of a variety of renewable energy technologies for use in different sectors too. There are ample opportunities with favorable geology and geography with huge customer base and widening gap between demand and supply. Technological advancement, suitable regulatory policies, tax rebates, efficiency improvement in consequence to R&D efforts are the few pathways to energy and environment conservation and it will ensure that these large, clean resource bases are exploited as quickly and cost effectively as possible. This paper gives an overview of the potential renewable energy resources in Indian context while evaluating the present status, the energy demand of the country and forecast consumption and production, with the objective to evaluate and assess whether India can sustain its growth and its society with renewable resources.
NASA Astrophysics Data System (ADS)
Sohnen, Julia Meagher
This thesis explores the implications of the increased adoption of plug-in electric vehicles in California through its effect on the operation of the state's electric grid. The well-to-wheels emissions associated with driving an electric vehicle depend on the resource mix of the electricity grid used to charge the battery. We present a new least-cost dispatch model, EDGE-NET, for the California electricity grid consisting of interconnected sub-regions that encompass the six largest state utilities that can be used to evaluate the impact of growing electric vehicle demand on existing power grid infrastructure system and energy resources. This model considers spatiality and temporal dynamics of energy demand and supply when determining the regional impacts of additional charging profiles on the current electricity network. Model simulation runs for one year show generation and transmission congestion to be reasonable similar to historical data. Model simulation results show that average emissions and system costs associated with electricity generation vary significantly by time of day, season, and location. Marginal cost and emissions also exhibit seasonal and diurnal differences, but show less spatial variation. Sensitivity of demand analysis shows that the relative changes to average emissions and system costs respond asymmetrically to increases and decreases in electricity demand. These results depend on grid mix at the time and the marginal power plant type. In minimizing total system cost, the model will choose to dispatch the lowest-cost resource to meet additional vehicle demand, regardless of location, as long as transmission capacity is available. Location of electric vehicle charging has a small effect on the marginal greenhouse gas emissions associated with additional generation, due to electricity losses in the transmission grid. We use a geographically explicit, charging assessment model for California to develop and compare the effects of two charging profiles. Comparison of these two basic scenarios points to savings in greenhouse gas emissions savings and operational costs from delayed charging of electric vehicles. Vehicle charging simulations confirm that plug-in electric vehicles alone are unlikely to require additional generation or transmission infrastructure. EDGE-NET was successfully benchmarked against historical data for the present grid but additional work is required to expand the model for future scenario evaluation. We discuss how the model might be adapted for high penetrations of variable renewable energy resources, and the use of grid storage. Renewable resources such as wind and solar vary in California vary significantly by time-of-day, season, and location. However, combination of multiple resources from different geographic regions through transmission grid interconnection is expected to help mitigate the impacts of variability. EDGE-NET can evaluate interaction of supply and demand through the existing transmission infrastructure and can identify any critical network bottlenecks or areas for expansion. For this reason, EDGE-NET will be an important tool to evaluate energy policy scenarios.
Priority economic sector and household income in Indonesia (an analysis of input output)
NASA Astrophysics Data System (ADS)
Subanti, S.; Mulyanto; Hakim, A. R.; Mafruhah, I.; Hakim, I. M.
2018-03-01
This purpose of study aims to identify the roles of priority economic sectors on household incomes in Indonesia. Analyse in this paper used nine economic sectors, that representing result of classification from input output table. This study found that (1) priority economic sector are manufacturing sector & trade hotel and restaurant; (2) sector that have looking forward orientation included agriculture, mining & quarrying, and financial ownership & business services; and (3) electricity, gas, and water supply sector give the biggest impact to household income in Indonesia. The suggestion that policies aimed at increasing productivity and raising skills while encouraging individual participation in the formal labour market are essential.
40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors
Code of Federal Regulations, 2011 CFR
2011-07-01
... Trailers ELECTRONIC EQUIPMENT Communications Equipment Connectors for Electronic Applications Electric... Blades Hardware Heating Equipment, Except Electric Industrial Furnaces & Ovens Iron & Steel Forgings.... & Inst. Elec. Lighting Fixtures Current-Carrying Wiring Devices Electirc Housewares & Fans Electric Lamps...
40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors
Code of Federal Regulations, 2010 CFR
2010-07-01
... Trailers ELECTRONIC EQUIPMENT Communications Equipment Connectors for Electronic Applications Electric... Blades Hardware Heating Equipment, Except Electric Industrial Furnaces & Ovens Iron & Steel Forgings.... & Inst. Elec. Lighting Fixtures Current-Carrying Wiring Devices Electirc Housewares & Fans Electric Lamps...
The Federal electric and hybrid vehicle program
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1980-01-01
The commercial development and use of electric and hybrid vehicles is discussed with respect to its application as a possible alternative transportation system. A market demonstration is described that seeks to place 10,000 electric hybrid vehicles into public and private sector demonstrations.
Lorenzon, Alexandre Simões; Ribeiro, Carlos Antonio Alvares Soares; Dos Santos, Alexandre Rosa; de Castro, Nero Lemos Martins; Marcatti, Gustavo Eduardo; Domingues, Getulio Fonseca; Teixeira, Thaisa Ribeiro; Silva, Elias; Soares, Vicente Paulo; Menezes, Sady Júnior Martins da Costa de; de Almeida Telles, Lucas Arthur; Mota, Pedro Henrique Santos
2018-07-01
Over the past few years, many sectors such as energy generation, industry, domestic supply, and agriculture have encountered serious environmental problems due to the lack of rainfall. Thus, the purpose of this paper is to review the current methodology of royalties distribution from Itaipu hydroelectric plant. In the proposed approach, two criteria were considered to establish the division of Itaipu royalties: (1) the relative percentage of the water flow in the generation of electricity and, (2) the relative percentage of the drop in the height of water. 62 hydroelectric plants were evaluated in this study. In 52 plants the water flow was the factor that most contributed to the generation of electricity. In 2013, 346 municipalities benefited the Itaipu royalties. With the proposed methodology, 1,327 municipalities will receive the resource, what would increase the revenue of each of these municipalities by, on average, US$ 87,436.91 per year. The methodology presented herein proposes a reduction in the environmental disparity that now exists in Brazil, through improvement to Government instruments and environmental policies. The distribution of royalties throughout the watershed can provide additional resources to support payment programs for environmental services at the state and municipality levels. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Comprehensive System of Energy Intensity Indicators for the U.S.: Methods, Data and Key Trends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, David B.
2014-08-31
This report describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a version of the Log Mean Divisia Index (LMDI) method. Based upon themore » data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2010 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economy—residential, commercial, industrial, and transportation—is presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.« less
Lu, Xi; McElroy, Michael B; Wu, Gang; Nielsen, Chris P
2012-07-17
Emissions of sulfur dioxide (SO(2)) from the U.S. power sector decreased by 24% in 2009 relative to 2008. The Logarithmic Mean Divisia Index (LMDI) approach was applied to isolate the factors responsible for this decrease. It is concluded that 15% of the decrease can be attributed to the drop in demand for electricity triggered by the economic recession, and 28% can be attributed to switching of fuel from coal to gas responding to the decrease in prices for the latter. The largest factor in the decrease, close to 57%, resulted from an overall decline in emissions per unit of power generated from coal. This is attributed in part to selective idling of older, less efficient coal plants that generally do not incorporate technology for sulfur removal, and in part to continued investments by the power sector in removal equipment in response to the requirements limiting emissions imposed by the U.S. Environmental Protection Agency (U.S. EPA). The paper argues further that imposition of a modest tax on emissions of carbon would have ancillary benefits in terms of emissions of SO(2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, David B.; Bender, Sadie R.; Cort, Katherine A.
This report provides an update to a previously published (Rev 1) report that describes a comprehensive system of energy intensity indicators for the United States that has been developed for the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) over the past decade. This system of indicators is hierarchical in nature, beginning with detailed indexes of energy intensity for various sectors of the economy, which are ultimately aggregated to an overall energy intensity index for the economy as a whole. The aggregation of energy intensity indexes to higher levels in the hierarchy is performed with a versionmore » of the Log Mean Divisia index (LMDI) method. Based upon the data and methods in the system of indicators, the economy-wide energy intensity index shows a decline of about 14% in 2011 relative to a 1985 base year. Discussion of energy intensity indicators for each of the broad end-use sectors of the economy—residential, commercial, industrial, and transportation—is presented in the report. An analysis of recent changes in the efficiency of electricity generation in the U.S. is also included. A detailed appendix describes the data sources and methodology behind the energy intensity indicators for each sector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Sabaa, S.M.
1992-01-01
This study is concerned with the efficiency of World Bank projects in Egypt. The study seeks improvements in the methods of evaluating public sector projects in Egypt. To approaches are employed: (1) project identification to optimally allocate Egypt's and World Bank's resources; (2) project appraisal to assess the economic viability and efficiency of investments. The electricity sector is compared with the agriculture sector as a means of employing project identification for priority ordering of investment for development in Egypt. The key criteria for evaluation are the impacts of developments of each sector upon Egypt's national objectives and needs. These includemore » employment opportunities, growth, alleviation of poverty, cross comparison of per capita consumption in each sector, economic rate of return, national security, balance of payments and foreign debt. The allocation of scarce investments would have been more efficient in agriculture than in electricity in meeting Egypt's national objectives and needs. World Bank lending programs in Egypt reveal a priority ordering of electricity over agriculture and rural development. World Bank development projects in Egypt have not been optimally identified, and its programs have not followed an efficient allocation of World Bank's and Egypt's resources. The key parameters in evaluating economic viability and efficiency of development projects are: (1) the discount rate (the opportunity cost of public funds); (2) the exchange rate; and (3) the cost of major inputs, as approximated by shadow prices of labor, water, electricity, and transportation for development projects. Alternative approaches to estimating the opportunity cost of public funds are made. The parameters in evaluating the efficiency of projects have not been accurately estimated in the appraisal stage of the World Bank projects in Egypt, resulting in false or misleading information concerning the economic viability and efficiency of the projects.« less
NASA Astrophysics Data System (ADS)
Pandey, Kuldeep; Sekar, R.; Anandarao, B. G.; Gupta, S. P.; Chakrabarty, D.
2018-03-01
Studies made earlier using ground-based observations of geomagnetic field over the Indian longitudes revealed that the occurrence of equatorial counter electrojet (CEJ) events in afternoon hours is more frequent during June solstice (May-June-July-August) in solar minimum than in other periods. In general, the June solstice solar minimum CEJ events occur between 1500 local time (LT) and 1800 LT with peak strength of about -10 nT at around 1600 LT. In order to understand the frequent occurrence of these CEJ events, an investigation is carried out using an equatorial electrojet model (Anandarao, 1976, https://doi.org/10.1029/GL003i009p00545) and the empirical vertical drift model by Fejer et al. (2008, https://doi.org/10.1029/2007JA012801). The strength, duration, peak value, and the occurrence time of CEJ obtained using electrojet model match remarkably well with the corresponding observation of average geomagnetic field variations. The occurrence of CEJ is found to be due to solar quiet (Sq) electric field in the westward direction which is manifested as downward drift in Fejer et al. (2008, https://doi.org/10.1029/2007JA012801) model output during 1500-1800 LT. Further, the occurrence of afternoon reversal of Sq electric field in this season is shown to be consistent with earlier studies from Indian sector. Therefore, this investigation provides explicit evidence for the role of westward Sq electric field on the generation of afternoon CEJ during June solstice in solar minimum periods over the Indian sector indicating the global nature of these CEJ events.
Carbon Management in the Electric Power Industry
NASA Astrophysics Data System (ADS)
Stringer, John
2002-03-01
Approximately 53States in 2000 came from the combustion of coal in Rankine cycle plant; 16principally in Brayton cycle or combined cycle units. Electricity generation is responsible for 36amthropogenic CO2. This compares with 32transportation sector, but since the electric utility generators are large fixed sources it is likely that any legislation designed to reduce CO2 production will adress the utility generators first. Over the last 100 years there has been a continuous decrease in the carbon fraction of the fuels used for energy production world wide, and it is expected that this will continue, principally as a result of the increasing fraction of natural gas. It appears probable that the retirement of the existing nuclear fleet will be delayed by relicensing, and it seems more possible that new nuclear plant will be built than seemed likely even a couple of years ago. The impact of renewables should be increasing, but currently only about 2way currently, and without some considerable incentives, the rate of increase in this component over the next twenty years will probably be small. Currently, hydroelectric plants account for 7indication that this will increase appreciably. At the moment, a significant change would appear to require the capture of CO2 from the exhaust of the combustion plants, and particularly the large existing fleet of coal-fired Rankine units. Following the capture, the CO2 must then be sequestered in secure long-term locations. In addition, increases in the efficiency of power generation, and increases in the efficiency of end use leading to reductions in the energy intensity of the Gross Domestic Product, will be necessary. This paper will review the current state of art in these various approaches to the problem.
NASA Astrophysics Data System (ADS)
Cardenas, Jesus Alvaro
An energy and environmental crisis will emerge throughout the world if we continue with our current practices of generation and distribution of electricity. A possible solution to this problem is based on the Smart grid concept, which is heavily influenced by Information and Communication Technology (ICT). Although the electricity industry is mostly regulated, there are global models used as roadmaps for Smart Grids' implementation focusing on technologies and the basic generation-distribution-transmission model. This project aims to further enhance a business model for a future global deployment. It takes into consideration the many factors interacting in this energy provision process, based on the diffusion of technologies and literature surveys on the available documents in the Internet as well as peer-reviewed publications. Tariffs and regulations, distributed energy generation, integration of service providers, consumers becoming producers, self-healing devices, and many other elements are shifting this industry into a major change towards liberalization and deregulation of this sector, which has been heavily protected by the government due to the importance of electricity for consumers. We propose an Energy Management Business Model composed by four basic elements: Supply Chain, Information and Communication Technology (ICT), Stakeholders Response, and the resulting Green Efficient Energy (GEE). We support the developed model based on the literature survey, we support it with the diffusion analysis of these elements, and support the overall model with two surveys: one for peers and professionals, and other for experts in the field, based on the Smart Grid Carnegie Melon Maturity Model (CMU SEI SGMM). The contribution of this model is a simple path to follow for entities that want to achieve environmental friendly energy with the involvement of technology and all stakeholders.
Electrification Opportunities in the Transportation Sector and Impact of Residential Charging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo
This presentation provides an overview of electrification opportunities in the transportation sector and present results of a study assessing the impact of residential charging on residential power demand and electric power distribution infrastructure.
The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Marnay, Chris; Cardoso, Goncalo
2009-11-16
The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP inmore » cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inland areas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.« less
Impact of Climate Change on Energy Demand in the Midwestern USA
NASA Astrophysics Data System (ADS)
Yan, M. B.; Zhang, F.; Franklin, M.; Kotamarthi, V. R.
2008-12-01
The impact of climate change on energy demand and use is a significant issue for developing future GHG emission scenarios and developing adaptation and mitigation strategies. A number of studies have evaluated the increase in GHG emissions as a result of changes in energy production from fossil fuels, but the consequences of climate change on energy consumption have not been the focus of many studies. Here we focus on the impacts of climate change on energy use at a regional scale using the Midwestern USA as a test. The paper presents results of analyzing energy use in response to ambient temperature changes in a 17-year period from 1989 to 2006 and projection of energy use under future climate scenarios (2010-2061). This study consisted of a two-step procedure. In the first step, sensitivity of historic energy demand, specifically electricity and natural gas in residential and commercial sectors (42% of end-use energy), with respect to many climatic and non-climatic variables was examined. State-specific regression models were developed to quantify the relationship between energy use and climatic variables using degree days. We found that model parameters and base temperatures for estimating heating and cooling days varied by state and energy sector, mainly depending on climate conditions, infrastructure, economic factors, and seasonal change in energy use. In the second step, we applied these models to predict future energy demand using output data generated by the Community Climate System Model (CCSM) for the SRES A1B scenario used in the IPCC AR-4. The annual demands of electricity and natural gas were predicted for each state from 2010 to 2061. The model results indicate that the average annual electricity demand will increase 3%-5% for the southern states and 1%-3% for the northern states in the region by 2061 and that the demand for natural gas is expected to be reduced in all states. A seasonal analysis of energy distribution in response to climate variables identifies a significant peak in demand in July-August (11%-16% in southern states and 6%-10% in the northern states). These findings suggest that the energy sector is vulnerable to climate change even in the northern Midwest region of the US. Furthermore, we demonstrate that a state-level assessment can help to better identify adaptation strategies for future regional energy sector changes.
Coal Transportation Rates to the Electric Power Sector
2015-01-01
The Energy Information Administration (EIA) releases new data on coal transportation rates to the electric power sector to incorporate new EIA survey data from the EIA-923. This expanded coverage enables EIA to publish data over numerous routes that were previously withheld due to confidentiality concerns. It allowed for more in-depth analysis especially for state to state rates. Another feature of this release is the incorporation – for the first time – of coal transport rates by barge and truck.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.; Zinaman, O.; Logan, J.
2012-12-01
Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.
NASA Astrophysics Data System (ADS)
Miara, A.; Vorosmarty, C. J.; Stewart, R.; Wollheim, W. M.; Rosenzweig, B.
2013-12-01
Major strategic issues facing the global thermoelectric sector include environmental regulation, climate change and increasing electricity demand. We have addressed such issues by modeling thermoelectric generation in the Northeastern United States that is reliant on cooling under five sensitivity tests to evaluate losses/gains in power production, thermal pollution and suitable aquatic habitat, comparing the contemporary baseline (2000-2010) with potential future states. Integral to the analysis, we developed a methodology to quantify river water availability for cooling, which we define as an ecosystem service. Projected climate conditions reduce river water available for efficient power plant operations and the river's capacity to absorb waste heat, causing a loss of regional thermoelectric generation (RTG) (2.5%) in some summers that, compared to the contemporary baseline, is equal to the summertime electricity consumption of 1.3 million Northeastern US homes. Vulnerabilities to warm temperatures and thermal pollution can be alleviated through the use of more efficient natural gas (NG) power plants that have a reduced reliance on cooling water. Conversion of once-through (OT) to cooling tower (CT) systems and the Clean Water Act (CWA) temperature limit regulation, both of which reduce efficiencies at the single plant level, show potential to yield beneficial increases in RTG. This is achieved by obviating the need for large volumes of river water, thereby reducing plant-to-plant interferences through lowering the impact of upstream thermal pollution and preserving a minimum standard of cooling water. The results and methodology framework presented here, which can be extrapolated to other regional assessments with contrasting climates and thermoelectric profiles, can identify opportunities and support decision-making to achieve more efficient energy systems and riverine ecosystem protection.
NASA Astrophysics Data System (ADS)
Miara, Ariel; Vörösmarty, Charles J.; Stewart, Robert J.; Wollheim, Wilfred M.; Rosenzweig, Bernice
2013-06-01
Major strategic issues facing the global thermoelectric sector include environmental regulation, climate change and increasing electricity demand. We have addressed such issues by modeling thermoelectric generation in the Northeastern United States that is reliant on cooling under five sensitivity tests to evaluate losses/gains in power production, thermal pollution and suitable aquatic habitat, comparing the contemporary baseline (2000-2010) with potential future states. Integral to the analysis, we developed a methodology to quantify river water availability for cooling, which we define as an ecosystem service. Projected climate conditions reduce river water available for efficient power plant operations and the river’s capacity to absorb waste heat, causing a loss of regional thermoelectric generation (RTG) (2.5%) in some summers that, compared to the contemporary baseline, is equal to the summertime electricity consumption of 1.3 million Northeastern US homes. Vulnerabilities to warm temperatures and thermal pollution can be alleviated through the use of more efficient natural gas (NG) power plants that have a reduced reliance on cooling water. Conversion of once-through (OT) to cooling tower (CT) systems and the Clean Water Act (CWA) temperature limit regulation, both of which reduce efficiencies at the single plant level, show potential to yield beneficial increases in RTG. This is achieved by obviating the need for large volumes of river water, thereby reducing plant-to-plant interferences through lowering the impact of upstream thermal pollution and preserving a minimum standard of cooling water. The results and methodology framework presented here, which can be extrapolated to other regional assessments with contrasting climates and thermoelectric profiles, can identify opportunities and support decision-making to achieve more efficient energy systems and riverine ecosystem protection.
40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors
Code of Federal Regulations, 2013 CFR
2013-07-01
... Applications Electric Lamps Electron Tubes Electronic Capacitors Electronic Coils & Transformers Electronic... Saws & Saw Blades Hardware Heating Equipment, Except Electric Industrial Furnaces & Ovens Iron & Steel.... & Inst. Elec. Lighting Fixtures Current-Carrying Wiring Devices Electirc Housewares & Fans Electric Lamps...
40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors
Code of Federal Regulations, 2012 CFR
2012-07-01
... Applications Electric Lamps Electron Tubes Electronic Capacitors Electronic Coils & Transformers Electronic... Saws & Saw Blades Hardware Heating Equipment, Except Electric Industrial Furnaces & Ovens Iron & Steel.... & Inst. Elec. Lighting Fixtures Current-Carrying Wiring Devices Electirc Housewares & Fans Electric Lamps...
NASA Astrophysics Data System (ADS)
Zhang, Li; Jabbari, Faryar; Brown, Tim; Samuelsen, Scott
2014-12-01
Plug-in electric vehicles (PEVs) shift energy consumption from petroleum to electricity for the personal transportation sector. This work proposes a decentralized charging protocol for PEVs with grid operators updating the cost signal. Each PEV calculates its own optimal charging profile only once based on the cost signal, after it is plugged in, and sends the result back to the grid operators. Grid operators only need to aggregate charging profiles and update the load and cost. The existing PEV characteristics, national household travel survey (NHTS), California Independent System Operator (CAISO) demand, and estimates for future renewable generation in California are used to simulate PEV operation, PEV charging profiles, grid demand, and grid net load (demand minus renewable). Results show the proposed protocol has good performance for overnight net load valley filling if the costs to be minimized are proportional to the net load. Annual results are shown in terms of overnight load variation and comparisons are made with grid level valley filling results. Further, a target load can be approached in the same manner by using the gap between current load and the target load as the cost. The communication effort involved is quite modest.
Climate Change Impacts on Peak Electricity Consumption: US vs. Europe.
NASA Astrophysics Data System (ADS)
Auffhammer, M.
2016-12-01
It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond. This finding is at odds with the relatively modest increase in climate driven impacts on consumption. Comprehensive high frequency load balancing authority level data have not been used previously to parameterize the relationship between electric demand and temperature for any major economy. Using statistical models we analyze multi-year data from load balancing authorities in the United States of America and the European Union, which are responsible for more than 90% of the electricity delivered to residential, industrial, commercial and agricultural customers. We couple the estimated response functions between total daily consumption and daily peak load with an ensemble of downscaled GCMs from the CMIP5 archive to simulate climate change driven impacts on both outcomes. We show moderate and highly spatially heterogeneous changes in consumption. The results of our peak load simulations, however, suggest significant changes in the intensity and frequency of peak events throughout the United States and Europe. As the electricity grid is built to endure maximum load, which usually occurs on the hottest day of the year, our findings have significant implications for the construction of costly peak generating and transmission capacity.
Ergonomics principles to design clothing work for electrical workers in Colombia.
Castillo, Juan; Cubillos, A
2012-01-01
The recent development of the Colombian legislation, have been identified the need to develop protective clothing to work according to specifications from the work done and in compliance with international standards. These involve the development and design of new strategies and measures for work clothing design. In this study we analyzes the activities of the workers in the electrical sector, the method analyzes the risks activity data in various activities, that activities include power generation plants, local facilities, industrial facilities and maintenance of urban and rural networks. The analyses method is focused on ergonomic approach, risk analysis is done, we evaluate the role of security expert and we use a design algorithm developed for this purpose. The result of this study is the identification of constraints and variables that contribute to the development of a model of analysis that leads to the development the work protective clothes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fell, Harrison; Kaffine, Daniel; Steinberg, Daniel
We investigate the role of energy efficiency in rate-based emissions intensity standards, a particularly policy-relevant consideration given that the Environmental Protection Agency's Clean Power Plan allows crediting of electricity savings as a means of complying with state-specific emissions standards. We show that with perfectly inelastic energy services demand, crediting efficiency measures can recover the first-best allocation. However, when demand for energy services exhibits some elasticity, crediting energy efficiency can no longer recover first-best. While crediting removes the relative distortion between energy generation and energy efficiency, it distorts the absolute level of energy services. Building on these results, we derive themore » conditions determining the second-best intensity standard and crediting rule. Simulations calibrated to the electricity sector in Texas find that while some form of crediting is generally welfare-improving, the proposed one-for-one crediting of energy savings is unlikely to achieve efficient outcomes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammons, T.
The 1994 World Electricity Conference was held in London, England, November 7--8, 1994. This year it shifted its focus to an examination of the firm advance in power sector restructuring across Europe, from Scandinavia to the Mediterranean and the Iberian Peninsula. Its speakers examined the rapid progress being made in the introduction of cooperation and competition within the continent`s electricity supply industry. Delegates heard news from Eastern Europe on the drive to improve energy efficiency across the region as part of the region`s program of priorities for the power industry. In North America, California`s progressive deregulation program was highlighted, andmore » the opening up of the power equipment supply market in both the US and Europe post-GATT was discussed. The meeting also featured papers on new fuels and new technologies in power generation where developments in superconductivity, biomass, combined heat and power, and in fuel cells were evaluated.« less
Carbon footprint of electronic devices
NASA Astrophysics Data System (ADS)
Sloma, Marcin
2013-07-01
Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.
Regulation of international energy markets: Economic effects of political actions
NASA Astrophysics Data System (ADS)
Shcherbakova, Anastasia V.
Recent increases in volatility of energy prices have led many governments to reevaluate their regard of national energy reserves and reconsider future exploration, production, and consumption patterns. The flurry of activity that has been generated by such price volatility has included large-scale nationalizations of energy sectors, unilateral renegotiations of foreign energy development contracts, and expropriations of resources from foreign energy firms on one hand, and on the other hand more rapid energy sector liberalization, intensified search for and development of renewable fuels and technologies, and development of incentives for increased energy efficiency and conservation. The aim of this dissertation is to examine and quantify the extent of positive and negative effects that have resulted from some of these activities. The first chapter focuses on quantifying the effect that nationalistic sentiment has had on economic attractiveness of energy sectors during the decade prior to the recent global economic crisis, as measured by foreign direct investment (FDI) inflows. Empirical results demonstrate that both political and economic conditions play an important role in investors' decisions. A combination of investment friendliness, corruption levels, and democracy all help to explain the trends in energy-sector investment levels over time in my sample countries, although differences in the types of corruption existing in these nations do not. Investment levels, in turn, appear to influence future levels of oil production, underscoring the significance of good investment policies for future success of energy sectors. Chapter two considers the response of energy stock prices to severe regulatory actions. It employs an event study framework to examine causal effects of critical informational announcements (i.e. events of expropriation and nationalization) on daily returns and cumulative losses in firm value of energy corporations. Results show that a firm's participation in a regulated market results in an average decline in its stock returns of up to 50 basis points per day, and a cumulative loss of more than 3.5% of its market value. Negative shocks to securities returns persist for at least two months. Participation in a regulated market, however, is not always unfavorable, as involved firms not directly targeted by regulatory action appear to gain sizable risk premiums. Additional evidence suggests that, although there is no direct linear relationship between firm size and effect magnitude, large firms tend to be hurt more in the short term, while small firms suffer bigger declines in returns over a longer time period. The last chapter turns to global electricity sectors to examine the development of Demand Response (DR) programs, which have become popular means of addressing the sector's central market failure of pricing below marginal generation cost. DR programs incorporate demand signals into retail electricity rates, and have the potential to effectively and inexpensively improve grid reliability and increase end-use efficiency. However, DR faces many challenges, arguably the most important of which is a general lack of information among consumers regarding usage levels and existence of alternative providers and rate plans. Financial considerations, lack of access to technological infrastructure, and misaligned producer incentives also play an important role in DR's limited success.
Analyzing interaction of electricity markets and environmental policies using equilibrium models
NASA Astrophysics Data System (ADS)
Chen, Yihsu
Around the world, the electric sector is evolving from a system of regulated vertically-integrated monopolies to a complex system of competing generation companies, unregulated traders, and regulated transmission and distribution. One emerging challenge faced by environmental policymakers and electricity industry is the interaction between electricity markets and environmental policies. The objective of this dissertation is to examine these interactions using large-scale computational models of electricity markets based on noncooperative game theory. In particular, this dissertation is comprised of four essays. The first essay studies the interaction of the United States Environmental Protection Agency NOx Budget Program and the mid-Atlantic electricity market. This research quantifies emissions, economic inefficiencies, price distortions, and overall social welfare under various market assumptions using engineering-economic models. The models calculate equilibria for imperfectly competitive markets---Cournot oligopoly---considering the actual landscape of power plants and transmission lines, and including the possibility of market power in the NOx allowances market. The second essay extends the results from first essay and models imperfectly competitive markets using a Stackelberg or leader-follower formulation. A leader in the power and NO x markets is assumed to have perfect foresight of its rivals' responses. The rivals' best response functions are explicitly embedded in the leader's constraints. The solutions quantify the extent to which a leader in the markets can extract economic rents on the expense of its followers. The third essay investigates the effect of implementing the European Union (EU) CO2 Emissions Trading Scheme (ETS) on wholesale power prices in the Western European electricity market. This research uses theoretical and computational modeling approaches to quantify the degree to which CO2 costs were passed on to power prices, and quantifies the windfall profits earned by generators under the current EU allowances allocation method. The results show that the generators in EU could earn substantial windfall profits from two sources: free emissions allowances and increased gross margin among inframarginal generating units. The fourth essay examines effect of climate change on future pollution emissions from regional electricity markets, accounting for how climate influences demand profiles and generation efficiencies. This research illustrates that even when seasonal/annual pollution emissions are limited by regulatory caps, significant increases in emissions during high-demand hours could potentially lead to an increase in the occurrences of acute ozone episodes, which worsen public health during summer months. The major contributions of this dissertation are two fold. First, the methodological and computational framework developed in the research provides a basis for understanding complex interactions among several oligopolistic markets and climate policies. Second, the outcomes of the research reinforce the need for careful monitoring of market interactions and a thorough examination of the design of allowances and power markets.
Potential for deserts to supply reliable renewable electric power
NASA Astrophysics Data System (ADS)
Labordena, Mercè; Lilliestam, Johan
2015-04-01
To avoid dangerous climate change, the electricity systems must be decarbonized by mid-century. The world has sufficient renewable electricity resources for complete power sector decarbonization, but an expansion of renewables poses several challenges for the electricity systems. First, wind and solar PV power are intermittent and supply-controlled, making it difficult to securely integrate this fluctuating generation into the power systems. Consequently, power sources that are both renewable and dispatchable, such as biomass, hydro and concentrating solar power (CSP), are particularly important. Second, renewable power has a low power density and needs vast areas of land, which is problematic both due to cost reasons and due to land-use conflicts, in particular with agriculture. Renewable and dispatchable technologies that can be built in sparsely inhabited regions or on land with low competition with agriculture would therefore be especially valuable; this land-use competition greatly limits the potential for hydro and biomass electricity. Deserts, however, are precisely such low-competition land, and are at the same time the most suited places for CSP generation, but this option would necessitate long transmission lines from remote places in the deserts to the demand centers such as big cities. We therefore study the potential for fleets of CSP plants in the large deserts of the world to produce reliable and reasonable-cost renewable electricity for regions with high and/or rapidly increasing electricity demand and with a desert within or close to its borders. The regions in focus here are the European Union, North Africa and the Middle East, China and Australia. We conduct the analysis in three steps. First, we identify the best solar generation areas in the selected deserts using geographic information systems (GIS), and applying restrictions to minimize impact on biodiversity, soils, human heath, and land-use and land-cover change. Second, we identify transmission corridors from the generation areas to the demand centers in the target regions, using a GIS-based transmission algorithm that minimizes economic, social and environmental costs. Third, we use the multi-scale energy system model Calliope to specify the optimal configuration and operation of the CSP fleet to reliably follow the demand every hour of the year in the target regions, and to calculate the levelized cost of doing so, including both generation and transmission costs. The final output will show whether and how much reliable renewable electricity can be supplied from CSP fleets in deserts to demand centers in adjacent regions, at which costs this is possible, as well as a detailed description of the routes of HVDC transmission links. We expect to find that the potential for deserts to supply reliable CSP to the regions in focus is very large in all cases, despite the long distances.
Financial statistics of major US investor-owned electric utilities 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues. The Financial Statistics of Major US Investor-Owned Electric Utilities publication provides information about the financial results of operations of investor-owned electric utilities for use by government, industry, electric utilities, financial organizations and educational institutions in energy planning. In the private sector,more » the readers of this publication are researchers and analysts associated with the financial markets, the policymaking and decisionmaking members of electric utility companies, and economic development organizations. Other organizations that may be interested in the data presented in this publication include manufacturers of electric power equipment and marketing organizations. In the public sector, the readers of this publication include analysts, researchers, statisticians, and other professionals engaged in regulatory, policy, and program areas. These individuals are generally associated with the Congress, other legislative bodies, State public utility commissions, universities, and national strategic planning organizations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietzcker, Robert C.; Ueckerdt, Falko; Carrara, Samuel
Mitigation-Process Integrated Assessment Models (MP-IAMs) are used to analyze long-term transformation pathways of the energy system required to achieve stringent climate change mitigation targets. Due to their substantial temporal and spatial aggregation, IAMs cannot explicitly represent all detailed challenges of integrating the variable renewable energies (VRE) wind and solar in power systems, but rather rely on parameterized modeling approaches. In the ADVANCE project, six international modeling teams have developed new approaches to improve the representation of power sector dynamics and VRE integration in IAMs. In this study, we qualitatively and quantitatively evaluate the last years' modeling progress and study themore » impact of VRE integration modeling on VRE deployment in IAM scenarios. For a comprehensive and transparent qualitative evaluation, we first develop a framework of 18 features of power sector dynamics and VRE integration. We then apply this framework to the newly-developed modeling approaches to derive a detailed map of strengths and limitations of the different approaches. For the quantitative evaluation, we compare the IAMs to the detailed hourly-resolution power sector model REMIX. We find that the new modeling approaches manage to represent a large number of features of the power sector, and the numerical results are in reasonable agreement with those derived from the detailed power sector model. Updating the power sector representation and the cost and resources of wind and solar substantially increased wind and solar shares across models: Under a carbon price of 30$/tCO2 in 2020 (increasing by 5% per year), the model-average cost-minimizing VRE share over the period 2050-2100 is 62% of electricity generation, 24%-points higher than with the old model version.« less
State energy data report: Statistical tables and technical documentation 1960 through 1979
NASA Astrophysics Data System (ADS)
1981-09-01
All the data of the State Energy Data System (SEDS) is given. The data is used to estimate annual energy consumption by principal energy sources (coal, natural gas, petroleum, electricity), by major end-use sectors (residential, commercial, industrial, transportation, and electric utilities), and by state (50 states, the District of Columbia, and the United States). Data is organized alphabetically by energy source (fuel), by end-use sector or energy activity, by type of data and by state. Twenty data values are associated with each fuel-sector-type state grouping representing positionally the years 1960 through 1979. Data values in the file are expressed either as physical units, British thermal units, physical to Btu conversion factors or share factors.
Issues in International Energy Consumption Analysis: Electricity Usage in India’s Housing Sector
2014-01-01
India offers a unique set of features for studying electricity use in the context of a developing country. First, it has a rapidly developing economy with high yearly growth rates in gross domestic product (GDP). Second, it has the second -largest population in the world and is likely to have the largest population in the future. Third, its electric system is maturing—with known difficulties (outages, shortages, issues with reliability and quality) that are characteristic of a developing country. This article focuses on electricity use in the residential sector of India and discusses key trends and provides an overview of available usage estimates from various sources. Indian households are an interesting environment where many of India’s unique features interact. The recent economic gains correlate with rising incomes and possible changes in living standards, which could affect electricity or other energy use within households. Additionally, the maturing electric system and large population in India both offer opportunities to study a range of interactions between electrification and electricity usage in a developing country.
Photovoltaics program plan, FY 1991 - 1995
NASA Astrophysics Data System (ADS)
1991-10-01
This program plan describes the goals and philosophy of DOE National Photovoltaics Program and its major research and development activities for fiscal years (FY) 1991 through 1995. The plan represents a consensus among researchers and manufacturers, as well as current and potential users of photovoltaics (PV). It defines the activities that we believe are necessary to continue the rapid progress toward acceptance of photovoltaics as a serious candidate for cost-competitive electric power generation by the utility, transportation, buildings, and industrial sectors. A successful National Photovoltaics Program will help achieve many of our national priorities. The mission of the National Photovoltaics Program is to help US industry to develop photovoltaic technology for large-scale generation of economically competitive electric power in the United States, making PV a significant part of our national energy mix. To fully achieve this, we must continue to work toward the long-term goals established in our previous program plan: reducing the price of delivered electricity to 5 to 6 cents per kilowatt-hour (kWh), increasing lifetimes to 30 years, and increasing module efficiencies to 15 percent for flat-plate and 25 percent for concentrator technologies. If progress continues at its current pace, we expect that the PV industry will have installed at least 1000 megawatts (MW) of capacity in the United States and 500 MW internationally by the year 2000.
Using Probability of Exceedance to Compare the Resource Risk of Renewable and Gas-Fired Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark
Of the myriad risks surrounding long-term investments in power plants, resource risk is one of the most difficult to mitigate, and is also perhaps the risk that most-clearly distinguishes renewable generation from natural gas-fired generation. For renewable generators like wind and solar projects, resource risk manifests as a quantity risk—i.e., the risk that the quantity of wind and insolation will be less than expected.i For gas-fired generators (i.e., a combined-cycle gas turbine or “CCGT”), resource risk manifests primarily as a price risk—i.e., the risk that natural gas will cost more than expected. Most often, resource risk—and natural gas price riskmore » in particular—falls disproportionately on utility ratepayers, who are typically not well-equipped to manage this risk. As such, it is incumbent upon utilities, regulators, and policymakers to ensure that resource risk is taken into consideration when making or approving resource decisions, or enacting policies that influence the development of the electricity sector more broadly.« less
Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
2016-11-14
Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
(Power sector integrated efficiency program): Foreign trip report, August 1--11, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddle, D.B.
1989-08-18
I traveled to Guatemala City to discuss host country and US Agency for International Development (USAID) Mission interest in an AID/Washington sponsored integrated utility efficiency initiative and to participate in a cogeneration conference. Discussions were held with USAID/Regional Office for Central America Panama (ROCAP), USAID/Guatemala City, the Ministry of Energy and Mines (MEM), the Empresa Electrica de Guatemala, and several members of the private sector regarding interest and the appropriateness of the proposed efficiency initiative. I then traveled to San Jose, Costa Rica to participate in a small scale hydro assessment study with a National Rural Electric Cooperative Association (NRECA)more » engineer for a newly formed generation and transmission consortium. Data were gathered both on member cooperative annual, seasonal and diurnal energy demand, as well as engineering data for the site analyses. Meetings were held with the cooperative members; USAID/San Jose; and the Ministry of Natural Resources, Energy and Mines to inform them of our progress.« less
The impact of a natural disaster on altruistic behaviour and crime.
Lemieux, Frederic
2014-07-01
Institutional altruism in the form of a public-sector intervention and support for victims and social altruism generated by mutual aid and solidarity among citizens constitute a coming together in a crisis. This coming together and mutual support precipitate a decrease in crime rates during such an event. This paper presents an analysis of daily fluctuations in crime during the prolonged ice storms in Quebec, Canada, in January 1998 that provoked an electrical blackout. Of particular interest are the principal crisis-related influences on daily crime patterns. A first series of analyses examines the impact of altruistic public-sector mobilisation on crime. A significant decline in property crime rates was noticed when cheques were distributed to crisis victims in financial need in Montérégie, and hence they were attributable to public intervention (institutional altruism). Moreover, the rate of social altruism (financial donations), which was more substantial in adjoining rather than distant regions, was inversely proportional to crime rates. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
Improved representation of investment decisions in assessments of CO2 mitigation
NASA Astrophysics Data System (ADS)
Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.; Flannery, Brian P.; Hultman, Nathan E.; McJeon, Haewon C.; Victor, David G.
2015-05-01
Assessments of emissions mitigation patterns have largely ignored the huge variation in real-world factors--in particular, institutions--that affect where, how and at what costs firms deploy capital. We investigate one such factor--how national institutions affect investment risks and thus the cost of financing. We use an integrated assessment model (IAM; ref. ) to represent the variation in investment risks across technologies and regions in the electricity generation sector--a pivotally important sector in most assessments of climate change mitigation--and compute the impact on the magnitude and distribution of mitigation costs. This modified representation of investment risks has two major effects. First, achieving an emissions mitigation goal is more expensive than it would be in a world with uniform investment risks. Second, industrialized countries mitigate more, and developing countries mitigate less. Here, we introduce a new front in the research on how real-world factors influence climate mitigation. We also suggest that institutional reforms aimed at lowering investment risks could be an important element of cost-effective climate mitigation strategies.
Direct conversion technology: Annual summary report CY 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massier, P.F.; Bankston, C.P.; Fabris, G.
1988-12-01
The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussionsmore » on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.« less
Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, A.; Eurek, K.; Mai, T.
2013-02-01
The electric power system in North America is linked between the United States and Canada. Canada has historically been a net exporter of electricity to the United States. The extent to which this remains true will depend on the future evolution of power markets, technology deployment, and policies. To evaluate these and related questions, we modify the Regional Energy Deployment System (ReEDS) model to include an explicit representation of the grid-connected power system in Canada to the continental United States. ReEDS is unique among long-term capacity expansion models for its high spatial resolution and statistical treatment of the impact ofmore » variable renewable generation on capacity planning and dispatch. These unique traits are extended to new Canadian regions. We present example scenario results using the fully integrated Canada-U.S. version of ReEDS to demonstrate model capabilities. The newly developed, integrated Canada-U.S. ReEDS model can be used to analyze the dynamics of electricity transfers and other grid services between the two countries under different scenarios.« less
Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas,more » and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.« less
The temporal variation of SO2 emissions embodied in Chinese supply chains, 2002-2012.
Yang, Xue; Zhang, Wenzhong; Fan, Jie; Li, Jiaming; Meng, Jing
2018-05-24
Whilst attention is increasingly being focused on embodied pollutant emissions along supply chains in China, relatively little attention has been paid to dynamic changes in this process. This study utilized environmental extended input-output analysis (EEIOA) and structural path analysis (SPA) to investigate the dynamic variation of the SO 2 emissions embodied in 28 economic sectors in Chinese supply chains during 2002-2012. The main conclusions are summarized as follows: (1) The dominant SO 2 emission sectors differed under production and consumption perspectives. Electricity and heat production dominated SO 2 emissions from the point of view of production, while construction contributed most from the consumption perspective. (2) The embodied SO 2 emissions tended to change from the path (staring from consumption side to production side): "Services→Services→Power" in 2002 to the path: "Construction and Manufacturing→Metal and Nonmetal→Power" in 2012. (3) Metal-driven emissions raised dramatically from 15% in 2002 to 22% in 2012, due to increasing demand for metal products in construction and manufacturing activities. (4) Power generation was found to result in the greatest volume of production-based emissions, a burden it tended to transfer to upstream sectors in 2012. Controlling construction activities and cutting down end-of-pipe discharges in the process of power generation represent the most radical interventions in reducing Chinese SO 2 emissions. This study shed light on changes in SO 2 emissions in the supply chain, providing a range of policy implications from both production and consumption perspectives. Copyright © 2018 Elsevier Ltd. All rights reserved.
The future of fuel cell in Mexico in the third millennium
NASA Astrophysics Data System (ADS)
Ramírez-Salgado, J.; Marín-Cruz, J.; Estrada-Martínez, A.
The warming of the earth due to green house gas emission is mainly produced by CO 2. In Mexico City, 71% of the total harmful emissions is from internal combustion engines of car and buses. Benefits from the use of fuel cells (FCs) in transportation and stationary power generating sectors will achieve satisfactory air quality standards not only in Mexico City but also throughout the country. This paper suggests a scenario for FC technology penetration in Mexico. There are two potential markets for FCs: (i) FC transportation; and (ii) stationary power plant for electrical production. In Mexico City, 3.2 million vehicles are in circulation and represent 19.5% (16.3 million) of the country's total vehicles, and 9.02 million of natural gas users are a potential market for acquiring stationary power generation by FC systems.