Sample records for electricity generation levels

  1. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    NASA Astrophysics Data System (ADS)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  2. Electric Power Monthly, June 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-13

    The EPM is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity andmore » quality of fuel, and cost of fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 40 tabs.« less

  3. Electric Power Annual

    EIA Publications

    2016-01-01

    The Electric Power Annual 2015 presents 11 years (2005-15) of national-level data on electricity generating capacity, electricity generation and useful thermal output, fuel receipts, consumption, and emissions.

  4. Electrical system architecture

    DOEpatents

    Algrain, Marcelo C [Peoria, IL; Johnson, Kris W [Washington, IL; Akasam, Sivaprasad [Peoria, IL; Hoff, Brian D [East Peoria, IL

    2008-07-15

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  5. Aaron Bloom | NREL

    Science.gov Websites

    Todd Levin. "Wholesale Electricity Market Design with Increasing Levels of Renewable Generation . Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation. Golden, CO

  6. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  7. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, C.; Bain, R.; Chapman, J.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  8. Apples and oranges: don't compare levelized cost of renewables: Joskow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2010-12-15

    MIT Prof. Paul Joskow points out that the levelized metric is inappropriate for comparing intermittent generating technologies like wind and solar with dispatchable generating technologies like nuclear, gas combined cycle, and coal. The levelized comparison fails to take into account differences in the production profiles of intermittent and dispatchable generating technologies and the associated large variations in the market value of the electricity they supply. When the electricity is produced by an intermittent generating technology, the level of output and the value of the electricity at the times when the output is produced are key variables that should be takenmore » into account.« less

  9. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad; Bain, Richard; Chapman, Jamie

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  10. DETAIL INTERIOR VIEW OF ELECTRIC GENERATOR ON UPPER LEVEL ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL INTERIOR VIEW OF ELECTRIC GENERATOR ON UPPER LEVEL ON HYDROELECTRIC POWER HOUSE - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  11. Modeling renewable portfolio standards for the annual energy outlook 1998 - electricity market module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Load and Demand-Side Management (LDSM) Submodule. For the Annual Energy Outlook 1998 (AEO98), the EMM has been modified to represent Renewable Portfolio Standards (RPS), which are included in many of the Federal and state proposals for deregulating the electric power industry. A RPS specifies that electricity suppliersmore » must produce a minimum level of generation using renewable technologies. Producers with insufficient renewable generating capacity can either build new plants or purchase {open_quotes}credits{close_quotes} from other suppliers with excess renewable generation. The representation of a RPS involves revisions to the ECP, EFD, and the EFP. The ECP projects capacity additions required to meet the minimum renewable generation levels in future years. The EFD determines the sales and purchases of renewable credits for the current year. The EFP incorporates the cost of building capacity and trading credits into the price of electricity.« less

  12. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.

    PubMed

    Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M

    2018-02-20

    In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.

  13. Petawatt pulsed-power accelerator

    DOEpatents

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  14. Electric Power Monthly, August 1990. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  15. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Wiser, R.; Sandor, D.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  16. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, M.; Ela, E.; Hein, J.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  17. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  18. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of greenhouse gas emitting electric generation plants. However, renewable energy policies do not have an effect on productivity growth. Renewable energy inputs are found to be as efficient if not more efficient than traditional energy sources.

  19. Renewable Electricity Futures Study. Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.; Sandor, D.; Wiser, R.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).« less

  20. Applying reliability analysis to design electric power systems for More-electric aircraft

    NASA Astrophysics Data System (ADS)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  1. A Curriculum Activities Guide to Electric Power Generation and the Environment.

    ERIC Educational Resources Information Center

    Tully, Randolph R., Jr., Ed.

    This guide was developed by teachers involved in a workshop on "Electric Power Generation and the Environment." Activity topics are: (1) Energy and the Consumer; (2) Energy and Water Pollution; and (3) Energy and Air Pollution. Within these topics, the activities are classified as awareness level, transitional level, or operational…

  2. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  3. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  4. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.; Baldwin, S.; DeMeo, E.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  5. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Michael; Ela, Erik; Hein, Jeff

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a futuremore » through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/« less

  6. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    PubMed Central

    Tanaka, Yo; Funano, Shun-ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-01-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817

  7. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    NASA Astrophysics Data System (ADS)

    Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-05-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.

  8. The effectiveness of plug-in hybrid electric vehicles and renewable power in support of holistic environmental goals: Part 2 - Design and operation implications for load-balancing resources on the electric grid

    NASA Astrophysics Data System (ADS)

    Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott

    2015-03-01

    A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.

  9. Exploring the Basic Principles of Electric Motors and Generators with a Low-Cost Sophomore-Level Experiment

    ERIC Educational Resources Information Center

    Schubert, T. F.; Jacobitz, F. G.; Kim, E. M.

    2009-01-01

    In order to meet changing curricular needs, an electric motor and generator laboratory experience was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum and in that it focuses on modeling electric motors, predicting their performance, and measuring efficiency of energy conversion. While…

  10. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated 2002

    EIA Publications

    2002-01-01

    This report documents the preparation of updated state-level electricity coefficients for carbon dioxide (CO ), methane (CH ), and nitrous oxide (NO), which represent a three-year weighted average for 1998-2000.

  11. Environmental costs resulting from the use of hard coal to electricity generation in Poland

    NASA Astrophysics Data System (ADS)

    Stala-Szlugaj, Katarzyna; Grudziński, Zbigniew

    2017-10-01

    In the world's fuel mix used for generating electricity, the most common fossil fuel is coal. In the EU, coal combustion and electricity generation entail the need to purchase emission allowances (EUA) whose purchase costs affect the costs of electricity generation significantly. The research described in the article shows how current market conditions shape the profitability of generating electricity from coal and how Clean Dark Spread (CDS) changes as a function of changes in energy and coal prices at the assumed levels of emission and prices of EUA allowances. The article compares the results of CDS calculations in two variants. Areas have been highlighted where prices of both coal and EUA allowances cause CDS to assume values at which the prices of generated electricity do not cover the costs of fuel (i) and CO2 emission allowances, cover all costs (ii), or constitute positive prices (iii), but still do not cover all fixed costs. With higher power plant efficiency, CO2 emissions are lower (0.722 t/MWh). The costs of purchasing fuel required to generate 1 MWh of electricity are also lower. In such case—even with relatively high prices of coal—a power plant can achieve profitability of electricity generation.

  12. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  13. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  14. Essays on restructured electricity markets

    NASA Astrophysics Data System (ADS)

    Nicholson, Emma Leah

    This dissertation focuses on the performance of restructured electricity markets in the United States. In chapter 1, I study bidder-specific offer caps ("BSOCs") which are used to mitigate market power in three wholesale electricity markets. The price of electricity is determined through multi-unit uniform price auctions and BSOCs impose an upper limit, which is increasing in marginal cost, on each generator's bid. I apply BSOCs in both the uniform and discriminatory price auctions and characterize the equilibria in a two firm model with stochastic demand. BSOCs unambiguously increase expected production efficiency in the uniform price auction and they can increase the expected profit of the generator with the lower cap. Chapter 2, coauthored with Ramteen Sioshansi, Ph.D., compares two types of uniform price auction formats used in wholesale electricity markets, centrally committed markets and self committed markets. In centrally committed markets, generators submit two-part bids consisting of a fixed startup cost and a variable (per MWh) energy cost, and the auctioneer ensures that no generator operates at a loss. Generators in self committed markets must incorporate their startup costs into their one part energy bids. We derive Nash equilibria for both the centrally and self committed electricity markets in a model with two symmetric generators with nonconvex costs and deterministic demand. Using a numerical example, we demonstrate that if the caps on the bid elements are chosen appropriately, the two market designs are equivalent in terms of generator revenues and settlement costs. Regulators and prominent academic experts believe that electric restructuring polices have stifled investment in new generation capacity. In chapter 3 I seek to determine whether these fears are supported by empirical evidence. I examine both total investment in megawatts and the number of new investments across regions that adopted different electric restructuring policies to determine whether electric restructuring is associated with lower levels of investment in new generation capacity. The estimation results do not prove that total investment levels are lower in regions with restructured electric systems, but I cannot rule the possibility out.

  15. Nonlinear conductivity in silicon nitride

    NASA Astrophysics Data System (ADS)

    Tuncer, Enis

    2017-08-01

    To better comprehend electrical silicon-package interaction in high voltage applications requires full characterization of the electrical properties of dielectric materials employed in wafer and package level design. Not only the packaging but wafer level dielectrics, i.e. passivation layers, would experience high electric fields generated by the voltage applied pads. In addition the interface between the passivation layer and a mold compound might develop space charge because of the mismatch in electrical properties of the materials. In this contribution electrical properties of a thin silicon nitride (Si3N4) dielectric is reported as a function of temperature and electric field. The measured values later analyzed using different temperature dependent exponential expressions and found that the Mott variable range hopping conduction model was successful to express the data. A full temperature/electric field dependency of conductivity is generated. It was found that the conduction in Si3N4 could be expressed like a field ionization or Fowler-Nordheim mechanism.

  16. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  17. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  18. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  19. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIAmore » publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.« less

  1. 76 FR 30206 - Southern Nuclear Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... High-High, Nominal Trip Setpoint (NTSP) and Allowable Value. The Steam Generator Water Level High-High... previously evaluated is not increased. The Steam Generator Water Level High-High function revised values..., Steam Generator Water Level High-High, Nominal Trip Setpoint (NTSP) and Allowable Value. Function 5c...

  2. Exposure to electric power generator noise among small scale business operators in selected communities in Ibadan, Nigeria.

    PubMed

    Ana, Godson R E E; Luqman, Yesufu A; Shendell, Derek G; Owoaje, Eme T

    2014-11-01

    Inadequate and erratic power supplies mean small businesses use electric generators for alternative power. The authors' goal in the study described here was to assess noise from electric generators and impacts in the commercial areas of Agbowo and Ajibode in Ibadan, Nigeria. Noise levels (A-weighted decibels [dBA]) were measured over 12 weeks, three times a day, during the 2010 dry season using a sound level meter. A questionnaire was administered (515 respondents; 304 in Agbowo, 211 in Ajibode) and audiometric measurements were conducted on 40% of respondents. Mean noise levels varied by source (104 ± 7.7 dBA [diesel], 94.0 ± 6.3 dBA [petrol]) and were highest midday (90.6 ± 5.3 dBA [Agbowo], 70.9 ± 6.2 dBA [Ajibode]). Mean noise levels in Agbowo (78.5 ± 3.9 dBA) and Ajibode (65.7 ± 4.4 dBA) exceeded World Health Organization guidelines (65 dBA) for outdoor commercial environments. Working and living in Agbowo was significantly associated with current evidence of hearing impairment (odds ratio: 6.8, 95% confidence interval: 3.4-13.7). Reducing exposure to noise from electric power generators serving urban small businesses and homes is warranted.

  3. Quantifying the Opportunity Space for Future Electricity Generation: An Application to Offshore Wind Energy in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcy, Cara; Beiter, Philipp

    2016-09-01

    This report provides a high-level indicator of the future electricity demand for additional electric power generation that is not met by existing generation sources between 2015 and 2050. The indicator is applied to coastal regions, including the Great Lakes, to assess the regional opportunity space for offshore wind. An assessment of opportunity space can be a first step in determining the prospects and the system value of a technology. The metric provides the maximal amount of additional generation that is likely required to satisfy load in future years.

  4. Sensitivity of power system operations to projected changes in water availability due to climate change: the Western U.S. case study

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.

    2017-12-01

    Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water availability conditions. We provide insight on how this information can be used to support resource adequacy and grid expansion studies over the Western U.S. in the context of inter-annual variability and climate change.

  5. Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge.

    PubMed

    Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M

    2016-11-30

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N 2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO 2 ) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Detection and Removal of Impurities in Nitric Oxide Generated from Air by Pulsed Electrical Discharge

    PubMed Central

    Yu, Binglan; Blaesi, Aron H.; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B.; Goldstein, Lee E.; Zapol, Warren M.

    2016-01-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (−90 µg/day) and the platinum-nickel ground electrode (−55 µg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. PMID:27592386

  7. Electric power quarterly, April-June 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-10-13

    The EPQ presents monthly summaries of electric utility statistics at the national, divisional, state, company, and plant levels on the following subjects: quantity of fuel, cost of fuel, quality of fuel, net generation, fuel consumption, fuel stocks. In addition, the EPQ presents a quarterly summary of reported major disturbances and unusual occurrences. These data are collected on the Form IE-417R. Every electric utility engaged in the generation, transmission, or distribution of electric energy must file a report with DOE if it experiences a major power system emergency.

  8. Electric power quarterly, July-September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-22

    The EPQ presents monthly summaries of electric utility statistics at the national, divisional, state, company, and plant levels on the following subjects: quantity of fuel, cost of fuel, quality of fuel, net generation, fuel consumption, fuel stocks. In addition, the EPQ presents a quarterly summary of reported major disturbances and unusual occurrences. These data are collected on the Form IE-417R. Every electric utility engaged in the generation, transmission, or distribution of electric energy must file a report with DOE if it experiences a major power system emergency.

  9. Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M.; DeMeo, E.; Hostick, D.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  10. Evidence that dirty electricity is causing the worldwide epidemics of obesity and diabetes.

    PubMed

    Milham, Samuel

    2014-01-01

    The epidemics of obesity and diabetes most apparent in recent years had their origins with Thomas Edison's development of distributed electricity in New York City in 1882. His original direct current (DC) generators suffered serious commutator brush arcing which is a major source of high-frequency voltage transients (dirty electricity). From the onset of the electrical grid, electrified populations have been exposed to dirty electricity. Diesel generator sets are a major source of dirty electricity today and are used almost universally to electrify small islands and places unreachable by the conventional electric grid. This accounts for the fact that diabetes prevalence, fasting plasma glucose and obesity are highest on small islands and other places electrified by generator sets and lowest in places with low levels of electrification like sub-Saharan Africa and east and Southeast Asia.

  11. Electric Power Monthly

    EIA Publications

    2017-01-01

    Provides monthly statistics at the state, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold.

  12. Low-grade geothermal energy conversion by organic Rankine cycle turbine generator

    NASA Astrophysics Data System (ADS)

    Zarling, J. P.; Aspnes, J. D.

    Results of a demonstration project which helped determine the feasibility of converting low-grade thermal energy in 49 C water into electrical energy via an organic Rankine cycle 2500 watt (electrical) turbine-generator are presented. The geothermal source which supplied the water is located in a rural Alaskan village. The reasons an organic Rankine cycle turbine-generator was investigated as a possible source of electric power in rural Alaska are: (1) high cost of operating diesel-electric units and their poor long-term reliability when high-quality maintenance is unavailable and (2) the extremely high level of long-term reliability reportedly attained by commercially available organic Rankine cycle turbines. Data is provided on the thermal and electrical operating characteristics of an experimental organic Rankine cycle turbine-generator operating at a uniquely low vaporizer temperature.

  13. Utility interconnection issues for wind power generation

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  14. Renewable Electricity Futures Study Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Sandor, Debra; Wiser, Ryan

    2012-12-01

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible andmore » that further work is warranted to investigate this clean generation pathway.« less

  15. The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Wu, Hongyu; Florita, Anthony R.

    The value of improving wind power forecasting accuracy at different electricity market operation timescales was analyzed by simulating the IEEE 118-bus test system as modified to emulate the generation mixes of the Midcontinent, California, and New England independent system operator balancing authority areas. The wind power forecasting improvement methodology and error analysis for the data set were elaborated. Production cost simulation was conducted on the three emulated systems with a total of 480 scenarios, considering the impacts of different generation technologies, wind penetration levels, and wind power forecasting improvement timescales. The static operational flexibility of the three systems was comparedmore » through the diversity of generation mix, the percentage of must-run baseload generators, as well as the available ramp rate and the minimum generation levels. The dynamic operational flexibility was evaluated by the real-time upward and downward ramp capacity. Simulation results show that the generation resource mix plays a crucial role in evaluating the value of improved wind power forecasting at different timescales. In addition, the changes in annual operational electricity generation costs were mostly influenced by the dominant resource in the system. Lastly, the impacts of pumped-storage resources, generation ramp rates, and system minimum generation level requirements on the value of improved wind power forecasting were also analyzed.« less

  16. The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales

    DOE PAGES

    Wang, Qin; Wu, Hongyu; Florita, Anthony R.; ...

    2016-11-11

    The value of improving wind power forecasting accuracy at different electricity market operation timescales was analyzed by simulating the IEEE 118-bus test system as modified to emulate the generation mixes of the Midcontinent, California, and New England independent system operator balancing authority areas. The wind power forecasting improvement methodology and error analysis for the data set were elaborated. Production cost simulation was conducted on the three emulated systems with a total of 480 scenarios, considering the impacts of different generation technologies, wind penetration levels, and wind power forecasting improvement timescales. The static operational flexibility of the three systems was comparedmore » through the diversity of generation mix, the percentage of must-run baseload generators, as well as the available ramp rate and the minimum generation levels. The dynamic operational flexibility was evaluated by the real-time upward and downward ramp capacity. Simulation results show that the generation resource mix plays a crucial role in evaluating the value of improved wind power forecasting at different timescales. In addition, the changes in annual operational electricity generation costs were mostly influenced by the dominant resource in the system. Lastly, the impacts of pumped-storage resources, generation ramp rates, and system minimum generation level requirements on the value of improved wind power forecasting were also analyzed.« less

  17. Limiting the financial risks of electricity generation capital investments under carbon constraints: Applications and opportunities for public policies and private investments

    NASA Astrophysics Data System (ADS)

    Newcomer, Adam

    Increasing demand for electricity and an aging fleet of generators are the principal drivers behind an increasing need for a large amount of capital investments in the US electric power sector in the near term. The decisions (or lack thereof) by firms, regulators and policy makers in response to this challenge have long lasting consequences, incur large economic and environmental risks, and must be made despite large uncertainties about the future operating and business environment. Capital investment decisions are complex: rates of return are not guaranteed; significant uncertainties about future environmental legislation and regulations exist at both the state and national levels---particularly about carbon dioxide emissions; there is an increasing number of shareholder mandates requiring public utilities to reduce their exposure to potentially large losses from stricter environmental regulations; and there are significant concerns about electricity and fuel price levels, supplies, and security. Large scale, low carbon electricity generation facilities using coal, such as integrated gasification combined cycle (IGCC) facilities coupled with carbon capture and sequestration (CCS) technologies, have been technically proven but are unprofitable in the current regulatory and business environment where there is no explicit or implicit price on carbon dioxide emissions. The paper examines two separate scenarios that are actively discussed by policy and decision makers at corporate, state and national levels: a future US electricity system where coal plays a role; and one where the role of coal is limited or nonexistent. The thesis intends to provide guidance for firms and policy makers and outline applications and opportunities for public policies and for private investment decisions to limit financial risks of electricity generation capital investments under carbon constraints.

  18. How large customer direct power transaction mode give consideration to power generation cleaning and power saving

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zeng, Ming; Liu, Wei; Li, Ran

    2017-05-01

    The so-called Large Customers' Direct Power Transaction, refers to the mode that the users on high voltage level, or being seized of hold the large power or independent power distribution, have the qualification of purchasing electricity directly from the generation companies and pay reasonable electricity transmission and distribution fee to the power network enterprises because the transaction is through its transmission channel. The Direct Purchase promotes the marketization level of electricity trading, but there are some problems in its developing process, especially whether promotes the green optimal allocation of power resources, this paper aims to explore the solution.

  19. Electric Power Quarterly, October-December 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-04-01

    The Electric Power Quarterly (EPQ) provides comprehensive information about the electric utilities' cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks on a plant and company level, as well as State, census region, and national aggregates.

  20. Compounded effects of heat waves and droughts over the Western Electricity Grid: spatio-temporal scales of impacts and predictability toward mitigation and adaptation.

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Kintner-Meyer, M.; Skaggs, R.; Xie, Y.; Wu, D.; Nguyen, T. B.; Fu, T.; Zhou, T.

    2016-12-01

    Heat waves and droughts are projected to be more frequent and intense. We have seen in the past the effects of each of those extreme climate events on electricity demand and constrained electricity generation, challenging power system operations. Our aim here is to understand the compounding effects under historical conditions. We present a benchmark of Western US grid performance under 55 years of historical climate, and including droughts, using 2010-level of water demand and water management infrastructure, and 2010-level of electricity grid infrastructure and operations. We leverage CMIP5 historical hydrology simulations and force a large scale river routing- reservoir model with 2010-level sectoral water demands. The regulated flow at each water-dependent generating plants is processed to adjust water-dependent electricity generation parameterization in a production cost model, that represents 2010-level power system operations with hourly energy demand of 2010. The resulting benchmark includes a risk distribution of several grid performance metrics (unserved energy, production cost, carbon emission) as a function of inter-annual variability in regional water availability and predictability using large scale climate oscillations. In the second part of the presentation, we describe an approach to map historical heat waves onto this benchmark grid performance using a building energy demand model. The impact of the heat waves, combined with the impact of droughts, is explored at multiple scales to understand the compounding effects. Vulnerabilities of the power generation and transmission systems are highlighted to guide future adaptation.

  1. Electric power quarterly, October-December 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-04-19

    The EPQ presents monthly summaries of electric utility statistics at the national, divisional, state, company, and plant levels on the following subjects: quantity of fuel, cost of fuel, quality of fuel, net generation, fuel consumption, and fuel stocks. In addition, the EPQ presents a quarterly summary of reported major disturbances and unusual occurrences. These data are collected on the Form IE-417R. Every electric utility engaged in the generation, transmission, or distribution of electric energy must file a report with DOE if it experiences a major power system emergency.

  2. Electric Power Quarterly, July-September 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    The Electric Power Quarterly (EPQ) provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

  3. Electric Power Quarterly, October-December 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-04-01

    The Electric Power Quarterly (EPQ) provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

  4. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort

    PubMed Central

    Shepertycky, Michael; Li, Qingguo

    2015-01-01

    Background Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). Methodology/Principal Findings We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester’s overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. Conclusions/Significance These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities. PMID:26039493

  5. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.

    PubMed

    Shepertycky, Michael; Li, Qingguo

    2015-01-01

    Much research in the field of energy harvesting has sought to develop devices capable of generating electricity during daily activities with minimum user effort. No previous study has considered the metabolic cost of carrying the harvester when determining the energetic effects it has on the user. When considering device carrying costs, no energy harvester to date has demonstrated the ability to generate a substantial amount of electricity (> 5W) while maintaining a user effort at the same level or lower than conventional power generation methods (e.g. hand crank generator). We developed a lower limb-driven energy harvester that is able to generate approximately 9W of electricity. To quantify the performance of the harvester, we introduced a new performance measure, total cost of harvesting (TCOH), which evaluates a harvester's overall efficiency in generating electricity including the device carrying cost. The new harvester captured the motion from both lower limbs and operated in the generative braking mode to assist the knee flexor muscles in slowing the lower limbs. From a testing on 10 participants under different walking conditions, the harvester achieved an average TCOH of 6.1, which is comparable to the estimated TCOH for a conventional power generation method of 6.2. When generating 5.2W of electricity, the TCOH of the lower limb-driven energy harvester (4.0) is lower than that of conventional power generation methods. These results demonstrated that the lower limb-driven energy harvester is an energetically effective option for generating electricity during daily activities.

  6. Solar Thermoelectricity via Advanced Latent Heat Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermalmore » valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.« less

  7. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  8. U.S. Electric System Operating Data

    EIA Publications

    EIA provides hourly electricity operating data, including actual and forecast demand, net generation, and the power flowing between electric systems. EIA's new U.S. Electric System Operating Data tool provides nearly real-time demand data, plus analysis and visualizations of hourly, daily, and weekly electricity supply and demand on a national and regional level for all of the 66 electric system balancing authorities that make up the U.S. electric grid.

  9. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  10. Effects of cyclic impacts on the performance of a piezo-composite electricity generating element in a d33 mode energy harvesting.

    PubMed

    Pham, Van Lai; Ha, Ngoc San; Goo, Nam Seo; Choo, Jinkyo F

    2014-10-01

    The increasing use of piezoelectric generators to harvest energy from various ambient sources requires the establishment of durability data for piezoelectric materials. In this paper, a d3 mode piezocomposite electricity generating element (PCGE) was tested for its durability under cyclic impact loading. For this purpose, a motor driven lever system was designed to apply constant impact force on PCGEs. To investigate the durability of PCGEs, the output voltage of the PCGEs was observed upon repeated application of an impact force until eventual loss of the generated voltage. The experimental results enabled to determine the number of cycles until which PCGEs can be used without loss of their electricity generation performance with respect to the stress level applied on the PCGEs. At low stress level (around 0.76 MPa or lower), the PCGE showed almost insignificant degradation even after 2 million cycles whereas degradation occurred sooner (after 8 x 10(5) cycles) at higher stress levels (around 0.92 MPa or higher). The effects of impact loading on the durability of the PCGEs were also examined by X-ray photographs of the specimens.

  11. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level I (9 Week).

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in grades 7 and 8, this electricity/electronics curriculum guide contains instructional modules for ten units of instruction (nine-week class): (1) orientation; (2) understanding electricity; (3) safety; (4) methods to generate electricity; (5) wiring tools and wire; (6) soldering; (7) magnetism and electromagnetism; (8)…

  12. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level I (18 Week).

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in grades 7 and 8, this electricity/electronics curriculum guide contains instructional modules for twelve units of instruction: (1) orientation; (2) understanding electricity; (3) safety; (4) methods to generate electricity; (5) wiring tools and wire; (6) soldering; (7) magnetism and electromagnetism; (8) circuits, symbols,…

  13. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.

    PubMed

    Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao

    2017-10-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.

  14. A review of utility issues for the integration of wind electric generators

    NASA Technical Reports Server (NTRS)

    Reddoch, T. W.; Barnes, P. R.

    1982-01-01

    A review of issues and concerns of the electric utility industry for the integration of wind electric generation is offered. The issues have been categorized in three major areas: planning, operations, and dynamic interaction. Representative studies have been chosen for each area to illustrate problems and to alleviate some concerns. The emphasis of this paper is on individual large wind turbines (WTs) and WT arrays for deployment at the bulk level in a utility system.

  15. USAF bioenvironmental noise data handbook. Volume 162: MD-4MO generator set

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-05-01

    The MD-4MO generator set is an electric motor-driven source of electrical power used primarily for the starting of aircraft, and for ground maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at a normal rated condition. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference levels, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors.

  16. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50-60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.

  17. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  18. Water Use in the US Electric Power Sector: Energy Systems Level Perspectives

    EPA Science Inventory

    This presentation reviews the water demands of long-range electricity scenarios. It addresses questions such as: What are the aggregate water requirements of the U.S. electric power sector? How could water requirements evolve under different long-range regional generation mixes? ...

  19. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    NASA Astrophysics Data System (ADS)

    Jidin, Razali; Othman, Bahari

    2013-06-01

    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  20. Measuring market performance in restructured electricity markets: An empirical analysis of the PJM energy market

    NASA Astrophysics Data System (ADS)

    Tucker, Russell Jay

    2002-09-01

    Today the electric industry in the U.S. is transitioning to competitive markets for wholesale electricity. Independent system operators (ISOs) now manage broad regional markets for electrical energy in several areas of the U.S. A recent rulemaking by the Federal Energy Regulatory Commission (FERC) encourages the development of regional transmission organizations (RTOs) and restructured competitive wholesale electricity markets nationwide. To date, the transition to competitive wholesale markets has not been easy. The increased reliance on market forces coupled with unusually high electricity demand for some periods have created conditions amenable to market power abuse in many regions throughout the U.S. In the summer of 1999, hot and humid summer conditions in Pennsylvania, New Jersey, Maryland, Delaware, and the District of Columbia pushed peak demand in the PJM Interconnection to record levels. These demand conditions coincided with the introduction of market-based pricing in the wholesale electricity market. Prices for electricity increased on average by 55 percent, and reached the $1,000/MWh range. This study examines the extent to which generator market power raised prices above competitive levels in the PJM Interconnection during the summer of 1999. It simulates hourly market-clearing prices assuming competitive market behavior and compares these prices with observed market prices in computing price markups over the April 1-August 31, 1999 period. The results of the simulation analysis are supported with an examination of actual generator bid data of incumbent generators. Price markups averaged 14.7 percent above expected marginal cost over the 5-month period for all non-transmission-constrained hours. The evidence presented suggests that the June and July monthly markups were strongly influenced by generator market power as price inelastic peak demand approached the electricity generation capacity constraint of the market. While this analysis of the performance of the PJM market finds evidence of market power, the measured markups are markedly less than estimates from prior analysis of the PJM market.

  1. Large dynamic range radiation detector and methods thereof

    DOEpatents

    Marrs, Roscoe E [Livermore, CA; Madden, Norman W [Sparks, NV

    2012-02-14

    According to one embodiment, a radiation detector comprises a scintillator and a photodiode optically coupled to the scintillator. The radiation detector also includes a bias voltage source electrically coupled to the photodiode, a first detector operatively electrically coupled to the photodiode for generating a signal indicative of a level of a charge at an output of the photodiode, and a second detector operatively electrically coupled to the bias voltage source for generating a signal indicative of an amount of current flowing through the photodiode.

  2. Assessing the Impacts of Wind Integration in the Western Provinces

    NASA Astrophysics Data System (ADS)

    Sopinka, Amy

    Increasing carbon dioxide levels and the fear of irreversible climate change has prompted policy makers to implement renewable portfolio standards. These renewable portfolio standards are meant to encourage the adoption of renewable energy technologies thereby reducing carbon emissions associated with fossil fuel-fired electricity generation. The ability to efficiently adopt and utilize high levels of renewable energy technology, such as wind power, depends upon the composition of the extant generation within the grid. Western Canadian electric grids are poised to integrate high levels of wind and although Alberta has sufficient and, at times, an excess supply of electricity, it does not have the inherent generator flexibility required to mirror the variability of its wind generation. British Columbia, with its large reservoir storage capacities and rapid ramping hydroelectric generation could easily provide the firming services required by Alberta; however, the two grids are connected only by a small, constrained intertie. We use a simulation model to assess the economic impacts of high wind penetrations in the Alberta grid under various balancing protocols. We find that adding wind capacity to the system impacts grid reliability, increasing the frequency of system imbalances and unscheduled intertie flow. In order for British Columbia to be viable firming resource, it must have sufficient generation capability to meet and exceed the province's electricity self-sufficiency requirements. We use a linear programming model to evaluate the province's ability to meet domestic load under various water and trade conditions. We then examine the effects of drought and wind penetration on the interconnected Alberta -- British Columbia system given differing interconnection sizes.

  3. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  4. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  5. Electric Power Quarterly, October-December 1985. [Glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-05-05

    The Electric Power Quarterly (EPQ) provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. Data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

  6. Electric Power Quarterly, January-March 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-07-21

    The ''Electric Power Quarterly (EPQ)'' provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The ''EPQ'' contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.

  7. Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction.

    PubMed

    Yochum, Maxime; Laforêt, Jérémy; Marque, Catherine

    2018-02-01

    Preterm labor is an important public health problem. However, the efficiency of the uterine muscle during labor is complex and still poorly understood. This work is a first step towards a model of the uterine muscle, including its electrical and mechanical components, to reach a better understanding of the uterus synchronization. This model is proposed to investigate, by simulation, the possible role of mechanotransduction for the global synchronization of the uterus. The electrical diffusion indeed explains the local propagation of contractile activity, while the tissue stretching may play a role in the synchronization of distant parts of the uterine muscle. This work proposes a multi-physics (electrical, mechanical) and multi-scales (cell, tissue, whole uterus) model, which is applied to a realistic uterus 3D mesh. This model includes electrical components at different scales: generation of action potentials at the cell level, electrical diffusion at the tissue level. It then links these electrical events to the mechanical behavior, at the cellular level (via the intracellular calcium concentration), by simulating the force generated by each active cell. It thus computes an estimation of the intra uterine pressure (IUP) by integrating the forces generated by each active cell at the whole uterine level, as well as the stretching of the tissue (by using a viscoelastic law for the behavior of the tissue). It finally includes at the cellular level stretch activated channels (SACs) that permit to create a loop between the mechanical and the electrical behavior (mechanotransduction). The simulation of different activated regions of the uterus, which in this first "proof of concept" case are electrically isolated, permits the activation of inactive regions through the stretching (induced by the electrically active regions) computed at the whole organ scale. This permits us to evidence the role of the mechanotransduction in the global synchronization of the uterus. The results also permit us to evidence the effect on IUP of this enhanced synchronization induced by the presence of SACs. This proposed simplified model will be further improved in order to permit a better understanding of the global uterine synchronization occurring during efficient labor contractions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Intraoral conversion of occlusal force to electricity and magnetism by biting of piezoelectric elements.

    PubMed

    Kameda, Takashi; Ohkuma, Kazuo; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Very weak electrical, magnetic and ultrasound signal stimulations are known to promote the formation, metabolism, restoration and stability of bone and surrounding tissues after treatment and operations. We have therefore investigated the possibility of intraoral generation of electricity and magnetism by occlusal force in an in vitro study. Biting bimorph piezoelectric elements with lead zirconate titanate (PZT) using dental models generated appropriate magnetism for bone formation, i. e. 0.5-0.6 gauss, and lower electric currents and higher voltages, i. e. 2.0-6.0 μA at 10-22 V (appropriate levels are 30 μA and 1.25 V), as observed by a universal testing machine. The electric currents and voltages could be changed using amplifier circuits. These results show that intraoral generation of electricity and magnetism is possible and could provide post-operative stabilization and activation of treated areas of bone and the surrounding tissues directly and/or indirectly by electrical, magnetic and ultrasound stimulation, which could accelerate healing.

  9. Method and system for managing an electrical output of a turbogenerator

    DOEpatents

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2009-06-02

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  10. Method and system for managing an electrical output of a turbogenerator

    DOEpatents

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2010-08-24

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  11. Drought and the water-energy nexus in Texas

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Duncan, Ian; Reedy, Robert C.

    2013-12-01

    Texas experienced the most extreme drought on record in 2011 with up to 100 days of triple digit temperatures resulting in record electricity demand and historically low reservoir levels. We quantified water and electricity demand and supply for each power plant during the drought relative to 2010 (baseline). Drought raised electricity demands/generation by 6%, increasing water demands/consumption for electricity by 9%. Reductions in monitored reservoir storage <50% of capacity in 2011 would suggest drought vulnerability, but data show that the power plants were flexible enough at the plant level to adapt by switching to less water-intensive technologies. Natural gas, now ˜50% of power generation in Texas, enhances drought resilience by increasing the flexibility of power plant generators, including gas combustion turbines to complement increasing wind generation and combined cycle generators with ˜30% of cooling water requirements of traditional steam turbine plants. These reductions in water use are projected to continue to 2030 with increased use of natural gas and renewables. Although water use for gas production is controversial, these data show that water saved by using natural gas combined cycle plants relative to coal steam turbine plants is 25-50 times greater than the amount of water used in hydraulic fracturing to extract the gas.

  12. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and reliability of different configurations of the US electric grid subject to changing climate conditions.

  13. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ela, E.; Milligan, M.; Bloom, A.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  14. Energy Systems Integration Partnerships: NREL + GINER ELX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    At current levels of renewable generation there are already periods when the supply of electrical power significantly exceeds the level of demand. The wide penetration of renewable energy sources (RES) requires an energy storage solution which can include hydrogen generated via Polymer Electrolyte Membrane (PEM) electrolysis.

  15. Integrating high levels of variable renewable energy into electric power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, Benjamin

    As more variable renewable energy (VRE) such as wind and solar are integrated into electric power systems, technical challenges arise from the need to maintain the balance between load and generation at all timescales. This paper examines the challenges with integrating ultra-high levels of VRE into electric power system, reviews a range of solutions to these challenges, and provides a description of several examples of ultra-high VRE systems that are in operation today.

  16. Integrating high levels of variable renewable energy into electric power systems

    DOE PAGES

    Kroposki, Benjamin

    2017-11-17

    As more variable renewable energy (VRE) such as wind and solar are integrated into electric power systems, technical challenges arise from the need to maintain the balance between load and generation at all timescales. This paper examines the challenges with integrating ultra-high levels of VRE into electric power system, reviews a range of solutions to these challenges, and provides a description of several examples of ultra-high VRE systems that are in operation today.

  17. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macknick, Jordan; Newmark, Robin; Heath, Garvin

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  18. Renewable Energy Project Financing: Improved Guidance and Information Sharing Needed for DOD Project-Level Officials

    DTIC Science & Technology

    2012-04-01

    certain energy related military construction projects. The Navy used this authority for its geothermal plant at Naval Air Weapons Station China Lake...electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal , municipal solid...thermal; geothermal , including electricity and heat pumps; municipal solid waste; new hydroelectric generation capacity achieved from increased

  19. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  20. Electrically active point defects in Mg implanted n-type GaN grown by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Alfieri, G.; Sundaramoorthy, V. K.; Micheletto, R.

    2018-05-01

    Magnesium (Mg) is the p-type doping of choice for GaN, and selective area doping by ion implantation is a routine technique employed during device processing. While electrically active defects have been thoroughly studied in as-grown GaN, not much is known about defects generated by ion implantation. This is especially true for the case of Mg. In this study, we carried out an electrical characterization investigation of point defects generated by Mg implantation in GaN. We have found at least nine electrically active levels in the 0.2-1.2 eV energy range, below the conduction band. The isochronal annealing behavior of these levels showed that most of them are thermally stable up to 1000 °C. The nature of the detected defects is then discussed in the light of the results found in the literature.

  1. Transformers and the Electric Utility System

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2005-01-01

    For electric energy to get from the generating station to a home, it must pass through a transformer, a device that can change voltage levels easily. This article describes how transformers work, covering the following topics: (1) the magnetism-electricity link; (2) transformer basics; (3) the energy seesaw; (4) the turns ratio rule; and (5)…

  2. Electric power quarterly, July--September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-19

    The Electric Power Quarterly (EPQ) is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA). The EPQ is designed to provide energy decisionmakers with accurate and timely generation and fuel cost and quality information on a plant-by-plant basis. This publication is designed for applications by electric utilities, fuel suppliers, consumers, educational institutions, and government in recognition of the importance of energy planning. The EPQ presents monthly summaries of electric utility statistics at the national, Census division, state, company, and plant levels on the following subjects: quantity of fuel; cost of fuel;more » quality of fuel; net generation; fuel consumption, and fuel stocks. In addition, the EPQ presents a quarterly summary of reported major disturbances and unusual occurrences. 1 fig., 15 tabs.« less

  3. The SunShot Initiative’s 2030 Goal: 3¢ per Kilowatt Hour for Solar Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 2011, when solar power comprised less than 0.1% of the U.S. electricity supply, the U.S. Department of Energy (DOE) launched the SunShot Initiative with the goal of making solar electricity cost-competitive with traditionally generated electricity by 2020 without subsidies. At the time, this meant reducing photovoltaic (PV) and concentrating solar power (CSP) prices by approximately 75% across the residential, commercial, and utility-scale sectors. For utility-scale solar, this target is a levelized cost of energy (LCOE) of 6¢ per kilowatt hour (kWh)1. Rapid progress has been made in accelerating achievement of these cost reductions, and DOE’s Solar Energy Technologies Officemore » (SETO) sees clear pathways to meeting the SunShot 2020 cost targets on schedule.2 Enabled by the cost reductions to date, solar-generated electricity has become mainstream. In 2014 and 2015, solar represented about one-third of new electrical generating capacity installed in the United States Halfway through 2016, solar was supplying 1% of U.S. electricity demand and growing with an installed capacity of 30 gigawatts.« less

  4. 38. SITE BUILDING 004 ELECTRIC POWER STATION AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. SITE BUILDING 004 - ELECTRIC POWER STATION AT INTERIOR - OBLIQUE VIEW AT FLOOR LEVEL SHOWING DIESEL ENGINE/GENERATOR SET NUMBER 5. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. Low-level radwaste storage facility at Hope Creek and Salem Generating Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyen, L.C.; Lee, K.; Bravo, R.

    Following the January 1, 1993, closure of the radwaste disposal facilities at Beatty, Nevada, and Richland, Washington (to waste generators outside the compact), only Barnwell, South Carolina, is open to waste generators in most states. Barnwell is scheduled to stay open to waste generators outside the Southeast Compact until June 30, 1994. Continued delays in opening regional radwaste disposal facilities have forced most nuclear utilities to consider on-site storage of low-level radwaste. Public Service Electric and Gas Company (PSE G) considered several different radwaste storage options before selecting the design based on the steel-frame and metal-siding building design described inmore » the Electric Power Research Institute's (EPRI's) TR-100298 Vol. 2, Project 3800 report. The storage facility will accommodate waste generated by Salem units 1 and 2 and Hope Creek unit 1 for a 5-yr period and will be located within their common protected area.« less

  6. Opportunities for Joint Water–Energy Management: Sensitivity of the 2010 Western U.S. Electricity Grid Operations to Climate Oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, N.; Kintner-Meyer, M.; Wu, D.

    The 2016 SECURE Water Act report’s natural water availability benchmark, combined with the 2010 level of water demand from an integrated assessment model, is used as input to drive a large-scale water management model. The regulated flow at hydropower plants and thermoelectric plants in the Western U.S. electricity grid (WECC) is translated into potential hydropower generation and generation capacity constraints. The impact on reliability (unserved energy, reserve margin) and cost (production cost, carbon emissions) of water constraints on 2010-level WECC power system operations is assessed using an electricity production cost model (PCM). Use of the PCM reveals the changes inmore » generation dispatch that reflect the inter-regional interdependencies in water-constrained generation and the ability to use other generation resources to meet all electricity loads in the WECC. August grid operational benchmarks show a range of sensitivity in production cost (-8 to +11%) and carbon emissions (-7 to 11%). The reference reserve margin threshold of 15% above peak load is maintained in the scenarios analyzed, but in 5 out of 55 years unserved energy is observed when normal operations are maintained. There is 1 chance in 10 that a year will demonstrate unserved energy in August, which defines the system’s historical performance threshold to support impact, vulnerability, and adaptation analysis. For seasonal and longer term planning, i.e., multi-year drought, we demonstrate how the Water Scarcity Grid Impact Factor and climate oscillations (ENSO, PDO) can be used to plan for joint water-electricity management to maintain grid reliability.« less

  7. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2014

    EIA Publications

    2017-01-01

    This analysis examines some of the factors that influence state-level carbon dioxide emissions from the consumption of fossil fuels. These factors include: the fuel mix — especially in the generation of electricity; the state climate; the population density of the state; the industrial makeup of the state and whether the state is a net exporter or importer of electricity.

  8. Modeling Analyses of the Effects of Changes in Nitrogen Oxides Emission from the Electric Power Sector on Ozone Levels in the Eastern United States

    EPA Science Inventory

    This modeling study tests a hypothetical scenario to see what air quality might have looked like if no emission controls had been placed on electric generating units, as required by the NOx State Implementation Plan (SIP) Call required in 2004. Results showed that ozone levels w...

  9. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  10. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    NASA Astrophysics Data System (ADS)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high-pressure Raman cell, providing access only to a few N2 rotational levels. Because of this, the four-wave mixing signal in the flame is lower by more than an order of magnitude compared to the signal generated in room temperature air plasma. Preliminary experiments demonstrated four-wave mixing signal generated by the electric field in the flame, following ns pulse discharge breakdown. The electric field in the flame is estimated using four-wave mixing signal calibration vs. temperature in electrostatic electric field generated in heated air. Further measurements in the flame are underway.

  11. DETAIL OF WESTINGHOUSE AND B. MORGAN SMITH NAMEPLATES ON ELECTRIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF WESTINGHOUSE AND B. MORGAN SMITH NAMEPLATES ON ELECTRIC GENERATOR IN UPPER LEVEL OF HYDROELECTRIC POWER HOUSE - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  12. How the Timing of Climate Change Policy Affects Infrastructure Turnover in the Electricity Sector: Engineering, Economic and Policy Considerations

    NASA Astrophysics Data System (ADS)

    Izard, Catherine Finlay

    The electricity sector is responsible for producing 35% of US greenhouse gas (GHG) emissions. Estimates suggest that ideally, the electricity sector would be responsible for approximately 85% of emissions abatement associated with climate polices such as America's Clean Energy and Security Act (ACES). This is equivalent to ˜50% cumulative emissions reductions below projected cumulative business-as-usual (BAU) emissions. Achieving these levels of emissions reductions will require dramatic changes in the US electricity generating infrastructure: almost all of the fossil-generation fleet will need to be replaced with low-carbon sources and society is likely to have to maintain a high build rate of new capacity for decades. Unfortunately, the inertia in the electricity sector means that there may be physical constraints to the rate at which new electricity generating capacity can be built. Because the build rate of new electricity generating capacity may be limited, the timing of regulation is critical---the longer the U.S. waits to start reducing GHG emissions, the faster the turnover in the electricity sector must occur in order to meet the same target. There is a real, and thus far unexplored, possibility that the U.S. could delay climate change policy implementation for long enough that it becomes infeasible to attain the necessary rate of turnover in the electricity sector. This dissertation investigates the relationship between climate policy timing and infrastructure turnover in the electricity sector. The goal of the dissertation is to answer the question: How long can we wait before constraints on infrastructure turnover in the electricity sector make achieving our climate goals impossible? Using the Infrastructure Flow Assessment Model, which was developed in this work, this dissertation shows that delaying climate change policy increases average retirements rates by 200-400%, increases average construction rates by 25-85% and increases maximum construction rates by 50-300%. It also shows that delaying climate policy has little effect on the age of retired plants or the stranded costs associated with premature retirement. In order for the electricity sector to reduce emissions to a level required by ACES while limiting construction rates to within achievable levels, it is necessary to start immediately. Delaying the process of decarbonization means that more abatement will be necessary from other sectors or geoengineering. By not starting emissions abatement early, therefore, the US forfeits its most accessible abatement potential and increases the challenge of climate change mitigation unnecessarily.

  13. Bound States and the Third Harmonic Generation in an Electric Field Biased Semi-parabolic Quantum Well

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Xie, Hong-Jing

    2003-11-01

    Within the framework of the compact density matrix approach, the third-harmonic generation (THG) in an electric-field-biased semi-parabolic quantum well (QW) has been deduced and investigated. Via variant of displacement harmonic oscillation, the exact electronic states in the semi-parabolic QW with an applied electric field have also been obtained and discussed. Numerical results on typical GaAs material reveal that, electric fields and confined potential frequency of semi-parabolic QW have obvious influences on the energy levels of electronic states and the THG in the semi-parabolic QW systems. The project supported in part by Guangdong Provincial Natural Science Foundation of China

  14. Innovation on Energy Power Technology (1)

    NASA Astrophysics Data System (ADS)

    Nagano, Susumu; Kakishima, Masayoshi

    After the last war, the output of single Steam Turbine Generator produced by the own technology in Japan returned to a prewar level. Electric power companies imported the large-capacity high efficiency Steam Turbine Generator from the foreign manufacturers in order to support the sudden increase of electric power demand. On the other hand, they decided to produce those in our own country to improve industrial technology. The domestic production of large-capacity 125MW Steam Turbine Generator overcome much difficulty and did much contribution for the later domestic technical progress.

  15. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    NASA Astrophysics Data System (ADS)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  16. Essays in renewable energy and emissions trading

    NASA Astrophysics Data System (ADS)

    Kneifel, Joshua D.

    Environmental issues have become a key political issue over the past forty years and has resulted in the enactment of many different environmental policies. The three essays in this dissertation add to the literature of renewable energy policies and sulfur dioxide emissions trading. The first essay ascertains which state policies are accelerating deployment of non-hydropower renewable electricity generation capacity into a states electric power industry. As would be expected, policies that lead to significant increases in actual renewable capacity in that state either set a Renewables Portfolio Standard with a certain level of required renewable capacity or use Clean Energy Funds to directly fund utility-scale renewable capacity construction. A surprising result is that Required Green Power Options, a policy that merely requires all utilities in a state to offer the option for consumers to purchase renewable energy at a premium rate, has a sizable impact on non-hydro renewable capacity in that state. The second essay studies the theoretical impacts fuel contract constraints have on an electricity generating unit's compliance costs of meeting the emissions compliance restrictions set by Phase I of the Title IV SO2 Emissions Trading Program. Fuel contract constraints restrict a utility's degrees of freedom in coal purchasing options, which can lead to the use of a more expensive compliance option and higher compliance costs. The third essay analytically and empirically shows how fuel contract constraints impact the emissions allowance market and total electric power industry compliance costs. This paper uses generating unit-level simulations to replicate results from previous studies and show that fuel contracts appear to explain a large portion (65%) of the previously unexplained compliance cost simulations. Also, my study considers a more appropriate plant-level decisions for compliance choices by analytically analyzing the plant level decision-making process to show how cost-minimization at the more complex plant level may deviate from cost-minimization at the generating unit level.

  17. A system-level mathematical model for evaluation of power train performance of load-leveled electric-vehicles

    NASA Technical Reports Server (NTRS)

    Purohit, G. P.; Leising, C. J.

    1984-01-01

    The power train performance of load leveled electric vehicles can be compared with that of nonload leveled systems by use of a simple mathematical model. This method of measurement involves a number of parameters including the degree of load leveling and regeneration, the flywheel mechanical to electrical energy fraction, and efficiencies of the motor, generator, flywheel, and transmission. Basic efficiency terms are defined and representative comparisons of a variety of systems are presented. Results of the study indicate that mechanical transfer of energy into and out of the flywheel is more advantageous than electrical transfer. An optimum degree of load leveling may be achieved in terms of the driving cycle, battery characteristics, mode of mechanization, and the efficiency of the components. For state of the art mechanically coupled flyheel systems, load leveling losses can be held to a reasonable 10%; electrically coupled systems can have losses that are up to six times larger. Propulsion system efficiencies for mechanically coupled flywheel systems are predicted to be approximately the 60% achieved on conventional nonload leveled systems.

  18. Electric power quarterly, July-September 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-02-04

    The Electric Power Quarterly (EPQ) provides information on electric utilities at the plant level. The information concerns the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. In this report, data collected on Form EIA-759 regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Form 423 are presented on a plant-by-plant basis. The EPQ presents a quarterly summary of disturbances andmore » unusual occurrences affecting the electric power industry collected by the Office of International Affairs and Energy Emergencies (IE) on Form IE-417.« less

  19. Acquisition of wood fuel at the Joseph C. McNeil Generating Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropelin, W.

    1993-12-31

    The Joseph C. McNeil Generating Station is the world`s largest single boiler, municipally-owned, wood-fired electrical generating plant. The 50 megawatt McNeil Station is located in Burlington, Vermont and is owned by several Vermont public and private electric utilities. The operator and majority owner is the City of Burlington Electric Department (BED). Wood fuel procurement for the McNeil Station has been conducted in an environmentally sensitive way. Harvesting is carried out in conformance with a comprehensive wood chip harvesting policy and monitored by professional foresters. Unpredictable levels of Station operation require rigid adherence to a wood storage plan that minimizes themore » risk of over heating and spontaneous combustion of stockpiled fuel.« less

  20. Energy levels and radiative rates for Ne-like ions from Cu to Ga

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Aggarwal, Sunny

    2017-11-01

    Energy levels, lifetimes and wave function compositions are computed for 127 fine structural levels in Ne-like ions (Z=29{-}31). Configuration interaction has been included among 51 configurations (generating 1016 levels) and multiconfigurational Dirac-Fock method is used to generate the wave functions. Similar calculations have also been performed using the fully relativistic flexible atomic code (FAC). Transition wavelength, oscillator strength, transition probabilities and line strength are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions from the ground level. We compared our calculated results with the available data in the literature. The calculated results are found to be in close agreement with the previous results. Further, we predict some new atomic data which may be important for plasma diagnostics.

  1. Power management and distribution system for a More-Electric Aircraft (MADMEL) -- Program status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maldonado, M.A.; Shah, N.M.; Cleek, K.J.

    1995-12-31

    A number of technology breakthroughs in recent years have rekindled the concept of a more-electric aircraft. High-power solid-state switching devices, electrohydrostatic actuators (EHAs), electromechanical actuators (EMAs), and high-power generators are just a few examples of component developments that have made dramatic improvements in properties such as weight, size, power, and cost. However, these components cannot be applied piecemeal. A complete, and somewhat revolutionary, system design approach is needed to exploit the benefits that a more-electric aircraft can provide. A five-phase Power Management and Distribution System for a More-Electric Aircraft (MADMEL) program was awarded by the Air Force to the Northrop/Grumman,more » Military Aircraft Division team in September 1991. The objective of the program is to design, develop, and demonstrate an advanced electrical power generation and distribution system for a more-electric aircraft (MEA). The MEA emphasizes the use of electrical power in place of hydraulics, pneumatic, and mechanical power to optimize the performance and life cycle cost of the aircraft. This paper presents an overview of the MADMEL program and a top-level summary of the program results, development and testing of major components to date. In Phase 1 and Phase 2 studies, the electrical load requirements were established and the electrical power system architecture was defined for both near-term (NT-year 1996) and far-term (FT-year 2003) MEA application. The detailed design and specification for the electrical power system (EPS), its interface with the Vehicle Management System, and the test set-up were developed under the recently completed Phase 3. The subsystem level hardware fabrication and testing will be performed under the on-going Phase 4 activities. The overall system level integration and testing will be performed in Phase 5.« less

  2. A Novel Electro Conductive Graphene/Silicon-Dioxide Thermo-Electric Generator

    NASA Astrophysics Data System (ADS)

    Rahman, Ataur; Abdi, Yusuf

    2017-03-01

    Thermoelectric generators are all solid-state devices that convert heat energy into electrical energy. The total energy (fuel) supplied to the engine, approximately 30 to 40% is converted into useful mechanical work; whereas the remaining is expelled to the environment as heat through exhaust gases and cooling systems, resulting in serious green house gas (GHG) emission. By converting waste energy into electrical energy is the aim of this manuscript. The technologies reported on waste heat recovery from exhaust gas of internal combustion engines (ICE) are thermo electric generators (TEG) with finned type, Rankine cycle (RC) and Turbocharger. This paper has presented an electro-conductive graphene oxide/silicon-dioxide (GO-SiO2) composite sandwiched by phosphorus (P) and boron (B) doped silicon (Si) TEG to generate electricity from the IC engine exhaust heat. Air-cooling and liquid cooling techniques adopted conventional TEG module has been tested individually for the electricity generation from IC engine exhausts heat at engine speed of 1000-3000rpm. For the engine speed of 7000 rpm, the maximum voltage was recorded as 1.12V and 4.00V for the air-cooling and liquid cooling respectively. The GO-SiO2 simulated result shows that it’s electrical energy generation is about 80% more than conventional TEG for the exhaust temperature of 500°C. The GO-SiO2 composite TEG develops 524W to 1600W at engine speed 1000 to 5000 rpm, which could contribute to reduce the 10-12% of engine total fuel consumption and improve emission level by 20%.

  3. Wind Generator & Biomass No-draft Gasification Hybrid

    NASA Astrophysics Data System (ADS)

    Hein, Matthew R.

    The premise of this research is that underutilized but vast intermittent renewable energy resources, such as wind, can become more market competitive by coupling with storable renewable energy sources, like biomass; thereby creating a firm capacity resource. Specifically, the Midwest state of South Dakota has immense wind energy potential that is not used because of economic and logistic barriers of electrical transmission or storage. Coupling the state's intermittent wind resource with another of the state's energy resources, cellulosic non-food biomass, by using a wind generator and no-draft biomass gasification hybrid system will result in a energy source that is both firm and storable. The average energy content of common biomass feedstock was determined, 14.8 MJ/kg (7.153 Btu/lb), along with the assumed typical biomass conversion efficiency of the no-draft gasifier, 65%, so that an average electrical energy round trip efficiency (RTE) of 214% can be expected (i.e. One unit of wind electrical energy can produce 2.14 kWh of electrical energy stored as syngas.) from a wind generator and no-draft biomass gasification system. Wind characteristics are site specific so this analysis utilizes a synthetic wind resource to represent a statistically sound gross representation of South Dakota's wind regime based on data from the Wind Resource Assessment Network (WRAN) locations. A synthetic wind turbine generated from common wind turbine power curves and scaled to 1-MW rated capacity was utilized for this analysis in order to remove equipment bias from the results. A standard 8,760-hour BIN Analysis model was constructed within HOMER, powerful simulation software developed by the National Renewable Energy Laboratory (NREL) to model the performance of renewable power systems. It was found that the optimum configuration on a per-megawatt-transmitted basis required a wind generator (wind farm) rated capacity of 3-MW with an anticipated annual biomass feedstock of 26,132 GJ or an anticipated 1,766 tonnes of biomass. The levelized cost of electricity (COE) ranged from 65.6/GJ (236/MWh) to 208.9/GJ (752/MWh) with the price of generated electricity being most sensitive to the biomass feedstock cost and the levelized COE being significantly impacted by the high cost of compressed storage. The resulting electrical energy available to the grid has an approximate wholesale value of 13.5/GJ (48.6/MWh) based on year 2007 Midwest Reliability Organization (MRO) regional averages [1]. Therefore, the annual average wholesale value of the generated electricity is lower than the cost to produce the electricity. A significant deficiency of this simple comparison is that it does not consider the fact that the proposed wind and biomass gasification hybrid is now a dispatchable source of electricity with a near net-zero lifetime carbon footprint and storage capability. Dispatchable power can profit from market fluctuations that dramatically increase the value of available electricity so that in addition to providing base power the hybrid facility can store energy during low price points in the market and generate at full capacity during points of high prices. Any financial incentive for energy generated from reduced carbon technologies will also increase the value of electricity produced. Also, alternative operational parameters that do not require the costly storage of synthetic natural gas (SNG) will likely result in a more competitive levelized COE. Additional benefits of the system are in the flexibility of transporting wind and biomass energy produced as well as the end use of the energy. Instead of high-voltage electrical transmission a gas line can now be used to transport energy produced by the wind. Syngas can also be further processed into higher energy density liquefied syngas. Liquid fuels can then be transported via commercial freight on existing road infrastructure.

  4. Renewable Energy Power Generation Estimation Using Consensus Algorithm

    NASA Astrophysics Data System (ADS)

    Ahmad, Jehanzeb; Najm-ul-Islam, M.; Ahmed, Salman

    2017-08-01

    At the small consumer level, Photo Voltaic (PV) panel based grid tied systems are the most common form of Distributed Energy Resources (DER). Unlike wind which is suitable for only selected locations, PV panels can generate electricity almost anywhere. Pakistan is currently one of the most energy deficient countries in the world. In order to mitigate this shortage the Government has recently announced a policy of net-metering for residential consumers. After wide spread adoption of DERs, one of the issues that will be faced by load management centers would be accurate estimate of the amount of electricity being injected in the grid at any given time through these DERs. This becomes a critical issue once the penetration of DER increases beyond a certain limit. Grid stability and management of harmonics becomes an important consideration where electricity is being injected at the distribution level and through solid state controllers instead of rotating machinery. This paper presents a solution using graph theoretic methods for the estimation of total electricity being injected in the grid in a wide spread geographical area. An agent based consensus approach for distributed computation is being used to provide an estimate under varying generation conditions.

  5. Capacity withholding in wholesale electricity markets: The experience in England and Wales

    NASA Astrophysics Data System (ADS)

    Quinn, James Arnold

    This thesis examines the incentives wholesale electricity generators face to withhold generating capacity from centralized electricity spot markets. The first chapter includes a brief history of electricity industry regulation in England and Wales and in the United States, including a description of key institutional features of England and Wales' restructured electricity market. The first chapter also includes a review of the literature on both bid price manipulation and capacity bid manipulation in centralized electricity markets. The second chapter details a theoretical model of wholesale generator behavior in a single price electricity market. A duopoly model is specified under the assumption that demand is non-stochastic. This model assumes that duopoly generators offer to sell electricity at their marginal cost, but can withhold a continuous segment of their capacity from the market. The Nash equilibrium withholding strategy of this model involves each duopoly generator withholding so that it produces the Cournot equilibrium output. A monopoly model along the lines of the duopoly model is specified and simulated under the assumption that demand is stochastic. The optimal strategy depends on the degree of demand uncertainty. When there is a moderate degree of demand uncertainty, the optimal withholding strategy involves production inefficiencies. When there is a high degree of demand uncertainty, the optimal monopoly quantity is greater than the optimal output level when demand is non-stochastic. The third chapter contains an empirical examination of the behavior of generators in the wholesale electricity market in England and Wales in the early 1990's. The wholesale market in England and Wales is analyzed because the industry structure in the early 1990's created a natural experiment, which is described in this chapter, whereby one of the two dominant generators had no incentive to behave non-competitively. This chapter develops a classification methodology consistent with the equilibrium identified in the second chapter. The availability of generating units owned by the two dominant generators is analyzed based on this classification system. This analysis includes the use of sample statistics as well as estimates from a dynamic random effects probit model. The analysis suggests a minimal degree of capacity withholding.

  6. Experimental investigation of a variable speed constant frequency electric generating system from a utility perspective

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Reddoch, T. W.; Lawler, J. S.

    1985-01-01

    As efforts are accelerated to improve the overall capability and performance of wind electric systems, increased attention to variable speed configurations has developed. A number of potentially viable configurations have emerged. Various attributes of variable speed systems need to be carefully tested to evaluate their performance from the utility points of view. With this purpose, the NASA experimental variable speed constant frequency (VSCF) system has been tested. In order to determine the usefulness of these systems in utility applications, tests are required to resolve issues fundamental to electric utility systems. Legitimate questions exist regarding how variable speed generators will influence the performance of electric utility systems; therefore, tests from a utility perspective, have been performed on the VSCF system and an induction generator at an operating power level of 30 kW on a system rated at 200 kVA and 0.8 power factor.

  7. Electricity diversification, decentralization, and decarbonization: The role of U.S. state energy policy

    NASA Astrophysics Data System (ADS)

    Carley, Sanya

    In response to mounting concerns about climate change and an over-dependence on fossil fuels, U.S. state governments have assumed leadership roles in energy policy. State leaders across the country have constructed policies that target electricity sector operations, and aim to increase the percentage of renewable electricity generation, increase the use of distributed generation, and decrease carbon footprints. The policy literature, however, lacks compelling empirical evidence that state initiatives toward these ends are effective. This research seeks to contribute empirical insights that can help fill this void in the literature, and advance policy knowledge about the efficacy of these instruments. This three-essay dissertation focuses on the assessment of state energy policy instruments aimed at the diversification, decentralization, and decarbonization of the U.S. electricity sector. The first essay considers the effects of state efforts to diversify electricity portfolios via increases in renewable energy. This essay asks: are state-level renewable portfolio standards (RPS) effective at increasing renewable energy deployment, as well as the share of renewable energy out of the total generation mix? Empirical results demonstrate that RPS policies so far are effectively encouraging total renewable energy deployment, but not the percentage of renewable energy generation. The second essay considers state policy efforts to decentralize the U.S. electricity sector via instruments that remove barriers to distributed generation (DG) deployment. The primary question this essay addresses is whether the removal of legal barriers acts as a primary motivating factor for DG deployment. Empirical results reveal that net metering policies are positively associated with DG deployment; interconnection standards significantly increase the likelihood that end-users will adopt DG capacity; and utility DG adoption is related to standard market forces. The third essay asks: what are the potential effects of state energy policy portfolios on carbon emissions within the U.S. electricity sector? The results from an electricity modeling scenario analysis reveal that state policy portfolios have modest to minimal carbon mitigation effects in the long run if surrounding states do not adopt similar portfolios as well. The effectiveness of state-level policy portfolios can increase significantly if surrounding states adopt similar portfolios, or with the introduction of a national carbon price.

  8. Investigating the effect of increased wind generation capacity on investment in transmission infrastructure

    NASA Astrophysics Data System (ADS)

    Braswell, Michael G.

    The transmission network that connects electricity generators with consumers is a critical yet often-overlooked component of the nation's electrical power infrastructure. However, the transmission grid has suffered from chronic underinvestment in recent decades due to various economic and regulatory factors that impede timely and efficient investments in transmission. One factor that might help offset these obstacles to transmission is the growth in wind power generation. The assumption among many in the electrical power industry is that wind power investments necessarily require greater investment in transmission due to the fact that wind power is a geographically-restricted resource and cannot always be situated close to areas of high electricity demand. However, to date there have been few, if any, empirical studies to verify this connection. This paper discusses a state-by-state empirical study exploring the relationship between increased wind generation capacity and the level of investment in transmission infrastructure. This study begins with the hypothesis that increases in installed wind generation capacity, in combination with other policies that promote wind energy more generally, should result in higher levels of transmission investment. Using data from the Federal Energy Regulatory Commission (FERC) and the American Wind Energy Association (AWEA), this paper develops regression models suggesting that wind investment has a small but distinct positive impact on transmission investment. This paper then explores the effects of other state renewable energy promotion policies, and discusses the policy implications of these findings.

  9. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and landmore » use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal-consumption trade-off in the context of current national policies and regulations that favor decreasing withdrawals (increasing consumptive use), and the role of water saving technologies. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S.« less

  10. Implications of water constraints for electricity capacity expansion in the United States

    NASA Astrophysics Data System (ADS)

    Liu, L.; Hejazi, M. I.; Iyer, G.; Forman, B. A.

    2017-12-01

    U.S. electricity generation is vulnerable to water supply since water is required for cooling. Constraints on the availability of water will therefore necessitate adaptive planning by the power generation sector. Hence, it is important to integrate restrictions in water availability in electricity capacity planning in order to better understand the economic viability of alternative capacity planning options. The study of the implications of water constraints for the U.S. power generation system is limited in terms of scale and robustness. We extend previous studies by including physical water constraints in a state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA). We focus on the implications of such constraints for the U.S. electricity capacity expansion, integrating both supply and demand effects under a consistent framework. Constraints on the availability of water have two general effects across the U.S. First, water availability constraints increase the cost of electricity generation, resulting in reduced electrification of end-use sectors. Second, water availability constraints result in forced retirements of water-intensive technologies such as thermoelectric coal- and gas- fired technologies before the end of their natural lifetimes. The demand for electricity is then met by an increase in investments in less water-dependent technologies such as wind and solar photovoltaic. Our results show that the regional patterns of the above effects are heterogeneous across the U.S. In general, the impacts of water constraints on electricity capacity expansion are more pronounced in the West than in the East. This is largely because of lower water availability in the West compared to the East due to lower precipitation in the Western states. Constraints on the availability of water might also have important implications for U.S. electricity trade. For example, under severe constraints on the availability of water, some states flip from being net exporters of electricity to becoming net importers and vice versa. Our study demonstrates the impacts of water availability constraints on electricity capacity expansion in the U.S. and highlights the need to integrate such constraints into decision-making so as to better understand state-level challenges.

  11. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.

    PubMed

    Johnson, T L; Keith, D W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  12. Electricity from Fossil Fuels without CO2 Emissions: Assessing the Costs of Carbon Dioxide Capture and Sequestration in U.S. Electricity Markets.

    PubMed

    Johnson, Timothy L; Keith, David W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO 2 emissions via CO 2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO 2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO 2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  13. Study of SF6 gas decomposition products based on spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Cai, Ji-xing; Na, Yan-xiang; Ni, Wei-yuan; Li, Guo-wei; Feng, Ke-cheng; Song, Gui-cai

    2011-08-01

    With the rapid development of power industry, the number of SF6 electrical equipment are increasing, it has gradually replaced the traditional insulating oil material as insulation and arc media in the high-voltage electrical equipment. Pure SF6 gas has excellent insulating properties and arc characteristics; however, under the effect of the strong arc, SF6 gas will decompose and generate toxic substances, then corroding electrical equipment, thereby affecting the insulation and arc ability of electrical equipment. If excessive levels of impurities in the gas that will seriously affect the mechanical properties, breaking performance and electrical performance of electrical equipment, it will cause many serious consequences, even threaten the safe operation of the grid. This paper main analyzes the basic properties of SF6 gas and the basic situation of decomposition in the discharge conditions, in order to simulate the actual high-voltage electrical equipment, designed and produced a simulation device that can simulate the decomposition of SF6 gas under a high voltage discharge, and using fourier transform infrared spectroscopy to analyze the sample that produced by the simulation device. The result show that the main discharge decomposition product is SO2F2 (sulfuryl fluoride), the substance can react with water and generate corrosive H2SO4(sulfuric acid) and HF (hydrogen fluoride), also found that the increase in the number with the discharge, SO2F2concentration levels are on the rise. Therefore, the material can be used as one of the main characteristic gases to determine the SF6 electrical equipment failure, and to monitor their concentration levels.

  14. Electric power annual 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics formore » the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.« less

  15. Electricity Market Games: How Agent-Based Modeling Can Help under High Penetrations of Variable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallo, Giulia

    Integrating increasingly high levels of variable generation in U.S. electricity markets requires addressing not only power system and grid modeling challenges but also an understanding of how market participants react and adapt to them. Key elements of current and future wholesale power markets can be modeled using an agent-based approach, which may prove to be a useful paradigm for researchers studying and planning for power systems of the future.

  16. Electricity Cogenerator from Hydrogen and Biogas

    NASA Astrophysics Data System (ADS)

    Pinate, W.; Chinnasa, P.; Dangphonthong, D.

    2017-09-01

    This research studied about electricity cogenerator from Hydrogen and Biogas and the factors that cause that effecting Hydrogen from Aluminium which was a cylindrical feature. By using a catalyst was NaOH and CaO, it was reacted in distilled water with percentage of Aluminium: the catalyst (NaOH and CaO) and brought to mix with Biogas afterwards, that have been led to electricity from generator 1 kilowatt. The research outcomes were concentration of solutions that caused amount and percent of maximum Hydrogen was to at 10 % wt and 64.73 % which rate of flowing of constant gas 0.56 litter/minute as temperature 97 degree Celsius. After that led Hydrogen was mixed by Biogas next, conducted to electricity from generator and levelled the voltage of generator at 220 Volt. There after the measure of electricity current and found electricity charge would be constant at 3.1 Ampere. And rate of Biogas flowing and Hydrogen, the result was the generator used Biogas rate of flowing was highest 9 litter/minute and the lowest 7.5 litter/minute, which had rate of flowing around 8.2 litter/minute. Total Biogas was used around 493.2 litter or about 0.493 m3 and Hydrogen had rate of flowing was highest 2.5 litter/minute.

  17. Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures

    DOE PAGES

    Zlotnik, Anatoly; Roald, Line; Backhaus, Scott; ...

    2016-03-24

    The extensive installation of gas-fired power plants in many parts of the world has led electric systems to depend heavily on reliable gas supplies. The use of gas-fired generators for peak load and reserve provision causes high intraday variability in withdrawals from high-pressure gas transmission systems. Such variability can lead to gas price fluctuations and supply disruptions that affect electric generator dispatch, electricity prices, and threaten the security of power systems and gas pipelines. These infrastructures function on vastly different spatio-temporal scales, which prevents current practices for separate operations and market clearing from being coordinated. Here in this article, wemore » apply new techniques for control of dynamic gas flows on pipeline networks to examine day-ahead scheduling of electric generator dispatch and gas compressor operation for different levels of integration, spanning from separate forecasting, and simulation to combined optimal control. We formulate multiple coordination scenarios and develop tractable physically accurate computational implementations. These scenarios are compared using an integrated model of test networks for power and gas systems with 24 nodes and 24 pipes, respectively, which are coupled through gas-fired generators. The analysis quantifies the economic efficiency and security benefits of gas-electric coordination and dynamic gas system operation.« less

  18. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiancang; Zhang, Xibo; Li, Rui

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW andmore » a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.« less

  19. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    PubMed

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  20. Dirty Electricity Elevates Blood Sugar Among Electrically Sensitive Diabetics and May Explain Brittle Diabetes

    PubMed Central

    Havas, Magda

    2008-01-01

    Transient electromagnetic fields (dirty electricity), in the kilohertz range on electrical wiring, may be contributing to elevated blood sugar levels among diabetics and prediabetics. By closely following plasma glucose levels in four Type 1 and Type 2 diabetics, we find that they responded directly to the amount of dirty electricity in their environment. In an electromagnetically clean environment, Type 1 diabetics require less insulin and Type 2 diabetics have lower levels of plasma glucose. Dirty electricity, generated by electronic equipment and wireless devices, is ubiquitous in the environment. Exercise on a treadmill, which produces dirty electricity, increases plasma glucose. These findings may explain why brittle diabetics have difficulty regulating blood sugar. Based on estimates of people who suffer from symptoms of electrical hypersensitivity (3–35%), as many as 5–60 million diabetics worldwide may be affected. Exposure to electromagnetic pollution in its various forms may account for higher plasma glucose levels and may contribute to the misdiagnosis of diabetes. Reducing exposure to electromagnetic pollution by avoidance or with specially designed GS filters may enable some diabetics to better regulate their blood sugar with less medication and borderline or pre-diabetics to remain non diabetic longer. PMID:18568931

  1. Visions of the Future: Hybrid Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  2. Analysis of drought impacts on electricity production in the Western and Texas interconnections of the United States.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harto, C. B.; Yan, Y. E.; Demissie, Y. K.

    2012-02-09

    Electricity generation relies heavily on water resources and their availability. To examine the interdependence of energy and water in the electricity context, the impacts of a severe drought to assess the risk posed by drought to electricity generation within the western and Texas interconnections has been examined. The historical drought patterns in the western United States were analyzed, and the risk posed by drought to electricity generation within the region was evaluated. The results of this effort will be used to develop scenarios for medium- and long-term transmission modeling and planning efforts by the Western Electricity Coordination Council (WECC) andmore » the Electric Reliability Council of Texas (ERCOT). The study was performed in response to a request developed by the Western Governors Association in conjunction with the transmission modeling teams at the participating interconnections. It is part of a U.S. Department of Energy-sponsored, national laboratory-led research effort to develop tools related to the interdependency of energy and water as part of a larger interconnection-wide transmission planning project funded under the American Recovery and Reinvestment Act. This study accomplished three main objectives. It provided a thorough literature review of recent studies of drought and the potential implications for electricity generation. It analyzed historical drought patterns in the western United States and used the results to develop three design drought scenarios. Finally, it quantified the risk to electricity generation for each of eight basins for each of the three drought scenarios and considered the implications for transmission planning. Literature on drought impacts on electricity generation describes a number of examples where hydroelectric generation capacity has been limited because of drought but only a few examples of impact on thermoelectric generation. In all documented cases, shortfalls of generation were met by purchasing power from the market, albeit at higher prices. However, sufficient excess generation and transmission must be available for this strategy to work. Although power purchase was the most commonly discussed drought mitigation strategy, a total of 12 response strategies were identified in the literature, falling into four main categories: electricity supply, electricity demand response, alternative water supplies, and water demand response. Three hydrological drought scenarios were developed based on a literature review and historical data analysis. The literature review helped to identify key drought parameters and data on drought frequency and severity. Historical hydrological drought data were analyzed for the western United States to identify potential drought correlations and estimate drought parameters. The first scenario was a West-wide drought occurring in 1977; it represented a severe drought in five of the eight basins in the study area. A second drought scenario was artificially defined by selecting the conditions from the 10th-percentile drought year for each individual basin; this drought was defined in this way to allow more consistent analysis of risk to electricity generation in each basin. The final scenario was based upon the current low-flow hydro modeling scenario defined by WECC, which uses conditions from the year 2001. These scenarios were then used to quantify the risk to electricity generation in each basin. The risk calculations represent a first-order estimate of the maximum amount of electricity generation that might be lost from both hydroelectric and thermoelectric sources under a worst-case scenario. Even with the conservative methodology used, the majority of basins showed a limited amount of risk under most scenarios. The level of risk in these basins is likely to be amenable to mitigation by known strategies, combined with existing reserve generation and transmission capacity. However, the risks to the Pacific Northwest and Texas Basins require further study. The Pacific Northwest is vulnerable because of its heavy reliance on hydroelectric generation. Texas, conversely, is vulnerable because of its heavy dependence on thermoelectric generation, which relies on surface water for cooling, along with the fact that this basin seems to experience more severe drought events on average. Further modeling analysis will be performed in conjunction with the modeling teams at the participating interconnections (WECC and ERCOT) to explore the transmission implications of the drought scenarios in more detail. Given the first-order nature of this analysis, more detailed study of the potential impacts of drought on electricity generation is recommended. Future analyses should attempt to model the potential impacts of drought at the power-plant level, including potential mitigation strategies; include the effects of drought duration; understand the impacts of climate change; and consider economic impacts.« less

  3. Electric power quarterly, January-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-07-01

    The Electric Power Quarterly (EPQ) provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. These data are published to provide meaningful, timely, objective, and accurate energy information for a wide audience including Congress, Federal and State agencies, industry, and the general public.

  4. Solar thermoelectric generator

    DOEpatents

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  5. Abatement Cost of GHG Emissions for Wood-Based Electricity and Ethanol at Production and Consumption Levels

    PubMed Central

    Dwivedi, Puneet; Khanna, Madhu

    2014-01-01

    Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG) intensity of electricity and ethanol derived from slash pine (Pinus elliottii) at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG) emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ−1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ−1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ−1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km−1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e−1 and $30 Mg CO2e−1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation. PMID:24937461

  6. Abatement cost of GHG emissions for wood-based electricity and ethanol at production and consumption levels.

    PubMed

    Dwivedi, Puneet; Khanna, Madhu

    2014-01-01

    Woody feedstocks will play a critical role in meeting the demand for biomass-based energy products in the US. We developed an integrated model using comparable system boundaries and common set of assumptions to ascertain unit cost and greenhouse gas (GHG) intensity of electricity and ethanol derived from slash pine (Pinus elliottii) at the production and consumption levels by considering existing automobile technologies. We also calculated abatement cost of greenhouse gas (GHG) emissions with respect to comparable energy products derived from fossil fuels. The production cost of electricity derived using wood chips was at least cheaper by 1 ¢ MJ-1 over electricity derived from wood pellets. The production cost of ethanol without any income from cogenerated electricity was costlier by about 0.7 ¢ MJ-1 than ethanol with income from cogenerated electricity. The production cost of electricity derived from wood chips was cheaper by at least 0.7 ¢ MJ-1 than the energy equivalent cost of ethanol produced in presence of cogenerated electricity. The cost of using ethanol as a fuel in a flex-fuel vehicle was at least higher by 6 ¢ km-1 than a comparable electric vehicle. The GHG intensity of per km distance traveled in a flex-fuel vehicle was greater or lower than an electric vehicle running on electricity derived from wood chips depending on presence and absence of GHG credits related with co-generated electricity. A carbon tax of at least $7 Mg CO2e-1 and $30 Mg CO2e-1 is needed to promote wood-based electricity and ethanol production in the US, respectively. The range of abatement cost of GHG emissions is significantly dependent on the harvest age and selected baseline especially for electricity generation.

  7. UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.

    PubMed

    Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen

    2015-12-01

    Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.

  8. The Return of the Sun. Editorial.

    ERIC Educational Resources Information Center

    Vogl, Robert; Vogl, Sonia

    1994-01-01

    Editorializes briefly upon general progress in solar energy with a focus on electricity generated by a range of solar technologies. Suggests a major educational effort is essential to increase public's awareness of benefits and limitations of solar electricity. Briefly describes a multidisciplinary solar energy education kit for grade levels from…

  9. Regional water consumption for hydro and thermal electricity generation in the United States

    DOE PAGES

    Lee, Uisung; Han, Jeongwoo; Elgowainy, Amgad; ...

    2017-05-18

    Water is an essential resource for most electric power generation technologies. Thermal power plants typically require a large amount of cooling water whose evaporation is regarded to be consumed. Hydropower plants result in evaporative water loss from the large surface areas of the storing reservoirs. This paper estimated the regional water consumption factors (WCFs) for thermal and hydro electricity generation in the United States, because the WCFs of these power plants vary by region and water supply and demand balance are of concern in many regions. For hydropower, total WCFs were calculated using a reservoir’s surface area, state-level water evaporation,more » and background evapotranspiration. Then, for a multipurpose reservoir, a fraction of its WCF was allocated to hydropower generation based on the share of the economic valuation of hydroelectricity among benefits from all purposes of the reservoir. For thermal power plants, the variations in WCFs by type of cooling technology, prime mover technology, and by region were addressed. The results show that WCFs for electricity generation vary significantly by region. Finally, the generation-weighted average WCFs of thermoelectricity and hydropower are 1.25 (range of 0.18–2.0) and 16.8 (range of 0.67–1194) L/kWh, respectively, and the generation-weighted average WCF by the U.S. generation mix in 2015 is estimated at 2.18 L/kWh.« less

  10. Regional water consumption for hydro and thermal electricity generation in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Elgowainy, Amgad

    Water is an essential resource for most electric power generation technologies. Thermal power plants typically require a large amount of cooling water whose evaporation is regarded to be consumed. Hydropower plants result in evaporative water loss from the large surface areas of the storing reservoirs. This paper estimated the regional water consumption factors (WCFs) for thermal and hydro electricity generation in the United States, because the WCFs of these power plants vary by region and water supply and demand balance are of concern in many regions. For hydropower, total WCFs were calculated using a reservoir’s surface area, state-level water evaporation,more » and background evapotranspiration. Then, for a multipurpose reservoir, a fraction of its WCF was allocated to hydropower generation based on the share of the economic valuation of hydroelectricity among benefits from all purposes of the reservoir. For thermal power plants, the variations in WCFs by type of cooling technology, prime mover technology, and by region were addressed. The results show that WCFs for electricity generation vary significantly by region. Finally, the generation-weighted average WCFs of thermoelectricity and hydropower are 1.25 (range of 0.18–2.0) and 16.8 (range of 0.67–1194) L/kWh, respectively, and the generation-weighted average WCF by the U.S. generation mix in 2015 is estimated at 2.18 L/kWh.« less

  11. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America.

    PubMed

    Barbosa, Larissa de Souza Noel Simas; Bogdanov, Dmitrii; Vainikka, Pasi; Breyer, Christian

    2017-01-01

    Power systems for South and Central America based on 100% renewable energy (RE) in the year 2030 were calculated for the first time using an hourly resolved energy model. The region was subdivided into 15 sub-regions. Four different scenarios were considered: three according to different high voltage direct current (HVDC) transmission grid development levels (region, country, area-wide) and one integrated scenario that considers water desalination and industrial gas demand supplied by synthetic natural gas via power-to-gas (PtG). RE is not only able to cover 1813 TWh of estimated electricity demand of the area in 2030 but also able to generate the electricity needed to fulfil 3.9 billion m3 of water desalination and 640 TWhLHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar and wind electricity storage, diminishing the role of storage technologies. The results for total levelized cost of electricity (LCOE) are decreased from 62 €/MWh for a highly decentralized to 56 €/MWh for a highly centralized grid scenario (currency value of the year 2015). For the integrated scenario, the levelized cost of gas (LCOG) and the levelized cost of water (LCOW) are 95 €/MWhLHV and 0.91 €/m3, respectively. A reduction of 8% in total cost and 5% in electricity generation was achieved when integrating desalination and power-to-gas into the system.

  12. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America

    PubMed Central

    Barbosa, Larissa de Souza Noel Simas; Bogdanov, Dmitrii; Vainikka, Pasi; Breyer, Christian

    2017-01-01

    Power systems for South and Central America based on 100% renewable energy (RE) in the year 2030 were calculated for the first time using an hourly resolved energy model. The region was subdivided into 15 sub-regions. Four different scenarios were considered: three according to different high voltage direct current (HVDC) transmission grid development levels (region, country, area-wide) and one integrated scenario that considers water desalination and industrial gas demand supplied by synthetic natural gas via power-to-gas (PtG). RE is not only able to cover 1813 TWh of estimated electricity demand of the area in 2030 but also able to generate the electricity needed to fulfil 3.9 billion m3 of water desalination and 640 TWhLHV of synthetic natural gas demand. Existing hydro dams can be used as virtual batteries for solar and wind electricity storage, diminishing the role of storage technologies. The results for total levelized cost of electricity (LCOE) are decreased from 62 €/MWh for a highly decentralized to 56 €/MWh for a highly centralized grid scenario (currency value of the year 2015). For the integrated scenario, the levelized cost of gas (LCOG) and the levelized cost of water (LCOW) are 95 €/MWhLHV and 0.91 €/m3, respectively. A reduction of 8% in total cost and 5% in electricity generation was achieved when integrating desalination and power-to-gas into the system. PMID:28329023

  13. Roadmap of retail electricity market reform in China: assisting in mitigating wind energy curtailment

    NASA Astrophysics Data System (ADS)

    Yu, Dezhao; Qiu, Huadong; Yuan, Xiang; Li, Yuan; Shao, Changzheng; Lin, You; Ding, Yi

    2017-01-01

    Among the renewable energies, wind energy has gained the rapidest development in China. Moreover wind power generation has been penetrated into power system in a large scale. However, the high level wind curtailment also indicates a low efficiency of wind energy utilization over the last decade in China. One of the primary constraints on the utilization of wind energy is the lack of an electricity market, in which renewable energies can compete equally with traditional fossil fuel generation. Thus the new round electric power industry reform is essential in China. The reform involves implementing new pricing mechanism, introducing retail-side competition, promoting the consumption of renewable energy. The new round reform can be a promising solution for promoting the development and consumption of wind energy generation in China. Based on proposed reform policies of electric power industry, this paper suggests a roadmap for retail electricity market reform of China, which consists of three stages. Barriers to the efficient utilization of wind energy are also analysed. Finally, this paper introduces several efficient measures for mitigating wind curtailment in each stage of reform.

  14. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  15. Advanced secondary batteries: Their applications, technological status, market and opportunity

    NASA Astrophysics Data System (ADS)

    Yao, M.

    1989-03-01

    Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.

  16. Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.

    PubMed

    Alqahtani, Bandar Jubran; Holt, Kyra Moore; Patiño-Echeverri, Dalia; Pratson, Lincoln

    2016-02-16

    This paper presents a first-order analysis of the feasibility and technical, environmental, and economic effects of large levels of solar photovoltaic (PV) penetration within the services areas of the Duke Energy Carolinas (DEC) and Duke Energy Progress (DEP). A PV production model based on household density and a gridded hourly global horizontal irradiance data set simulates hourly PV power output from roof-top installations, while a unit commitment and real-time economic dispatch (UC-ED) model simulates hourly system operations. We find that the large generating capacity of base-load nuclear power plants (NPPs) without ramping capability in the region limits PV integration levels to 5.3% (6510 MW) of 2015 generation. Enabling ramping capability for NPPs would raise the limit of PV penetration to near 9% of electricity generated. If the planned retirement of coal-fired power plants together with new installations and upgrades of natural gas and nuclear plants materialize in 2025, and if NPPs operate flexibly, then the share of coal-fired electricity will be reduced from 37% to 22%. A 9% penetration of electricity from PV would further reduce the share of coal-fired electricity by 4-6% resulting in a system-wide CO2 emissions rate of 0.33 to 0.40 tons/MWh and associated abatement costs of 225-415 (2015$ per ton).

  17. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  18. Dynamic Modeling and Grid Interaction of a Tidal and River Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Donegan, James

    This presentation provides a high-level overview of the deployment of a river generator installed in a small system. The turbine dynamics of a river generator, electrical generator, and power converter are modeled in detail. Various simulations can be exercised, and the impact of different control algorithms, failures of power switches, and corresponding impacts can be examined.

  19. Electric power quarterly: January-March 1988. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-07-22

    The Electric Power Quarterly (EPQ) presents information on electric utilities at the plant level. The information provides the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. These data are published to provide meaningful, timely, objective, and accurate energy information for a wide audience including Congress, federal, and state agencies; industry; and the general public. In this report, data regarding electric utilities' net generation, fuel consumption, and fuel stocks are presented on a plant-by-plant basis. In addition, quantity, cost, and qualitymore » of fossil-fuel receipts are presented on a plant-by-plant basis for plants with a combined installed nameplate capacity of 50 megawatts or larger.« less

  20. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system formore » purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Daniel; Bielen, Dave; Eichman, Josh

    Electrification of end-use services in the transportation, buildings, and industrial sectors coupled with decarbonization of electricity generation has been identified as one of the key pathways to achieving a low-carbon future in the United States. By lowering the carbon intensity of the electricity generation and substituting electricity for higher-emissions fossil fuels in end-use sectors, significant reductions in carbon dioxide emissions can be achieved. This report describes a preliminary analysis that examines the potential impacts of widespread electrification on the U.S. energy sector. We develop a set of exploratory scenarios under which electrification is aggressively pursued across all end-use sectors andmore » examine the impacts of achieving these electrification levels on electricity load patterns, total fossil energy consumption, carbon dioxide emissions, and the evolution of the U.S. power system.« less

  2. Method for protecting an electric generator

    DOEpatents

    Kuehnle, Barry W.; Roberts, Jeffrey B.; Folkers, Ralph W.

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  3. Free radicals mediate postshock contractile impairment in cardiomyocytes.

    PubMed

    Tsai, Min-Shan; Sun, Shijie; Tang, Wanchun; Ristagno, Giuseppe; Chen, Wen-Jone; Weil, Max Harry

    2008-12-01

    Previous studies demonstrated myocardial dysfunction after electrical shock and indicated it may be related to free radicals. Whether the free radicals are generated after electrical shock has not been documented at the cellular level. This study was to investigate whether electrical shock generates intracellular free radicals inside cardiomyocytes and to evaluate whether reducing intracellular free radicals by pretreatment of ascorbic acid would reduce the contractile dysfunction after electrical shock. Randomized prospective animal study. University affiliated research laboratory. Sprague-Dawley rats. Cardiomyocytes isolated from adult male rats were divided into four groups: (1) electrical shock alone; (2) electrical shock pretreated with ascorbic acid; (3) pretreated with ascorbic acid alone; and (4) control. Ascorbic acid (0.2 mM) was administrated in the perfusate of the ascorbic acid + electrical shock and ascorbic acid groups. A 2-J electrical shock was delivered to the electrical shock and ascorbic acid + electrical shock groups. DCFH-DA-loaded cardiomyocytes showed increased intracellular free radicals after electrical shock. The contractions and Ca2+ transients were recorded optically with fura-2 loading. Within 4 mins after electrical shock in the electrical shock group, the length shortening decreased from 8.4% +/- 2.5% to 5.6% +/- 3.4% (p = 0.000) and the Ca2+ transient decreased from 1.15 +/- 0.13 au to 1.08 +/- 0.1 au (p = 0.038). Compared with control, a significant difference in length shortening (p = 0.001) but not Ca2+ transient (p = 0.052) was noted. In the presence of ascorbic acid, electrical shock did not affect length shortening and Ca2+ transient. Electrical shock generates free radicals inside the cardiomyocyte, and causes contractile impairment and associated decrease of Ca transient. Administering ascorbic acid may improve such damage by eliminating free radicals.

  4. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, Joyce; Miller, John; O'Shaughnessy, Eric

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for fourmore » charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.« less

  5. Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Restrepo, R. L.; Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Morales, A. L.; Duque, C. A.

    2017-09-01

    The effects of electric and magnetic fields on the second and third harmonic generation coefficients in a Morse potential quantum well are theoretically studied. The energy levels and corresponding wave functions are obtained by solving the Schrödinger equation for the electron in the parabolic band scheme and effective mass approximations and the envelope function approach. The results show that both the electric and the magnetic fields have significant influence on the magnitudes and resonant peak energy positions of the second and third harmonic generation responses. In general, the Morse potential profile becomes wider and shallower as γ -parameter increases and so the energies of the bound states will be functions of this parameter. Therefore, we can conclude that the effects of the electric and magnetic fields can be used to tune and control the optical properties of interest in the range of the infrared electromagnetic spectrum.

  6. A review on battery thermal management in electric vehicle application

    NASA Astrophysics Data System (ADS)

    Xia, Guodong; Cao, Lei; Bi, Guanglong

    2017-11-01

    The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.

  7. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  8. Personnel electronic neutron dosimeter

    DOEpatents

    Falk, Roger B.; Tyree, William H.

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  9. Increasing the percentage of renewable energy in the Southwestern United States

    USDA-ARS?s Scientific Manuscript database

    An analysis was performed on the states in the Southwestern United States to determine methods to increase the proportion of wind and solar generated electricity in those states to levels as high as 40% of total electricity used. This analysis was performed by comparing the monthly and diurnal elect...

  10. Economically Feasible Potentials for Wind Power in China and the US

    NASA Astrophysics Data System (ADS)

    Lu, X.; McElroy, M. B.; Chris, N. P.; Tchou, J.

    2011-12-01

    The present study is intended to explore the economic feasible potentials for wind energy in China and the U.S. subject to their policy systems for renewable energy. These two countries were chosen as subject locales for three reasons: first, they are the two largest countries responsible for energy consumption and CO2 emissions; second, these two countries have the largest installed capacities and the fastest annual growth of wind power in the world; third, China and the U.S. have adopted two distinct but representative incentive policies to accelerate exploitation of the renewable energy source from wind. Investments in large-scale wind farms in China gain privileges from the concession policy established under China's Renewable Energy Law. The electricity generated from wind can be sold at a guaranteed price for a concession period (typically the first ten operational years of a wind farm) to ensure the profitability of the wind farm development. The effectiveness of this policy has been evidenced by the swift growth of total installed capacities for wind power over the past five years in China. A spatial financial model was developed to evaluate the bus-bar prices of wind-generated electricity in China following this wind concession policy. The results indicated that wind could accommodate all of the demand for electricity projected for 2030 assuming a guaranteed bus-bar price of 7.6 U.S. Cents per kWh over the concession period. It is noteworthy that the prices of wind-generated electricity could be as cheap as conventional power generation in the years following the concession period. The power market in the U.S. is more deregulated and electricity is normally traded in a bidding process an hour to a day ahead of real time. Accordingly, the market-oriented policy instrument of PTC subsidies was instituted in the U.S. to ensure the competitiveness of wind power compared to the conventional power generation in the regional power markets. The spatial financial model developed for previous analysis of wind energy in China was tailored to simulate the relevant investment environments for U.S. wind projects. A particular problem was investigated as to how the profitability and competitiveness of onshore wind power in the U.S. would be influenced by PTC subsidy levels varying from 0 to 4 cents per kWh. The results suggested that the current PTC level (2.1 cent per kWh) is at a critical point in determining the competitiveness of wind-generated electricity under normal costs. Setting system integration challenges aside, the potential for profitable wind-generated electricity could accommodate more than seven times U.S. electricity demand at the current PTC subsidy. Similar to the concession policy adopted in China, PTC subsidies are only available for the first ten years following the initiation of wind farms; wind power would still offer a renewable energy source for profitable electricity generation during the post-PTC period.

  11. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  12. Spinal cord injury below-level neuropathic pain relief with dorsal root entry zone microcoagulation performed caudal to level of complete spinal cord transection.

    PubMed

    Falci, Scott; Indeck, Charlotte; Barnkow, Dave

    2018-06-01

    OBJECTIVE Surgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically been performed at and cephalad to, but not below, the level of SCI. This study was initiated to investigate the validity of 3 proposed concepts regarding the DREZ in SCI central pain: 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through sympathetic nervous system (SNS) pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain-generators. METHODS Three unique patients with both intractable SCI below-level central pain and complete spinal cord transection at the level of SCI were identified. All 3 patients had previously undergone surgical intervention to their spinal cords-only cephalad to the level of spinal cord transection-with either DREZ microcoagulation or cyst shunting, in failed attempts to relieve their SCI below-level central pain. Subsequent to these surgeries, DREZ lesioning of the spinal cord solely caudal to the level of complete spinal cord transection was performed using electrical intramedullary guidance. The follow-up period ranged from 1 1/2 to 11 years. RESULTS All 3 patients in this study had complete or near-complete relief of all below-level neuropathic pain. The analyzed electrical data confirmed and enhanced a previously proposed somatotopic map of SCI below-level DREZ pain generators. CONCLUSIONS The results of this study support the following hypotheses. 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through SNS pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain generators.

  13. Quantifying Co-benefits of Renewable Energy through Integrated Electricity and Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Abel, D.

    2016-12-01

    This work focuses on the coordination of electricity sector changes with air quality and health improvement strategies through the integration of electricity and air quality models. Two energy models are used to calculate emission perturbations associated with changes in generation technology (20% generation from solar photovoltaics) and demand (future electricity use under a warmer climate). Impacts from increased solar PV penetration are simulated with the electricity model GridView, in collaboration with the National Renewable Energy Laboratory (NREL). Generation results are used to scale power plant emissions from an inventory developed by the Lake Michigan Air Directors Consortium (LADCO). Perturbed emissions and are used to calculate secondary particulate matter with the Community Multiscale Air Quality (CMAQ) model. We find that electricity NOx and SO2 emissions decrease at a rate similar to the total fraction of electricity supplied by solar. Across the Eastern U.S. region, average PM2.5 is reduced 5% over the summer, with highest reduction in regions and on days of greater PM2.5. A similar approach evaluates the air quality impacts of elevated electricity demand under a warmer climate. Meteorology is selected from the North American Regional Climate Change Assessment Program (NARCCAP) and input to a building energy model, eQUEST, to assess electricity demand as a function of ambient temperature. The associated generation and emissions are calculated on a plant-by-plant basis by the MyPower power sector model. These emissions are referenced to the 2011 National Emissions Inventory to be modeled in CMAQ for the Eastern U.S. and extended to health impact evaluation with the Environmental Benefits Mapping and Analysis Program (BenMAP). All results focus on the air quality and health consequences of energy system changes, considering grid-level changes to meet climate and air quality goals.

  14. Learn More | Energy Analysis | NREL

    Science.gov Websites

    flexibility. Value of Demand Response: Quantities from Production Cost Modeling (Presentation) (2014 adding variable renewable generation to the grid. Market Design Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation (2014) Reviewed market design approaches focused on

  15. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  16. Performance optimization of an MHD generator with physical constraints

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Seikel, G. R.; Smith, J. M.

    1979-01-01

    A technique has been described which optimizes the power out of a Faraday MHD generator operating under a prescribed set of electrical and magnetic constraints. The method does not rely on complicated numerical optimization techniques. Instead the magnetic field and the electrical loading are adjusted at each streamwise location such that the resultant generator design operates at the most limiting of the cited stress levels. The simplicity of the procedure makes it ideal for optimizing generator designs for system analysis studies of power plants. The resultant locally optimum channel designs are, however, not necessarily the global optimum designs. The results of generator performance calculations are presented for an approximately 2000 MWe size plant. The difference between the maximum power generator design and the optimal design which maximizes net MHD power are described. The sensitivity of the generator performance to the various operational parameters are also presented.

  17. Implementation of optimum solar electricity generating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my; Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness onmore » the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.« less

  18. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  19. Determination of optimum allocation and pricing of distributed generation using genetic algorithm methodology

    NASA Astrophysics Data System (ADS)

    Mwakabuta, Ndaga Stanslaus

    Electric power distribution systems play a significant role in providing continuous and "quality" electrical energy to different classes of customers. In the context of the present restrictions on transmission system expansions and the new paradigm of "open and shared" infrastructure, new approaches to distribution system analyses, economic and operational decision-making need investigation. This dissertation includes three layers of distribution system investigations. In the basic level, improved linear models are shown to offer significant advantages over previous models for advanced analysis. In the intermediate level, the improved model is applied to solve the traditional problem of operating cost minimization using capacitors and voltage regulators. In the advanced level, an artificial intelligence technique is applied to minimize cost under Distributed Generation injection from private vendors. Soft computing techniques are finding increasing applications in solving optimization problems in large and complex practical systems. The dissertation focuses on Genetic Algorithm for investigating the economic aspects of distributed generation penetration without compromising the operational security of the distribution system. The work presents a methodology for determining the optimal pricing of distributed generation that would help utilities make a decision on how to operate their system economically. This would enable modular and flexible investments that have real benefits to the electric distribution system. Improved reliability for both customers and the distribution system in general, reduced environmental impacts, increased efficiency of energy use, and reduced costs of energy services are some advantages.

  20. Electricity system expansion studies to consider uncertainties and interactions in restructured markets

    NASA Astrophysics Data System (ADS)

    Jin, Shan

    This dissertation concerns power system expansion planning under different market mechanisms. The thesis follows a three paper format, in which each paper emphasizes a different perspective. The first paper investigates the impact of market uncertainties on a long term centralized generation expansion planning problem. The problem is modeled as a two-stage stochastic program with uncertain fuel prices and demands, which are represented as probabilistic scenario paths in a multi-period tree. Two measurements, expected cost (EC) and Conditional Value-at-Risk (CVaR), are used to minimize, respectively, the total expected cost among scenarios and the risk of incurring high costs in unfavorable scenarios. We sample paths from the scenario tree to reduce the problem scale and determine the sufficient number of scenarios by computing confidence intervals on the objective values. The second paper studies an integrated electricity supply system including generation, transmission and fuel transportation with a restructured wholesale electricity market. This integrated system expansion problem is modeled as a bi-level program in which a centralized system expansion decision is made in the upper level and the operational decisions of multiple market participants are made in the lower level. The difficulty of solving a bi-level programming problem to global optimality is discussed and three problem relaxations obtained by reformulation are explored. The third paper solves a more realistic market-based generation and transmission expansion problem. It focuses on interactions among a centralized transmission expansion decision and decentralized generation expansion decisions. It allows each generator to make its own strategic investment and operational decisions both in response to a transmission expansion decision and in anticipation of a market price settled by an Independent System Operator (ISO) market clearing problem. The model poses a complicated tri-level structure including an equilibrium problem with equilibrium constraints (EPEC) sub-problem. A hybrid iterative algorithm is proposed to solve the problem efficiently and reliably.

  1. Voltage-Gated Na+ Channel Isoforms and Their mRNA Expression Levels and Protein Abundance in Three Electric Organs and the Skeletal Muscle of the Electric Eel Electrophorus electricus

    PubMed Central

    Hiong, Kum C.; Boo, Mel V.; Wong, Wai P.; Chew, Shit F.

    2016-01-01

    This study aimed to obtain the coding cDNA sequences of voltage-gated Na+ channel (scn) α-subunit (scna) and β-subunit (scnb) isoforms from, and to quantify their transcript levels in, the main electric organ (EO), Hunter’s EO, Sach’s EO and the skeletal muscle (SM) of the electric eel, Electrophorus electricus, which can generate both high and low voltage electric organ discharges (EODs). The full coding sequences of two scna (scn4aa and scn4ab) and three scnb (scn1b, scn2b and scn4b) were identified for the first time (except scn4aa) in E. electricus. In adult fish, the scn4aa transcript level was the highest in the main EO and the lowest in the Sach’s EO, indicating that it might play an important role in generating high voltage EODs. For scn4ab/Scn4ab, the transcript and protein levels were unexpectedly high in the EOs, with expression levels in the main EO and the Hunter’s EO comparable to those of scn4aa. As the key domains affecting the properties of the channel were mostly conserved between Scn4aa and Scn4ab, Scn4ab might play a role in electrogenesis. Concerning scnb, the transcript level of scn4b was much higher than those of scn1b and scn2b in the EOs and the SM. While the transcript level of scn4b was the highest in the main EO, protein abundance of Scn4b was the highest in the SM. Taken together, it is unlikely that Scna could function independently to generate EODs in the EOs as previously suggested. It is probable that different combinations of Scn4aa/Scn4ab and various Scnb isoforms in the three EOs account for the differences in EODs produced in E. electricus. In general, the transcript levels of various scn isoforms in the EOs and the SM were much higher in adult than in juvenile, and the three EOs of the juvenile fish could be functionally indistinct. PMID:27907137

  2. Technological response to economic disruption: The role of new technologies in mitigating exogenous economic shocks

    NASA Astrophysics Data System (ADS)

    Spencer, Aron Scott

    2003-07-01

    The three essays in this dissertation deal with the role of technology in mitigating economic disruption. Much research has been done on the disruptive effects of technology; in contrast, these essays look at how technology can be used to reduce the effects of exogenous disruptions. Each essay looks at the issue at a different level; the first at the firm level, the second at the industry level and the final essay at the level of the national economy. The first essay examines the options and possible strategies for firms faced with increased instability in their electricity supply, as recently occurred in California. This paper develops response strategies for companies affected by an electrical crisis. These responses fall into three categories: Lead, Follow, or Get Out of the State. The technologies available to companies choosing to lead are reviewed, along with constraints to their adoption. From these strategies, it can be shown that areas with unstable electrical markets can expect a loss of firms to locales with less risk and uncertainty, unless governments adopt policies promoting distributed generation. The second essay projects the economic impacts of the adoption of high-temperature superconductor (FITS) technologies in electric generation, transmission, and distribution systems. Three technologies utilizing high-temperature superconductors are analyzed for their potential impact on the electrical utility industry. Distributed superconducting magnetic energy storage systems (D-SMES), superconducting cable, and HTS generators are each described along with their possible uses in the electrical utility industry. The economic impact of these technologies is then projected, along with a comparison between them and conventional technologies. The third essay deals with the role of technology in mitigating the economic effects of the reaction to terrorist attacks. In the wake of the terrorist attacks of September 11, 2001, public and private investments are being diverted from productive to protective uses. This essay examines the possible economic effects of such a reallocation of resources, and shows how this shift in investment is likely to dampen long-term economic growth. Whether one uses Solow growth model derivatives or Austrian school methods, the diversion of resources has negative implications for economic growth.

  3. Apparatuses and methods for generating electric fields

    DOEpatents

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  4. Ultrasound acoustic wave energy transfer and harvesting

    NASA Astrophysics Data System (ADS)

    Shahab, Shima; Leadenham, Stephen; Guillot, François; Sabra, Karim; Erturk, Alper

    2014-04-01

    This paper investigates low-power electricity generation from ultrasound acoustic wave energy transfer combined with piezoelectric energy harvesting for wireless applications ranging from medical implants to naval sensor systems. The focus is placed on an underwater system that consists of a pulsating source for spherical wave generation and a harvester connected to an external resistive load for quantifying the electrical power output. An analytical electro-acoustic model is developed to relate the source strength to the electrical power output of the harvester located at a specific distance from the source. The model couples the energy harvester dynamics (piezoelectric device and electrical load) with the source strength through the acoustic-structure interaction at the harvester-fluid interface. Case studies are given for a detailed understanding of the coupled system dynamics under various conditions. Specifically the relationship between the electrical power output and system parameters, such as the distance of the harvester from the source, dimensions of the harvester, level of source strength, and electrical load resistance are explored. Sensitivity of the electrical power output to the excitation frequency in the neighborhood of the harvester's underwater resonance frequency is also reported.

  5. Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation.

    PubMed

    Shen, Daozhi; Xiao, Ming; Zou, Guisheng; Liu, Lei; Duley, Walter W; Zhou, Y Norman

    2018-05-01

    Most state-of-the-art electronic wearable sensors are powered by batteries that require regular charging and eventual replacement, which would cause environmental issues and complex management problems. Here, a device concept is reported that can break this paradigm in ambient moisture monitoring-a new class of simple sensors themselves can generate moisture-dependent voltage that can be used to determine the ambient humidity level directly. It is demonstrated that a moisture-driven electrical generator, based on the diffusive flow of water in titanium dioxide (TiO 2 ) nanowire networks, can yield an output power density of up to 4 µW cm -2 when exposed to a highly moist environment. This performance is two orders of magnitude better than that reported for carbon-black generators. The output voltage is strongly dependent on humidity of ambient environment. As a big breakthrough, this new type of device is successfully used as self-powered wearable human-breathing monitors and touch pads, which is not achievable by any existing moisture-induced-electricity technology. The availability of high-output self-powered electrical generators will facilitate the design and application of a wide range of new innovative flexible electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Decomposing climate-induced temperature and water effects on the expansion and operation of the US electricity system

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Eurek, K.; Macknick, J.; Steinberg, D. C.; Averyt, K.; Badger, A.; Livneh, B.

    2017-12-01

    Climate change has the potential to affect the supply and demands of the U.S. power sector. Rising air temperatures can affect the seasonal and total demand for electricity, alter the thermal efficiency of power plants, and lower the maximum capacity of electric transmission lines. Changes in hydrology can affect seasonal and total availability of water used for power plant operations. Prior studies have examined some climate impacts on the electricity sector, but there has been no systematic study quantifying and comparing the importance of these climate-induced effects in isolation and in combination. Here, we perform a systematic assessment using the Regional Energy Deployment System (ReEDS) electricity sector model in combination with downscaled climate results from four models in the CMIP5 archive that provide contrasting temperature and precipitation trends for key regions in the U.S. The ReEDS model captures dynamic climate and hydrological resource data .when choosing the cost optimal mix of generation resources necessary to balance supply and demand for electricity. We examine how different climate-induced changes in air temperature and water availability, considered in isolation and in combination, may affect energy and economic outcomes at a regional and national level from the present through 2050. Results indicate that temperature-induced impacts on electricity consumption show consistent trends nationwide across all climate scenarios. Hydrological impacts and variability differ by model and tend to have a minor effect on national electricity trends, but can be important determinants regionally. Taken together, this suggests that isolated climate change impacts on the electricity system depend on the geographic scale of interest - the effect of rising temperatures on demand, which is qualitatively robust to the choice of climate model, largely determines impacts on generation, capacity and cost at the national level, whereas other impact pathways may dominate at regional level.

  7. Medical aspects of power generation, present and future.

    PubMed

    Linnemann, R E

    1979-01-01

    It can be seen that the radiation emissions of nuclear power plants are small indeed, compared to natural background radiation and other man-made sources of radiation. For example, the poulation is exposed to 100 times more radiation from television sets than from nuclear power reactors. The assumed risks to the people in this country from nuclear power reactors are also small compared to the normal risks which are tolerated in this society. The complete elimination of all hazards is a most difficult if not impossible task. If we need and desire a certain level of electrical energy, if we must choose between alternative sourves of the energy, then it is apparent that the total impact on our health from nuclear power generation of electricity, under normal operations and in consideration of catastrophic accident probabilities, is significantly less than that of continuing or increasing use of fossil fuels to generate electricity.

  8. Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo.

    PubMed

    Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan; Rowland, Nathan C; Revuelta, Gonzalo J; George, Mark S; Bikson, Marom; Feng, Wuwei

    2018-03-13

    Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  10. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Peng, J.; NE)

    2011-02-24

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use inmore » electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.« less

  11. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control/electrical power generation subsystem

    NASA Technical Reports Server (NTRS)

    Patton, Jeff A.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C)/Electrical Power Generation (EPG) hardware. The EPD and C/EPG hardware is required for performing critical functions of cryogenic reactant storage, electrical power generation and product water distribution in the Orbiter. Specifically, the EPD and C/EPG hardware consists of the following components: Power Section Assembly (PSA); Reactant Control Subsystem (RCS); Thermal Control Subsystem (TCS); Water Removal Subsystem (WRS); and Power Reactant Storage and Distribution System (PRSDS). The IOA analysis process utilized available EPD and C/EPG hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; Zhang, Yingchen

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from thatmore » of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.« less

  13. Management of busbar costs and spending tradeoffs for the transition to competitive markets in electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corio, M.R.; Boyd, G.

    Competition is changing the fundamental basis for doing business in the electricity generation market. As the market moves toward competitive market conditions, electricity will be viewed increasingly as a commodity--not only supplied to customers within a utility`s service area, but brokered and marketed outside its area as well. With movement toward retail wheeling being considered in California, Michigan, and New York, it may soon become a reality as well. This means that a utility can no longer feel secure as the monopoly supplier of electricity within its own franchise area. To remain the main supplier in its current service areamore » and compete for customers in other service areas, utilities will need to understand and examine all the components of ``busbar costs`` at its generating units. As competition drives the market to marginal costs, generating units with costs exceeding the market clearing price for electricity may soon have a limited role in the generation market. As the industry evolves, competition in the marketplace will force uneconomic plants to reduce costs or go out of business. This paper discusses results of studies addressing the evaluation of cost effectiveness, benchmarking of cost-efficiency, and development of marginal cost curves for busbar costs based on the development and aggregation of the three key measures which determine the cost and level of output (generation): (1) reliability; (2) heat rate; and (3) planned outage factor.« less

  14. Outsourcing of generating assets as a competitive strategy for large electric customers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacalone, F.T.; Hocker, C.

    The US electric power industry is at a transitional stage on the way to full competition at the retail level. A fundamental difference between wholesale and retail competition is that, with the latter, the end user will have a choice of suppliers. Large electric customers, such as industrial manufacturers, have traditionally had only two choices: to purchase from the local franchise utility or to self-generate. With retail competition, however, these same customers will have not only have many choices of suppliers to compare against the self-generation option, but also will have a new alternative to consider - that of outsourcingmore » their generating assets as a means of retaining effective control, but not necessarily ownership, of their electric supply. Outsourcing of generation assets means turning over complete or partial ownership of these assets to a third party, who then sells the electricity back to the customer at retail. This approach can be advantageous to a customer who wants to achieve one or more of the following benefits that are generally not available in the traditional ``make or buy'' paradigm: monetize (receive cash for) assets to pay down debt or redeploy into its core business; reduce operating and overhead costs; meet increasing power demand without making a significant capital expenditure; retain a significant degree of control over the operation of the assets, rather than turning its source of supply to a utility, independent generator, or power marketer; and move the assets off-balance sheet and off-credit as a means of improving its corporate financial position. Outsourcing of industrial generation, including most or all of the above benefits has already occurred successfully in a handful of cases, such as the James River and Stone Container mills discussed in this paper.« less

  15. DESIGN OF AN ANAEROBIC DIGESTER AND FUEL CELL SYSTEM FOR ENERGY GENERATION FROM DAIRY WASTE

    EPA Science Inventory

    Dairy waste was found to have a natural population of microorganisms capable of seeding an MFC. Dairy wastewater also proved to be a very effective substrate. Different graphite electrode materials provided varying levels of electrical energy generation, demonstrating with gr...

  16. Visible-light responsive photocatalytic fuel cell based on WO(3)/W photoanode and Cu(2)O/Cu photocathode for simultaneous wastewater treatment and electricity generation.

    PubMed

    Chen, Quanpeng; Li, Jinhua; Li, Xuejin; Huang, Ke; Zhou, Baoxue; Cai, Weimin; Shangguan, Wenfeng

    2012-10-16

    A visible-light driven photocatalytic fuel cell (PFC) system comprised of WO(3)/W photoanode and Cu(2)O/Cu photocathode was established for organic compounds degradation with simultaneous electricity generation. The central idea for its operation is the mismatched Fermi levels between the two photoelectrodes. Under light illumination, the Fermi level of WO(3)/W photoanode is higher than that of Cu(2)O/Cu photocathode. An interior bias can be produced based on which the electrons of WO(3)/W photoanode can transfer from the external circuit to combine with the holes of Cu(2)O/Cu photocathode then generates the electricity. In this manner, the electron/hole pairs separations at two photoelectrodes are facilitated to release the holes of WO(3)/W photoanode and electrons of Cu(2)O/Cu photocathode. Organic compounds can be decomposed by the holes of WO(3)/W photoanode due to its high oxidation power (+3.1-3.2 V(NHE)). The results demonstrated that various model compounds including phenol, Rhodamine B, and Congo red can be successfully decomposed in this PFC system, with the degradation rate after 5 h operation were obtained to be 58%, 63%, and 74%, respectively. The consistent operation for continuous water treatment with the electricity generation at a long time scale was also confirmed from the result. The proposed PFC system provides a self-sustained and energy-saving way for simultaneous wastewater treatment and energy recovery.

  17. Electric portfolio modeling with stochastic water - climate interactions: Implications for co-management of water and electric utilities

    NASA Astrophysics Data System (ADS)

    Woldeyesus, Tibebe Argaw

    Water supply constraints can significantly restrict electric power generation, and such constraints are expected to worsen with future climate change. The overarching goal of this thesis is to incorporate stochastic water-climate interactions into electricity portfolio models and evaluate various pathways for water savings in co-managed water-electric utilities. Colorado Springs Utilities (CSU) is used as a case study to explore the above issues. The thesis consists of three objectives: Characterize seasonality of water withdrawal intensity factors (WWIF) for electric power generation and develop a risk assessment framework due to water shortages; Incorporate water constraints into electricity portfolio models and evaluate the impact of varying capital investments (both power generation and cooling technologies) on water use and greenhouse gas emissions; Compare the unit cost and overall water savings from both water and electric sectors in co-managed utilities to facilitate overall water management. This thesis provided the first discovery and characterization of seasonality of WWIF with distinct summertime and wintertime variations of +/-17% compared to the power plant average (0.64gal/kwh) which itself is found to be significantly higher than the literature average (0.53gal/kwh). Both the streamflow and WWIF are found to be highly correlated with monthly average temperature (r-sq = 89%) and monthly precipitation (r-sq of 38%) enabling stochastic simulation of future WWIF under moderate climate change scenario. Future risk to electric power generation also showed the risk to be underestimated significantly when using either the literature average or the power plant average WWIF. Seasonal variation in WWIF along with seasonality in streamflow, electricity demand and other municipal water demands along with storage are shown to be important factors for more realistic risk estimation. The unlimited investment in power generation and/or cooling technologies is also found to save water and GHG emissions by 68% and 75% respectively at a marginal levelized cost increase of 12%. In contrast, the zero investment scenarios (which optimizes exiting technologies to address water scarcity constraints on power generation) shows 50% water savings and 23% GHG emissions reduction at a relatively high marginal levelized cost increase of 37%. Water saving strategies in electric sector show very high cost of water savings (48,000 and 200,000)/Mgal-year under unlimited investment and zero investment scenarios respectively, but they have greater water saving impacts of 6% to CSU municipal water demand; while the individual water saving strategies from water sector have low cost of water savings ranging from (37-1,500)/Mgal-year but with less than 0.5% water reduction impact to CSU due to their low penetration. On the other hand, use of reclaimed water for power plant cooling systems have shown great water savings of up to 92% against the BAU and cost of water saving from (0-73,000)/Mgal-year when integrated with unlimited investment and zero investment water minimizing scenarios respectively in the electric sector. Overall, cities need to focus primarily on use of reclaimed water and in new generation technologies' investment including cooling system retrofits while focusing on expanding the penetration rate of individual water saving strategies in the water sector.

  18. Nuclear Power as a Basis for Future Electricity Generation

    NASA Astrophysics Data System (ADS)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy, moreover, the energy source, which does not emit carbon dioxide into atmosphere, are considered as the energy source for basic loads in an electrical grid. Currently, the vast majority of NPPs are used only for electricity generation. However, there are possibilities to use NPPs also for district heating or for desalination of water. In spite of all current advances in nuclear power, NPPs have the following deficiencies: 1) Generate radioactive wastes; 2) Have relatively low thermal efficiencies, especially, watercooled NPPs; 3) Risk of radiation release during severe accidents; and 4) Production of nuclear fuel is not an environment-friendly process. Therefore, all these deficiencies should be addressed in the next generation or Generation-IV reactors. Generation-IV reactors will be hightemperature reactors and multipurpose ones, which include electricity generation, hydrogen cogeneration, process heat, district heating, desalination, etc.

  19. Electricity Data Browser

    EIA Publications

    The Electricity Data Browser shows generation, consumption, fossil fuel receipts, stockpiles, retail sales, and electricity prices. The data appear on an interactive web page and are updated each month. The Electricity Data Browser includes all the datasets collected and published in EIA's Electric Power Monthly and allows users to perform dynamic charting of data sets as well as map the data by state. The data browser includes a series of reports that appear in the Electric Power Monthly and allows readers to drill down to plant level statistics, where available. All images and datasets are available for download. Users can also link to the data series in EIA's Application Programming Interface (API). An API makes our data machine-readable and more accessible to users.

  20. Solar thermoelectricity via advanced latent heat storage: A cost-effective small-scale CSP application

    NASA Astrophysics Data System (ADS)

    Glatzmaier, G. C.; Rea, J.; Olsen, M. L.; Oshman, C.; Hardin, C.; Alleman, J.; Sharp, J.; Weigand, R.; Campo, D.; Hoeschele, G.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2017-06-01

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales in the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and customer type, and specified additional features for STEALS that are needed to meet the needs of this growing power market.

  1. Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships.

    PubMed

    Silva, Andre A; Gupta, Shalabh; Bazzi, Ali M; Ulatowski, Arthur

    2017-09-22

    Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures. In this regard, this paper presents a fault diagnosis methodology for electric drives in electric ships. This methodology utilizes the two-dimensional, i.e. scale-shift, wavelet transform of the sensor data to filter optimal information-rich regions which can enhance the diagnosis accuracy as well as reduce the computational complexity of the classifier. The methodology was tested on sensor data generated from an experimentally validated simulation model of electric drives under various cruising speed conditions. The results in comparison with other existing techniques show a high correct classification rate with low false alarm and miss detection rates. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Novel Control Strategy for Multiple Run-of-the-River Hydro Power Plants to Provide Grid Ancillary Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanpurkar, Manish; Luo, Yusheng; Hovsapian, Rob

    Hydropower plant (HPP) generation comprises a considerable portion of bulk electricity generation and is delivered with a low-carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which include wind and solar. Increasing penetration levels of wind and solar lead to a lower inertia on the electric grid, which poses stability challenges. In recent years, breakthroughs in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments of renewable energy resources on electric grids. If integrated with scalable, multi-time-step energy storage so that the total output can be controlled, multiple run-of-the-river (ROR)more » HPPs can be deployed. Although the size of a single energy storage system is much smaller than that of a typical reservoir, the ratings of storages and multiple ROR HPPs approximately equal the rating of a large, conventional HPP. This paper proposes cohesively managing multiple sets of energy storage systems distributed in different locations. This paper also describes the challenges associated with ROR HPP system architecture and operation.« less

  3. Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant Douglas (Inventor); Woodard, Stanley E. (Inventor)

    2012-01-01

    A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.

  4. Non-thermal plasma jet without electrical shock for biomedical applications

    NASA Astrophysics Data System (ADS)

    Baik, Ku Youn; Kang, Han Lim; Kim, Junseong; Park, Shin Young; Bang, Ji Yun; Uhm, Han S.; Choi, Eun Ha; Cho, Guangsup

    2013-10-01

    A plasma jet without an electrical shock was generated through a Y-shaped tube in which voltages with opposite phases were applied to a pair of tubes. The plasma plume generated at the intersection had a plasma potential of a 60-90 V and high concentrations of reactive species sufficient to induce a high level of lethality on gram-negative bacteria on a tissue mimic. The selective lethality of bacteria on an epithelial-cell-containing tissue mimic could be modulated using oxidant and antioxidant chemicals, thereby leading to the possibility of a shock-reduced plasma jet for biomedical applications.

  5. An Innovation for the Energy Industry

    NASA Technical Reports Server (NTRS)

    1985-01-01

    REDOX is an economical energy storage system which promises major reductions in the cost of storing electrical energy. The system is based upon the conversion of chemical energy into electrical energy. 75 percent of the energy used to charge the system is returned. It is flexible and the energy may be stored for long periods. It was developed by Lewis Research Center, who transferred the technology to SOHIO for further development and possible commercialization. Redox could eliminate the use of high quality generator levels and would be particularly valuable to utilities which generate power from coal or nuclear energy.

  6. Feasibility study of wind-generated electricity for rural applications in southwestern Ohio

    NASA Astrophysics Data System (ADS)

    Kohring, G. W.

    The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.

  7. District heating and cooling systems for communities through power plant retrofit and distribution networks. Phase 1: identificaion and assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-09-01

    Appendix A, Utility Plant Characteristics, contains information describing the characteristics of seven utility plants that were considered during the final site selection process. The plants are: Valley Electric Generating Plant, downtown Milwaukee; Manitowoc Electric Generating Plant, downtown Manitowoc; Blount Street Electric Generating Plant, downtown Madison; Pulliam Electric Generating Plant, downtown Green Bay; Edgewater Electric Generating Plant, downtown Sheboygan; Rock River Electric Generating Plant, near Janesville and Beloit; and Black Hawk Electric Generating Plant, downtown Beloit. Additional appendices are: Future Loads; hvac Inventory; Load Calculations; Factors to Induce Potential Users; Turbine Retrofit/Distribution System Data; and Detailed Economic Analysis Results/Data.

  8. Evaluation of an Integrated Gas-Cooled Reactor Simulator and Brayton Turbine-Generator

    NASA Technical Reports Server (NTRS)

    Hissam, David Andy; Stewart, Eric T.

    2006-01-01

    A closed-loop brayton cycle, powered by a fission reactor, offers an attractive option for generating both planetary and in-space electric power. Non-nuclear testing of this type of system provides the opportunity to safely work out integration and system control challenges for a modest investment. Recognizing this potential, a team at Marshall Space Flight Center has evaluated the viability of integrating and testing an existing gas-cooled reactor simulator and a modified commercially available, off-the-shelf, brayton turbine-generator. Since these two systems were developed independently of one another, this evaluation had to determine if they could operate together at acceptable power levels, temperatures, and pressures. Thermal, fluid, and structural analyses show that this combined system can operate at acceptable power levels and temperatures. In addition, pressure drops across the reactor simulator, although higher than desired, are also viewed as acceptable. Three potential working fluids for the system were evaluated: N2, He/Ar, and He/Xe. Other potential issues, such as electrical breakdown in the generator and the operation of the brayton foil bearings using various gas mixtures, were also investigated.

  9. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study☆

    PubMed Central

    Haidari, Leila A.; Brown, Shawn T.; Wedlock, Patrick; Connor, Diana L.; Spiker, Marie; Lee, Bruce Y.

    2017-01-01

    Background Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Methods Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as “electric refrigerators”) at different locations in the supply chain under various circumstances. Results At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Conclusion Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. PMID:28364935

  10. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.

    PubMed

    Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick; Connor, Diana L; Spiker, Marie; Lee, Bruce Y

    2017-04-19

    Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. Copyright © 2017. Published by Elsevier Ltd.

  11. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy.

    PubMed

    Yu, Binglan; Muenster, Stefan; Blaesi, Aron H; Bloch, Donald B; Zapol, Warren M

    2015-07-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff. The objective of this study was to develop a lightweight, portable device to serve as a simple and economical method of producing pure NO from air for bedside or portable use. Two NO generators were designed and tested: an offline NO generator and an inline NO generator placed directly within the inspiratory line. Both generators use pulsed electrical discharges to produce therapeutic range NO (5 to 80 parts per million) at gas flow rates of 0.5 to 5 liters/min. NO was produced from air, as well as gas mixtures containing up to 90% O2 and 10% N2. Potentially toxic gases produced in the plasma, including nitrogen dioxide (NO2) and ozone (O3), were removed using a calcium hydroxide scavenger. An iridium spark electrode produced the lowest ratio of NO2/NO. In lambs with acute pulmonary hypertension, breathing electrically generated NO produced pulmonary vasodilation and reduced pulmonary arterial pressure and pulmonary vascular resistance index. In conclusion, electrical plasma NO generation produces therapeutic levels of NO from air. After scavenging to remove NO2 and O3 and filtration to remove particles, electrically produced NO can provide safe and effective treatment of pulmonary hypertension. Copyright © 2015, American Association for the Advancement of Science.

  12. Application of urban neighborhoods in understanding of local level electricity consumption patterns

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, P. K.; Bhaduri, B. L.

    2017-12-01

    Aggregated national or regional level electricity consumption data fail to capture the spatial variation in consumption, a function of location, climate, topography, and local economics. Spatial monitoring of electricity usage patterns helps to understand derivers of location specific consumption behavior and develop models to cater to the consumer needs, plan efficiency measures, identify settled areas lacking access, and allows for future planning through assessing requirements. Developed countries have started to deploy sensor systems such as smart meters to gather information on local level consumption patterns, but such infrastructure is virtually nonexistent in developing nations, resulting in serious dearth of reliable data for planners and policy makers. Remote sensing of artificial nighttime lights from human settlements have proven useful to study electricity consumptions from global to regional scales, however, local level studies remain scarce. Using the differences in spatial characteristics among different urban neighborhoods such as industrial, commercial and residential, observable through very high resolution day time satellite images (<0.5 meter), formal urban neighborhoods have been generated through texture analysis. In this study, we explore the applicability of these urban neighborhoods in understanding local level electricity consumption patterns through exploring possible correlations between the spatial characteristics of these neighborhoods, associated general economic activities, and corresponding VIIRS day-night band (DNB) nighttime lights observations, which we use as a proxy for electricity consumption in the absence of ground level consumption data. The overall trends observed through this analysis provides useful explanations helping in understanding of broad electricity consumption patterns in urban areas lacking ground level observations. This study thus highlights possible application of remote sensing data driven methods in providing novel insights into local level socio-economic patterns that were hitherto undetected due to lack of ground data.

  13. Fouling-Resistant Membranes for Treating Concentrated Brines for Water Reuse in Advanced Energy Systems- Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendren, Zachary; Choi, Young Chul

    The high total dissolved solids (TDS) levels in the wastewater quality generated from unconventional oil and gas development make the current state-of-the art approach to water treatment/disposal untenable. Our proposed membrane technology approach addresses the two major challenges associated with this water: 1) the membrane distillation process removes the high TDS content, which is often 8 times higher than that of seawater, and 2) our novel membrane coating prevents the formation of scale that would otherwise pose a significant operational hurdle. This is accomplished through next-generation electrically conductive membranes that mitigate fouling beyond what is currently possible, and allow formore » the flexibility to treat to the water to levels desirable for multiple reuse options, thus reducing fresh water withdrawal, all the way to direct disposal into the environment. The overall project objective was to demonstrate the efficacy of membrane distillation (MD) as a cost-savings technology to treat concentrated brines (such as, but not limited to, produced waters generated from fossil fuel extraction) that have high levels of TDS for beneficial water reuse in power production and other industrial operations as well as agricultural and municipal water uses. In addition, a novel fouling-resistant nanocomposite membrane was developed to reduce the need for chemicals to address membrane scaling due to the precipitation of divalent ions in high-TDS waters and improve overall MD performance via an electrically conductive membrane distillation process (ECMD). This anti-fouling membrane technology platform is based on incorporating carbon nanotubes (CNTs) into the surface layer of existing, commercially available MD membranes. The CNTs impart electrical conductivity to the membrane surface to prevent membrane scaling and fouling when an electrical potential is applied.« less

  14. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenkranz, Joshua-Benedict; Brancucci Martinez-Anido, Carlo; Hodge, Bri-Mathias

    Solar power generation, unlike conventional forms of electricity generation, has higher variability and uncertainty in its output because solar plant output is strongly impacted by weather. As the penetration rate of solar capacity increases, grid operators are increasingly concerned about accommodating the increased variability and uncertainty that solar power provides. This paper illustrates the impacts of increasing solar power penetration on the ramping of conventional electricity generators by simulating the operation of the Independent System Operator -- New England power system. A production cost model was used to simulate the power system under five different scenarios, one without solar powermore » and four with increasing solar power penetrations up to 18%, in terms of annual energy. The impact of solar power is analyzed on six different temporal intervals, including hourly and multi-hourly (2- to 6-hour) ramping. The results show how the integration of solar power increases the 1- to 6-hour ramping events of the net load (electric load minus solar power). The study also analyzes the impact of solar power on the distribution of multi-hourly ramping events of fossil-fueled generators and shows increasing 1- to 6-hour ramping events for all different generators. Generators with higher ramp rates such as gas and oil turbine and internal combustion engine generators increased their ramping events by 200% to 280%. For other generator types--including gas combined-cycle generators, coal steam turbine generators, and gas and oil steam turbine generators--more and higher ramping events occurred as well for higher solar power penetration levels.« less

  16. Electric plant cost and power production expenses 1989. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-03-29

    This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, federal, state, and local governments, and the general public. This report primarily presents aggregate operation, maintenance, and fuel expense data about all power plants owned and operated by the major investor-owned electric utilities in the United States. The power production expenses for the major investor-owned electric utilities are summarized. Plant-specific data are presented for a selection of both investor-owned and publicly owned plants. Summary statistics for each plantmore » type (prime mover), as reported by the electric utilities, are presented in the separate chapters as follows: Hydroelectric Plants; Fossil-Fueled Steam-Electric Plants; Nuclear Steam-Electric Plants; and Gas Turbine and Small Scale Electric Plants. These chapters contain plant level data for 50 conventional hydroelectric plants and 22 pumped storage hydroelectric plants, 50 fossil-fueled steam-electric plants, 71 nuclear steam-electric plants, and 50 gas turbine electric plants. Among the operating characteristics of each plant are the capacity, capability, generation and demand on the plant. Physical characteristics comprise the number of units in the plant, the average number of employees, and other information relative to the plant's operation. The Glossary section will enable the reader to understand clearly the terms used in this report. 4 figs., 18 tabs.« less

  17. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  18. A phenomenological model that predicts forces generated when electrical stimulation is superimposed on submaximal volitional contractions

    PubMed Central

    Perumal, Ramu; Wexler, Anthony S.; Kesar, Trisha M.; Jancosko, Angela; Laufer, Yocheved

    2010-01-01

    Superimposition of electrical stimulation during voluntary contractions is used to produce functional movements in individuals with central nervous system impairment, to evaluate the ability to activate a muscle, to characterize the nature of fatigue, and to improve muscle strength during postsurgical rehabilitation. Currently, the manner in which voluntary contractions and electrically elicited forces summate is not well understood. The objective of the present study is to develop a model that predicts the forces obtained when electrical stimulation is superimposed on a volitional contraction. Quadriceps femoris muscles of 12 able-bodied subjects were tested. Our results showed that the total force produced when electrical stimulation was superimposed during a volitional contraction could be modeled by the equation T = V + S[(MaxForce − V)/MaxForce]N, where T is the total force produced, V is the force in response to volitional contraction alone, S is the force response to the electrical stimulation alone, MaxForce is the maximum force-generating ability of the muscle, and N is a parameter that we posit depends on the differences in the motor unit recruitment order and firing rates between volitional and electrically elicited contractions. In addition, our results showed that the model predicted accurately (intraclass correlation coefficient ≥0.97) the total force in response to a wide range of stimulation intensities and frequencies superimposed on a wide range of volitional contraction levels. Thus the model will be helpful to clinicians and scientists to predict the amount of stimulation needed to produce the targeted force levels in individuals with partial paralysis. PMID:20299613

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The purpose of this inventory of power plants is to provide a ready reference for planners whose focus is on the state, standard Federal region, and/or national level. Thus the inventory is compiled alphabetically by state within standard Federal regions. The units are listed alphabetically within electric utility systems which in turn are listed alphabetically within states. The locations are identified to county level according to the Federal Information Processing Standards Publication Counties and County Equivalents of the States of the United States. Data compiled include existing and projected electrical generation units, jointly owned units, and projected construction units.

  20. Why silicon is and will remain the dominant photovoltaic material

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra

    2009-07-01

    Rising demands of energy in emerging economies, coupled with the green house gas emissions related problems around the globe have provided a unique opportunity of exploiting the advantages offered by photovoltaic (PV) systems for green energy electricity generation. Similar to cell phones, power generated by PV systems can reach over two billion people worldwide who have no access to clean energy. Only silicon based PV devices meet the low-cost manufacturing criterion of clean energy conversion (abundance of raw material and no environmental health and safety issues). The use of larger size glass substrates and manufacturing techniques similar to the ones used by the liquid crystal display industry and the large scale manufacturing of amorphous silicon thin films based modules (~ GW per year manufacturing at a single location) can lead to installed PV system cost of $3/Wp. This will open a huge market for grid connected PV systems and related markets. With further research and development, this approach can provide $2/Wp installed PV system costs in the next few years. At this cost level, PV electricity generation is competitive with any other technology, and PV power generation can be a dominant electricity generation technology in the 21st century.

  1. Waste Generated from LMR-AMTEC Reactor Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Ahmed; Mohamed, Yasser, T.; Mohammaden, Tarek, F.

    2003-02-25

    The candidate Liquid Metal Reactor-Alkali Metal Thermal -to- Electric Converter (LMR-AMTEC) is considered to be the first reactor that would use pure liquid potassium as a secondary coolant, in which potassium vapor aids in the conversion of thermal energy to electric energy. As with all energy production, the thermal generation of electricity produces wastes. These wastes must be managed in ways which safeguard human health and minimize their impact on the environment. Nuclear power is the only energy industry, which takes full responsibility for all its wastes. Based on the candidate design of the LMR-AMTEC components and the coolant types,more » different wastes will be generated from LMR. These wastes must be classified and characterized according to the U.S. Code of Federal Regulation, CFR. This paper defines the waste generation and waste characterization from LMR-AMTEC and reviews the applicable U.S. regulations that govern waste transportation, treatment, storage and final disposition. The wastes generated from LMR-AMTEC are characterized as: (1) mixed waste which is generated from liquid sodium contaminated by fission products and activated corrosion products; (2) hazardous waste which is generated from liquid potassium contaminated by corrosion products; (3) spent nuclear fuel; and (4) low-level radioactive waste which is generated from the packing materials (e.g. activated carbon in cold trap and purification units). The regulations and management of these wastes are summarized in this paper.« less

  2. Electricity market liberalization under the power of customer value evaluation and service model

    NASA Astrophysics Data System (ADS)

    Bai, Hong Kun; Wang, Jiang Bo; Song, Da Wei

    2018-06-01

    After the power reform No. 9 was released in March 2015, the state officially released the Opinions on the Implementation of the Reform on the Power Sales Side. From this document, we can see that the openness of sales of social capital to the electricity business, the sales side of the market competition through multiple ways to train the main competitors, the result is more users have the right to choose, sales service quality and user energy levels will significantly improve. With the gradual promotion of the electricity sales market, the national electricity sales companies have been established one after another. In addition to power grid outside the power generation companies, energy-saving service companies and distributed power companies may become the main selling power, while industrial parks, commercial complex, large residential area, industrial and commercial users, large industrial users in the new electricity demand appearing The new changes, some power customers have also self-built distributed power supply, installation of energy storage devices or equipment to participate in the transformation of the electricity market. The main body of the electricity sales market has gradually evolved from the traditional electricity generation main body to the multi-unit main body and emerged new value points. Therefore, the electricity sales companies need to establish a power customer value evaluation method and service mode to adapt to the new electricity reform, Provide supportive decision support.

  3. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  4. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, H.; Wang, M.; Elgowainy, A.

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors inmore » the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.« less

  5. Electricity Generation and Community Wastewater Treatment by Microbial Fuel Cells (MFCs)

    NASA Astrophysics Data System (ADS)

    Rakthai, S.; Potchanakunakorn, R.; Changjan, A.; Intaravicha, N.; Pramuanl, P.; Srigobue, P.; Soponsathien, S.; Kongson, C.; Maksuwan, A.

    2018-05-01

    The attractive solution to the pressing issues of energy production and community wastewater treatment was using of Microbial Fuel Cells (MFCs). The objective of this research was to study the efficiency of electricity generation and community wastewater treatment of MFCs. This study used an experimental method completely randomized design (CRD), which consisted of two treatment factors (4×5 factorial design). The first factor was different solution containing organic matter (T) and consisting of 4 level factors including T1 (tap water), T2 (tap water with soil), T3 (50 % V/V community wastewater with soil), and T4 (100% community wastewater with soil). The second factor was the time (t), consisting of 5 level factors t1 (day 1), t2 (day 2), t3 (day 3), t4 (day 4), and t5 (day 5). There were 4 experimental models depending on containing organic matter (T1-T4). The parameter measured consisted of Open Circuit Voltage (OCV), Chemical Oxygen Demand (COD), Total Dissolve Solid (TDS), acidity (pH), Electric Conductivity (EC) and number of bacteria. Data were analysed by ANOVA, followed by Duncan test. The results of this study showed that, the T3 was the highest voltage at 0.816 V (P<0.05) and T4, T2, and Ti were 0.800, 0.797 and 0.747 V, respectively. The T3 was the lowest COD at 24.120 mg/L and T4 was 38.067 mg/L (P<0.05). The best model for electricity generation and community wastewater treatment by Microbial Fuel Cells was T3. This model generated highest voltage at 0.816 V, and reduction of COD at 46.215%.

  6. Electric radiation mapping of silver/zinc oxide nanoantennas by using electron holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, J. E.; Mendoza-Santoyo, F.; Cantu-Valle, J.

    2015-01-21

    In this work, we report the fabrication of self-assembled zinc oxide nanorods grown on pentagonal faces of silver nanowires by using microwaves irradiation. The nanostructures resemble a hierarchal nanoantenna and were used to study the far and near field electrical metal-semiconductor behavior from the electrical radiation pattern resulting from the phase map reconstruction obtained using off-axis electron holography. As a comparison, we use electric numerical approximations methods for a finite number of ZnO nanorods on the Ag nanowires and show that the electric radiation intensities maps match closely the experimental results obtained with electron holography. The time evolution of themore » radiation pattern as generated from the nanostructure was recorded under in-situ radio frequency signal stimulation, in which the generated electrical source amplitude and frequency were varied from 0 to 5 V and from 1 to 10 MHz, respectively. The phase maps obtained from electron holography show the change in the distribution of the electric radiation pattern for individual nanoantennas. The mapping of this electrical behavior is of the utmost importance to gain a complete understanding for the metal-semiconductor (Ag/ZnO) heterojunction that will help to show the mechanism through which these receiving/transmitting structures behave at nanoscale level.« less

  7. Mars Atmospheric Chemistry in Electrified Dust Devils and Storms

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.; Wong, A.-S.; Renno, N. O.; Sentmann, D. D.; Marshall, J. G.; Cummer, S. A.; Rafkin, S.; Catling, D.

    2005-01-01

    Laboratory studies, simulations and desert field tests all indicate that aeolian mixing dust can generate electricity via contact electrification or "triboelectricity". In convective structures like dust devils or storms, grain stratification (or charge separation) occurs giving rise to an overall electric dipole moment to the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous simulation studies [1] indicate that this storm electric field on Mars can approach atmospheric breakdown field strength of 20 kV/m. In terrestrial dust devils, coherent dipolar electric fields exceeding 20 kV/m have been measured directly via electric field instrumentation. Given the expected electrostatic fields in Martian dust devils and storms, electrons in the low pressure CO2 gas can be energized via the electric field to values exceeding the electron dissociative attachment energy of both CO2 and H2O, resulting in the formation of new chemical products CO and O- and OH and H- within the storm. Using a collisional plasma physics model we present a calculation of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with ambient electric field, with substantial production of dissociative products when fields approach breakdown levels of 20-30 kV/m.

  8. Implications of environmental externalities assessments for solar thermal powerplants

    NASA Astrophysics Data System (ADS)

    Lee, A. D.; Baechler, M. C.

    1991-03-01

    Externalities are those impacts of one activity on other activities that are not priced in the marketplace. An externality is said to exist when two conditions hold: (1) the utility or operations of one economic agent, A, include nonmonetary variables whose values are chosen by another economic agent, B, without regard to the effects on A, and (2) B does not pay A compensation equal to the incremental costs inflicted on A. Electricity generation involves a wide range of potential and actual environmental impacts. Legislative, permitting, and regulatory requirements directly or indirectly control certain environmental impacts, implicitly causing them to become internalized in the cost of electricity generation. Electricity generation, however, often produces residual environmental impacts that meet the definition of an externality. Mechanisms have been developed by several states to include the costs associated with externalities in the cost-effectiveness analyses of new powerplants. This paper examines these costs for solar thermal plants and applies two states' scoring methodologies to estimate how including externalities would affect the levelized costs of power from a solar plant in the Pacific Northwest. It concludes that including externalities in the economics can reduce the difference between the levelized cost of a coal and solar plant by between 0.74 and 2.42 cents/kWh.

  9. Three essays on U.S. electricity restructuring

    NASA Astrophysics Data System (ADS)

    Sergici, Sanem I.

    2008-04-01

    The traditional structure of the electricity sector in the U.S. has been that of large vertically integrated companies with sole responsibility for distributing power to end users within a franchise area. The restructuring of this sector that has occurred in the past 10-20 years has profoundly altered this picture. This dissertation examines three aspects of that restructuring process. First chapter of my dissertation investigates the impacts of divestitures of generation, an important part of the process of restructuring, on the efficiency of distribution systems. We find that while all divestitures as a group do not significantly affect distribution efficiency, those mandated by state public utility commissions have resulted in large and statistically significant adverse effects on distribution efficiency. Second chapter of my dissertation explores whether independent system operator (ISO) formation in New York has led to operating efficiencies at the unit and the system level. ISOs oversee the centralized management of the grid and the energy market and are expected to promote more efficient power generation. We test these efficiencies focusing on the generation units in New York ISO region from 1998 to 2004 and find that the NYISO formation has introduced limited efficiencies at the unit and the system level. Restructuring in the electricity industry has spawned a new wave of mergers, both raising questions and providing opportunities to examine these mergers. Third chapter of my dissertation investigates the drivers of electric utility mergers consummated between 1992 and 2004. My results provide support for disturbance theory of mergers, size hypothesis, and inefficient management hypothesis as drivers of electric utility mergers. I also find that the adjacency of the service territories is the most noteworthy determinant of the pairings between IOUs.

  10. Wireless power charging using point of load controlled high frequency power converters

    DOEpatents

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  11. A Summary Description of a Computer Program Concept for the Design and Simulation of Solar Pond Electric Power Generation Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A solar pond electric power generation subsystem, an electric power transformer and switch yard, a large solar pond, a water treatment plant, and numerous storage and evaporation ponds. Because a solar pond stores thermal energy over a long period of time, plant operation at any point in time is dependent upon past operation and future perceived generation plans. This time or past history factor introduces a new dimension in the design process. The design optimization of a plant must go beyond examination of operational state points and consider the seasonal variations in solar, solar pond energy storage, and desired plant annual duty-cycle profile. Models or design tools will be required to optimize a plant design. These models should be developed in order to include a proper but not excessive level of detail. The model should be targeted to a specific objective and not conceived as a do everything analysis tool, i.e., system design and not gradient-zone stability.

  12. Transitioning to Zero Freshwater Withdrawal for Thermoelectric Generation

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Tidwell, V. C.; Zemlick, K. M.; Sanchez, J.; Woldeyesus, T.

    2013-12-01

    The electricity sector is the largest withdrawer of freshwater in the United States. The primary demand for water from the electricity sector is for cooling thermoelectric power plants. Droughts and potential changes in water resources resulting from climate change pose important risks to thermoelectric power production in the United States. Power plants can minimize risk in a variety of ways. One method of reducing risk is to move away from dependency on freshwater resources. Here a scoping level analysis is performed to identify the technical tradeoffs and initial cost estimates for retrofitting all existing steam-powered generation to achieve zero freshwater withdrawal. Specifically, the conversion of existing freshwater-cooled plants to dry cooling or a wet cooling system utilizing non-potable water is considered. The least cost alternative is determined for each of the 1,178 freshwater using power plants in the United States. The use of non-potable water resources, such as municipal wastewater and shallow brackish groundwater, is considered based on the availability and proximity of those resources to the power plant, as well as the costs to transport and treat those resources to an acceptable level. The projected increase in levelized cost of electricity due to power plant retrofits ranges roughly from 0.20 to 20/MWh with a median value of 3.53/MWh. With a wholesale price of electricity running about 35/MWh, many retrofits could be accomplished at levels that would add less than 10% to current power plant generation expenses. Such retrofits could alleviate power plant vulnerabilities to thermal discharge limits in times of drought (particularly in the East) and would save 3.2 Mm3/d of freshwater consumption in watersheds with limited water availability (principally in the West). The estimated impact of retrofits on wastewater and brackish water supply is minimal requiring only a fraction of the available resource. Total parasitic energy requirements to achieve zero freshwater withdrawal are estimated at 140 million MWh or roughly 4.5% of the initial production from the retrofitted plants.

  13. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2012-12-01

    Nitrate and nitrite contamination of surface waters (e.g. lakes) has become a severe environmental and health problem, especially in developing countries. The recent demonstration of nitrate reduction at the cathode of microbial fuel cell (MFC) provides an opportunity to develop a new technology for nitrogen removal from surface waters. In this study, a sediment-type MFC based on two pieces of bioelectrodes was employed as a novel in situ applicable approach for nitrogen removal, as well as electricity production from eutrophic lakes. Maximum power density of 42 and 36 mW/m(2) was produced respectively from nitrate- and nitrite-rich synthetic lake waters at initial concentration of 10 mg-N/L. Along with the electricity production a total nitrogen removal of 62% and 77% was accomplished, for nitrate and nitrite, respectively. The nitrogen removal was almost 4 times higher under close-circuit condition with biocathode, compared to either the open-circuit operation or with abiotic cathode. The mass balance on nitrogen indicates that most of the removed nitrate and nitrite (84.7 ± 0.1% and 81.8 ± 0.1%, respectively) was reduced to nitrogen gas. The nitrogen removal and power generation was limited by the dissolved oxygen (DO) level in the water and acetate level injected to the sediment. Excessive oxygen resulted in dramatically decrease of nitrogen removal efficiency and only 7.8% removal was obtained at DO level of 7.8 mg/l. The power generation and nitrogen removal increased with acetate level and was nearly saturated at 0.84 mg/g-sediment. This bioelectrode-based in situ approach is attractive not only due to the electricity production, but also due to no need of extra reactor construction, which may broaden the application possibilities of sediment MFC technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. CALCULATING WATER CONSUMPTION AND WITHDRAWAL FROM POWER PLANTS GLOBALLYUsing machine learning, remote sensing and power plant data from the Power Watch platform

    NASA Astrophysics Data System (ADS)

    Kressig, A.

    2017-12-01

    BACKGROUND The Greenhouse Gas Protocol (GHGP), Scope 2 Guidance standardizes how companies measure greenhouse gas emissions from purchased or independently generated electricity (called "scope 2 emissions"). Additionally, the interlinkages between industrial or commercial (nonresidential) energy requirements and water demands have been studied extensively, mostly at the national or provincial scale, focused on industries involved in power generation. However there is little guidance available for companies to systematically and effectively quantify water withdrawals and consumption (herein referred to as "water demand") associated with purchased or acquired electricity(what we call "Scope 2 Water"). This lack of guidance on measuring a company's water demand from electricity use is due to a lack of data on average consumption and withdrawal rates of water associated with purchased electricity. OBJECTIVE There is growing demand from companies in the food, beverage, manufacturing, information communication and technology, and other sectors for a methodology to quantify Scope 2 water demands. By understanding Scope 2 water demands, companies could evaluate their exposure to water-related risks associated with purchased or acquired electricity, and quantify the water benefits of changing to less water-intensive sources of electricity and energy generation such as wind and solar. However, there has never been a way of quantifying Scope 2 Water consumption and withdrawals for a company across its international supply chain. Even with interest in understanding exposure to water related risk and measuring water use reductions, there has been no quantitative way of measuring this information. But WRI's Power Watch provides the necessary data to allow for the Scope 2 Water accounting, because it will provide water withdrawal and consumption rates associated with purchased electricity at the power plant level. By calculating the average consumption and withdrawal rates per unit of electricity produced across a grid region, companies can measure their water demand from facilities in that region. WRI is now developing a global dataset of grid level water consumption rates and developing a guidance for companies to report water demand across their supply chain and measure their reductions.

  15. Searching for Electrical Properties, Phenomena and Mechanisms in the Construction and Function of Chromosomes

    PubMed Central

    Kanev, Ivan; Mei, Wai-Ning; Mizuno, Akira; DeHaai, Kristi; Sanmann, Jennifer; Hess, Michelle; Starr, Lois; Grove, Jennifer; Dave, Bhavana; Sanger, Warren

    2013-01-01

    Our studies reveal previously unidentified electrical properties of chromosomes: (1) chromosomes are amazingly similar in construction and function to electrical transformers; (2) chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3) chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a) electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b) electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c) mechanisms demonstrating heterochromatin to be electrically active and genetically important. PMID:24688715

  16. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental consequences of alternative energy scenarios for the future. The model can also be used to estimate the relative merits of various energy technologies. By developing OH-MARKAL as an empirical model, this study evaluates the prospects of biomass cofiring in Ohio to generate commercial electricity. As cofiring utilizes the existing infrastructure, it is an attractive option for utilizing biomass energy resources, with the objective of replacing non-renewable fuel (coal) with renewable and cleaner fuel (biomass). It addresses two key issues: first, the importance of diversifying the fuel resource base for the power industry; and second, the need to increase the use of biomass or renewable resources in Ohio. The results of the various model scenarios developed in this study indicate that policy interventions are necessary to make biomass co-firing competitive with coal, and that about 7 percent of electricity can be generated by using biomass feedstock in Ohio. This study recommends mandating an optimal level of a renewable portfolio standard (RPS) for Ohio to increase renewable electricity generation in the state. To set a higher goal of RPS than 7 percent level, Ohio needs to include other renewable sources such as wind, solar or hydro in its electricity generation portfolio. The results also indicate that the marginal price of electricity must increase by four fold to mitigate CO2 emissions 15 percent below the 2002 level, suggesting Ohio will also need to consider and invest in clean coal technologies and examine the option of carbon sequestration. Hence, Ohio's energy strategy should include a mix of domestic renewable energy options, energy efficiency, energy conservation, clean coal technology, and carbon sequestration options. It would seem prudent for Ohio to become proactive in reducing CO2 emissions so that it will be ready to deal with any future federal mandates, otherwise the consequences could be detrimental to the state's economy.

  17. An integrated assessment of energy-water nexus at the state level in the United States: Projections and analyses under different scenarios through 2095

    NASA Astrophysics Data System (ADS)

    Liu, L.; Patel, P. L.; Hejazi, M. I.; Kyle, P.; Davies, E. G.; Zhou, Y.; Clarke, L.; Edmonds, J.

    2013-12-01

    Water withdrawals for thermoelectric power plants account for approximately half of the total water use in the United States. With growing electricity demands in the future and limited water supplies in many water-scarce states in the U.S., grasping the trade-off between energy and water requires an integrated modeling approach that can capture the interactions among energy, water availability, climate, technology, and economic factors at various scales. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, with 14 geopolitical regions that are further dissaggregated into up to 18 agro-ecological zones, was extended to model the electricity and water systems at the state level in the U.S. More specifically, GCAM was employed to estimate future state-level electricity generation and demands, and the associated water withdrawals and consumptions under a set of six scenarios with extensive levels of details on generation fuel portfolio, cooling technology mix, and water use intensities. The state-level estimates were compared against available inventories where good agreement was achieved on national and regional levels. We then explored the electric-sector water use up to 2095, focusing on implications from: 1) socioeconomics and growing demands, 2) the adoption of climate mitigation policy (e.g., RCP4.5 W/m2 vs. a reference scenario), 3) the transition of cooling systems, 4) constraints on electricity trading across states (full trading vs. limited trading), and 5) the adoption of water saving technologies. Overall, the fast retirement of once-through cooling, together with the gradual transition from fossil fuels dominant to a mixture of different fuels, accelerate the decline of water withdrawals and correspondingly compensate consumptive water use. Results reveal that U.S. electricity generation expands significantly as population grows, while U.S. electric-sector water withdrawals are projected to decline by 8.6% - 89% by 2095 and water consumptions are projected to increase by 14% - 101%. Some regional patterns could be observed when analyzing the state-level results spatially. Under the climate mitigation policy (RCP4.5) scenario, nuclear power plants contribute heavily to total electric-sector water withdrawal and consumption in Eastern U.S., while under the reference scenario, coal power plants are the primary water users in Eastern U.S. In the reference scenario, Eastern U.S. is projected to experience substantial drops in water withdrawals, while the Western U.S. will likely endure a moderate increase over the century. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S. Although this study is focused on the U.S., it is performed in the context of the global framework of GCAM where local changes can propagate to influence decisions in other regions outside of the U.S. and vice versa.

  18. MHD Generating system

    DOEpatents

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  19. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  20. Displacement efficiency of alternative energy and trans-provincial imported electricity in China.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2017-02-17

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  1. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    NASA Astrophysics Data System (ADS)

    Hu, Yuanan; Cheng, Hefa

    2017-02-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.

  2. Electric Power Quarterly, July-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-29

    The Electric Power Quarterly (EPQ) provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption, and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. The data presented in this report were collected and published by the Energy Information Administration (EIA), to fulfill its responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275) as amended. This edition of the EPQ contains monthly data for the third quarter of 1985.

  3. Renewable Electricity Futures (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  4. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  5. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  6. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  7. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  8. 40 CFR 98.40 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.40 Definition of the source category. (a) The electricity generation source category comprises electricity generating units that are subject to the requirements of the Acid Rain Program and any other electricity generating units that are...

  9. Is It Better to Burn or Bury Waste for Clean Electricity Generation?

    EPA Science Inventory

    The generation of electricity through renewables has increased 5% since 2002. Although considerably less prominent than solar and wind, the use of municipal solid waste (MSW) to generate electricity represents roughly 14 percent of U.S. non-hydro renewable electricity generation....

  10. Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.

    PubMed

    Niu, D; Zhu, F; Qiu, R; Niu, Q

    2016-01-01

    High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.

  11. Design of energy storage system to improve inertial response for large scale PV generation

    DOE PAGES

    Wang, Xiaoyu; Yue, Meng

    2016-07-01

    With high-penetration levels of renewable generating sources being integrated into the existing electric power grid, conventional generators are being replaced and grid inertial response is deteriorating. This technical challenge is more severe with photovoltaic (PV) generation than with wind generation because PV generation systems cannot provide inertial response unless special countermeasures are adopted. To enhance the inertial response, this paper proposes to use battery energy storage systems (BESS) as the remediation approach to accommodate the degrading inertial response when high penetrations of PV generation are integrated into the existing power grid. A sample power system was adopted and simulated usingmore » PSS/E software. Here, impacts of different penetration levels of PV generation on the system inertial response were investigated and then BESS was incorporated to improve the frequency dynamics.« less

  12. Electricity tommorrow

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The critical issues for the electricity sector in California were presented. Adopted level of electricity demand and adopted policies and supply criteria are included. These form the basis for planning and certification of electric generation and transmission facilities by the energy commission. Estimates of the potential contributions of conservation and various conventional and alternative supply sources, critiques of utility supply plans, and determinations of how much new capacity is required are also included. Policy recommendations for directing public and private investments into preferred energy options, for spreading the benefits and costs of these options broadly and fairly among California's citizens, and for removing remaining obstacles to the development of all acceptable energy sources are presented.

  13. Design of Stand-Alone Hybrid Power Generation System at Brumbun Beach Tulungagung East Java

    NASA Astrophysics Data System (ADS)

    Rahmat, A. N.; Hidayat, M. N.; Ronilaya, F.; Setiawan, A.

    2018-04-01

    Indonesian government insists to optimize the use of renewable energy resources in electricity generation. One of the efforts is launching Independent Energy Village plan. This program aims to fulfill the need of electricity for isolated or remote villages in Indonesia. In order to support the penetration of renewable energy resources in electricity generation, a hybrid power generation system is developed. The simulation in this research is based on the availability of renewable energy resources in Brumbun beach, Tulungagung, East Java. Initially, the electricity was supplied through stand-alone electricity generations which are installed at each house. Hence, the use of electricity between 5 p.m. – 9 p.m. requires high operational costs. Based on the problem above, this research is conducted to design a stand-alone hybrid electricity generation system, which may consist of diesel, wind, and photovoltaic. The design is done by using HOMER software to optimize the use of electricity from renewable resources and to reduce the operation of diesel generation. The combination of renewable energy resources in electricity generation resulted in NPC of 44.680, COE of 0,268, and CO2 emissions of 0,038 % much lower than the use of diesel generator only.

  14. An appealing photo-powered multi-functional energy system for the poly-generation of hydrogen and electricity

    NASA Astrophysics Data System (ADS)

    Tang, Tiantian; Li, Kan; Shen, Zhemin; Sun, Tonghua; Wang, Yalin; Jia, Jinping

    2015-10-01

    This paper focuses on a photo-powered poly-generation system (PPS) that is powered by the photocatalytic oxidation of organic substrate to produce hydrogen energy and electrical energy synchronously. This particular device runs entirely on light energy and chemical energy of substrate without external voltage. The performance measurements and optimization experiments are all investigated by using the low concentration of pure ethanol (EtOH) solution. Compared with the conventional submerged reactor for the photogeneration of hydrogen, the hydrogen and the electric current obtained in the constructed PPS are all relatively stable in experimental period and the numerical values detected are many times higher than that of the former by using various simulated ethanol waste liquid. When using Chinese rice wine as substrate at the same ethanol content level (i.e., 0.1 mol L-1), the production of hydrogen is close to that of the pure ethanol solution in the constructed PPS, but no hydrogen is detected in the conventional submerged reactor. These results demonstrate that the constructed PPS could effectively utilize light energy and perform good capability in poly-generation of hydrogen and electricity.

  15. A retrospective analysis of benefits and impacts of U.S. renewable portfolio standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen; Wiser, Ryan; Heeter, Jenny

    As states consider revising or developing renewable portfolio standards (RPS), they are evaluating policy costs, benefits, and other impacts. We present the first U. S. national-level assessment of state RPS program benefits and impacts, focusing on new renewable electricity resources used to meet RPS compliance obligations in 2013. In our central-case scenario, reductions in life-cycle greenhouse gas emissions from displaced fossil fuel-generated electricity resulted in $2.2 billion of global benefits. Health and environmental benefits from reductions in criteria air pollutants (sulfur dioxide, nitrogen oxides, and particulate matter 2.5) were even greater, estimated at $5.2 billion in the central case. Furthermore » benefits accrued in the form of reductions in water withdrawals and consumption for power generation. Finally, although best considered resource transfers rather than net societal benefits, new renewable electricity generation used for RPS compliance in 2013 also supported nearly 200,000 U. S.-based gross jobs and reduced wholesale electricity prices and natural gas prices, saving consumers a combined $1.3-$4.9 billion. In total, the estimated benefits and impacts well-exceed previous estimates of RPS compliance costs.« less

  16. Modelling of auctioning mechanism for solar photovoltaic capacity

    NASA Astrophysics Data System (ADS)

    Poullikkas, Andreas

    2016-10-01

    In this work, a modified optimisation model for the integration of renewable energy sources for power-generation (RES-E) technologies in power-generation systems on a unit commitment basis is developed. The purpose of the modified optimisation procedure is to account for RES-E capacity auctions for different solar photovoltaic (PV) capacity electricity prices. The optimisation model developed uses a genetic algorithm (GA) technique for the calculation of the required RES-E levy (or green tax) in the electricity bills. Also, the procedure enables the estimation of the level of the adequate (or eligible) feed-in-tariff to be offered to future RES-E systems, which do not participate in the capacity auctioning procedure. In order to demonstrate the applicability of the optimisation procedure developed the case of PV capacity auctioning for commercial systems is examined. The results indicated that the required green tax, in order to promote the use of RES-E technologies, which is charged to the electricity customers through their electricity bills, is reduced with the reduction in the final auctioning price. This has a significant effect related to the reduction of electricity bills.

  17. 40 CFR 98.42 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...

  18. 40 CFR 98.42 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...

  19. 40 CFR 98.42 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...

  20. 40 CFR 98.42 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...

  1. 40 CFR 98.42 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING Electricity Generation § 98.42 GHGs to report. (a) For each electricity generating...) For each electricity generating unit that is not subject to the Acid Rain Program or otherwise... not generate electricity, you must report under subpart C of this part (General Stationary Fuel...

  2. Stationary diesel engines for use with generators to supply electric power

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The procurement of stationary diesel engines for on-site generation of electric power deals with technical criteria and policy relating to federal agency, not electrical components of diesel-generator sets or for the design of electric-power generating plants or their air-pollution or noise control equipment.

  3. Solar Thermoelectricity via Advanced Latent Heat Storage: A Cost-Effective Small-Scale CSP Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatzmaier, Greg C.; Rea, J.; Olsen, Michele L.

    We are developing a novel concentrating solar electricity-generating technology that is both modular and dispatchable. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) uses concentrated solar flux to generate high-temperature thermal energy, which directly converts to electricity via thermoelectric generators (TEGs), stored within a phase-change material (PCM) for electricity generation at a later time, or both allowing for simultaneous charging of the PCM and electricity generation. STEALS has inherent features that drive its cost-competitive scale to be much smaller than current commercial concentrating solar power (CSP) plants. Most obvious is modularity of the solid-state TEG, which favors smaller scales inmore » the kilowatt range as compared to CSP steam turbines, which are minimally 50 MWe for commercial power plants. Here, we present techno-economic and market analyses that show STEALS can be a cost-effective electricity-generating technology with particular appeal to small-scale microgrid applications. We evaluated levelized cost of energy (LCOE) for STEALS and for a comparable photovoltaic (PV) system with battery storage. For STEALS, we estimated capital costs and the LCOE as functions of the type of PCM including the use of recycled aluminum alloys, and evaluated the cost tradeoffs between plasma spray coatings and solution-based boron coatings that are applied to the wetted surfaces of the PCM subsystem. We developed a probabilistic cost model that accounts for uncertainties in the cost and performance inputs to the LCOE estimation. Our probabilistic model estimated LCOE for a 100-kWe STEALS system that had 5 hours of thermal storage and 8-10 hours of total daily power generation. For these cases, the solar multiple for the heliostat field varied between 1.12 and 1.5. We identified microgrids as a likely market for the STEALS system. We characterized microgrid markets in terms of nominal power, dispatchability, geographic location, and customer type, and specified additional features for STEALS that are needed to meet the needs of this growing power market.« less

  4. The Impact of Location and Proximity on Consumers' Willingness to Pay for Green Electricity: The Case of West Virginia

    NASA Astrophysics Data System (ADS)

    Nkansah, Kofi

    During the 2015 legislative session, West Virginia lawmakers passed a bill to repeal the Renewable and Alternative Energy Portfolio Standards Act of 2009 (ARPS). Legislators stated concerns about ARPS's impacts on coal industry related jobs in the state as the major factor driving this repeal. However, no comprehensive study on public acceptance, opinions, or willingness to pay (WTP) for renewable/and or alternative sources of electricity within West Virginia was used to inform this repeal decision. As the state of West Virginia struggles to find the right path to expand its renewable energy portfolio, public acceptance of renewable electricity is crucial to establishing a viable market for these forms of energy and also ensure the long-term sustainability of any RPS policy that may be enacted in the future. This study sought to assess consumers' preferences, attitudes and WTP for renewable and alternative electricity in West Virginia. The monetary values that consumers placed on proximity as an attribute of a renewable and alternative electricity generation source were also estimated. Two counties in West Virginia were selected as study areas based on the types of electricity generation facility that already exist in each county -one county with coal-fired power plants (Monongalia County) and another with both a coal-fired power plant and a wind farm (Grant County). A forced choice experiment survey was used with attributes that varied in source of energy (wind versus natural gas), proximity of the generation source relative to the respondent's residence (near, moderate or far) and an additional premium per month on the electric bill (varying from 1 to 15). Respondents were asked to choose between generating 10% of the electricity supplied to them from wind or natural gas. Random samples of 1500 residents from each county were sent surveys and response rates were 27.0% (Monongalia) and 35.3% (Grant). A Mixed logit econometric models were used to analyze consumer choices with utility models. WTP for energy source and proximity attribute levels were computed using parameter estimates from these utility models. Statistically different models were developed for each county. Results from the study showed that respondents in both counties had preferences for electricity generated from wind compared to natural gas. A majority of the sampled populations chose the wind option, 62.0% in Monongalia County and 60.0% in Grant County. The sampled populations in Monongalia and Grant Counties were willing to pay a weighted mean of 21.59 and 9.87 per month, respectively, for 10% of their electricity to be generated from wind over natural gas. Despite this large difference, county level means were not statistically different. On aggregate, a positive social benefit per year would be derived from generating 10% of electricity supplied to consumers in Monongalia County (2.5 million) and Grant County (186 thousand) from wind relative to natural gas. Similarly, the most social benefit would be derived from siting wind turbines at "far" locations from residents in both counties. Both county level sampled populations were willing to pay a higher premium to site wind turbines or a natural gas-fired power plant at the farthest location relative to the baseline location (near a respondent's current residence). Grant County respondents were willing to pay a slightly higher positive premium (mean of 11.71 per month) to site wind turbines at the farthest location than respondents in Monongalia County (mean of 10.14 per month). The mean WTP to site a natural gas-fired power plant at the farthest location in Monongalia County (13.06) and Grant County (13.47) were not statistically different from each other. Results from this study suggest that the decision for an outright repeal of the ARPS bill was flawed. Based on Monongalia and Grant County populations, there are social benefits derived from generating 10% of the electricity supplied to consumers in West Virginia from renewable and alternative energy sources, and wind is preferred to natural gas. This repeal implies there are few, if any, benefits. Given this repeal, I suggest that a voluntary green pricing program with a focus on wind energy serve as an alternative renewable energy policy in West Virginia. Under such a policy, consumers who are concerned about the environment and are willing to pay a positive premium for renewable electricity would be able to opt into the program. Premiums paid by participants of such a program can be used to increase the renewable energy share in West Virginia's energy portfolio.

  5. The role of ion-exchange membrane in energy conversion

    NASA Astrophysics Data System (ADS)

    Khoiruddin, Aryanti, Putu T. P.; Hakim, Ahmad N.; Wenten, I. Gede

    2017-05-01

    Ion-exchange membrane (IEM) may play an important role in the future of electrical energy generation which is considered as renewable and clean energy. Fell cell (FC) is one of the promising technologies for solving energy issues in the future owing to the interesting features such as high electrical efficiency, low emissions, low noise level, and modularity. IEM-based processes, such as microbial fuel cell (MFC) and reverse electrodialysis (RED) may be combined with water or wastewater treatment into an integrated system. By using the integrated system, water and energy could be produced simultaneously. The IEM-based processes can be used for direct electricity generation or long term energy storage such as by harnessing surplus electricity from an existing renewable energy system to be converted into hydrogen gas via electrolysis or stored into chemical energy via redox flow battery (RFB). In this paper, recent development and applications of IEM-based processes in energy conversion are reviewed. In addition, perspective and challenges of IEM-based processes in energy conversion are pointed out.

  6. 77 FR 66963 - Public Hearing and Opportunities for Public Review and Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... generate electricity, increases the levels of nitrogen, oxygen, and other gases in the water, beyond state...' bills until the balance is completely billed. Part V--Proposed Oversupply Rate Schedules BPA's proposed...

  7. KSC-97PC903

    NASA Image and Video Library

    1997-05-17

    Environmental Health Specialist Jamie A. Keeley, of EG&G Florida Inc., uses an ion chamber dose rate meter to measure radiation levels in one of three radioisotope thermoelectric generators (RTGs) that will provide electrical power to the Cassini spacecraft on its mission to explore the Saturnian system. The three RTGs and one spare are being tested and mointored in the Radioisotope Thermoelectric Generator Storage Building in the KSC's Industrial Area. The RTGs use heat from the natural decay of plutonium to generate electric power. RTGs enable spacecraft to operate far from the Sun where solar power systems are not feasible. The RTGs on Cassini are of the same design as those flying on the already deployed Galileo and Ulysses spacecraft. The Cassini mission is targeted for an Oct. 6 launch aboard a Titan IVB/Centaur expendable launch vehicle.

  8. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    EIA Publications

    2014-01-01

    The electricity generation and fuel consumption models of the Short-Term Energy Outlook (STEO) model provide forecasts of electricity generation from various types of energy sources and forecasts of the quantities of fossil fuels consumed for power generation. The structure of the electricity industry and the behavior of power generators varies between different areas of the United States. In order to capture these differences, the STEO electricity supply and fuel consumption models are designed to provide forecasts for the four primary Census regions.

  9. Dynamic generation of supercritical water fluid in a strong electrical discharge in a liquid

    NASA Astrophysics Data System (ADS)

    Antonov, V.; Kalinin, N.; Kovalenko, A.

    2016-11-01

    A new impetus for the development of electro physics is associated with using different types of electrical discharges in biology and medicine. These applications are based on their energetic and non-toxic factors affecting the medium on a cellular level. For the study of such processes, a mathematical model of a high-current low-temperature Z-discharge in a liquid, forming by the electrical explosion of a thin-walled metal shell, connected to a pulsed high-voltage generator, has been developed. High efficiency energy conversion, introduced into the plasma discharge to the energy of fluid motion, provides various bio chemical applications of such physical processes. The investigation is conducted through numerical solution of one-dimensional single-temperature non-stationary equations of radiation magneto hydrodynamics, one way describing the evolution of hydrodynamic, thermal and electrical characteristics of the medium throughout the area under consideration. The electrical approximation based on the assumption that the electric field in the discharge has a uniform distribution. The results are presented as a function of the electric current and the plasma channel length of time, as well as the temperature and pressure distributions at different time points along the radius of the cylindrical region in which the explosion occurs.

  10. Effects of fuel processing methods on industrial scale biogas-fuelled solid oxide fuel cell system for operating in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Farhad, Siamak; Yoo, Yeong; Hamdullahpur, Feridun

    The performance of three solid oxide fuel cell (SOFC) systems, fuelled by biogas produced through anaerobic digestion (AD) process, for heat and electricity generation in wastewater treatment plants (WWTPs) is studied. Each system has a different fuel processing method to prevent carbon deposition over the anode catalyst under biogas fuelling. Anode gas recirculation (AGR), steam reforming (SR), and partial oxidation (POX) are the methods employed in systems I-III, respectively. A planar SOFC stack used in these systems is based on the anode-supported cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode, operated at 800 °C. A computer code has been developed for the simulation of the planar SOFC in cell, stack and system levels and applied for the performance prediction of the SOFC systems. The key operational parameters affecting the performance of the SOFC systems are identified. The effect of these parameters on the electrical and CHP efficiencies, the generated electricity and heat, the total exergy destruction, and the number of cells in SOFC stack of the systems are studied. The results show that among the SOFC systems investigated in this study, the AGR and SR fuel processor-based systems with electrical efficiency of 45.1% and 43%, respectively, are suitable to be applied in WWTPs. If the entire biogas produced in a WWTP is used in the AGR or SR fuel processor-based SOFC system, the electricity and heat required to operate the WWTP can be completely self-supplied and the extra electricity generated can be sold to the electrical grid.

  11. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  12. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  13. Displacement efficiency of alternative energy and trans-provincial imported electricity in China

    PubMed Central

    Hu, Yuanan; Cheng, Hefa

    2017-01-01

    China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10–50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy. PMID:28211467

  14. A test technique for measuring lightning-induced voltages on aircraft electrical circuits

    NASA Technical Reports Server (NTRS)

    Walko, L. C.

    1974-01-01

    The development of a test technique used for the measurement of lightning-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to lightning current surges, but at a lower current level. A linear relationship between the magnitude of lightning current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.

  15. Integrating environmental equity, energy and sustainability: A spatial-temporal study of electric power generation

    NASA Astrophysics Data System (ADS)

    Touche, George Earl

    The theoretical scope of this dissertation encompasses the ecological factors of equity and energy. Literature important to environmental justice and sustainability are reviewed, and a general integration of global concepts is delineated. The conceptual framework includes ecological integrity, quality human development, intra- and inter-generational equity and risk originating from human economic activity and modern energy production. The empirical focus of this study concentrates on environmental equity and electric power generation within the United States. Several designs are employed while using paired t-tests, independent t-tests, zero-order correlation coefficients and regression coefficients to test seven sets of hypotheses. Examinations are conducted at the census tract level within Texas and at the state level across the United States. At the community level within Texas, communities that host coal or natural gas utility power plants and corresponding comparison communities that do not host such power plants are tested for compositional differences. Comparisons are made both before and after the power plants began operating for purposes of assessing outcomes of the siting process and impacts of the power plants. Relationships between the compositions of the hosting communities and the risks and benefits originating from the observed power plants are also examined. At the statewide level across the United States, relationships between statewide composition variables and risks and benefits originating from statewide electric power generation are examined. Findings indicate the existence of some limited environmental inequities, but they do not indicate disparities that confirm the general thesis of environmental racism put forth by environmental justice advocates. Although environmental justice strategies that would utilize Title VI of the 1964 Civil Rights Act and the disparate impact standard do not appear to be applicable, some findings suggest potential inequities in institutional practices involving environmental compliance, monitoring and enforcement that are hardly justifiable within the context of market dynamics.

  16. The effects of competition on efficiency of electricity generation: A post-PURPA analysis

    NASA Astrophysics Data System (ADS)

    Jordan, Paula Faye

    1998-10-01

    The central issue of this research is the effects increased market competition has on production efficiency. Specifically, the research focuses upon measuring the relative level of efficiency in the generation of electricity in 1978 and 1993. It is hypothesized that the Public Utilities Regulatory Policy Act (PURPA), passed by Congress in 1978, made progress toward achieving its legislative intent of increasing competition, and therefore increased efficiency, in the generation of electricity. The methodology used to measure levels of efficiency in this research is the stochastic statistical estimator with the functional form of the translog production function. The models are then estimated using the maximum likelihood estimating technique using plant level data of coal generating units in the U.S. for 1978 and 1993. Results from the estimation of these models indicate that: (a) For the technical efficiency measures, the 1978 data set out performed the 1993 data set for the OTE and OTE of Fuel measures; (b) the 1993 data set was relatively more efficient in the OTE of Capital and the OTE of Labor when compared to the 1978 data set; (c) The 1993 observations indicated a relatively greater level of efficiency over 1978 in the OAE, OAE of Fuel, and OAE of Capital measures; (d) The OAE of Labor measure findings supported the 1978 observations as more efficient when compared to the 1993 set of observations; (e) When looking at the top and bottom ranked sites within each data set, the results indicated that sites which were top or poor performers for the technical and allocative efficiency measures tended to be a top or poor performer for the overall, fuel, and capital measures. The sites that appeared as a top or poor performer of labor measures within the technical and allocative groups were often unique and didn't necessarily appear as a top or poor performer in the other efficiency measures.

  17. Energy Management Challenges and Opportunities with Increased Intermittent Renewable Generation on the California Electrical Grid

    NASA Astrophysics Data System (ADS)

    Eichman, Joshua David

    Renewable resources including wind, solar, geothermal, biomass, hydroelectric, wave and tidal, represent an opportunity for environmentally preferred generation of electricity that also increases energy security and independence. California is very proactive in encouraging the implementation of renewable energy in part through legislation like Assembly Bill 32 and the development and execution of Renewable Portfolio Standards (RPS); however renewable technologies are not without challenges. All renewable resources have some resource limitations, be that from location, capacity, cost or availability. Technologies like wind and solar are intermittent in nature but represent one of the most abundant resources for generating renewable electricity. If RPS goals are to be achieved high levels of intermittent renewables must be considered. This work explores the effects of high penetration of renewables on a grid system, with respect to resource availability and identifies the key challenges from the perspective of the grid to introducing these resources. The HiGRID tool was developed for this analysis because no other tool could explore grid operation, while maintaining system reliability, with a diverse set of renewable resources and a wide array of complementary technologies including: energy efficiency, demand response, energy storage technologies and electric transportation. This tool resolves the hourly operation of conventional generation resources (nuclear, coal, geothermal, natural gas and hydro). The resulting behavior from introducing additional renewable resources and the lifetime costs for each technology is analyzed.

  18. Major challenges loom for natural gas industry, study says

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Driscoll, M.

    The 1994 edition of Natural Gas Trends, the annual joint study by Cambridge Energy Research Associates and Arthur Anderson Co., says that new oil-to-gas competition, price risks and the prospect of unbundling for local distribution companies loom as major challenges for the natural gas industry. With a tighter supply-demand balance in the past two years compounded by the fall in oil prices, gas is in head-to-head competition with oil for marginal markets, the report states. And with higher gas prices in 1993, industrial demand growth slowed while utility demand for gas fell. Some of this was related to fuel switching,more » particularly in the electric utility sector. Total electric power demand for gas has risen slightly due to the growth in industrial power generation, but there has yet to be a pronounced surge in gas use during the 1990s - a decade in which many had expected gas to make major inroads into the electric power sector, the report states. And while utilities still have plans to add between 40,000 and 45,000 megawatts of gas-fired generating capacity, gas actually has lost ground in the utility market to coal and nuclear power: In 1993, electricity output from coal and nuclear rose, while gas-fired generation fell to an estimated 250 billion kilowatt-hours - the lowest level since 1986, when gas generated 246 billion kwh.« less

  19. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.

    PubMed

    Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba

    2018-03-01

    In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Method of encouraging attention by correlating video game difficulty with attention level

    NASA Technical Reports Server (NTRS)

    Pope, Alan T. (Inventor); Bogart, Edward H. (Inventor)

    1994-01-01

    A method of encouraging attention in persons such as those suffering from Attention Deficit Disorder is provided by correlating the level of difficulty of a video game with the level of attention in a subject. A conventional video game comprises a video display which depicts objects for interaction with a player and a difficulty adjuster which increases the difficulty level, e.g., action speed and/or evasiveness of the depicted object, in a predetermined manner. The electrical activity of the brain is measured at selected sites to determine levels of awareness, e.g., activity in the beta, theta, and alpha states. A value is generated based on this measured electrical signal which is indicative of the level of awareness. The difficulty level of the game is increased as the awareness level value decreases and is decreased as this awareness level value increases.

  1. Seismic sources

    DOEpatents

    Green, Michael A.; Cook, Neville G. W.; McEvilly, Thomas V.; Majer, Ernest L.; Witherspoon, Paul A.

    1992-01-01

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  2. Green Power Partnership Eligible Scope of Participation

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. Organizations can elect to join organization-wide or at the facility level.

  3. An adequacy-constrained integrated planning method for effective accommodation of DG and electric vehicles in smart distribution systems

    NASA Astrophysics Data System (ADS)

    Tan, Zhukui; Xie, Baiming; Zhao, Yuanliang; Dou, Jinyue; Yan, Tong; Liu, Bin; Zeng, Ming

    2018-06-01

    This paper presents a new integrated planning framework for effective accommodating electric vehicles in smart distribution systems (SDS). The proposed method incorporates various investment options available for the utility collectively, including distributed generation (DG), capacitors and network reinforcement. Using a back-propagation algorithm combined with cost-benefit analysis, the optimal network upgrade plan, allocation and sizing of the selected components are determined, with the purpose of minimizing the total system capital and operating costs of DG and EV accommodation. Furthermore, a new iterative reliability test method is proposed. It can check the optimization results by subsequently simulating the reliability level of the planning scheme, and modify the generation reserve margin to guarantee acceptable adequacy levels for each year of the planning horizon. Numerical results based on a 32-bus distribution system verify the effectiveness of the proposed method.

  4. Development of a differentially balanced magnetic bearing and control system for use with a flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Higgins, Mark A.; Plant, David P.; Ries, Douglas M.; Kirk, James A.; Anand, Davinder K.

    1992-01-01

    The purpose of a magnetically suspended flywheel energy storage system for electric utility load leveling is to provide a means to store energy during times when energy is inexpensive to produce and then return it to the customer during times of peak power demand when generated energy is most expensive. The design of a 20 kWh flywheel energy storage system for electric utility load leveling applications involves the successful integration of a number of advanced technologies so as to minimize the size and cost of the system without affecting its efficiency and reliability. The flywheel energy storage system uses a carbon epoxy flywheel, two specially designed low loss magnetic bearings, a high efficiency motor generator, and a 60 cycle AC power converter all integrated through a microprocessor controller. The basic design is discussed of each of the components that is used in the energy storage design.

  5. Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field

    NASA Technical Reports Server (NTRS)

    Chang, Shinan; Herman, Cila; Iacona, Estelle

    2002-01-01

    The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.

  6. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  7. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    PubMed

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  8. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL (Technology Readiness Level) level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT - NASA’s Electric Aircraft Testbed) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST - Hybrid-Electric Integrated Systems Testbed) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  9. Making Fuel While the Sun Shines.

    DOE PAGES

    Olzap, Nesrin; Sattler, Christian; Klausner, James F.; ...

    2014-10-01

    Recent advances in the production of photovoltaic panels have driven down the cost of solar power. Estimates for the levelized cost of electricity from PV range from 10 to 30 cents per kWh. And though this is still higher than the cost of generation from a newly built coal-fired thermal power station, solar power could be the cheapest electricity available in some areas within a few years, according to data from the Energy Information Agency.

  10. Determination and representation of electric charge distributions associated with adverse weather conditions

    NASA Technical Reports Server (NTRS)

    Rompala, John T.

    1992-01-01

    Algorithms are presented for determining the size and location of electric charges which model storm systems and lightning strikes. The analysis utilizes readings from a grid of ground level field mills and geometric constraints on parameters to arrive at a representative set of charges. This set is used to generate three dimensional graphical depictions of the set as well as contour maps of the ground level electrical environment over the grid. The composite, analytic and graphic package is demonstrated and evaluated using controlled input data and archived data from a storm system. The results demonstrate the packages utility as: an operational tool in appraising adverse weather conditions; a research tool in studies of topics such as storm structure, storm dynamics, and lightning; and a tool in designing and evaluating grid systems.

  11. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  12. Nuclear power propulsion system for spacecraft

    NASA Astrophysics Data System (ADS)

    Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.

    2015-12-01

    The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.

  13. Control of malodorous hydrogen sulfide compounds using microbial fuel cell.

    PubMed

    Eaktasang, Numfon; Min, Hyeong-Sik; Kang, Christina; Kim, Han S

    2013-10-01

    In this study, a microbial fuel cell (MFC) was used to control malodorous hydrogen sulfide compounds generated from domestic wastewaters. The electricity production demonstrated a distinct pattern of a two-step increase during 170 h of system run: the first maximum current density was 118.6 ± 7.2 mA m⁻² followed by a rebound of current density increase, reaching the second maximum of 176.8 ± 9.4 mA m⁻². The behaviors of the redox potential and the sulfate level in the anode compartment indicated that the microbial production of hydrogen sulfide compounds was suppressed in the first stage, and the hydrogen sulfide compounds generated from the system were removed effectively as a result of their electrochemical oxidation, which contributed to the additional electricity production in the second stage. This was also directly supported by sulfur deposits formed on the anode surface, which was confirmed by analyses on those solids using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy as well as an elemental analyzer. To this end, the overall reduction efficiencies for HS⁻ and H₂S(g) were as high as 67.5 and 96.4 %, respectively. The correlations among current density, redox potential, and sulfate level supported the idea that the electricity signal generated in the MFC can be utilized as a potential indicator of malodor control for the domestic wastewater system.

  14. Analysis of implementation of Tradable Green Certificates system in a competitive electricity market: a game theory approach

    NASA Astrophysics Data System (ADS)

    Ghaffari, Meysam; Hafezalkotob, Ashkan; Makui, Ahmad

    2016-06-01

    This paper investigates three models to implement Tradable Green Certificates (TGC) system with aid of game theory approach. In particular, the competition between thermal and renewable power plants is formulated in three models: namely cooperative, Nash and Stackelberg game models. The price of TGC is assumed to be determined by the legislative body (government) which is fixed. Numerical examples presented in this paper include sensitivity analysis of some key parameters and comparison of the results of different models. In all three game models, the parameters that influence pricing of the TGC based on the optimal amounts are obtained. The numerical examples demonstrate that in all models: there is a reverse relation between the price of electricity and the TGC price, as well as a direct relation between the price of electricity and the share of green electricity in total electricity generation. It is found that Stackelberg model is an appropriate structure to implement the TGC system. In this model, the supply of electricity and the production of green electricity are at the highest level, while the price of electricity is at the lowest levels. In addition, payoff of the thermal power plant is at the highest levels in the Nash model. Hence this model can be an applicatory structure for implementation of the TGC system in developing countries, where the number of thermal power plants is significantly greater than the number of renewable power plants.

  15. 78 FR 77343 - Small Business Size Standards: Utilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... (such as solar, wind, biomass, geothermal) as well as other industries, where power generation is...: namely NAICS 221114 (Solar Electric Power Generation), NAICS 221115 (Wind Electric Power Generation... Electric Power 4 million 250 employees. Generation. megawatt hours. [[Page 77348

  16. 78 FR 36277 - Vogtle Electric Generating Plant, Unit 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-025; NRC-2008-0252] Vogtle Electric Generating Plant....01, for the Vogtle Electric Generating Plant, Unit 3. ADDRESSES: Please refer to Docket ID NRC-2008... Generating Plant, Unit 3 [[Page 36278

  17. Optically activated switches for the generation of complex electrical waveforms with multigigahertz bandwidth

    NASA Astrophysics Data System (ADS)

    Skeldon, Mark D.; Okishev, Andrey V.; Letzring, Samuel A.; Donaldson, William R.; Green, Kenton; Seka, Wolf D.; Fuller, Lynn F.

    1995-01-01

    An electrical pulse-generation system using two optically activated Si photoconductive switches can generate shaped electrical pulses with multigigahertz bandwidth. The Si switches are activated by an optical pulse whose leading edge is steepened by stimulated Brillouin scattering (SBS) in CCl4. With the bandwidth generated by the SBS process, a laser having a 1- to 3-ns pulse width is used to generate electrical pulses with approximately 80-ps rise times (approximately 4-GHz bandwidth). Variable impedance microstrip lines are used to generate complex electrical waveforms that can be transferred to a matched load with minimal loss of bandwidth.

  18. Electric Power Quarterly, January-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-07-01

    The Electric Power Quarterly (EPQ), a new series in the EIA statistical publications, provides electric utilities' plant-level information about the cost, quantity, and quality of fossil fuel receipts, net generation, fuel consumption and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. The data presented in this report were collected and published by the EIA to fulfill its responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275). This edition of the EPQ contains monthly data for the first quarter of 1983. In this report, data collected on Form EIA-759 regarding electricmore » utilities' net generation, fuel consumption, and fuel stocks are presented for the first time on a plant-by-plant basis. In addition, quantity, cost, and quality of fossil fuel receipts collected on the Federal Energy Regulatory Commission (FERC) Form 423 are presented on a plant-by-plant basis.« less

  19. Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES

    NASA Astrophysics Data System (ADS)

    Hayakawa, N.; Noguchi, S.; Kurupakorn, C.; Kojima, H.; Endo, F.; Hirano, N.; Nagaya, S.; Okubo, H.

    2006-06-01

    In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current Ic for different ambient temperatures T0 at 4.2 K - 40 K. Experimental results revealed that Ic increased with the decrease in T0 and was saturated at T0 < 10 K. We carried out thermal analysis considering heat generation, conduction and transfer under conduction-cooling condition, and reproduced the electrical and thermal characteristics of the conduction-cooled HTS coil, taking account of temperature dependence of specific heat and thermal conductivity of the materials. We also measured the temperature rise of Bi2212/Ag HTS coil for different continuous current levels at T0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil.

  20. Progress on 241Am Production for Use in Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Baker, S. R.; Bell, K. J.; Brown, J.; Carrigan, C.; Carrott, M. J.; Gregson, C.; Clough, M.; Maher, C. J.; Mason, C.; Rhodes, C. J.; Rice, T. G.; Sarsfield, M. J.; Stephenson, K.; Taylor, R. J.; Tinsley, T. P.; Woodhead, D. A.; Wiss, T.

    2014-08-01

    Electrical power sources used in outer planet missions are a key enabling technology for data acquisition and communications. Power sources generate electricity from the thermal energy from alpha decay of the radioisotope 238Pu via thermo-electric conversion. Production of 238Pu requires specialist facilities including a nuclear reactor and reprocessing plants that are expensive to build and operate, so naturally, a more economical alternative is attractive to the industry. Within Europe 241Am is a feasible alternative to 238Pu that can provide a heat source for radioisotope thermoelectric generators (RTGs) and radioisotope heating units (RHUs). As a daughter product of 241Pu decay, 241Am is present at 1000s kg levels within the UK civil plutonium stockpile.A chemical separation process is required to extract the 241Am in a pure form and this paper describes such a process, successfully developed to the proof of concept stage.

  1. Philippines Country Analysis Brief

    EIA Publications

    2014-01-01

    The Philippines is a net energy importer in spite of low consumption levels relative to its Southeast Asian neighbors. The country produces small volumes of oil, natural gas, and coal. Geothermal, hydropower, and other renewable sources constitute a significant share of electricity generation.

  2. Nuclear electric generation: Political, social, and economic cost and benefit to Indonesia. Master`s thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waliyo

    Indonesia, the largest archipelagic country with a population the fourth biggest in the world, is now in the process of development. It needs a large quantity of energy electricity to meet the industrial and household demands. The currently available generating capacity is not sufficient to meet the electricity demand for the rapidly growing industries and the increasing population. In order to meet the future demand for electricity, new generating capacity is required to be added to the current capacity. Nuclear electricity generation is one possible alternative to supplement Indonesia`s future demand of electricity. This thesis investigates the possibility of developingmore » nuclear electricity generation in Indonesia, considering the political, social, and economic cost and benefit to Indonesia.« less

  3. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    NASA Astrophysics Data System (ADS)

    Perez, Marc J. R.

    With extraordinary recent growth of the solar photovoltaic industry, it is paramount to address the biggest barrier to its high-penetration across global electrical grids: the inherent variability of the solar resource. This resource variability arises from largely unpredictable meteorological phenomena and from the predictable rotation of the earth around the sun and about its own axis. To achieve very high photovoltaic penetration, the imbalance between the variable supply of sunlight and demand must be alleviated. The research detailed herein consists of the development of a computational model which seeks to optimize the combination of 3 supply-side solutions to solar variability that minimizes the aggregate cost of electricity generated therefrom: Storage (where excess solar generation is stored when it exceeds demand for utilization when it does not meet demand), interconnection (where solar generation is spread across a large geographic area and electrically interconnected to smooth overall regional output) and smart curtailment (where solar capacity is oversized and excess generation is curtailed at key times to minimize the need for storage.). This model leverages a database created in the context of this doctoral work of satellite-derived photovoltaic output spanning 10 years at a daily interval for 64,000 unique geographic points across the globe. Underpinning the model's design and results, the database was used to further the understanding of solar resource variability at timescales greater than 1-day. It is shown that--as at shorter timescales--cloud/weather-induced solar variability decreases with geographic extent and that the geographic extent at which variability is mitigated increases with timescale and is modulated by the prevailing speed of clouds/weather systems. Unpredictable solar variability up to the timescale of 30 days is shown to be mitigated across a geographic extent of only 1500km if that geographic extent is oriented in a north/south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar generation of 1 per watt, optimal model results show that meeting a 100% predictable output target with solar will cost no more than $0.08 per kilowatt-hour.

  4. Understanding the life cycle surface land requirements of natural gas-fired electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. We present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m 2 MWh -1, 95% confidence intervals +/-0.01 m 2 MWh -1) was dominated by midstream infrastructure,more » particularly pipelines (74%). These results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.« less

  5. Understanding the life cycle surface land requirements of natural gas-fired electricity

    DOE PAGES

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; ...

    2017-10-02

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. We present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m 2 MWh -1, 95% confidence intervals +/-0.01 m 2 MWh -1) was dominated by midstream infrastructure,more » particularly pipelines (74%). These results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.« less

  6. Understanding the life cycle surface land requirements of natural gas-fired electricity

    NASA Astrophysics Data System (ADS)

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; Bush, Brian W.; Mohammadi, Ehsan; Ben-Horin, Dan; Urrea, Victoria; Marceau, Danielle

    2017-10-01

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. Here we present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m2 MWh-1, 95% confidence intervals ±0.01 m2 MWh-1) was dominated by midstream infrastructure, particularly pipelines (74%). Our results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.

  7. Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/fuel cell powerplant subsystem

    NASA Technical Reports Server (NTRS)

    Brown, K. L.; Bertsch, P. J.

    1986-01-01

    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Fuel Cell Powerplant (FCP) hardware. The EPG/FCP hardware is required for performing functions of electrical power generation and product water distribution in the Orbiter. Specifically, the EPG/FCP hardware consists of the following divisions: (1) Power Section Assembly (PSA); (2) Reactant Control Subsystem (RCS); (3) Thermal Control Subsystem (TCS); and (4) Water Removal Subsystem (WRS). The IOA analysis process utilized available EPG/FCP hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  8. Science-Driven Innovation Can Reduce Wind Energy Costs by 50% by 2030 |

    Science.gov Websites

    -technology innovations, the unsubsidized cost of wind energy could drop to 50% of current levels, equivalent resulting innovations enabled by advances in science will impact the levelized cost of energy (defined as the total cost of installing and operating a project per kilowatt-hour of electricity generated by the

  9. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells.

    PubMed

    Tsang, Sai-Wing; Chen, Song; So, Franky

    2013-05-07

    Using charge modulated electroabsorption spectroscopy (CMEAS), for the first time, the energy level alignment of a polymer:fullerene bulk heterojunction photovoltaic cell is directly measured. The charge-transfer excitons generated by the sub-bandgap optical pumping are coupled with the modulating electric field and introduce subtle changes in optical absorption in the sub-bandgap region. This minimum required energy for sub-bandgap charge genreation is defined as the effective bandgap. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Does Risk Aversion Affect Transmission and Generation Planning? A Western North America Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, Francisco; van der Weijde, Adriaan Hendrik; Hobbs, Benjamin F.

    Here, we investigate the effects of risk aversion on optimal transmission and generation expansion planning in a competitive and complete market. To do so, we formulate a stochastic model that minimizes a weighted average of expected transmission and generation costs and their conditional value at risk (CVaR). We also show that the solution of this optimization problem is equivalent to the solution of a perfectly competitive risk-averse Stackelberg equilibrium, in which a risk-averse transmission planner maximizes welfare after which risk-averse generators maximize profits. Furthermore, this model is then applied to a 240-bus representation of the Western Electricity Coordinating Council, inmore » which we examine the impact of risk aversion on levels and spatial patterns of generation and transmission investment. Although the impact of risk aversion remains small at an aggregate level, state-level impacts on generation and transmission investment can be significant, which emphasizes the importance of explicit consideration of risk aversion in planning models.« less

  11. Does Risk Aversion Affect Transmission and Generation Planning? A Western North America Case Study

    DOE PAGES

    Munoz, Francisco; van der Weijde, Adriaan Hendrik; Hobbs, Benjamin F.; ...

    2017-04-07

    Here, we investigate the effects of risk aversion on optimal transmission and generation expansion planning in a competitive and complete market. To do so, we formulate a stochastic model that minimizes a weighted average of expected transmission and generation costs and their conditional value at risk (CVaR). We also show that the solution of this optimization problem is equivalent to the solution of a perfectly competitive risk-averse Stackelberg equilibrium, in which a risk-averse transmission planner maximizes welfare after which risk-averse generators maximize profits. Furthermore, this model is then applied to a 240-bus representation of the Western Electricity Coordinating Council, inmore » which we examine the impact of risk aversion on levels and spatial patterns of generation and transmission investment. Although the impact of risk aversion remains small at an aggregate level, state-level impacts on generation and transmission investment can be significant, which emphasizes the importance of explicit consideration of risk aversion in planning models.« less

  12. The Generation of Lighting in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey; Desch, S. J.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    The process that melted and formed the chondrules, mm-sized glassy beads within meteorites, has not been conclusively identified. Origin by lightning in the solar nebula is consistent with many features of chondrules, but no viable model of lightning has yet been advanced. We present a model demonstrating how lightning could be generated in the solar nebula which differs from previous models in three important aspects. First, we identify a new', powerful charging mechanism that is based on the differences in contact potentials between particles of different composition, a form of triboelectric charging. In the presence of fine silicate grains and fine iron metal grains, large silicate particles (the chondrules) can acquire charges of +10(exp 5) e. Second, we assume that the chondrule precursor particles are selectively concentrated in clumps 1 - 100 km in size by the turbulent concentration mechanism described by Cuzzi et al. (1996). The concentration of these highly charged particles into clumps, in a background of negatively charged metal grains, is what generates the strong electric fields. Third, we make refinements in the estimates of the breakdown electric field and the ionization rate. We calculate that electric fields large enough to trigger breakdown easily could have existed over regions large enough (approx. 100km) to generate very large discharges of electrical energy (approx. 10(exp 16)erg). The discharges would have been sufficiently energetic and frequent to have formed the chondrules. We place constraints on the generation of lightning and conclude that it could not be generated if the abundance of Al-26 in chondrules was as high as the level in the CAls. This conclusion is consistent with isotopic analyses of chondrules. This possibly implies that Al-26 was non-uniformly distributed in the solar nebula or that the chondrules formed several Myr after the CAIs.

  13. Preliminary assessment of power-generating tethers in space and of propulsion for their orbit maintenance

    NASA Technical Reports Server (NTRS)

    English, R. E.; Finnegan, P. M.

    1985-01-01

    The concept of generating power in space by means of a conducting tether deployed from a spacecraft was studied. Using hydrogen and oxygen as the rocket propellant to overcome the drag of such a power-generating tether would yield more benefit than if used in a fuel cell. The mass consumption would be 25 percent less than the reactant consumption of fuel cells. Residual hydrogen and oxygen in the external tank and in the orbiter could be used very effectively for this purpose. Many other materials (such as waste from life support) could be used as the propellant. Electrical propulsion using tether generated power can compensate for the drag of a power-generating tether, half the power going to the useful load and the rest for electric propulsion. In addition, the spacecraft's orbital energy is a large energy reservoir that permits load leveling and a ratio of peak to average power equal to 2. Critical technologies to be explored before a power-generating tether can be used in space are delineated.

  14. Pulsed Energy Systems for Generating Plasmas

    NASA Technical Reports Server (NTRS)

    Rose, M. Franklin; Shotts, Z.

    2005-01-01

    This paper will describe the techniques needed to electrically generate highly ionized dense plasmas for a variety of applications. The components needed in pulsed circuits are described in terms of general performance parameters currently available from commercial vendors. Examples of pulsed systems using these components are described and technical data from laboratory experiments presented. Experimental data are given for point designs, capable of multi-megawatt power levels.

  15. Analysis of synchronous and induction generators used at hydroelectric power plant

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; lagăr, A.

    2017-01-01

    In this paper is presented an analysis of the operating electric generators (synchronous and induction) within a small capacity hydroelectric power plant. Such is treated the problem of monitoring and control hydropower plant using SCADA systems. Have been carried an experimental measurements in small hydropower plant for different levels of water in the lake and various settings of the operating parameters.

  16. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, butmore » low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy costs, (2) lower building peak electric load, (3) increase energy efficiency, and (4) provide standby power. This new hybrid product is designed to allow the engine to generate electricity or drive the chiller's compressor, based on the market price and conditions of the available energy sources. Building owners can minimize cooling costs by operating with natural gas or electricity, depending on time of day energy rates. In the event of a backout, the building owner could either operate the product as a synchronous generator set, thus providing standby power, or continue to operate a chiller to provide air conditioning with support of a small generator set to cover the chiller's electric auxiliary requirements. The ability to utilize the same piece of equipment as a hybrid gas/electric chiller or a standby generator greatly enhances its economic attractiveness and would substantially expand the opportunities for high efficiency cooling products.« less

  17. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production.

    PubMed

    Liu, Gang; Bao, Jie

    2017-11-01

    This study takes the first insight on the rigorous evaluation of electricity generation based on the experimentally measured higher heating value (HHV) of lignin residue, as well as the chemical oxygen demand (COD) and biological oxygen demand (BOD 5 ) of wastewater. For producing one metric ton of ethanol fuel from five typical lignocellulose substrates, including corn stover, wheat straw, rice straw, sugarcane bagasse and poplar sawdust, 1.26-1.85tons of dry lignin residue is generated from biorefining process and 0.19-0.27tons of biogas is generated from anaerobic digestion of wastewater, equivalent to 4335-5981kWh and 1946-2795kWh of electricity by combustion of the generated lignin residue and biogas, respectively. The electricity generation not only sufficiently meets the electricity needs of process requirement, but also generates more than half of electricity surplus selling to the grid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 1. GENERAL VIEW OF FISK STREET ELECTRIC GENERATING STATION COMPLEX, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF FISK STREET ELECTRIC GENERATING STATION COMPLEX, LOOKING SOUTH; IN THE CENTER, BEHIND THE STACK IS THE GENERATING STATION BUILT IN 1959; THE TALL METAL-CLAD BUILDING CONTAINS A COAL BUNKER, COAL PULVERIZER, FURNACE, BOILER, SUPER-HEATER, STEAM PIPES, AND HOT-AIR DUCTS. TO THE RIGHT OF THIS 1959 GENERATING STATION IS THE ORIGINAL POWERHOUSE. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  19. Interaction of post-stroke voluntary effort and functional neuromuscular electrical stimulation

    PubMed Central

    Makowski, Nathaniel; Knutson, Jayme; Chae, John; Crago, Patrick

    2012-01-01

    Functional Electrical Stimulation (FES) may be able to augment functional arm and hand movement after stroke. Post-stroke neuroprostheses that incorporate voluntary effort and FES to produce the desired movement need to consider how the forces generated by voluntary effort and FES combine together, even in the same muscle, in order to provide an appropriate level of stimulation to elicit the desired assistive force. The goal of this study was to determine if the force produced by voluntary effort and FES add together independently of effort, or if the increment in force is dependent on the level of voluntary effort. Isometric force matching tasks were performed under different combinations of voluntary effort and electrical stimulation. Participants reached a steady level of force and while attempting to maintain a constant effort level, FES was applied to augment the force. Results indicate that the increment in force produced by FES decreases as the level of initial voluntary effort increases. Potential mechanisms causing the change in force output are proposed, but the relative contribution of each mechanism is unknown. PMID:23516086

  20. Safety and interaction of patients with implantable cardiac defibrillators driving a hybrid vehicle.

    PubMed

    Tondato, Fernando; Bazzell, Jane; Schwartz, Linda; Mc Donald, Bruce W; Fisher, Robert; Anderson, S Shawn; Galindo, Arcenio; Dueck, Amylou C; Scott, Luis R

    2017-01-15

    Electromagnetic interference (EMI) can affect the function of implantable cardioverter defibrillators (ICD). Hybrid electric vehicles (HEV) have increased popularity and are a potential source of EMI. Little is known about the in vivo effects of EMI generated by HEV on ICD. This study evaluated the in vivo interaction between EMI generated by HEV with ICD. Thirty patients (73±9 y/o; 80% male) with stable ICD function were exposed to EMI generated by a Toyota Prius Hybrid®. The vehicle was lifted above the ground, allowing safe changes in engine rotation and consequent variations in electromagnetic emission. EMI was measured (NARDA STS® model EHP-50C) and expressed in A/m (magnetic), Volts/m (electrical), and Hertz (frequency). Six positions were evaluated: driver, front passenger, right and left back seats, outside, at the back and front of the car. Each position was evaluated at idle, 30 mph, 60 mph and variable speeds (acceleration-deceleration-brake). All ICD devices were continuously monitored during the study. The levels of EMI generated were low (highest mean levels: 2.09A/m at right back seat at 30 mph; and 3.5V/m at driver seat at variable speeds). No episode of oversensing or inadvertent change in ICD programming was observed. It is safe for patients with ICD to interact with HEV. This is the first study to address this issue using an in vivo model. Further studies are necessary to evaluate the interaction of different models of HEV or electric engine with ICD or unipolar pacemakers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. We explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for longterm reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs« less

  2. Emissions implications of downscaled electricity generation scenarios for the western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsanzineza, Rene; O’Connell, Matthew; Brinkman, Gregory

    This study explores how emissions from electricity generation in the Western Interconnection region of the U.S. might respond in circa 2030 to contrasting scenarios for fuel prices and greenhouse gas (GHG) emissions fees. We examine spatial and temporal variations in generation mix across the region and year using the PLEXOS unit commitment and dispatch model with a production cost model database adapted from the Western Electricity Coordinating Council. Emissions estimates are computed by combining the dispatch model results with unit-specific, emissions-load relationships. Wind energy displaces natural gas and coal in scenarios with relatively expensive natural gas or with GHG fees.more » Correspondingly, annual emissions of NOx, SO2, and CO2 are reduced by 20-40% in these cases. NOx emissions, which are a concern as a precursor of ground-level ozone, are relatively high and consistent across scenarios during summer, when peak electricity loads occur and wind resources in the region are comparatively weak. Accounting for the difference in start-up versus stabilized NOx emissions rates for natural gas plants had little impact on region-wide emissions estimates due to the dominant contribution from coal-fired plants, but would be more important in the vicinity of the natural gas units.« less

  3. 76 FR 74072 - Endangered and Threatened Wildlife and Plants; Incidental Take Permit Application; Habitat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... operating the Kaheawa Pastures Wind Energy Generation Facility (KWPI wind farm) for generating electricity... the Kaheawa Pastures Wind Energy Generation Facility (KWPI wind farm) for generating electricity on... generates electricity on Maui. The Service listed the Hawaiian petrel as endangered on March 11, 1967 (32 FR...

  4. Institutional Governance Framework for Determining Carbon-related Accounting Practices: An Exploratory Study of Electricity Generating Companies in Malaysia

    NASA Astrophysics Data System (ADS)

    Alrazi, B.; Mat Husin, N.

    2016-03-01

    Electricity industry is the major contributor of the global carbon emissions which has been scientifically identified as the main cause of climate change. With the various initiatives being implemented at the international, national, and industry levels, companies in the electricity industry are currently facing immense pressure from various stakeholders to demonstrate their policies, initiatives, targets, and performance on climate change. Against this background, accounting system is argued to be able to be play important roles in combating climate change. Using institutional governance as the underlying framework, we have identified several governance mechanisms as the determining factors for companies to have a systematic accounting system related to carbon emissions. The factors include environmental management system certification, environmental organization, publication of stand-alone sustainability reports, the use of GRI guidelines, environmental strategic planning, governance quality, and participation in CDP surveys and emissions trading scheme. We explored this issue in the context of major electricity generating companies in Malaysia and found that except for certified environmental management system, the other governance mechanisms are still lacking. The findings suggest that companies in Malaysia, in particular, from the electricity industry are not well prepared in facing risks related to climate change.

  5. Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater.

    PubMed

    Hsu, Guoo-Shyng Wang; Hsia, Chih-Wei; Hsu, Shun-Yao

    2015-12-01

    Electrolyzed water has significant disinfection effects, can comply with food safety regulations, and is environmental friendly. We investigated the effects of immersion depth of electrodes, stirring, electrode size, and electrode gap on the properties and chlorine generation efficiency of electrolyzing seawater and its storage stability. Results indicated that temperature and oxidation-reduction potential (ORP) of the seawater increased gradually, whereas electrical conductivity decreased steadily in electrolysis. During the electrolysis process, pH values and electric currents also decreased slightly within small ranges. Additional stirring or immersing the electrodes deep under the seawater significantly increased current density without affecting its electric efficiency and current efficiency. Decreasing electrode size or increasing electrode gap decreased chlorine production and electric current of the process without affecting its electric efficiency and current efficiency. Less than 35% of chlorine in the electrolyzed seawater was lost in a 3-week storage period. The decrement trend leveled off after the 1 st week of storage. The electrolyzing system is a convenient and economical method for producing high-chlorine seawater, which will have high potential applications in agriculture, aquaculture, or food processing. Copyright © 2015. Published by Elsevier B.V.

  6. NREL Updates Baseline Cost and Performance Data for Electricity Generation

    Science.gov Websites

    Technologies | News | NREL Updates Baseline Cost and Performance Data for Electricity Generation Technologies News Release: NREL Updates Baseline Cost and Performance Data for Electricity generation technology cost and performance data used to support and inform electric sector analysis in the

  7. 26. Photocopy of diagram (from Bernhardt Skrotzki's Electric GenerationSteam Stations, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photocopy of diagram (from Bernhardt Skrotzki's Electric Generation--Steam Stations, New York, New York, 1956, figure I-1) THE GENERAL WAY IN WHICH ELECTRICITY IS CREATED THROUGH THE STEAM GENERATION PROCESS - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR

  8. 77 FR 26476 - Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units AGENCY... Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units.'' The EPA is making... for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units, and...

  9. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  10. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  11. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  12. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  13. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  14. Energy harvesting based on piezoelectric Ericsson cycles in a piezoceramic material

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Ducharne, B.; Guyomar, D.; Sebald, G.

    2013-09-01

    The possibility of recycling ambient energies with electric generators instead of using batteries with limited life spans has stimulated important research efforts over the past years. The integration of such generators into mainly autonomous low-power systems, for various industrial or domestic applications is envisioned. In particular, the present work deals with energy harvesting from mechanical vibrations. It is shown here that direct piezoelectric energy harvesting (short circuiting on an adapted resistance, for example) leads to relatively weak energy levels that are insufficient for an industrial development. By coupling an electric field and mechanical excitation on Ericsson-based cycles, the amplitude of the harvested energy can be highly increased, and can reach a maximum close to 100 times its initial value. To obtain such a gain, one needs to employ high electrical field levels (high amplitude, high frequency), which induce a non-linearity through the piezoceramic. A special dynamic hysteresis model has been developed to correctly take into account the material properties, and to provide a real estimation of the harvested energy. A large number of theoretical predictions and experimental results have been compared and are discussed herein, in order to validate the proposed solution.

  15. Optimal Wind Energy Integration in Large-Scale Electric Grids

    NASA Astrophysics Data System (ADS)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create profit for investors for renting their transmission capacity, and cheaper electricity for end users. We propose a hybrid method based on a heuristic and deterministic method to attain new transmission lines additions and increase transmission capacity. Renewable energy resources (RES) have zero operating cost, which makes them very attractive for generation companies and market participants. In addition, RES have zero carbon emission, which helps relieve the concerns of environmental impacts of electric generation resources' carbon emission. RES are wind, solar, hydro, biomass, and geothermal. By 2030, the expectation is that more than 30% of electricity in the U.S. will come from RES. One major contributor of RES generation will be from wind energy resources (WES). Furthermore, WES will be an important component of the future generation portfolio. However, the nature of WES is that it experiences a high intermittency and volatility. Because of the great expectation of high WES penetration and the nature of such resources, researchers focus on studying the effects of such resources on the electric grid operation and its adequacy from different aspects. Additionally, current market operations of electric grids add another complication to consider while integrating RES (e.g., specifically WES). Mandates by market rules and long-term analysis of renewable penetration in large-scale electric grid are also the focus of researchers in recent years. We advocate a method for high-wind resources penetration study on large-scale electric grid operations. PMU is a geographical positioning system (GPS) based device, which provides immediate and precise measurements of voltage angle in a high-voltage transmission system. PMUs can update the status of a transmission line and related measurements (e.g., voltage magnitude and voltage phase angle) more frequently. Every second, a PMU can provide 30 samples of measurements compared to traditional systems (e.g., supervisory control and data acquisition [SCADA] system), which provides one sample of measurement every 2 to 5 seconds. Because PMUs provide more measurement data samples, PMU can improve electric grid reliability and observability. (Abstract shortened by UMI.)

  16. Current-level triggered plasma-opening switch

    DOEpatents

    Mendel, C.W.

    1987-06-29

    An opening switch for very high power electrical pulses uses a slow magnetic field to confine a plasma across a gap between two electrodes. The plasma conducts the electric pulse across the gap while the switch is closed. A magnetic field generated by the pulse repels the slow magnetic field from the negative electrode to push the plasma from the electrode, opening the switch. A plurality of radial vanes may be used to enhance the slow magnetic field. 5 figs.

  17. Breakup of Solid Ice Covers Due to Rapid Water Level Variations,

    DTIC Science & Technology

    1982-02-01

    Larsen, and Dr. Devinder S. Sodhi for their valuable comments and reviews of the report. He also thanks Dr. Ashton and Guenther E. Frankenstein for the...for wave periods larger than about 10 seconds. What are the minimum wave lengths that might be generated by discharge variations at a hydro- electric ...Canadian Electrical Association, Research and Development, Suite 580, One Westmount Square, Montreal, Canada. 2. Ashton, G.D. (1974a) Entrainment of ice

  18. Current-level triggered plasma-opening switch

    DOEpatents

    Mendel, Clifford W.

    1989-01-01

    An opening switch for very high power electrical pulses uses a slow magnetic field to confine a plasma across a gap between two electrodes. The plasma conducts the electric pulse across the gap while the switch is closed. A magnetic field generated by the pulse repels the slow magnetic field from the negative electrode to push the plasma from the electrode, opening the switch. A plurality of radial vanes may be used to enhance the slow magnetic field.

  19. Interaction of biological systems with static and ELF electric and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, L.E.; Kelman, B.J.; Weigel, R.J.

    1987-01-01

    Although background levels of atmospheric electric and geomagnetic field levels are extremely low, over the past several decades, human beings and other life forms on this planet have been subjected to a dramatically changing electromagnetic milieu. An exponential increase in exposure to electromagnetic fields has occurred, largely because of such technological advances as the growth of electrical power generation and transmission systems, the increased use of wireless communications, and the use of radar. In addition, electromagnetic field generating devices have proliferated in industrial plants, office buildings, homes, public transportation systems, and elsewhere. Although significant increases have occurred in electromagnetic fieldmore » strenghths spanning all frequency ranges, this symposium addresses only the impact of these fields at static and extremely low frequencies (ELF), primarily 50 and 60 Hz. This volume contains the proceedings of the symposium entitled /open quotes/Interaction of biological systems with static and ELF electric and magnetic fields/close quotes/. The purpose of the symposium was to provide a forum for discussions of all aspects of research on the interaction of static and ELF electromagnetic fields with biological systems. These systems include simple biophysical models, cell and organ preparations, whole animals, and man. Dosimetry, exposure system design, and artifacts in ELF bioeffects research were also addressed, along with current investigations that examine fundamental mechanisms of interactions between the fields and biological processes. Papers are indexed separately.« less

  20. Life-cycle assessment of electricity generation systems and applications for climate change policy analysis

    NASA Astrophysics Data System (ADS)

    Meier, Paul Joseph

    This research uses Life-Cycle Assessment (LCA) to better understand the energy and environmental performance for two electricity generation systems, a 620 MW combined-cycle natural gas plant, and an 8kW building-integrated photovoltaic system. The results of the LCA are used to provide an effective and accurate means for evaluating greenhouse gas emission reduction strategies for U.S. electricity generation. The modern combined-cycle plant considered in this thesis is nominally 48% thermally efficient, but it is only 43% energy efficient when evaluated across its entire life-cycle, due primarily to energy losses during the natural gas fuel cycle. The emission rate for the combined-cycle natural gas plant life-cycle (469 tonnes CO2-equivalent per GWeh), was 23% higher than the emission rate from plant operation alone (382 tonnes CO2-equivalent per GWeh). Uncertainty in the rate of fuel-cycle methane releases results in a potential range of emission rates between 457 to 534 tonnes CO 2-equivalent per GWeh for the studied plant. The photovoltaic system modules have a sunlight to DC electricity conversion efficiency of 5.7%. However, the system's sunlight to AC electricity conversion efficiency is 4.3%, when accounting for life-cycle energy inputs, as well as losses due to system wiring, AC inversion, and module degradation. The LCA illustrates that the PV system has a low, but not zero, life-cycle greenhouse gas emission rate of 39 Tonnes CO2-equivalent per GWeh. A ternary method of evaluation is used to evaluate three greenhouse gas mitigation alternatives: (1) fuel-switching from coal to natural gas for Kyoto-based compliance, (2) fuel-switching from coal to nuclear/renewable for Kyoto based compliance, and (3) fuel-switching to meet the White House House's Global Climate Change Initiative. In a moderate growth scenario, fuel-switching from coal to natural gas fails to meet a Kyoto-based emission target, while fuel-switching to nuclear/renewable meets the emission objective by reducing coal generated electricity 32% below 2000 levels. The Global Climate Change Initiative allows annual greenhouse gas emissions to increase to levels that are 54% higher than the proposed U.S. commitment under the Kyoto Protocol.

  1. Renewable generation technology choice and policies in a competitive electricity supply industry

    NASA Astrophysics Data System (ADS)

    Sarkar, Ashok

    Renewable energy generation technologies have lower externality costs but higher private costs than fossil fuel-based generation. As a result, the choice of renewables in the future generation mix could be affected by the industry's future market-oriented structure because market objectives based on private value judgments may conflict with social policy objectives toward better environmental quality. This research assesses how renewable energy generation choices would be affected in a restructured electricity generation market. A multi-period linear programming-based model (Resource Planning Model) is used to characterize today's electricity supply market in the United States. The model simulates long-range (2000-2020) generation capacity planning and operation decisions under alternative market paradigms. Price-sensitive demand is used to simulate customer preferences in the market. Dynamically changing costs for renewables and a two-step load duration curve are used. A Reference Case represents the benchmark for a socially-optimal diffusion of renewables and a basis for comparing outcomes under alternative market structures. It internalizes externality costs associated with emissions of sulfur dioxide (SOsb2), nitrous oxides (NOsbx), and carbon dioxide (COsb2). A Competitive Case represents a market with many generation suppliers and decision-making based on private costs. Finally, a Market Power Case models the extreme case of market power: monopoly. The results suggest that the share of renewables would decrease (and emissions would increase) considerably in both the Competitive and the Market Power Cases with respect to the Reference Case. The reduction is greater in the Market Power Case due to pricing decisions under existing supply capability. The research evaluates the following environmental policy options that could overcome market failures in achieving an appropriate level of renewable generation: COsb2 emissions tax, SOsb2 emissions cap, renewable portfolio standards (RPS), and enhanced research and development (R&D). RPS would best ensure an appropriate share of renewables, whereas SOsb2 emissions caps would not support a shift to renewables in an era of inexpensive natural gas. The effectiveness of the policies are dependent on the market structure. If market power exists, the analyses indicate that generally higher levels of intervention would be necessary to achieve a shift to renewables.

  2. Impact of uncoordinated plug-in electric vehicle charging on residential power demand - supplementary data

    DOE Data Explorer

    Muratori, Matteo (ORCID:0000000316886742)

    2017-06-15

    This data set is provided in support of a forthcoming paper: "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," [1]. These files include electricity demand profiles for 200 households randomly selected among the ones available in the 2009 RECS data set for the Midwest region of the United States. The profiles have been generated using the modeling proposed by Muratori et al. [2], [3], that produces realistic patterns of residential power consumption, validated using metered data, with a resolution of 10 minutes. Households vary in size and number of occupants and the profiles represent total electricity use, in watts. The files also include in-home plug-in electric vehicle recharging profiles for 348 vehicles associated with the 200 households assuming both Level 1 (1920 W) and Level 2 (6600 W) residential charging infrastructure. The vehicle recharging profiles have been generated using the modeling proposed by Muratori et al. [4], that produces real-world recharging demand profiles, with a resolution of 10 minutes. [1] M. Muratori, "Impact of uncoordinated plug-in electric vehicle charging on residential power demand." Forthcoming. [2] M. Muratori, M. C. Roberts, R. Sioshansi, V. Marano, and G. Rizzoni, "A highly resolved modeling technique to simulate residential power demand," Applied Energy, vol. 107, no. 0, pp. 465 - 473, 2013. [3] M. Muratori, V. Marano, R. Sioshansi, and G. Rizzoni, "Energy consumption of residential HVAC systems: a simple physically-based model," in 2012 IEEE Power and Energy Society General Meeting. San Diego, CA, USA: IEEE, 22-26 July 2012. [4] M. Muratori, M. J. Moran, E. Serra, and G. Rizzoni, "Highly-resolved modeling of personal transportation energy consumption in the United States," Energy, vol. 58, no. 0, pp. 168-177, 2013.

  3. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  4. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  5. State Electricity Profiles

    EIA Publications

    2017-01-01

    The annual report presents data tables describing the electricity industry in each State. Data include: summary statistics; the 10 largest plants by generating capacity; the top five entities ranked by sector; electric power industry generating capacity by primary energy source; electric power industry generation by primary energy source; utility delivered fuel prices for coal, petroleum, and natural gas; electric power industry emissions estimates; retail sales, revenue, and average retail price by sector; retail electricity sales statistics; and supply and disposition of electricity; net metering counts and capacity by technology and customer type; and advanced metering counts by customer type.

  6. Experimental study of camel powered electricity generation unit

    NASA Astrophysics Data System (ADS)

    Jakhar, O. P.; Choudhary, Rahul Raj; Budaniya, Mukesh; Kumar, Ashish

    2018-05-01

    Developing nations are facing a huge gap in generation and demand of electricity across the world. In present scenario the demand of electricity is increasing day by day and the shortfall of electricity has become one of the major obstructions in the development of rural areas. There is a big gap between electricity supply and demand. In India it is very difficult that to give twenty four hours electric supply in rural areas. The traditional use of camel as draught animal, for the purpose of transport of goods and agricultural work, has been drastically reduced during last few decades, due to advancements and cheaper availability of mechanical machineries. In this research paper we experimentally studied the camel powered electricity generation system at National Research Centre on Camels (NRCC) Bikaner. Camel Energy in form of high torque low speed can be converted into low torque high speed through motion converting system i.e. gear and pulley mechanism for high RPM output. This high RPM (more than 3000) output is used for electricity generation. The electricity generated can be used directly or stored in the battery and later may be used whenever it is required either for DC light or AC light using inverter. According to experimental study a camel can comfortably generate electricity up to 1KW by rotating shaft. The complete set up for electricity generation using camel power has been designed, developed and physically commissioned at National Research Centre on Camels (NRCC) Bikaner.

  7. Maximum power point tracking analysis of a coreless ironless electric generator for renewable energy application

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    The magnetism attraction between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator is often known as cogging. Cogging requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator to see its performance characteristic. In the maximum power point tracking test, the fabricated ironless coreless electricity generator was tested by applying the load on the ironless coreless electricity generator optimization to maximize the power generated, voltage and the current produced by the ironless coreless electricity generator when the rotational speed of the rotor increased throughout the test. The rotational torque and power output are measured, and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 200VAC at rotational speed of 318 RPM. Torque required to rotate the generator was at 10.8Nm. The generator had working efficiency of 77.73% and the power generated was at 280W.

  8. Electrodynamic Tethers. 1: Power Generator in LEO. 2: Thrust for Propulsion and Power Storage

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1984-01-01

    An electrodynamic tether consists of a long insulated wire in space whose orbital motion cuts across lines of magnetic flux to produce an induce voltage that in typical low orbits averages about 200 v/km. Such a system should be capable of generating substantial electrical power, at the expense of IXB drag acting on its orbital energy. If a reverse current is driven against the induced voltage, the system should act as a motor producing IXB thrust. A reference system was designed, capable of generating 20 KW of power into an electrical load located anywhere along the wire at the expense of 2.6N (20,000 J/sec) drag on the wire. In an ideal system, the conversion between mechanical and electrical energy would reach 100% efficiency. In the actual system part of the 20 KW is lost to internal resistance of the wire, plasma and ionosphere, while the drag force is increased by residual air drag. The 20 KW PMG system as designed is estimated to provide 18.7 KW net power to the load at total drag loss of 20.4 KJ/sec, or an overall efficiency of 92%. Similar systems using heavier wire appear capable of producing power levels in excess of 1 Megawatt at voltages of 2-4 KV, with conversion efficiency between mechanical and electrical power better than 95%. The hollow cathode based system should be readily reversible from generator to motor operation by driving a reverse current using onboard power.

  9. Wireless sensing system for non-invasive monitoring of attributes of contents in a container

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor)

    2010-01-01

    A wireless sensing system monitors the level, temperature, magnetic permeability and electrical dielectric constant of a non-gaseous material in a container. An open-circuit electrical conductor is shaped to form a two-dimensional geometric pattern that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The conductor is mounted in an environmentally-sealed housing. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to power the conductor, and wirelessly detects the harmonic response that is an indication of at least one of level of the material in the container, temperature of the material in the container, magnetic permeability of the material in the container, and dielectric constant of the material in the container.

  10. 76 FR 75876 - Record of Decision for the Modification of the Groton Generation Station Interconnection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ...) received a request from Basin Electric Power Cooperative (Basin Electric) to modify its Large Generator Interconnection Agreement (LGIA) with Basin Electric for the Groton Generation Station to eliminate current... considered the environmental impacts and has decided to modify its LGIA with Basin Electric for the Groton...

  11. Cloaking magnetic field and generating electric field with topological insulator and superconductor bi-layer sphere

    NASA Astrophysics Data System (ADS)

    Xu, Jin

    2017-12-01

    When an electric field is applied on a topological insulator, not only the electric field is generated, but also the magnetic field is generated, vice versa. I designed topological insulator and superconductor bi-layer magnetic cloak, derived the electric field and magnetic field inside and outside the topological insulator and superconductor sphere. Simulation and calculation results show that the applied magnetic field is screened by the topological insulator and superconductor bi-layer, and the electric field is generated in the cloaked region.

  12. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, Eduard

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  13. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOEpatents

    Muljadi, Eduard

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  14. Variable speed wind turbine generator with zero-sequence filter

    DOEpatents

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  15. Design mechanic generator under speed bumper to support electricity recourse for urban traffic light

    NASA Astrophysics Data System (ADS)

    Sabri, M.; Lauzuardy, Jason; Syam, Bustami

    2018-03-01

    The electrical energy needs for the traffic lights in some cities of developing countries cannot be achieved continuously due to limited capacity and interruption of electricity distribution, the main power plant. This issues can lead to congestion at the crossroads. To overcome the problem of street chaos due to power failure, we can cultivate to provide electrical energy from other sources such as using the bumper to generate kinetic energy, which can be converted into electrical energy. This study designed a generator mechanic that will be mounted on the bumper construction to generate electricity for the purposes of traffic lights at the crossroads. The Mechanical generator is composed of springs, levers, sprockets, chains, flywheel and customize power generator. Through the rotation of the flywheel, we can earned 9 Volt DC voltage and electrical current of 5.89 Ampere. This achievement can be used to charge the accumulator which can be used to power the traffic lights, and to charge the accumulator capacity of 6 Ah, the generator works in the charging time for 1.01 hours.

  16. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    PubMed

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  17. Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls

    NASA Astrophysics Data System (ADS)

    Egbue, Ona; Long, Suzanna; Ng, Ean-Harn

    2015-10-01

    Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or engineering-related major. This article presents results from a workshop for 7th and 8th grade girls designed to promote knowledge building in the area of sustainability and alternative energy use in transportation and to stimulate greater interest in STEM subjects. The workshop based on research conducted at University X focused on basic concepts of electric vehicles and electric vehicles' batteries. Tests were conducted to evaluate the students' knowledge and perceptions of electric vehicles and to determine the impact of the workshop. Early exposure to meaningful engineering experiences for these young girls may boost interest and the eventual pursuit of engineering and technology education paths.

  18. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  19. Understanding the Uncertainties in Consequences of Climate Change for the United States Power Sector Infrastructure when Considering a Realistic Mitigation Pace and Adaptation Needs.

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.; Whiteford, E. J.; Jones, V.; Fritz, S. C.; Yang, H.; Appleby, P.; Bindler, R.

    2014-12-01

    In order to overcome the potential damages associated with climate change, a massive reduction in greenhouse gas emissions is necessary. Achieving these levels of emissions reductions will require dramatic changes in the U.S. electricity generating infrastructure: almost all of the fossil-generation fleet will need to be replaced with low-carbon sources and society would have to maintain a high build rate of new capacity for decades. Because the build rate of new electricity generating capacity may be limited, the timing of regulation is critical—the longer the U.S. waits to start reducing emissions, the faster the turnover in the electricity sector must occur in order to meet the same target. We investigate the relationship between climate policy timing and infrastructure turnover in the electricity sector. How long can we wait before constraints on infrastructure turnover in the electricity sector make achieving our climate goals impossible? We show that delaying climate change policy increases average construction rates by 25% to 85% and increases maximum construction rates by 50% to 300%. We also show that delaying climate policy has little effect on the age of retired plants or the stranded costs associated with premature retirement. We show that as we delay policy action, some goals won't be possible for attain. For example, unless we enable emissions reductions today, reducing cumulative emissions between now and 2040 by 50% when compared to a no-policy scenario is not possible.

  20. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  1. The Impact of Utility Tariff Evolution on Behind-the-Meter PV Adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J; Gagnon, Pieter J; Frew, Bethany A

    This analysis uses a new method to link the NREL Regional Energy Deployment System (ReEDS) capacity expansion model with the NREL distributed generation market demand model (dGen) to explore the impact that the evolution of retail electricity tariffs can have on the adoption of distributed photovoltaics (DPV). The evolution most notably takes the form of decreased mid-day electricity costs, as low-cost PV reduces the marginal cost of electricity during those hours and the changes are subsequently communicated to electricity consumers through tariffs. We find that even under the low PV prices of the new SunShot targets the financial performance ofmore » DPV under evolved tariffs still motivates behind-the-meter adoption, despite significant reduction in the costs of electricity during afternoon periods driven by deployment of cheap utility-scale PV. The amount of DPV in 2050 in these low-cost futures ranged from 206 GW to 263 GW, a 13-fold and 16-fold increase over 2016 adoption levels respectively. From a utility planner's perspective, the representation of tariff evolution has noteworthy impacts on forecasted DPV adoption in scenarios with widespread time-of-use tariffs. Scenarios that projected adoption under a portfolio of time-of-use tariffs, but did not represent the evolution of those tariffs, predicted up to 36 percent more DPV in 2050, compared to scenarios that did not represent that evolution. Lastly, we find that a reduction in DPV deployment resulting from evolved tariffs had a negligible impact on the total generation from PV - both utility-scale and distributed - in the scenarios we examined. Any reduction in DPV generation was replaced with utility-scale PV generation, to arrive at the quantity that makes up the least-cost portfolio.« less

  2. Nuclear power generation and fuel cycle report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to themore » uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.« less

  3. Charge It! Translating Electric Vehicle Research Results to Engage 7th and 8th Grade Girls

    ERIC Educational Resources Information Center

    Egbue, Ona; Long, Suzanna; Ng, Ean-Harn

    2015-01-01

    Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or…

  4. Assessment of foetal exposure to the homogeneous magnetic field harmonic spectrum generated by electricity transmission and distribution networks.

    PubMed

    Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo

    2015-04-01

    During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level.

  5. Assessment of Foetal Exposure to the Homogeneous Magnetic Field Harmonic Spectrum Generated by Electricity Transmission and Distribution Networks

    PubMed Central

    Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo

    2015-01-01

    During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level. PMID:25837346

  6. Current status and future prospects of power generators using dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chiba, Seiki; Waki, Mikio; Kornbluh, Roy; Pelrine, Ron

    2011-12-01

    Electroactive polymer artificial muscle (EPAM), known collectively as dielectric elastomers in the literature, has been shown to offer unique capabilities as an actuator and is now being developed for a wide variety of generator applications. EPAM has several characteristics that make it potentially well suited for wave, water current, wind, human motion, and other environmental energy harvesting systems including a high energy density allowing for minimal EPAM material quantities, high energy conversion efficiency independent of frequency of operation and non-toxic and low-cost materials not susceptible to corrosion. Experiments have been performed on push-button and heel-mounted generator devices powered by human motion, ocean wave power harvesters mounted on buoys and water turbines. While the power output levels of such demonstration devices is small, the performance of these devices has supported the potential benefits of EPAM. For example, an electrical energy conversion efficiency of over 70% was achieved with small wave heights. The ability of EPAM to produce hydrogen fuel for energy storage was also demonstrated. Because the energy conversion principle of EPAM is capacitive in nature, the performance is largely independent of size and it should eventually be possible to scale up EPAM generators to the megawatt level to address a variety of electrical power needs.

  7. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation.

    PubMed

    Niessen, J; Schröder, U; Harnisch, F; Scholz, F

    2005-01-01

    To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.

  8. Experimental study of a sustainable hybrid system for thermoelectric generation and freshwater production

    NASA Astrophysics Data System (ADS)

    de Souza, Gabriel Fernandes; Tan, Lippong; Singh, Baljit; Ding, Lai Chet; Date, Abhijit

    2017-04-01

    The paper presents a sustainable hybrid system, which is capable of generating electricity and producing freshwater from seawater using low grade heat source. This proposed system uses low grade heat that can be supplied from solar radiation, industrial waste heat or any other waste heat sources where the temperature is less than 150°C. The concept behind this system uses the Seebeck effect for thermoelectricity generation via incorporating the low boiling point of seawater under sub-atmospheric ambient pressure. A lab-test prototype of the proposed system was built and experimentally tested in RMIT University. The prototype utilised four commercial available thermoelectric generators (Bi2Te3) and a vacuum vessel to achieve the simultaneous production of electricity and freshwater. The temperature profiles, thermoelectric powers and freshwater productions were determined at several levels of salinity to study the influence of different salt concentrations. The theoretical description of system design and experimental results were analysed and discussed in detailed. The experiment results showed that 0.75W of thermoelectricity and 404g of freshwater were produced using inputs of 150W of simulated waste heat and 500g of 3% saline water. The proposed hybrid concept has demonstrated the potential to become the future sustainable system for electricity and freshwater productions.

  9. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 2: Data analysis

    NASA Technical Reports Server (NTRS)

    Wilreker, V. F.; Stiller, P. H.; Scott, G. W.; Kruse, V. J.; Smith, R. F.

    1984-01-01

    Assessing the performance of a MOD-OA horizontal axis wind turbine connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. The detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three models of wind turbine reactive power control are presented. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. Even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level.

  10. Technology-based design and scaling for RTGs for space exploration in the 100 W range

    NASA Astrophysics Data System (ADS)

    Summerer, Leopold; Pierre Roux, Jean; Pustovalov, Alexey; Gusev, Viacheslav; Rybkin, Nikolai

    2011-04-01

    This paper presents the results of a study on design considerations for a 100 W radioisotope thermo-electric generator (RTG). Special emphasis has been put on designing a modular, multi-purpose system with high overall TRL levels and making full use of the extensive Russian heritage in the design of radioisotope power systems. The modular approach allowed insight into the scaling of such RTGs covering the electric power range from 50 to 200 W e (EoL). The retained concept is based on a modular thermal block structure, a radiative inner-RTG heat transfer and using a two-stage thermo-electric conversion system.

  11. Electrical characterization of a Mapham inverter using pulse testing techniques

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.; Myers, I. T.; Hammoud, A. N.

    1990-01-01

    The use of a multiple pulse testing technique to determine the electrical characteristics of large megawatt-level power systems for aerospace missions is proposed. An innovative test method based on the multiple pulse technique is demonstrated on a 2-kW Mapham inverter. The concept of this technique shows that characterization of large power systems under electrical equilibrium at rated power can be accomplished without large costly power supplies. The heat generation that occurs in systems when tested in a continuous mode is eliminated. The results indicate that there is a good agreement between this testing technique and that of steady state testing.

  12. RSRM top hat cover simulator lightning test, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The test sequence was to measure electric and magnetic fields induced inside a redesigned solid rocket motor case when a simulated lightning discharge strikes an exposed top hat cover simulator. The test sequence was conducted between 21 June and 17 July 1990. Thirty-six high rate-of-rise Marx generator discharges and eight high current bank discharges were injected onto three different test article configurations. Attach points included three locations on the top hat cover simulator and two locations on the mounting bolts. Top hat cover simulator and mounting bolt damage and grain cover damage was observed. Overall electric field levels were well below 30 kilowatts/meter. Electric field levels ranged from 184.7 to 345.9 volts/meter and magnetic field levels were calculated from 6.921 to 39.73 amperes/meter. It is recommended that the redesigned solid rocket motor top hat cover be used in Configuration 1 or Configuration 2 as an interim lightning protection device until a lightweight cover can be designed.

  13. Techno-economic analysis of concentrated solar power plants in terms of levelized cost of electricity

    NASA Astrophysics Data System (ADS)

    Musi, Richard; Grange, Benjamin; Sgouridis, Sgouris; Guedez, Rafael; Armstrong, Peter; Slocum, Alexander; Calvet, Nicolas

    2017-06-01

    Levelized Cost of Electricity (LCOE) is an important metric which provides one way to compare the economic competitiveness of different electricity generation systems, calculated simply by dividing lifetime costs by lifetime production. Hidden behind the simplicity of this formula are various assumptions which may significantly alter results. Different LCOE studies exist in the literature, although their assumptions are rarely explicitly stated. This analysis gives all formulas and assumptions which allow for inter-study comparisons. The results of this analysis indicate that CSP LCOE is reducing markedly over time and that given the right location and market conditions, the SunShot 6¢/kWh 2020 target can be reached. Increased industrial cooperation is needed to advance the CSP market and continue to drive down LCOE. The results also indicate that there exist a country and technology level learning effect, either when installing an existing CSP technology in a new country or when using a new technology in an existing CSP country, which seems to impact market progress.

  14. Cannon Air Force base New Mexico, Installation of Digital Airport Surveillance Radar, Final Environmental Assessment

    DTIC Science & Technology

    2005-07-06

    C95.1-1991, American National Standard Safety Levels With Respect to Human Exposure to Radiofrequency Electromagnetic Fields , 300 kHz to 100 GHz. New...Site 4) were evaluated for possible siting of the ASR- 11. All three sites are situated in undeveloped fields on base. Site 2 is located between the...alternative ASR-1 1 sites. 3.12 ELECTROMAGNETIC ENERGY 3.12.1 Existing Conditions Electrical currents and components generate electrical fields and

  15. Analysis of Chemical, REP, and SEP missions to the Trojan asteroids

    NASA Technical Reports Server (NTRS)

    Bonfiglio, Eugene P.; Oh, David; Yen, Chen-Wan

    2005-01-01

    Recent studies suggest significant benefits from using 1st and 2nd generation Radioisotope Power Systems (RPS) as a power source for electric propulsion (EP) missions to the outer planets. This study focuses on trajectories to the Trojan asteroids. A high level analysis is performed with chemical trajectories to determine potential canidates for REP trajectory optimization. Extensive analysis of direct trajectories using REP is performed on these candidates. Solar Electric Propulsion (SEP) trajectories are also considered for comparison against REP trajectories.

  16. Future Market Share of Space Solar Electric Power Under Open Competition

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Mahasenan, N.; Clarke, J. F.; Edmonds, J. A.

    2002-01-01

    This paper assesses the value of Space Solar Power deployed under market competition with a full suite of alternative energy technologies over the 21st century. Our approach is to analyze the future energy system under a number of different scenarios that span a wide range of possible future demographic, socio-economic, and technological developments. Scenarios both with, and without, carbon dioxide concentration stabilization policies are considered. We use the comprehensive set of scenarios created for the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (Nakicenovic and Swart 2000). The focus of our analysis will be the cost of electric generation. Cost is particularly important when considering electric generation since the type of generation is, from a practical point of view, largely irrelevant to the end-user. This means that different electricity generation technologies must compete on the basis of price. It is important to note, however, that even a technology that is more expensive than average can contribute to the overall generation mix due to geographical and economic heterogeneity (Clarke and Edmonds 1993). This type of competition is a central assumption of the modeling approach used here. Our analysis suggests that, under conditions of full competition of all available technologies, Space Solar Power at 7 cents per kW-hr could comprise 5-10% of global electric generation by the end of the century, with a global total generation of 10,000 TW-hr. The generation share of Space Solar Power is limited due to competition with lower-cost nuclear, biomass, and terrestrial solar PV and wind. The imposition of a carbon constraint does not significantly increase the total amount of power generated by Space Solar Power in cases where a full range of advanced electric generation technologies are also available. Potential constraints on the availability of these other electric generation options can increase the amount of electricity generated by Space Solar Power. In agreement with previous work on this subject, we note that launch costs are a significant impediment for the widespread implementation of Space Solar Power. KEY WORDS: space satellite power, advanced electric generation, electricity price, climate change

  17. An analysis of the impact of Renewable Portfolio Standards on residential electricity prices

    NASA Astrophysics Data System (ADS)

    Larson, Andrew James

    A Renewable Portfolio Standard (RPS) has become a popular policy for states seeking to increase the amount of renewable energy generated for consumers of electricity. The success of these state programs has prompted debate about the viability of a national RPS. The impact that these state level policies have had on the price consumers pay for electricity is the subject of some debate. Several federal organizations have conducted studies of the impact that a national RPS would have on electricity prices paid by consumers. NREL and US EIA utilize models that analyze the inputs in electricity generation to examine the future price impact of changes to electricity generation and show marginal increases in prices paid by end users. Other empirical research has produced similar results, showing that the existence of an RPS increases the price of electricity. These studies miss important aspects of RPS policies that may change how we view these price increases from RPS policies. By examining the previous empirical research on RPS policies, this study seeks to identify the controls necessary to build an effective model. These controls are utilized in a fixed effects model that seeks to show how the controls and variables of interest impact electricity prices paid by residential consumers of electricity. This study utilizes a panel data set from 1990 to 2014 to analyze the impact of these policies controlling for generating capacity, the regulatory status of utilities in each state, demographic characteristics of the states, and fuel prices. The results of the regressions indicate that prices are likely to be higher in states that have an RPS compared to states that do not have such a policy. Several of the characteristics mentioned above have price impacts, and so discussing RPS policies in the context of other factors that contribute to electricity prices is essential. In particular, the regulatory status of utilities in each state is an important determinate of price as well as the amount of renewable energy generated in each state. There are several implications of this analysis that are relevant for policy makers who seek to gain the environmental benefits of these policies, but who are also concerned with the costs those polices may impose on consumers of electricity. First, allowing utilities as much time as possible to comply with the mandates of the RPS will mitigate the price increases associated with implementation of and compliance with the policy. Secondly, policy makers need not fear imposing high targets for their RPS as this is not associated with higher electricity prices. Finally, policy makers should be concerned with the bindingness of the policies they impose. States with non-binding policies tend to have higher electricity prices, likely due to the costs of early compliance. As such imposing interim targets may raise rates more than simply allowing compliance at a pace utilities can bear without substantially increasing prices.

  18. Electricity Monthly Update

    EIA Publications

    2017-01-01

    Provides analysis and highlights of the data included in the Electric Power Monthly (EPM) publication and presents tables of electricity generation, fuel consumption for generation, fossil fuel stocks, and average retail sales and prices of electricity. The Electricity Monthly Update is published at the same time as the EPM.

  19. 78 FR 4873 - Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ..., personal protective equipment, insulating and shielding materials, and insulated tools for working on or...] Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and Distribution... the information collection requirements specified in its standards on Electrical Protective Equipment...

  20. Potential air quality benefits from increased solar photovoltaic electricity generation in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Abel, David; Holloway, Tracey; Harkey, Monica; Rrushaj, Arber; Brinkman, Greg; Duran, Phillip; Janssen, Mark; Denholm, Paul

    2018-02-01

    We evaluate how fine particulate matter (PM2.5) and precursor emissions could be reduced if 17% of electricity generation was replaced with solar photovoltaics (PV) in the Eastern United States. Electricity generation is simulated using GridView, then used to scale electricity-sector emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) from an existing gridded inventory of air emissions. This approach offers a novel method to leverage advanced electricity simulations with state-of-the-art emissions inventories, without necessitating recalculation of emissions for each facility. The baseline and perturbed emissions are input to the Community Multiscale Air Quality Model (CMAQ version 4.7.1) for a full accounting of time- and space-varying air quality changes associated with the 17% PV scenario. These results offer a high-value opportunity to evaluate the reduced-form AVoided Emissions and geneRation Tool (AVERT), while using AVERT to test the sensitivity of results to changing base-years and levels of solar integration. We find that average NOX and SO2 emissions across the region decrease 20% and 15%, respectively. PM2.5 concentrations decreased on average 4.7% across the Eastern U.S., with nitrate (NO3-) PM2.5 decreasing 3.7% and sulfate (SO42-) PM2.5 decreasing 9.1%. In the five largest cities in the region, we find that the most polluted days show the most significant PM2.5 decrease under the 17% PV generation scenario, and that the greatest benefits are accrued to cities in or near the Ohio River Valley. We find summer health benefits from reduced PM2.5 exposure estimated as 1424 avoided premature deaths (95% Confidence Interval (CI): 284 deaths, 2 732 deaths) or a health savings of 13.1 billion (95% CI: 0.6 billion, 43.9 billion) These results highlight the potential for renewable energy as a tool for air quality managers to support current and future health-based air quality regulations.

  1. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  2. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, weather prediction, earth quake prediction, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  3. Task 2 Report - A GIS-Based Technical Potential Assessment of Domestic Energy Resources for Electricity Generation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Nathan; Grue, Nicholas W; Rosenlieb, Evan

    The purpose of this report is to support the Lao Ministry of Energy and Mines in assessing the technical potential of domestic energy resources for utility scale electricity generation in the Lao PDR. Specifically, this work provides assessments of technical potential, and associated maps of developable areas, for energy technologies of interest. This report details the methodology, assumptions, and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resourcesmore » for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources. This report is the second output of the Energy Alternatives Study for the Lao PDR, a collaboration led by the Lao Ministry of Energy and Mines and the United States Agency for International Development under the auspices of the Smart Infrastructure for the Mekong program. The Energy Alternatives Study is composed of five successive tasks that collectively support the project's goals. This work is focused on Task 2 - Assess technical potential of domestic energy resources for electricity generation. The work was carried out by a team from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in collaboration with the Lao Ministry of Energy and Mines and other Lao power sector stakeholders. and datasets employed in this analysis to provide a transparent, replicable process for future analyses. The methodology and results presented are intended to be a fundamental input to subsequent decision making and energy planning-related analyses. This work concentrates on domestic energy resources for utility-scale electricity generation and considers solar photovoltaic, wind, biomass, and coal resources. This work does not consider potentially imported energy resources (e.g., natural gas) or domestic energy resources that are not present in sufficient quantity for utility-scale generation (e.g., geothermal resources). A technical potential assessment of hydropower resources is currently not feasible due to the absence of required data including site-level assessments of multiple characteristics (e.g., geology environment and access) as well as spatial data on estimated non-exploited hydropower resources.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.W.

    The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generationmore » option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.« less

  5. Quantifying the Impacts of Droughts on the Electricity Sector and its Associated Greenhouse Gas Emissions in the American West

    NASA Astrophysics Data System (ADS)

    Herrera-Estrada, J. E.; Sheffield, J.

    2016-12-01

    The electricity sector relies heavily on water, as it is needed for hydroelectric generation and to cool thermoelectric power plants. Droughts decrease river and reservoir levels, reducing the affected region's capacity for electricity generation. These cuts in electricity supply have to be replaced by more expensive alternatives with potentially higher associated greenhouse gas emissions (e.g. coal, natural gas, or imports) to meet the region's demand. To date, the quantification of the impacts of droughts on the electricity sector tends to be restricted to individual events, such as the recent California drought. In this work, the impacts of droughts on electricity prices paid by consumers and on greenhouse gas emissions from the electricity sector are calculated over the American West from 2001 to 2014 using monthly data. This region was selected because it falls within the Western Interconnection power grid, because of its important reliance on hydropower, and because it has large areas that are vulnerable to droughts due to their semi-arid climates. Furthermore, this regional approach allows us to quantify the effects of non-local droughts, i.e. droughts in neighboring states that affect electricity imports into a given state. Results show large heterogeneities in the effects of droughts across the region, given the diversity of energy sources used in each state. As expected, the effect of a local drought event on hydroelectricity is largest in California, Oregon, and Washington since they have the highest hydropower capacity. California and Oregon tend to replace a large portion of their lost hydroelectricity with natural gas, while Washington appears to rely more on imports from its neighbors. On the other hand, Montana, Nevada, and Utah, tend to rely more heavily on coal. The results also show that consumers in the residential, commercial, and industrial sectors may sometimes pay millions of dollars more for their electricity use at the state level due to the effects of a drought on the state's energy mix, as has been the case in California.

  6. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.

    PubMed

    Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M

    2010-10-01

    Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.

  7. Development and bottlenecks of renewable electricity generation in China: a critical review.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2013-04-02

    This review provides an overview on the development and status of electricity generation from renewable energy sources, namely hydropower, wind power, solar power, biomass energy, and geothermal energy, and discusses the technology, policy, and finance bottlenecks limiting growth of the renewable energy industry in China. Renewable energy, dominated by hydropower, currently accounts for more than 25% of the total electricity generation capacity. China is the world's largest generator of both hydropower and wind power, and also the largest manufacturer and exporter of photovoltaic cells. Electricity production from solar and biomass energy is at the early stages of development in China, while geothermal power generation has received little attention recently. The spatial mismatch in renewable energy supply and electricity demand requires construction of long-distance transmission networks, while the intermittence of renewable energy poses significant technical problems for feeding the generated electricity into the power grid. Besides greater investment in research and technology development, effective policies and financial measures should also be developed and improved to better support the healthy and sustained growth of renewable electricity generation. Meanwhile, attention should be paid to the potential impacts on the local environment from renewable energy development, despite the wider benefits for climate change.

  8. 5 CFR 5801.102 - Prohibited securities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...

  9. 5 CFR 5801.102 - Prohibited securities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...

  10. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  11. 77 FR 45967 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility...-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired...

  12. High power beta electron device - Beyond betavoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, William M.; Gentile, Charles A.

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less

  13. High power beta electron device - Beyond betavoltaics

    DOE PAGES

    Ayers, William M.; Gentile, Charles A.

    2017-11-10

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100 KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. This approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cellsmore » convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. Furthermore, the power source can use a variety of beta radioisotopes and scales by stacking the devices.« less

  14. High power beta electron device - Beyond betavoltaics.

    PubMed

    Ayers, William M; Gentile, Charles A

    2018-01-01

    Developing watt level power sources with beta emitting radioisotopes has been limited by the inability to utilize high energy (> 100KeV) beta emitters at high radioisotope loadings without damaging the energy conversion materials. A new type of beta electron power source is described that removes those restrictions. The approach contains the radioisotope in a beta transparent titanium tube and confines beta electrons emitted through the tube wall to spiral trajectories around the tube with an axial magnetic field. The confined beta electrons dissipate energy though multiple interactions with surrounding excimer precursor gas atoms to efficiently generate photons. Photovoltaic cells convert the photons to electrical power. Since the beta electrons dissipate energy in the excimer precursor gas, the device can be loaded with more than 10 13 Bq of radioisotope to generate 100 milliwatt to watt levels of electrical power without damaging the device materials or degrading its performance. The power source can use a variety of beta radioisotopes and scales by stacking the devices. Copyright © 2017. Published by Elsevier Ltd.

  15. 40 CFR 69.11 - New exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administrator of the Environmental Protection Agency (“EPA”) conditionally exempts electric generating units on... significant deterioration (“PSD”) permit prior to construction is granted for the electric generating units... to be constructed at Orote, with the following conditions: (i) Each electric generating unit shall...

  16. Energy Portfolio Assessment Tool (EPAT): Sustainable Energy Planning Using the WEF Nexus Approach - Texas Case Study

    NASA Astrophysics Data System (ADS)

    Mroue, A. M.

    2017-12-01

    The future energy portfolio at the national and subnational levels should consider its impact on water resources and environment. Although energy resources are the main contributors to the national economic growth, these resources must not exploit other primary natural resources. A study of the connections between energy and natural systems, such as water, environment and land is required prior to proceeding to energy development. Policy makers are in need of a tool quantifying the interlinkages across energy, water and the environment, while demonstrating the consequent trade-offs across the nexus systems. The Energy Portfolio Assessment Tool (EPAT) is a tool that enables the policy maker to create different energy portfolio scenarios with various energy and electricity sources, and evaluate the scenario's sustainability environmentally and economically. The Water-Energy-Food nexus systematic approach is the foundation of the EPAT framework. The research evaluates the impact of the current and projected Texas energy portfolios on water and the environment, taking into consideration energy production, electricity generation and policy change. The three scenarios to be assessed include EIA projections for energy production, and EIA projections for electricity generation with and without the Clean Power Plan (CPP). Each scenario is accompanied by tradeoffs across water, land, emissions, energy revenue and electricity cost. The CPP succeeds in mitigating the emissions of the electricity portfolio, but leads to an increase in water consumption and land use. The cost of electricity generation is almost identical with and without environmental conservation. Revenue from energy production increased, but results are majorly influenced by commodity price. Therefore, conservation policies should move from the silo to the nexus mentality to avoid unintended consequences as improving one part of the nexus could end up worsening the other parts.

  17. Electricity generation in microbial fuel cells using neutral red as an electronophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, D.H.; Zeikus, J.G.

    2000-04-01

    Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. Inmore » microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator was 10-fold more than the amount produced when thionin was the electron mediator. The amount of electrical energy generated and the amount of current produced from glucose in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge was used in the fuel cell, stable and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Their results are discussed in relation to factors that may improve the relatively low electrical efficiencies obtained with microbial fuel cells.« less

  18. Air quality co-benefits and costs under state, regional, or national cooperation to regulate CO2 from existing power plants

    NASA Astrophysics Data System (ADS)

    Saari, R.; Selin, N. E.

    2015-12-01

    We examine the effect of state, regional, and national cooperation on the costs and air quality co-benefits of a policy to limit the carbon intensity of existing electricity generation. Electricity generation is a significant source of both greenhouse gases and air pollutant emissions that harm human health. Previous studies have shown that air quality co-benefits can be substantial compared to the costs of limiting carbon emissions in the energy system. The EPA's proposed Clean Power Plan seeks to impose carbon intensity limits for each state, but allows states to cooperate in order to meet combined limits. We explore how such cooperation might produce trade-offs between lower costs, widespread pollution reductions, and local reductions. We employ a new state-level model of the US energy system and economy to examine the costs and emissions as states reduce demand or deploy cleaner generation. We use an advanced air quality impacts modeling system, including SMOKE, CAMx, and BenMAP, to estimate health-related air quality co-benefits and compare these to costs under different levels of cooperation. We draw conclusions about the potential impacts of cooperation on economic welfare at various scales.

  19. 77 FR 9303 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...

  20. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    NASA Astrophysics Data System (ADS)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-10-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  1. Solar electricity: An effective asset to supply urban loads in hot climates

    NASA Astrophysics Data System (ADS)

    Robert, Fabien Chidanand; Gopalan, Sundararaman

    2018-04-01

    While human population has been multiplied by four in the last hundred years, the world energy consumption was multiplied by ten. The common method of using fossil fuels to provide energy and electricity has dangerously disturbed nature's and climate's balance. It has become urgent and crucial to find sustainable and eco-friendly alternatives to preserve a livable environment with unpolluted air and water. Renewable energy is the unique eco-friendly opportunity known today. The main challenge of using renewable energy is to ensure the constant balance of electricity demand and generation on the electrical grid. This paper investigates whether the solar electricity generation is correlated with the urban electricity consumption in hot climates. The solar generation and total consumption have been compared for three cities in Florida. The hourly solar generation has been found to be highly correlated with the consumption that occurs 6 h later, while the monthly solar generation is correlated with the monthly energy consumption. Producing 30% of the electricity using solar energy has been found to compensate partly for the monthly variation in the urban electricity demand. In addition, if 30% of the world electricity is produced using solar, global CO2 emissions would be reduced by 11.7% (14.6% for India). Thus, generating 30% solar electricity represents a valuable asset for urban areas situated in hot climates, reducing the need for electrical operating reserve, providing local supply with minimal transmission losses, but above all reducing the need for fossil fuel electricity and reducing global CO2 emission.

  2. Wind and solar energy curtailment: A review of international experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Lori; Lew, Debra; Milligan, Michael

    2016-11-01

    Greater penetrations of variable renewable generation on some electric grids have resulted in increased levels of curtailment in recent years. Studies of renewable energy grid integration have found that curtailment levels may grow as the penetration of wind and solar energy generation increases. This paper reviews international experience with curtailment of wind and solar energy on bulk power systems in recent years, with a focus on eleven countries in Europe, North America, and Asia. It examines levels of curtailment, the causes of curtailment, curtailment methods and use of market-based dispatch, as well as operational, institutional, and other changes that aremore » being made to reduce renewable energy curtailment.« less

  3. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. Furthermore, we explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for long-term reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs.« less

  4. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE PAGES

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron; ...

    2016-03-22

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. Furthermore, we explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for long-term reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs.« less

  5. Wind resource quality affected by high levels of renewables

    DOE PAGES

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less

  6. Method and apparatus for lead-unity-lag electric power generation system

    NASA Technical Reports Server (NTRS)

    Ganev, Evgeni (Inventor); Warr, William (Inventor); Salam, Mohamed (Arif) (Inventor)

    2013-01-01

    A method employing a lead-unity-lag adjustment on a power generation system is disclosed. The method may include calculating a unity power factor point and adjusting system parameters to shift a power factor angle to substantially match an operating power angle creating a new unity power factor point. The method may then define operation parameters for a high reactance permanent magnet machine based on the adjusted power level.

  7. Preliminary design of a 100 kW turbine generator

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.; Sirocky, P. J.

    1974-01-01

    The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level.

  8. 75 FR 72909 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ...) Comments 135 (b) Commission Determination 139 6. Impact on Generation Owners and Operators 142 (a) Comments... Organization, the electrical generation resources, transmission lines, interconnections with neighboring... above that interconnect with registered generation facilities are excluded from NPCC's list of bulk...

  9. DC grid for home applications

    NASA Astrophysics Data System (ADS)

    Elangovan, D.; Archana, R.; Jayadeep, V. J.; Nithin, M.; Arunkumar, G.

    2017-11-01

    More than fifty percent Indian population do not have access to electricity in daily lives. The distance between the power generating stations and the distribution centers forms one of the main reasons for lack of electrification in rural and remote areas. Here lies the importance of decentralization of power generation through renewable energy resources. In the present world, electricity is predominantly powered by alternating current, but most day to day devices like LED lamps, computers and electrical vehicles, all run on DC power. By directly supplying DC to these loads, the number of power conversion stages was reduced, and overall system efficiency increases. Replacing existing AC network with DC is a humongous task, but with power electronic techniques, this project intends to implement DC grid at a household level in remote and rural areas. Proposed work was designed and simulated successfully for various loads amounting to 250 W through appropriate power electronic convertors. Maximum utilization of the renewable sources for domestic and commercial application was achieved with the proposed DC topology.

  10. Gravity flow operated small electricity generator retrofit kit to flour mill industry.

    PubMed

    Shekara, Prithivi; Kumar V, Pavan; Hosamane, Gangadharappa Gundabhakthara

    2013-10-01

    Flour milling is a grinding process to produce flour from wheat through comprehensive stages of grinding and separation. The primary energy is required to provide power used in grinding of wheat. In wheat milling, tempering is the process of adding water to wheat before milling to toughen the bran and mellow the endosperm. Gravity flow of the wheat is utilized to rotate the dampener wheel with cups to add water. Low cost gravity flow operated small electricity generator retrofit kit for dampener was designed and developed to justify low cost energy production without expensive solutions. Results of statistical analysis indicated that there was significant difference in mean values for voltage, rpm and flow rate at the 95% probability level. The resulted maximum mechanical power and measured electrical power were 5.1 W and 4.9 W respectively at wheat flow rate of 1.6 Kg/s and dampener wheel rotational velocity of 4.4 rad/s.

  11. Reliability as the big persuader to privatize the electrical system in Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez B., C.E.

    1998-12-31

    Throughout the past five years, the Venezuelan authorities, especially the Fondo de Inversiones de Venezuela (FIV), have done a major effort to privatize many of the state owned industries, among them, the electrical public utilities and some important electrical power generation plants or systems based on thermal generation. Mainly along the recent past years, black and brownouts have become more frequent in the system. In other words, system reliability has been diminishing, as a consequence of investment capital and O and M expenses have been reduced to levels below the required by the system. Public opinion is exercising pressure onmore » politicians, so signals are that Congress will probably approve during the current or beginning of next years the required laws to expedite privatization and assure incentives and guaranties to investors. This paper deals with the insides of all these aspects, and with how soon privatization will be carried out. The FIV has been committed to implement this process.« less

  12. Conductivity affects nanosecond electrical pulse induced pressure transient formation

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Glickman, Randolph D.

    2016-03-01

    Nanoporation occurs in cells exposed to high amplitude short duration (< 1μs) electrical pulses. The biophysical mechanism(s) responsible for nanoporation is unknown although several theories exist. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. Our group has shown that mechanical forces of substantial magnitude are also generated during nsEP exposures. We hypothesize that these mechanical forces may contribute to pore formation. In this paper, we report that alteration of the conductivity of the exposure solution also altered the level of mechanical forces generated during a nsEP exposure. By reducing the conductivity of the exposure solutions, we found that we could completely eliminate any pressure transients normally created by nsEP exposure. The data collected for this proceeding does not definitively show that the pressure transients previously identified contribute to nanoporation; however; it indicates that conductivity influences both survival and pressure transient formation.

  13. Can developing countries leapfrog the centralized electrification paradigm?

    DOE PAGES

    Levin, Todd; Thomas, Valerie M.

    2016-02-04

    Due to the rapidly decreasing costs of small renewable electricity generation systems, centralized power systems are no longer a necessary condition of universal access to modern energy services. Developing countries, where centralized electricity infrastructures are less developed, may be able to adopt these new technologies more quickly. We first review the costs of grid extension and distributed solar home systems (SHSs) as reported by a number of different studies. We then present a general analytic framework for analyzing the choice between extending the grid and implementing distributed solar home systems. Drawing upon reported grid expansion cost data for three specificmore » regions, we demonstrate this framework by determining the electricity consumption levels at which the costs of provision through centralized and decentralized approaches are equivalent in these regions. We then calculate SHS capital costs that are necessary for these technologies provide each of five tiers of energy access, as defined by the United Nations Sustainable Energy for All initiative. Our results suggest that solar home systems can play an important role in achieving universal access to basic energy services. The extent of this role depends on three primary factors: SHS costs, grid expansion costs, and centralized generation costs. Given current technology costs, centralized systems will still be required to enable higher levels of consumption; however, cost reduction trends have the potential to disrupt this paradigm. Furthermore, by looking ahead rather than replicating older infrastructure styles, developing countries can leapfrog to a more distributed electricity service model.« less

  14. Forecasting of Hourly Photovoltaic Energy in Canarian Electrical System

    NASA Astrophysics Data System (ADS)

    Henriquez, D.; Castaño, C.; Nebot, R.; Piernavieja, G.; Rodriguez, A.

    2010-09-01

    The Canarian Archipelago face similar problems as most insular region lacking of endogenous conventional energy resources and not connected to continental electrical grids. A consequence of the "insular fact" is the existence of isolated electrical systems that are very difficult to interconnect due to the considerable sea depths between the islands. Currently, the Canary Islands have six isolated electrical systems, only one utility generating most of the electricity (burning fuel), a recently arrived TSO (REE) and still a low implementation of Renewable Energy Resources (RES). The low level of RES deployment is a consequence of two main facts: the weakness of the stand-alone grids (from 12 MW in El Hierro up to only 1 GW in Gran Canaria) and the lack of space to install RES systems (more than 50% of the land protected due to environmental reasons). To increase the penetration of renewable energy generation, like solar or wind energy, is necessary to develop tools to manage them. The penetration of non manageable sources into weak grids like the Canarian ones causes a big problem to the grid operator. There are currently 104 MW of PV connected to the islands grids (Dec. 2009) and additional 150 MW under licensing. This power presents a serious challenge for the operation and stability of the electrical system. ITC, together with the local TSO (Red Eléctrica de España, REE) started in 2008 and R&D project to develop a PV energy prediction tool for the six Canarian Insular electrical systems. The objective is to supply reliable information for hourly forecast of the generation dispatch programme and to predict daily solar radiation patterns, in order to help program spinning reserves. ITC has approached the task of weather forecasting using different numerical model (MM5 and WRF) in combination with MSG (Meteosat Second Generation) images. From the online data recorded at several monitored PV plants and meteorological stations, PV nominal power and energy produced by every plant in Canary Islands are estimated using a series of theoretical and statistical energy models.

  15. Assessment of wind energy potential and cost estimation of wind-generated electricity at hilltops surrounding the city of Maroua in Cameroon

    NASA Astrophysics Data System (ADS)

    Kaoga, Dieudonné Kidmo; Bogno, Bachirou; Aillerie, Michel; Raidandi, Danwe; Yamigno, Serge Doka; Hamandjoda, Oumarou; Tibi, Beda

    2016-07-01

    In this work, 28 years of wind data, measured at 10m above ground level (AGL), from Maroua meteorological station is utilized to assess the potential of wind energy at exposed ridges tops of mountains surrounding the city of Maroua. The aim of this study is to estimate the cost of wind-generated electricity using six types of wind turbines (50 to 2000 kW). The Weibull distribution function is employed to estimate Weibull shape and scale parameters using the energy pattern factor method. The considered wind shear model to extrapolate Weibull parameters and wind profiles is the empirical power law correlation. The results show that hilltops in the range of 150-350m AGL in increments of 50, fall under Class 3 or greater of the international system of wind classification and are deemed suitable to outstanding for wind turbine applications. A performance of the selected wind turbines is examined as well as the costs of wind-generated electricity at the considered hilltops. The results establish that the lowest costs per kWh are obtained using YDF-1500-87 (1500 kW) turbine while the highest costs are delivered by P-25-100 (90 kW). The lowest costs (US) per kWh of electricity generated are found to vary between a minimum of 0.0294 at hilltops 350m AGL and a maximum of 0.0366 at hilltops 150m AGL, with corresponding energy outputs that are 6,125 and 4,932 MWh, respectively. Additionally, the matching capacity factors values are 38.05% at hilltops 150m AGL and 47.26% at hilltops 350m AGL. Furthermore, YDF-1500-87 followed by Enercon E82-2000 (2000 kW) wind turbines provide the lowest cost of wind generated electricity and are recommended for use for large communities. Medium wind turbine P-15-50 (50 kW), despite showing the best coefficients factors (39.29% and 48.85% at hilltops 150 and 350m AGL, in that order), generates electricity at an average higher cost/kWh of US0.0547 and 0.0440 at hilltops 150 and 350m AGL, respectively. P-15-50 is deemed a more advantageous option for off-grid electrification of small and remote communities.

  16. Cascaded H-bridge multilevel inverter for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi

    2016-04-01

    In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.

  17. Regional air quality impacts of increased natural gas production and use in Texas.

    PubMed

    Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T

    2013-04-02

    Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 μg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.

  18. Designing across ages: Multi-agent-based models and learning electricity

    NASA Astrophysics Data System (ADS)

    Sengupta, Pratim

    Electricity is regarded as one of the most challenging topics for students at all levels -- middle school -- college (Cohen, Eylon, & Ganiel, 1983; Belcher & Olbert, 2003; Eylon & Ganiel, 1990; Steinberg et al., 1985). Several researchers have suggested that naive misconceptions about electricity stem from a deep incommensurability (Slotta & Chi, 2006; Chi, 2005) or incompatibility (Chi, Slotta & Leauw, 1994; Reiner, Slotta, Chi, & Resnick, 2000) between naive and expert knowledge structures. I first present an alternative theoretical framework that adopts an emergent levels-based perspective as proposed by Wilensky & Resnick (1999). From this perspective, macro-level phenomena such as electric current and resistance, as well as behavior of linear electric circuits, can be conceived of as emergent from simple, body-syntonic interactions between electrons and ions in a circuit. I argue that adopting such a perspective enables us to reconceive commonly noted misconceptions in electricity as behavioral evidences of "slippage between levels" -- i.e., these misconceptions appear when otherwise productive knowledge elements are sometimes inappropriately activated due to certain macro-level phenomenological cues only -- and, that the same knowledge elements when activated due to phenomenological cues at both micro- and macro-levels, can engender a deeper, expert-like understanding. I will then introduce NIELS (NetLogo Investigations In Electromagnetism, Sengupta & Wilensky, 2006, 2008, 2009), a low-threshold high-ceiling (LTHC) learning environment of multi-agent-based computational models that represent phenomena such as electric current and resistance, as well as the behavior of linear electric circuits, as emergent. I also present results from implementations of NIELS in 5th, 7th and 12th grade classrooms that show the following: (a) how leveraging certain "design elements" over others in NIELS models can create new phenomenological cues, which in turn can be appropriated for learners in different grades; (b) how learners' existing knowledge structures can be bootstrapped to generate deep understanding; (c) how these knowledge structures evolve as the learners progress through the implemented curriculum; (d) improvement of learners' understanding in the post-test compared to the pre-test; and (e) how NIELS students compare with a comparison group of 12th grade students who underwent traditional classroom instruction.

  19. The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

    PubMed

    Salazar, Vielka L; Krahe, Rüdiger; Lewis, John E

    2013-07-01

    Gymnotiform weakly electric fish produce an electric signal to sense their environment and communicate with conspecifics. Although the generation of such relatively large electric signals over an entire lifetime is expected to be energetically costly, supporting evidence to date is equivocal. In this article, we first provide a theoretical analysis of the energy budget underlying signal production. Our analysis suggests that wave-type and pulse-type species invest a similar fraction of metabolic resources into electric signal generation, supporting previous evidence of a trade-off between signal amplitude and frequency. We then consider a comparative and evolutionary framework in which to interpret and guide future studies. We suggest that species differences in signal generation and plasticity, when considered in an energetics context, will not only help to evaluate the role of energetic constraints in the evolution of signal diversity but also lead to important general insights into the energetics of bioelectric signal generation.

  20. Development of a portable mini-generator to safely produce nitric oxide for the treatment of infants with pulmonary hypertension.

    PubMed

    Yu, Binglan; Ferrari, Michele; Schleifer, Grigorij; Blaesi, Aron H; Wepler, Martin; Zapol, Warren M; Bloch, Donald B

    2018-05-01

    To test the safety of a novel miniaturized device that produces nitric oxide (NO) from air by pulsed electrical discharge, and to demonstrate that the generated NO can be used to vasodilate the pulmonary vasculature in rabbits with chemically-induced pulmonary hypertension. A miniature NO (mini-NO) generator was tested for its ability to produce therapeutic levels (20-80 parts per million (ppm)) of NO, while removing potentially toxic gases and metal particles. We studied healthy 6-month-old New Zealand rabbits weighing 3.4 ± 0.4 kg (mean ± SD, n = 8). Pulmonary hypertension was induced by chemically increasing right ventricular systolic pressure to 28-30 mmHg. The mini-NO generator was placed near the endotracheal tube. Production of NO was triggered by a pediatric airway flowmeter during the first 0.5 s of inspiration. In rabbits with acute pulmonary hypertension, the mini-NO generator produced sufficient NO to induce pulmonary vasodilation. Potentially toxic nitrogen dioxide (NO 2 ) and ozone (O 3 ) were removed by the Ca(OH) 2 scavenger. Metallic particles, released from the electrodes by the electric plasma, were removed by a 0.22 μm filter. While producing 40 ppm NO, the mini-NO generator was cooled by a flow of air (70 ml/min) and the external temperature of the housing did not exceed 31 °C. The mini-NO generator safely produced therapeutic levels of NO from air. The mini-NO generator is an effective and economical approach to producing NO for treating neonatal pulmonary hypertension and will increase the accessibility and therapeutic uses of life-saving NO therapy worldwide. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Identifying Electricity Capacity at Risk to Changes in Climate and Water Resources in the United States

    NASA Astrophysics Data System (ADS)

    Miara, A.; Macknick, J.; Vorosmarty, C. J.; Corsi, F.; Fekete, B. M.; Newmark, R. L.; Tidwell, V. C.; Cohen, S. M.

    2016-12-01

    Thermoelectric plants supply 85% of electricity generation in the United States. Under a warming climate, the performance of these power plants may be reduced, as thermoelectric generation is dependent upon cool ambient temperatures and sufficient water supplies at adequate temperatures. In this study, we assess the vulnerability and reliability of 1,100 operational power plants (2015) across the contiguous United States under a comprehensive set of climate scenarios (five Global Circulation Models each with four Representative Concentration Pathways). We model individual power plant capacities using the Thermoelectric Power and Thermal Pollution model (TP2M) coupled with the Water Balance Model (WBM) at a daily temporal resolution and 5x5 km spatial resolution. Together, these models calculate power plant capacity losses that account for geophysical constraints and river network dynamics. Potential losses at the single-plant level are put into a regional energy security context by assessing the collective system-level reliability at the North-American Electricity Reliability Corporation (NERC) regions. Results show that the thermoelectric sector at the national level has low vulnerability under the contemporary climate and that system-level reliability in terms of available thermoelectric resources relative to thermoelectric demand is sufficient. Under future climates scenarios, changes in water availability and warm ambient temperatures lead to constraints on operational capacity and increased vulnerability at individual power plant sites across all regions in the United States. However, there is a strong disparity in regional vulnerability trends and magnitudes that arise from each region's climate, hydrology and technology mix. Despite increases in vulnerabilities at the individual power plant level, regional energy systems may still be reliable (with no system failures) due to sufficient back-up reserve capacities.

  2. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  3. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  4. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  5. Aircraft Electric Secondary Power

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Technologies resulted to aircraft power systems and aircraft in which all secondary power is supplied electrically are discussed. A high-voltage dc power generating system for fighter aircraft, permanent magnet motors and generators for aircraft, lightweight transformers, and the installation of electric generators on turbine engines are among the topics discussed.

  6. Electricity: Today's Technologies, Tomorrow's Alternatives. Teacher's Guide.

    ERIC Educational Resources Information Center

    Electric Power Research Inst., Palo Alto, CA.

    This teaching guide is designed to help teachers develop lesson plans around nine chapters provided in the student textbook. Chapters focus on energy use, energy demand, energy supply, principles of electric power generation, today's generating options, future generating options, electricity storage and delivery, environmental concerns, and making…

  7. Smart grid technologies in local electric grids

    NASA Astrophysics Data System (ADS)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  8. Next Generation Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zilai; Gough, Charles

    The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).

  9. Apparatus for detecting alpha radiation in difficult access areas

    DOEpatents

    Steadman, Peter; MacArthur, Duncan W.

    1997-09-02

    An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.

  10. Electric power quarterly October--December 1988: Final issue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The Electric Power Quarterly (EPQ) is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA). The EPQ presents information on electric utilities at the national, division, State, company, and plant level. The information provides the following: cost, quantity, and quality of fossil fuel receipts; net generation; fuel consumption; and fuel stocks. The EPQ contains monthly data and quarterly totals for the reporting quarter. These data are published to provide meaningful, timely, objective, and accurate energy information for a wide audience, including Congress, Federal, and State agencies; industry; and the general public.more » The data presented in this report were collected and published by the EPA to fulfill its responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This edition of the EPQ contains monthly data for the fourth quarter of 1988. 10 refs., 1 fig., 15 tabs.« less

  11. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation.

    PubMed

    Zhu, Wei; Ye, Tao; Lee, Se-Jun; Cui, Haitao; Miao, Shida; Zhou, Xuan; Shuai, Danmeng; Zhang, Lijie Grace

    2017-05-25

    Carbon-based nanomaterials have shown great promise in regenerative medicine because of their unique electrical, mechanical, and biological properties; however, it is still difficult to engineer 2D pure carbon nanomaterials into a 3D scaffold while maintaining its structural integrity. In the present study, we developed novel carbon nanofibrous scaffolds by annealing electrospun mats at elevated temperature. The resultant scaffold showed a cohesive structure and excellent mechanical flexibility. The graphitic structure generated by annealing renders superior electrical conductivity to the carbon nanofibrous scaffold. By integrating the conductive scaffold with biphasic electrical stimulation, neural stem cell proliferation was promoted associating with upregulated neuronal gene expression level and increased microtubule-associated protein 2 immunofluorescence, demonstrating an improved neuronal differentiation and maturation. The findings suggest that the integration of the conducting carbon nanofibrous scaffold and electrical stimulation may pave a new avenue for neural tissue regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Electricity and generator availability in LMIC hospitals: improving access to safe surgery.

    PubMed

    Chawla, Sagar; Kurani, Shaheen; Wren, Sherry M; Stewart, Barclay; Burnham, Gilbert; Kushner, Adam; McIntyre, Thomas

    2018-03-01

    Access to reliable energy has been identified as a global priority and codified within United Nations Sustainable Goal 7 and the Electrify Africa Act of 2015. Reliable hospital access to electricity is necessary to provide safe surgical care. The current state of electrical availability in hospitals in low- and middle-income countries (LMICs) throughout the world is not well known. This study aimed to review the surgical capacity literature and document the availability of electricity and generators. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic search for surgical capacity assessments in LMICs in MEDLINE, PubMed, and World Health Organization Global Health Library was performed. Data regarding electricity and generator availability were extracted. Estimated percentages for individual countries were calculated. Of 76 articles identified, 21 reported electricity availability, totaling 528 hospitals. Continuous electricity availability at hospitals providing surgical care was 312/528 (59.1%). Generator availability was 309/427 (72.4%). Estimated continuous electricity availability ranged from 0% (Sierra Leone and Malawi) to 100% (Iran); estimated generator availability was 14% (Somalia) to 97.6% (Iran). Less than two-thirds of hospitals providing surgical care in 21 LMICs have a continuous electricity source or have an available generator. Efforts are needed to improve electricity infrastructure at hospitals to assure safe surgical care. Future research should look at the effect of energy availability on surgical care and patient outcomes and novel methods of powering surgical equipment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Spatial Acuity and Prey Detection in Weakly Electric Fish

    PubMed Central

    Babineau, David; Lewis, John E; Longtin, André

    2007-01-01

    It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study spatial acuity and small signal extraction. We show that the quality of sensory information available on the lateral body surface is highest for objects close to the fish's midbody, suggesting that spatial acuity should be highest at this location. Overall, however, this information is relatively blurry and the electrosense exhibits relatively poor acuity. Despite this apparent limitation, weakly electric fish are able to extract the minute signals generated by small prey, even in the presence of large background signals. In fact, we show that the fish's poor spatial acuity may actually enhance prey detection under some conditions. This occurs because the electric image produced by a spatially dense background is relatively “blurred” or spatially uniform. Hence, the small spatially localized prey signal “pops out” when fish motion is simulated. This shows explicitly how the back-and-forth swimming, characteristic of these fish, can be used to generate motion cues that, as in other animals, assist in the extraction of sensory information when signal-to-noise ratios are low. Our study also reveals the importance of the structure of complex electrosensory backgrounds. Whereas large-object spacing is favorable for discriminating the individual elements of a scene, small spacing can increase the fish's ability to resolve a single target object against this background. PMID:17335346

  14. Water purification by electrical discharges

    NASA Astrophysics Data System (ADS)

    Arif Malik, Muhammad; Ghaffar, Abdul; Akbar Malik, Salman

    2001-02-01

    There is a continuing need for the development of effective, cheap and environmentally friendly processes for the disinfection and degradation of organic pollutants from water. Ozonation processes are now replacing conventional chlorination processes because ozone is a stronger oxidizing agent and a more effective disinfectant without any side effects. However, the fact that the cost of ozonation processes is higher than chlorination processes is their main disadvantage. In this paper recent developments targeted to make ozonation processes cheaper by improving the efficiency of ozone generation, for example, by incorporation of catalytic packing in the ozone generator, better dispersion of ozone in water and faster conversion of dissolved ozone to free radicals are described. The synthesis of ozone in electrical discharges is discussed. Furthermore, the generation and plasma chemical reactions of several chemically active species, such as H2O2, Obullet, OHbullet, HO2bullet, O3*, N2*, e-, O2-, O-, O2+, etc, which are produced in the electrical discharges are described. Most of these species are stronger oxidizers than ozone. Therefore, water treatment by direct electrical discharges may provide a means to utilize these species in addition to ozone. Much research and development activity has been devoted to achieve these targets in the recent past. An overview of these techniques and important developments that have taken place in this area are discussed. In particular, pulsed corona discharge, dielectric barrier discharge and contact glow discharge electrolysis techniques are being studied for the purpose of cleaning water. The units based on electrical discharges in water or close to the water level are being tested at industrial-scale water treatment plants.}

  15. ¹³C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells.

    PubMed

    Luo, Shuai; Guo, Weihua; Nealson, Kenneth H; Feng, Xueyang; He, Zhen

    2016-02-12

    Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and (13)C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the (13)C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that (13)C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms.

  16. 46 CFR 111.10-3 - Two generating sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Two generating sources. 111.10-3 Section 111.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... drilling unit must have at least two electric generating sources. [CGD 94-108, 61 FR 28276, June 4, 1996] ...

  17. 46 CFR 111.10-3 - Two generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Two generating sources. 111.10-3 Section 111.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... drilling unit must have at least two electric generating sources. [CGD 94-108, 61 FR 28276, June 4, 1996] ...

  18. 46 CFR 111.10-3 - Two generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Two generating sources. 111.10-3 Section 111.10-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... drilling unit must have at least two electric generating sources. [CGD 94-108, 61 FR 28276, June 4, 1996] ...

  19. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  20. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  1. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  2. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  3. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  4. 18. VIEW OF TURBINEGENERATOR UNIT NO. 19, MANUFACTURED BY GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF TURBINE-GENERATOR UNIT NO. 19, MANUFACTURED BY GENERAL ELECTRIC IN 1959 AND RATED AT 342 MEGAWATTS; IT REMAINS IN OPERATION. THIS VIEW IS INSIDE THE GENERATING STATION OF 1959. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  5. Modeling the value of integrated U.S. and Canadian power sector expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiter, Philipp; Cole, Wesley J.; Steinberg, Daniel C.

    The U.S.-Canadian power system has evolved into a highly integrated grid. Cross-border transmission and coordination of system operations create an interconnected power system with combined imports and exports of electricity of greater than 77 TWh per year. Currently, more than 5 GW of new international transmission lines are in various stages of permitting and development. These transmission lines may enable even greater integration and coordination of the U.S. and Canadian systems, which can in turn increase the reliability and flexibility of North America's electricity grid and help address challenges associated with integrating high levels of variable renewables. Using a versionmore » of the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that incorporates Canada, this analysis quantifies the differences in the evolution of the power system under scenarios in which cross-border transmission capacity is restricted to today's levels, and scenarios in which new transmission is less restricted. These impacts are analyzed under a 'business-as-usual' reference scenario and a scenario in which deep cuts in power sector carbon dioxide emissions levels are achieved. A set of key impact metrics is analyzed, including 1) the composition of generating capacity by technology, 2) system costs, 3) wholesale electricity prices, 4) international electricity exports and imports, 5) transmission capacity, and 6) carbon dioxide emission levels. When new cross-border transmission is not allowed, the United States needs additional capacity (primarily natural gas and renewable energy) to meet domestic needs, while total Canadian capacity is lower because less capacity is needed to export to the United States. This effect is amplified under the carbon cap scenario. Impacts vary on a regional basis, largely due to the different relative sizes of the generation portfolio between countries and regions and the relative impact from cross-border electricity trade. The total impact from restricting cross-border trade on carbon emissions and average wholesale electricity prices is limited, due to the relative size of the domestic power systems and the cross-border trade volume. Lastly, cross-border transmission capacity is projected to more than double under the unrestricted transmission capacity scenarios, which exceeds the rate of projected domestic transmission capacity additions in each country.« less

  6. Modeling the value of integrated U.S. and Canadian power sector expansion

    DOE PAGES

    Beiter, Philipp; Cole, Wesley J.; Steinberg, Daniel C.

    2017-03-15

    The U.S.-Canadian power system has evolved into a highly integrated grid. Cross-border transmission and coordination of system operations create an interconnected power system with combined imports and exports of electricity of greater than 77 TWh per year. Currently, more than 5 GW of new international transmission lines are in various stages of permitting and development. These transmission lines may enable even greater integration and coordination of the U.S. and Canadian systems, which can in turn increase the reliability and flexibility of North America's electricity grid and help address challenges associated with integrating high levels of variable renewables. Using a versionmore » of the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that incorporates Canada, this analysis quantifies the differences in the evolution of the power system under scenarios in which cross-border transmission capacity is restricted to today's levels, and scenarios in which new transmission is less restricted. These impacts are analyzed under a 'business-as-usual' reference scenario and a scenario in which deep cuts in power sector carbon dioxide emissions levels are achieved. A set of key impact metrics is analyzed, including 1) the composition of generating capacity by technology, 2) system costs, 3) wholesale electricity prices, 4) international electricity exports and imports, 5) transmission capacity, and 6) carbon dioxide emission levels. When new cross-border transmission is not allowed, the United States needs additional capacity (primarily natural gas and renewable energy) to meet domestic needs, while total Canadian capacity is lower because less capacity is needed to export to the United States. This effect is amplified under the carbon cap scenario. Impacts vary on a regional basis, largely due to the different relative sizes of the generation portfolio between countries and regions and the relative impact from cross-border electricity trade. The total impact from restricting cross-border trade on carbon emissions and average wholesale electricity prices is limited, due to the relative size of the domestic power systems and the cross-border trade volume. Lastly, cross-border transmission capacity is projected to more than double under the unrestricted transmission capacity scenarios, which exceeds the rate of projected domestic transmission capacity additions in each country.« less

  7. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  8. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.

    PubMed

    Donelan, J M; Li, Q; Naing, V; Hoffer, J A; Weber, D J; Kuo, A D

    2008-02-08

    We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices.

  9. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  10. EMTP based stability analysis of space station electric power system in a test bed environment

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Kacpura, Thomas J.; Oconnor, Andrew M.

    1992-01-01

    The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD DC test bed. Wherever possible, data from the test bed is compared with the modeling results.

  11. EMTP based stability analysis of Space Station Electric Power System in a test bed environment

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Kacpura, Thomas J.; O'Connor, Andrew M.

    1992-01-01

    The Space Station Freedom Electric Power System (EPS) will convert solar energy into electric energy and distribute the same using an 'all dc', Power Management and Distribution (PMAD) System. Power conditioning devices (dc to dc converters) are needed to interconnect parts of this system operating at different nominal voltage levels. Operation of such devices could generate under damped oscillations (instability) under certain conditions. Criteria for instability are examined and verified for a single device. Suggested extension of the criteria to a system operation is examined by using the EMTP model of the PMAD dc test bed. Wherever possible, data from the test bed is compared with the modeling results.

  12. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, R.E.

    1987-06-30

    An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.

  13. Gas concentration cells for utilizing energy

    DOEpatents

    Salomon, Robert E.

    1987-01-01

    An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.

  14. Heat operated cryogenic electrical generator

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Saffren, M. M.; Elleman, D. D. (Inventor)

    1975-01-01

    An electrical generator useful for providing electrical power in deep space, is disclosed. The electrical generator utilizes the unusual hydrodynamic property exhibited by liquid helium as it is converted to and from a superfluid state to cause opposite directions of rotary motion for a rotor cell thereof. The physical motion of the rotor cell was employed to move a magnetic field provided by a charged superconductive coil mounted on the exterior of the cell. An electrical conductor was placed in surrounding proximity to the cell to interact with the moving magnetic field provided by the superconductive coil and thereby generate electrical energy. A heat control arrangement was provided for the purpose of causing the liquid helium to be partially converted to and from a superfluid state by being cooled and heated, respectively.

  15. SNAP-8 electrical generating system development program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The SNAP-8 program has developed the technology base for one class of multikilowatt dynamic space power systems. Electrical power is generated by a turbine-alternator in a mercury Rankine-cycle loop to which heat is transferred and removed by means of sodium-potassium eutectic alloy subsystems. Final system overall criteria include a five-year operating life, restartability, man rating, and deliverable power in the 90 kWe range. The basic technology was demonstrated by more than 400,000 hours of major component endurance testing and numerous startup and shutdown cycles. A test system, comprised of developed components, delivered up to 35 kWe for a period exceeding 12,000 hours. The SNAP-8 system baseline is considered to have achieved a level of technology suitable for final application development for long-term multikilowatt space missions.

  16. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  17. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  18. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? Thismore » study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.« less

  19. Distributed Generation of Electricity and its Environmental Impacts

    EPA Pesticide Factsheets

    Distributed generation refers to technologies that generate electricity at or near where it will be used. Learn about how distributed energy generation can support the delivery of clean, reliable power to additional customers.

  20. Environmental effects of interstate power trading on electricity consumption mixes.

    PubMed

    Marriott, Joe; Matthews, H Scott

    2005-11-15

    Although many studies of electricity generation use national or state average generation mix assumptions, in reality a great deal of electricity is transferred between states with very different mixes of fossil and renewable fuels, and using the average numbers could result in incorrect conclusions in these studies. We create electricity consumption profiles for each state and for key industry sectors in the U.S. based on existing state generation profiles, net state power imports, industry presence by state, and an optimization model to estimate interstate electricity trading. Using these "consumption mixes" can provide a more accurate assessment of electricity use in life-cycle analyses. We conclude that the published generation mixes for states that import power are misleading, since the power consumed in-state has a different makeup than the power that was generated. And, while most industry sectors have consumption mixes similar to the U.S. average, some of the most critical sectors of the economy--such as resource extraction and material processing sectors--are very different. This result does validate the average mix assumption made in many environmental assessments, but it is important to accurately quantify the generation methods for electricity used when doing life-cycle analyses.

  1. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Margolis, R.; Palmintier, B.

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits andmore » cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.« less

  2. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level.more » It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.« less

  3. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reasonably necessary to generate plant parasitic electricity or electricity for Federal lease operations; and (B) A reasonable amount of commercially demineralized water necessary for power plant operations or... generate plant parasitic electricity or electricity for Federal lease operations, as approved by BLM; or (C...

  4. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    NASA Technical Reports Server (NTRS)

    Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.

  5. Operationalizing clean development mechanism baselines: A case study of China's electrical sector

    NASA Astrophysics Data System (ADS)

    Steenhof, Paul A.

    The global carbon market is rapidly developing as the first commitment period of the Kyoto Protocol draws closer and Parties to the Protocol with greenhouse gas (GHG) emission reduction targets seek alternative ways to reduce their emissions. The Protocol includes the Clean Development Mechanism (CDM), a tool that encourages project-based investments to be made in developing nations that will lead to an additional reduction in emissions. Due to China's economic size and rate of growth, technological characteristics, and its reliance on coal, it contains a large proportion of the global CDM potential. As China's economy modernizes, more technologies and processes are requiring electricity and demand for this energy source is accelerating rapidly. Relatively inefficient technology to generate electricity in China thereby results in the electrical sector having substantial GHG emission reduction opportunities as related to the CDM. In order to ensure the credibility of the CDM in leading to a reduction in GHG emissions, it is important that the baseline method used in the CDM approval process is scientifically sound and accessible for both others to use and for evaluation purposes. Three different methods for assessing CDM baselines and environmental additionality are investigated in the context of China's electrical sector: a method based on a historical perspective of the electrical sector (factor decomposition), a method structured upon a current perspective (operating and build margins), and a simulation of the future (dispatch analysis). Assessing future emission levels for China's electrical sector is a very challenging task given the complexity of the system, its dynamics, and that it is heavily influenced by internal and external forces, but of the different baseline methods investigated, dispatch modelling is best suited for the Chinese context as it is able to consider the important regional and temporal dimensions of its economy and its future development. For China, the most promising options for promoting sustainable development, one of the goals of the Kyoto Protocol, appear to be tied to increasing electrical end-use and generation efficiency, particularly clean coal technology for electricity generation since coal will likely continue to be a dominant primary fuel.

  6. 20 year long term air quality trends in Israel

    NASA Astrophysics Data System (ADS)

    Luria, M.

    2017-12-01

    The Israeli air monitoring network was established in the mid 1990's with dozens of measuring sites near most populated areas. During these past 20 years the Israel economy has increased significantly. The population grew by 30%, energy consumption and power generation by more than 40% and the number of motor vehicles increased by nearly 50%. Most of the fossil energy is consumed by the electric power industry that has changed immensely during this period. Until the early 2000's the vast majority of the electricity was generated from coal and heavy oil. However, during the last ten years natural gas has gradually becomes the major source for power generation and for most of the heavy industry. In the present study we examined the impact of these economic trends on the major criteria air pollution parameters; O3, NOx, SO2 and PM10. The analyses was based on the long term trend of median value (50th percentile) and the 90th percentile. The results revealed that SO2 levels throughout the country decreased to very low levels, with the 90th percentile near the detection limit. The levels of PM10, that are relatively high compare with other global regions, did not show any trend during the 20 year period. This is consistent with the fact that most particulate matter results from long range transport of dust from the surrounding deserts. The long term trend of NOx indicates a gradual and steady increase at most measuring sites, which is consistent with the increase of fossil fuel consumption. The increase in NOx levels is most likely the cause for the significant increase in O3 levels found at most sites in a few of them to levels that are considered as an environmental hazard.

  7. A Theoretical Secure Enterprise Architecture for Multi Revenue Generating Smart Grid Sub Electric Infrastructure

    ERIC Educational Resources Information Center

    Chaudhry, Hina

    2013-01-01

    This study is a part of the smart grid initiative providing electric vehicle charging infrastructure. It is a refueling structure, an energy generating photovoltaic system and charge point electric vehicle charging station. The system will utilize advanced design and technology allowing electricity to flow from the site's normal electric service…

  8. Emissions & Generation Resource Integrated Database (eGRID), eGRID2010

    EPA Pesticide Factsheets

    The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. These environmental characteristics include air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane, and nitrous oxide; emissions rates; net generation; resource mix; and many other attributes.eGRID2010 contains the complete release of year 2007 data, as well as years 2005 and 2004 data. Excel spreadsheets, full documentation, summary data, eGRID subregion and NERC region representational maps, and GHG emission factors are included in this data set. The Archived data in eGRID2002 contain years 1996 through 2000 data.For year 2007 data, the first Microsoft Excel workbook, Plant, contains boiler, generator, and plant spreadsheets. The second Microsoft Excel workbook, Aggregation, contains aggregated data by state, electric generating company, parent company, power control area, eGRID subregion, NERC region, and U.S. total levels. The third Microsoft Excel workbook, ImportExport, contains state import-export data, as well as U.S. generation and consumption data for years 2007, 2005, and 2004. For eGRID data for years 2005 and 2004, a user friendly web application, eGRIDweb, is available to select, view, print, and export specified data.

  9. Renewable Electricity Futures for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.

    2014-04-14

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis ismore » that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.« less

  10. 75 FR 51423 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... of energy consumption for assessment of national and environmental impact, especially levels of..., fuel oil, coal, biomass, and nuclear energy used for electricity generation. The conversion factors... to change during a 25-year span covered by an environmental impact analysis completed in 2010. Table...

  11. Village power in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergey, M.

    This paper presents an overview of the electric power system in Thailand. 99% of the country is electrified, but much of this is with diesel generators which leaves high costs but a high level of service. The paper discusses renewable energy projects which have been sited in the country, and examples of hybrid systems which have been retrofit into existing diesel generator systems. Photovoltaic and hydroelectric power projects are described. Dedicated systems have been installed for water pumping and battery charging applications.

  12. Electric Power Generation Systems for Use in Space

    DTIC Science & Technology

    1960-07-20

    source of power . It is available from two sources, namely, nuclear fission and radioisotope decay. In both cases, the energy is available in...limitations on inventory size as well as spe- cific weight considerations will restrict radioisotope systems to power levels below about 1 kilowatt. It is... POWER GENERATION SYSTEMS FOR USE IN SPA TIC By Henry 0. Slone and Seymour Lieblein -y 6, "IN 13 pLewis Research Center G 0 3 1994 Nation Aeronautics

  13. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Gregory

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessarymore » to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.« less

  14. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  15. Overcoming the Adoption Barrier to Electric Flight

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Nickol, Craig L.; Jones, Frank P.; Yasky, Richard J.; Woodham, Kurt; Fell, Jared S.; Litherland, Brandon L.; Loyselle, Patricia L.; Provenza, Andrew J.; Kohlman, Lee W.; hide

    2016-01-01

    Electrically-powered aircraft can enable dramatic increases in efficiency and reliability, reduced emissions, and reduced noise as compared to today's combustion-powered aircraft. This paper describes a novel flight demonstration concept that will enable the benefits of electric propulsion, while keeping the extraordinary convenience and utility of common fuels available at today's airports. A critical gap in airborne electric propulsion research is addressed by accommodating adoption at the integrated aircraft-airport systems level, using a confluence of innovative but proven concepts and technologies in power generation and electricity storage that need to reside only on the airframe. Technical discriminators of this demonstrator concept include (1) a novel, high-efficiency power system that utilizes advanced solid oxide fuel cells originally developed for ultra-long-endurance aircraft, coupled with (2) a high-efficiency, high-power electric propulsion system selected from mature products to reduce technical risk, assembled into (3) a modern, high-performance demonstration platform to provide useful and compelling data, both for the targeted early adopters and the eventual commercial market.

  16. Impacts of demand response and renewable generation in electricity power market

    NASA Astrophysics Data System (ADS)

    Zhao, Zhechong

    This thesis presents the objective of the research which is to analyze the impacts of uncertain wind power and demand response on power systems operation and power market clearing. First, in order to effectively utilize available wind generation, it is usually given the highest priority by assigning zero or negative energy bidding prices when clearing the day-ahead electric power market. However, when congestion occurs, negative wind bidding prices would aggravate locational marginal prices (LMPs) to be negative in certain locations. A load shifting model is explored to alleviate possible congestions and enhance the utilization of wind generation, by shifting proper amount of load from peak hours to off peaks. The problem is to determine proper amount of load to be shifted, for enhancing the utilization of wind generation, alleviating transmission congestions, and making LMPs to be non-negative values. The second piece of work considered the price-based demand response (DR) program which is a mechanism for electricity consumers to dynamically manage their energy consumption in response to time-varying electricity prices. It encourages consumers to reduce their energy consumption when electricity prices are high, and thereby reduce the peak electricity demand and alleviate the pressure to power systems. However, it brings additional dynamics and new challenges on the real-time supply and demand balance. Specifically, price-sensitive DR load levels are constantly changing in response to dynamic real-time electricity prices, which will impact the economic dispatch (ED) schedule and in turn affect electricity market clearing prices. This thesis adopts two methods for examining the impacts of different DR price elasticity characteristics on the stability performance: a closed-loop iterative simulation method and a non-iterative method based on the contraction mapping theorem. This thesis also analyzes the financial stability of DR load consumers, by incorporating explicit LMP formulations and consumer payment requirements into the network-constrained unit commitment (NCUC) problem. The proposed model determines the proper amount of DR loads to be shifted from peak hours to off-peaks under ISO's direct load control, for reducing the operation cost and ensuring that consumer payments of DR loads will not deteriorate significantly after load shifting. Both MINLP and MILP models are discussed, and improved formulation strategies are presented.

  17. Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibanez, E.; Milligan, M.

    2014-04-01

    Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprintmore » under different variable generation penetrations.« less

  18. Impact of Steep-Front Short-Duration Impulse on Electric Power System Insulation. Phase 2. Laboratory Evaluation of Selected Power System Components

    DTIC Science & Technology

    1991-04-01

    SEALS - _------ OIL LEVEL STAINLESS STEEL INDICATOR EXPANSION CHAMBER MULTIPLE COMPRESSION GASKET SPRINGS CONDUCTOR RO) UPPER PORCELAIN_ OIL...GENERATED WAVEFORM) FIELD Electric (E) 40 kV/m 50 kV/m 10 kV/m STRENGTH ( FREE SPACE) Magnetic(M) 300 A/m 1000 A/m 300 A/m Rise time 20-500 ns 10 ns 10 ns...Laboratory Interaction Note IN435, 1983. 4. P. R_ Barnes, "The Axial Current Induced on an Infinitely Long, Perfectly Conducting, Circular Cylinder in Free

  19. Thermal storage for electric utilities

    NASA Technical Reports Server (NTRS)

    Swet, C. J.; Masica, W. J.

    1977-01-01

    Applications of the thermal energy storage (TES) principle (storage of sensible heat or latent heat, or heat storage in reversible chemical reactions) in power systems are evaluated. Load leveling behind the meter, load following at conventional thermal power plants, solar thermal power generation, and waste heat utilization are the principal TES applications considered. Specific TES examples discussed include: storage heaters for electric-resistance space heating, air conditioning TES in the form of chilled water or eutectic salt baths, hot water TES, and trans-seasonal storage in heated water in confined aquifers.

  20. Effects of California's Climate Policy in Facilitating CCUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, Elizabeth

    California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less

  1. Effects of California's Climate Policy in Facilitating CCUS

    DOE PAGES

    Burton, Elizabeth

    2014-12-31

    California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less

  2. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells.

    PubMed

    Lin, Hongjian; Wu, Xiao; Nelson, Chad; Miller, Curtis; Zhu, Jun

    2016-01-01

    Air-cathode microbial fuel cells (MFCs) are widely tested to recover electrical energy from waste streams containing organic matter. When high-strength wastewater, such as liquid animal manure, is used as a medium, inhibition on anode and cathode catalysts potentially impairs the effectiveness of MFC performance in power generation and pollutant removal. This study evaluated possible inhibitive effects of liquid swine manure components on MFC power generation, improved liquid manure-fed MFCs performance by pretreatment (dilution and selective adsorption), and modeled the kinetics of organic matter and nutrients removal kinetics. Parameters monitored included pH, conductivity, chemical oxygen demand (COD), volatile fatty acids (VFAs), total ammoniacal nitrogen (TAN), nitrite, nitrate, and phosphate concentrations. The removals of VFA and TAN were efficient, indicated by the short half-life times of 4.99 and 7.84 d, respectively. The mechanism for phosphate decrease was principally the salt precipitation on cathode, but the removal was incomplete after 42-d operation. MFC with an external resistor of 2.2 kΩ and fed with swine wastewater generated relatively small power (28.2 μW), energy efficiency (0.37%) and Coulombic efficiency (1.5%). Dilution of swine wastewater dramatically improved the power generation as the inhibitory effect was decreased. Zeolite and granular activated carbon were effective in the selective adsorption of ammonia or organic matter in swine wastewater, and so substantially improved the power generation, energy efficiency, and Coulombic efficiency. A smaller external resistor in the circuit was also observed to promote the organic matter degradation and thus to shorten the treatment time. Overall, air-cathode MFCs are promising for generating electrical power from livestock wastewater and meanwhile reducing the level of organic matter and nutrients.

  3. Novel non-equilibrium modelling of a DC electric arc in argon

    NASA Astrophysics Data System (ADS)

    Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.

    2016-06-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.

  4. Lunar Surface Stirling Power Systems Using Isotope Heat Sources

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2010-01-01

    For many years, NASA has used the decay of plutonium-238 (Pu-238) (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTGs), which have provided electrical power for many NASA missions. While RTGs have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency and the scarcity of plutonium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14.75 Earth days), isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 W with two GPHS modules at the beginning of life (BOL) (32% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a four-fold reduction in the number of GPHS modules. This study considers the use of americium-241 (Am-241) as a substitute for the Pu-238 in Stirling- convertor-based Radioisotope Power Systems (RPS) for power levels from tens of watts to 5 kWe. The Am-241 is used as a substitute for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about one-fifth while maintaining approximately the same system mass. In order to obtain the nominal 160 W of electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.

  5. Lunar Surface Stirling Power Systems Using Am-241

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2009-01-01

    For many years NASA has used the decay of Pu-238 (in the form of the General Purpose Heat Source (GPHS)) as a heat source for Radioisotope Thermoelectric Generators (RTG), which have provided electrical power for many NASA missions. While RTG's have an impressive reliability record for the missions in which they have been used, their relatively low thermal to electric conversion efficiency (-5% efficiency) and the scarcity of Plutoinium-238 (Pu-238) has led NASA to consider other power conversion technologies. NASA is considering returning both robotic and human missions to the lunar surface and, because of the long lunar nights (14 earth days) isotope power systems are an attractive candidate to generate electrical power. NASA is currently developing the Advanced Stirling Radioisotope Generator (ASRG) as a candidate higher efficiency power system that produces greater than 160 watts with 2 GPHS modules at the beginning of life (BOL) (-30% efficiency). The ASRG uses the same Pu-238 GPHS modules, which are used in RTG, but by coupling them to a Stirling convertor provides a 4-fold reduction in the number of GPHS modules. This study considers the use of Americium 241 (Am-241) as a substitute for the Pu-238 in Stirling convertor based Radioisotope Power Systems (RPS) for power levels from 1 O's of watts to 5 kWe. The Am-241 is used as a replacement for the Pu-238 in GPHS modules. Depending on power level, different Stirling heat input and removal systems are modeled. It was found that substituting Am-241 GPHS modules into the ASRG reduces power output by about 1/5 while maintaining approximately the same system mass. In order to obtain the nominal 160 watts electrical output of the Pu-238 ASRG requires 10 Am-241 GPHS modules. Higher power systems require changing from conductive coupling heat input and removal from the Stirling convertor to either pumped loops or heat pipes. Liquid metal pumped loops are considered as the primary heat transportation on the hot end and water pumped loop/heat pipe radiator is considered for the heat rejection side for power levels above 1 kWe.

  6. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...

  7. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  8. Inventory of Power Plants in the United States, October 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the generalmore » public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.« less

  9. Investigating the water consumption for electricity generation at Turkish power plants

    NASA Astrophysics Data System (ADS)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  10. Effects of static electric fields on growth and development of wheat aphid Sitobion aveanae (Hemiptera: Aphididae) through multiple generations.

    PubMed

    He, Juan; Cao, Zhu; Yang, Jie; Zhao, Hui-Yan; Pan, Wei-Dong

    2016-01-01

    Insects show a variety of responses to electric fields and most of them are associated with immediate effects. To investigate the long-term effects of static electric field on the wheat aphid Sitbion avenae, the insert was exposed to 4 min of a static electric field at intensities of 0, 2, 4, or 6 kV/cm. Development effects over 30 consecutive generations of the insect were studied. The results showed that the electric field could exert adverse effects on the developmental duration and total longevity of S. avenae nymphs regardless of exposure intensities or generations. The effects appeared to be more intense and fluctuated at higher electric field intensities and more insect generations. The most favorable exposure for development was 6 kV/cm for 4 min while the most detrimental electric fields were 2 kV/cm for 4 min and 4 kV/cm for 4 min. Among the treatments, the first instar duration was significantly prolonged while the adult longevities were significantly shortened in the sixth generation. The intrinsic rate of increase and net reproductive rate in the sixth generation were also the lowest among the 30 consecutive generations studied. Based on the results, the adverse effects of electric fields on insects may be used in the bio-control of pest insects in terms of pest management.

  11. Restructuring, ownership and efficiency in the electricity industry

    NASA Astrophysics Data System (ADS)

    Shanefelter, Jennifer Kaiser

    The first chapter considers improvements in productive efficiency that can result from a movement from a regulated framework to one that allows for market-based incentives for industry participants. Specifically, I look at the case of restructuring in the electricity generation industry. Using data from the electricity industry, this analysis considers the total effect of restructuring on one input to the production process, labor, as reflected in employment levels, payroll per employee and aggregate establishment payroll. Using concurrent payroll and employment data from non-utility ("merchant") and utility generators in both restructured and nonrestructured states, I estimate the effect of market liberalization, comprising both new entry and state-level legislation, on employment and payroll in this industry. I find that merchant owners of divested generation assets employ significantly fewer people, but that the payroll per employee is not significantly different from what workers at utility-owned plants are paid. As a result, the new merchant owners of these plants have significantly lower aggregate payroll expenses. Decomposing the effect into a merchant effect and a divestiture effect, I find that merchant ownership is the primary driver of these results. As documented in Chapter 1, merchant power plants have lower overall payroll costs than plants owned by utilities. Employment at merchant power plants is characterized by reduced staffing levels but higher average payroll per employee. A hypothesis set forth in that paper is that merchant generators employ fewer workers at the lower end of the wage distribution, resulting in a higher average payroll per employee. The second chapter of this paper examines whether employment at nonutility power plants, that is, those that are either divested or native merchant power plants, is skewed towards more skilled labor. This chapter also considers the extent to which the difference in employment levels is the result of a reduction in superfluous or redundant employment, as suggested by the broadening of union job titles during the 1990s. Additionally, the second chapter examines the wage trend in the industry, which is not observable using aggregate establishment payroll data. I find that in the electricity industry, after controlling for person-level characteristics, employee wages are statistically equivalent in states with a high degree of restructuring activity as in traditionally regulated states. When the person-level controls are dropped, wages are significantly higher in states with a more competitive industry structure. This supports the hypothesis that employment has been reduced disproportionately among the lower-skilled employees in the industry. Chapters 1 and 2 document the experience of labor in the electricity industry in the post-regulatory restructuring era. Chapter 1 finds evidence that employment has been reduced significantly at electricity generation plants that are owned by nonutilities ("merchants"). That chapter also finds that the nonutility average wage is higher than the utility average wage. Chapter 2 further finds that the average wage is increasing in the industry not because individual employees, adjusting for worker characteristics, are better-compensated to an equal degree, but rather because nonutility-owned plants are using employees with a different set of attributes. Chapter 3 of this analysis considers the shift in the wage distribution, identifying how different types of employees have fared under restructuring, which provides insight into which employees most benefit from restructuring in this industry. Chapters 1 and 2 hypothesize that low-skill employees in this industry were most affected by regulatory restructuring, which eroded the regulatory rents that accrued to this group in the form of employment stabilization. I graph the wage distribution in the electricity industry, breaking the data into different groups to judge how the distribution has changed for each. This yields a visual indication of the impact of changes in the industry wage distribution. Next, using the Oaxaca-Blinder technique, I decompose the wage difference of high- and low-merchant states into a piece that is explained by a shift in worker attributes plus the difference in the valuation that is placed on these attributes. I also look at between-group and within-group changes, concluding that the relative wages of higher-skill workers are increasing in excess of the wages of other workers.

  12. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.

    PubMed

    Jeswani, H K; Azapagic, A

    2016-04-01

    Even though landfilling of waste is the least favourable option in the waste management hierarchy, the majority of municipal solid waste (MSW) in many countries is still landfilled. This represents waste of valuable resources and could lead to higher environmental impacts compared to energy recovered by incineration, even if the landfill gas is recovered. Using life cycle assessment (LCA) as a tool, this paper aims to find out which of the following two options for MSW disposal is more environmentally sustainable: incineration or recovery of biogas from landfills, each producing either electricity or co-generating heat and electricity. The systems are compared on a life cycle basis for two functional units: 'disposal of 1 tonne of MSW' and 'generation of 1 kWh of electricity'. The results indicate that, if both systems are credited for their respective recovered energy and recyclable materials, energy from incineration has much lower impacts than from landfill biogas across all impact categories, except for human toxicity. The impacts of incineration co-generating heat and electricity are negative for nine out of 11 categories as the avoided impacts for the recovered energy and materials are higher than those caused by incineration. By improving the recovery rate of biogas, some impacts of landfilling, such as global warming, depletion of fossil resources, acidification and photochemical smog, would be significantly reduced. However, most impacts of the landfill gas would still be higher than the impacts of incineration, except for global warming and human toxicity. The analysis on the basis of net electricity produced shows that the LCA impacts of electricity from incineration are several times lower in comparison to the impacts of electricity from landfill biogas. Electricity from incineration has significantly lower global warming and several other impacts than electricity from coal and oil but has higher impacts than electricity from natural gas or UK grid. At the UK level, diverting all MSW currently landfilled to incineration with energy recovery would not only avoid the environmental impacts associated with landfilling but, under the current assumptions, would also meet 2.3% of UK's electricity demand and save 2-2.6 million tonnes of greenhouse gas emissions per year. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. The Production, Value, and Reduction Responsibility of Carbon Emissions through Electricity Consumption of Manufacturing Industries in South Korea and Thailand

    NASA Astrophysics Data System (ADS)

    Kitikun, Medhawin

    This dissertation provides a new method of measuring efforts by manufacturing industries to reduce their emissions by curtailing electricity consumption. Employing comprehensive firm-level data from the National Manufacture Annual Surveys of South Korea and Thailand, I construct the measure from estimates of revenue functions by industry. The data consists of firms from more than 20 industries in each year from 1982 to 2005 for Korea and from 2001 to 2008 for Thailand. With a total of more than two million observations, I estimate revenue functions for each industry and year. Here, I use three inputs: number of employees(L), fixed asset stock(K), and electricity consumption(E) and two types of functional forms to represent each industry's revenue function. Second, under market competitive condition, I find that profit maximizing firms deviated their level of electricity usage in production from the profit-maximizing level during the time period for both countries, and I develop a theoretical framework to explain this behavior. Then, I tested the theory using my empirical models. Results support the notion of a hidden environmental value expressed by firms in the form of voluntary deviations from profit-maximizing levels of input demand. The measure used is the gap between the marginal revenue product of electricity and its price. This gap should increase with income, consistent with the Environmental Kuznets Curve literature. My current model provides considerable support for this proposition. Estimates indicate, in most industries, a negative relationship between per-capita income and emissions. In the final section of the dissertation, I consider the equitable distribution of emissions reduction burden under an international agreement such as the reduction effort, Kyoto Protocol. Both developed and developing countries have to cut their emissions to a specific reduction percentage target. Domestically, I present two extreme scenarios. In the first scenario, manufacturing industries take full responsibility for emissions reductions by curtailing their use of energy without any subsidies from the government. Revenue function estimates provide measures of the differential costs imposed on different industries by emissions reductions. In the second scenario, emissions reductions are achieved by changing the mix of electricity generation technologies used by the power generation sector within the country. For the international case, I focus on the fairness of emission reduction responsibility among countries. To be fair to countries at different levels of development and with different rate of carbon emissions, I propose a new method to adjust the timing and rates of emission reductions based on a lifetime cumulative emission per capita.

  14. Biofield Physiology: A Framework for an Emerging Discipline

    PubMed Central

    Levin, Michael; McCraty, Rollin; Bat, Namuun; Ives, John A.; Lutgendorf, Susan K.; Oschman, James L.

    2015-01-01

    Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed. PMID:26665040

  15. Biofield Physiology: A Framework for an Emerging Discipline.

    PubMed

    Hammerschlag, Richard; Levin, Michael; McCraty, Rollin; Bat, Namuun; Ives, John A; Lutgendorf, Susan K; Oschman, James L

    2015-11-01

    Biofield physiology is proposed as an overarching descriptor for the electromagnetic, biophotonic, and other types of spatially-distributed fields that living systems generate and respond to as integral aspects of cellular, tissue, and whole organism self-regulation and organization. Medical physiology, cell biology, and biophysics provide the framework within which evidence for biofields, their proposed receptors, and functions is presented. As such, biofields can be viewed as affecting physiological regulatory systems in a manner that complements the more familiar molecular-based mechanisms. Examples of clinically relevant biofields are the electrical and magnetic fields generated by arrays of heart cells and neurons that are detected, respectively, as electrocardiograms (ECGs) or magnetocardiograms (MCGs) and electroencephalograms (EEGs) or magnetoencephalograms (MEGs). At a basic physiology level, electromagnetic activity of neural assemblies appears to modulate neuronal synchronization and circadian rhythmicity. Numerous nonneural electrical fields have been detected and analyzed, including those arising from patterns of resting membrane potentials that guide development and regeneration, and from slowly-varying transepithelial direct current fields that initiate cellular responses to tissue damage. Another biofield phenomenon is the coherent, ultraweak photon emissions (UPE), detected from cell cultures and from the body surface. A physiological role for biophotons is consistent with observations that fluctuations in UPE correlate with cerebral blood flow, cerebral energy metabolism, and EEG activity. Biofield receptors are reviewed in 3 categories: molecular-level receptors, charge flux sites, and endogenously generated electric or electromagnetic fields. In summary, sufficient evidence has accrued to consider biofield physiology as a viable scientific discipline. Directions for future research are proposed.

  16. Army Net Zero Prove Out. Net Zero Energy Best Practices

    DTIC Science & Technology

    2014-11-18

    energy which is then used to drive a heat engine to generate electrical power. Geothermal Power – These systems use thermal energy generated and...stored in the earth as a generating source for electricity. Several pilot installations are investigating this technology by conducting geothermal ...concentrate solar thermal energy which is then used to drive a heat engine to generate electrical power. • Geothermal Power - These systems use thermal energy

  17. Interoperability Context-Setting Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widergren, Steven E.; Hardin, Dave; Ambrosio, Ron

    2007-01-31

    As the deployment of automation technology advances, it touches upon many areas of our corporate and personal lives. A trend is emerging where systems are growing to the extent that integration is taking place with other systems to provide even greater capabilities more efficiently and effectively. GridWise™ provides a vision for this type of integration as it applies to the electric system. Imagine a time in the not too distant future when homeowners can offer the management of their electricity demand to participate in a more efficient and environmentally friendly operation of the electric power grid. They will do thismore » using technology that acts on their behalf in response to information from other components of the electric system. This technology will recognize their preferences to parameters such as comfort and the price of energy to form responses that optimize the local need to a signal that satisfies a higher-level need in the grid. For example, consider a particularly hot day with air stagnation in an area with a significant dependence on wind generation. To manage the forecasted peak electricity demand, the bulk system operator issues a critical peak price warning. Their automation systems alert electric service providers who distribute electricity from the wholesale electricity system to consumers. In response, the electric service providers use their automation systems to inform consumers of impending price increases for electricity. This information is passed to an energy management system at the premises, which acts on the homeowner’s behalf, to adjust the electricity usage of the onsite equipment (which might include generation from such sources as a fuel cell). The objective of such a system is to honor the agreement with the electricity service provider and reduce the homeowner’s bill while keeping the occupants as comfortable as possible. This will include actions such as moving the thermostat on the heating, ventilation, and air-conditioning (HVAC) unit up several degrees. The resulting load reduction becomes part of an aggregated response from the electricity service provider to the bulk system operator who is now in a better position to manage total system load with available generation. Looking across the electric system, from generating plants, to transmission substations, to the distribution system, to factories, office parks, and buildings, automation is growing, and the opportunities for unleashing new value propositions are exciting. How can we facilitate this change and do so in a way that ensures the reliability of electric resources for the wellbeing of our economy and security? The GridWise Architecture Council (GWAC) mission is to enable interoperability among the many entities that interact with the electric power system. A good definition of interoperability is, “The capability of two or more networks, systems, devices, applications, or components to exchange information between them and to use the information so exchanged.” As a step in the direction of enabling interoperability, the GWAC proposes a context-setting framework to organize concepts and terminology so that interoperability issues can be identified and debated, improvements to address issues articulated, and actions prioritized and coordinated across the electric power community.« less

  18. Percy Thomas wind generator designs

    NASA Technical Reports Server (NTRS)

    Lines, C. W.

    1973-01-01

    The technical and economic feasibilities of constructing a windpowered generator with a capacity of 2,000 to 4,000 kilowatt are considered. Possible benefits of an integrated wind generating electric energy source in an electric utility network are elaborated. Applications of a windpowered waterpump, including its use as a pumping source for hydroelectric pump storage operations, are also mentioned. It is concluded that the greatest potential of the wind generator is to generate heat directly and not conversion to electricity and then to heat.

  19. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient,more » rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.« less

  20. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Elzie Lynn

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less

Top