Science.gov

Sample records for electricity savings potentials

  1. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less

  2. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  3. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    SciTech Connect

    McNeil, MIchael; Letschert, Virginie; Shen, Bo; Sathaye, Jayant; de la Ru du Can, Stephane

    2011-01-12

    The global economy has grown rapidly over the past decade with a commensurate growth in the demand for electricity services that has increased a country's vulnerability to energy supply disruptions. Increasing need of reliable and affordable electricity supply is a challenge which is before every Asia Pacific Partnership (APP) country. Collaboration between APP members has been extremely fruitful in identifying potential efficiency upgrades and implementing clean technology in the supply side of the power sector as well established the beginnings of collaboration. However, significantly more effort needs to be focused on demand side potential in each country. Demand side management or DSM in this case is a policy measure that promotes energy efficiency as an alternative to increasing electricity supply. It uses financial or other incentives to slow demand growth on condition that the incremental cost needed is less than the cost of increasing supply. Such DSM measures provide an alternative to building power supply capacity The type of financial incentives comprise of rebates (subsidies), tax exemptions, reduced interest loans, etc. Other approaches include the utilization of a cap and trade scheme to foster energy efficiency projects by creating a market where savings are valued. Under this scheme, greenhouse gas (GHG) emissions associated with the production of electricity are capped and electricity retailers are required to meet the target partially or entirely through energy efficiency activities. Implementation of DSM projects is very much in the early stages in several of the APP countries or localized to a regional part of the country. The purpose of this project is to review the different types of DSM programs experienced by APP countries and to estimate the overall future potential for cost-effective demand-side efficiency improvements in buildings sectors in the 7 APP countries through the year 2030. Overall, the savings potential is estimated to be 1

  4. Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential and Commercial Equipment

    SciTech Connect

    Goetzler, William; Sutherland, Timothy; Reis, Callie

    2013-12-04

    This report describes the current state of motor technology and estimates opportunities for energy savings through application of more advanced technologies in a variety of residential and commercial end uses. The objectives of this report were to characterize the state and type of motor technologies used in residential and commercial appliances and equipment and to identify opportunities to reduce the energy consumption of electric motor-driven systems in the residential and commercial sectors through the use of advanced motor technologies. After analyzing the technical savings potential offered by motor upgrades and variable speed technologies, recommended actions are presented.

  5. Ideas To Save Electricity

    ERIC Educational Resources Information Center

    Gardner, John C.

    1974-01-01

    Significant energy savings can be effected through stopping obvious waste of water, electricity, and heat; purchasing equipment with the correct voltage and horsepower; equipment maintenance; and redesigning or replacing obsolete or inefficient equipment. (Author/MF)

  6. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings

    PubMed Central

    Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2015-01-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy. PMID:26132328

  7. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings

    NASA Astrophysics Data System (ADS)

    Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.

    2015-07-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.

  8. Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings.

    PubMed

    Khandelwal, Hitesh; Loonen, Roel C G M; Hensen, Jan L M; Debije, Michael G; Schenning, Albertus P H J

    2015-07-01

    Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.

  9. Saving Electricity and Demand Response

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Nobuyuki

    A lot of people lost their lives in the tremendous earthquake in Tohoku region on March 11. A large capacity of electric power plants in TEPCO area was also damaged and large scale power shortage in this summer is predicted. In this situation, electricity customers are making great effort to save electricity to avoid planned outage. Customers take actions not only by their selves but also by some customers' cooperative movements. All actions taken actually are based on responses to request form the government or voluntary decision. On the other hand, demand response based on a financial stimulus is not observed as an actual behavior. Saving electricity by this demand response only discussed in the newspapers. In this commentary, the events regarding electricity-saving measure after this disaster are described and the discussions on demand response, especially a raise in power rate, are put into shapes in the context of this electricity supply-demand gap.

  10. Electric energy savings from new technologies

    SciTech Connect

    Moe, R.J.; Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.; Imhoff, K.L.; Fisher, Z.J.

    1986-01-01

    Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for ten technologies were prepared. The total projected annual savings for the year 2000 for all ten technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In the Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Thus, the savings projected here represent between 4% and 14% of total consumption projected for 2000. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference forecast, reducing projected electricity consumption from what it otherwise would have been, the savings estimated here should not be directly subtracted from the reference forecast.

  11. Defining a Standard Metric for Electricity Savings

    SciTech Connect

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

  12. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    NASA Technical Reports Server (NTRS)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  13. Investigating Energy-Saving Potentials in the Cloud

    PubMed Central

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  14. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  15. Energy Savings Potential of Radiative Cooling Technologies

    SciTech Connect

    Fernandez, Nicholas; Wang, Weimin; Alvine, Kyle J.; Katipamula, Srinivas

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  16. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    SciTech Connect

    Webber, Carrie A.; Brown, Richard E.

    1998-06-19

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  17. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    SciTech Connect

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09

    Customer-sited photovoltaic (PV) systems in the United States are often compensated at the customer’s underlying retail electricity rate through net metering. Calculations of the customer economics of PV, meanwhile, often assume that retail rate structures and PV compensation mechanisms will not change and that retail electricity prices will increase (or remain constant) over time, thereby also increasing (or keeping constant) the value of bill savings from PV. Given the multitude of potential changes to retail rates and PV compensation mechanisms in the future, however, understanding how such changes might impact the value of bill savings from PV is critical for policymakers, regulators, utilities, the solar industry, and potential PV owners, i.e., any stakeholder interested in understanding uncertainties in and potential changes to the long-term customer economics of PV. This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV.

  18. Potential cost savings with terrestrial rabies control

    PubMed Central

    Recuenco, Sergio; Cherry, Bryan; Eidson, Millicent

    2007-01-01

    Background The cost-benefit of raccoon rabies control strategies such as oral rabies vaccination (ORV) are under evaluation. As an initial quantification of the potential cost savings for a control program, the collection of selected rabies cost data was pilot tested for five counties in New York State (NYS) in a three-year period. Methods Rabies costs reported to NYS from the study counties were computerized and linked to a human rabies exposure database. Consolidated costs by county and year were averaged and compared. Results Reported rabies-associated costs for all rabies variants totalled $2.1 million, for human rabies postexposure prophylaxes (PEP) (90.9%), animal specimen preparation/shipment to laboratory (4.7%), and pet vaccination clinics (4.4%). The proportion that may be attributed to raccoon rabies control was 37% ($784,529). Average costs associated with the raccoon variant varied across counties from $440 to $1,885 per PEP, $14 to $44 per specimen, and $0.33 to $15 per pet vaccinated. Conclusion Rabies costs vary widely by county in New York State, and were associated with human population size and methods used by counties to estimate costs. Rabies cost variability must be considered in developing estimates of possible ORV-related cost savings. Costs of PEPs and specimen preparation/shipments, as well as the costs of pet vaccination provided by this study may be valuable for development of more realistic scenarios in economic modelling of ORV costs versus benefits. PMID:17407559

  19. Ecology: Electrical Cable Bacteria Save Marine Life.

    PubMed

    Nielsen, Lars Peter

    2016-01-11

    Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide.

  20. Electric energy saving two position combination switching device

    SciTech Connect

    Andrews, P.

    1985-10-22

    In one form of the present preferred embodiment of the present invention it relates to a two-position feed-thru electric line cord piercing switching combination, of the rotary and even the rocker type, which saves electric energy by use of a half-wave diode rectifying means. The electric energy saving, two-position, combination switching means having only two electrical passing switching positions and thereby having no electrical ''off'' position. The switch will alternatingly provide either an electrical half-wave ''dim'' or an electrical full-wave ''on'' illumination to a single filament lamp, string of Christmas tree lamps and the like, and will even provide eight separate combinations, of one OFF abd three separate illuminations, when electrically connected ahead of a, for example, conventional LEVITON rotary 4-position lamp socket switching means which uses a conventional 3-way incandescent lamp member which is removable inserted into the lamp socket portion thereof. MICRO, CHERRY, toggle, rocker, push-button and the like, line cord non-piercing two-position switches may be used in other forms of the combination switching device or invention. The half-wave diode rectifying means is electrically connected shuntingly between and/or across substantially to two electrical contact members of the conductor wire-piercing and the wire non-piercing type of switching means. This construction results in automatic elimination of the electrical ''off'' position for generally any type 2 2-position ''off'' and ''on'' switching means.

  1. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    SciTech Connect

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  2. Data Network Equipment Energy Use and Savings Potential in Buildings

    SciTech Connect

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  3. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  4. Electricity savings from residential appliance standards in Sweden

    SciTech Connect

    Turiel, I.; Lebot, B.

    1993-04-01

    This paper discusses the energy savings that could be obtained in Sweden by instituting specific standards for five appliances: Refrigerators, freezers, dishwashers, clothes washers, and clothes dryers. At the present time, Sweden has no minimum energy efficiency standards for residential appliances. This paper discusses the energy savings that could be obtained by instituting specific standards for five product types (refrigerators, freezers, dishwashers, clothes washers, and dryers) starting in 1995. A methodology similar to that used in analyses for the European Community was employed in this study. In the Swedish study, we used appliance test data developed by the Swedish consumer agency, Konsument Verket, to estimate new unit energy consumption for each product type. Shipments, saturations, energy use, and demographic data were input to a spreadsheet model that sums energy consumption for each product type over the period 1990--2010. Both a base case and a standards case scenario are simulated for each of the five appliance types. It was found that electricity use for these five products can be reduced by 12% over the time period from 1990--2010. Most of the energy savings come from instituting efficiency standards for refrigerators and freezers. For each product class type, the impact on manufacturer offerings is discussed. For example, for simple refrigerators, eleven 1990 models meet the 1995 standard and six models meet the 2000 standard out of a total of 63 models.

  5. Electric potential and electric field imaging

    NASA Astrophysics Data System (ADS)

    Generazio, E. R.

    2017-02-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for "illuminating" volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e-Sensor enhancements (ephemeral e-Sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  6. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  7. Energy savings potential in air conditioners and chiller systems

    DOE PAGES

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  8. Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas

    SciTech Connect

    Konopacki, S.; Akbari, H.; Pomerantz, M.; Gabersek, S.; Gartland, L.

    1997-05-01

    Light-colored roofs reflect more sunlight than dark roofs, thus they keep buildings cooler and reduce air-conditioning demand. Typical roofs in the United States are dark, which creates a potential for savings energy and money by changing to reflective roofs. In this report, the authors make quantitative estimates of the impact of roof color by simulating prototypical buildings with light- and dark-colored roofs and calculating savings by taking the differences in annual cooling and heating energy use, and peak electricity demand. Monetary savings are calculated using local utility rates. Savings are estimated for 11 U.S. Metropolitan Statistical Areas (MSAs) in a variety of climates.

  9. Potential Energy Cost Savings from Increased Commercial Energy Code Compliance

    SciTech Connect

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Cohan, David F.

    2016-08-22

    An important question for commercial energy code compliance is: “How much energy cost savings can better compliance achieve?” This question is in sharp contrast to prior efforts that used a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. A field investigation method is being developed that goes beyond the binary approach to determine how much energy cost savings is not realized. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance for newly constructed office buildings in climate zone 4C. Field data collected from actual buildings on specific conditions relative to code requirements was then applied to the simulation results to find the potential lost energy savings for a single building or for a sample of buildings. This new methodology was tested on nine office buildings in climate zone 4C. The amount of additional energy cost savings they could have achieved had they complied fully with the 2012 International Energy Conservation Code is determined. This paper will present the results of the test, lessons learned, describe follow-on research that is needed to verify that the methodology is both accurate and practical, and discuss the benefits that might accrue if the method were widely adopted.

  10. Estimating customer electricity savings from projects installed by the U.S. ESCO industry

    SciTech Connect

    Carvallo, Juan Pablo; Larsen, Peter H.; Goldman, Charles A.

    2014-11-25

    The U.S. energy service company (ESCO) industry has a well-established track record of delivering substantial energy and dollar savings in the public and institutional facilities sector, typically through the use of energy savings performance contracts (ESPC) (Larsen et al. 2012; Goldman et al. 2005; Hopper et al. 2005, Stuart et al. 2013). This ~$6.4 billion industry, which is expected to grow significantly over the next five years, may play an important role in achieving demand-side energy efficiency under local/state/federal environmental policy goals. To date, there has been little or no research in the public domain to estimate electricity savings for the entire U.S. ESCO industry. Estimating these savings levels is a foundational step in order to determine total avoided greenhouse gas (GHG) emissions from demand-side energy efficiency measures installed by U.S. ESCOs. We introduce a method to estimate the total amount of electricity saved by projects implemented by the U.S. ESCO industry using the Lawrence Berkeley National Laboratory (LBNL) /National Association of Energy Service Companies (NAESCO) database of projects and LBNL’s biennial industry survey. We report two metrics: incremental electricity savings and savings from ESCO projects that are active in a given year (e.g., 2012). Overall, we estimate that in 2012 active U.S. ESCO industry projects generated about 34 TWh of electricity savings—15 TWh of these electricity savings were for MUSH market customers who did not rely on utility customer-funded energy efficiency programs (see Figure 1). This analysis shows that almost two-thirds of 2012 electricity savings in municipal, local and state government facilities, universities/colleges, K-12 schools, and healthcare facilities (i.e., the so-called “MUSH” market) were not supported by a utility customer-funded energy efficiency program.

  11. An Investigation on the Energy Saving Potential of Electromagnetic Ballast Fluorescent Lamps

    NASA Astrophysics Data System (ADS)

    Cheong, Z. X.; Barsoum, N. N.

    2009-08-01

    Energy saving issue is a matter of great concern for industry and electrical utilities. Energy saving from fluorescent lamp system can be achieved by means of optimizing lighting level, reducing power consumption and improving the efficiency of fluorescent lamps. This paper presents an alternative energy saving control method for electromagnetic ballast fluorescent lamps. Non-linearity characteristics of fluorescent lamps and the effect of energy saving controller are taken into account in the proposed energy saving controller. The proposed energy saving controller provides energy saving feature and dimmable illuminance level control for electromagnetic ballast fluorescent lamps. In comparison to electronic ballast, integration of an energy saving controller with electromagnetic ballast results in less power consumption, less green house gas emission and longer lifespan at a much lower installation cost. Experiment results based on the proposed controller showed that 37.5% energy can be saved by reducing 15% of the AC line voltage.

  12. Advertising energy saving programs: The potential environmental cost of emphasizing monetary savings.

    PubMed

    Schwartz, Daniel; Bruine de Bruin, Wändi; Fischhoff, Baruch; Lave, Lester

    2015-06-01

    Many consumers have monetary or environmental motivations for saving energy. Indeed, saving energy produces both monetary benefits, by reducing energy bills, and environmental benefits, by reducing carbon footprints. We examined how consumers' willingness and reasons to enroll in energy-savings programs are affected by whether advertisements emphasize monetary benefits, environmental benefits, or both. From a normative perspective, having 2 noteworthy kinds of benefit should not decrease a program's attractiveness. In contrast, psychological research suggests that adding external incentives to an intrinsically motivating task may backfire. To date, however, it remains unclear whether this is the case when both extrinsic and intrinsic motivations are inherent to the task, as with energy savings, and whether removing explicit mention of extrinsic motivation will reduce its importance. We found that emphasizing a program's monetary benefits reduced participants' willingness to enroll. In addition, participants' explanations about enrollment revealed less attention to environmental concerns when programs emphasized monetary savings, even when environmental savings were also emphasized. We found equal attention to monetary motivations in all conditions, revealing an asymmetric attention to monetary and environmental motives. These results also provide practical guidance regarding the positioning of energy-saving programs: emphasize intrinsic benefits; the extrinsic ones may speak for themselves.

  13. Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers

    SciTech Connect

    Webber, Carrie; Korn, David; Sanchez, Marla

    2007-02-28

    External power adapters may lose 10 to 70 percent of theenergy they consume, dissipated as heat rather than converted into usefulenergy. Battery charging systems have more avenues for losses: inaddition to power conversion losses, power is consumed by the chargingcircuitry, and additional power may be needed after the battery is fullcharged to balance self-discharge. In 2005, the Environmental ProtectionAgency launched a new ENERGY STAR(R) label for external power supplies(EPSs) that convert line-voltage AC electricity into low-voltage DCelectricity for certain electronic devices. The specification includedpower supplies for products with battery charging functions (e.g. laptopsand cell phones), but excluded others. In January 2006, a separatespecification was issued for battery charging systems contained primarilyin small household appliances and power tools. In addition to the ENERGYSTAR(R) label, the state of California will implement minimum energyperformance standards for EPSs in 2007, and similar standards for EPSsand battery chargers are in development at the national level.Many of theproducts covered by these policies use relatively little power and havemodest per-unit savings potential compared to conventional energyefficiency targets. But with an estimated 1.5 billion adapters and 230million battery charging systems in use in the United States, theaggregate savings potential is quite high. This paper presents estimatesof the savings potential for external power adapters and battery chargingsystems through 2025.

  14. A simple tool for estimating city-wide annual electrical energy savings from cooler surfaces

    SciTech Connect

    Pomerantz, Melvin; Rosado, Pablo J.; Levinson, Ronnen

    2015-12-01

    We present a simple method to estimate the maximum possible electrical energy saving that might be achieved by increasing the albedo of surfaces in a large city. We restrict this to the “indirect effect”, the cooling of outside air that lessens the demand for air conditioning (AC). Given the power demand of the electric utilities and data about the city, we can use a single linear equation to estimate the maximum savings. For example, the result for an albedo change of 0.2 of pavements in a typical warm city in California, such as Sacramento, is that the saving is less than about 2 kWh per m2 per year. This may help decision makers choose which heat island mitigation techniques are economical from an energy-saving perspective.

  15. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  16. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  17. Potential for wind-generated electricity in China.

    PubMed

    McElroy, Michael B; Lu, Xi; Nielsen, Chris P; Wang, Yuxuan

    2009-09-11

    Wind offers an important alternative to coal as a source of energy for generation of electricity in China with the potential for substantial savings in carbon dioxide emissions. Wind fields derived from assimilated meteorological data are used to assess the potential for wind-generated electricity in China subject to the existing government-approved bidding process for new wind farms. Assuming a guaranteed price of 0.516 RMB (7.6 U.S. cents) per kilowatt-hour for delivery of electricity to the grid over an agreed initial average period of 10 years, it is concluded that wind could accommodate all of the demand for electricity projected for 2030, about twice current consumption. Electricity available at a concession price as low as 0.4 RMB per kilowatt-hour would be sufficient to displace 23% of electricity generated from coal.

  18. Analysis on factors affecting household customers decision in using electricity at peak time and its correlation towards saving electricity

    NASA Astrophysics Data System (ADS)

    Pasasa, Linus; Marbun, Parlin; Mariza, Ita

    2015-09-01

    The purpose of this paper is to study and analyse the factors affecting customer decisions in using electricity at peak-load hours (between 17.00 to 22.00 WIB) and their behaviors towards electricity conservation in Indonesian household. The underlying rationale is to influence a reduction in energy consumption by stimulating energy saving behaviors, thereby reducing the impact of energy use on the environment. How is the correlation between the decisions in using electricity during peak load hours with the household customer's behavior towards saving electricity? The primary data is obtained by distributing questionnaires to customers of PT. PLN Jakarta Raya and Tangerang Distribution from Household segment. The data is analysed using the Structural Equation Model (SEM) and AMOS Software. The research is finding that all factors (Personal, Social, PLN Services, Psychological, and Cultural) are positively influence customer decision in using electricity at peak load hours. There is a correlation between the decisions in using electricity during peak load hours with the household customer's behavior towards saving electricity.

  19. Electrical Monitoring Devices Save on Time and Cost

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In order to protect the Solar Dynamics Observatory's instruments from blowing their fuses and being rendered unusable, Goddard Space Flight Center worked with Micropac Industries Inc., based in Garland, Texas, to develop solid-state power controllers, which can depower and then resupply power to an instrument in the event of an electric surge. The company is now selling the technology for use in industrial plants.

  20. Electrical potentials in stomatal complexes

    SciTech Connect

    Saftner, R.A.; Raschke, K.

    1981-06-01

    Guard cells of several species, but predominantly Commelina communis, were impaled by micropipette electrodes and potential differences measured that occurred between cell compartments and the flowing bathing medium. The wall developed a Donnan potential that was between -60 and -70 millivolt in 30 millimolar KC1 at pH 7. The density of the fixed charges ranged from 0.3 to 0.5 molar; its dependence on pH was almost identical with the titration curve of authentic polygalacturonic acid. The vacuolar potential of guard cells of Commelina communis L., Zea mays L., Nicotiana glauca Graham, Allium cepa L., and Vicia faba L. was between -40 and -50 millivolt in 30 millimolar KCl when stomata were open and about -30 millivolt when stomata were closed. The vacuolar potential of guard cells of C. communis was almost linearly related to stomatal aperture and responded to changes in the ionic strength in the bathing medium in a Nernstian manner. No specificity for any alkali ion (except Li/sup +/), ammonium, or choline appeared. Lithium caused hyperpolarization. Calcium in concentrations between 1 and 100 millimolar in the medium led to stomatal closure, also caused hyperpolarization, and triggered transient oscillations in the intracellular potential. Gradients in the electrical potential existed across stomatal complexes with open pores. When stomata closed, these gradients almost disappeared or slightly reverted; all epidermal cells were then at potentials near -30 millivolt in 30 millimolar KCl.

  1. Improving air-conditioning and saving electricity in the spinning industry

    SciTech Connect

    Chirarattananon, S.; Liu Bing; Quoc, N.H.; Wei, T.

    1996-09-01

    In the tropics, air-conditioning is used in the spinning industry to maintain the relative humidity and the air temperature in the factory at a required level. Most of the air is recycled for most of the year. This article reports on a study in a number of factories that use varying proportions of recycled air. The study concludes that, for most of the year, fresh air should be used to reduce the cooling requirement, which would help reduce electricity use in the chillers by up to 40%, or up to 6% of the factory total. A physical model of a factory and its air-conditioning system is constructed to test the concept, as well as to develop a workable control system. The control algorithm uses a simple proportional control for the air damper, which affects the relative humidity, and an on-off control for the chilled water supply to control the temperature. The results show an improvement in the control of the condition of the air in the factory, and confirm the expected potential for saving electricity.

  2. Water savings potentials of irrigation systems: dynamic global simulation

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (< 30%) in South Asia and Sub-Saharan Africa and highest values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of

  3. Estimates of Potential Savings by Retiring Two Aircraft Carriers Early

    DTIC Science & Technology

    1989-01-01

    statement) that you have displayed. A wide range of estimate*: can be calculated for the early retirement proposal, as you have said, Mr. Chairman...way implies, as the DOD witnesses suggested, that they agree with the proposal for an early retirement . This case assumes that there would be no indirect cost savings, such as shore base support associated with the retirement.

  4. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  5. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes

    PubMed Central

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting. PMID:26904062

  6. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes.

    PubMed

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting.

  7. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing

    2011-04-01

    China has implemented a series of minimum energy performance standards (MEPS) for over 30 appliances, voluntary energy efficiency label for 40 products and a mandatory energy information label that covers 19 products to date. However, the impact of these programs and their savings potential has not been evaluated on a consistent basis. This paper uses modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, under development or those proposed for development in 2010 under three scenarios that differ in the pace and stringency of MEPS development. In addition to a baseline 'Frozen Efficiency' scenario at 2009 MEPS level, the 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice efficiency in broad commercial use today in 2014. This paper concludes that under 'CIS', cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions of energy used for all 37 products would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction of energy used for 11 appliances would be 35% lower.

  8. Cooling energy savings potential of light-colored roofs for residential and commercial buildings in 11 US metropolitan areas

    SciTech Connect

    Konopacki, S.; Akbari, H.; Gartland, L.

    1997-05-01

    The U.S. Environmental Protection Agency (EPA) sponsored this project to estimate potential energy and monetary savings resulting from the implementation of light-colored roofs on residential and commercial buildings in major U.S. metropolitan areas. Light-colored roofs reflect more sunlight than dark roofs, so they keep buildings cooler and reduce air-conditioning demand. Typically, rooftops in the United States are dark, and thus there is a potential for saving energy and money by changing to reflective roofs. Naturally, the expected savings are higher in southern, sunny, and cloudless climates. In this study, we make quantitative estimates of reduction in peak power demand and annual cooling electricity use that would result from increasing the reflectivity of the roofs. Since light-colored roofs also reflect heat in the winter, the estimates of annual electricity savings are a net value corrected for the increased wintertime energy use. Savings estimates only include direct reduction in building energy use and do not account for the indirect benefit that would also occur from the reduction in ambient temperature, i.e. a reduction in the heat island effect. This analysis is based on simulations of building energy use, using the DOE-2 building energy simulation program. Our methodology starts with specifying 11 prototypical buildings: single-family residential (old and new), office (old and new), retail store (old and new), school (primary and secondary), health (hospital and nursing home), and grocery store. Most prototypes are simulated with two heating systems: gas furnace and heat pumps. We then perform DOE-2 simulations of the prototypical buildings, with light and dark roofs, in a variety of climates and obtain estimates of the energy use for air conditioning and heating.

  9. Development of an Energy-Savings Calculation Methodology for Residential Miscellaneous Electric Loads: Preprint

    SciTech Connect

    Hendron, R.; Eastment, M.

    2006-08-01

    In order to meet whole-house energy savings targets beyond 50% in residential buildings, it will be essential that new technologies and systems approaches be developed to address miscellaneous electric loads (MELs). These MELs are comprised of the small and diverse collection of energy-consuming devices found in homes, including what are commonly known as plug loads (televisions, stereos, microwaves), along with all hard-wired loads that do not fit into other major end-use categories (doorbells, security systems, garage door openers). MELs present special challenges because their purchase and operation are largely under the control of the occupants. If no steps are taken to address MELs, they can constitute 40-50% of the remaining source energy use in homes that achieve 60-70% whole-house energy savings, and this percentage is likely to increase in the future as home electronics become even more sophisticated and their use becomes more widespread. Building America (BA), a U.S. Department of Energy research program that targets 50% energy savings by 2015 and 90% savings by 2025, has begun to identify and develop advanced solutions that can reduce MELs.

  10. Potential water saving through changes in European diets.

    PubMed

    Vanham, D; Hoekstra, A Y; Bidoglio, G

    2013-11-01

    This study quantifies the water footprint of consumption (WFcons) regarding agricultural products for three diets - the current diet (REF), a healthy diet (HEALTHY) and a vegetarian diet (VEG) - for the four EU zones WEST, NORTH, SOUTH and EAST. The WFcons related to the consumption of agricultural products (4265l per capita per day or lcd) accounts for 89% of the EU's total WFcons (4815lcd). The effect of diet has therefore an essential impact on the total WFcons. The current zonal WFcons regarding agricultural products is: 5875lcd (SOUTH), 4053lcd (EAST), 3761lcd (WEST) and 3197lcd (NORTH). These differences are the result of different consumption behaviours as well as different agricultural production methods and conditions. From the perspective of a healthy diet based on regional dietary guidelines, the intake of several product groups (sugar, crop oils, animal fats and meat) should be decreased and increased for others (vegetables, fruit). The WFcons regarding agricultural products for the alternative diets are the following: HEALTHY 4110lcd (-30%) and VEG 3476lcd (-41%) for SOUTH; HEALTHY 3606lcd (-11%) and VEG 2956lcd (-27%) for EAST; HEALTHY 2766lcd (-26%) and VEG 2208lcd (-41%) for WEST; HEALTHY 3091lcd (-3%) and VEG 2166lcd (-32%) for NORTH. Both the healthy and vegetarian diets thus result - consistent for all zones - in substantial WFcons reductions. The largest reduction takes place for the vegetarian diet. Indeed, a lot of water can be saved by EU citizens by a change in their diet.

  11. Fuel saving potential of Mach 0.8 twin engine prop-fan transports

    NASA Technical Reports Server (NTRS)

    Davenport, F. J.

    1978-01-01

    The fuel saving and economic potentials of the prop-fan high-speed propeller concept have been evaluated for twin-engine commercial transport airplanes designed for 3333.6 km range, 180 passengers, and Mach 0.8 cruise. A fuel saving of 9.7% at the design range was estimated for a prop-fan aircraft having wing-mounted engines, while a 5.8% saving was estimated for a design having the engines mounted on the aft body. The fuel savings and cost were found to be sensitive to the propeller noise level and to aerodynamic drag effects due to wing-slipstream interaction. Uncertainties in these effects could change the fuel savings as much as plus or minus 50%. A modest improvement in direct operating cost was estimated for the wing-mounted prop-fan at current fuel prices.

  12. Planes, Trains, and Automobiles: Savings Potential of Utilizing Multi-Modal Transport for Depositioning Cargo in the CONUS

    DTIC Science & Technology

    2012-06-01

    Planes, Trains, and Automobiles : Savings Potential of Utilizing Multi-Modal Transport for...AFIT/IMO/ENS/12-07 Planes, Trains, and Automobiles : Savings Potential of Utilizing Multi-Modal Transport for Depositioning Cargo in the CONUS...Planes, Trains, and Automobiles : Savings Potential of Utilizing Multi-Modal Transport for Depositioning Cargo in the CONUS Timothy M

  13. A multisector analysis of urban irrigation and water savings potential

    NASA Astrophysics Data System (ADS)

    Bijoor, N.; Kim, H.; Famiglietti, J. S.

    2014-12-01

    Urban irrigation strains limited water supplies in semi-arid areas such as Orange County, CA, yet the quantity and controlling factors of urban irrigation are not well understood. The goals of this research are to (1) quantify and compare landscape irrigation applied by residential and commercial sectors in various retail agencies at a parcel scale (2) determine over- and under-irrigation compared to theoretical need (3) determine the climatic and socioeconomic controls on landscape irrigation. A research partnership was established between six water retail agencies in Orange County, CA representing a wide range of climatic and economic conditions. These agencies contributed between 3 and 13 years of water use data on a monthly/bimonthly basis. Irrigation depth (mm) was estimated using the "minimum month method," and landscape evapotranspiration was calculated using the Hargreaves equation for 122,345 parcels. Multiple regressions of water use were conducted with climatic and socioeconomic variables as possible explanatory variables. Single family residences accounted for the majority of urban water use. Findings from 112,192 single family residences (SFRs) show that total and indoor water use declined, though irrigation did not significantly change. Average irrigation for SFRs was 94 L/day, and a large proportion (42%) of irrigation was applied in excess to landscapes. Air temperature was found to be the primary driver of irrigation. We mapped over-irrigation relative to plant water demand to highlight areas that can be targeted for water conservation efforts. We also show the water savings that would be gained by improving the efficiency of irrigation systems. The information gained in this study would be useful for developing water use efficiency policies and/or educational programs to promote sustainable irrigation practices at the individual parcel scale.

  14. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  15. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect

    Zhou, Nan; Fridley, David; McNeill, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing; Saheb, Yamina

    2010-06-07

    China is now the world's largest producer and consumer of household appliances and commercial equipment. To address the growth of electricity use of the appliances, China has implemented a series of minimum energy performance standards (MEPS) for 30 appliances, and voluntary energy efficiency label for 40 products. Further, in 2005, China started a mandatory energy information label that covers 19 products to date. However, the impact of these standard and labeling programs and their savings potential has not been evaluated on a consistent basis. This research involved modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, or under development and those proposed for development in 2010. Two scenarios that have been developed differ primarily in the pace and stringency of MEPS development. The 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step considering the technical limitation of the technology. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice MEPS in 2014. This paper concludes that under the 'CIS' of regularly scheduled MEPS revisions to 2030, cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction would be 35% lower than in the frozen scenario.

  16. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE PAGES

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; ...

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  17. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    SciTech Connect

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance were combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.

  18. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  19. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    SciTech Connect

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  20. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    SciTech Connect

    Garbesi, Karina; Desroches, Louis-Benoit; Bolduc, Christopher; Burch, Gabriel; Hosseinzadeh, Griffin; Saltiel, Seth

    2011-05-06

    This study surveyed the technical potential for efficiency improvements in 150 categories of appliances and equipment representing 33 quads of primary energy use across the US economy in 2010 and (1) documented efficient product designs, (2) identified the most promising cross-cutting strategies, and (3) ranked national energy savings potential by end use. Savings were estimated using a method modeled after US Department of Energy priority-setting reports - simplified versions of the full technical and economic analyses performed for rulemakings. This study demonstrates that large savings are possible by replacing products at the end-of-life with ultra-efficient models that use existing technology. Replacing the 50 top energy-saving end-uses (constituting 30 quads of primary energy consumption in 2010) with today's best-on-market equivalents would save {approx}200 quads of US primary energy over 30 years (25% of consumption anticipated there from). For the 29 products for maximum feasible savings potential could be estimated, the savings were twice as high. These results demonstrate that pushing ultra-efficient products to market could significantly escalate carbon emission reductions and is a viable strategy for sustaining large emissions reductions through standards. The results of this analysis were used by DOE for new coverage prioritization, to identify key opportunities for product prototyping and market development, and will leverage future standards rulemakings by identifying the full scope of maximum feasible technology options. High leverage products include advances lighting systems, HVAC, and televisions. High leverage technologies include electronic lighting, heat pumps, variable speed motors, and a host of controls-related technologies.

  1. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    NASA Astrophysics Data System (ADS)

    Darghouth, Naim Richard

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing

  2. The costs and potential savings of telemedicine for acute care neonatal consultation: preliminary findings.

    PubMed

    Armfield, Nigel R; Donovan, Tim; Bensink, Mark E; Smith, Anthony C

    2012-12-01

    Telemedicine was used as a substitute for the telephone (usual care) for some acute care consultations from nurseries at four peripheral hospitals in Queensland. Over a 12-month study period, there were 19 cases of neonatal teleconsultation. Five (26%) cases of avoided infant transport were confirmed by independent assessment, four of which were avoided helicopter retrievals. We conducted two analyses. In the first, the actual costs of providing telemedicine at the study sites were compared with the actual savings associated with confirmed avoided infant transport and nursery costs. There was a net saving to the health system of 54,400 Australian Dollars (AUD) associated with the use of telemedicine over the 12-month period. In the second analysis, we estimated the potential savings that might have been achieved if telemedicine had been used for all retrieval consultations from the study sites. The total projected costs were AUD 64,969 while the projected savings were AUD 271,042, i.e. a projected net saving to the health system of AUD 206,073 through the use of telemedicine. A sensitivity analysis suggested that the threshold proportion of retrievals needed to generate telemedicine-related savings under the study conditions was 5%. The findings suggest that from the health-service perspective, the use of telemedicine for acute care neonatal consultation has substantial economic benefits.

  3. Corning Inc.: Proposed Changes at Glass Plant Indicate $26 Million in Potential Savings

    SciTech Connect

    2004-01-01

    In 2000, the Corning glass plant in Greenville, Ohio, consumed almost 114 million kWh of electricity and nearly 308,000 MMBtu of natural gas in its glassmaking processes for a total cost of approximately $6.4 million. A plant-wide assessment indicated that improvement projects could save nearly $26 million and reduce natural gas use by 122,900 MMBtu per year, reduce electrical use by 72,300,000 kWh per year, and reduce CO2 emissions by 180 million pounds per year.

  4. Electric Potential and Electric Field Imaging with Applications

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  5. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  6. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    Retail stores are commercial buildings with high energy consumption due to their typically large volumes and long hours of operation. This dissertation assesses heating, ventilating and air conditioning saving strategies based on energy simulations with input parameters from actual retail buildings. The dissertation hypothesis is that "Retail store buildings will save a significant amount of energy by (1) modifying ventilation rates, and/or (2) resetting set point temperatures. These strategies have shown to be beneficial in previous studies. As presented in the literature review, potential energy savings ranged from 0.5% to 30% without compromising indoor thermal comfort and indoor air quality. The retail store buildings can be ventilated at rates significantly lower than rates called for in the ASHRAE Standard 62.1-2010 while maintaining acceptable indoor air quality. Therefore, two dissertation objectives are addressed: (1) Investigate opportunities to reduce ventilation rates that do not compromise indoor air quality in retail stores located in Central Pennsylvania, (2) Investigate opportunities to increase (in summer) and decrease (in winter) set point temperatures that do not compromise thermal comfort. This study conducted experimental measurements of ventilation rates required to maintain acceptable air quality and indoor environmental conditions requirements for two retail stores using ASHRAE Standard 62.1_2012. More specifically, among other parameters, occupancy density, indoor and outdoor pollutant concentrations, and indoor temperatures were measured continuously for one week interval. One of these retail stores were tested four times for a yearlong time period. Pollutants monitored were formaldehyde, carbon dioxide, particle size distributions and concentrations, as well as total volatile organic compounds. As a part of the base protocol, the number of occupants in each store was hourly counted during the test, and the results reveal that the occupant

  7. Application and energy saving potential of superheated steam drying in the food industry

    SciTech Connect

    Fitzpatrick, J.; Robinson, A.

    1996-12-31

    The possibilities of using superheated steam in heat and mass transfer processes such as drying have lately been investigated and tested by several industries. The mode of operation, energy saving potential, advantages of and problems with this media in contact with foodstuffs and food waste sludge are discussed in this article.

  8. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    SciTech Connect

    Zogg, Robert; Goetzler, William; Ahlfeldt, Christopher; Hiraiwa, Hirokazu; Sathe, Amul; Sutherland, Timothy

    2009-12-01

    This study characterizes and assesses the appliances used in commercial buildings. The primary objectives of this study were to document the energy consumed by commercial appliances and identify research, development and demonstration (RD&D) opportunities for efficiency improvements, excluding product categories such as HVAC, building lighting, refrigeration equipment, and distributed generation systems. The study included equipment descriptions, characteristics of the equipment’s market, national energy consumption, estimates of technical potential for energy-saving technologies, and recommendations for U.S. Department of Energy programs that can promote energy savings in commercial appliances.

  9. Global potential for wind-generated electricity.

    PubMed

    Lu, Xi; McElroy, Michael B; Kiviluoma, Juha

    2009-07-07

    The potential of wind power as a global source of electricity is assessed by using winds derived through assimilation of data from a variety of meteorological sources. The analysis indicates that a network of land-based 2.5-megawatt (MW) turbines restricted to nonforested, ice-free, nonurban areas operating at as little as 20% of their rated capacity could supply >40 times current worldwide consumption of electricity, >5 times total global use of energy in all forms. Resources in the contiguous United States, specifically in the central plain states, could accommodate as much as 16 times total current demand for electricity in the United States. Estimates are given also for quantities of electricity that could be obtained by using a network of 3.6-MW turbines deployed in ocean waters with depths <200 m within 50 nautical miles (92.6 km) of closest coastlines.

  10. Global potential for wind-generated electricity

    PubMed Central

    Lu, Xi; McElroy, Michael B.; Kiviluoma, Juha

    2009-01-01

    The potential of wind power as a global source of electricity is assessed by using winds derived through assimilation of data from a variety of meteorological sources. The analysis indicates that a network of land-based 2.5-megawatt (MW) turbines restricted to nonforested, ice-free, nonurban areas operating at as little as 20% of their rated capacity could supply >40 times current worldwide consumption of electricity, >5 times total global use of energy in all forms. Resources in the contiguous United States, specifically in the central plain states, could accommodate as much as 16 times total current demand for electricity in the United States. Estimates are given also for quantities of electricity that could be obtained by using a network of 3.6-MW turbines deployed in ocean waters with depths <200 m within 50 nautical miles (92.6 km) of closest coastlines. PMID:19549865

  11. Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization

    DTIC Science & Technology

    2014-05-01

    1 Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization David N. Ford...2014 4. TITLE AND SUBTITLE Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization 5a...Manufacturing ( 3D printing ) 2 Research Context Problem: Learning curve savings forecasted in SHIPMAIN maintenance initiative have not materialized

  12. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    SciTech Connect

    Huang, Runze; Riddle, Matthew; Graziano, Diane; Warren, Joshua; Das, Sujit; Nimbalkar, Sachin; Cresko, Joe; Masanet, Eric

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integrates engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.

  13. Potential for biomass electricity in four Asian countries

    SciTech Connect

    Kinoshita, C.M.; Turn, S.Q.; Tantlinger, J.; Kaya, M.

    1997-12-31

    Of all forms of renewable energy, biomass offers the best near-term opportunity for supplying a significant portion of the world`s need for electric power. Biomass is especially competitive when fuel supply costs are partially defrayed as production activities associated with the processing of another product, e.g., sugar, rice, or vegetable oil. Not only do such processing situations provide cost savings, they also generate very large supplies of fuel and therefore can contribute significantly to the local energy mix. Access to ample supplies of competitively-priced biomass feedstocks is only one of several factors needed to encourage the use of biomass for power generation; equally important is a healthy market for electricity, i.e., need for large blocks of additional power and sufficient strength in the economy to attract investment in new capacity. Worldwide, the Asia-Pacific region is projected to have the greatest need for new generating capacity in the next decade and shows the highest rate of economic growth, making it an attractive market for biomass power. Also critical to the expansion of bioenergy is the adoption of positive, stable policies on energy production, distribution, and sale, that encourage the generation and use of electricity from biomass. The aforementioned three factors--adequate biomass supplies, increasing demand for electricity, and supportive policies--are examined for four Asian countries, the Philippines, Thailand, Malaysia, and Indonesia. Information presented for each of the four countries include the types and amounts of bioresidues and their associated electric power generation potential; present and future supplies and demand for electricity; and existing or planned government and utility policies that could impact the generation and use of biomass power.

  14. Potential fresh water saving using greywater in toilet flushing in Syria.

    PubMed

    Mourad, Khaldoon A; Berndtsson, Justyna C; Berndtsson, Ronny

    2011-10-01

    Greywater reuse is becoming an increasingly important factor for potable water saving in many countries. Syria is one of the most water scarce countries in the Middle East. However, greywater reuse is still not common in the country. Regulations and standards for greywater reuse are not available. Recently, however, several stakeholders have started to plan for greywater reuse. The main objective of this paper is to evaluate the potential for potable water saving by using greywater for toilet flushing in a typical Syrian city. The Sweida city in the southern part of Syria was chosen for this purpose. Interviews were made in order to reflect the social acceptance, water consumption, and the percentage of different indoor water uses. An artificial wetland (AW) and a commercial bio filter (CBF) were proposed to treat the greywater, and an economic analysis was performed for the treatment system. Results show that using treated greywater for toilet flushing would save about 35% of the drinking water. The economic analyses of the two proposed systems showed that, in the current water tariff, the payback period for AW and CBF in block systems is 7 and 52 years, respectively. However, this period will reduce to 3 and 21 years, respectively, if full water costs are paid by beneficiaries. Hence, introducing artificial wetlands in order to make greywater use efficient appears to be a viable alternative to save potable water.

  15. The energy saving potential of precooling incoming outdoor air by indirect evaporative cooling

    SciTech Connect

    Chen, P.; Qin, H.; Huang, Y.J.; Wu, H.; Blumstein, C.

    1992-09-01

    This paper investigates the energy saving potentials of using indirect evaporative coolers to precool incoming outdoor air as the first stage of a standard cooling system. For dry and moderately humid locations, either exhaust room air or outdoor air can be used as the secondary air to the indirect evaporative precooler with similar energy savings. Under these conditions, the use of outdoor air is recommended due to the simplicity in installing the duct system. For humid locations, the use of exhaust room air is recommended because the precooling capacity and energy savings will be greatly increased. For locations with short cooling seasons, the use of indirect evaporative coolers for precooling may not be worthwhile. The paper also gives some simplified indices for easily predicting the precooling capacity, energy savings and water consumption of an indirect evaporative precooler. These indices can be used for cooling systems with continuous operation, but further work is needed to determine whether the same indices are also suitable for cooling systems with intermittent operations.

  16. Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates

    SciTech Connect

    Childs, Kenneth W; Stovall, Therese K

    2012-03-01

    Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

  17. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    general replacement of low-efficiency air conditioners (replacing units in all houses without considering pre-weatherization air-conditioning electricity consumption) was not cost effective in the test houses. ECMs installed under the Oklahoma WAP and installed in combination with an attic radiant barrier did not produce air-conditioning electricity savings that could be measured in the field test. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this type of housing.

  18. Preliminary Study of the Fuel Saving Potential of Regenerative Turbofans for Commercial Subsonic Transports. [engine tests

    NASA Technical Reports Server (NTRS)

    Kraft, G. A.

    1975-01-01

    The fuel savings potential of regenerative turbofans was calculated and compared with that of a reference turbofan. At the design altitude of 10.67 km and Mach 0.80, the turbine-inlet-temperature of the regenerative turbofan was fixed at 1700 K while the overall pressure ratio was varied from 10 to 20. The fan pressure ratio was fixed at 1.6 and the bypass ratio varied from 8 to 10. The heat exchanger design parameters such as pressure drop and effectiveness varied from 4 to 8 percent and from 0.80 to 0.90, respectively. Results indicate a fuel savings due to regeneration of 4.1 percent and no change in takeoff gross weight.

  19. Alcoa World Alumina: Plant Wide Assessment at Arkansas Operation Reveals More than $900,000 in Potential Annual Savings

    SciTech Connect

    2003-07-01

    The plant-wide energy-efficiency assessment performed in 2001 at the Alcoa World Alumina Arkansas Operations in Bauxite, Arkansas, identified seven opportunities to save energy and reduce costs. By implementing five of these improvements, the facility can save 15,100 million British thermal units per year in natural gas and 8.76 million kilowatt-hours per year in electricity. This translates into approximate annual savings of $925,300 in direct energy costs and non-fuel operating and maintenance costs. The required capital investment is estimated at $271,200. The average payback period for all five projects would be approximately 8 months.

  20. Alcoa World Alumina: Plant-Wide Assessment at Arkansas Operations Reveals More than$900,000 in Potential Annual Savings

    SciTech Connect

    Not Available

    2003-07-01

    The plant-wide energy-efficiency assessment performed in 2001 at the Alcoa World Alumina Arkansas Operations in Bauxite, Arkansas, identified seven opportunities to save energy and reduce costs. By implementing five of these improvements, the facility can save 15,100 million British thermal units per year in natural gas and 8.76 million kilowatt-hours per year in electricity. This translates into approximate annual savings of$925,300 in direct energy costs and non-fuel operating and maintenance costs. The required capital investment is estimated at$271,200. The average payback period for all five projects would be approximately 8 months.

  1. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components

    DOE PAGES

    Huang, Runze; Riddle, Matthew; Graziano, Diane; ...

    2015-05-08

    Additive manufacturing (AM) holds great potential for improving materials efficiency, reducing life-cycle impacts, and enabling greater engineering functionality compared to conventional manufacturing (CM) processes. For these reasons, AM has been adopted by a growing number of aircraft component manufacturers to achieve more lightweight, cost-effective designs. This study estimates the net changes in life-cycle primary energy and greenhouse gas emissions associated with AM technologies for lightweight metallic aircraft components through the year 2050, to shed light on the environmental benefits of a shift from CM to AM processes in the U.S. aircraft industry. A systems modeling framework is presented, with integratesmore » engineering criteria, life-cycle environmental data, and aircraft fleet stock and fuel use models under different AM adoption scenarios. Estimated fleetwide life-cycle primary energy savings in a rapid adoption scenario reach 70-174 million GJ/year in 2050, with cumulative savings of 1.2-2.8 billion GJ. Associated cumulative emission reduction potentials of CO2e were estimated at 92.8-217.4 million metric tons. About 95% of the savings is attributed to airplane fuel consumption reductions due to lightweighting. In addition, about 4050 tons aluminum, 7600 tons titanium and 8100 tons of nickel alloys could be saved per year in 2050. The results indicate a significant role of AM technologies in helping society meet its long-term energy use and GHG emissions reduction goals, and highlight barriers and opportunities for AM adoption for the aircraft industry.« less

  2. Electrically tunable artificial gauge potential for polaritons

    PubMed Central

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-01-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047

  3. Active control of electric potential of spacecraft

    NASA Technical Reports Server (NTRS)

    Goldstein, R.

    1977-01-01

    Techniques are discussed for controlling the potential of a spacecraft by means of devices which release appropriate charged particles from the spacecraft to the environment. Attention is given to electron emitters, ion emitters, a basic electron emitter arrangement, techniques for sensing electric field or potential, and flight experiments on active potential control. It is recommended to avoid differential charging on spacecraft surfaces because it can severely affect the efficacy of emitters. Discharging the frame of a spacecraft with dielectric surfaces involves the risk of stressing the dielectric material excessively. The spacecraft should, therefore, be provided with grounded conductive surfaces. It is pointed out that particles released by control systems can return to the spacecraft.

  4. Electrically tunable artificial gauge potential for polaritons.

    PubMed

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-02-23

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton-polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons.

  5. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  6. The reuse of hemodialyzers: an assessment of safety and potential savings.

    PubMed Central

    Baris, E; McGregor, M

    1993-01-01

    OBJECTIVE: To evaluate the safety and potential cost savings of hemodialyzer reuse. DATA SOURCES: All English and French articles published from 1960 to 1991 related to hemodialyzer reuse (retrieved through an Index Medicus and MEDLINE search [corrected]), the indexes of eight North American journals from 1960 onward, conference proceedings, association guidelines, and US and Canadian laws and regulations. RESULTS: For health care personnel the reuse of hemodialyzers did not entail any increased risk of infection or exposure to toxic substances if proper control measures were taken. For patients there was no evidence to suggest any excess risk of complications or death as long as precise and appropriate procedures are observed. The "first-use syndrome" can be prevented and should no longer be considered as a reason to favour reuse. A cost-minimization analysis indicated that five uses might save up to $3629 per patient yearly. Thus, the adoption of a policy of reuse in Canada for all eligible patients undergoing long-term hemodialysis could result in direct savings of about $5.8 to $8.9 million per year. CONCLUSION: The health risks associated with hemodialyzer reuse can be reduced to acceptable levels through the rigorous observance of proper quality-assurance and quality-control measures and the use of automated reconditioning equipment. Such a policy could achieve modest savings for the health care system. A decision to reuse should be formally adopted by the institution and accompanied by a precise definition of the standards of quality assurance and control. PMID:8420655

  7. Part-Load Performance Characterization and Energy Savings Potential of the RTU Challenge Unit: Daikin Rebel

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas

    2013-09-30

    In 2011, the U.S. Department of Energy’s Building Technology Office (DOE’s BTO), with help from the Better Buildings Alliance (BBA) members, developed a specification for high performance rooftop air-conditioning units (RTU Challenge) with capacity ranges between 10 and 20 tons (DOE 2013). Daikin’s Rebel for the first rooftop unit system that was recognized by DOE in May 2012 as meeting the RTU Challenge specifications. This report documents the development of part-load performance curves and its use with EnergyPlus simulation tool to estimate the potential savings from use of Rebel compared to other standard options.

  8. Residential energy use in Mexico: Structure, evolution, environmental impacts, and savings potential

    SciTech Connect

    Masera, O.; Friedmann, R.; deBuen, O.

    1993-05-01

    This article examines the characteristics of residential energy use in Mexico, its environmental impacts, and the savings potential of the major end-uses. The main options and barriers to increase the efficiency of energy use are discussed. The energy analysis is based on a disaggregation of residential energy use by end-uses. The dynamics of the evolution of the residential energy sector during the past 20 years are also addressed when the information is available. Major areas for research and for innovative decision-making are identified and prioritized.

  9. Part-load performance characterization and energy savings potential of the RTU challenge unit: Carrier weather expert

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Taasevigen, Danny J.

    2015-09-29

    This report documents the development of part-load performance curves and there use with the EnergyPlus simulation tool to estimate the potential savings from the use of WeatherExpert units compared to other standard options.

  10. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential...

  11. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential...

  12. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential...

  13. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential...

  14. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential...

  15. The energy-savings potential of electrochromic windows in the UScommercial buildings sector

    SciTech Connect

    Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

    2004-04-30

    Switchable electrochromic (EC) windows have been projected to significantly reduce the energy use of buildings nationwide. This study quantifies the potential impact of electrochromic windows on US primary energy use in the commercial building sector and also provides a broader database of energy use and peak demand savings for perimeter zones than that given in previous LBNL simulation studies. The DOE-2.1E building simulation program was used to predict the annual energy use of a three-story prototypical commercial office building located in five US climates and 16 California climate zones. The energy performance of an electrochromic window controlled to maintain daylight illuminance at a prescribed setpoint level is compared to conventional and the best available commercial windows as well as windows defined by the ASHRAE 90.1-1999 and California Title 24-2005 Prescriptive Standards. Perimeter zone energy use and peak demand savings data by orientation, window size, and climate are given for windows with interior shading, attached shading, and horizon obstructions (to simulate an urban environment). Perimeter zone primary energy use is reduced by 10-20% in east, south, and west zones in most climates if the commercial building has a large window-to-wall area ratio of 0.60 compared to a spectrally selective low-e window with daylighting controls and no interior or exterior shading. Peak demand for the same condition is reduced by 20-30%. The emerging electrochromic window with daylighting controls is projected to save approximately 91.5-97.3 10{sup 12} Btu in the year 2030 compared to a spectrally selective low-E window with manually-controlled interior shades and no daylighting controls if it reaches a 40% market penetration level in that year.

  16. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    SciTech Connect

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance

  17. Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation

    SciTech Connect

    Akbari, Hashem

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  18. Potentially preventable events: an actionable set of measures for linking quality improvement and cost savings.

    PubMed

    Goldfield, Norbert; Kelly, William P; Patel, Kavita

    2012-01-01

    Rising health care costs will result in reduced payments to providers, but across-the-board provider payment reductions are not the answer. Instead, existing payment systems should be reformed to strengthen value for the dollars spent. This can be accomplished by increasing efficiency, improving quality and outcomes, and lowering costs. Payment system reforms must be practical, transparent, identify opportunities for care improvement, and demonstrate material cost savings. Most importantly, because the current growth in health care costs is unsustainable, these reforms must be able to be implemented today. A set of comprehensive measures is being used by state government and private payers in the United States to adjust payment, based on improved outcomes quality. This article details the use of this set of measures, referred to as potentially preventable events, and demonstrates how they are being applied to achieve health care value.

  19. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    SciTech Connect

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  20. Web-based Tool Identifies and Quantifies Potential Cost Savings Measures at the Hanford Site

    SciTech Connect

    Renevitz, Marisa J.; Peschong, Jon C.; Charboneau, Briant L.; Simpson, Brett C.

    2014-01-09

    The Technical Improvement system is an approachable web-based tool that is available to Hanford DOE staff, site contractors, and general support service contractors as part of the baseline optimization effort underway at the Hanford Site. Finding and implementing technical improvements are a large part of DOE’s cost savings efforts. The Technical Improvement dashboard is a key tool for brainstorming and monitoring the progress of submitted baseline optimization and potential cost/schedule efficiencies. The dashboard is accessible to users over the Hanford Local Area Network (HLAN) and provides a highly visual and straightforward status to management on the ideas provided, alleviating the need for resource intensive weekly and monthly reviews.

  1. On the electric potentials inside a charged soft hydrated biological tissue: streaming potential versus diffusion potential.

    PubMed

    Lai, W M; Mow, V C; Sun, D D; Ateshian, G A

    2000-08-01

    The main objective of this study is to determine the nature of electric fields inside articular cartilage while accounting for the effects of both streaming potential and diffusion potential. Specifically, we solve two tissue mechano-electrochemical problems using the triphasic theories developed by Lai et al. (1991, ASME J. Biomech Eng., 113, pp. 245-258) and Gu et al. (1998, ASME J. Biomech. Eng., 120, pp. 169-180) (1) the steady one-dimensional permeation problem; and (2) the transient one-dimensional ramped-displacement, confined-compression, stress-relaxation problem (both in an open circuit condition) so as to be able to calculate the compressive strain, the electric potential, and the fixed charged density (FCD) inside cartilage. Our calculations show that in these two technically important problems, the diffusion potential effects compete against the flow-induced kinetic effects (streaming potential) for dominance of the electric potential inside the tissue. For softer tissues of similar FCD (i.e., lower aggregate modulus), the diffusion potential effects are enhanced when the tissue is being compressed (i.e., increasing its FCD in a nonuniform manner) either by direct compression or by drag-induced compaction; indeed, the diffusion potential effect may dominate over the streaming potential effect. The polarity of the electric potential field is in the same direction of interstitial fluid flow when streaming potential dominates, and in the opposite direction of fluid flow when diffusion potential dominates. For physiologically realistic articular cartilage material parameters, the polarity of electric potential across the tissue on the outside (surface to surface) may be opposite to the polarity across the tissue on the inside (surface to surface). Since the electromechanical signals that chondrocytes perceive in situ are the stresses, strains, pressures and the electric field generated inside the extracellular matrix when the tissue is deformed, the

  2. The Future is Green: Tribal College Saving Water, Electricity--and Money

    ERIC Educational Resources Information Center

    Stevenson, Gelvin

    2005-01-01

    Tribal colleges and universities around the country are harnessing natural sources of energy on their campuses. Renewable energy and sustainable building design have many advantages--they save money and provide healthier learning and working environments while allowing people to live in greater harmony with the earth. This article discusses…

  3. Harnessing Potential Evaporation as a Renewable Energy Resource With Water-Saving Benefits

    NASA Astrophysics Data System (ADS)

    Cavusoglu, A. H.; Chen, X.; Gentine, P.; Sahin, O.

    2015-12-01

    Water's large latent heat of vaporization makes evaporation a critical component of the energy balance at the Earth's surface. An immense amount of energy drives the hydrological cycle and is an important component of various weather and climate patterns. However, the potential of harnessing evaporation has received little attention as a renewable energy resource compared to wind and solar energy. Here, we investigate the potential of harvesting energy from naturally evaporating water. Using weather data across the contiguous United States and a modified model of potential evaporation, we estimate the power availability, intermittency, and the changes in evaporation rates imposed by energy conversion. Our results indicate that natural evaporation can deliver power densities similar to existing renewable energy platforms and require little to no energy storage to match the varying power demands of urban areas. This model also predicts additional, and substantial, water savings by reducing evaporative losses. These findings suggest that evaporative energy harvesting can address significant challenges with water/energy interactions that could be of interest to the hydrology community.

  4. Office technology energy use and savings potential in New York. Final report

    SciTech Connect

    Piette, M.A., Cramer, M., Eto, J., Koomey, J.

    1995-06-01

    This report discusses energy use by office equipment in New York State and the energy savings potential of energy-efficient equipment. A model containing equipment densities and energy-use characteristics for major categories of office equipment has been developed. The model specifies power requirements and hours of use for three modes of average operation for each device: active, standby, and suspend. The energy-use intensity for each device is expressed as a function of the average device density (number of units/1,000 sq ft), the hours of operation in each mode, and the average power requirements in each mode. Output includes an estimate of total energy use (GWh) for each device by building type. Three scenarios are developed. First is a business-as-usual efficiency baseline. Second is a future with increased use of power-managed devices projected under the current Energy Star Computers program sponsored by the US EPA. Third is a scenario that examines energy savings from greater use of products that go well beyond the standard Energy Star products. A series of sensitivity analyses were conducted to explore uncertainties in model inputs. The business-as-usual baseline forecast confirms that office equipment energy use has been rising over the past decade, and may continue to increase for the next decade and beyond. Office equipment currently consumes about 2,900 GWh/year in the State of New York. Under the business-as-usual baseline forecast, this load may increase to 3,300 GWh/year by the year 2000, and approximately double again before 2010. Widespread use of power management technologies adopted with the promotion of the Energy Star program could reduce this load growth by about 30% by the year 2000. Use of more advanced energy-efficient technology could reduce total energy use by office equipment to about 1,900 GWh/year in 2010, which is less than current consumption.

  5. Saving Lives.

    ERIC Educational Resources Information Center

    Moon, Daniel

    2002-01-01

    Advises schools on how to establish an automated external defibrillator (AED) program. These laptop-size devices can save victims of sudden cardiac arrest by delivering an electrical shock to return the heartbeat to normal. Discusses establishing standards, developing a strategy, step-by-step advice towards establishing an AED program, and school…

  6. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  7. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    SciTech Connect

    Todd, Annika; Perry, Michael; Smith, Brian; Sullivan, Michael; Cappers, Peter; Goldman, Charles

    2014-03-25

    The rollout of smart meters in the last several years has opened up new forms of previously unavailable energy data. Many utilities are now able in real-time to capture granular, household level interval usage data at very high-frequency levels for a large proportion of their residential and small commercial customer population. This can be linked to other time and locationspecific information, providing vast, constantly growing streams of rich data (sometimes referred to by the recently popular buzz word, “big data”). Within the energy industry there is increasing interest in tapping into the opportunities that these data can provide. What can we do with all of these data? The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull interesting insights out of this highfrequency, human-focused data. We at LBNL are calling this “behavior analytics”. This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, highly disaggregated and heterogeneous information about actual energy use would allow energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; would enable evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and would provide better insights in to the energy and peak hour savings associated with specifics types of EE and DR programs (e.g., behavior-based (BB) programs). In this series, “Insights from Smart Meters”, we will present concrete, illustrative examples of the type of value that insights from behavior analytics of these data can provide (as well as pointing out its limitations). We will supply several types of key findings, including: • Novel results, which answer questions the industry

  8. Analysis of Energy Saving and Environmental Characteristics of Electric Vehicle in Regionally-Disaggregated World Energy Model

    NASA Astrophysics Data System (ADS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    This paper investigates the impact of an extensive introduction of electric vehicle (EV) and plug-in hybrid vehicle (PHEV) into global energy system towards 2050. The significant growth of automobile ownership in emerging countries is likely to increase the world oil demand and the associated carbon dioxide emissions. In order to address these energy security and environmental concerns, the deployment of clean energy vehicles, such as EV and PHEV, are expected to play a crucial role due to its high fuel efficiency. On these backgrounds, we develop both global energy system model and world vehicle penetration model, which are able to explicitly analyze the impact of EV introduction into seasonal daily electric load curve considering its specific electricity charging profile to 2050. Simulation results confirm that EV deployment contributes to energy conservation, because oil demand reduction outstrips the growth in its electricity demand and the associated fuel input into power generation mix. Concerning carbon dioxide abatement, the magnitude of the impact relies on the carbon-intensity of power generation mix. If the intensity is low enough to make sure the carbon mitigation effect by EV fuel saving, the emissions reduction is well ensured. It should be noted, however, that, in the regions with high carbon intensity in power generation mix, carbon emissions per mileage of EV is almost equivalent to that of efficient gasoline vehicle like hybrid vehicle and PHEV is slightly higher than hybrid vehicle.

  9. Angular selective window systems: Assessment of technical potential for energy savings

    DOE PAGES

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; ...

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAEmore » 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.« less

  10. Angular selective window systems: Assessment of technical potential for energy savings

    SciTech Connect

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; Jonsson, Jacob C.; Nouidui, Thierry; Pang, Xiufeng; Hoffmann, Sabine

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAE 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.

  11. Potential cost savings from investments in energy-conserving irrigation systems

    SciTech Connect

    Patton, W.P.; Wilfert, G.L.; Harrer, B.J.; Clark, M.A.; Sherman, K.L.

    1982-10-01

    A comparative analysis is presented of the levelized costs of selected irrigation systems, with an emphasis on the costs and benefits of energy savings. The net economic benefits are evaluated, measured as energy cost savings minus additional capital and operating costs, of some energy-conserving systems. Energy use in irrigation and descriptions of both the conventional and the energy-saving technologies involved in the analysis are discussed. The approach used in the analysis is outlined, and comparative analysis results are discussed. Detailed cost information is presented by state. (LEW)

  12. A Study of the Energy-Saving Potential of Metal Roofs Incorporating Dynamic Insulation Systems

    SciTech Connect

    Biswas, Kaushik; Miller, William A; Kriner, Scott; Manlove, Gary

    2013-01-01

    This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S. between 2009 and 2013, and describes their potential for reducing the attic-generated space-conditioning loads. These roofs contained different combinations of phase-change material, rigid insulation, low emittance surface, and above-sheathing ventilation with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a three-year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year three of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic-temperature fluctuations.

  13. Energy Savings Lifetimes and Persistence

    SciTech Connect

    Hoffman, Ian M.; Schiller, Steven R.; Todd, Annika; Billingsley, Megan A.; Goldman, Charles A.; Schwartz, Lisa C.

    2016-02-01

    This technical brief explains the concepts of energy savings lifetimes and savings persistence and discusses how program administrators use these factors to calculate savings for efficiency measures, programs and portfolios. Savings lifetime is the length of time that one or more energy efficiency measures or activities save energy, and savings persistence is the change in savings throughout the functional life of a given efficiency measure or activity. Savings lifetimes are essential for assessing the lifecycle benefits and cost effectiveness of efficiency activities and for forecasting loads in resource planning. The brief also provides estimates of savings lifetimes derived from a national collection of costs and savings for electric efficiency programs and portfolios.

  14. Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production.

    PubMed

    Harnisch, Falk; Rosa, Luis F M; Kracke, Frauke; Virdis, Bernardino; Krömer, Jens O

    2015-03-01

    The production of fuels and chemicals by electricity-driven bio-production (i.e., using electric energy to drive biosynthesis) holds great promises. However, this electrification of white biotechnology is particularly challenging to achieve because of the different optimal operating conditions of electrochemical and biochemical reactions. In this article, we address the technical parameters and obstacles to be taken into account when engineering microbial bioelectrochemical systems (BES) for bio-production. In addition, BES-based bio-production processes reported in the literature are compared against industrial needs showing that a still large gap has to be closed. Finally, the feasibility of BES bio-production is analysed based on bulk electricity prices. Using the example of lysine production from sucrose, we demonstrate that there is a realistic market potential as cost savings of 8.4 % (in EU) and 18.0 % (in US) could be anticipated, if the necessary yields can be obtained.

  15. Potential hospital cost-savings attributed to improvements in outcomes for colorectal cancer surgery following self-audit

    PubMed Central

    2010-01-01

    Background One of the potential benefits of surgical audit is improved hospital cost-efficiencies arising from lower resource consumption associated with fewer adverse events. The aim of this study was to estimate the potential cost-savings for Australian hospitals from improved surgical performance for colorectal surgery attributed to a surgical self-audit program. Methods We used a mathematical decision-model to investigate cost differences in usual practice versus surgical audit and synthesized published hospital cost data with epidemiological evidence of adverse surgical events in Australia and New Zealand. A systematic literature review was undertaken to assess post-operative outcomes from colorectal surgery and effectiveness of surgical audit. Results were subjected to both one-way and probabilistic sensitivity analyses to address uncertainty in model parameters. Results If surgical self-audit facilitated the reduction of adverse surgical events by half those currently reported for colorectal cancer surgery, the potential cost-savings to hospitals is AU$48,720 (95% CI: $18,080-$89,260) for each surgeon treating 20 cases per year. A smaller 25% reduction in adverse events produced cost-savings of AU$24,960 per surgeon (95%CI: $1,980-$62,980). Potential hospital savings for all operative colorectal cancer cases was estimated at AU$30.3 million each year. Conclusions Surgical self-audit has the potential to create substantial hospital cost-savings for colorectal cancer surgery in Australia when considering the widespread incidence of this disease. The study is limited by the current availability and quality of data estimates abstracted from the published literature. Further evidence on the effectiveness of self-audit is required to substantiate these findings. PMID:20105290

  16. The bioinspiring potential of weakly electric fish.

    PubMed

    Caputi, Angel Ariel

    2017-02-02

    Electric fish are privileged animals for bio-inspiring man-built autonomous systems since they have a multimodal sense that allows underwater navigation, object classification and intraspecific communication. Although there are taxon dependent variations adapted to different environments, this multimodal system can be schematically described as having four main components: active electroreception, passive electroreception, lateral line sense and, proprioception. Amongst these sensory modalities, proprioception and electroreception show 'active' systems that extrct information carried by self generated forms of energy. This ensemble of four sensory modalities is present in African mormyriformes and American gymnotiformes. The convergent evolution of similar imaging, peripheral encoding, and central processing mechanisms suggests that these mechanisms may be the most suitable for dealing with electric images in the context of the other and self generated actions. This review deals with the way in which biological organisms address three of the problems that are faced when designing a bioinspired electroreceptive agent: (a) body shape, material and mobility, (b) peripheral encoding of electric images, and (c) early processing of electrosensory signals. Taking into account biological solutions I propose that the new generation of underwater agents should have electroreceptive arms, use complex peripheral sensors for encoding the images and cerebellum like architecture for image feature extraction and implementing sensory-motor transformations.

  17. Analysis of Household Electricity Consumption Patterns and Economy of Water Heating Shifting and Saving Bulbs

    NASA Astrophysics Data System (ADS)

    Rosin, Argo; Moller, Taavi; Lehtla, Madis; Hoimoja, Hardi

    2010-01-01

    This article analyses household electricity consumption based on an object in Estonia. Energy consumption of workday and holiday by loads (including high and low tariff energy consumption) is discussed. The final part describes the evaluation of profitability of common investments of consumption shifting and replacing inefficient devices with more efficient ones. Additionally it describes shifting problems and shifting equipment profitability in real-time tariff system.

  18. Ergonomics work stations decreases the health impairment and saves electrical energy at the woodworking workshop in Bali, Indonesia.

    PubMed

    Sudiajeng, Lilik; Adiputra, Nyoman; Leibbrandt, Richard

    2012-12-01

    This research was conducted to assess the positive effect of the ergonomics work station on the health impairment and electrical energy usage at the woodworking workshop in Bali, Indonesia. Woodworking workshops are dangerous, particularly when they are used improperly. Workers are exposed to health hazards that cause health impairment and inefficiencies in their work conditions. A preliminary study at a woodworking workshop at the Bali State Polytechnic showed that the work station was not suitable to body size of the participants and caused awkward postures. In addition, there was also an inappropriate physical work environment. Both inappropriate work station and physical work environment caused participants to be less active and motivated. This paper reports on an experimental study into the effects of an ergonomic intervention at this workshop. The participants were 2 groups of male students with 10 participants in each group. The first group performed the task with the original work station as a control group, while the second group performed the task with the new work station. The study found a significant difference between groups (p < 0.05) both for the health impairment and the electrical energy usage. The ergonomics intervention on the work station decreased the working heart rate (16.7%), the total score of musculoskeletal disorders (17.3%), and the total score of psychological fatigue (21.5%). Furthermore, it also decreased the electrical energy usage (38.7%). This shows that an ergonomics intervention on work station decreased the health impairment and saved electrical energy usage. It also protected the workers from woodworking hazards and allowed participants to perform their tasks in healthy, safe, convenient and efficient work conditions.

  19. Saving Water Saves Energy

    SciTech Connect

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

  20. Water savings potentials of irrigation systems: global simulation of processes and linkages

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-07-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (< 30 %) in south Asia and sub-Saharan Africa and the highest values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km3 (2004-2009 average); irrigation water consumption is calculated to be 1257 km3, of which 608 km3 are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global

  1. Analysis of energy-saving potential in residential buildings in Xiamen City and its policy implications for southern China

    NASA Astrophysics Data System (ADS)

    Guo, Fei

    The buildings sector is the largest energy-consuming sector in the world. Residential buildings consume about three-quarters of the final energy in the buildings sector. Promoting residential energy savings is in consequence critical for addressing many energy-use-related environmental challenges, such as climate change and air pollution. Given China's robust economic growth and fast urbanization, it is now a critical time to develop policy interventions on residential energy use in the nation. With this as a background, this dissertation explores effective policy intervention opportunities in southern China through analyzing the residential energy-saving potential, using the city of Xiamen as a case study. Four types of residential energy-saving potential are analyzed: technical potential, economic potential, maximum achievable potential (MAP), and possible achievable potential (PAP). Of these, the first two types are characterized as static theoretical evaluation, while the last two represent dynamic evaluation within a certain time horizon. The achievable potential analyses are rarely seen in existing literature. The analytical results reveal that there exists a significant technical potential for residential energy savings of about 20.9-24.9% in the city of Xiamen. Of the technical potential, about two-thirds to four-fifths are cost-effective from the government or society perspective. The cost-effectiveness is evaluated by comparing the "Levelized Cost of Conserved Energy (LCOCE)" of available advanced technical measures with the "Actual Cost" of conserved energy. The "Actual Cost" of energy is defined by adding the environmental externalities costs and hidden government subsidies over the retail prices of energy. The achievable potential analyses are particularly based on two key realistic factors: 1) the gradual ramping-up adoption process of advanced technical measures; and 2) individuals' adoption-decision making on them. For implementing the achievable

  2. The potential for electricity efficiency improvements in the US Residential Sector

    SciTech Connect

    Koomey, J.G.; Atkinson, C.; Meier, A.; McMahon, J.E.; Boghosian, S.; Atkinson, B.; Turiel, I.; Levine, M.D.; Nordman, B.; Chan, P.

    1991-07-01

    This study represents the most elaborate assessment to date of US residential sector electricity improvements. Previous analyses have estimated the conservation potential for other countries, states, or individual utility service territories. As concern over greenhouse gas emissions has increased, interest has grown in estimates of conservation potential for the US residential sector as a whole. The earliest detailed estimate of US conservation potential is now out of date, while more recent estimates are less detailed than is desirable for engineering-economic estimates of the costs of reducing carbon emissions. In this paper, we first describe the methodology for creating supply curves of conserved energy, and then illustrate the subtleties of assessing the technical conservation potential. Next we present the data and forecasts used in this assessment, including costs, baseline thermal characteristics, energy use, and energy savings. Finally, we present the main results and conclusions from the analysis, and discuss future work. 102 refs., 7 figs., 16 tabs.

  3. Literature Review of the Potential Energy Savings and Retention Water from Green Roofs in Comparison with Conventional Ones

    NASA Astrophysics Data System (ADS)

    Tselekis, Kyriakoulis

    2012-09-01

    The objective of this study is the comparison of green roof systems with conventional isolated and non-isolated ones in order to identify the potential energy savings of green roofs and the benefits provided in comparison with the cost of construction to the buildings. The region of interest is the Watergraafsmeer area in the city of Amsterdam. The method evaluates literature reports - mostly from 2003 to 2010 - that present the advantages of green roofs. Examples in real implementation of green roofs in USA, UK and Germany, retention of rainfall and a Life Cycle Assessment from a residential construction in Madrid will be introduced, showing the energy savings from insulation and heating/cooling that can be gained. All the reports have shown a reduction in energy costs and in runoff of water. Hence, costs and retrofitting potential completes the research. The age of buildings and the absence of insulation make green roofs an ideal alternative project for the retrofit of Watergraafsmeer.

  4. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  5. Assessing Potential Energy Cost Savings from Increased Energy Code Compliance in Commercial Buildings

    SciTech Connect

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Wang, Weimin

    2016-02-15

    The US Department of Energy’s most recent commercial energy code compliance evaluation efforts focused on determining a percent compliance rating for states to help them meet requirements under the American Recovery and Reinvestment Act (ARRA) of 2009. That approach included a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. With its binary approach to compliance determination, the previous methodology failed to answer some important questions. In particular, how much energy cost could be saved by better compliance with the commercial energy code and what are the relative priorities of code requirements from an energy cost savings perspective? This paper explores an analytical approach and pilot study using a single building type and climate zone to answer those questions.

  6. Market analysis, energy savings potential, and future development requirements for Radiance. Final report

    SciTech Connect

    Not Available

    1993-10-01

    The Department of Energy (DOE) Office of Conservation and Renewable Energy (CE), Building Equipment Division has funded the development of a sophisticated computer rendering program called Radiance at Lawrence Berkeley Laboratories (LBL). The project review study included: (1) Surveys of the lighting profession to determine how designers would use an improved, user-friendly Radiance, (2) Elucidation of features, including how Radiance could be used to save energy, which could be incorporated into Radiance to facilitate its more widespread use, (3) Outline of a development plan and determination of what costs the DOE might incur if it were to proceed with the development of an improved version, and (4) Weighing the anticipated development costs against anticipated energy-saving benefits.

  7. Central role of the observable electric potential in transport equations.

    PubMed

    Garrido, J; Compañ, V; López, M L

    2001-07-01

    Nonequilibrium systems are usually studied in the framework of transport equations that involve the true electric potential (TEP), a nonobservable variable. Nevertheless another electric potential, the observable electric potential (OEP), may be defined to construct a useful set of transport equations. In this paper several basic characteristics of the OEP are deduced and emphasized: (i) the OEP distribution depends on thermodynamic state of the solution, (ii) the observable equations have a reference value for all other transport equations, (iii) the bridge that connects the OEP with a certain TEP is usually defined by the ion activity coefficient, (iv) the electric charge density is a nonobservable variable, and (v) the OEP formulation constitutes a natural model for studying the fluxes in membrane systems.

  8. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles

    SciTech Connect

    Bender, Frank A. Bosse, Thomas; Sawodny, Oliver

    2014-09-15

    Highlights: • Driving cycle acquisition in a refuse collection vehicle. • Vehicle modeling and validation for numerical simulations based on the measured driving cycle. • Fuel consumption analysis for a conventional diesel vehicle and a hybrid hydraulic vehicle. - Abstract: Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection.

  9. Full-scale in-line hydrolysis and simulation for potential energy and resource savings in activated sludge--a case study.

    PubMed

    Hey, Tobias; Jönsson, Karin; Jansen, Jes la Cour

    2012-01-01

    The potential effects of altering primary settlers during biological in-line hydrolysis and converting a nitrifying activated sludge process into a partial pre-denitrification process for the purpose of resource conservation were evaluated. A full-scale primary sludge hydrolysis experiment was performed at a wastewater treatment plant and implemented in a dynamic modelling tool based on ASM2d. The full-scale hydrolysis experiment achieved a volatile fatty acid (VFA) production of 43 g COD(HAc) x m(-3) with no release of ammonium. Additional nitrogen removal of 44 t N x a(-1) was simulated, and the produced hydrolysate was able to replace 50% of the annual ethanol usage. Furthermore, 196 MWh of electricity per annum could be saved through the reduction of ethanol production and the optimization of the operation strategy of the activated sludge tank by operating a different number of anoxic zones.

  10. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  11. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  12. Understanding the Electrical Behavior of the Action Potential in Terms of Elementary Electrical Sources

    ERIC Educational Resources Information Center

    Rodriguez-Falces, Javier

    2015-01-01

    A concept of major importance in human electrophysiology studies is the process by which activation of an excitable cell results in a rapid rise and fall of the electrical membrane potential, the so-called action potential. Hodgkin and Huxley proposed a model to explain the ionic mechanisms underlying the formation of action potentials. However,…

  13. Potential energy savings in the residential sector of the United States

    NASA Astrophysics Data System (ADS)

    Ingersoll, J.

    1981-06-01

    The state-of-the-art computer program, DOE 2.1, was used to simulate the hour-by-hour thermal performance of residential buildings in the four major climate zones of the United States, and a life-cycle cost analysis was applied to determine the optimal energy requirement of a typical house demonstrate that present levels of energy consumption can be reduced by a factor of two without compromising health and comfort standards. Within present technology, additional energy savings can be achieved but not yet in a cost-effective way.

  14. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort

    SciTech Connect

    Software, Anyhere; Fernandes, Luis; Lee, Eleanor; Ward, Greg

    2013-03-15

    A simulation study was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled to satisfy key visual comfort parameters. Using the Radiance lighting simulation software, interior illuminance and luminance levels were computed for a south-facing private office illuminated by a window split into two independently-controlled EC panes. The transmittance of these was optimized hourly for a workplane illuminance target while meeting visual comfort constraints, using a least-squares algorithm with linear inequality constraints. Blinds were successively deployed until visual comfort criteria were satisfied. The energy performance of electrochromics proved to be highly dependent on how blinds were controlled. With hourly blind position adjustments, electrochromics showed significantly higher (62percent and 53percent, respectively without and with overhang) lighting energy consumption than clear glass. With a control algorithm designed to better approximate realistic manual control by an occupant, electrochromics achieved significant savings (48percent and 37percent, respectively without and with overhang). In all cases, energy consumption decreased when the workplace illuminance target was increased. In addition, the fraction of time during which the occupant had an unobstructed view of the outside was significantly greater with electrochromics: 10 months out of the year versus a handful of days for the reference case.

  15. Potential Cost Savings for Use of 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization

    DTIC Science & Technology

    2013-12-04

    pmlkploba=obmloq=pbofbp= = = Potential Cost Savings for Use of 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization...REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Potential Cost Savings for Use of 3D Printing Combined With 3D ...oÉëÉ~êÅÜ=mêçÖê~ã= ëéçåëçêÉÇ=oÉéçêí=pÉêáÉë= Potential Cost Savings for Use of 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and

  16. Estimating the maximum potential revenue for grid connected electricity storage :

    SciTech Connect

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash flow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the

  17. Energy efficiency monitoring and economic analysis for energy saving potential in UNITEN

    NASA Astrophysics Data System (ADS)

    Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh; Yew, Kang Chin; Azwa Shaaya, Sharifah

    2013-06-01

    This paper discusses on energy efficiency survey for typical buildings in Universiti Tenaga Nasional (UNITEN). Undeniably, wastage of energy will cause the increase of operation cost and depletion of fossil fuel resources which contributes to the climate change issue in the world. UNITEN was commenced in the late 1990s and most of the buildings in this university are not equipped with energy management system. Such system is the solution to reduce energy use while maximizing the comfort levels of the occupants. Disregard to the energy management system, the implementation of other energy saving measures is the main objective of this paper. By taking the right measures, the energy wastage in the buildings of this university can be reduced.

  18. Jordanian industrial sector future energy consumption: Potential savings and environmental impact

    NASA Astrophysics Data System (ADS)

    Abdallat, Yousef; Al-Ghandoor, Ahmed; Salaymah, Mohammad

    2012-11-01

    This paper analyzes and evaluates impacts of introducing some efficient measures on the future fuel and electricity demands and associated reduction in GHG emissions. Without employing most effective energy conservation measures, energy demand is expected to rise by approximately 38% within 12 years time. Consequently, associated GHG emissions resulting from activities within the industrial sector are predicted to rise by 33% for the same period. However, if recommended energy management measures are implemented on a gradual basis, electricity and fuel consumptions as well as GHG emissions are forecasted to increase at a lower rate.

  19. [Effects of labor-saving rice cultivation modes on the diversity of potential weed communities in paddy fields].

    PubMed

    Li, Shu-Shun; Qiang, Sheng; Jiao, Jun-Sen

    2009-10-01

    Aimed to understand the effects of various labor-saving rice cultivation modes on the diversity of potential weed communities in paddy fields, an investigation was made on the quantitative characteristics of the weed seed bank under dry direct seeding, water direct seeding, seedling throwing, mechanized-transplanting, wheat-rice interplanting, and conventional manual transplanting. Under dry direct seeding, the density of the weed seed bank was up to 228,416 seeds x m(-2), being significantly higher than that under the other five cultivation modes. Wheat-rice interplanting ranked the second place. The seed density of sedge weeds under dry direct seeding and that of broad leaf weeds under wheat-rice interplanting were significantly higher than the seed densities of various kinds of weeds under other cultivation modes. Conventional manual transplanting mode had the highest species richness, with Margalef index being 1.86. The diversity indices, including Shannon-Wiener index, Gini index, and Pielou evenness index under water direct seeding and wheat-rice interplanting were higher than those under other cultivation modes. Comparing with conventional manual transplanting mode, the other five cultivation modes had their own dominant species in the potential weed community, and thereby, different labor-saving rice cultivation modes should be applied by turns to control the potential weed community in paddy fields effectively and persistently.

  20. Optimal electric potential profile in a collisional magnetized thruster

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amnon; Makrinich, Gennady

    2016-10-01

    A major figure of merit in propulsion in general and in electric propulsion in particular is the thrust per unit of deposited power, the ratio of thrust over power. We have recently demonstrated experimentally and theoretically that for a fixed deposited power in the ions, the momentum delivered by the electric force is larger if the accelerated ions collide with neutrals during the acceleration. As expected, the higher thrust for given power is achieved for a collisional plasma at the expense of a lower thrust per unit mass flow rate. Operation in the collisional regime can be advantageous for certain space missions. We analyze a Hall thruster configuration in which the flow is only weakly ionized but there are frequent ion-neutral collisions. With a variational method we seek an electric potential profile that maximizes thrust over power. We then examine what radial magnetic field profile should determine such a potential profile. Supported by the Israel Science Foundation Grant 765/11.

  1. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    NASA Astrophysics Data System (ADS)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  2. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  3. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  4. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  5. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  6. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  7. Reduction of coherence of the human brain electric potentials

    NASA Astrophysics Data System (ADS)

    Novik, Oleg; Smirnov, Fedor

    Plenty of technological processes are known to be damaged by magnetic storms. But technology is controlled by men and their functional systems may be damaged as well. We are going to consider the electro-neurophysiological aspect of the general problem: men surrounded by physical fields including ones of cosmic origination. Magnetic storms’ influence had been observed for a group of 13 students (practically healthy girls and boys from 18 to 23 years old, Moscow). To control the main functional systems of the examinees, their electroencephalograms (EEG) were being registered along with electrocardiograms, respiratory rhythms, arterial blood pressure and other characteristics during a year. All of these characteristics, save for the EEG, were within the normal range for all of the examinees during measurements. According to the EEG investigations by implementation of the computer proof-reading test in absence of magnetic storms, the values of the coherence function of time series of the theta-rhythm oscillations (f = 4 - 7.9 Hz, A = 20 μV) of electric potentials of the frontal-polar and occipital areas of the head belong to the interval [0.3, 0.8] for all of the students under investigation. (As the proof-reading test, it was necessary to choose given symbols from a random sequence of ones demonstrated at a monitor and to enter the number of the symbols discovered in a computer. Everyone was known that the time for determination of symbols is unlimited. On the other hand, nobody was known that the EEG and other registrations mentioned are connected with electromagnetic geophysical researches and geomagnetic storms). Let us formulate the main result: by implementation of the same test during a magnetic storm, 5 ≤ K ≤ 6, or no later then 24 hours after its beginning (different types of moderate magnetic storms occurred, the data of IZMIRAN were used), the values of the theta-rhythm frontal - occipital coherence function of all of the students of the group under

  8. Save Energy: Save Money!

    ERIC Educational Resources Information Center

    Eccli, Eugene; And Others

    This publication is a collection of inexpensive energy saving tips and home improvements for home owners, particularly in low-income areas or in older homes. Section titles are: (1) Keeping Warm; (2) Getting Heat Where You Need It; (3) Using the Sun; (4) Furnaces, Stoves, and Fireplaces; (5) Insulation and Other Energy Needs; (6) Do-It-Yourself…

  9. Large Variations In Medicare Payments For Surgery Highlight Savings Potential From Bundled Payment Programs

    PubMed Central

    Miller, David C.; Gust, Cathryn; Dimick, Justin B.; Birkmeyer, Nancy; Skinner, Jonathan; Birkmeyer, John D.

    2014-01-01

    Payers are considering bundled payments for inpatient surgery, combining provider reimbursements into a single payment for the entire episode. We found that current Medicare episode payments for certain inpatient procedures varied by 49–130 percent across hospitals sorted into five payment groups. Intentional differences in payments attributable to such factors as geography or illness severity explained much of this variation. But after adjustment for these differences, per episode payments to the highest-cost hospitals were higher than those to the lowest-cost facilities by up to $2,549 for colectomy and $7,759 for back surgery. Postdischarge care accounted for a large proportion of the variation in payments, as did discretionary physician services, which may be driven in turn by variations in surgeons’ practice styles. Our study suggests that bundled payments could yield sizable savings for payers, although the effect on individual institutions will vary because hospitals that were relatively expensive for one procedure were often relatively inexpensive for others. More broadly, our data suggest that many hospitals have considerable room to improve their cost efficiency for inpatient surgery and should look for patterns of excess utilization, particularly among surgical specialties, other inpatient specialist consultations, and various types of postdischarge care. PMID:22068403

  10. Electric potential calculation in molecular simulation of electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Olmsted, David L.; Asta, Mark; Laird, Brian B.

    2016-11-01

    For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO4-acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys. 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson’s equation, this method yields better accuracy and no supplemental assumptions.

  11. Electric potential calculation in molecular simulation of electric double layer capacitors.

    PubMed

    Wang, Zhenxing; Olmsted, David L; Asta, Mark; Laird, Brian B

    2016-11-23

    For the molecular simulation of electric double layer capacitors (EDLCs), a number of methods have been proposed and implemented to determine the one-dimensional electric potential profile between the two electrodes at a fixed potential difference. In this work, we compare several of these methods for a model LiClO4-acetonitrile/graphite EDLC simulated using both the traditional fixed-charged method (FCM), in which a fixed charge is assigned a priori to the electrode atoms, or the recently developed constant potential method (CPM) (2007 J. Chem. Phys. 126 084704), where the electrode charges are allowed to fluctuate to keep the potential fixed. Based on an analysis of the full three-dimensional electric potential field, we suggest a method for determining the averaged one-dimensional electric potential profile that can be applied to both the FCM and CPM simulations. Compared to traditional methods based on numerically solving the one-dimensional Poisson's equation, this method yields better accuracy and no supplemental assumptions.

  12. Summation of excitatory postsynaptic potentials in electrically-coupled neurones.

    PubMed

    Vazquez, Y; Mendez, B; Trueta, C; De-Miguel, F F

    2009-09-29

    Dendritic electrical coupling increases the number of effective synaptic inputs onto neurones by allowing the direct spread of synaptic potentials from one neurone to another. Here we studied the summation of excitatory postsynaptic potentials (EPSPs) produced locally and arriving from the coupled neurone (transjunctional) in pairs of electrically-coupled Retzius neurones of the leech. We combined paired recordings of EPSPs, the production of artificial excitatory postsynaptic potentials (APSPs) in neurone pairs with different coupling coefficients and simulations of EPSPs produced in the coupled dendrites. Summation of the EPSPs produced in the dendrites was always linear, suggesting that synchronous EPSPs are produced at two or more different pairs of coupled dendrites and not in both sides of any one gap junction. The different spatio-temporal relationships explored between pairs of EPSPs or APSPs produced three main effects. (1) Synchronous pairs of EPSPs or APSPs exhibited an elongation of their decay phase compared to single EPSPs. (2) Asymmetries in the amplitudes between the pair of EPSPs added a "hump" to the smallest EPSP. (3) Modelling the inputs near the electrical synapse or anticipating the production of the transjunctional APSP increased the amplitude of the compound EPSP. The magnitude of all these changes depended on the coupling coefficient of the neurones. We also show that the hump improves the passive conduction of EPSPs by adding low frequency components. The diverse effects of summation of local and alien EPSPs shown here endow electrically-coupled neurones with a wider repertoire of adjustable integrative possibilities.

  13. Electrical potentials of restorations in subjects without oral complaints.

    PubMed

    Muller, A W; Van Loon, L A; Davidson, C L

    1990-09-01

    The electrical potentials of 183 amalgam and 11 precious metal restorations, and one set of brackets, were measured. None of the 28 subjects had galvanism, leukoplakia, oral lichen planus, or toxic or allergic reactions to restorations. The potentials of the amalgam restorations increased with age, from about -350 mV NHE at 30 days, to about +100 mV NHE after more than 1000 days. In most subjects potential differences of more than 50 mV were present between restorations; this phenomenon is therefore assumed to be common in healthy populations.

  14. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  15. Evaluation of Potential Energy Loss Reduction and Savings for U. S. Army Electrical Distribution Systems

    DTIC Science & Technology

    1993-09-01

    CtC 14z 8 4io x 0L F. x L 00 Oi I I L 8 0 CLU 100 Three Phase Substation Secondary Prmary Feeders I• Phase A I I -t L Phase C Common Ti Cto LUIJ...losses. 63 USACERL DISTRIBUTION Chief of Enarmer 4th Infamy Div (MECH) TVADOC US Mslary Aedcmry I(M6 ATTN: CE•IC-lA4-LH 42) ATN: AFZC-FE £1913 ATTN: DEN

  16. Potential for electricity generation from biomass residues in Cuba

    SciTech Connect

    Lora, E.S.

    1995-11-01

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase in the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.

  17. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex combination of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. In this paper we provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  18. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex mix of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. This presentation will provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  19. Assessment of Energy Savings Potential from the Use of Demand Control Ventilation Systems in General Office Spaces in California

    SciTech Connect

    Hong, Tianzhen; Fisk, William J.

    2009-07-08

    Demand controlled ventilation (DCV) was evaluated for general office spaces in California. A medium size office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (CEC 2008) was assumed in the building energy simulations performed with the EnergyPlus program to calculate the DCV energy savings potential in five typical California climates. Three design occupancy densities and two minimum ventilation rates were used as model inputs to cover a broader range of design variations. The assumed values of minimum ventilation rates in offices without DCV, based on two different measurement methods, were 81 and 28 cfm per occupant. These rates are based on the co-author's unpublished analyses of data from EPA's survey of 100 U.S. office buildings. These minimum ventilation rates exceed the 15 to 20 cfm per person required in most ventilation standards for offices. The cost effectiveness of applying DCV in general office spaces was estimated via a life cycle cost analyses that considered system costs and energy cost reductions. The results of the energy modeling indicate that the energy savings potential of DCV is largest in the desert area of California (climate zone 14), followed by Mountains (climate zone 16), Central Valley (climate zone 12), North Coast (climate zone 3), and South Coast (climate zone 6). The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rates without DCV is 81 cfm per person, except at the low design occupancy of 10 people per 1000 ft{sup 2} in climate zones 3 and 6. At the low design occupancy of 10 people per 1000 ft{sup 2}, the greatest DCV life cycle cost savings is a net present value (NPV) of $0.52/ft{sup 2} in climate zone 14, followed by $0.32/ft{sup 2} in climate zone 16 and $0.19/ft{sup 2} in climate zone 12. At the medium design occupancy of 15 people per 1000 ft{sup 2}, the DCV savings are higher with a NPV $0

  20. An Estimate of the Job Types Potentially Available to the Retarded. Project SAVE.

    ERIC Educational Resources Information Center

    Robinson, Jacques H.; Morrison, Lorraine

    This publication reports results of an attempt to estimate the types of jobs potentially available to retarded workers by analyzing the job titles in the fourth edition of the Dictionary of Occupational Titles (DOT). Literature is reviewed that focuses on factors inhibiting the development of the full range of job options of the retarded.…

  1. Assessing Vulnerability of Electricity Generation Under Potential Future Droughts

    NASA Astrophysics Data System (ADS)

    Yan, E.; Tidwell, V. C.; Wigmosta, M. S.

    2014-12-01

    In the past few decades, the western US experienced increased sever, frequent, and prolonged droughts resulting in significant water availability issues, which raised questions as to how electricity sector might be vulnerable to future droughts. To improve our understanding of potential risks of electricity generation curtailment due to drought, an impact analysis was performed with a series of modeling tools including climate downscaling, competitive water-use calculator, hydrologic model for various hydrologic processes, and power-plant specific models. This presentation will demonstrate the predicted effects of potential droughts on power generation at a local level of the USGS 8-digit watersheds and individual power plants within the context of current and future characteristics of power system and water resource system.The study identified three potential drought scenarios based on historical drought records and projected climate changes from the GFDL and the PCM global climate models, for greenhouse gas emission scenarios A1B, A2, and B1 defined by the IPCC. The potential impacts under these three drought scenarios were evaluated with a hydrologic model constructed for the Pacific Northwest River Basin and California River Basin. The hydrologic model incorporates competitive water uses, climate forcing data corresponding to each of drought scenarios, and all major reservoirs that are currently supporting water withdrawal for various sectors and hydroelectric power generation. The hydrologic responses to drought scenarios predicted for each of the USGS 8-digit watersheds and reservoirs are used as input to power-plant specific models to quantify potential risk of curtailment at each power plant. The key findings from this study will help to improve understanding of spatial distribution of vulnerable power plants and watersheds as well as the scale of potential reduction of electricity generation under various drought scenarios. Beyond impacts to the existing

  2. Use of plant woody species electrical potential for irrigation scheduling.

    PubMed

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  3. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGES

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; ...

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  4. Electrical/optical dual-function redox potential transistor

    PubMed Central

    Li, Shunpu; Wang, Wensi; Xu, Ju; Chu, Daping; Shen, Z. John; Roy, Saibal

    2013-01-01

    We demonstrate a new type of transistors, the electrical/optical “dual-function redox-potential transistors”, which is solution processable and environmentally stable. This device consists of vertically staked electrodes that act as gate, emitter and collector. It can perform as a normal transistor, whilst one electrode which is sensitised by dye enables to generate photocurrent when illuminated. Solution processable oxide-nanoparticles were used to form various functional layers, which allow an electrolyte to penetrate through and, consequently, the current between emitter and collector can be controlled by the gate potential modulated distribution of ions. The result here shows that the device performs with high ON-current under low driving voltage (<1 V), while the transistor performance can readily be controlled by photo-illumination. Such device with combined optical and electrical functionalities allows single device to perform the tasks that are usually done by a circuit/system with multiple optical and electrical components, and it is promising for various applications. PMID:24310311

  5. Existing Whole-House Solutions Case Study: Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest

    SciTech Connect

    2014-03-01

    This project analyzes the cost effectiveness of energy-saving measures installed by a large public housing authority in Salishan, and evaluates those solutions to improve efficiency of affordable housing for new and existing homes. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7.

  6. Electric potential distributions at the interface between plasmasheet clouds

    NASA Technical Reports Server (NTRS)

    Evans, D. S.; Roth, M.; Lemaire, J.

    1987-01-01

    At the interface between two plasma clouds with different densities, temperatures, and/or bulk velocities, there are large charge separation electric fields which can be modeled in the framework of a collisionless theory for tangential discontinuities. Two different classes of layers were identified: the first one corresponds to (stable) ion layers which are thicker than one ion Lamor radius; the second one corresponds to (unstable) electron layers which are only a few electron Larmor radii thick. It is suggested that these thin electron layers with large electric potential gradients (up to 400 mV/m) are the regions where large-amplitude electrostatic waves are spontaneously generated. These waves scatter the pitch angles of the ambient plasmasheet electron into the atmospheric loss cone. The unstable electron layers can therefore be considered as the seat of strong pitch angle scattering for the primary auroral electrons.

  7. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    SciTech Connect

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are

  8. How to Save Money by Saving Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This pamphlet presents energy conservation tips to help consumers save money. Conservation measures suggested here cover topics such as: (1) insulation; (2) space heating and cooling; (3) hot water heating; (4) cooking; (5) laundry; (6) lighting; (7) electrical appliances; (8) buying or building a home; and (9) buying, maintaining and driving a…

  9. Impacts of Potential Future Droughts on Electricity Generation

    NASA Astrophysics Data System (ADS)

    Yan, E.; Wigmosta, M. S.; Tidwell, V. C.; King, C. W.

    2013-12-01

    In 2011, the state of Texas experienced the worst single-year drought on record. This recent extreme climate event raised questions as to how future droughts might impact ERCOT operations. To improve our understanding of potential risks of electricity generation curtailment due to drought, an impact analysis was performed with a series of modeling tools including climate downscaling, competitive water-use calculator, hydrologic model for various hydrologic processes, and power-plant specific models. This presentation will demonstrate the predicted effects of potential future droughts on power generation at a local level of the USGS 8-digit watersheds and power plants within the context of long-term transmission planning. The study identified three potential drought scenarios (single- and multiple-year droughts) based on historical drought records and projected climate changes from the GFDL and the PCM global climate models, for greenhouse gas emission scenarios A1B, A2, and B1 defined by the IPCC. The potential impacts under these three drought scenarios were evaluated with a hydrologic model constructed for the Texas-Gulf river basin. The Texas-Gulf hydrologic model incorporates competitive water uses, climate forcing data corresponding to each of drought scenarios, and 125 reservoirs that are currently supporting water withdrawal for various sectors and cooling water for power generation. The hydrologic responses to drought scenarios predicted for each of the USGS 8-digit watersheds (such as evapotranspiration, soil water, water yield from watersheds, stream flow, and water storage in reservoirs) provide a bases to assess if power plants potentially at risk of being of derated and watersheds are vulnerable to droughts. The key findings from this study will help to improve understanding of spatial distribution of power plants at risk and vulnerable watersheds as well as the scale of potential reduction of electricity generation. Beyond impacts to the existing

  10. Adaptive electric potential sensors for smart signal acquisition and processing

    NASA Astrophysics Data System (ADS)

    Prance, R. J.; Beardsmore-Rust, S.; Prance, H.; Harland, C. J.; Stiffell, P. B.

    2007-07-01

    Current applications of the Electric Potential Sensor operate in a strongly (capacitively) coupled limit, with the sensor physically close to or touching the source. This mode of operation screens the sensor effectively from the majority of external noise. To date however the full capability of these sensors operating in a remote mode has not been realised outside of a screened environment (Faraday cage). This paper describes the results of preliminary work in tailoring the response of the sensors to particular signals and so reject background noise, thereby enhancing both the dynamic range and signal to noise ratio significantly.

  11. Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest, Tacoma, Washington (Fact Sheet)

    SciTech Connect

    Not Available

    2014-03-01

    This project analyzes the cost effectiveness of energy savings measures installed by a large public housing authority in Salishan, a community in Tacoma Washington. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7. Market-ready energy solutions were also evaluated to improve the efficiency of affordable housing for new and existing (built since 2001) affordable housing in the marine climate of Washington State.

  12. Evaluation of Modeled and Measured Energy Savings in Existing All Electric Public Housing in the Pacific Northwest

    SciTech Connect

    Gordon, Andrew; Lubliner, Michael; Howard, Luke; Kunkle, Rick; Salzberg, Emily

    2014-04-01

    This project analyzes the cost effectiveness of energy savings measures installed by a large public housing authority in Salishan, a community in Tacoma Washington. Research focuses on the modeled and measured energy usage of the first six phases of construction, and compares the energy usage of those phases to phase 7. Market-ready energy solutions were also evaluated to improve the efficiency of affordable housing for new and existing (built since 2001) affordable housing in the marine climate of Washington State.

  13. Potential for deserts to supply reliable renewable electric power

    NASA Astrophysics Data System (ADS)

    Labordena, Mercè; Lilliestam, Johan

    2015-04-01

    To avoid dangerous climate change, the electricity systems must be decarbonized by mid-century. The world has sufficient renewable electricity resources for complete power sector decarbonization, but an expansion of renewables poses several challenges for the electricity systems. First, wind and solar PV power are intermittent and supply-controlled, making it difficult to securely integrate this fluctuating generation into the power systems. Consequently, power sources that are both renewable and dispatchable, such as biomass, hydro and concentrating solar power (CSP), are particularly important. Second, renewable power has a low power density and needs vast areas of land, which is problematic both due to cost reasons and due to land-use conflicts, in particular with agriculture. Renewable and dispatchable technologies that can be built in sparsely inhabited regions or on land with low competition with agriculture would therefore be especially valuable; this land-use competition greatly limits the potential for hydro and biomass electricity. Deserts, however, are precisely such low-competition land, and are at the same time the most suited places for CSP generation, but this option would necessitate long transmission lines from remote places in the deserts to the demand centers such as big cities. We therefore study the potential for fleets of CSP plants in the large deserts of the world to produce reliable and reasonable-cost renewable electricity for regions with high and/or rapidly increasing electricity demand and with a desert within or close to its borders. The regions in focus here are the European Union, North Africa and the Middle East, China and Australia. We conduct the analysis in three steps. First, we identify the best solar generation areas in the selected deserts using geographic information systems (GIS), and applying restrictions to minimize impact on biodiversity, soils, human heath, and land-use and land-cover change. Second, we identify

  14. Solar salt pond potential site survey for electrical power generation

    NASA Technical Reports Server (NTRS)

    Hurick, M. G.

    1982-01-01

    A solar salt gradient pond acts as a passive heat sink or thermal battery in which energy can be recovered through the conversion of thermal energy into electrical energy. Here, a condensation of a larger report that focused on the identification of potential salt gradient pond sites in the United States using in-situ resources is presented. It is shown that there are at least 24 states that lie in a primary or secondary potential site category. Fourteen states are assigned as primary states and ten are assigned as secondary. The division is subjectively based on the severity of winter weather. The most promising states are those that lie in the southern half of the country. When the primary and secondary category states are combined with the other states that may be able to support a pond, a total of 38 states exhibit the possibility of supporting power generation sites of various size.

  15. Historically Large Geomagnetic Storms and Potential Electric Power Grid Impacts

    NASA Astrophysics Data System (ADS)

    Kappenman, J. G.

    2004-05-01

    While recent work has been done to examine the possible Dst Intensity of historically large geomagnetic storms, the impacts caused to modern day electric power grids from these storms occurs due to rapid rate-of-change of regional geomagnetic fields which in most cases are driven by large ionospheric electrojet current intensifications. These temporally and spatially dynamic disturbance morphologies are not well-characterized by Dst or other broad geomagnetic storm indices. For estimates of storm intensity that correctly scale the threat potential to electric power grids, it is necessary to describe the rate-of-change of geomagnetic field. The rate-of-change of the geomagnetic field (dB/dt usually measured in nT/min) creates at ground level a geoelectric field that causes the flow of geomagnetically-induced currents (GIC) through ground connection points in electric power grids. Therefore in general, the larger the dB/dt, the larger the resulting geo-electric field and GIC in exposed power grid infrastructures and the greater the operational impact these induced currents will have on the power grid. Both extensive modeling analysis and recent operational experience suggests that power grids are becoming more vulnerable to geomagnetic storms as they grow in size and complexity. Also, large power grid blackouts have occurred at relatively low geomagnetic storm intensities. For example, the regional disturbance intensity that triggered the Hydro Quebec collapse during the March 13, 1989 Superstorm only reached an intensity of 479 nT/min. Large numbers of power system impacts in the United States were also observed for intensities that ranged from 300 to 600 nT/min during this storm. Yet both recent and historical data indicate that storms with disturbance levels that range from 2000 nT/min to as much ~5000 nT/min may be possible over extensive regions at latitudes of concern for large continental power grids across North America and Europe. Large GIC have also been

  16. Dimensional Analysis and Electric Potential Due to a Uniformly Charged Sheet

    ERIC Educational Resources Information Center

    Aghamohammadi, Amir

    2011-01-01

    Dimensional analysis, superposition principle, and continuity of electric potential are used to study the electric potential of a uniformly charged square sheet on its plane. It is shown that knowing the electric potential on the diagonal and inside the square sheet is equivalent to knowing it everywhere on the plane of the square sheet. The…

  17. Potential impacts of electric vehicles on air quality in Taiwan.

    PubMed

    Li, Nan; Chen, Jen-Ping; Tsai, I-Chun; He, Qingyang; Chi, Szu-Yu; Lin, Yi-Chiu; Fu, Tzung-May

    2016-10-01

    The prospective impacts of electric vehicle (EV) penetration on the air quality in Taiwan were evaluated using an air quality model with the assumption of an ambitious replacement of current light-duty vehicles under different power generation scenarios. With full EV penetration (i.e., the replacement of all light-duty vehicles), CO, VOCs, NOx and PM2.5 emissions in Taiwan from a fleet of 20.6 million vehicles would be reduced by 1500, 165, 33.9 and 7.2Ggyr(-1), respectively, while electric sector NOx and SO2 emissions would be increased by up to 20.3 and 12.9Ggyr(-1), respectively, if the electricity to power EVs were provided by thermal power plants. The net impacts of these emission changes would be to reduce the annual mean surface concentrations of CO, VOCs, NOx and PM2.5 by about 260, 11.3, 3.3ppb and 2.1μgm(-3), respectively, but to increase SO2 by 0.1ppb. Larger reductions tend to occur at time and place of higher ambient concentrations and during high pollution events. Greater benefits would clearly be attained if clean energy sources were fully encouraged. EV penetration would also reduce the mean peak-time surface O3 concentrations by up to 7ppb across Taiwan with the exception of the center of metropolitan Taipei where the concentration increased by <2ppb. Furthermore, full EV penetration would reduce annual days of O3 pollution episodes by ~40% and PM2.5 pollution episodes by 6-10%. Our findings offer important insights into the air quality impacts of EV and can provide useful information for potential mitigation actions.

  18. Savings in its sights for Somerset Trust.

    PubMed

    Russell, Colin

    2011-10-01

    Colin Russell, healthcare specialist at Schneider Electric (pictured), explains how the company has recently worked with Taunton and Somerset NHS Foundation Trust to implement a major energy-saving project at the Trust's Musgrove Park Hospital in Taunton. He argues that, at a time when all areas of the service are being asked to reduce costs, such partnerships can potentially save the institution millions of pounds and significantly reduce carbon emissions, while "revitalising" parts of the NHS estate, and ensuring continuity of vital hospital services for facilities managers.

  19. Elimination of Potential Electrical Stress During EMC (CS01) Testing

    NASA Technical Reports Server (NTRS)

    Erickson, Kenneth P.; Whittlesey, Albert C.; Vorperian, Vatche

    2006-01-01

    This viewgraph presentation reviews possible ways to eliminate electrical stress during Electromagneticic Compatibility (EMC) testing. The presentation reviews tests that have had problems due to electrical stress. On December 5, 1995 Cassini Radar instrument failed a functional test in preparation for EMC conducted susceptibility (CSO 1 ) testing. The instrument power supply did not turn on as required, and failure occurred prior to injection of CS test stimulus. A investigation of the failure was conducted. A PSPICE simulation of Cassini Radar 30V line using the EMC test setup was performed; the result of the simulation was an oscillation on the 30V input of the power supply. In another case: on December 28, 1999 an oscillation occurred on the input power line of the SlRTF Infrared Array Camera (IRAC) while preparing to perform CSOI testing, Resulted in damage to flight hardware. Subsequent to failure, JPL provided GSFC history and corrective action from Cassini Radar CSOI test failure GSFC implemented the same corrective action as JPL, except that the value of the resistor connected across the isolation transformer primary winding is 2.5 ohms instead of 50 ohms. Three recommendations are made: (1) Make EMC test community aware of the problem and potential solutions by presenting papers at major environmental test conferences (2) Include warnings and safeguards in EMC test requirements and procedures (3) Try to convince EMC test equipment suppliers to design a CSOl test fixture similar to fixture shown in the diagram

  20. Anisotropic Coarse-Grained Model for Proteins Based On Gay–Berne and Electric Multipole Potentials

    PubMed Central

    2015-01-01

    Gay–Berne anisotropic potential has been widely used to evaluate the nonbonded interactions between coarse-grained particles being described as elliptical rigid bodies. In this paper, we are presenting a coarse-grained model for twenty kinds of amino acids and proteins, based on the anisotropic Gay–Berne and point electric multipole (EMP) potentials. We demonstrate that the anisotropic coarse-grained model, namely GBEMP model, is able to reproduce many key features observed from experimental protein structures (Dunbrack Library), as well as from atomistic force field simulations (using AMOEBA, AMBER, and CHARMM force fields), while saving the computational cost by a factor of about 10–200 depending on specific cases and atomistic models. More importantly, unlike other coarse-grained approaches, our framework is based on the fundamental intermolecular forces with explicit treatment of electrostatic and repulsion-dispersion forces. As a result, the coarse-grained protein model presented an accurate description of nonbonded interactions (particularly electrostatic component) between hetero/homodimers (such as peptide–peptide, peptide–water). In addition, the encouraging performance of the model was reflected by the excellent correlation between GBEMP and AMOEBA models in the calculations of the dipole moment of peptides. In brief, the GBEMP model given here is general and transferable, suitable for simulating complex biomolecular systems. PMID:24659927

  1. Noninvasive imaging using an array of electric potential sensors

    NASA Astrophysics Data System (ADS)

    Gebrial, W.; Prance, R. J.; Harland, C. J.; Clark, T. D.

    2006-06-01

    We present a design for a linear array of eight electric potential sensors arranged with 1mm spacing and configured to measure spatially varying potential at the microscopic scale. The array successfully detects a 50μm wide feature associated with one of the samples tested. In a single sensor arrangement we have demonstrated <1μm resolution, but the data acquisition times can become prohibitive. The sensors operate noninvasively by capacitively coupling to the sample. The issues associated with using an array of sensors in close proximity are addressed. Cross coupling and strategies for matching the response of the sensors are described in detail. Results are presented for a range of samples including a resistive potential divider, a ceramic microwave circuit board, and a section taken from an oil drill pipe containing a known fault. The data acquisition times are compared with those of a single sensor system, with improvements of 4.5 times in speed reported. In one case real-time simultaneous data acquisition is demonstrated using all eight sensors. Since these sensors operate via the displacement current they may also be applied to the characterization of material properties, including, for example, insulators, dielectrics, and poorly conducting composite materials. It is concluded that we see significant improvements in the data acquisition times for the linear array over a single sensor as expected and are able to overcome the difficulties associated with operating an array of sensors in close proximity.

  2. Noninvasive imaging using an array of electric potential sensors

    SciTech Connect

    Gebrial, W.; Prance, R. J.; Harland, C. J.; Clark, T. D.

    2006-06-15

    We present a design for a linear array of eight electric potential sensors arranged with 1 mm spacing and configured to measure spatially varying potential at the microscopic scale. The array successfully detects a 50 {mu}m wide feature associated with one of the samples tested. In a single sensor arrangement we have demonstrated <1 {mu}m resolution, but the data acquisition times can become prohibitive. The sensors operate noninvasively by capacitively coupling to the sample. The issues associated with using an array of sensors in close proximity are addressed. Cross coupling and strategies for matching the response of the sensors are described in detail. Results are presented for a range of samples including a resistive potential divider, a ceramic microwave circuit board, and a section taken from an oil drill pipe containing a known fault. The data acquisition times are compared with those of a single sensor system, with improvements of 4.5 times in speed reported. In one case real-time simultaneous data acquisition is demonstrated using all eight sensors. Since these sensors operate via the displacement current they may also be applied to the characterization of material properties, including, for example, insulators, dielectrics, and poorly conducting composite materials. It is concluded that we see significant improvements in the data acquisition times for the linear array over a single sensor as expected and are able to overcome the difficulties associated with operating an array of sensors in close proximity.

  3. Spatial changes in the transmembrane potential during extracellular electric stimulation.

    PubMed

    Zhou, X; Knisley, S B; Smith, W M; Rollins, D; Pollard, A E; Ideker, R E

    1998-11-16

    The purpose of this study was to determine the spatial changes in the transmembrane potential caused by extracellular electric field stimulation. The transmembrane potential was recorded in 10 guinea pig papillary muscles in a tissue bath using a double-barrel microelectrode. After 20 S1 stimuli, a 10-ms square wave S2 shock field with a 30-ms S1-S2 coupling interval was given via patch shock electrodes 1 cm on either side of the tissue during the action potential plateau. Two shock strengths (2.1+/-0.2 and 6.5+/-0.6 V/cm) were tested with both shock polarities. The recording site was moved across the tissue along fibers with either 200 micrometer (macroscopic group [n=5], 12 consecutive recording sites over a 2. 2-mm tissue length in each muscle) or 20 micrometer (microscopic group [n=5], 21 consecutive recording sites over a 0.4-mm tissue length in each muscle) between adjacent recording sites. In the macroscopic group, the portion of the tissue toward the anode was hyperpolarized, whereas the portion toward the cathode was depolarized, with 1 zero-potential crossing from hyperpolarization to depolarization present near the center of the tissue. In the microscopic group, only 1 zero-potential crossing was observed in the center region of the tissue, whereas, away from the center, only hyperpolarization was observed toward the anode and depolarization toward the cathode. Although these results are consistent with predictions from field stimulation of continuous representations of myocardial structure, ie, the bidomain and cable equation models, they are not consistent with the prediction of depolarization-hyperpolarization oscillation from representations based on cellular-level resistive discontinuities associated with gap junctions, ie, the sawtooth model.

  4. Assessment of Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California

    SciTech Connect

    Hong, Tianzhen; Fisk, William

    2010-01-01

    A prototypical office building meeting the prescriptive requirements of the 2008 California building energy efficiency standards (Title 24) was used in EnergyPlus simulations to calculate the energy savings potential of demand controlled ventilation (DCV) in five typical California climates per three design occupancy densities and two minimum ventilation rates. The assumed minimum ventilation rates in offices without DCV, based on two different measurement methods employed in a large survey, were 38 and 13 L/s per occupant. The results of the life cycle cost analysis show DCV is cost effective for office spaces if the typical minimum ventilation rate without DCV is 38 L/s per person, except at the low design occupancy of 10.8 people per 100 m2 in climate zones 3 (north coast) and 6 (south Coast). DCV was not found to be cost effective if the typical minimum ventilation rate without DCV is 13 L/s per occupant, except at high design occupancy of 21.5 people per 100 m2 in climate zones 14 (desert) and 16 (mountains). Until the large uncertainties about the base case ventilation rates in offices without DCV are reduced, the case for requiring DCV in general office spaces will be a weak case. Under the Title 24 Standards office occupant density of 10.8 people per 100 m2, DCV becomes cost effective when the base case minimum ventilation rate is greater than 42.5, 43.0, 24.0, 19.0, and 18.0 L/s per person for climate zone 3, 6, 12, 14, and 16 respectively.

  5. Encouraging Electricity Savings in a University Residential Hall through a Combination of Feedback, Visual Prompts, and Incentives

    ERIC Educational Resources Information Center

    Bekker, Marthinus J.; Cumming, Tania D.; Osborne, Nikola K. P.; Bruining, Angela M.; McClean, Julia I.; Leland, Louis S., Jr.

    2010-01-01

    This experiment investigated the combined use of visual prompts, daily feedback, and rewards to reduce electricity consumption in a university residential hall. After a 17-day baseline period, the experimental intervention was introduced in the intervention hall, and no change was made in the control hall. Energy usage decreased in the…

  6. Effect of electrical potential of microbubbles on ozone dissolution

    NASA Astrophysics Data System (ADS)

    Hasegawa, H.; Kataoka, H.; Asano, K.

    2009-02-01

    Microbubbles make ozone water generation effective due to the high dissolution rate of gas in contrast to a conventional generating method. Therefore, it is presumable that ozone water generation using microbubbles can be achieved by the low concentration ozone gas. In our previous study, a compact and low power microbubble generator was developed. The microbubbles are generated by the local shear stress in the flow through a pipe with slits. In the present study, in order to investigate the relationship between the electrical potential of the gas-water interface and the cleaning of cloth using ozone microbubbles, two models with different slit angles (θ=30 and 60 deg) were installed. High concentration ozone water is produced for θ = 60 deg in contrast to the θ=30 deg case. When a cloth is washed in the θ=60 deg case, the soiled cloth can be cleaned easily in comparison with the θ=30 deg case, because the zeta potential of microbubbles for θ=60 deg is larger than that for θ=30 deg.

  7. Load shift potential of electric vehicles in Europe

    NASA Astrophysics Data System (ADS)

    Babrowski, Sonja; Heinrichs, Heidi; Jochem, Patrick; Fichtner, Wolf

    2014-06-01

    Many governments highly encourage electric mobility today, aiming at a high market penetration. This development would bring forth an impact on the energy system, which strongly depends on the driving and charging behavior of the users. While an uncontrolled immediate charging might strain the local grid and/or higher peak loads, there are benefits to be gained by a controlled charging. We examine six European mobility studies in order to display the effects of controlled and uncontrolled unidirectional charging. Taking into account country-specific driving patterns, we generate for each country a charging load curve corresponding to uncontrolled charging and consider the corresponding parking time at charging facilities in order to identify load shift potentials. The main results are that besides the charging power of the vehicles, the possibility to charge at the work place has a significant influence on the uncontrolled charging curve. Neither national nor regional differences are as significant. When charging is only possible at home, the vehicle availability at charging facilities during the day for all countries is at least 24%. With the additional possibility to charge at work, at least 45% are constantly available. Accordingly, we identified a big potential for load shifting through controlled charging.

  8. Electric fly swatter: potentially harmful not only for insects?

    PubMed

    Ioannidis, S; Spyropoulou, G A; Pavlidis, L; Dionyssiou, D; Demiri, E

    2014-09-30

    The electric fly-swatter is a household device used widely in Greece to kill mosquitoes. It consists of a racket-shaped electrical screen which is free of toxic and other chemicals. When the screen touches the insects, the contact generates an electric flash of light and the insects are incinerated. We present the case of a 15% flame burn caused by the flash of light produced by an electric fly-swatter. According to our review of the literature, this is the second case of burn injury caused by an electric fly swatter.

  9. Problems and the potential direction of reforms for the current individual medical savings accounts in the Chinese health care system.

    PubMed

    Kong, Xiangjin; Yang, Yang; Gong, Fuqing; Zhao, Mingjie

    2012-12-01

    Individual health savings accounts are an important part of the current basic medical insurance system for urban workers in China. Since 1998 when the system of personal medical insurance accounts was first implemented, there has been considerable controversy over its function and significance within different social communities. This paper analyzes the main problems in the practical implementation of individual medical insurance accounts and discusses the social and cultural foundations for the establishment of family health savings accounts from the perspective of Chinese Confucian familism. Accordingly, it addresses the direction of the reform and the development of the current system of individual health insurance accounts in China.

  10. Electric load monitoring to support a shared energy savings procurement at the US Maritime Administration Merchant Marine Academy

    SciTech Connect

    Armstrong, P.R.; Parker, G.B.

    1992-06-01

    Equipment from the Mobile Energy Laboratory (MEL) testing and application program supported by the US Department of Energy Federal Energy Management Program (DOE-FEMP) was applied to measure three-phase power demand of three large buildings at the US Merchant Marine Academy (MMA) on Long Island, New York. The selected buildings were Bowditch Hall, Fulton-Gibbs Hall, and the Library. The MEL equipment was installed on March 17, 1991. Instruments to monitor the Bowditch Hall chiller as a separate load were added on June 2, 1991. MEL Test Procedure {number sign}1, Building Energy Monitoring, was followed in the installation and operation of the monitoring equipment. The monitoring objectives were to (1) provide a baseline for assessing energy savings resulting from future energy conservation measures that are to be implemented in the monitored buildings, and (2) provide information for recommending cost-effective energy conservation opportunities. Results of the long-term, whole building monitoring project at the MMA are presented in this report.

  11. Electric load monitoring to support a shared energy savings procurement at the US Maritime Administration Merchant Marine Academy

    SciTech Connect

    Armstrong, P.R.; Parker, G.B.

    1992-06-01

    Equipment from the Mobile Energy Laboratory (MEL) testing and application program supported by the US Department of Energy Federal Energy Management Program (DOE-FEMP) was applied to measure three-phase power demand of three large buildings at the US Merchant Marine Academy (MMA) on Long Island, New York. The selected buildings were Bowditch Hall, Fulton-Gibbs Hall, and the Library. The MEL equipment was installed on March 17, 1991. Instruments to monitor the Bowditch Hall chiller as a separate load were added on June 2, 1991. MEL Test Procedure {number_sign}1, Building Energy Monitoring, was followed in the installation and operation of the monitoring equipment. The monitoring objectives were to (1) provide a baseline for assessing energy savings resulting from future energy conservation measures that are to be implemented in the monitored buildings, and (2) provide information for recommending cost-effective energy conservation opportunities. Results of the long-term, whole building monitoring project at the MMA are presented in this report.

  12. Electrical properties of sheep Purkinje strands. Electrical and chemical potentials in the clefts.

    PubMed Central

    Levis, R A; Mathias, R T; Eisenberg, R S

    1983-01-01

    The impedence of sheep Purkinje strands, measured to 3-5 kHz, is interpreted with circuit models based on morphology. The strand is described as a one-dimensional electrical cable. Clefts between myocytes of the strand allow radial current to flow in parallel with current across the outer membrane. A lumped model of the clefts, in which all the cleft membrane is in series with 100 omega-cm2, fits only below 20 Hz. Two distributed models, pie and disk, fit at all frequencies with somewhat different (31%) luminal resistivities, but with similar membrane parameters. Series resistance representing the endothelial sheath is small. Simulations of voltage clamp experiments include measured linear parameters and nonlinear membrane channels, as well as radial variation of cleft concentration, membrane flux, voltage, and current. Cleft potential is drastically nonuniform when sodium current flows. Cleft potential is reasonably uniform when calcium and potassium currents flow, but the calcium and potassium concentrations change markedly, enough to turn off the calcium current, even if the calcium channel did not inactivate. We conclude that physiological current flows produce significant nonuniformities in electrochemical potentials in the clefts of this cardiac preparation. PMID:6360228

  13. Potential Savings in Rural Public School Non-Instructional Costs through Shared Services Arrangements: A Regional Study.

    ERIC Educational Resources Information Center

    ECM, Inc., Williamsville, NY.

    A study was undertaken in 16 rural New York school districts to determine the feasibility of sharing noninstructional services as an avenue to achieving cost savings and enhanced services. The districts involved were within the Delaware/Chenango/Madison/Otsego BOCES (Board of Cooperative Educational Services) in a rural mountainous region of…

  14. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy

  15. The potential of magneto-electric nanocarriers for drug delivery

    PubMed Central

    Kaushik, Ajeet; Jayant, Rahul Dev; Sagar, Vidya; Nair, Madhavan

    2015-01-01

    Introduction The development and design of personalized nanomedicine for better health quality is receiving great attention. In order to deliver and release a therapeutic concentration at the target site, novel nanocarriers (NCs) were designed, for example, magneto-electric (ME) which possess ideal properties of high drug loading, site-specificity and precise on-demand controlled drug delivery. Areas covered This review explores the potential of ME-NCs for on-demand and site-specific drug delivery and release for personalized therapeutics. The main features including effect of magnetism, improvement in drug loading, drug transport across blood-brain barriers and on-demand controlled release are also discussed. The future directions and possible impacts on upcoming nanomedicine are highlighted. Expert opinion Numerous reports suggest that there is an urgent need to explore novel NC formulations for safe and targeted drug delivery and release at specific disease sites. The challenges of formulation lie in the development of NCs that improve biocompatibility and surface modifications for optimum drug loading/preservation/transmigration and tailoring of electrical–magnetic properties for on-demand drug release. Thus, the development of novel NCs is anticipated to overcome the problems of targeted delivery of therapeutic agents with desired precision that may lead to better patient compliance. PMID:24986772

  16. Studies of the electrical potential difference in rat proximal tubule.

    PubMed

    Seely, J F; Chirito, E

    1975-07-01

    The electrical potential difference (PD) in the rat proximal convoluted tubule was investigated in vivo as a function of distance from the glomerulus. The PD was found to be invariably negative (up to -4.5 mV) in the earliest segments (less than 0.5 mm from the glomerulus) and rose to positive values (+2 to +4) in the later segments (1 mm beyond the glomerulus). This change in PD correlated with the bubule fluid-to-plasma (TF/P) chloride ratios, which rose from unity in the early segments to approximately 1.3 in the late. Corresponding changes in PD and chloride ratios could be elicited by single-nephron stop-flow techniques in the early segments. Luminal perfusion techniques demonstrated a direct relationship between PD and tubule fluid chloride concentration. Acetazolamide was found to significantly reduce both late proximal PD (less than +2 mV) and TF/P chloride ratios (less than 1.06). Split-drop studies demonstrated that the negative PD in the early proximal tubule was dependent on the presence of glucose and alanine and the absence of a chloride gradient, whereas in the late proximal tubule under the same conditions the PD was not significantly different from zero. In this segment of the nephron the positive PD in free flow appeared to result from the chloride diffusion potential generated by preferential HCO3 reabsorption. These results provide further demonstration of intrinsic differences in the transport properties along the length of the proximal convoluted tubule.

  17. Epidural electrical stimulation in severe limb ischemia. Pain relief, increased blood flow, and a possible limb-saving effect.

    PubMed Central

    Augustinsson, L E; Carlsson, C A; Holm, J; Jivegård, L

    1985-01-01

    Peripheral vascular disease of the extremities causes ischemic pain and, at times, skin ulcerations and gangrene. It has been suggested that epidural spinal electrical stimulation (ESES) could improve peripheral circulation. Since 1978 we have used ESES in 34 patients with severe limb ischemia; all had resting pain and most had ischemic ulcers. Arterial surgery was technically impossible. Twenty-six patients had arteriosclerotic disease, one had Buerger's disease, and seven had severe vasospastic disorders. Ninety-four per cent of the patients experienced pain relief. ESES healed ulcers in 50% of those with preoperative nonhealing skin ulcerations. Seventy per cent of the patients showed improved skin temperature recordings. Only 38% of the stimulated arteriosclerotic patients underwent amputations during a mean followup period of 16 months, as compared to 90% of a comparable group of unstimulated patients. ESES is very promising in severe limb ischemia where reconstructive surgery is impossible or has failed. PMID:3874610

  18. Defense Health Care Reform: Actions Needed to Help Realize Potential Cost Savings from Medical Education and Training

    DTIC Science & Technology

    2014-07-01

    that the creation of the Directorate serves more as a functional realignment than a cost savings endeavor. Without a fully developed business case...responsibility for numerous functions of its medical health care system, support the services in carrying out their medical missions, manage the...oversight functions , including management of online courses and modeling and simulation programs; and (3) management of academic and administrative

  19. Inhibition Potentiates the Synchronizing Action of Electrical Synapses

    PubMed Central

    Pfeuty, Benjamin; Golomb, David; Mato, Germán; Hansel, David

    2007-01-01

    In vivo and in vitro experimental studies have found that blocking electrical interactions connecting GABAergic interneurons reduces oscillatory activity in the γ range in cortex. However, recent theoretical works have shown that the ability of electrical synapses to promote or impede synchrony, when alone, depends on their location on the dendritic tree of the neurons, the intrinsic properties of the neurons and the connectivity of the network. The goal of the present paper is to show that this versatility in the synchronizing ability of electrical synapses is greatly reduced when the neurons also interact via inhibition. To this end, we study a model network comprising two-compartment conductance-based neurons interacting with both types of synapses. We investigate the effect of electrical synapses on the dynamical state of the network as a function of the strength of the inhibition. We find that for weak inhibition, electrical synapses reinforce inhibition-generated synchrony only if they promote synchrony when they are alone. In contrast, when inhibition is sufficiently strong, electrical synapses improve synchrony even if when acting alone they would stabilize asynchronous firing. We clarify the mechanism underlying this cooperative interplay between electrical and inhibitory synapses. We show that it is relevant in two physiologically observed regimes: spike-to-spike synchrony, where neurons fire at almost every cycle of the population oscillations, and stochastic synchrony, where neurons fire irregularly and at a rate which is substantially lower than the frequency of the global population rhythm. PMID:18946530

  20. European transition to a low carbon electricity system using a mix of variable renewable energies: carbon saving trajectories as functions of production and storage capacity.

    NASA Astrophysics Data System (ADS)

    Francois, Baptiste; Creutin, Jean-Dominique

    2016-04-01

    Today, most of the produced energy is generated from fossil energy sources (i.e. coal, petroleum). As a result, the energy sector is still the main source of greenhouse gas in the atmosphere. For limiting greenhouse gas emission, a transition from fossil to renewable energy is required, increasing gradually the fraction energy coming from variable renewable energy (i.e. solar power, wind power and run-of-the river hydropower, hereafter denoted as VRE). VRE penetration, i.e. the percentage of demand satisfied by variable renewables assuming no storage capacity, is hampered by their variable and un-controllable features. Many studies show that combining different VRE over space smoothes their variability and increases their global penetration by a better match of demand fluctuations. When the demand is not fully supplied by the VRE generation, backup generation is required from stored energy (mostly from dams) or fossil sources, the latter being associated with high greenhouse gas emission. Thus the VRE penetration is a direct indicator of carbon savings and basically depends on the VRE installed capacity, its mix features, and on the installed storage capacity. In this study we analyze the European transition to a low carbon electricity system. Over a selection of representative regions we analyze carbon saving trajectories as functions of VRE production and storage capacities for different scenarios mixing one to three VRE with non-renewables. We show substantial differences between trajectories when the mix of sources is far from the local optimums, when the storage capacity evolves. We bring new elements of reflection about the effect of transport grid features from local independent systems to a European "copper plate". This work is part of the FP7 project COMPLEX (Knowledge based climate mitigation systems for a low carbon economy; Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/).

  1. Electric potential invariants and ions-in-molecules effective potentials for molecular Rydberg states

    NASA Astrophysics Data System (ADS)

    Coy, Stephen L.; Grimes, David D.; Zhou, Yan; Field, Robert W.; Wong, Bryan M.

    2016-12-01

    The dependence of multipole moments and polarizabilities on external fields appears in many applications including biomolecular molecular mechanics, optical non-linearity, nanomaterial calculations, and the perturbation of spectroscopic signatures in atomic clocks. Over a wide range of distances, distributed multipole and polarizability potentials can be applied to obtain the variation of atom-centered atoms-in-molecules electric properties like bonding-quenched polarizability. For cylindrically symmetric charge distributions, we examine single-center and atom-centered effective polarization potentials in a non-relativistic approximation for Rydberg states. For ions, the multipole expansion is strongly origin-dependent, but we note that origin-independent invariants can be defined. The several families of invariants correspond to optimized representations differing by origin and number of terms. Among them, a representation at the center of dipole polarizability optimizes the accuracy of the potential with terms through 1/r4. We formulate the single-center expansion in terms of polarization-modified effective multipole moments, defining a form related to the source-multipole expansion of Brink and Satchler. Atom-centered potentials are an origin independent alternative but are limited both by the properties allowed at each center and by the neglected effects like bond polarizability and charge flow. To enable comparisons between single-center effective potentials in Cartesian or spherical form and two-center effective potentials with differing levels of mutual induction between atomic centers, we give analytical expressions for the bond-length and origin-dependence of multipole and polarizability terms projected in the multipole and polarizability expansion of Buckingham. The atom-centered potentials can then be used with experimental data and ab initio calculations to estimate atoms-in-molecules properties. Some results are given for BaF+ and HF showing the

  2. Electric potential invariants and ions-in-molecules effective potentials for molecular Rydberg states.

    PubMed

    Coy, Stephen L; Grimes, David D; Zhou, Yan; Field, Robert W; Wong, Bryan M

    2016-12-21

    The dependence of multipole moments and polarizabilities on external fields appears in many applications including biomolecular molecular mechanics, optical non-linearity, nanomaterial calculations, and the perturbation of spectroscopic signatures in atomic clocks. Over a wide range of distances, distributed multipole and polarizability potentials can be applied to obtain the variation of atom-centered atoms-in-molecules electric properties like bonding-quenched polarizability. For cylindrically symmetric charge distributions, we examine single-center and atom-centered effective polarization potentials in a non-relativistic approximation for Rydberg states. For ions, the multipole expansion is strongly origin-dependent, but we note that origin-independent invariants can be defined. The several families of invariants correspond to optimized representations differing by origin and number of terms. Among them, a representation at the center of dipole polarizability optimizes the accuracy of the potential with terms through 1/r(4). We formulate the single-center expansion in terms of polarization-modified effective multipole moments, defining a form related to the source-multipole expansion of Brink and Satchler. Atom-centered potentials are an origin independent alternative but are limited both by the properties allowed at each center and by the neglected effects like bond polarizability and charge flow. To enable comparisons between single-center effective potentials in Cartesian or spherical form and two-center effective potentials with differing levels of mutual induction between atomic centers, we give analytical expressions for the bond-length and origin-dependence of multipole and polarizability terms projected in the multipole and polarizability expansion of Buckingham. The atom-centered potentials can then be used with experimental data and ab initio calculations to estimate atoms-in-molecules properties. Some results are given for BaF(+) and HF showing the

  3. Continuously varying skin potentials elicited by sinusoidally varying electric shock potentials

    NASA Technical Reports Server (NTRS)

    Senders, J. W.; Senders, V. L.; Tursky, B.

    1973-01-01

    An investigation was carried out to determine whether a form of quasi-linear systems analysis can be applied to electrodormal responses to yield new insights into the nature of the response mechanisms and their interrelationships. The response investigated was the electrodermal response (galvanic skin potential, GSP) as elicited by an electric shock stimulus applied to the skin. The response subsequent to this stimulation was examined and its characteristics measured. A series of experimental runs on three Ss was accomplished, using sinusoidal modulation envelopes of frequencies. Results showed that it was possible to drive the GSP and to achieve relatively high coherence between the driving frequency and the response itself. The analysis was limited to Fourier analysis of the response in order to determine the relative energies at the driving frequency and at successive harmonics of that driving frequency, and correlational analysis in order to determine the degree of linear relationship between the driving frequency and the driven response.

  4. CNQX and AMPA inhibit electrical synaptic transmission: a potential interaction between electrical and glutamatergic synapses

    PubMed Central

    Li, Qin; Burrell, Brian D.

    2008-01-01

    Electrical synapses play an important role in signaling between neurons and the synaptic connections between many neurons possess both electrical and chemical components. Although modulation of electrical synapses is frequently observed, the cellular processes that mediate such changes have not been studied as thoroughly as plasticity in chemical synapses. In the leech (Hirudo sp), the competitive AMPA receptor antagonist CNQX inhibited transmission at the rectifying electrical synapse of a mixed glutamatergic/electrical synaptic connection. This CNQX-mediated inhibition of the electrical synapse was blocked by concanavalin A (Con A) and dynamin inhibitory peptide (DIP), both of which are known to inhibit endocytosis of neurotransmitter receptors. CNQX-mediated inhibition was also blocked by pep2-SVKI (SVKI), a synthetic peptide that prevents internalization of AMPA-type glutamate receptor. AMPA itself also inhibited electrical synaptic transmission and this AMPA-mediated inhibition was partially blocked by Con A, DIP and SVKI. Low frequency stimulation induced long-term depression (LTD) in both the electrical and chemical components of these synapses and this LTD was blocked by SVKI. GYKI 52466, a selective non-competitive antagonist of AMPA receptors, did not affect the electrical EPSP, although it did block the chemical component of these synapses. CNQX did not affect non-rectifying electrical synapses in two different pairs of neurons. These results suggest an interaction between AMPA-type glutamate receptors and the gap junction proteins that mediate electrical synaptic transmission. This putative interaction between glutamate receptors and gap junction proteins represents a novel mechanism for regulating the strength of synaptic transmission. PMID:18601913

  5. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Potential Electric Output Capacity The potential electrical output capacity is calculated from the maximum... boiler with a maximum design heat input capacity of 340 million Btu/hr. (2) One-third of the...

  6. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Potential Electric Output Capacity The potential electrical output capacity is calculated from the maximum... boiler with a maximum design heat input capacity of 340 million Btu/hr. (2) One-third of the...

  7. Automatic analysis of auditory nerve electrically evoked compound action potential with an artificial neural network.

    PubMed

    Charasse, Basile; Thai-Van, Hung; Chanal, Jean Marc; Berger-Vachon, Christian; Collet, Lionel

    2004-07-01

    The auditory nerve's electrically evoked compound action potential is recorded in deaf patients equipped with the Nucleus 24 cochlear implant using a reverse telemetry system (NRT). Since the threshold of the NRT response (NRT-T) is thought to reflect the psychophysics needed for programming cochlear implants, efforts have been made by specialized management teams to develop its use. This study aimed at developing a valid tool, based on artificial neural networks (ANN) technology, for automatic estimation of NRT-T. The ANN used was a single layer perceptron, trained with 120 NRT traces. Learning traces differed from data used for the validation. A total of 550 NRT traces from 11 cochlear implant subjects were analyzed separately by the system and by a group of physicians with expertise in NRT analysis. Both worked to determine 37 NRT-T values, using the response amplitude growth function (AGF) (linear regression of response amplitudes obtained at decreasing stimulus intensity levels). The validity of the system was assessed by comparing the NRT-T values automatically determined by the system with those determined by the physicians. A strong correlation was found between automatic and physician-obtained NRT-T values (Pearson r correlation coefficient >0.9). ANOVA statistics confirmed that automatic NRT-Ts did not differ from physician-obtained values (F = 0.08999, P = 0.03). Moreover, the average error between NRT-Ts predicted by the system and NRT-Ts measured by the physicians (3.6 stimulation units) did not differ significantly from the average error between NRT-Ts measured by each of the three physicians (4.2 stimulation units). In conclusion, the automatic system developed in this study was found to be as efficient as human experts for fitting the amplitude growth function and estimating NRT-T, with the advantage of considerable time-saving.

  8. Membrane potential perturbations induced in tissue cells by pulsed electric fields

    SciTech Connect

    Cooper, M.S.

    1995-09-01

    Pulsed electric fields directly influence the electrophysiology of tissue cells by transiently perturbing their transmembrane potential. To determine the magnitude and time course of this interaction, electronic cable theory was used to calculate the membrane potential perturbations induced in tissue cells by a spatially uniform, pulsed electric field. Analytic solutions were obtained that predict shifts in membrane potential along the length of cells as a function of time in response to an electrical pulse. For elongated tissue cells, or groups of tissue cells that are couple electronically by gap junctions, significant hyperpolarizations and depolarizations can result form millisecond applications of electric fields with strengths on the order of 10--100 mV/cm. The results illustrate the importance of considering cellular cable parameters in assessing the effects of transient electric fields on biological systems, as well as in predicting the efficacy of pulsed electric fields in medical treatments.

  9. Learning about saving energy

    SciTech Connect

    1995-02-01

    This fact sheet for use in primary and junior high school classes describes what energy is, how people use energy, and how energy can be conserved. This last section lists ways to save energy in heating and cooling, electric appliances, automobiles, and in manufacturing. A list of activities are suggested and resources for further information, both groups and books, are listed. A glossary is also included.

  10. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect

    Ray, J.W.; Marra, S.L.; Herman, C.C.

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  11. Energy Savings Measure Packages: Existing Homes

    SciTech Connect

    Casey, S.; Booten, C.

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the US. These packages are optimized for minimum cost to homeowners for given source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home. The dollar value of the maximum annual savings varies significantly by location but typically amounts to $300 - $700/year.

  12. The potential of plug-in hybrid electric vehicles to reduce petroleum use issues involved in developing reliable estimates.

    SciTech Connect

    Vyas, A. D.; Santini, D. J.; Johnson, L. R.; Energy Systems

    2009-01-01

    This paper delineates the various issues involved in developing reliable estimates of the petroleum use reduction that would result from the wide-spread introduction of plug-in hybrid electric vehicles (PHEVs). Travel day data from the 2001 National Household Travel Survey (NHTS) were analyzed to identify the share of vehicle miles of travel (VMT) that could be transferred to grid electricity. Various PHEV charge-depleting (CD) ranges were evaluated, and 100% CD mode and potential blended modes were analyzed. The NHTS data were also examined to evaluate the potential for PHEV battery charging multiple times a day. Data from the 2005 American Housing Survey (AHS) were analyzed to evaluate the availability of garages and carports for at-home charging of the PHEV battery. The AHS data were also reviewed by census region and household location within or outside metropolitan statistical areas. To illustrate the lag times involved, the historical new vehicle market share increases for the diesel power train in France (a highly successful case) and the emerging hybrid electric vehicles in the United States were examined. A new vehicle technology substitution model is applied to illustrate a historically plausible successful new PHEV market share expansion. The trends in U.S. light-duty vehicle sales and light-duty vehicle stock were evaluated to estimate the time required for hypothetical successful new PHEVs to achieve the ultimately attainable share of the existing vehicle stock. Only when such steps have been accomplished will the full oil savings potential for the nation be achieved.

  13. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    SciTech Connect

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    2001-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner or between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid through the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  14. Electric Mars: A large trans-terminator electric potential drop on closed magnetic field lines above Utopia Planitia

    NASA Astrophysics Data System (ADS)

    Collinson, Glyn; Mitchell, David; Xu, Shaosui; Glocer, Alex; Grebowsky, Joseph; Hara, Takuya; Lillis, Robert; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-André; Fedorov, Andrey; Liemohn, Mike; Andersson, Laila; Jakosky, Bruce

    2017-02-01

    Parallel electric fields and their associated electric potential structures play a crucial role in ionospheric-magnetospheric interactions at any planet. Although there is abundant evidence that parallel electric fields play key roles in Martian ionospheric outflow and auroral electron acceleration, the fields themselves are challenging to directly measure due to their relatively weak nature. Using measurements by the Solar Wind Electron Analyzer instrument aboard the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars Scout, we present the discovery and measurement of a substantial (ΦMars=7.7 ± 0.6 V) parallel electric potential drop on closed magnetic field lines spanning the terminator from day to night above the great impact basin of Utopia Planitia, a region largely free of crustal magnetic fields. A survey of the previous 26 orbits passing over a range of longitudes revealed similar signatures on seven orbits, with a mean potential drop (ΦMars) of 10.9 ± 0.8 V, suggestive that although trans-terminator electric fields of comparable strength are not ubiquitous, they may be common, at least at these northerly latitudes.

  15. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, W.D.; Laine, D.L.; Laine, E.F.

    1997-08-26

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution. 6 figs.

  16. Methods for detecting and locating leaks in containment facilities using electrical potential data and electrical resistance tomographic imaging techniques

    DOEpatents

    Daily, William D.; Laine, Daren L.; Laine, Edwin F.

    1997-01-01

    Methods are provided for detecting and locating leaks in liners used as barriers in the construction of landfills, surface impoundments, water reservoirs, tanks, and the like. Electrodes are placed in the ground around the periphery of the facility, in the leak detection zone located between two liners if present, and/or within the containment facility. Electrical resistivity data is collected using these electrodes. This data is used to map the electrical resistivity distribution beneath the containment liner between two liners in a double-lined facility. In an alternative embodiment, an electrode placed within the lined facility is driven to an electrical potential with respect to another electrode placed at a distance from the lined facility (mise-a-la-masse). Voltage differences are then measured between various combinations of additional electrodes placed in the soil on the periphery of the facility, the leak detection zone, or within the facility. A leak of liquid though the liner material will result in an electrical potential distribution that can be measured at the electrodes. The leak position is located by determining the coordinates of an electrical current source pole that best fits the measured potentials with the constraints of the known or assumed resistivity distribution.

  17. VO2 thermochromic smart window for energy savings and generation

    NASA Astrophysics Data System (ADS)

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-10-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.

  18. VO2 thermochromic smart window for energy savings and generation

    PubMed Central

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-01-01

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner. PMID:24157625

  19. VO₂ thermochromic smart window for energy savings and generation.

    PubMed

    Zhou, Jiadong; Gao, Yanfeng; Zhang, Zongtao; Luo, Hongjie; Cao, Chuanxiang; Chen, Zhang; Dai, Lei; Liu, Xinling

    2013-10-24

    The ability to achieve energy saving in architectures and optimal solar energy utilisation affects the sustainable development of the human race. Traditional smart windows and solar cells cannot be combined into one device for energy saving and electricity generation. A VO2 film can respond to the environmental temperature to intelligently regulate infrared transmittance while maintaining visible transparency, and can be applied as a thermochromic smart window. Herein, we report for the first time a novel VO2-based smart window that partially utilises light scattering to solar cells around the glass panel for electricity generation. This smart window combines energy-saving and generation in one device, and offers potential to intelligently regulate and utilise solar radiation in an efficient manner.

  20. Electrical potentials in bone induced by ultrasound irradiation in the megahertz range

    NASA Astrophysics Data System (ADS)

    Okino, M.; Coutelou, S.; Mizuno, K.; Yanagitani, T.; Matsukawa, M.

    2013-09-01

    Low frequency mechanical studies have reported the contribution of stress-induced electrical potentials to bone metabolism. However, the healing mechanism of bone fractures by low intensity ultrasound is not yet clear. We demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. Electrical potentials were obtained from the output of bovine cortical bone transducers. In the range of 0.7-2.5 MHz, sensitivities of bone transducers were around 1/1000 of a poly (vinylidene fluoride) ultrasonic transducer and did not depend on magnitude and alignment of hydroxyapatite crystallites in bone.

  1. Plug-in hybrid electric vehicles : How does one determine their potential for reducing U.S. oil dependence?

    SciTech Connect

    Vyas, A.; Santini, D.; Duoba, M.; Alexander, M.; Energy Systems; EPRI

    2008-09-01

    Estimation of the potential of plug-in hybrid electric vehicles (PHEV's) ability to reduce U.S. gasoline use is difficult and complex. Although techniques have been proposed to estimate the vehicle kilometers of travel (VKT) that can be electrified, these methods may be inadequate and/or inappropriate for early market introduction circumstances. Factors that must be considered with respect to the PHEV itself include (1) kWh battery storage capability; (2) kWh/km depletion rate of the vehicle (3) liters/km use of gasoline (4) average daily kilometers driven (5) annual share of trips exceeding the battery depletion distance (6) driving cycle(s) (7) charger location [i.e. on-board or off-board] (8) charging rate. Each of these factors is actually a variable, and many interact. Off the vehicle, considerations include (a) primary overnight charging spot [garage, carport, parking garage or lot, on street], (b) availability of primary and secondary charging locations [i.e. dwellings, workplaces, stores, etc] (c) time of day electric rates (d) seasonal electric rates (e) types of streets and highways typically traversed during most probable trips depleting battery charge [i.e. city, suburban, rural and high vs. low density]; (f) cumulative trips per day from charger origin (g) top speeds and peak acceleration rates required to make usual trips. Taking into account PHEV design trade-off possibilities (kW vs. kWh of battery, in particular), this paper attempts to extract useful information relating to these topics from the 2001 National Household Travel Survey (NHTS), and the 2005 American Housing Survey (AHS). Costs per kWh of PHEVs capable of charge depleting (CD) all-electric range (CDE, or AER) vs. those CD in 'blended' mode (CDB) are examined. Lifetime fuel savings of alternative PHEV operating/utilization strategies are compared to battery cost estimates.

  2. Investigating the performance and energy saving potential of Chinese commercial building benchmark models for the hot humid and severe cold climate regions

    NASA Astrophysics Data System (ADS)

    Herrmann, Lesley Anne

    2011-12-01

    The demand for energy in China is growing at an alarming rate. Buildings have become a significant component of the energy-demand mix accounting for nearly one-quarter of the country's total primary energy consumption. This study compares the building code standards for office and hotel buildings in the hot humid and severe cold climate regions of China and the United States. Benchmark office and hotel building models have been developed for Guangzhou and Harbin, China that meets China's minimum national and regional building energy codes with the integration of common design and construction practices for each region. These models are compared to the ASHRAE standard based US reference building models for Houston, Texas and Duluth, Minnesota which have similar climate conditions. The research further uses a building energy optimization tool to optimize the Chinese benchmarks using existing US products to identify the primary areas for potential energy savings. In the case of the Harbin models, an economic analysis has also been performed to determine the economic feasibility of alternative building designs. The most significant energy-saving options are then presented as recommendations for potential improvements to current China building energy codes.

  3. A High-Granularity Approach to Modeling Energy Consumption and Savings Potential in the U.S. Residential Building Stock

    SciTech Connect

    2016-08-12

    Building simulations are increasingly used in various applications related to energy efficient buildings. For individual buildings, applications include: design of new buildings, prediction of retrofit savings, ratings, performance path code compliance and qualification for incentives. Beyond individual building applications, larger scale applications (across the stock of buildings at various scales: national, regional and state) include: codes and standards development, utility program design, regional/state planning, and technology assessments. For these sorts of applications, a set of representative buildings are typically simulated to predict performance of the entire population of buildings. Focusing on the U.S. single-family residential building stock, this paper will describe how multiple data sources for building characteristics are combined into a highly-granular database that preserves the important interdependencies of the characteristics. We will present the sampling technique used to generate a representative set of thousands (up to hundreds of thousands) of building models. We will also present results of detailed calibrations against building stock consumption data.

  4. Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India

    SciTech Connect

    McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

    2005-12-20

    The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

  5. Assessing Potential Energy Savings in Household Travel: Methodological and Empirical Considerations of Vehicle Capability Constraints and Multi-day Activity Patterns

    NASA Astrophysics Data System (ADS)

    Bolon, Kevin M.

    The lack of multi-day data for household travel and vehicle capability requirements is an impediment to evaluations of energy savings strategies, since (1) travel requirements vary from day-to-day, and (2) energy-saving transportation options often have reduced capability. This work demonstrates a survey methodology and modeling system for evaluating the energy-savings potential of household travel, considering multi-day travel requirements and capability constraints imposed by the available transportation resources. A stochastic scheduling model is introduced---the multi-day Household Activity Schedule Estimator (mPHASE)---which generates synthetic daily schedules based on "fuzzy" descriptions of activity characteristics using a finite-element representation of activity flexibility, coordination among household members, and scheduling conflict resolution. Results of a thirty-household pilot study are presented in which responses to an interactive computer assisted personal interview were used as inputs to the mPHASE model in order to illustrate the feasibility of generating complex, realistic multi-day household schedules. Study vehicles were equipped with digital cameras and GPS data acquisition equipment to validate the model results. The synthetically generated schedules captured an average of 60 percent of household travel distance, and exhibited many of the characteristics of complex household travel, including day-to-day travel variation, and schedule coordination among household members. Future advances in the methodology may improve the model results, such as encouraging more detailed and accurate responses by providing a selection of generated schedules during the interview. Finally, the Constraints-based Transportation Resource Assignment Model (CTRAM) is introduced. Using an enumerative optimization approach, CTRAM determines the energy-minimizing vehicle-to-trip assignment decisions, considering trip schedules, occupancy, and vehicle capability

  6. A comparison of potential electric propulsion systems for orbit transfer

    NASA Technical Reports Server (NTRS)

    Jones, R. M.

    1982-01-01

    Electric propulsion concepts are compared on the basis of trip time for the low earth orbit (LEO) to geosynchronous earth orbit (GEO) mission. Resistojet, arcjet, magnetoplasmadynamic (MPD), pulsed inductive, and ion engine thruster concepts are included. The optimum (minimum trip time) value of specific impulse is found to be dependent upon the specific mission and system being considered. As expected, the devices which can deliver good efficiency at low specific impulses promise the fastest trip times. The solution for trip time and propellant mass for the constant power, continuous low acceleration orbit transfer problem (one way and round trip) is presented in nomograph form. The influences of mission Delta V, thruster efficiency, specific impulse, power, power and propulsion system mass, and payload mass are clearly illustrated.

  7. Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells

    SciTech Connect

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun; Wang, Changlei; Gorman, Brian; Yan, Yanfa; Al-Jassim, Mowafak

    2016-11-21

    We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.

  8. The photon: EM fields, electrical potentials, and AC charge

    NASA Astrophysics Data System (ADS)

    Meulenberg, A.; Hudgins, W. R.; Penland, R. F.

    2015-09-01

    Photons are here considered to be resonant oscillations (solitons) in four dimensions (space/time) of an undefined `field' otherwise generally existing at a local energy minimum. The photons' constituent EM fields result in elevated energy, and therefore potentials, within that field. It is in the context of the standing waves of and between photons that the EM fields and potentials lead to a description of alternating (AC) `currents' (of some form) of unquantized alternating `charge' (of some sort). The main topic of this paper is the alternating charge.

  9. Remote detection of human electroencephalograms using ultrahigh input impedance electric potential sensors

    NASA Astrophysics Data System (ADS)

    Harland, C. J.; Clark, T. D.; Prance, R. J.

    2002-10-01

    In this letter, we demonstrate the use of very high performance, ultrahigh impedance, electric potential probes in the detection of electrical activity in the brain. We show that these sensors, requiring no electrical or physical contact with the body, can be used to monitor the human electroencephalogram (EEG) revealing, as examples, the α and β rhythms and the α blocking phenomenon. We suggest that the advantages offered by these sensors compared with the currently used contact (Ag/AgCl) electrodes may act to stimulate new developments in multichannel EEG monitoring and in real-time electrical imaging of the brain.

  10. A novel numerical meshless approach for electric potential estimation in transcranial stimulation

    NASA Astrophysics Data System (ADS)

    Ala, Guido; Fasshauer, Gregory E.; Francomano, Elisa; Ganci, Salvatore; McCourt, Michael J.; Vitabile, Salvatore

    2015-12-01

    In this paper, a first application of the method of fundamental solutions in estimating the electric potential and the spatial current density distribution in the brain due to transcranial stimulation, is presented. The coupled boundary value p roblems for the electric potential are solved in a meshless way, so avoiding the use of grid based numerical methods. A multi-spherical geometry is considered and numerical results are discussed.

  11. Save Energy $.

    ERIC Educational Resources Information Center

    Hirsch, Thomas E., III; Shapiro, Robert F.

    1986-01-01

    Large institutional energy users can reduce energy costs by constructing and operating steam and electricity cogeneration facilities and purchasing their own gas at lower prices rather than relying on local distributors. (MSE)

  12. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Orbiting approximately 400 km above the Earth, the International Space Station (ISS) is a unique research laboratory used to conduct ground-breaking science experiments in space. The ISS has eight Solar Array Wings (SAW), and each wing is 11.7 meters wide and 35.1 meters long. The SAWs are controlled individually to maximize power output, minimize stress to the ISS structure, and minimize interference with other ISS operations such as vehicle dockings and Extra-Vehicular Activities (EVA). The Solar Arrays are designed to operate at 160 Volts. These large, high power solar arrays are negatively grounded to the ISS and collect charged particles (predominately electrons) as they travel through the space plasma in the Earth's ionosphere. If not controlled, this collected charge causes floating potential variations which can result in arcing, causing injury to the crew during an EVA or damage to hardware [1]. The environmental catalysts for ISS floating potential variations include plasma density and temperature fluctuations and magnetic induction from the Earth's magnetic field. These alone are not enough to cause concern for ISS, but when they are coupled with the large positive potential on the solar arrays, floating potentials up to negative 95 Volts have been observed. Our goal is to differentiate the operationally induced fluctuations in floating potentials from the environmental causes. Differentiating will help to determine what charging can be controlled, and we can then design the proper operations controls for charge collection mitigation. Additionally, the knowledge of how high power solar arrays interact with the environment and what regulations or design techniques can be employed to minimize charging impacts can be applied to future programs.

  13. Energy Control Systems: Energy Savings.

    ERIC Educational Resources Information Center

    School Business Affairs, 1980

    1980-01-01

    The installation of proper control systems is estimated as saving up to 25 percent of the energy used in schools. Other potential energy-saving areas are transmission (heat loss or gain through walls, especially ceilings); internal load (heat from students, lights, and machinery); ventilation; and equipment maintenance. (Author/MLF)

  14. Electrokinetic characterization of porous plugs from streaming potential coupled with electrical resistance measurements.

    PubMed

    Szymczyk, A; Fievet, P; Foissy, A

    2002-11-15

    The zeta potential of mixed nickel-iron oxide particles is evaluated by a new laboratory instrument. This latter allows the measurement of streaming potential together with the electrical resistance of porous plugs. The conductivity of electrolyte inside plug (pore conductivity) is deduced from electrical resistance measurements and is used together with streaming potential to evaluate the zeta potential by accounting for the surface conduction phenomenon. It is shown that neglecting the surface conduction phenomenon leads to a substantial underestimation of the zeta potential. The coupled measurements of streaming potential and plug electrical resistance yield zeta potential values that are in very good agreement with those obtained by electrophoresis. The densification of the porous plug with increasing pressure increments is put in evidence by the decrease in measured streaming potentials. Electrical resistance measurements make it possible to account for the increase in surface conductivity resulting from the more compacted structure of the plug. By doing so, the calculated zeta potential is found to be virtually independent of the pressure difference involved in streaming potential experiments, whereas the negligence of surface conduction phenomenon leads to a decrease in the apparent zeta potential with increasing pressure level.

  15. The Potential Cost Savings of Greater Use of Home- and Hospice- Based End of Life Care in England

    DTIC Science & Technology

    2008-01-01

    Shugarman, A. Wilkinson, R.A. Mularski, S.C. Morton, R. G. Hughes, L. K. Hilton, M . Maglione , S.L. Rhodes,C. Rolon, V.C. Sun and P. G. Shekelle. 2008...35 Table 8: Potential release of resources compared to the baseline (quoted in £ m , million) for the entire cohort of cancer patients...40 Table 15: Potential release of resources compared to the baseline (quoted in million of £ as £ m ) for the entire cohort of organ failure

  16. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    PubMed

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  17. Energy Savings Measure Packages. Existing Homes

    SciTech Connect

    Casey, Sean; Booten, Chuck

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the United States. These packages are optimized for minimum cost to homeowners for source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home; this typically amounts to $300 - $700/year.

  18. Electric Potential Variations on a Poplar: Beyond Electrokinetic Effects Associated With Sap Flow

    NASA Astrophysics Data System (ADS)

    Gibert, D.; Le Mouël, J.; Lambs, L.; Nicollin, F.; Conil, F.; Perrier, F.

    2004-12-01

    Electric potential has been monitored since December 2003 in the roots and at two circumferences and one vertical profile in a standing poplar (Populus incognitus). Electric potential is sampled using 5 mm diameter stainless steel rods, inserted 5 mm deep in the cambium, and is referenced to an unpolarizable Petiau electrode installed 80 cm deep in the soil. Various types of signals are observed. Transient signals with long relaxation times affecting some electrodes simultaneously, may be contact potentials triggered by condensation and evaporation. Diurnal variations are observed which present a seasonal variation. During winter, diurnal variations depend on the measurement point, with variable amplitudes and sometimes anticorrelations between electrodes. By contrast, a stable and coherent organization is established in the spring, with larger amplitudes, and lasts during summer. Such signals have been reported previously (Koppan et al., 2000; Morat et al., 1994; Fensom, 1963), have been interpreted as electrokinetic effects associated with sap flow. However, a comparison of the electrical signals with a measurement of the sap flow by a heat flow method, shows that the electrical variation, although clearly correlated to sap flow, is not simply proportional to it. In a living system, electrokinetic effects, in addition to thermoelectrical effects, are probably modified significantly by additional electrochemical effects, such as membrane diffusion potentials, ion active transport by proteins, and action potentials. Such effects have been evidenced in laboratory experiments with plants (e.g., Fromm and Hei, 1998). Electric potential variations in trees may thus reveal mechanisms not accessible by other methods, and maybe reveal new aspects of the physics of living systems. A better understanding of the electrical response of trees to meteorological, chemical or biological forcing may improve the knowledge of transfer processes between the soil and the atmosphere

  19. Spacecraft electrical potential estimation in worst case environment

    NASA Astrophysics Data System (ADS)

    Toyoda, Kazuhiro

    2016-07-01

    There are no established simulation criteria for the space environment that produces the worst-case spacecraft charging. An ISO New Work Item Proposal entitled Potential Estimation in Worst-Case Environments was approved for ISO TC20/SC14/WG4. One of the aims of this project is to establish a worst-case charging environment for spacecraft charging simulation. In this paper, we compare round-robin simulations using the MUSCAT and Nascap-2k spacecraft charging codes and published measured worst-case GEO charging environments. As originally envisioned, the SPIS code was also to be part of the round-robin. However, SPIS code results are not available at this time. Thus, in this paper, MUSCAT results are compared with Nascap-2k results. In the round-robin simulation, the same spacecraft model is used with the same material properties and simulations are done with the same environments. Finally our round-robin simulation results suggest the worst-case charging GEO spacecraft charging environment that may be used for spacecraft modeling, design, and testing.

  20. Electrical stimulation modulates injury potentials in rats after spinal cord injury

    PubMed Central

    Zhang, Guanghao; Huo, Xiaolin; Wang, Aihua; Wu, Changzhe; Zhang, Cheng; Bai, Jinzhu

    2013-01-01

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as well as injury current, can be modulated by direct current field stimulation; however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around –70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon illustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cell membrane and the reduction of cation influx. PMID:25206563

  1. Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential.

    PubMed

    Ei Ei, Htwe; Nakama, Yuhi; Tanaka, Hiroshi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2016-11-01

    The impact of external electric potential on the adsorption of a protein to base metal surfaces was examined. Hen egg white lysozyme (LSZ) and six types of base metal plates (stainless steel SUS316L (St), Ti, Ta, Zr, Cr, or Ni) were used as the protein and adsorption surface, respectively. LSZ was allowed to adsorb on the surface under different conditions (surface potential, pH, electrolyte type and concentration, surface material), which was monitored using an ellipsometer. LSZ adsorption was minimized in the potential range above a certain threshold and, in the surface potential range below the threshold, decreasing the surface potential increased the amount of protein adsorbed. The threshold potential for LSZ adsorption was shifted toward a positive value with increasing pH and was lower for Ta and Zr than for the others. A divalent anion salt (K2SO4) as an electrolyte exhibited the adsorption of LSZ in the positive potential range while a monovalent salt (KCl) did not. A comprehensive consideration of the obtained results suggests that two modes of interactions, namely the electric force by an external electric field and electrostatic interactions with ionized surface hydroxyl groups, act on the LSZ molecules and determine the extent of suppression of LSZ adsorption. All these findings appear to support the view that a base metal surface can be controlled for the affinity to a protein by manipulating the surface electric potential as has been reported on some electrode materials.

  2. Effects of microstructure and water on the electrical potentials in bone induced by ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Tsuneda, H.; Matsukawa, S.; Takayanagi, S.; Mizuno, K.; Yanagitani, T.; Matsukawa, M.

    2015-02-01

    The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurements and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.

  3. Effects of microstructure and water on the electrical potentials in bone induced by ultrasound irradiation

    SciTech Connect

    Tsuneda, H.; Matsukawa, S.; Takayanagi, S.; Matsukawa, M.; Mizuno, K.; Yanagitani, T.

    2015-02-16

    The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurements and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.

  4. Modelling the potential for wind energy integration on China’s coal-heavy electricity grid

    NASA Astrophysics Data System (ADS)

    Davidson, Michael R.; Zhang, Da; Xiong, Weiming; Zhang, Xiliang; Karplus, Valerie J.

    2016-07-01

    Expanding the use of wind energy for electricity generation forms an integral part of China’s efforts to address degraded air quality and climate change. However, the integration of wind energy into China’s coal-heavy electricity system presents significant challenges owing to wind’s variability and the grid’s system-wide inflexibilities. Here we develop a model to predict how much wind energy can be generated and integrated into China’s electricity mix, and estimate a potential production of 2.6 petawatt-hours (PWh) per year in 2030. Although this represents 26% of total projected electricity demand, it is only 10% of the total estimated physical potential of wind resources in the country. Increasing the operational flexibility of China’s coal fleet would allow wind to deliver nearly three-quarters of China’s target of producing 20% of primary energy from non-fossil sources by 2030.

  5. Tension moderation and fluctuation spectrum in simulated lipid membranes under an applied electric potential

    NASA Astrophysics Data System (ADS)

    Loubet, Bastien; Lomholt, Michael Andersen; Khandelia, Himanshu

    2013-10-01

    We investigate the effect of an applied electric potential on the mechanics of a coarse grained POPC bilayer under tension. The size and duration of our simulations allow for a detailed and accurate study of the fluctuations. Effects on the fluctuation spectrum, tension, bending rigidity, and bilayer thickness are investigated in detail. In particular, the least square fitting technique is used to calculate the fluctuation spectra. The simulations confirm a recently proposed theory that the effect of an applied electric potential on the membrane will be moderated by the elastic properties of the membrane. In agreement with the theory, we find that the larger the initial tension the larger the effect of the electric potential. Application of the electric potential increases the amplitude of the long wavelength part of the spectrum and the bending rigidity is deduced from the short wavelength fluctuations. The effect of the applied electric potential on the bending rigidity is non-existent within error bars. However, when the membrane is stretched there is a point where the bending rigidity is lowered due to a decrease of the thickness of the membrane. All these effects should prove important for mechanosensitive channels and biomembrane mechanics in general.

  6. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    NASA Astrophysics Data System (ADS)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  7. Kinetic model of electric potentials in localized collisionless plasma structures under steady quasi-gyrotropic conditions

    SciTech Connect

    Schindler, K.; Birn, J.; Hesse, M.

    2012-08-15

    Localized plasma structures, such as thin current sheets, generally are associated with localized magnetic and electric fields. In space plasmas localized electric fields not only play an important role for particle dynamics and acceleration but may also have significant consequences on larger scales, e.g., through magnetic reconnection. Also, it has been suggested that localized electric fields generated in the magnetosphere are directly connected with quasi-steady auroral arcs. In this context, we present a two-dimensional model based on Vlasov theory that provides the electric potential for a large class of given magnetic field profiles. The model uses an expansion for small deviation from gyrotropy and besides quasineutrality it assumes that electrons and ions have the same number of particles with their generalized gyrocenter on any given magnetic field line. Specializing to one dimension, a detailed discussion concentrates on the electric potential shapes (such as 'U' or 'S' shapes) associated with magnetic dips, bumps, and steps. Then, it is investigated how the model responds to quasi-steady evolution of the plasma. Finally, the model proves useful in the interpretation of the electric potentials taken from two existing particle simulations.

  8. Kinetic Model of Electric Potentials in Localized Collisionless Plasma Structures under Steady Quasi-gyrotropic Conditions

    NASA Technical Reports Server (NTRS)

    Schindler, K.; Birn, J.; Hesse, M.

    2012-01-01

    Localized plasma structures, such as thin current sheets, generally are associated with localized magnetic and electric fields. In space plasmas localized electric fields not only play an important role for particle dynamics and acceleration but may also have significant consequences on larger scales, e.g., through magnetic reconnection. Also, it has been suggested that localized electric fields generated in the magnetosphere are directly connected with quasi-steady auroral arcs. In this context, we present a two-dimensional model based on Vlasov theory that provides the electric potential for a large class of given magnetic field profiles. The model uses an expansion for small deviation from gyrotropy and besides quasineutrality it assumes that electrons and ions have the same number of particles with their generalized gyrocenter on any given magnetic field line. Specializing to one dimension, a detailed discussion concentrates on the electric potential shapes (such as "U" or "S" shapes) associated with magnetic dips, bumps, and steps. Then, it is investigated how the model responds to quasi-steady evolution of the plasma. Finally, the model proves useful in the interpretation of the electric potentials taken from two existing particle simulations.

  9. An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity

    NASA Astrophysics Data System (ADS)

    Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao

    2015-01-01

    Interface problems involving the non-homogeneous flux jump condition are critical for engineering designs in the magnetostatic/electrostatic field. In applications, such as plasma simulation, we often only know the total electric quantity on the surface of the object, not the charge density distribution on the surface which appears as the non-homogeneous flux jump condition in the usual interface problems considered in the literature for the magnetostatic/electrostatic field. Based on structured meshes independent of the interface, this article proposes an iterative method that employs both the immersed finite element (IFE) method with non-homogeneous flux jump conditions and the regular finite element method with ghost nodes introduced in the object to solve the 2D interface problem for the potential field according to the given total electric quantity on the surface of the object. Numerical experiments are provided to illustrate the accuracy and efficiency of the proposed method.

  10. Energy-saving and environmental-protection potentialities of the falling-curtain process for granulation of urea

    SciTech Connect

    Myers, E.D.; Nunnelly, L.M.

    1982-01-01

    A new process for production of granular urea from urea melt has been developed by TVA through the pilot-plant stage, and a demonstration-scale plant of 330-ton-per-day (300 metric tons/day) capacity now is under construction. This process offers attractive potentialities for lower investment costs, lower energy consumption, and less generation of dust. There are promising indications that incorporation of formaldehyde in the granules, a practice now used widely to harden granules, reduce dusting, and prevent caking, may not be required in this process. An essential feature of the process is a rotating granulation drum with specially designed internal flights and baffles that direct the in-process urea particles into the form of a dense falling curtain onto which urea melt is sprayed through high-pressure atomizing nozzles. Granules grow to product size by successive surface layering and solidification of melt. Design of the baffles in the drum is such that long drops of the in-process granules, with resultant dust generation, are avoided. Nozzle placement is close to the falling curtain, which promotes efficient layering of melt. A significant portion of the heat released by the solidification of melt and cooling of granules is removed from the grenulator drum by evaporative cooling. With this method of cooling, required airflow per unit of product is relatively low and a relatively small granulation drum is sufficient.

  11. 49 CFR 173.219 - Life-saving appliances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... that do not exceed those appropriate for the actual appliance when in use. (b) Life saving appliances...) Electric storage batteries and lithium batteries (Life saving appliances containing lithium batteries...

  12. 49 CFR 173.219 - Life-saving appliances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that do not exceed those appropriate for the actual appliance when in use. (b) Life saving appliances...) Electric storage batteries and lithium batteries (Life saving appliances containing lithium batteries...

  13. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    SciTech Connect

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-07-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  14. Estimation of breast dose saving potential using a breast positioning technique for organ-based tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Tian, Xiaoyu; Sturgeon, Gregory; Agasthya, Greeshma; Segars, William Paul; Goodsitt, Mitchell M.; Kazerooni, Ella A.; Samei, Ehsan

    2016-04-01

    In thoracic CT, organ-based tube current modulation (OTCM) reduces breast dose by lowering the tube current in the 120° anterior dose reduction zone of patients. However, in practice the breasts usually expand to an angle larger than the dose reduction zone. This work aims to simulate a breast positioning technique (BPT) to constrain the breast tissue to within the dose reduction zone for OTCM and to evaluate the corresponding potential reduction in breast dose. Thirteen female anthropomorphic computational phantoms were studied (age range: 27-65 y.o., weight range: 52-105.8 kg). Each phantom was modeled in the supine position with and without application of the BPT. Attenuation-based tube current (ATCM, reference mA) was generated by a ray-tracing program, taking into account the patient attenuation change in the longitudinal and angular plane (CAREDose4D, Siemens Healthcare). OTCM was generated by reducing the mA to 20% between +/- 60° anterior of the patient and increasing the mA in the remaining projections correspondingly (X-CARE, Siemens Healthcare) to maintain the mean tube current. Breast tissue dose was estimated using a validated Monte Carlo program for a commercial scanner (SOMATOM Definition Flash, Siemens Healthcare). Compared to standard tube current modulation, breast dose was significantly reduced using OTCM by 19.8+/-4.7%. With the BPT, breast dose was reduced by an additional 20.4+/-6.5% to 37.1+/-6.9%, using the same CTDIvol. BPT was more effective for phantoms simulating women with larger breasts with the average breast dose reduction of 30.2%, 39.2%, and 49.2% from OTCMBP to ATCM, using the same CTDIvol for phantoms with 0.5, 1.5, and 2.5 kg breasts, respectively. This study shows that a specially designed BPT improves the effectiveness of OTCM.

  15. Calculation of the Helmholtz potential of an elastic strand in an external electric field.

    PubMed

    Khaliullin, Renat N; Schieber, Jay D

    2011-02-14

    We derive from statistical mechanics the Gibbs free energy of an elastic random-walk chain affected by the presence of an external electric field. Intrachain charge interactions are ignored. In addition, we find two approximations of the Helmholtz potential for this system analogous to the gaussian and Cohen-Padé approximations for an elastic strand without the presence of an electric field. Our expressions agree well with exact numerical calculations of the potential in a wide range of conditions. Our analog of the gaussian approximation exhibits distortion of the monomer density due to the presence of the electric field, and our analog of the Cohen-Padé approximation additionally includes finite chain extensibility effects. The Helmholtz potential may be used in modeling the dynamics of electrophoresis experiments.

  16. Influence of electric potential on the apparent viscosity of an ionic liquid: facts and artifacts.

    PubMed

    Ploss, Moritz A; Rutland, Mark W; Glavatskih, Sergei

    2016-09-29

    According to recent findings, the steady shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][Tf2N]) decreases significantly under the influence of electric potential. This implies a causal connection between nanoscale ordering at the electrified interface and a macroscopic change of transport properties. To study this phenomenon in more detail, we reproduced the above-mentioned measurements; however, we find no evidence that the viscosity of [Emim][Tf2N] is a function of electric potential. Additionally, our results show that steady shear measurements can lead to artifacts that, at first glance, may appear to be potential-induced changes in viscosity. We demonstrate that the artifacts result from a sliding electrical contact at the working electrode of the electrochemical cell and we suggest to consider our findings for future viscosity measurements of ionic liquids.

  17. A critical review of the genotoxic potential of electric and magnetic fields. Final report

    SciTech Connect

    McCann, J.; Dietrich, F.M.; Martin, A.

    1993-12-01

    Fifty five published articles were identified which reported results of tests of ELF (extremely low frequency) or static electric or magnetic fields for genotoxic effects. An additional 35 articles involving microwave or radiofrequency exposures were also identified. Primary emphasis was given to the electric and magnetic field studies. The analysis of microwave and radio frequency studies is presented in Appendix A. The biological assays used spanned a wide range, including microbial systems, plants, Drosophila, mammalian and human cells in vitro and in vivo. Experimental results were grouped into four exposure categories: ELF Electric; ELF Magnetic; Static Electric; and Static Magnetic. The internal electric fields present in media (for in vitro experiments) and in the torso and extremities (for in vivo experiments) were estimated, providing an index of comparison. All experiments were critically analyzed with respect to basic data quality criteria. Experiments within each exposure category were then compared to determine if results reinforced or contradicted one another. The preponderance of evidence suggests that neither ELF or static electric or magnetic fields have a clearly demonstrated potential to cause genotoxic effects. However, there may be weak genotoxic activity from exposure under conditions where phenomena auxiliary to an electric field, such as spark discharges, electrical shocks, or corona can occur. In addition, two unconfirmed reports suggest the genotoxic potential of certain chemical mutagens or ionizing radiation may be weakly affected by co-exposure to electric or magnetic fields. Certain exposure categories are not represented or are under-represented by tests in some genotoxicity test systems that are usually included in minimal test batteries as specified by EPA for chemicals. It is suggested that consideration be given to whether additional genotoxicity testing is warranted to fill these gaps.

  18. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  19. [Effect of the initial anode potential on electricity generation in microbial fuel cell].

    PubMed

    Fan, Ming-Zhi; Liang, Peng; Cao, Xiao-Xin; Huang, Xia

    2008-01-01

    The initial anode potential of the microbial fuel cell (MFC) was changed by additional circuit in the anode chamber, and the influence of the initial anode potential on the electricigens was studied. When the initial anode potential was 350 mV (vs Hg/Hg2 Cl2), the growth of microorganisms was much slower than that of the microorganisms which grew on the anode with an initial potential of -200 mV or 200 mV (vs Hg/Hg2 Cl2). After stable electricity generation, the anode resistances of the three MFCs, which had initial anode potentials of 350 mV, 200 mV and -200 mV respectively, were 71 Omega, 43 Omega and 80 Omega. The community structures in MFCs, before and after the electricity generation, were also studied by denaturing gradient gel electrophoresis (DGGE). Clostridium sticklandii, Pseudomonas mendocina and Paenibacillus taejonensis were the three most enriched strains on the anode.

  20. Real-time adaptive microstimulation increases reliability of electrically evoked cortical potentials.

    PubMed

    Brugger, Dominik; Butovas, Sergejus; Bogdan, Martin; Schwarz, Cornelius

    2011-05-01

    Cortical neuroprostheses that employ repeated electrical stimulation of cortical areas with fixed stimulus parameters, are faced with the problem of large trial-by-trial variability of evoked potentials. This variability is caused by the ongoing cortical signal processing, but it is an unwanted phenomenon if one aims at imprinting neural activity as precisely as possible. Here, we use local field potentials measured by one microelectrode, located at a distance of 200 microns from the stimulation site, to drive the electrically evoked potential toward a desired target potential by real-time adaptation of the stimulus intensity. The functional relationship between ongoing cortical activity, evoked potential, and stimulus intensity was estimated by standard machine learning techniques (support vector regression with problem-specific kernel function) from a set of stimulation trials with randomly varied stimulus intensities. The smallest deviation from the target potential was achieved for low stimulus intensities. Further, the observed precision effect proved time sensitive, since it was abolished by introducing a delay between data acquisition and stimulation. These results indicate that local field potentials contain sufficient information about ongoing local signal processing to stabilize electrically evoked potentials. We anticipate that adaptive low intensity microstimulation will play an important role in future cortical prosthetic devices that aim at restoring lost sensory functions.

  1. Study on feasible technical potential of coal to electricity in china

    NASA Astrophysics Data System (ADS)

    Jia, Dexiang; Tan, Xiandong

    2017-01-01

    The control of bulk coal is one of the important work of air pollution control in China’s future. Existing research mainly focuses on the adaptability, economy, construction and renovation plan, and operation optimization of specific energy substitution utilization, and lacks the strategy research of long-term layout of energy substitution utilization in large area. This paper puts forward a technical potential prediction method of coal to electricity based on the thermal equivalent method, which is based on the characteristics of regional coal consumption, and combined with the trend of adaptability and economy of energy substitution utilization. Also, the paper calculates the comprehensive benefit of coal to electricity according to the varieties of energy consumption and pollutant emission level of unit energy consumption in China’s future. The research result shows that the development technical potential of coal to electricity in China is huge, about 1.8 trillion kWh, including distributed electric heating, heat pump and electric heating boiler, mainly located in North China, East China, and Northeast China. The implementation of coal to electricity has remarkable comprehensive benefits in energy conservation and emission reduction, and improvement of energy consumption safety level. Case study shows the rationality of the proposed method.

  2. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    PubMed

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  3. Saving Energy. Managing School Facilities, Guide 3.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  4. A novel electrical potential sensing method for in vitro stent fracture monitoring and detection.

    PubMed

    Park, Chan-Hee; Tijing, Leonard D; Yun, Yeoheung; Kim, Cheol Sang

    2011-01-01

    This article describes a preliminary investigation and prototype fabrication of a novel potential sensing method to continuously monitor vascular stent fractures. A potential measurement system consisting of Wheatstone bridge circuit and signal conditioning circuit was designed for the cardiovascular stent durability and fatigue test. Each end of a bare and polyurethane-covered Nitinol vascular stent was electrically connected to the potential measurement system and then immersed either in simulated body fluid (SBF) media or distilled water at 36.4 ± 1 °C. When the stent experienced fracture (i.e., a cut), its electrical potential decreased with an increase in electrical resistance. This method successfully measured fractures in the stent regardless of location. Furthermore, the number of cycles at the onset of stent fracture was accurately detected and continuously monitored using this technique. Thus, the present fracture detection method, which to our knowledge is the first ever report to use electrical potential measurement for stent durability test, gives a fast, real-time, accurate and efficient detection of fractures in stent during in vitro fatigue and durability test.

  5. An economic analysis of the electricity generation potential from biogas resources in the state of Indiana

    NASA Astrophysics Data System (ADS)

    Giraldo, Juan S.

    Anaerobic digestion is a process that is a common part of organic waste management systems and is used in concentrated animal feeding operations (CAFOs), wastewater treatment plants (WWTPs), and municipal solid waste (MSW) landfills. The process produces biogas, which contains methane, and it can be burned to generate electricity. Previous reports have indicated that based on the availability of feedstocks there is a large potential for biogas production and use for electricity generation in the state of Indiana. However, these reports varied in their consideration of important factors that affect the technical and economic feasibility of being able to develop the resources available. The goal of this thesis is to make a more targeted assessment of the electricity generation potential from biogas resources at CAFOs, WWTPs, and MSW landfills in Indiana. A capital budgeting model is used to estimate the net present value (NPV) of biogas electricity projects at facilities that are identified as technically suitable. A statewide estimate of the potential generation capacity is made by estimating the number of facilities that could profitably undertake a biogas electricity project. In addition this thesis explored the impact that different incentive policies would have on the economic viability of these projects. The results indicated that the electricity generation potential is much smaller when technical and economic factors are taken into account in addition to feedstock availability. In particular it was found that projects at hog farms are unlikely to be economically feasible in the present even when financial incentives are considered. In total, 47.94 MW of potential generating capacity is estimated from biogas production at CAFOs, WWTPs, and MSW landfills. Though results indicated that 37.10 MW of capacity are economically feasible under current operating conditions, sensitivity analysis reveals that these projects are very sensitive to capital cost assumptions

  6. Save Energy Now

    SciTech Connect

    Not Available

    2006-01-01

    This DOE Industrial Technologies Program brochure informs industrial audiences about Save Energy Now, part of ''Easy Ways to Save Energy'', a national campaign to save energy and ensure energy security.

  7. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    SciTech Connect

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  8. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    SciTech Connect

    Maguire, Jeff; Burch, Jay; Merrigan, Tim; Ong, Sean

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  9. Wall System Saves Initial HVAC Costs

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    The superior insulating characteristics of an exterior wall system has enabled a Massachusetts school district to realize a savings on electric heating, ventilating, and air-conditioning systems. (Author/MLF)

  10. Effect of water on the local electric potential of simulated ionic micelles

    SciTech Connect

    Brodskaya, Elena N.; Vanin, Alexander A.

    2015-07-28

    Ionic micelles in an aqueous solution containing single-charged counter-ions have been simulated by molecular dynamics. For both cationic and anionic micelles, it has been demonstrated that explicit description of solvent has strong effect on the micelle’s electric field. The sign of the local charge alters in the immediate vicinity of the micellar crown and the electric potential varies nonmonotonically. Two micelle models have been examined: the hybrid model with a rigid hydrocarbon core and the atomistic model. For three molecular models of water (Simple Point Charge model (SPC), Transferable Intermolecular Potential 5- Points (TIP5P) and two-centered S2), the results have been compared with those for the continuum solvent model. The orientational ordering of solvent molecules has strong effect on the local electric field surprisingly far from the micelle surface.

  11. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials.

    PubMed

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J

    2016-08-11

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.

  12. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

    NASA Astrophysics Data System (ADS)

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.

    2016-08-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.

  13. Simulation of electric double-layer capacitors: evaluation of constant potential method

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Laird, Brian; Yang, Yang; Olmsted, David; Asta, Mark

    2014-03-01

    Atomistic simulations can play an important role in understanding electric double-layer capacitors (EDLCs) at a molecular level. In such simulations, typically the electrode surface is modeled using fixed surface charges, which ignores the charge fluctuation induced by local fluctuations in the electrolyte solution. In this work we evaluate an explicit treatment of charges, namely constant potential method (CPM)[1], in which the electrode charges are dynamically updated to maintain constant electrode potential. We employ a model system with a graphite electrode and a LiClO4/acetonitrile electrolyte, examined as a function of electrode potential differences. Using various molecular and macroscopic properties as metrics, we compare CPM simulations on this system to results using fixed surface charges. Specifically, results for predicted capacity, electric potential gradient and solvent density profile are identical between the two methods; However, ion density profiles and solvation structure yield significantly different results.

  14. The Dynamic Electric Polarizability of a Particle Bound by a Double Delta Potential

    ERIC Educational Resources Information Center

    Maize, M. A.; Smetanka, J. J.

    2008-01-01

    In this paper we derive an expression for the dynamic electric polarizability of a particle bound by a double delta potential for frequencies below and above the absolute value of the particle's ground state energy. The derived expression will be used to study some of the fundamental features of the system and its representation of real systems.…

  15. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Calculation of Potential Electric Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. D Appendix D to Part 72—Calculation...

  16. The energetics of ion distribution: the origin of the resting electric potential of cells.

    PubMed

    Veech, Richard L; Kashiwaya, Yoshihiro; Gates, Denise N; King, M Todd; Clarke, Kieran

    2002-11-01

    The relation between the energies of ion movement and ATP hydrolysis is unknown in tissues with widely varying electric potentials. Consequently, we measured the concentration of the nine major inorganic ions in the extra- and intracellular phases in heart, liver, and red cells with resting electrical potentials, E(N), of -86, -28, and -6 mV, respectively, under six different physiological conditions. We calculated the Nernst electric potential and the energy of ion movement between the phases. We found that the energy of ATP hydrolysis was essentially constant, between -54 and -58 kJ/mol, in all tissues and conditions. In contrast, as E(N) decreased, the energies of the Na+ and K+ gradients decreased, with slopes approximating their valence. The difference between the energies of Na+ and K+ gradients remained constant at 17 kJ/mol, which is approximately one third of the energy of ATP hydrolysis, demonstrating near-equilibrium of the Na+/K+ ATPase in all tissues under all conditions. All cations, except K+, were pumped out of cells and all anions, except Cl- in liver and red cell, were pumped into cells. We conclude that the energy of ATP was expressed in Na+/K+ ATPase and its linked inorganic ion transporters to create a Gibbs-Donnan near-equilibrium system, an inherent part of which was the electric potential.

  17. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Calculation of Potential Electric Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. D Appendix D to Part 72—Calculation...

  18. Meridian electrical potential response to acupuncture stimulation between operator and subject.

    PubMed

    Lee, Yongheum; Kim, Soobyung; Son, Taeyoon; Kang, Dongyeon; Jung, Byungjo

    2010-12-01

    The human body has a symmetric structure and maintains a physiological balance through the harmony of yin and yang. One of the fundamental principles of acupuncture is that unbalanced or abnormal bioenergetic conditions on the left and right meridians may be restored to a balanced, normal condition by acupuncture therapy. In this study, the electrical potential along the stomach meridian was measured to investigate the bioenergy consensus between the operator and subject during acupuncture stimulation, and the acupuncture response on opposite meridians was investigated by comparing the electric potential on the left and right stomach meridian during stimulation of the left side stomach meridian-36. When meridian electrical potential was simultaneously measured in both the operator and subject, opposite polarities were observed, which might indicate the transfer of bioenergy between operator and subject. In addition, the meridian electrical potentials of the subjects' left and right stomach meridians were also always of opposite polarity and presented three different signal patterns, which might have represented the condition of the associated meridian.

  19. Electric Potential Patterns Deduced for the SUNDIAL Period of 23-26 September 1986

    DTIC Science & Technology

    1990-01-01

    present study, the initial Ottawa, Canada 58.5 356.2 Saint Johns, Canada 57.6 29.1 electric potential patterns in AMIE use the four Point Tunguska , USSR...regional changes shown in Figure 4. Figure 5 shows an event where the two-cell convection appears to be distorted by a general clockwise rotation and a

  20. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    ERIC Educational Resources Information Center

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  1. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Potential Electric Output Capacity D Appendix D to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. D Appendix D to Part 72—Calculation...

  2. General Electric composite ring-disk flywheel: Recent and potential developments

    NASA Technical Reports Server (NTRS)

    Coppa, A. P.

    1984-01-01

    Recent developments of the General Electric hybrid rotor design are described. The relation of the hybrid rotor design to flywheel designs that are especially suitable for spacecraft applications is discussed. Potential performance gains that can be achieved in such rotor designs by applying latest developments in materials, processing, and design methodology are projected. Indications are that substantial improvements can be obtained.

  3. Exact solution for a noncentral electric dipole ring-shaped potential in the tridiagonal representation

    SciTech Connect

    Huangfu Guoqing; Zhang Mincang

    2011-04-15

    The Schroedinger equation with noncentral electric dipole ring-shaped potential is investigated by working in a complete square integrable basis that supports an infinite tridiagonal matrix representation of the wave operator. The three-term recursion relations for the expansion coefficients of both the angular and radial wavefunctions are presented. The discrete spectrum for the bound states is obtained by the diagonalization of the radial recursion relation. Some potential applications of this system in different fields are discussed.

  4. Detection of Matrix Crack Density of CFRP using an Electrical Potential Change Method with Multiple Probes

    NASA Astrophysics Data System (ADS)

    Todoroki, Akira; Omagari, Kazuomi

    Carbon Fiber Reinforced Plastic (CFRP) laminates are adopted for fuel tank structures of next generation space rockets or automobiles. Matrix cracks may cause fuel leak or trigger fatigue damage. A monitoring system of the matrix crack density is required. The authors have developed an electrical resistance change method for the monitoring of delamination cracks in CFRP laminates. Reinforcement fibers are used as a self-sensing system. In the present study, the electric potential method is adopted for matrix crack density monitoring. Finite element analysis (FEA) was performed to investigate the possibility of monitoring matrix crack density using multiple electrodes mounted on a single surface of a specimen. The FEA reveals the matrix crack density increases electrical resistance for a target segment between electrodes. Experimental confirmation was also performed using cross-ply laminates. Eight electrodes were mounted on a single surface of a specimen using silver paste after polishing of the specimen surface with sandpaper. The two outermost electrodes applied electrical current, and the inner electrodes measured electric voltage changes. The slope of electrical resistance during reloading is revealed to be an appropriate index for the detection of matrix crack density.

  5. Electrical potentials indicate stimulus expectancy in the brains of ants and bees.

    PubMed

    Ramón, Fidel; Gronenberg, Wulfila

    2005-03-01

    In vertebrates, and in humans in particular, so-called 'omitted stimulus potentials' can be electrically recorded from the brain or scalp upon repeated stimulation with simple stimuli such as light flashes. While standard evoked potentials follow each stimulus in a series, 'omitted stimulus potentials' occur when an additional stimulus is expected after the end of a stimulus series. These potentials represent neuronal plasticity and are assumed to be involved in basic cognitive processes. We recorded electroretinograms from the eyes and visually evoked potentials from central brain areas of honey bees and ants, social insects to which cognitive abilities have been ascribed and whose rich-behavioral repertoires include navigation, learning and memory. We demonstrate that omitted stimulus potentials occur in these insects. Omitted stimulus potentials in bees and ants show similar temporal characteristics to those found in crayfish and vertebrates, suggesting that common mechanisms may underlie this form of short-term neuronal plasticity.

  6. Tuning coercive force by adjusting electric potential in solution processed Co/Pt(111) and the mechanism involved

    PubMed Central

    Chang, Cheng-Hsun-Tony; Kuo, Wei-Hsu; Chang, Yu-Chieh; Tsay, Jyh-Shen; Yau, Shueh-Lin

    2017-01-01

    A combination of a solution process and the control of the electric potential for magnetism represents a new approach to operating spintronic devices with a highly controlled efficiency and lower power consumption with reduced production cost. As a paradigmatic example, we investigated Co/Pt(111) in the Bloch-wall regime. The depression in coercive force was detected by applying a negative electric potential in an electrolytic solution. The reversible control of coercive force by varying the electric potential within few hundred millivolts is demonstrated. By changing the electric potential in ferromagnetic layers with smaller thicknesses, the efficiency for controlling the tunable coercive force becomes higher. Assuming that the pinning domains are independent of the applied electric potential, an electric potential tuning-magnetic anisotropy energy model was derived and provided insights into our knowledge of the relation between the electric potential tuning coercive force and the thickness of the ferromagnetic layer. Based on the fact that the coercive force can be tuned by changing the electric potential using a solution process, we developed a novel concept of electric-potential-tuned magnetic recording, resulting in a stable recording media with a high degree of writing ability. PMID:28255160

  7. Tuning coercive force by adjusting electric potential in solution processed Co/Pt(111) and the mechanism involved

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Hsun-Tony; Kuo, Wei-Hsu; Chang, Yu-Chieh; Tsay, Jyh-Shen; Yau, Shueh-Lin

    2017-03-01

    A combination of a solution process and the control of the electric potential for magnetism represents a new approach to operating spintronic devices with a highly controlled efficiency and lower power consumption with reduced production cost. As a paradigmatic example, we investigated Co/Pt(111) in the Bloch-wall regime. The depression in coercive force was detected by applying a negative electric potential in an electrolytic solution. The reversible control of coercive force by varying the electric potential within few hundred millivolts is demonstrated. By changing the electric potential in ferromagnetic layers with smaller thicknesses, the efficiency for controlling the tunable coercive force becomes higher. Assuming that the pinning domains are independent of the applied electric potential, an electric potential tuning-magnetic anisotropy energy model was derived and provided insights into our knowledge of the relation between the electric potential tuning coercive force and the thickness of the ferromagnetic layer. Based on the fact that the coercive force can be tuned by changing the electric potential using a solution process, we developed a novel concept of electric-potential-tuned magnetic recording, resulting in a stable recording media with a high degree of writing ability.

  8. Meeting the Challenge: The Prospect of Achieving 30 Percent Savings Through the Weatherization Assistance Program

    SciTech Connect

    Schweitzer, M.

    2002-05-31

    The U.S. Department of Energy's (DOE's) Weatherization Assistance Program has been installing energy-efficiency measures in low-income houses for over 25 years, achieving savings exceeding 30 percent of natural gas used for space heating. Recently, as part of its Weatherization Plus initiative, the Weatherization Assistance Program adopted the goal of achieving 30 percent energy savings for all household energy usage. The expansion of the Weatherization Assistance Program to include electric baseload components such as lighting and refrigerators provides additional opportunities for saving energy and meeting this ambitious goal. This report documents an Oak Ridge National Laboratory study that examined the potential savings that could be achieved by installing various weatherization measures in different types of dwellings throughout the country. Three different definitions of savings are used: (1) reductions in pre-weatherization expenditures; (2) savings in the amount of energy consumed at the house site, regardless of fuel type (''site Btus''); and (3) savings in the total amount of energy consumed at the source (''source Btus''), which reflects the fact that each Btu* of electricity consumed at the household level requires approximately three Btus to produce at the generation source. In addition, the effects of weatherization efforts on carbon dioxide (CO{sub 2}) emissions are examined.

  9. The second harmonic generation in symmetrical and asymmetrical Gaussian potential quantum wells with applied electric field

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-Hui; Chen, Ni; Mo, Hua; Zhang, Yan; Zhang, Zhi-Hai

    2015-12-01

    A detailed investigation of the second harmonic generation in symmetrical and asymmetrical Gaussian potential quantum wells under the influence of applied electric field by using the compact-density-matrix approach and the finite difference method. The results show that the second-harmonic generation susceptibility obtained in two cases can reach the magnitude of 10-4 m/V, which depend dramatically on the applied electric field and the structural parameters. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.

  10. Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods.

    PubMed

    Kim, J H K; Pullan, A J; Cheng, L K

    2012-08-21

    One approach for non-invasively characterizing gastric electrical activity, commonly used in the field of electrocardiography, involves solving an inverse problem whereby electrical potentials on the stomach surface are directly reconstructed from dense potential measurements on the skin surface. To investigate this problem, an anatomically realistic torso model and an electrical stomach model were used to simulate potentials on stomach and skin surfaces arising from normal gastric electrical activity. The effectiveness of the Greensite-Tikhonov or the Tikhonov inverse methods were compared under the presence of 10% Gaussian noise with either 84 or 204 body surface electrodes. The stability and accuracy of the Greensite-Tikhonov method were further investigated by introducing varying levels of Gaussian signal noise or by increasing or decreasing the size of the stomach by 10%. Results showed that the reconstructed solutions were able to represent the presence of propagating multiple wave fronts and the Greensite-Tikhonov method with 204 electrodes performed best (correlation coefficients of activation time: 90%; pacemaker localization error: 3 cm). The Greensite-Tikhonov method was stable with Gaussian noise levels up to 20% and 10% change in stomach size. The use of 204 rather than 84 body surface electrodes improved the performance; however, for all investigated cases, the Greensite-Tikhonov method outperformed the Tikhonov method.

  11. Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods

    NASA Astrophysics Data System (ADS)

    Kim, J. H. K.; Pullan, A. J.; Cheng, L. K.

    2012-08-01

    One approach for non-invasively characterizing gastric electrical activity, commonly used in the field of electrocardiography, involves solving an inverse problem whereby electrical potentials on the stomach surface are directly reconstructed from dense potential measurements on the skin surface. To investigate this problem, an anatomically realistic torso model and an electrical stomach model were used to simulate potentials on stomach and skin surfaces arising from normal gastric electrical activity. The effectiveness of the Greensite-Tikhonov or the Tikhonov inverse methods were compared under the presence of 10% Gaussian noise with either 84 or 204 body surface electrodes. The stability and accuracy of the Greensite-Tikhonov method were further investigated by introducing varying levels of Gaussian signal noise or by increasing or decreasing the size of the stomach by 10%. Results showed that the reconstructed solutions were able to represent the presence of propagating multiple wave fronts and the Greensite-Tikhonov method with 204 electrodes performed best (correlation coefficients of activation time: 90%; pacemaker localization error: 3 cm). The Greensite-Tikhonov method was stable with Gaussian noise levels up to 20% and 10% change in stomach size. The use of 204 rather than 84 body surface electrodes improved the performance; however, for all investigated cases, the Greensite-Tikhonov method outperformed the Tikhonov method.

  12. Simulation of the electric potential and plasma generation coupling in magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Krueger, Dennis; Schmidt, Frederik; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2016-09-01

    Magnetron sputtering typically operated at low pressures below 1 Pa is a widely applied deposition technique. For both, high power impulse magnetron sputtering (HiPIMS) as well as direct current magnetron sputtering (dcMS) the phenomenon of rotating ionization zones (also referred to as spokes) has been observed. A distinct spatial profile of the electric potential has been associated with the latter, giving rise to low, mid, and high energy groups of ions observed at the substrate. The adherent question of which mechanism drives this process is still not fully understood. This query is approached using Monte Carlo simulations of the heavy particle (i.e., ions and neutrals) transport consistently coupled to a pre-specified electron density profile via the intrinsic electric field. The coupling between the plasma generation and the electric potential, which establishes correspondingly, is investigated. While the system is observed to strive towards quasi-neutrality, distinct mechanisms governing the shape of the electric potential profile are identified. This work is supported by the German Research Foundation (DFG) in the frame of the transregional collaborative research centre TRR 87.

  13. Industrial-electricity-conservation potential in the Pacific Northwest. Volume I. Final report

    SciTech Connect

    Lang, K.; Hinkle, B.K.

    1983-03-01

    The findings of an update of the assessment of industrial electricity conservation potential in the Pacific Northwest (PNW) completed in February 1982 are presented. Using a detailed process energy end use data base developed by SRC in an earlier study for BPA, conservation measures were identified for nine 4-digit SIC (Standard Industrial Classification) industries, representing the most energy intensive industries in each of the major industry groups in the PNW, in the February 1982 report. Assumptions associated with these measures were revised in response to comments from industry representatives in the PNW. An engineering-economic analysis was performed for each conservation measure. Based on the economic attractiveness of the measure relative to average hurdle rates (which are equivalent to the cost of equity) in each industry, estimates of the economic potential of each conservation measure were made. A market penetration model was then used to estimate the actual implementation of each measure over time. The conservation potential estimated for the 4-digit industries was extrapolated to the 2-digit level using an analysis of the end uses of electricity and a baseline forecast of industrial electricity requirements provided by BPA. Options for BPA and utility programs to encourage industrial electricity conservaton were identified and their costs and benefits were estimated.

  14. ELECTRIC CURRENT FILAMENTATION AT A NON-POTENTIAL MAGNETIC NULL-POINT DUE TO PRESSURE PERTURBATION

    SciTech Connect

    Jelínek, P.; Karlický, M.; Murawski, K.

    2015-10-20

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with a plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.

  15. Simultaneous electrical and plasmonic monitoring of potential induced ion adsorption on metal nanowire arrays.

    PubMed

    MacKenzie, Robert; Fraschina, Corrado; Dielacher, Bernd; Sannomiya, Takumi; Dahlin, Andreas B; Vörös, Janos

    2013-06-07

    Simultaneous LSPR and electronic sensing of potential induced ion adsorption onto gold nanowire arrays is presented. The formation of a Stern layer upon applying an electrochemical potential generated a complex optical response. Simulation of a lossy atomic layer on the nanowire array using the Multiple Multipole Program (MMP) corresponded very well to the experimentally observed peak position, intensity, and radius of curvature changes. Additionally, a significant voltage-dependent change in the resistance of the gold nanowire array was observed during the controlled formation of the electrical double layer. The results demonstrated that an applied electrochemical potential induces measurable changes in the optical and electrical properties of the gold nanowire surface. This is the first demonstration of combined plasmonic and nanowire resistance-based sensing of a surface process in the literature.

  16. A class of Fourier integrals based on the electric potential of an elongated dipole.

    PubMed

    Skianis, Georgios Aim

    2014-01-01

    In the present paper the closed expressions of a class of non tabulated Fourier integrals are derived. These integrals are associated with a group of functions at space domain, which represent the electric potential of a distribution of elongated dipoles which are perpendicular to a flat surface. It is shown that the Fourier integrals are produced by the Fourier transform of the Green's function of the potential of the dipole distribution, times a definite integral in which the distribution of the polarization is involved. Therefore the form of this distribution controls the expression of the Fourier integral. Introducing various dipole distributions, the respective Fourier integrals are derived. These integrals may be useful in the quantitative interpretation of electric potential anomalies produced by elongated dipole distributions, at spatial frequency domain.

  17. Quantum Effects of Electric Fields and Potentials on Electron Motion: An Introduction to Theoretical and Practical Aspects

    ERIC Educational Resources Information Center

    Matteucci, G.

    2007-01-01

    In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic…

  18. A Comprehensive View of Global Potential for Hydro-generated Electricity

    SciTech Connect

    Zhou, Yuyu; Hejazi, Mohamad I.; Smith, Steven J.; Edmonds, James A.; Li, Hongyi; Clarke, Leon E.; Calvin, Katherine V.; Thomson, Allison M.

    2015-09-01

    In this study, we assess global hydropower potential using runoff and stream flow data, along with turbine technology performance, cost assumptions, and environmental considerations. The results provide the first comprehensive quantification of global hydropower potential including gross, technical, economic, and exploitable estimates. Total global potential of gross, technical, economic, and exploitable hydropower are estimated to be approximately 128, 39, 32, and 27 petawatt hours per year, respectively. The economic and exploitable potential of hydropower are calculated at less than 9 cents/kWh. We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region. Globally, hydropower can potentially supply about 1.5 times the total electricity demand in 2005. Estimated hydropower resources in a number of countries are sufficient to accommodate their demand for electricity in 2005, e.g., Brazil (5.6 times), Russia (4.6 times), and Canada (3.5 times). A sensitivity analysis indicates that hydropower estimates are not highly sensitive to five key parameters: design flow (varying by -2% to +1% at less than 9 cents/kWh), cost and financing options (by -7% to +6%), turbine efficiency (by -10% to +10%), stream flow (by -10% to +10%), and fixed charge rate (by -6% to 5%). This sensitivity analysis emphasizes the reliable role of hydropower for future energy systems, when compared to other renewable energy resources with larger uncertainty in their future potentials.

  19. Evidence for the transmission of information through electric potentials in injured avocado trees.

    PubMed

    Oyarce, Patricio; Gurovich, Luis

    2011-01-15

    Electrical excitability and signaling, frequently associated with rapid responses to environmental stimuli, have been documented in both animals and higher plants. The presence of electrical potentials (EPs), such as action potentials (APs) and variation potentials (VPs), in plant cells suggests that plants make use of ion channels to transmit information over long distances. The reason why plants have developed pathways for electrical signal transmission is most probably the necessity to respond rapidly, for example, to environmental stress factors. We examined the nature and specific characteristics of the electrical response to wounding in the woody plant Persea americana (avocado). Under field conditions, wounds can be the result of insect activity, strong winds or handling injury during fruit harvest. Evidence for extracellular EP signaling in avocado trees after mechanical injury was expressed in the form of variation potentials. For tipping and pruning, signal velocities of 8.7 and 20.9 cm/s, respectively, were calculated, based on data measured with Ag/AgCl microelectrodes inserted at different positions of the trunk. EP signal intensity decreased with increasing distance between the tipping and pruning point and the electrode. Recovery time to pre-tipping or pre-pruning EP values was also affected by the distance and signal intensity from the tipping or pruning point to the specific electrode position. Real time detection of remote EP signaling can provide an efficient tool for the early detection of insect attacks, strong wind damage or handling injury during fruit harvest. Our results indicate that electrical signaling in avocado, resulting from microenvironment modifications, can be quantitatively related to the intensity and duration of the stimuli, as well as to the distance between the stimuli site and the location of EP detection. These results may be indicative of the existence of a specific kind of proto-nervous system in plants.

  20. Space charge, plasma potential and electric field distributions in HiPIMS discharges of varying configuration

    NASA Astrophysics Data System (ADS)

    Liebig, B.; Bradley, J. W.

    2013-08-01

    An electron-emitting (emissive) probe has been used to study the temporal and spatial distribution of the plasma potential during high-power impulse magnetron sputtering (HiPIMS) discharges with various substrate and magnetic field configurations. The average power was 700 W, with a repetition frequency of 100 Hz and pulse duration of 100 µs. Strongly negative plasma potentials exceeding -300 V and electric fields up to 10 kV m-1, caused by strong separation of charges with net charge carrier densities Δn of about 1014 m-3, were observed during the ignition of the discharge. The spatial distribution of the plasma potential in the stable stage of the discharge showed values consistently 5 V more negative for a floating substrate compared with a grounded one, so enhancing electron transport around the insulated substrate to grounded walls. However, this change in the electrical configuration of the plasma does not alter significantly the fraction of ionized sputtered particles (of about 30%) that can potentially reach the substrate. By changing the degree of unbalance of the sputtering source, we find a strong correlation between the electric field strength in the magnetic trap (created through charge separation) and the absolute value (and shape) of the magnetic field. For the more unbalanced magnetron, a flattening of the plasma potential structure (decrease in the axial electric field) was observed close to the target. Our findings show in principle that manipulation of the potential barrier close to the target through changing the magnetic field can regulate the proportion of sputtered and ionized species reaching the substrate.

  1. Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim

    PubMed Central

    Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam

    2016-01-01

    Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals. PMID:27445781

  2. Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim.

    PubMed

    Parasuram, Harilal; Nair, Bipin; D'Angelo, Egidio; Hines, Michael; Naldi, Giovanni; Diwakar, Shyam

    2016-01-01

    Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.

  3. Electricity

    SciTech Connect

    Sims, B.

    1983-01-01

    Historical aspects of electricity are reviewed with individual articles on hydroelectric dams, coal-burning power plants, nuclear power plants, electricity distribution, and the energy future. A glossary is included. (PSB)

  4. Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yu; Yoshida, Shoji; Sakurada, Ryuji; Takashima, Kengo; Yamamoto, Takahiro; Saito, Tetsuki; Konabe, Satoru; Taniguchi, Takashi; Watanabe, Kenji; Maniwa, Yutaka; Takeuchi, Osamu; Shigekawa, Hidemi; Miyata, Yasumitsu

    2016-08-01

    Semiconductor heterojunction interfaces have been an important topic, both in modern solid state physics and in electronics and optoelectronics applications. Recently, the heterojunctions of atomically-thin transition metal dichalcogenides (TMDCs) are expected to realize one-dimensional (1D) electronic systems at their heterointerfaces due to their tunable electronic properties. Herein, we report unique conductivity enhancement and electrical potential modulation of heterojunction interfaces based on TMDC bilayers consisted of MoS2 and WS2. Scanning tunneling microscopy/spectroscopy analyses showed the formation of 1D confining potential (potential barrier) in the valence (conduction) band, as well as bandgap narrowing around the heterointerface. The modulation of electronic properties were also probed as the increase of current in conducting atomic force microscopy. Notably, the observed band bending can be explained by the presence of 1D fixed charges around the heterointerface. The present findings indicate that the atomic layer heterojunctions provide a novel approach to realizing tunable 1D electrical potential for embedded quantum wires and ultrashort barriers of electrical transport.

  5. Modulation of electrical potential and conductivity in an atomic-layer semiconductor heterojunction

    PubMed Central

    Kobayashi, Yu; Yoshida, Shoji; Sakurada, Ryuji; Takashima, Kengo; Yamamoto, Takahiro; Saito, Tetsuki; Konabe, Satoru; Taniguchi, Takashi; Watanabe, Kenji; Maniwa, Yutaka; Takeuchi, Osamu; Shigekawa, Hidemi; Miyata, Yasumitsu

    2016-01-01

    Semiconductor heterojunction interfaces have been an important topic, both in modern solid state physics and in electronics and optoelectronics applications. Recently, the heterojunctions of atomically-thin transition metal dichalcogenides (TMDCs) are expected to realize one-dimensional (1D) electronic systems at their heterointerfaces due to their tunable electronic properties. Herein, we report unique conductivity enhancement and electrical potential modulation of heterojunction interfaces based on TMDC bilayers consisted of MoS2 and WS2. Scanning tunneling microscopy/spectroscopy analyses showed the formation of 1D confining potential (potential barrier) in the valence (conduction) band, as well as bandgap narrowing around the heterointerface. The modulation of electronic properties were also probed as the increase of current in conducting atomic force microscopy. Notably, the observed band bending can be explained by the presence of 1D fixed charges around the heterointerface. The present findings indicate that the atomic layer heterojunctions provide a novel approach to realizing tunable 1D electrical potential for embedded quantum wires and ultrashort barriers of electrical transport. PMID:27515115

  6. Exploration of electric properties of bone compared to cement: streaming potential and piezoelectirc properties

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn

    2015-03-01

    Bone is a material after which to model construction materials for many reasons, including its great strength, toughness, and adaptability. This paper focuses on bone's intrinsic ability to adapt to its environment, namely loading conditions. Research on bone's electrical properties reveals that two phenomena occur in bone to allow it to adapt to environmental changes; they are the inherent piezoelectric property of bone and the streaming potential of bone [1]. Together they create charge differences that attract ions to specific regions of the bone, namely those under greatest stress, in order to build up the region to handle the applied load. Research on the utilization of these properties in cement in order to increase adaptability was studied along with 1) the inherent electric properties of the cement itself and 2) considered the introduction of a different polymer or ceramic within the cement to impart piezoelectricity and streaming potential.

  7. Influence of an electrical potential on the charge transfer kinetics of bacteriorhodopsin

    PubMed Central

    Kleinschmidt, Christoph; Hess, Benno

    1990-01-01

    The adsorption of bacteriorhodopsin(bR)-containing purple membranes (PM) to black lipid membranes (BLM) was used to study the charge translocation kinetics of bR upon flash excitation. The discharge of the PM-BLM system after charging upon illumination is found to proceed quite slowly (discharge time up to several minutes) but is considerably accelerated by addition of the protonophore FCCP. Therefore, the dependence of the proton transfer kinetics in bR on electrical potentials generated by preceding flashes of varying repetition rate and intensity was investigated. The kinetics are slowed down with increasing flash intensity as well as repetition rate. This effect is partly abolished by small amounts of FCCP. A new model is introduced which takes into account the instantaneous feedback of the electrical potential on the kinetics of the pump current. It explains the observed deviations from first-order kinetics and renders an approach with “distributed kinetics” unnecessary. PMID:19431767

  8. Effect of active control of electric potential of filter medium on depth filtration.

    PubMed

    Kishimoto, N; Kawasaki, H; Sasaki, T; Sasaki, S

    2010-01-01

    The effect of active control of electric potential of filter medium on depth filtration was explored experimentally. Activated carbon particles were selected as the conductive filter medium. The filter medium potential was controlled with an external DC power supply. Kaolin particles were used as the model suspended solid. The activated carbon and kaolin had negative zeta potential around neutral pH. When the filter medium potential against a counter electrode was greater than or equal to + 0.2 V, rejection rate of particles was 1.8 times higher than that when the potential was less than + 0.2 V. Thus adsorption of particles by interaction of electric double layers was enhanced by maintaining a positive charge on the filter media. Desorption of kaolin trapped on the filter media was also confirmed by changing the filter medium potential from positive to negative. The percentage of kaolin particles desorbed was 11% of the kaolin trapped on the filter media. The desorption rate was not high, but this technique will enhance refreshment of the filter media when combined with back washing.

  9. Streamlined energy-savings calculations for heat-island reduction strategies

    SciTech Connect

    Akbari, Hashem; Konopacki, Steven J.

    2003-03-15

    We have developed summary tables (sorted by heating- and cooling-degree-days) to estimate the potential of Heat-Island Reduction (HIR) strategies (i.e., solar-reflective roofs, shade trees, reflective pavements, and urban vegetation) to reduce cooling-energy use in buildings. The tables provide estimates of savings for both direct effect (reducing heat gain through the building shell) and indirect effect (reducing the ambient air temperature). In this analysis, we considered three building types that offer the most savings potential : residences, offices, and retail stores. Each building type was characterized in detail by Pre-1980 (old) or 1980+ (new) construction vintage and with natural gas or electricity as heating fuel. We defined prototypical-building characteristics for each building type and simulated the effects of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.1E model and weather data for about 240 locations in the U.S. A statistical analysis of previously completed simulations for five cities was used to estimate the indirect savings. Our simulations included the effect of (1) solar-reflective roofing material on building [direct effect], (2) placement of deciduous shade trees near south and west walls of building [direct effect], and (3) ambient cooling achieved by urban reforestation and reflective building surfaces and pavements [indirect effect]. Upon completion of estimating the direct and indirect energy savings for all the selected locations, we integrated the results in tables arranged by heating- and cooling-degree-days. We considered 15 bins for heating-degree-days, and 11 bins for cooling-degree-days. Energy use and savings are presented per 1000 ft2 of roof area. In residences heated with gas and in climates with greater than 1000 cooling-degree-days, the annual electricity savings in Pre-1980 stock ranged from 650 to 1300 kWh/1000ft2; for 1980+ stock savings ranged 300 to 600 kWh/1000 ft2

  10. Comparison of magnetic field and electric potential produced by frog heart muscle

    NASA Astrophysics Data System (ADS)

    Burstein, Deborah; Cohen, David

    1985-04-01

    A comparison is made here between the magnetic field and electric potential produced by a thin strip of frog heart muscle. An experimental test is made of the theory which states that the wave front of a single fiber (or parallel bundle of fibers as in this strip) can be represented, for both the magnetic field and electric potential, by the same single-current dipole. First, an experimental measurement is made of the ratio of magnetic field/electric potential produced by an actual current dipole in an electrolytic tank. Then the dipole is replaced by the muscle strip and a measurement is again made of the ratio; this is done for three muscle strips at eight different source-to-detector distances ranging from 1 to 5 cm. It is found, in all cases, that the muscle ratios are equal to those of the actual dipole to within the experimental uncertainty of ±10%. Therefore, to this extent the theory is verified for this case of a thin strip of frog heart tissue.

  11. Electrical activation of Na/K pumps can increase ionic concentration gradient and membrane resting potential.

    PubMed

    Chen, Wei; Dando, Robin

    2006-01-01

    It has been previously demonstrated by our group that our specifically designed synchronization modulation electric field can dynamically entrain the Na/K ATPase molecules, effectively accelerating the pumping action of these molecules. The ATPase molecules are first synchronized by the field, and subsequently their pumping rates are gradually modulated in a stepwise pattern to progressively higher and higher levels. Here, we present results obtained on application of the field to intact twitch skeletal muscle fibers. The ionic concentration gradient across the cell membrane was monitored, with the membrane potential extrapolated using a slow fluorescent probe with a confocal microimaging technique. The applied synchronization-modulation electric field is able to slowly but consistently increase the ionic concentration gradient across the membrane and, hence, hyperpolarize the membrane potential. All of these results were fully eliminated if ouabain was applied to the bathing solution, indicating a correlation with the action of the Na/K pump molecules. These results in combination with our previous results into the entrainment of the pump molecules show that the synchronization-modulation electric field-induced activation of the Na/K pump functions can effectively increase the ionic concentration gradient and the membrane potential.

  12. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.

    PubMed

    Chen, Mei-Chin; Sun, Yu-Chin; Chen, Yuan-Hsiang

    2013-03-01

    Recent trends in scaffold design have focused on materials that can provide appropriate guidance cues for particular cell types to modulate cell behavior. In this study highly aligned and electrically conductive nanofibers that can simultaneously provide topographical and electrical cues for cells were developed. Thereafter their potential to serve as functional scaffolds for skeletal muscle tissue engineering was investigated. Well-ordered nanofibers, composed of polyaniline (PANi) and poly(ε-caprolactone) (PCL), were electrospun by introducing an external magnetic field in the collector region. Incorporation of PANi into PCL fibers significantly increased the electrical conductivity from a non-detectable level for the pure PCL fibers to 63.6±6.6mS cm(-1) for the fibers containing 3wt.% PANi (PCL/PANi-3). To investigate the synergistic effects of topographical and electrical cues using the electrospun scaffolds on skeletal myoblast differentiation, mouse C2C12 myoblasts were cultured on random PCL (R-PCL), aligned PCL (A-PCL), random PCL/PANi-3 (R-PCL/PANi) and aligned PCL/PANi-3 (A-PCL/PANi) nanofibers. Our results showed that the aligned nanofibers (A-PCL and A-PCL/PANi) could guide myoblast orientation and promote myotube formation (i.e. approximately 40% and 80% increases in myotube numbers) compared with R-PCL scaffolds. In addition, electrically conductive A-PCL/PANi nanofibers further enhanced myotube maturation (i.e. approximately 30% and 23% or 15% and 18% increases in the fusion and maturation indices) compared with non-conductive A-PCL scaffolds or R-PCL/PANi. These results demonstrated that a combined effect of both guidance cues was more effective than an individual cue, suggesting a potential use of A-PCL/PANi nanofibers for skeletal muscle regeneration.

  13. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    SciTech Connect

    Letschert, Virginie E.; Bojda, Nicholas; Ke, Jing; McNeil, Michael A.

    2012-07-01

    This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programs while still saving consumers money?

  14. Assessment of Interval Data and Their Potential Application to Residential Electricity End-Use Modeling, An

    EIA Publications

    2015-01-01

    The Energy Information Administration (EIA) is investigating the potential benefits of incorporating interval electricity data into its residential energy end use models. This includes interval smart meter and submeter data from utility assets and systems. It is expected that these data will play a significant role in informing residential energy efficiency policies in the future. Therefore, a long-term strategy for improving the RECS end-use models will not be complete without an investigation of the current state of affairs of submeter data, including their potential for use in the context of residential building energy modeling.

  15. Computation, measurement and mitigation of neutral-to-earth potentials on electrical distribution systems

    SciTech Connect

    Dick, W.K.; Winter, D.F.

    1987-04-01

    This paper presents computer generated profiles of primary-neutral-to-earth potentials of electrical distribution systems which incorporate a variety of techniques used to mitigate neutral-to-earth potential (''stray voltage'') at dairy farm facilities. Techniques available to the power supplier and power user include an Electronic Grounding System which provides voltage reduction factors of as much as 200 to 1. A new method of measuring these voltages using a computer data acquisition system which monitors every cycle of the power-frequency voltages on eight totally independent channels for extended periods is described.

  16. Effects of aldosterone and potassium-sparing diuretics on electrical potential differences across the distal nephron.

    PubMed Central

    Gross, J B; Kokko, J P

    1977-01-01

    We have previously shown that the transtubular potential of the rabbit cortical collecting tubule varies in concert with changes in plasma mineralocorticoid levels, while the potential of the distal convoluted tubule is invariant with such changes. In the present studies we have examined the effects of in vitro addition of d-aldosterone to isolated tubules, as well as the effects of triamterene and spirolactone. d-Aldosterone (0.2 mum added to the perfusate or 1 muM added to the bathing medium) resulted in a marked stimulation of the transtubular potential difference (lumen-negative) after a short latent period. d-Aldosterone had no effect on the potential difference of distal convoluted tubules of intact or adrenalectomized rabbits. Both the magnitude of the response and the length of the latent period in the cortical collecting tubule after aldosterone were markedly temperature-dependent. Triamterene caused a gradual but reversible inhibition of the potential difference in the cortical collecting tubule but had no effect in the distal tubule. Spirolactone, when added before aldosterone, blocked the electrical response to the hormone in the cortical collecting tubule, and produced a gradual inhibition of the potential difference in mineralocorticoid-stimulated tubules. Spirolactone had no effect on the potential difference of the distal tubule. We conclude that (a) the influence of aldosterone on the potential across the distal nephron is restricted to the distal convoluted tubule, (b) the electrical response to aldosterone and the latent period are temperature-dependent, (c) the response to aldosterone is blocked by spirolactone, and (d) triamterene inhibits the potential difference only in the cortical collecting tubule. PMID:830667

  17. Columbus Saves: Saving Money in Ohio

    ERIC Educational Resources Information Center

    Shockey, Susan

    2004-01-01

    The "Columbus Saves" educational program is a broad-based community coalition made up of more than 40 local organizations from the education, nonprofit, government, faith-based, and private sectors. Common goals of partners in reaching Columbus, Ohio's 1.5 million residents are to: (a) promote increased savings through education and…

  18. Evolution of the electric potential of an insulator under charged particle impact

    NASA Astrophysics Data System (ADS)

    Giglio, E.; Guillous, S.; Cassimi, A.; Zhang, H. Q.; Nagy, G. U. L.; Tőkési, K.

    2017-03-01

    Insulating glass capillaries have been shown to lead to ion transmission without any change in either the ion charge state or in the ion kinetic energy. This surprising process has been attributed to a self-organized distribution of charge patches creating the necessary guiding electric potential on the capillary walls. By the use of our original electrometer, it has been possible to measure and monitor simultaneously and in a nondestructive way the electric potential and the transmitted beam intensity during the charging up by an Ar+ ion beam. We show that glass microcapillaries can reach potentials higher than 500 V, even in the case of singly charged ions, opening the possibility of high transmission rates and providing a renewed sight into ion beam transport by tapered capillaries. The setup, also suitable for the determination of leakage currents governing the capillary potential dynamics, allowed one to evidence that secondary electrons may strongly affect the rise of the capillary potential and consequently avoid Coulomb blocking of the beam transmission across insulating capillaries.

  19. Potential reuse of small household waste electrical and electronic equipment: Methodology and case study.

    PubMed

    Bovea, María D; Ibáñez-Forés, Valeria; Pérez-Belis, Victoria; Quemades-Beltrán, Pilar

    2016-07-01

    This study proposes a general methodology for assessing and estimating the potential reuse of small waste electrical and electronic equipment (sWEEE), focusing on devices classified as domestic appliances. Specific tests for visual inspection, function and safety have been defined for ten different types of household appliances (vacuum cleaner, iron, microwave, toaster, sandwich maker, hand blender, juicer, boiler, heater and hair dryer). After applying the tests, reuse protocols have been defined in the form of easy-to-apply checklists for each of the ten types of appliance evaluated. This methodology could be useful for reuse enterprises, since there is a lack of specific protocols, adapted to each type of appliance, to test its potential of reuse. After applying the methodology, electrical and electronic appliances (used or waste) can be segregated into three categories: the appliance works properly and can be classified as direct reuse (items can be used by a second consumer without prior repair operations), the appliance requires a later evaluation of its potential refurbishment and repair (restoration of products to working order, although with possible loss of quality) or the appliance needs to be finally discarded from the reuse process and goes directly to a recycling process. Results after applying the methodology to a sample of 87.7kg (96 units) show that 30.2% of the appliances have no potential for reuse and should be diverted for recycling, while 67.7% require a subsequent evaluation of their potential refurbishment and repair, and only 2.1% of them could be directly reused with minor cleaning operations. This study represents a first approach to the "preparation for reuse" strategy that the European Directive related to Waste Electrical and Electronic Equipment encourages to be applied. However, more research needs to be done as an extension of this study, mainly related to the identification of the feasibility of repair or refurbishment operations.

  20. Quantifying the fuel use and greenhouse gas reduction potential of electric and hybrid vehicles.

    SciTech Connect

    Singh, M.; Wang, M.; Hazard, N.; Lewis, G.; Energy Systems; Northeast Sustainable Energy Association; Univ. of Michigan

    2000-01-01

    Since 1989, the Northeast Sustainable Energy Association (NESEA) has organized the American Tour de Sol in which a wide variety of participants operate electric vehicles (EVs) and hybrid electric vehicles (HEVs) for several hundred miles under various roadway conditions (e.g., city center and highway). The event offers a unique opportunity to collect on-the-road energy efficiency data for these EVs and HEVs as well as comparable gasoline-fueled conventional vehicles (CVs) that are driven under the same conditions. NESEA and Argonne National Laboratory (ANL) collaborated on collecting and analyzing vehicle efficiency data during the 1998 and 1999 NESEA American Tour de Sols. Using a transportation fuel-cycle model developed at ANL with data collected on vehicle fuel economy from the two events as well as electric generation mix data from the utilities that provided the electricity to charge the EVs on the two Tours, we estimated full fuel-cycle energy use and GHG emissions of EVs and CVs. This paper presents the data, methodology, and results of this study, including the full fuel-cycle energy use and GHG emission reduction potential of the EVs operating on the Tour.

  1. Potential impacts of the Energy Policy Act on electricity and natural gas provider fleets

    SciTech Connect

    Vyas, A.D.; Wang, M.Q.

    1996-03-01

    Section 501 of the 1992 Energy Policy and Conservation Act (EPACT) mandates that alternative-fuel providers who may sell such fuels for transportation uses acquire alternative-fuel vehicles (AFVs). The potential impacts of this mandate on the two largest groups of alternative-fuel providers--electricity and natural gas (NG) providers--are presented. Nationwide, 166 electric-only utility companies, 127 NG-only utility companies, and 55 dual-utility companies will be covered by EPACT. Together, these companies own/operate nearly 122,000 light-duty vehicles in the EPACT-defined metropolitan areas. Some 63 natural gas producers and transporters, which have 9700 light-duty vehicles, are also covered. We project that covered fuel providers will purchase 2710 AFVs in 1996 and 13, 650 AFVs by 2001. We estimate that natural gas companies already have 19.4% of their existing light-duty vehicle stocks as AFVs, dual companies have 10.0%, natural gas producers and transporters have 7. 0%, and electric companies have only 1.6%. If the existing AFVs count toward meeting the Section 501 requirements, NG providers (NG utilities, dual utilities, and NG producers and transporters) will need to make little additional effort, but electric companies will have to make substantial commitments to meet the requirements.

  2. New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials

    NASA Astrophysics Data System (ADS)

    Schmuck, M.

    2013-02-01

    We consider the Poisson-Nernst-Planck system which is well-accepted for describing dilute electrolytes as well as transport of charged species in homogeneous environments. Here, we study these equations in porous media whose electric permittivities show a strong contrast compared with the electric permittivity of the electrolyte phase. Our main result is the derivation of convenient low-dimensional equations, that is, of effective macroscopic porous media Poisson-Nernst-Planck equations, which reliably describe ionic transport. The contrast in the electric permittivities between liquid and solid phase and the heterogeneity of the porous medium induce strongly oscillating electric potentials (fields). In order to account for this specific physical scenario, we introduce a modified asymptotic multiple-scale expansion which takes advantage of the nonlinearly coupled structure of the ionic transport equations. This allows for a systematic upscaling resulting in a new effective porous medium formulation which shows a new transport term on the macroscale. Solvability of all arising equations is rigorously verified. The emergence of a new transport term indicates promising physical insights into the influence of the microscale material properties on the macroscale. Hence, systematic upscaling strategies provide a source and a prospective tool to capitalize intrinsic scale effects for scientific, engineering, and industrial applications.

  3. Effect of electrical potential on the electro-demulsification of oily sludge.

    PubMed

    Elektorowicz, Maria; Habibi, Shiva; Chifrina, Rozalia

    2006-03-15

    Oily sludge, produced mostly in petroleum refineries and petrochemical industries, is one of the major industrial wastes that require treatment. Typically, these sludge wastes are water-in-oil emulsions that are stabilized by fine solids. These fine particles adsorb at the droplet surface and by lowering the demulsification rate constant, act as a barrier to prevent droplet coalescence. In this investigation, the effects of different electrical potential gradients and amphoteric surfactant on effectiveness of phase separation were investigated. It was concluded that lower electrical potential (0.5 V/cm) produced a higher demulsification rate. The solid phase remaining after the experiment was of a more compact and stable consistency. It was concluded that application of the amphoteric surfactant does not improve the total efficiency of the process. The role of oil constituents in stabilizing water-in-oil emulsions, and their effect on the dynamics of the process, were considered in every step of the experiment. Analysis of pH changes, resistance evolution, and hydrocarbon polarity analysis confirmed that the application of lower electrical gradient results in better phase separation.

  4. Use of electrical impedance spectroscopy to detect malignant and potentially malignant oral lesions.

    PubMed

    Murdoch, Craig; Brown, Brian H; Hearnden, Vanessa; Speight, Paul M; D'Apice, Katy; Hegarty, Anne M; Tidy, John A; Healey, T Jamie; Highfield, Peter E; Thornhill, Martin H

    2014-01-01

    The electrical properties of tissues depend on their architecture and cellular composition. We have previously shown that changes in electrical impedance can be used to differentiate between different degrees of cervical dysplasia and cancer of the cervix. In this proof-of-concept study, we aimed to determine whether electrical impedance spectroscopy (EIS) could distinguish between normal oral mucosa; benign, potentially malignant lesions (PML); and oral cancer. EIS data were collected from oral cancer (n=10), PML (n=27), and benign (n=10) lesions. EIS from lesions was compared with the EIS reading from the normal mucosa on the contralateral side of the mouth or with reference spectra from mucosal sites of control subjects (n=51). Healthy controls displayed significant differences in the EIS obtained from different oral sites. In addition, there were significant differences in the EIS of cancer and high-risk PML versus low-risk PML and controls. There was no significant difference between benign lesions and normal controls. Study subjects also deemed the EIS procedure considerably less painful and more convenient than the scalpel biopsy procedure. EIS shows promise at distinguishing among malignant, PML, and normal oral mucosa and has the potential to be developed into a clinical diagnostic tool.

  5. Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

    PubMed Central

    Radivojevic, Milos; Jäckel, David; Altermatt, Michael; Müller, Jan; Viswam, Vijay; Hierlemann, Andreas; Bakkum, Douglas J.

    2016-01-01

    A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs. PMID:27510732

  6. Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    NASA Astrophysics Data System (ADS)

    Doret, S. Charles; Amini, Jason M.; Wright, Kenneth; Volin, Curtis; Killian, Tyler; Ozakin, Arkadas; Denison, Douglas; Hayden, Harley; Pai, C.-S.; Slusher, Richart E.; Harter, Alexa W.

    2012-07-01

    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled dc electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on dc electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains.

  7. Profiling the Built-In Electrical Potential in III-V Multijunction Solar Cells

    SciTech Connect

    Jiang, C.-S.; Friedman, D. J.; Moutinho, H. R.; Al-Jassim, M. M.

    2006-01-01

    We report on a direct measurement of the electrical potential on cross-sections of GaInP{sub 2}/GaAs multiple-junction solar cells by using an ultrahigh-vacuum scanning Kelvin probe microscope (UHV-SKPM). The UHV-SKPM allows us to measure the potential without air molecules being adsorbed on the cross-sectional surface. Moreover, it uses a GaAs laser with photon energy of 1.4 eV for the atomic force microscope (AFM) operation. This eliminated the light-absorption-induced bottom-junction flattening and top-junction enhancement, which happened in our previous potential measurement using a 1.85-eV laser for the AFM operation. Three potentials were measured at the top, tunneling, and bottom junctions. Values of the potentials are smaller than the potentials in the bulk. This indicates that the Fermi level on the UHV-cleaved (110) surface was pinned, presumably due to defects upon cleaving. We also observed higher potentials at atomic steps than on the terraces for both GaInP2 epitaxial layer and GaAs substrate. Combining scanning tunneling microscopy (STM) and SKPM measurements, we found that the potential height at steps of the GaAs substrate depends on the step direction, which is probably a direct result of unbalanced cations and anions at the steps.

  8. Profiling the Built-in Electrical Potential in III-V Multijunction Solar Cells: Preprint

    SciTech Connect

    Jiang, C.-S.; Friedman, D. J.; Moutinho, H. R.; Al-Jassim, M. M.

    2006-05-01

    We report on a direct measurement of the electrical potential on cross-sections of GaInP2/GaAs multiple-junction solar cells by using an ultrahigh-vacuum scanning Kelvin probe microscope (UHV-SKPM). The UHV-SKPM allows us to measure the potential without air molecules being adsorbed on the cross-sectional surface. Moreover, it uses a GaAs laser with photon energy of 1.4 eV for the atomic force microscope (AFM) operation. This eliminated the light-absorption-induced bottom-junction flattening and top-junction enhancement, which happened in our previous potential measurement using a 1.85-eV laser for the AFM operation. Three potentials were measured at the top, tunneling, and bottom junctions. Values of the potentials are smaller than the potentials in the bulk. This indicates that the Fermi level on the UHV-cleaved (110) surface was pinned, presumably due to defects upon cleaving. We also observed higher potentials at atomic steps than on the terraces for both GaInP2 epitaxial layer and GaAs substrate. Combining scanning tunneling microscopy (STM) and SKPM measurements, we found that the potential height at steps of the GaAs substrate depends on the step direction, which is probably a direct result of unbalanced cations and anions at the steps.

  9. (Assessment of the potential of Yunnan Province, China to grow and convert biomass to electricity)

    SciTech Connect

    Perlack, R.D.

    1990-10-15

    The purpose of the trip was to conduct a preliminary evaluation of biomass energy development in Yunnan Province, China. The evaluation included an assessment of the potential to grow and convert biomass to electricity, and an evaluation of the institutional relationships, which would be critical to the establishment of a collaborative biomass energy development project. This site visit was undertaken to evaluate the potential of an integrated biomass energy project, including the growing and handling of biomass feedstocks and its conversion to electricity. Based on this site visit, it was concluded that biomass production risks are real and further research on species screening and experiments is necessary before proceeding to the conversion phase of this project. The location of potential sites inspected and the logistics required for handling and transporting biomass may also be a concern. The commitment of support (labor and land) and leadership to this project by the Chinese is overwhelming exceeding all pre-site visit expectations. In sum, there is a definite opportunity in Yunnan for an integrated biomass energy project and a potential market for US technology.

  10. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic

  11. Electrical Potentials Observed During Frictional Stick-Slip - A Semiconductor Mechanism

    NASA Astrophysics Data System (ADS)

    Leeman, J.; Scuderi, M.; Marone, C.; Saffer, D. M.

    2013-12-01

    Electromagnetic phenomena are commonly reported during and after large earthquakes. Various lines of evidence including charring of plant roots, magnetic remnant signatures in pseudotachylite, and visible earthquake lights indicate a strong electrical potential separation during co-seismic rupture. Suggested explanations have included triboelectricity, piezoelectricity, and streaming potentials. The 'semiconductor effect', or migration of electron holes, has been proposed as an alternative explanation and studied extensively in solids. We present evidence of a similar migration effect in a granular material that exhibits repeated frictional stick-slip events under a variety of conditions. Soda-lime glass beads were sheared in a double-direct shear configuration in a biaxial loading frame. Glass beads exhibit consistent, repetitive stick-slip and rate/state friction effects that are similar to rock. Layers of 5 mm thickness were sheared under a constant normal load of 4MPa, at load point velocities of 1, 30, and 100 μm/s. This was done for mono-disperse particle size distributions of 100-150 μm and 420-500 μm. Tests were conducted at room humidity, at 100% humidity, and under submerged conditions. During shearing, the electrical potential of the surface was monitored relative to the system ground with a non-contact electrostatic volt meter (ESVM) manufactured by Trek Incorporated. During stick-slip events, we observe electrical potential anomalies that appear to be related to failure of force chains supporting the shear load. Two distinct types of behavior are delineated by the attainment of steady state frictional sliding. In the pre-steady state phase, as shear stress is increasing, layers are observed to charge during stick-slip and the potential of the entire system rises. When shear stress rises to the level of steady state frictional sliding, the system begins to discharge, with superimposed anomalies characterized by potential drops of several volts that

  12. Long-term CO2 Reduction Potential by Promoting Electric Technologies

    NASA Astrophysics Data System (ADS)

    Nishio, Ken-Ichiro

    This article reviews past studies on the long-term CO2 abatement strategy dealing with electric technologies and thereby attempts to draw sound understandings of effectiveness of those measures. It is widely known that electrification of final energy uses plays an important role to mitigate CO2 emissions through curbing fossil fuel consumption. Electrification of thermal demand by high-efficient heat-pump technologies is considered as a realistic example, while electric vehicles including plug-in hybrid vehicles are getting higher expectations as an alternative in the transportation sector. It is of crucial importance, therefore, to carefully analyze the potential of CO2 emission reductions by these measures and to establish viable long-term strategies taking them fully into consideration. The author provides a numerical representation of such strategy development up to the year 2050.

  13. Dispersion potential between three-bodies with arbitrary electric multipole polarizabilities: Molecular QED theory

    SciTech Connect

    Salam, A.

    2014-01-28

    Molecular quantum electrodynamics is used to obtain an expression for the retarded dispersion energy shift between three arbitrarily electrically polarizable atoms or molecules. A generalized Craig-Power Hamiltonian that depends quadratically on the electric displacement field is employed together with third-order diagrammatic perturbation theory. This approach simplifies the calculation relative to the use of the usual multipolar coupling Hamiltonian that is linear in the displacement field. Specific higher multipole non-additive contributions are then extracted. These include dipole-dipole-quadrupole, dipole-quadrupole-quadrupole, and dipole-dipole-octupole potentials valid for oriented and isotropic species with arbitrary separation distances between particles, extending recent work in which these energy shifts were given for equilateral triangle and collinear geometries. Near-zone limiting forms are found to agree with earlier works in which static inter-particle couplings were used.

  14. Dispersion potential between three-bodies with arbitrary electric multipole polarizabilities: molecular QED theory.

    PubMed

    Salam, A

    2014-01-28

    Molecular quantum electrodynamics is used to obtain an expression for the retarded dispersion energy shift between three arbitrarily electrically polarizable atoms or molecules. A generalized Craig-Power Hamiltonian that depends quadratically on the electric displacement field is employed together with third-order diagrammatic perturbation theory. This approach simplifies the calculation relative to the use of the usual multipolar coupling Hamiltonian that is linear in the displacement field. Specific higher multipole non-additive contributions are then extracted. These include dipole-dipole-quadrupole, dipole-quadrupole-quadrupole, and dipole-dipole-octupole potentials valid for oriented and isotropic species with arbitrary separation distances between particles, extending recent work in which these energy shifts were given for equilateral triangle and collinear geometries. Near-zone limiting forms are found to agree with earlier works in which static inter-particle couplings were used.

  15. Modeling of the Through-the-Thickness Electric Potentials of a Piezoelectric Bimorph Using the Spectral Element Method

    PubMed Central

    Dong, Xingjian; Peng, Zhike; Hua, Hongxing; Meng, Guang

    2014-01-01

    An efficient spectral element (SE) with electric potential degrees of freedom (DOF) is proposed to investigate the static electromechanical responses of a piezoelectric bimorph for its actuator and sensor functions. A sublayer model based on the piecewise linear approximation for the electric potential is used to describe the nonlinear distribution of electric potential through the thickness of the piezoelectric layers. An equivalent single layer (ESL) model based on first-order shear deformation theory (FSDT) is used to describe the displacement field. The Legendre orthogonal polynomials of order 5 are used in the element interpolation functions. The validity and the capability of the present SE model for investigation of global and local responses of the piezoelectric bimorph are confirmed by comparing the present solutions with those obtained from coupled 3-D finite element (FE) analysis. It is shown that, without introducing any higher-order electric potential assumptions, the current method can accurately describe the distribution of the electric potential across the thickness even for a rather thick bimorph. It is revealed that the effect of electric potential is significant when the bimorph is used as sensor while the effect is insignificant when the bimorph is used as actuator, and therefore, the present study may provide a better understanding of the nonlinear induced electric potential for bimorph sensor and actuator. PMID:24561399

  16. 60 Hz electric field changes the membrane potential during burst phase in pancreatic β-cells: in silico analysis.

    PubMed

    Neves, Gesilda F; Silva, José R F; Moraes, Renato B; Fernandes, Thiago S; Tenorio, Bruno M; Nogueira, Romildo A

    2014-06-01

    The production, distribution and use of electricity can generate low frequency electric and magnetic fields (50-60 Hz). Considering that some studies showed adverse effects on pancreatic β-cells exposed to these fields; the present study aimed to analyze the effects of 60 Hz electric fields on membrane potential during the silent and burst phases in pancreatic β-cells using a mathematical model. Sinusoidal 60 Hz electric fields with amplitude ranging from 0.5 to 4 mV were applied on pancreatic β-cells model. The sinusoidal electric field changed burst duration, inter-burst intervals (silent phase) and spike sizes. The parameters above presented dose-dependent response with the voltage amplitude applied. In conclusion, theoretical analyses showed that a 60 Hz electric field with low amplitudes changes the membrane potential in pancreatic β-cells.

  17. Measurement of the electric potential at the surface of nonuniformly charged polypropylene nonwoven media

    NASA Astrophysics Data System (ADS)

    Fatihou, Ali; Zouzou, Noureddine; Iuga, Gheorghe; Dascalescu, Lucian

    2015-10-01

    The aim of this paper is to establish the conditions in which the vibrating capacitive probe of an electrostatic voltmeter could be employed for mapping the electric potential at the surface of non-uniformly charged insulating bodies. A first set of experiments are performed on polypropylene non-woven media (thickness: 0.4 mm; fiber diameter: 20 μm) in ambient air. In a second set of experiments the non-uniformity of charge is simulated using five copper strips (width: 2 mm or 3 mm; distance between strips: 2 mm). All the strips are connected to a high-voltage supply (Vs = 1000 V). The sample carrier is attached to a computer-controlled positioning system that transfers it under the capacitive probe (TREK, model 3451) of an electrostatic voltmeter (TREK, model 1341B). The measurements are performed at various relative speeds Vb between the sample and the probe, and for various sample rates Fe. A first set of experiments point out that the electric potential displayed by the electrostatic voltmeter depends on the spacing h between the sample and the probe. The diameter D of the spot “seen” by the probe is approximately D ≈ 8h/3. From the second set of experiments performed with the test plate, it can be concluded that the surface potential can be measured with the media in motion, but the accuracy is limited by the spatial resolution defined by k = Vb/Fe.

  18. Evaluation of the constant potential method in simulating electric double-layer capacitors

    SciTech Connect

    Wang, Zhenxing; Laird, Brian B.; Yang, Yang; Olmsted, David L.; Asta, Mark

    2014-11-14

    A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations in the electrolyte solution. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [S. K. Reed et al., J. Chem. Phys. 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO{sub 4}-acetonitrile/graphite EDLC. At low potential difference (ΔΨ ⩽ 2 V), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher ΔΨ. At ΔΨ ⩾ 4 V, the CPM ion density profiles show significant enhancement (over FCM) of “inner-sphere adsorbed” Li{sup +} ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li{sup +} ions to the electrode surface.

  19. Evaluation of the constant potential method in simulating electric double-layer capacitors.

    PubMed

    Wang, Zhenxing; Yang, Yang; Olmsted, David L; Asta, Mark; Laird, Brian B

    2014-11-14

    A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations in the electrolyte solution. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [S. K. Reed et al., J. Chem. Phys. 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO4-acetonitrile/graphite EDLC. At low potential difference (ΔΨ ⩽ 2 V), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher ΔΨ. At ΔΨ ⩾ 4 V, the CPM ion density profiles show significant enhancement (over FCM) of "inner-sphere adsorbed" Li(+) ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li(+) ions to the electrode surface.

  20. Evaluation of the constant potential method in simulating electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Yang, Yang; Olmsted, David L.; Asta, Mark; Laird, Brian B.

    2014-11-01

    A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations in the electrolyte solution. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [S. K. Reed et al., J. Chem. Phys. 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO4-acetonitrile/graphite EDLC. At low potential difference (ΔΨ ⩽ 2 V), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher ΔΨ. At ΔΨ ⩾ 4 V, the CPM ion density profiles show significant enhancement (over FCM) of "inner-sphere adsorbed" Li+ ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li+ ions to the electrode surface.

  1. Spectroelectrochemical Properties of Ultra-Thin Indium Tin Oxide Films under Electric Potential Modulation

    PubMed Central

    Han, Xue; Mendes, Sergio B.

    2016-01-01

    In this work, the spectroscopic properties of ultra-thin ITO films are characterized under an applied electric potential modulation. To detect minute spectroscopic features, the ultra-thin ITO film was coated over an extremely sensitive single-mode integrated optical waveguide, which provided a long pathlength with more than adequate sensitivity for optical interrogation of the ultra-thin film. Experimental configurations with broadband light and several laser lines at different modulation schemes of an applied electric potential were utilized to elucidate the nature of intrinsic changes. The imaginary component of the refractive index (absorption coefficient) of the ultra-thin ITO film is unequivocally shown to have a dependence on the applied potential and the profile of this dependence changes substantially even for wavelengths inside a small spectral window (500–600 nm). The characterization technique and the data reported here can be crucial to several applications of the ITO material as a transparent conductive electrode, as for example in spectroelectrochemical investigations of surface-confined redox species. PMID:26973359

  2. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    NASA Astrophysics Data System (ADS)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was

  3. Potential Impact of the National Plan for Future Electric Power Supply on Air Quality in Korea

    NASA Astrophysics Data System (ADS)

    Shim, C.; Hong, J.

    2014-12-01

    Korean Ministry of Trade, Industry and Energy (MOTIE) announced the national plan for Korea's future electric power supply (2013 - 2027) in 2013. According to the plan, the national demand for electricity will be increased by 60% compared to that of 2010 and primary energy sources for electric generation will still lean on the fossil fuels such as petroleum, LNG, and coal, which would be a potential threat to air quality of Korea. This study focused on two subjects: (1) How the spatial distribution of the primary air pollutant's emissions (i.e., NOx, SOx, CO, PM) will be changed and (2) How the primary emission changes will influence on the national ambient air quality including ozone in 2027. We used GEOS-Chem model simulation with modification of Korean emissions inventory (Clean Air Policy Support System (CAPSS)) to simulate the current and future air quality in Korea. The national total emissions of CO, NOx, SOx, PM in year 2027 will be increased by 3%, 8%, 13%, 2%, respectively compared to 2010 and there are additional concern that the future location of the power plants will be closer to the Seoul Metropolitan Area (SMA), where there are approximately 20 million population vulnerable to the potentially worsened air quality. While there are slight increase of concentration of CO, NOx, SOx, and PM in 2027, the O3 concentration is expected to be similar to the level of 2010. Those results may imply the characteristics of air pollution in East Asia such as potentially severe O3 titration and poorer O3/CO or O3/NOx ratio. Furthermore, we will discuss on the impact of transboundary pollution transport from China in the future, which is one of the large factors to control the air quality of Korea.

  4. Potential impacts of 316(B) regulatory controls on economics, electricity reliability, and the environment.

    SciTech Connect

    Veil, J. A.

    1999-03-19

    Nearly half of the US utility-owned steam electric generating capacity is cooled by once-through cooling systems. These plants withdraw cooling water primarily from surface water bodies. Section 316(b) of the Clean Water Act requires that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available (BTA) for minimizing adverse environmental impacts. At present, the US Environmental Protection Agency (EPA) has not yet promulgated applicable implementing regulations governing intake structures; however, the Agency is required by a Consent Decree to develop such regulations. EPA has presented a draft tiered regulatory framework approach that, depending on site-specific factors, may impose various regulatory burdens on affected utilities. Potential new requirements could range from compiling and submitting existing data to demonstrate that existing conditions at each unit represent BTA to retrofitting plants with closed-cycle cooling systems (primarily cooling towers). If the final regulations require installation of cooling towers or implementation of other costly plant modifications, utilities may elect to close some generating units rather than invest the finds necessary to upgrade them to meet the Section 316(b) requirements. Potentially, some regions of the country may then have a higher proportion of closed units than others, leading to a concern over the reliability of those regions' electricity supply. If a significant number of plants convert from once-through cooling systems to cooling towers, the environment will face secondary adverse impacts, such as additional fuel usage, air emissions, and water evaporation, and utilities will need to construct additional generating capacity. This paper describes a study that Argonne National Laboratory will conduct for the US Department of Energy to explore some of the potential outcomes of EPA's Section 316(b) regulatory process and their impact on economics

  5. Delamination Monitoring of Quasi-Isotropic CFRP Laminate Using Electric Potential Change Method

    NASA Astrophysics Data System (ADS)

    Ueda, Masahito; Todoroki, Akira

    Real-time detection of delamination in carbon fiber reinforce plastic (CFRP) laminates has been requiring to maintain the structural reliability of aircraft. In this paper, electric potential change method (EPCM) was applied to monitor delaminations in quasi-isotropic CFRP laminate. As the coefficient of thermal expansion and mold shrinkage factor of carbon fiber and epoxy matrix is different, residual stress is developed in the laminate during the fabrication process of curing. The local strain variation due to delaminations was measured by EPCM utilizing the piezoresistivity of the laminate itself. Finite element simulation was performed to investigate the applicability of the method.

  6. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    PubMed Central

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-01-01

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations. PMID:24957177

  7. Experimental investigation into the transmembrane electrical potential of the forward osmosis membrane process in electrolyte solutions.

    PubMed

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-06-19

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  8. Observation of Anomalous Potential Electric Energy in Distilled Water Under Solar Heating

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin; Christianto, V.

    2011-04-01

    In this paper, we describe a very simple experiment with distilled water which could exhibit anomalous potential electrical energy with very minimum preparation energy. While this observed excess energy here is less impressive than J-P. Beberian's and M. Porringa's, and the material used is also far less exotic than common LENR-CANR experiments, from the viewpoint of minimum preparation requirement --and therefore less barrier for rapid implementation--, it seems that further experiments could be recommended in order to verify and also to explore various implications of this new proposition.

  9. Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.

  10. Potential impacts from tephra fall to electric power systems: a review and mitigation strategies

    NASA Astrophysics Data System (ADS)

    Wardman, J. B.; Wilson, T. M.; Bodger, P. S.; Cole, J. W.; Stewart, C.

    2012-12-01

    Modern society is highly dependent on a reliable electricity supply. During explosive volcanic eruptions, tephra contamination of power networks (systems) can compromise the reliability of supply. Outages can have significant cascading impacts for other critical infrastructure sectors and for society as a whole. This paper summarises known impacts to power systems following tephra falls since 1980. The main impacts are (1) supply outages from insulator flashover caused by tephra contamination, (2) disruption of generation facilities, (3) controlled outages during tephra cleaning, (4) abrasion and corrosion of exposed equipment and (5) line (conductor) breakage due to tephra loading. Of these impacts, insulator flashover is the most common disruption. The review highlights multiple instances of electric power systems exhibiting tolerance to tephra falls, suggesting that failure thresholds exist and should be identified to avoid future unplanned interruptions. To address this need, we have produced a fragility function that quantifies the likelihood of insulator flashover at different thicknesses of tephra. Finally, based on our review of case studies, potential mitigation strategies are summarised. Specifically, avoiding tephra-induced insulator flashover by cleaning key facilities such as generation sites and transmission and distribution substations is of critical importance in maintaining the integrity of an electric power system.

  11. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    SciTech Connect

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  12. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    SciTech Connect

    Garbesi, Karina; Vossos, Vagelis; Sanstad, Alan; Burch, Gabriel

    2011-10-13

    An increasing number of energy efficient appliances operate on direct current (DC) internally, offering the potential to use DC from renewable energy systems directly and avoiding the losses inherent in converting power to alternating current (AC) and back. This paper investigates that potential for net-metered residences with on-site photovoltaics (PV) by modeling the net power draw of the ‘direct-DC house’ with respect to today’s typical configuration, assuming identical DC-internal loads. Power draws were modeled for houses in 14 U.S. cities, using hourly, simulated PV-system output and residential loads. The latter were adjusted to reflect a 33% load reduction, representative of the most efficient DC-internal technology, based on an analysis of 32 electricity end-uses. The model tested the effect of climate, electric vehicle (EV) loads, electricity storage, and load shifting on electricity savings; a sensitivity analysis was conducted to determine how future changes in the efficiencies of power system components might affect savings potential. Based on this work, we estimate that net-metered PV residences could save 5% of their total electricity load for houses without storage and 14% for houses with storage. Based on residential PV penetration projections for year 2035 obtained from the National Energy Modeling System (2.7% for the reference case and 11.2% for the extended policy case), direct-DC could save the nation 10 trillion Btu (without storage) or 40 trillion Btu (with storage). Shifting the cooling load by two hours earlier in the day (pre-cooling) has negligible benefits for energy savings. Direct-DC provides no energy savings benefits for EV charging, to the extent that charging occurs at night. However, if charging occurred during the day, for example with employees charging while at work, the benefits would be large. Direct-DC energy savings are sensitive to power system and appliance conversion efficiencies but are not significantly

  13. SunShot Vision Study: A Comprehensive Analysis of the Potential for U.S. Solar Electricity Generation (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    The SunShot Vision Study provides the most comprehensive assessment to date of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades.

  14. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe.

    PubMed

    Jin, Lei; Han, Zhou; Platisa, Jelena; Wooltorton, Julian R A; Cohen, Lawrence B; Pieribone, Vincent A

    2012-09-06

    Monitoring neuronal electrical activity using fluorescent protein-based voltage sensors has been limited by small response magnitudes and slow kinetics of existing probes. Here we report the development of a fluorescent protein voltage sensor, named ArcLight, and derivative probes that exhibit large changes in fluorescence intensity in response to voltage changes. ArcLight consists of the voltage-sensing domain of Ciona intestinalis voltage-sensitive phosphatase and super ecliptic pHluorin that carries the point mutation A227D. The fluorescence intensity of ArcLight A242 decreases by 35% in response to a 100 mV depolarization when measured in HEK293 cells, which is more than five times larger than the signals from previously reported fluorescent protein voltage sensors. We show that the combination of signal size and response speed of these new probes allows the reliable detection of single action potentials and excitatory potentials in individual neurons and dendrites.

  15. Reticular activating system of a central pattern generator: premovement electrical potentials.

    PubMed

    Tapia, Jesus A; Trejo, Argelia; Linares, Pablo; Alva, J Manuel; Kristeva, Rumyana; Manjarrez, Elias

    2013-10-01

    For the first time, here we characterize a bulbar reticular activating system (RAS) of neurons in decerebrate, deafferented and decerebellated cats producing a premovement electrical potential that we named obex slow potential (OSP). The OSP occurs about 0.8 ± 0.4 sec prior to the onset of a fictive-scratching-episode. Here, we describe two classes of bulbar neurons, off-on, which are silent but exhibit a 80 ± 56 Hz firing discharge at the beginning of (and during) the OSP, and on-off interneurons, with a 27 ± 14 Hz firing activity that stops at the beginning of (and during) the OSP. We suggest that these OSP-associated neurons belong to a descending RAS, which contributes to the activation of the spinal central pattern generators.

  16. Global Potential for Hydro-generated Electricity and Climate Change Impact

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hejazi, M. I.; Leon, C.; Calvin, K. V.; Thomson, A. M.; Li, H. Y.

    2014-12-01

    Hydropower is a dominant renewable energy source at the global level, accounting for more than 15% of the world's total power supply. It is also very vulnerable to climate change. Improved understanding of climate change impact on hydropower can help develop adaptation measures to increase the resilience of energy system. In this study, we developed a comprehensive estimate of global hydropower potential using runoff and stream flow data derived from a global hydrologic model with a river routing sub-model, along with turbine technology performance, cost assumptions, and environmental consideration (Figure 1). We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by regions. Resources in a number of countries exceed by multiple folds the total current demand for electricity, e.g., Russia and Indonesia. A sensitivity analysis indicates that hydropower potential can be highly sensitive to a number of parameters including designed flow for capacity, cost and financing, turbine efficiency, and stream flow. The climate change impact on hydropower potential was evaluated by using runoff outputs from 4 climate models (HadCM3, PCM, CGCM2, and CSIRO2). It was found that the climate change on hydropower shows large variation not only by regions, but also climate models, and this demonstrates the importance of incorporating climate change into infrastructure-planning at the regional level though the existing uncertainties.

  17. Assessment of the potential of halophytes as energy crops for the electric utility industry. Final report

    SciTech Connect

    Goodin, J.R.

    1984-09-01

    This technical report assesses and estimates the potential of selected halophytes as future renewable energy resources, especially by US electric utilities, and familiarizes nonspecialists with research and development problems that must be resolved before these energy sources can become dependable supplies of energy. A literature search related to both indigenous and exotic species of halophytes has been done and appropriate terrestrial species have been selected. Selection criteria include: total biomass potential, genetic constraints, establishment and cultivation requirements, regions of suitability, secondary credits, and a number of other factors. Based on these selection criteria, for the arid western states with high levels of salinity in water and/or soils, there is little potential for energy feedstocks derived from grasses and herbaceous forbs. Likewise, coastal marshes, estuaries, and mangrove swamps, although excellent biomass producers, are too limited by region and have too many ecological and environmental problems for consideration. The deep-rooted, perennial woody shrubs indigenous to many saline regions of the west provide the best potential. The number of species in this group is limited, and Atriplex canescens, Sarcobatus vermiculatus, and Chrysothamnus nauseosus are the three species with the greatest biological potential. These shrubs would receive minimal energy inputs in cultivation, would not compete with agricultural land, and would restore productivity to severely disturbed sites. One might logically expect to achieve biomass feedstock yields of three to five tons/acre/yr on a long-term sustainable basis. The possibility also exists that exotic species might be introduced. 67 references, 1 figure, 5 tables.

  18. The market potential for SMES in electric utility applications. Final report

    SciTech Connect

    Not Available

    1994-06-01

    Superconducting magnetic energy storage (SMES) is an emerging technology with features that are potentially attractive in electric utility applications. This study evaluates the potential for SMES technology in the generation, transmission, distribution, and use of electric energy; the time frame of the assessment is through the year 2030. Comparisons are made with other technology options, including both commercially available and advanced systems such as various peaking generation technologies, transmission stability improvement technologies, and power quality enhancement devices. The methodology used for this study focused on the needs of the market place, the capabilities of S and the characteristics of the competing technologies. There is widespread interest within utilities for the development of SMES technology, but there is no general consensus regarding the most attractive size. Considerable uncertainty exists regarding the eventual costs and benefits of commercial SMES systems, but general trends have been developed based on current industry knowledge. Results of this analysis indicate that as storage capacity increases, cost increases at a rate faster than benefits. Transmission system applications requiring dynamic storage appear to have the most attractive economics. Customer service applications may be economic in the near term, but improved ride-through capability of end-use equipment may limit the size of this market over time. Other applications requiring greater storage capacity appear to be only marginally economic at best.

  19. Effects of electric field component representation on estimated cross polar cap potential - Implications for interhemispheric asymmetries

    NASA Astrophysics Data System (ADS)

    Magnus Laundal, Karl; Förster, Matthias; Haaland, Stein; Snekvik, Kristian; Østgaard, Nikolai; Tenfjord, Paul; Reistad, Jone; Milan, Steve

    2015-04-01

    Ionospheric electrodynamics is well organized with respect to the Earth's magnetic field. The most commonly used coordinate systems which take this field into account are the apex (Richmond, 1995) and Altitude Adjusted Corrected Geomagnetic (AACGM) coordinate systems (Baker and Wing, 1989). Both coordinate systems are based on magnetic field line tracing using the International Geomagnetic Reference Field (IGRF), which resolves structures in the Earth's magnetic field at approximately 3000 km resolution. Seen in a geographic grid, both coordinate systems are non-orthogonal and non-uniform. Despite the widespread use in the space physics community, the conversion of electrodynamic vector components are often handled in an approximate fashion, treating the coordinate system as orthogonal. In this study we investigate how such approximations affect the estimated electric potential. We show that an electric potential which is symmetrical between hemispheres can appear asymmetrical when vector component conversion is not exact. We investigate how these errors depend on longitude and universal time bias in a data set. We also apply the technique to measurements from the Electron Drift Instruments on the Cluster spacecrafts mapped to the ionosphere, and compare the results to previously reported inter-hemispheric asymmetries.

  20. The contribution of electrical synapses to field potential oscillations in the hippocampal formation.

    PubMed

    Posłuszny, Anna

    2014-01-01

    Electrical synapses are a type of cellular membrane junction referred to as gap junctions (GJs). They provide a direct way to exchange ions between coupled cells and have been proposed as a structural basis for fast transmission of electrical potentials between neurons in the brain. For this reason GJs have been regarded as an important component within the neuronal networks that underlie synchronous neuronal activity and field potential oscillations. Initially, GJs appeared to play a particularly key role in the generation of high frequency oscillatory patterns in field potentials. In order to assess the scale of neuronal GJs contribution to field potential oscillations in the hippocampal formation, in vivo and in vitro studies are reviewed here. These investigations have shown that blocking the main neuronal GJs, those containing connexin 36 (Cx36-GJs), or knocking out the Cx36 gene affect field potential oscillatory patterns related to awake active behavior (gamma and theta rhythm) but have no effect on high frequency oscillations occurring during silent wake and sleep. Precisely how Cx36-GJs influence population activity of neurons is more complex than previously thought. Analysis of studies on the properties of transmission through GJ channels as well as Cx36-GJs functioning in pairs of coupled neurons provides some explanations of the specific influence of Cx36-GJs on field potential oscillations. It is proposed here that GJ transmission is strongly modulated by the level of neuronal network activity and changing behavioral states. Therefore, contribution of GJs to field potential oscillatory patterns depends on the behavioral state. I propose here a model, based on large body of experimental data gathered in this field by several authors, in which Cx36-GJ transmission especially contributes to oscillations related to active behavior, where it plays a role in filtering and enhancing coherent signals in the network under high-noise conditions. In contrast

  1. Dielectric and electrical hazard shoes.

    PubMed

    Hoagland, Hugh

    2011-04-01

    With OSHA early documents falling on the side of EH shoes for electrical work, companies would do well to consider them for all electrical workers and other workers exposed to electrical hazards or damp locations. These shoes rarely add more than $5 to the cost of the shoe and have been known to save lives. They should be considered for low-voltage (<750V) and low-risk tasks. High-risk tasks, environments, and medium and high voltages require more and more stable protection. ASTM F1117 shoes provide this type of protection and are the preferred step potential PPE option in both OSHA 1910.269 and NFPA 70E.

  2. Computation of surface electrical potentials of plant cell membranes . Correspondence To published zeta potentials from diverse plant sources

    PubMed

    Kinraide; Yermiyahu; Rytwo

    1998-10-01

    A Gouy-Chapman-Stern model has been developed for the computation of surface electrical potential (psi0) of plant cell membranes in response to ionic solutes. The present model is a modification of an earlier version developed to compute the sorption of ions by wheat (Triticum aestivum L. cv Scout 66) root plasma membranes. A single set of model parameters generates values for psi0 that correlate highly with published zeta potentials of protoplasts and plasma membrane vesicles from diverse plant sources. The model assumes ion binding to a negatively charged site (R- = 0.3074 &mgr;mol m-2) and to a neutral site (P0 = 2.4 &mgr;mol m-2) according to the reactions R- + IZ &rlharr; RIZ-1 and P0 + IZ &rlharr; PIZ, where IZ represents an ion of charge Z. Binding constants for the negative site are 21, 500 M-1 for H+, 20,000 M-1 for Al3+, 2,200 M-1 for La3+, 30 M-1 for Ca2+ and Mg2+, and 1 M-1 for Na+ and K+. Binding constants for the neutral site are 1/180 the value for binding to the negative site. Ion activities at the membrane surface, computed on the basis of psi0, appear to determine many aspects of plant-mineral interactions, including mineral nutrition and the induction and alleviation of mineral toxicities, according to previous and ongoing studies. A computer program with instructions for the computation of psi0, ion binding, ion concentrations, and ion activities at membrane surfaces may be requested from the authors.

  3. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or

  4. Lunar Surface Electric Potential Changes Associated with Traversals through the Earth's Foreshock

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Hills, H. Kent; Stubbs, Timothy J.; Halekas, Jasper S.; Delory, Gregory T.; Espley, Jared; Farrell, William M.; Freeman, John W.; Vondrak, Richard

    2011-01-01

    We report an analysis of one year of Suprathermal Ion Detector Experiment (SIDE) Total Ion Detector (TID) resonance events observed between January 1972 and January 1973. The study includes only those events during which upstream solar wind conditions were readily available. The analysis shows that these events are associated with lunar traversals through the dawn flank of the terrestrial magnetospheric bow shock. We propose that the events result from an increase in lunar surface electric potential effected by secondary electron emission due to primary electrons in the Earth's foreshock region (although primary ions may play a role as well). This work establishes (1) the lunar surface potential changes as the Moon moves through the terrestrial bow shock, (2) the lunar surface achieves potentials in the upstream foreshock region that differ from those in the downstream magnetosheath region, (3) these differences can be explained by the presence of energetic electron beams in the upstream foreshock region and (4) if this explanation is correct, the location of the Moon with respect to the terrestrial bow shock influences lunar surface potential.

  5. Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant.

    PubMed

    Ramachandran, Rahul; Nosonovsky, Michael

    2015-10-14

    We study the correlation of wetting properties and corrosion rates on hydrophobized cast iron. Samples of different surface roughnesses (abraded by sandpaper) are studied without coating and with two types of hydrophobic coatings (stearic acid and a liquid repelling spray). The contact angles and contact angle hysteresis are measured using a goniometer while corrosion rates are measured by a potentiodynamic polarization test. The data show a decrease in corrosion current density and an increase in corrosion potential after superhydrophobization. A similar trend is also found in the recent literature data. We conclude that a decrease in the corrosion rate can be attributed to the changing open circuit potential of a coated surface and increased surface area making the non-homogeneous (Cassie-Baxter) state possible. We interpret these results in light of the idea that the inherent surface energy is coupled with the electric potential in accordance with the Lippmann law of electrowetting and Le Châtelier's principle and, therefore, hydrophobization leads to a decrease in the corrosion potential. This approach can be used for novel anti-corrosive coatings.

  6. Electrical coupling in ensembles of nonexcitable cells: modeling the spatial map of single cell potentials.

    PubMed

    Cervera, Javier; Manzanares, Jose Antonio; Mafe, Salvador

    2015-02-19

    We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers.

  7. Zeta-potential Analyses using Micro Electrical Field Flow Fractionation with Fluorescent Nanoparticles

    PubMed Central

    Chang, Moon-Hwan; Dosev, Dosi; Kennedy, Ian M.

    2007-01-01

    Increasingly growing application of nanoparticles in biotechnology requires fast and accessible tools for their manipulation and for characterization of their colloidal properties. In this work we determine the zeta-potentials for polystyrene nanoparticles using micro electrical field flow fractionation (μ–EFFF) which is an efficient method for sorting of particles by size. The data obtained by μ–EFFF were compared to zeta potentials determined by standard capillary electrophoresis. For proof of concept, we used polystyrene nanoparticles of two different sizes, impregnated with two different fluorescent dyes. Fluorescent emission spectra were used to evaluate the particle separation in both systems. Using the theory of electrophoresis, we estimated the zeta-potentials as a function of size, dielectric permittivity, viscosity and electrophoretic mobility. The results obtained by the μ–EFFF technique were confirmed by the conventional capillary electrophoresis measurements. These results demonstrate the applicability of the μ–EFFF method not only for particle size separation but also as a simple and inexpensive tool for measurements of nanoparticles zeta potentials. PMID:18542710

  8. Measured energy savings and performance of power-managed personal computers and monitors

    SciTech Connect

    Nordman, B.; Piette, M.A.; Kinney, K.

    1996-08-01

    Personal computers and monitors are estimated to use 14 billion kWh/year of electricity, with power management potentially saving $600 million/year by the year 2000. The effort to capture these savings is lead by the US Environmental Protection Agency`s Energy Star program, which specifies a 30W maximum demand for the computer and for the monitor when in a {open_quote}sleep{close_quote} or idle mode. In this paper the authors discuss measured energy use and estimated savings for power-managed (Energy Star compliant) PCs and monitors. They collected electricity use measurements of six power-managed PCs and monitors in their office and five from two other research projects. The devices are diverse in machine type, use patterns, and context. The analysis method estimates the time spent in each system operating mode (off, low-, and full-power) and combines these with real power measurements to derive hours of use per mode, energy use, and energy savings. Three schedules are explored in the {open_quotes}As-operated,{close_quotes} {open_quotes}Standardized,{close_quotes} and `Maximum` savings estimates. Energy savings are established by comparing the measurements to a baseline with power management disabled. As-operated energy savings for the eleven PCs and monitors ranged from zero to 75 kWh/year. Under the standard operating schedule (on 20% of nights and weekends), the savings are about 200 kWh/year. An audit of power management features and configurations for several dozen Energy Star machines found only 11% of CPU`s fully enabled and about two thirds of monitors were successfully power managed. The highest priority for greater power management savings is to enable monitors, as opposed to CPU`s, since they are generally easier to configure, less likely to interfere with system operation, and have greater savings. The difficulties in properly configuring PCs and monitors is the largest current barrier to achieving the savings potential from power management.

  9. Effects of electrical stimulation of olivocochlear fibers in cochlear potentials in the chinchilla.

    PubMed

    Elgueda, Diego; Delano, Paul H; Robles, Luis

    2011-06-01

    The mammalian cochlea has two types of sensory cells; inner hair cells, which receive auditory-nerve afferent innervation, and outer hair cells, innervated by efferent axons of the medial olivocochlear (MOC) system. The role of the MOC system in hearing is still controversial. Recently, by recording cochlear potentials in behaving chinchillas, we suggested that one of the possible functions of the efferent system is to reduce cochlear sensitivity during attention to other sensory modalities (Delano et al. in J Neurosci 27:4146-4153, 2007). However, in spite of these compelling results, the physiological effects of electrical MOC activation on cochlear potentials have not been described in detail in chinchillas. The main objective of the present work was to describe these efferent effects in the chinchilla, comparing them with those in other species and in behavioral experiments. We activated the MOC efferent axons in chinchillas with sectioned middle-ear muscles by applying current pulses at the fourth-ventricle floor. Auditory-nerve compound action potentials (CAP) and cochlear microphonics (CM) were acquired in response to clicks and tones of several frequencies, using a round-window electrode. Electrical efferent stimulation produced CAP amplitude suppressions reaching up to 11 dB. They were higher for low to moderate sound levels. Additionally, CM amplitude increments were found, the largest (≤ 2.5 dB) for low intensity tones. CAP suppression was present at all stimulus frequencies, but was greatest for 2 kHz. CM increments were highest for low-frequency tones, and almost absent at high frequencies. We conclude that the effect obtained in chinchilla is similar to but smaller than that observed in cats, and that the effects seen in awake chinchillas, albeit different in magnitude, are consistent with the activation of efferent fibers.

  10. A study of electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells

    NASA Astrophysics Data System (ADS)

    Zhai, Wangjian

    2014-12-01

    Electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells is investigated using the effective mass approximation employing the compact density matrix method and the iterative approach. Our results show that the absolute value, the real part and the imaginary part of second-harmonic generation are greatly affected by the height of the Gaussian potential quantum wells, the range of the Gaussian confinement potential and the applied electric field. The relationship between the absolute value and the imaginary part of second-harmonic generation together with the relationship between the absolute value and the real part of second-harmonic generation is studied. It is found that no matter how the height of the Gaussian potential quantum wells, the range of the Gaussian confinement potential and the applied electric field vary, the resonant peaks of the absolute value of second-harmonic generation do not originate from the imaginary part but from the real part.

  11. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    NASA Astrophysics Data System (ADS)

    Gerken, Martina

    2013-06-01

    Multiferroic composite magnetoelectric (ME) sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite) cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM) simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line shape and a zero

  12. Spectral distribution of local field potential responses to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Wong, Yan T.; Halupka, Kerry; Kameneva, Tatiana; Cloherty, Shaun L.; Grayden, David B.; Burkitt, Anthony N.; Meffin, Hamish; Shivdasani, Mohit N.

    2016-06-01

    Objective. Different frequency bands of the local field potential (LFP) have been shown to reflect neuronal activity occurring at varying cortical scales. As such, recordings of the LFP may offer a novel way to test the efficacy of neural prostheses and allow improvement of stimulation strategies via neural feedback. Here we use LFP measurements from visual cortex to characterize neural responses to electrical stimulation of the retina. We aim to show that the LFP is a viable signal that contains sufficient information to optimize the performance of sensory neural prostheses. Approach. Clinically relevant electrode arrays were implanted in the suprachoroidal space of one eye in four felines. LFPs were simultaneously recorded in response to stimulation of individual electrodes using penetrating microelectrode arrays from the visual cortex. The frequency response of each electrode was extracted using multi-taper spectral analysis and the uniqueness of the responses was determined via a linear decoder. Main results. We found that cortical LFPs are reliably modulated by electrical stimulation of the retina and that the responses are spatially localized. We further characterized the spectral distribution of responses, with maximum information being contained in the low and high gamma bands. Finally, we found that LFP responses are unique to a large range of stimulus parameters (∼40) with a maximum conveyable information rate of 6.1 bits. Significance. These results show that the LFP can be used to validate responses to electrical stimulation of the retina and we provide the first steps towards using these responses to provide more efficacious stimulation strategies.

  13. Macroscopic electric charge separation during hypervelocity impacts: Potential implications for planetary paleomagnetism

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1993-01-01

    The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient

  14. Effects of local electric surface potential on holes charging process in uncapped germanium nanocrystal

    SciTech Connect

    Marchand, Aude; El Hdiy, Abdelillah

    2015-04-21

    The charging kinetics of holes are investigated in an uncapped Ge nanocrystal by the use of the nano-electron beam induced current technique. The charging process is studied under zero volt or under an appropriate electric field. The investigation is repeated many times on the same nanocrystal and on others in the same sample to attest of the reproducibility of the results. At 0 V, the cycles of charging kinetics are superimposed and are in a steady state, but an instantaneous local and negative surface potential, established in the nanocrystal at the beginning of the kinetics, slows down the holes charging process. Under an external field, the energy band bending accentuation affects the holes charging time constants. As a result, the holes charging cycles weakly affect the electrical performance of the thin oxide as is indicated by the value of the measured local resistivity of 6 × 10{sup 10}–10{sup 11} Ω cm, which is relatively lower than that of the thick thermal oxide.

  15. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    SciTech Connect

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-04-15

    We explore the potential of the electric quadrupole transitions 7s {sup 2}S{sub 1/2}-6d {sup 2}D{sub 3/2}, 6d {sup 2}D{sub 5/2} in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several competitive {sup A}Ra{sup +} candidates, with A= 223-229, are identified. In particular, we show that the transition 7s {sup 2}S{sub 1/2} (F=2,m{sub F}=0)-6d {sup 2}D{sub 3/2} (F=0,m{sub F}=0) at 828 nm in {sup 223}Ra{sup +}, with no linear Zeeman and electric quadrupole shifts, stands out as a relatively simple case, which could be exploited as a compact, robust, and low-cost atomic clock operating at a fractional frequency uncertainty of 10{sup -17}. With more experimental effort, the {sup 223,225,226}Ra{sup +} clocks could be pushed to a projected performance reaching the 10{sup -18} level.

  16. Identifying Hydrologic Flowpaths on Arctic Hillslopes Using Electrical Resistivity and Self Potential

    NASA Astrophysics Data System (ADS)

    Voytek, E.; Rushlow, C. R.; Godsey, S.; Singha, K.

    2015-12-01

    Shallow subsurface flow is a dominant process controlling hillslope runoff generation, soil development, and solute reaction and transport. Despite their importance, the location and geometry of flowpaths are difficult to determine. In arctic environments, shallow subsurface flowpaths are limited to a thin zone of seasonal thaw above continuous permafrost, which is traditionally assumed to mimic to surface topography. Here we use a combined approach of electrical resistivity imaging (ERI) and self-potential measurements (SP) to map shallow subsurface flowpaths in and around water tracks, drainage features common to arctic hillslopes. ERI measurements delineate thawed zones in the subsurface that control flowpaths, while SP is sensitive to groundwater flow. We find that areas of low electrical resistivity in the water tracks are deeper than manual thaw depth estimates and variations from surface topography. This finding suggests that traditional techniques significantly underestimate active layer thaw and the extent of the flowpath network on arctic hillslopes. SP measurements identify complex 3-D flowpaths in the thawed zone. Our results lay the groundwork for investigations into the seasonal dynamics, hydrologic connectivity, and climate sensitivity of spatially distributed flowpath networks on arctic hillslopes.

  17. Myoelectric activity along human gastrocnemius medialis: Different spatial distributions of postural and electrically elicited surface potentials

    PubMed Central

    Hodson-Tole, Emma F.; Loram, Ian D.; Vieira, Taian M.M.

    2013-01-01

    It has recently been shown that motor units in human medial gastrocnemius (MG), activated during standing, occupy relatively small territories along the muscle’s longitudinal axis. Such organisation provides potential for different motor tasks to produce differing regional patterns of activity. Here, we investigate whether postural control and nerve electrical stimulation produce equal longitudinal activation patterns in MG. Myoelectric activity, at different proximal–distal locations of MG, was recorded using a linear electrode array. To ensure differences in signal amplitude between channels did not result from local, morphological factors two experimental protocols were completed: (i) quiet standing; (ii) electrical stimulation of the tibial nerve. Averaged, rectified values (ARVs) were calculated for each channel in each condition. The distribution of signals along electrode channels was described using linear regression and differences between protocols at each channel determined as the ratio between mean ARV from standing: stimulation protocols. Ratio values changed systematically across electrode channels in seven (of eight) participants, with larger values in distal channels. The distribution of ARV along MG therefore differed between experimental conditions. Compared to fibres of units activated during MG nerve stimulation, units activated during standing may have a tendency to be more highly represented in the distal muscle portion. PMID:22967836

  18. Potential production of biosurfactants under electric field supplied to clayey soil

    SciTech Connect

    Ju, L.; Elektorowicz, M.

    1999-07-01

    The possibility of the introduction of nutrients and bacteria into clayey soil using electrokinetic methodology makes bioremediation more popular. However, biodegradation of polynuclear aromatic hydrocarbons (PAHs) is limited by their low solubility. The potential production of biosurfactants in clayey soil under the electric field was presented in this study. The electrokinetic cell tests were carried out to investigate the production of biosurfactants in the contaminated soil and soil without contaminants. The results showed that there was 1.5 times higher production in the soil contaminated by phenanthrene than that without it. In the middle of the electrokinetic cell, there are more biosurfactants produced than at the anode and the cathode areas. It was observed that there was migration of micelles with the electromigration and electroosmosis. In spite of the anionic properties of biosurfactant, the movement of the micelle was only partially directed to the anode. It was also observed that the electroosmosic flow transported micelles to the cathode. The results suggested the possibility of production of biosurfactants under the electric field and uniform distribution in the subsoil. The results could find a direct applicability in the enhanced remediation of PAH-contaminated sites.

  19. Development of 3-D Mechanical Models of Electric Circuits and Their Effect on Students' Understanding of Electric Potential Difference

    ERIC Educational Resources Information Center

    Balta, Nuri

    2015-01-01

    Visualizing physical concepts through models is an essential method in many sciences. While students are mostly proficient in handling mathematical aspects of problems, they frequently lack the ability to visualize and interpret abstract physical concepts in a meaningful way. In this paper, initially the electric circuits and related concepts were…

  20. A new correlation effect in the Helmholtz and surface potentials of the electrical double layer.

    PubMed

    González-Tovar, Enrique; Jiménez-Angeles, Felipe; Messina, René; Lozada-Cassou, Marcelo

    2004-05-22

    The restricted primitive model of an electrical double layer around a spherical macroparticle is studied by using integral equation theories and Monte Carlo simulations. The resulting theoretical curves for the Helmholtz and surface potentials versus the macroparticle charge show an unexpected positive curvature when the ionic size of uni- and divalent electrolyte species is increased. This is a novel effect that is confirmed here by computer experiments. An explanation of this phenomenon is advanced in terms of the adsorption and layering of the electrolytic species and of the compactness of the diffuse double layer. It is claimed that the interplay between electrostatic and ionic size correlation effects, absent in the classical Poisson-Boltzmann view, is responsible for this singularity.

  1. The potential of electricity transmission corridors in forested areas as bumblebee habitat

    PubMed Central

    Hill, Bruce

    2016-01-01

    Declines in pollinator abundance and diversity are not only a conservation issue, but also a threat to crop pollination. Maintained infrastructure corridors, such as those containing electricity transmission lines, are potentially important wild pollinator habitat. However, there is a lack of evidence comparing the abundance and diversity of wild pollinators in transmission corridors with other important pollinator habitats. We compared the diversity of a key pollinator group, bumblebees (Bombus spp.), between transmission corridors and the surrounding semi-natural and managed habitat types at 10 sites across Sweden's Uppland region. Our results show that transmission corridors have no impact on bumblebee diversity in the surrounding area. However, transmission corridors and other maintained habitats such as roadsides have a level of bumblebee abundance and diversity comparable to semi-natural grasslands and host species that are important for conservation and ecosystem service provision. Under the current management regime, transmission corridors already provide valuable bumblebee habitat, but given that host plant density is the main determinant of bumblebee abundance, these areas could potentially be enhanced by establishing and maintaining key host plants. We show that in northern temperate regions the maintenance of transmission corridors has the potential to contribute to bumblebee conservation and the ecosystem services they provide. PMID:28018640

  2. The potential of electricity transmission corridors in forested areas as bumblebee habitat.

    PubMed

    Hill, Bruce; Bartomeus, Ignasi

    2016-11-01

    Declines in pollinator abundance and diversity are not only a conservation issue, but also a threat to crop pollination. Maintained infrastructure corridors, such as those containing electricity transmission lines, are potentially important wild pollinator habitat. However, there is a lack of evidence comparing the abundance and diversity of wild pollinators in transmission corridors with other important pollinator habitats. We compared the diversity of a key pollinator group, bumblebees (Bombus spp.), between transmission corridors and the surrounding semi-natural and managed habitat types at 10 sites across Sweden's Uppland region. Our results show that transmission corridors have no impact on bumblebee diversity in the surrounding area. However, transmission corridors and other maintained habitats such as roadsides have a level of bumblebee abundance and diversity comparable to semi-natural grasslands and host species that are important for conservation and ecosystem service provision. Under the current management regime, transmission corridors already provide valuable bumblebee habitat, but given that host plant density is the main determinant of bumblebee abundance, these areas could potentially be enhanced by establishing and maintaining key host plants. We show that in northern temperate regions the maintenance of transmission corridors has the potential to contribute to bumblebee conservation and the ecosystem services they provide.

  3. Simultaneous mechanical stiffness and electrical potential measurements of living vascular endothelial cells using combined atomic force and epifluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Callies, Chiara; Schön, Peter; Liashkovich, Ivan; Stock, Christian; Kusche-Vihrog, Kristina; Fels, Johannes; Sträter, Alexandra S.; Oberleithner, Hans

    2009-04-01

    The degree of mechanical stiffness of vascular endothelial cells determines the endogenous production of the vasodilating gas nitric oxide (NO). However, the underlying mechanisms are not yet understood. Experiments on vascular endothelial cells suggest that the electrical plasma membrane potential is involved in this regulatory process. To test this hypothesis we developed a technique that simultaneously measures the electrical membrane potential and stiffness of vascular endothelial cells (GM7373 cell line derived from bovine aortic endothelium) under continuous perfusion with physiological electrolyte solution. The cellular stiffness was determined by nano-indentation using an atomic force microscope (AFM) while the electrical membrane potential was measured with bis-oxonol, a voltage-reporting fluorescent dye. These two methods were combined using an AFM attached to an epifluorescence microscope. The electrical membrane potential and mechanical stiffness of the same cell were continuously recorded for a time span of 5 min. Fast fluctuations (in the range of seconds) of both the electrical membrane potential and mechanical stiffness could be observed that were not related to each other. In contrast, slow cell depolarizations (in the range of minutes) were paralleled by significant increases in mechanical stiffness. In conclusion, using the combined AFM-fluorescence technique we monitored for the first time simultaneously the electrical plasma membrane potential and mechanical stiffness in a living cell. Vascular endothelial cells exhibit oscillatory non-synchronized waves of electrical potential and mechanical stiffness. The sustained membrane depolarization, however, is paralleled by a concomitant increase of cell stiffness. The described method is applicable for any fluorophore, which opens new perspectives in biomedical research.

  4. The School Advanced Ventilation Engineering Software (SAVES)

    EPA Pesticide Factsheets

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  5. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    PubMed Central

    Wang, Yi-Min; Kinraide, Thomas B.; Wang, Peng; Hao, Xiu-Zhen; Zhou, Dong-Mei

    2014-01-01

    Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM) surface’s electrical potential (ψ0). The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+) to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+) and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−). Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0) than with activities in the bulk-phase medium ({IZ}b) (IZ denotes an ion with charge Z). Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf). Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments. PMID:25493475

  6. Save Energy, Save Dollars. Information Bulletin 125.

    ERIC Educational Resources Information Center

    State Univ. of New York, Ithaca. Coll. of Human Ecology at Cornell Univ.

    This cooperative extension publication from Cornell University is a guide for energy conservation in homes, apartments, and transportation. Written in non-technical language, this guide provides the layperson with information about weatherization, home appliance use, recreation and transportation practices to conserve energy and, thus, save money.…

  7. Relationship Between Aerosol Number Size Distribution and Atmospheric Electric Potential Gradient in an Urban Area

    NASA Astrophysics Data System (ADS)

    Wright, Matthew; Matthews, James; Bacak, Asan; Silva, Hugo; Priestley, Michael; Percival, Carl; Shallcross, Dudley

    2016-04-01

    Small ions are created in the atmosphere by ground based radioactive decay and solar and cosmic radiation ionising the air. The ionosphere is maintained at a high potential relative to the Earth due to global thunderstorm activity, a current from the ionosphere transfers charge back to the ground through the weakly ionised atmosphere. A potential gradient (PG) exists between the ionosphere and the ground that can be measured in fair weather using devices such as an electric field mill. PG is inversely-proportional to the conductivity of the air and therefore to the number of ions of a given electrical mobility; a reduction of air ions will cause an increase of PG. Aerosols in the atmosphere act as a sink of air ions with an attachment rate dependent on aerosol size distribution and ion mobility. These relationships have been used to infer high particulate, and hence pollution, levels in historic datasets of atmospheric PG. A measurement campaign was undertaken in Manchester, UK for three weeks in July and August where atmospheric PG was measured with an electric field mill (JCI131, JCI Chilworth) on a second floor balcony, aerosol size distribution measured with a scanning mobility particle sizer (SMPS, TSI3936), aerosol concentration measured with a condensation particle counter (CPC, Grimm 5.403) and local meteorological measurements taken on a rooftop measurement site ~200 m away. Field mill and CPC data were taken at 1 s intervals and SMPS data in 2.5 minute cycles. Data were excluded for one hour either side of rainfall as rainclouds and droplets can carry significant charge which would affect PG. A quantity relating to the attachment of ions to aerosol (Ion Sink) was derived from the effective attachment coefficient of the aerosols. Further measurements with the field mill and CPC were taken at the same location in November 2015 when bonfire events would be expected to increase aerosol concentrations. During the summer measurements, particle number count (PNC

  8. Plugging into Energy Savings.

    ERIC Educational Resources Information Center

    Harrigan, Merrilee

    1999-01-01

    The nonprofit Alliance to Save Energy has been helping schools reduce energy consumption through a combination of retrofits, classroom instruction, and behavior. Lists eight small steps to big energy savings, among them: involve the whole school, stop leaks, turn off computers, and recycle. (MLF)

  9. Electrical-stress-induced transport and surface potential characterizations of metal/ TiO 2/metal planar junctions

    NASA Astrophysics Data System (ADS)

    Kim, Haeri; Kim, Dong-Wook

    2011-03-01

    Electric-field-induced resistive switching (RS) phenomena in metal oxides have attracted considerable research interest due to their potential use in nonvolatile memory device applications. Intensive investigations have revealed that coupled electron ion dynamics play a key role the RS mechanism. Metal/single crystal junction can be an ideal model system to study how the ionic drift and diffusion can affect the resistance. We investigated transport and local electrical properties of Pt/ Ti O2 single crystal/Ti planar junctions with micron- sized gaps between the electrodes. Scanning Kelvin probe microscopy (SKPM) showed that negative (positive) electrical stress to the Pt electrodes significantly reduced (hardly affected) the Pt/ Ti O2 contact resistance. The SKPM results also revealed that the electrical stress caused alteration of the local work function of Ti O2 . The comparative investigations of the transport and SKPM results suggested that the electrical stress induced redistribution of ions, resulting in the change of the junction resistance.

  10. The Conservation Nexus: Valuing Interdependent Water and Energy Savings in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M.

    2013-12-01

    Energy and water resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially-explicit model of water-energy interdependencies in Arizona, and assesses the potential for co-beneficial conservation programs. Arizona consumes 2.8% of its water demand for thermoelectric power and 8% of its electricity demand for water infrastructure--roughly twice the national average. The interdependent benefits of investments in 7 conservation strategies are assessed. Deployment of irrigation retrofits and new reclaimed water facilities dominate potential water savings, while residential and commercial HVAC improvements dominate energy savings. Water conservation policies have the potential to reduce statewide electricity demand by 1.0-2.9%, satisfying 5-14% of mandated energy-efficiency goals. Likewise, adoption of energy-efficiency measures and renewable generation portfolios can reduce non-agricultural water demand by 2.0-2.6%. These co-benefits of conservation investments are typically not included in conservation plans or benefit-cost analyses. Residential water conservation measures produce significant water and energy savings, but are generally not cost-effective at current water prices. An evaluation of the true cost of water in Arizona would allow future water and energy savings to be compared objectively, and would help policymakers allocate scarce resources to the highest-value conservation measures. Water Transfers between Water Cycle Components in Arizona in 2008 Cumulative embedded energy in water cycle components in Arizona in 2008

  11. Risk transfer via energy savings insurance

    SciTech Connect

    Mills, Evan

    2001-10-01

    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of $875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance sheets to self

  12. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements.

    PubMed

    Das, Siddhartha; Chakraborty, Suman

    2010-07-06

    In this article, we investigate the implications of ionic conductivity variations within the electrical double layer (EDL) on the streaming potential estimation in pressure-driven fluidic transport through narrow confinements. Unlike the traditional considerations, we do not affix the ionic conductivities apriori by employing preset values of dimensionless parameters (such as the Dukhin number) to estimate the streaming potential. Rather, utilizing the Gouy-Chapman-Grahame model for estimating the electric potential and charge density distribution within the Stern layer, we first quantify the Stern layer electrical conductivity as a function of the zeta potential and other pertinent parameters quantifying the interaction of the ionic species with the charged surface. Next, by invoking the Boltzmann model for cationic and anionic distribution within the diffuse layer, we obtain the diffuse layer electrical conductivity. On the basis of these two different conductivities pertaining to the two different portions of the EDL as well as the bulk conductivity, we define two separate Dukhin numbers that turn out to be functions of the dimensionless zeta potential and the channel height to Debye length ratio. We derive analytical expressions for the streaming potential as a function of the fundamental governing parameters, considering the above. The results reveal interesting and significant deviations between the streaming potential predictions from the present considerations against the corresponding predictions from the classical considerations in which electrochemically consistent estimates of variable EDL conductivity are not traditionally accounted for. In particular, it is revealed that the variations of streaming potential with zeta potential are primarily determined by the competing effects of EDL electromigration and ionic advection. Over low and high zeta potential regimes, the Stern layer and diffuse layer conductivities predominantly dictate the streaming

  13. Potential energy, force distribution and oscillatory motion of chloride ion inside electrically charged carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-06-01

    In this research, a continuum-based model is presented to explore potential energy, force distribution and oscillatory motion of ions, and in particular chloride ion, inside carbon nanotubes (CNTs) decorated by functional groups at two ends. To perform this, van der Waals (vdW) interactions between ion and nanotube are modeled by the 6-12 Lennard-Jones (LJ) potential, whereas the electrostatic interactions between ion and functional groups are modeled by the Coulomb potential and the total interactions are analytically derived by summing the vdW and electrostatic interactions. Making the assumption that carbon atoms and charge of functional groups are all uniformly distributed over the nanotube surface and the two ends of nanotube, respectively, a continuum approach is utilized to evaluate the related interactions. Based on the actual force distribution, the equation of motion is also solved numerically to arrive at the time history of displacement and velocity of inner core. With respect to the proposed formulations, comprehensive studies on the variations of potential energy and force distribution are carried out by varying functional group charge and nanotube length. Moreover, the effects of these parameters together with initial conditions on the oscillatory behavior of system are studied and discussed in detail. It is found out that chloride ion escapes more easily from negatively charged CNTs which is followed by uncharged and positively charged ones. It is further shown that the presence of functional groups leads to enhancing the operating frequency of such oscillatory systems especially when the electric charges of ion and functional groups have different signs.

  14. Stability enhancement of an electrically tunable colloidal photonic crystal using modified electrodes with a large electrochemical potential window

    SciTech Connect

    Shim, HongShik; Gyun Shin, Chang; Heo, Chul-Joon; Jeon, Seog-Jin; Jin, Haishun; Woo Kim, Jung; Jin, YongWan; Lee, SangYoon; Gyu Han, Moon E-mail: jinklee@snu.ac.kr; Lim, Joohyun; Lee, Jin-Kyu E-mail: jinklee@snu.ac.kr

    2014-02-03

    The color tuning behavior and switching stability of an electrically tunable colloidal photonic crystal system were studied with particular focus on the electrochemical aspects. Photonic color tuning of the colloidal arrays composed of monodisperse particles dispersed in water was achieved using external electric field through lattice constant manipulation. However, the number of effective color tuning cycle was limited due to generation of unwanted ions by electrolysis of the water medium during electrical switching. By introducing larger electrochemical potential window electrodes, such as conductive diamond-like carbon or boron-doped diamond, the switching stability was appreciably enhanced through reducing the number of ions generated.

  15. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    NASA Technical Reports Server (NTRS)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  16. Energy conservation in electric distribution

    SciTech Connect

    Lee, Chong-Jin

    1994-12-31

    This paper discusses the potential for energy and power savings that exist in electric power delivery systems. These savings translate into significant financial and environmental benefits for electricity producers and consumers as well as for society in general. AlliedSignal`s knowledge and perspectives on this topic are the result of discussions with hundreds of utility executives, government officials and other industry experts over the past decade in conjunction with marketing our Amorphous Metal technology for electric distribution transformers. Amorphous metal is a technology developed by AlliedSignal that significantly reduces the energy lost in electric distribution transformers at an incremental cost of just a few cents per kilo-Watt-hour. The purpose of this paper is to discuss: Amorphous Metal Alloy Technology; Energy Savings Opportunity; The Industrial Barriers and Remedies; Worldwide Demand; and A Low Risk Strategy. I wish this presentation will help KEPCO achieve their stated aims of ensuring sound development of the national economy and enhancement of public life through the economic and stable supply of electric power. AlliedSignal Korea Ltd. in conjunction with AlliedSignal Amorphous Metals in the U.S. are here to work with KEPCO, transformer manufacturers, industry, and government agencies to achieve greater efficiency in power distribution.

  17. Variation of the global electric circuit and Ionospheric potential in a general circulation model

    NASA Astrophysics Data System (ADS)

    Mareev, E. A.; Volodin, E. M.

    2014-12-01

    A general circulation model of the atmosphere and ocean INMCM4.0 (Institute of Numerical Mathematics Coupled Model) is used for modeling the global electric circuit short-time variability and long-term evolution. The ionospheric potential parameterization is proposed which takes into account quasi-stationary currents of electrified clouds (including thunderstorms) as principal contributors into the DC global circuit. The diurnal, seasonal, and interannual variations of the ionospheric potential (IP) are modeled and compared with available data. Numerical simulations suggest that the IP decreases in the mean with the global warming due to increasing greenhouse gas emission (by about 10% during the 21st century if the Representative Concentration Pathway 8.5 Wm-2 scenario is assumed). At the same time the lightning flash rate increases with global warming by about 5 fl/s per degree. Interannual IP variability is low and does not exceed 1% of the mean value, being tightly correlated with the mean sea surface temperature in the Pacific Ocean (El Niño area).

  18. Health effects three years after potential exposure to the toxic contaminants of an electrical transformer fire

    SciTech Connect

    Fitzgerald, E.F.; Weinstein, A.L.; Youngblood, L.G.; Standfast, S.J.; Melius, J.M. )

    1989-07-01

    A medical surveillance program has been established for 482 persons who were potentially exposed to polychlorinated biphenyls (PCBs), dibenzo-p-dioxins, and dibenzofurans from an electrical transformer fire in a Binghamton, NY office building in 1981. Vital Record and Cancer Registry data, medical records, and mail questionnaires were used to assess mortality, symptomatology, cancer incidence, and reproductive events through 1984. The numbers of deaths, cancers, fetal deaths, and infants with low birth weight or congenital malformations were similar to those expected on the basis of age- and sex-specific rates for upstate New York and other comparison populations. Two suicides were observed compared with 0.31 expected, but the difference was not statistically significant. After adjustment for possible confounders, persons with the greatest degree of potential exposure were significantly more likely than those with less exposure to report unexplained weight loss (relative risk (RR) = 12.80), muscle pain (RR = 5.07), frequent coughing (RR = 4.14), skin color changes (RR = 3.49), and nervousness or sleep problems (RR = 3.19). The possibility of recall bias and the intervening effects of stress, however, weaken the conclusion that toxic chemicals caused the symptomatology. Exposure-related systemic disorders, e.g., chloracne or peripheral neuropathy, were not diagnosed by personal physicians; however, some persons refused to release their medical records because of ongoing litigation. The findings are consistent with those of our earlier assessment.

  19. Turning waste into valuable resource: potential of electric arc furnace dust as photocatalytic material.

    PubMed

    Sapiña, M; Jimenez-Relinque, E; Castellote, M

    2014-10-01

    This paper explores the potential of a hazardous waste of difficult management, electric arc furnace dust (EAFD), as photocatalytic material. Starting from a real waste coming from a Spanish steel factory, chemical, mineralogical, and optical characterizations have been carried out. Direct trials on EAFD and mortar containing this waste have been performed to evaluate its potential as photocatalyst itself and within a cementitious material. The analysis of photocatalytic properties has been done by two different methods: degradation of NO x and degradation of rhodamine (RhB). As a result, it can be said that EAFD exhibited photocatalytic activity for both configurations with UV and visible light, having the mortar enhanced photocatalytic activity for NO x with respect to the EAFD itself. Additionally, in direct trials on the EAFD, it has been able to degrade RhB even in the dark, which has been attributed to transfer of electrons between the adsorbed RhB and the conduction band of some oxides in the dust.

  20. Evaluation of present thermal barrier coatings for potential service in electric utility gas turbines

    NASA Technical Reports Server (NTRS)

    Bratton, R. J.; Lau, S. K.; Lee, S. Y.

    1982-01-01

    The resistance of present-day thermal barrier coatings to combustion gases found in electric utility turbines was assessed. The plasma sprayed coatings, both duplex and graded types, were primarily zirconia-based, although a calcium silicate was also evaluated. Both atmospheric burner rig tests and high pressure tests (135 psig) showed that several present-day thermal barrier coatings have a high potential for service in gas turbines burning the relatively clean GT No. 2 fuel. However, coating improvements are needed for use in turbines burning lower grade fuel such as residual oil. The duplex ZrO2.8Y2O3/NiCrA1Y coating was ranked highest and selected for near-term field testing, with Ca2SiO4/NiCrA1Y ranked second. Graded coatings show potential for corrosive turbine operating conditions and warrant further development. The coating degradation mechanisms for each coating system subjected to the various environmental conditions are also described.

  1. On the phase shift between electric potential and plasma density fluctuations in the edge turbulence

    SciTech Connect

    Shchepetov, S. V. Kholnov, Yu. V.; Vasil'kov, D. G.

    2013-02-15

    In some cases, the phase shift between fluctuations of the electric potential and plasma density helps to identify the instability that governs the turbulent state. In this paper, the basic experimental and theoretical results that denote the possibility (or impossibility) of such identification are briefly discussed. The experimental data based on measurements of the phase shift between the floating potential and ion saturation current fluctuations in the L-2M stellarator-a system with externally imposed magnetic surfaces-are presented (Shchepetov, Kholnov, Fedyanin, et al., Plasma Phys. Controlled Fusion 50, 045001 (2008)). It is shown that the observed phase shift {Omega} varies in a wide range from {pi} to 0, gradually decreasing with deepening inside the plasma. A number of arguments are presented suggesting that {Omega} Almost-Equal-To {pi} can indicate that the process is nonlocal, i.e., oscillations at a given spatial point are driven and mainly determined by the processes localized outside of the observation point. We note that, within the framework of the magnetohydrodynamic theory, plasma was definitely unstable with respect to resistive interchange modes in all cases under study. It is demonstrated experimentally that the widespread notion that the phase shift {Omega} Almost-Equal-To {pi}/2 is characteristic of only resistive interchange modes is hardly universal. The experimental results are analyzed on the basis of analytical estimates.

  2. Kinetic equivalence of transmembrane pH and electrical potential differences in ATP synthesis.

    PubMed

    Soga, Naoki; Kinosita, Kazuhiko; Yoshida, Masasuke; Suzuki, Toshiharu

    2012-03-16

    ATP synthase is the key player of Mitchell's chemiosmotic theory, converting the energy of transmembrane proton flow into the high energy bond between ADP and phosphate. The proton motive force that drives this reaction consists of two components, the pH difference (ΔpH) across the membrane and transmembrane electrical potential (Δψ). The two are considered thermodynamically equivalent, but kinetic equivalence in the actual ATP synthesis is not warranted, and previous experimental results vary. Here, we show that with the thermophilic Bacillus PS3 ATP synthase that lacks an inhibitory domain of the ε subunit, ΔpH imposed by acid-base transition and Δψ produced by valinomycin-mediated K(+) diffusion potential contribute equally to the rate of ATP synthesis within the experimental range examined (ΔpH -0.3 to 2.2, Δψ -30 to 140 mV, pH around the catalytic domain 8.0). Either ΔpH or Δψ alone can drive synthesis, even when the other slightly opposes. Δψ was estimated from the Nernst equation, which appeared valid down to 1 mm K(+) inside the proteoliposomes, due to careful removal of K(+) from the lipid.

  3. Determination of the potential market size and opportunities for biomass to electricity projects in China

    SciTech Connect

    Perlack, R.D.

    1995-08-01

    Efforts are currently underway to assess the market potential and prospects for the US private sector in biomass energy development in Yunnan Province. Among the specific objectives of the study are to: estimate the likely market size and competitiveness of biomass energy, assess the viability of US private sector ventures; assess non-economic factors (e.g., resource, environmental, social, political, institutional) that could affect the viability of biomass energy; and recommend appropriate actions to help stimulate biomass initiatives. Feasibility studies show that biomass projects in Yunnan Province are financially and technically viable. Biomass can be grown and converted to electricity at costs lower than other alternatives. These projects if implemented can ease power shortages and help to sustain the region`s economic growth. The external environmental benefits of integrated biomass projects are also potentially significant. This paper summarizes a two-step screening and rank-ordering process that is being used to identify the best candidate projects for possible US private sector investment. The process uses a set of initial screens to eliminate projects that are not technically feasible to develop. The remaining projects are then rank-ordered using a multicriteria technique.

  4. Solar wind density controlling penetration electric field at the equatorial ionosphere during a saturation of cross polar cap potential

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Wan, W.; Zhao, B.; Hong, M.; Ridley, A.; Ren, Z.; Fraenz, M.; Dubinin, E.; He, M.

    2012-09-01

    The most important source of electrodynamic disturbances in the equatorial ionosphere during the main phase of a storm is the prompt penetration electric field (PPEF) originating from the high-latitude region. It has been known that such an electric field is correlated with the magnetospheric convection or interplanetary electric field. Here we show a unique case, in which the electric field disturbance in the equatorial ionosphere cannot be interpreted by this concept. During the superstorm on Nov. 20-21, 2003, the cross polar cap potential (CPCP) saturated at least for 8.2 h. The CPCP reconstructed by Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure suggested that the PPEF at the equatorial ionosphere still correlated with the saturated CPCP, but the CPCP was controlled by the solar wind density instead of the interplanetary electric field. However, the predicted CPCPs by Hill-Siscoe-Ober (HSO) model and Boyle-Ridley (BR) model were not fully consistent with the AMIE result and PPEF. The PPEF also decoupled from the convection electric field in the magnetotail. Due to the decoupling, the electric field in the ring current was not able to comply with the variations of PPEF, and this resulted in a long-duration electric field penetration without shielding.

  5. Respiratory-gated electrical impedance tomography: a potential technique for quantifying stroke volume

    NASA Astrophysics Data System (ADS)

    Arshad, Saaid H.; Murphy, Ethan K.; Halter, Ryan J.

    2016-03-01

    Telemonitoring is becoming increasingly important as the proportion of the population living with cardiovascular disease (CVD) increases. Currently used health parameters in the suite of telemonitoring tools lack the sensitivity and specificity to accurately predict heart failure events, forcing physicians to play a reactive versus proactive role in patient care. A novel cardiac output (CO) monitoring device is proposed that leverages a custom smart phone application and a wearable electrical impedance tomography (EIT) system. The purpose of this work is to explore the potential of using respiratory-gated EIT to quantify stroke volume (SV) and assess its feasibility using real data. Simulations were carried out using the 4D XCAT model to create anatomically realistic meshes and electrical conductivity profiles representing the human thorax and the intrathoracic tissue. A single 5-second period respiration cycle with chest/lung expansion was modeled with end-diastole (ED) and end-systole (ES) heart volumes to evaluate how effective EIT-based conductivity changes represent clinically significant differences in SV. After establishing a correlation between conductivity changes and SV, the applicability of the respiratory-gated EIT was refined using data from the PhysioNet database to estimate the number of useful end-diastole (ED) and end-systole (ES) heart events attained over a 3.3 minute period. The area associated with conductivity changes was found to correlate to SV with a correlation coefficient of 0.92. A window of 12.5% around peak exhalation was found to be the optimal phase of the respiratory cycle from which to record EIT data. Within this window, ~47 useable ED and ES were found with a standard deviation of 28 using 3.3 minutes of data for 20 patients.

  6. Numerical Computation of Electric Field and Potential Along Silicone Rubber Insulators Under Contaminated and Dry Band Conditions

    NASA Astrophysics Data System (ADS)

    Arshad; Nekahi, A.; McMeekin, S. G.; Farzaneh, M.

    2016-09-01

    Electrical field distribution along the insulator surface is considered one of the important parameters for the performance evaluation of outdoor insulators. In this paper numerical simulations were carried out to investigate the electric field and potential distribution along silicone rubber insulators under various polluted and dry band conditions. Simulations were performed using commercially available simulation package Comsol Multiphysics based on the finite element method. Various pollution severity levels were simulated by changing the conductivity of pollution layer. Dry bands of 2 cm width were inserted at the high voltage end, ground end, middle part, shed, sheath, and at the junction of shed and sheath to investigate the effect of dry band location and width on electric field and potential distribution. Partial pollution conditions were simulated by applying pollution layer on the top and bottom surface respectively. It was observed from the simulation results that electric field intensity was higher at the metal electrode ends and at the junction of dry bands. Simulation results showed that potential distribution is nonlinear in the case of clean and partially polluted insulator and linear for uniform pollution layer. Dry band formation effect both potential and electric field distribution. Power dissipated along the insulator surface and the resultant heat generation was also studied. The results of this study could be useful in the selection of polymeric insulators for contaminated environments.

  7. Improving Navy’s Buying Power Through Cost Savings

    DTIC Science & Technology

    2006-10-01

    and aircraft procurement issues .............. 45 Savings from best practices and lean manufacturing in ship building...evaluation (T&E) $80M Reducing electricity costs $1 OM Applying lean manufacturing to Navy shipbuilding $430M Applying lean manufacturing to defense...and lean manufacturing and their application to Navy shipbuilding and the defense aircraft industry could gen- erate savings. "* The 2005 Base

  8. 49 CFR 173.219 - Life-saving appliances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that do not exceed those appropriate for the actual appliance when in use. (b) Life saving appliances... and illumination signal flares; (3) Electric storage batteries and lithium batteries (life-saving appliances containing lithium batteries must be packed in accordance with § 173.185 and Special...

  9. 49 CFR 173.219 - Life-saving appliances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... that do not exceed those appropriate for the actual appliance when in use. (b) Life saving appliances... and illumination signal flares; (3) Electric storage batteries and lithium batteries (Life saving appliances containing lithium batteries must be transported in accordance with § 173.185, and...

  10. The Potential Economic Impact of Electricity Restructuring in the State of Oklahoma: Phase II Report

    SciTech Connect

    Hadley, SW

    2001-10-30

    Because of the recent experiences of several states undergoing restructuring (e.g., higher prices, greater volatility, lower reliability), concerns have been raised in states currently considering restructuring as to whether their systems are equally vulnerable. Factors such as local generation costs, transmission constraints, market concentration, and market design can all play a role in the success or failure of the market. These factors along with the mix of generation capacity supplying the state will influence the relative prices paid by consumers. The purpose of this project is to provide a model and process to evaluate the potential price and economic impacts of restructuring the Oklahoma electric industry. The Phase I report concentrated on providing an analysis of the Oklahoma system in the near-term, using only present generation resources and customer demands. This Phase II study analyzed the Oklahoma power market in 2010, incorporating the potential of new generation resources and customer responses. Five key findings of this Phase II were made: (1) Projected expansion in generating capacity exceeds by over 3,000 MW the demands within the state plus the amount that could be exported with the current transmission system. (2) Even with reduced new plant construction, most new plants could lose money (although residential consumers would see lower rates) unless they have sufficient market power to raise their prices without losing significant market share (Figure S-1). (3) If new plants can raise prices to stay profitable, existing low-cost coal and hydro plants will have very high profits. Average prices to customers could be 5% to 25% higher than regulated rates (Figure S-1). If the coal and hydro plants are priced at cost-based rates (through long-term contracts or continued regulation) while all other plants use market-based rates then prices are lower. (4) Customer response to real-time prices can lower the peak capacity requirements by around 9

  11. Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers.

    PubMed

    Das, Siddhartha; Guha, Arnab; Mitra, Sushanta K

    2013-12-04

    In this paper, we unravel new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with thick overlapping Electric Double Layers (EDLs). We observe that the streaming potential, for a given value of the capillary zeta (ζ) potential, varies with the EDL thickness and a dimensionless parameter R, quantifying the conduction current. Depending on the value of R, variation of the streaming potential with the EDL thickness demonstrates distinct scaling regimes: one can witness a Quadratic Regime where the streaming potential varies as the square of the EDL thickness, a Weak Regime where the streaming potential shows a weaker variation with the EDL thickness, and a Saturation Regime where the streaming potential ceases to vary with the EDL thickness. Effective viscosity, characterizing the electroviscous effect, obeys the variation of the streaming potential for smaller EDL thickness values; however, for larger EDL thickness the electroosmotic flow profile dictates the electroviscous effect, with insignificant contribution of the streaming potential.

  12. Save Energy Now Resources

    SciTech Connect

    2008-03-01

    The U.S. Department of Energy (DOE) provides information resources to industrial energy users and partnering organizations to help the nation’s industrial sector save energy and improve productivity.

  13. Thermostatistics: Proven Energy Savings.

    ERIC Educational Resources Information Center

    Kwasnoski, John

    1983-01-01

    An apparatus simulating residential thermostat control was developed to test claim that lowering house thermostats saves energy and to give students a better understanding of how thermostats work. The apparatus (includes diagram of same) and student activity are described. (JN)

  14. Coarse-Grained Modeling of Nucleic Acids Using Anisotropic Gay-Berne and Electric Multipole Potentials.

    PubMed

    Li, Guohui; Shen, Hujun; Zhang, Dinglin; Li, Yan; Wang, Honglei

    2016-02-09

    In this work, we attempt to apply a coarse-grained (CG) model, which is based on anisotropic Gay-Berne and electric multipole (EMP) potentials, to the modeling of nucleic acids. First, a comparison has been made between the CG and atomistic models (AMBER point-charge model) in the modeling of DNA and RNA hairpin structures. The CG results have demonstrated a good quality in maintaining the nucleic acid hairpin structures, in reproducing the dynamics of backbone atoms of nucleic acids, and in describing the hydrogen-bonding interactions between nucleic acid base pairs. Second, the CG and atomistic AMBER models yield comparable results in modeling double-stranded DNA and RNA molecules. It is encouraging that our CG model is capable of reproducing many elastic features of nucleic acid base pairs in terms of the distributions of the interbase pair step parameters (such as shift, slide, tilt, and twist) and the intrabase pair parameters (such as buckle, propeller, shear, and stretch). Finally, The GBEMP model has shown a promising ability to predict the melting temperatures of DNA duplexes with different lengths.

  15. Determination of potential management zones from soil electrical conductivity, yield and crop data.

    PubMed

    Li, Yan; Shi, Zhou; Wu, Ci-fang; Li, Hong-yi; Li, Feng

    2008-01-01

    One approach to apply precision agriculture to optimize crop production and environmental quality is identifying management zones. In this paper, the variables of soil electrical conductivity (EC) data, cotton yield data and normalized difference vegetation index (NDVI) data in an about 15 ha field in a coastal saline land were selected as data resources, and their spatial variabilities were firstly analyzed and spatial distribution maps constructed with geostatistics technique. Then fuzzy c-means clustering algorithm was used to define management zones, fuzzy performance index (FPI) and normalized classification entropy (NCE) were used to determine the optimal cluster numbers. Finally one-way variance analysis was performed on 224 georeferenced soil and yield sampling points to assess how well the defined management zones reflected the soil properties and productivity level. The results reveal that the optimal number of management zones for the present study area was 3 and the defined management zones provided a better description of soil properties and yield variation. Statistical analyses indicate significant differences between the chemical properties of soil samples and crop yield in each management zone, and management zone 3 presented the highest nutrient level and potential crop productivity, whereas management zone 1 the lowest. Based on these findings, we conclude that fuzzy c-means clustering approach can be used to delineate management zones by using the given three variables in the coastal saline soils, and the defined management zones form an objective basis for targeting soil samples for nutrient analysis and development of site-specific application strategies.

  16. The Electrically-Evoked Cortical Auditory Event-Related Potential in Children with Auditory Brainstem Implants

    PubMed Central

    He, Shuman; Holly, F.B. Teagle; Ewend, Matthew; Henderson, Lillian; Buchman, Craig A.

    2014-01-01

    Objective This study explored the feasibility of measuring electrically-evoked cortical auditory event-related potentials (eERPs) in children with auditory brainstem implants (ABIs). Design Five children with unilateral ABIs ranging in age from2.8 to 10.2yrs (mean: 5.2yrs) participated in this study. The stimulus was a 100-ms biphasic pulse train that was delivered to individual electrodes in a monopolar stimulation mode. Electrophysiological recordings of the onset eERP were conducted in all subjects. Results The onset eERP was recorded in four subjects who demonstrated auditory perception. These eERP responses showed variations in waveform morphology across subjects and stimulating electrode locations. No eERPs were observed in one subject who received no auditory sensation from ABI stimulation. Conclusions eERPs can be recorded in children with ABIs who develop auditory perception. The morphology of the eERP can vary across subjects and also across stimulating electrode locations within subjects. PMID:25426662

  17. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    SciTech Connect

    Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.

    2014-09-26

    Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g. turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.

  18. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    PubMed Central

    Garimella, Sandilya V.B.; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.

    2014-01-01

    We report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining and manipulating ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g. turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also shown feasible. The performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which are also shown to agree closely with experimental and theoretical IMS performance for a conventional drift tube design. PMID:25257188

  19. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    DOE PAGES

    Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; ...

    2014-09-26

    Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g.more » turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.« less

  20. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    PubMed

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  1. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways

    PubMed Central

    Lee, M. C.; O'Neill, J.; Dickenson, A. H.; Iannetti, G. D.

    2016-01-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronization of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptors exclusively. In contrast, low-intensity intraepidermal electrical stimulation (IES) allows selective activation of type II Aδ-mechano-heat nociceptors (II-AMHs) and elicits reproducible brain potentials. However, it is unclear whether hyperalgesia from IES occurs and coexists with secondary mechanical punctate hyperalgesia, and whether the magnitude of the electroencephalographic (EEG) responses evoked by IES within the hyperalgesic area is increased. To address these questions, we explored the modulation of the psychophysical and EEG responses to IES by intraepidermal injection of capsaicin in healthy human subjects. We obtained three main results. First, the intensity of the sensation elicited by IES was significantly increased in participants who developed robust mechanical punctate hyperalgesia after capsaicin injection (i.e., responders), indicating that hyperalgesia from IES coexists with punctate mechanical hyperalgesia. Second, the N2 peak magnitude of the EEG responses elicited by IES was significantly increased after the intraepidermal injection of capsaicin in responders only. Third, a receiver-operator characteristics analysis showed that the N2 peak amplitude is clearly predictive of the presence of CS. These findings suggest that the EEG responses elicited by IES reflect secondary hyperalgesia and therefore represent an objective correlate of CS. PMID:27098022

  2. Electrical Potentials of Plant Cell Walls in Response to the Ionic Environment1

    PubMed Central

    Shomer, Ilan; Novacky, Anton J.; Pike, Sharon M.; Yermiyahu, Uri; Kinraide, Thomas B.

    2003-01-01

    Electrical potentials in cell walls (ψWall) and at plasma membrane surfaces (ψPM) are determinants of ion activities in these phases. The ψPM plays a demonstrated role in ion uptake and intoxication, but a comprehensive electrostatic theory of plant-ion interactions will require further understanding of ψWall. ψWall from potato (Solanum tuberosum) tubers and wheat (Triticum aestivum) roots was monitored in response to ionic changes by placing glass microelectrodes against cell surfaces. Cations reduced the negativity of ψWall with effectiveness in the order Al3+ > La3+ > H+ > Cu2+ > Ni2+ > Ca2+ > Co2+ > Cd2+ > Mg2+ > Zn2+ > hexamethonium2+ > Rb+ > K+ > Cs+ > Na+. This order resembles substantially the order of plant-root intoxicating effectiveness and indicates a role for both ion charge and size. Our measurements were combined with the few published measurements of ψWall, and all were considered in terms of a model composed of Donnan theory and ion binding. Measured and model-computed values for ψWall were in close agreement, usually, and we consider ψWall to be at least proportional to the actual Donnan potentials. ψWall and ψPM display similar trends in their responses to ionic solutes, but ions appear to bind more strongly to plasma membrane sites than to readily accessible cell wall sites. ψWall is involved in swelling and extension capabilities of the cell wall lattice and thus may play a role in pectin bonding, texture, and intercellular adhesion. PMID:12970506

  3. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    NASA Astrophysics Data System (ADS)

    Tipton, William W.; Bealing, Clive R.; Mathew, Kiran; Hennig, Richard G.

    2013-05-01

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase.

  4. Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application.

    PubMed

    Reddy, Krishna R; Saichek, Richard E

    2004-01-01

    Electrokinetically enhanced in-situ flushing using surfactants has the potential to remove polycyclic aromatic hydrocarbons (PAHs) from low permeability clay soils; however, previous research has shown that the applied electric potential produces complex physical, chemical, and electrochemical changes within clay soils that affect mass transfer and overall efficiency. This article presents the results of a laboratory investigation conducted to determine the contaminant mass removal by using a periodic voltage application. The periodic voltage effects were evaluated by performing four different bench-scale electrokinetic tests with the voltage gradient applied continuously or periodically, under relatively low voltage (1.0 VDC/cm) and high anode buffering (0.1 M NaOH) as well as high voltage (2.0 VDC/cm) and low anode buffering (0.01 M NaOH) conditions. For all the tests, kaolin soil was used as a representative clay soil and it was spiked with phenanthrene, a representative PAH, with a target concentration of 500 mg/kg. A nonionic polyoxyethylene surfactant, Igepal CA 720, was used as the flushing solution in all the tests. The voltage was applied according to a cycle of five days of continuous application followed by two days of "down time," when the voltage was not applied. The results of these experiments show that considerable contaminant removal can be achieved by employing a high, 2.0 VDC/cm, voltage gradient along with a periodic mode of voltage application. The increased removal was attributed to increased phenanthrene solubilization and mass transfer due to the reduced flow of the bulk solution during the down time as well as to the pulsed electroosmotic flow that improved flushing action.

  5. In vivo study of transepithelial potential difference (TEPD) in proximal convoluted tubules of rat kidney by synchronization modulation electric field.

    PubMed

    Clausell, Mathis; Fang, Zhihui; Chen, Wei

    2014-07-01

    Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.

  6. Potential impacts of electric power production utilizing natural gas, renewables and carbon capture and sequestration on US Freshwater resources.

    PubMed

    Tidwell, Vincent C; Malczynski, Leonard A; Kobos, Peter H; Klise, Geoffrey T; Shuster, Erik

    2013-08-06

    Carbon capture and sequestration (CCS) has important implications relative to future thermoelectric water use. A bounding analysis is performed using past greenhouse gas emission policy proposals and assumes either all effected capacity retires (lower water use bound) or is retrofitted (upper bound). The analysis is performed in the context of recent trends in electric power generation expansion, namely high penetration of natural gas and renewables along with constrained cooling system options. Results indicate thermoelectric freshwater withdrawals nationwide could increase by roughly 1% or decrease by up to 60% relative to 2009 levels, while consumption could increase as much as 21% or decrease as much as 28%. To identify where changes in freshwater use might be problematic at a regional level, electric power production has been mapped onto watersheds with limited water availability (where consumption exceeds 70% of gauged streamflow). Results suggest that between 0.44 and 0.96 Mm(3)/d of new thermoelectric freshwater consumption could occur in watersheds with limited water availability, while power plant retirements in these watersheds could yield 0.90 to 1.0 Mm(3)/d of water savings.

  7. Numerical study of electric potential formation in a weakly ionized plasma flowing supersonically through open magnetic field lines

    NASA Astrophysics Data System (ADS)

    Laosunthara, Ampan; Takeda, Jun; Akatsuka, Hiroshi

    2017-01-01

    We investigate the mechanism of space potential formation due to a diverging magnetic field on a rarefied weakly ionized plasma flowing supersonically by performing a hybrid simulation. Ions and neutrals are treated by the particle-based direct simulation Monte Carlo method, while electrons are treated as a fluid to save time and memory. We apply an electron continuity equation in order to treat the electron velocity independently of the ion velocity. We find the number density of ions (and electrons) distributed along the magnetic field. We also find electron rotation along the flowing direction. Since we remove the current-free condition assumed in our previous study, we find that the longitudinal variation in the space potential agrees reasonably well with our previous experimental results.

  8. Application of vertical electrical sounding (VES) in subsurface geological investigation for potential aquifer in Lahad Datu, Sabah

    NASA Astrophysics Data System (ADS)

    Saleh, Hardianshah; Samsudin, Abdul Rahim

    2013-11-01

    40 Vertical Electrical Sounding (VES) stations were established to investigate the subsurface geology and aquifer potentials in the area of Dent Group sedimentary rock. Dent Group sedimentary rock consists of Sebahat, Ganduman and Togopi Formation with the age of Late Miocene until Pleistocene. VES technique was performed by measuring the resistivity change with depth. The resistivity measurements were conducted using ABEM SAS 300C Terrameter by using Schlumberger electrode configuration with maximum current electrode separation of 500m. Interpreted VES data in the Sebahat Formation produces three to four geo-electrical resistivity layers. Most of the geo-electrical layers show low resistivity value (1-10 Ohm-m) that indicate the formation was mainly made of clay or shale materials. VES results in the Ganduman Formation indicates that the formation dominated by layers of sandstone and mudstone mixed with siltstone layer. Generally, the Ganduman Formation gives four to five geo-electrical resistivity layers. While Togopi Formation produced 3 to 4 geo-electrical layers interpreted as sandstone for the first layer, mudstone for the second layer and followed by layer containing several block of limestone. The geo-electrical resistivity results indicate that Ganduman and Togopi Formations have the potential to become aquifer. The VES method has successfully detected the soil material layers in Ganduman and Togopi formations which were supported by the existing borehole data. Combination of sandstone and mudstone layers indicate that the Ganduman Formation possibly become semi-confined aquifer. Furthermore, the Ganduman Formation also producing artesian wells in some areas that were found at a number of production wells in the study area. Similarly, the Togopi Formation is also having dominated sandy layer that can be a potential aquifer. In addition, the limestone blocks in the Togopi Formation could also become a potential aquifer, whilst for the Sebahat Formation

  9. Deregulation of the Electric Industry and Its Potential Benefits for School Districts.

    ERIC Educational Resources Information Center

    Watkiss, Jeffrey D.

    1997-01-01

    The electric utility industry is the last bastion of regulated monopolies in the United States. An overview of recent competition in the electric-power industry at both the federal and state levels and how this may affect school districts is offered in this article. The text identifies and evaluates how school districts can obtain cheaper power…

  10. A Study of Second-Year Engineering Students' Alternative Conceptions about Electric Potential, Current Intensity and Ohm's Law

    ERIC Educational Resources Information Center

    Periago, M. Cristina; Bohigas, Xavier

    2005-01-01

    The aim of this research was to evaluate and analyse second-year industrial engineering and chemical engineering students prior knowledge of conceptual aspects of "circuit theory". Specifically, we focused on the basic concepts of electric potential and current intensity and on the fundamental relationship between them as expressed by Ohm's law.…

  11. A Study on Grid-Square Statistics Based Estimation of Regional Electricity Demand and Regional Potential Capacity of Distributed Generators

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Sugimoto, Hiroyuki; Suzuoki, Yasuo

    We established a procedure for estimating regional electricity demand and regional potential capacity of distributed generators (DGs) by using a grid square statistics data set. A photovoltaic power system (PV system) for residential use and a co-generation system (CGS) for both residential and commercial use were taken into account. As an example, the result regarding Aichi prefecture was presented in this paper. The statistical data of the number of households by family-type and the number of employees by business category for about 4000 grid-square with 1km × 1km area was used to estimate the floor space or the electricity demand distribution. The rooftop area available for installing PV systems was also estimated with the grid-square statistics data set. Considering the relation between a capacity of existing CGS and a scale-index of building where CGS is installed, the potential capacity of CGS was estimated for three business categories, i.e. hotel, hospital, store. In some regions, the potential capacity of PV systems was estimated to be about 10,000kW/km2, which corresponds to the density of the existing area with intensive installation of PV systems. Finally, we discussed the ratio of regional potential capacity of DGs to regional maximum electricity demand for deducing the appropriate capacity of DGs in the model of future electricity distribution system.

  12. Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential

    DOE PAGES

    Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.; ...

    2016-10-04

    Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Here, using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall is fullymore » reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode.« less

  13. Non-contact measurement of electric potential of photovoltaic cells in a module and novel characterization technologies

    NASA Astrophysics Data System (ADS)

    Hishikawa, Yoshihiro; Yamagoe, Kengo; Onuma, Tsuyoshi

    2015-08-01

    A novel noncontact method of measuring the electric potential of component cells in photovoltaic (PV) modules is investigated using electrostatic field measurement technology. Experimental results for various kinds of PV cells and modules are presented, and their measurement principle as well as practical factors that affect the measurement results are discussed. It is demonstrated that the DC electric potential of the cells in various crystalline silicon and thin-film PV modules can be measured indoors through their cover glass or backsheet within a resolution of the output voltage of about 1 cell. The method is also applicable to the outdoor measurement of PV modules under grid-connected operation, and enables various kinds of characterization such as identifying low-performance cells in a PV module and degraded modules in a PV array, and determining the balance of their output current under outdoor operating conditions. Different distributions of electric potential measured from the front and back surfaces are observed for some types of modules. These differences are suggested, by the results of the analysis of experiments and numerical simulations, to originate from the modification of the module’s surface electric potential by slight current flow through its component materials such as the cover glass, ethylene vinyl acetate (EVA), and backsheet.

  14. Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential

    SciTech Connect

    Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.; Zhang, Pengfei; Turner, C. Heath; Cummings, Peter T.; Dai, Sheng

    2016-10-04

    Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Here, using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall is fully reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode.

  15. Oesophageal sensation assessed by electrical stimuli and brain evoked potentials--a new model for visceral nociception.

    PubMed Central

    Frøbert, O; Arendt-Nielsen, L; Bak, P; Funch-Jensen, P; Bagger, J P

    1995-01-01

    Sensory thresholds and brain evoked potentials were determined in 12 healthy volunteers using electrical stimulation of the oesophagus 28 and 38 cm from the nares. The peaks of the evoked potentials were designated N for negative deflections and P for positive. Continuous electrical stimulation (40 Hz) at the 38 cm position resembled heartburn (five of 12 subjects) while non-specific ('electrical') sensations were provoked at 28 cm (10 of 12). Thresholds of sensation and of pain were lower at the initial than the second determination, but did not differ with respect to stimulation site. The pain summation threshold to repeated stimuli (2 Hz, 5 stimuli) was determined for the first time in a viscus. This threshold was lower than the pain threshold to single stimuli at 38 cm (p < 0.02). Evoked potential latencies did not change significantly over a six month period while the N1/P2 amplitude was higher at the first measurement (p < 0.05). P1 and N1 latencies were significantly shorter 38 cm (medians 100 and 141 ms) than 28 cm from the nares (102 and 148 ms) (p = 0.04 and p = 0.008). Electrical stimulation of the oesophagus may serve as a human experimental model for visceral pain. Longer evoked potential latencies from the proximal compared with distal stimulations provide new information about the sensory pathways of the oesophagus. PMID:8549932

  16. Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential

    NASA Astrophysics Data System (ADS)

    Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.; Zhang, Pengfei; Turner, C. Heath; Cummings, Peter T.; Dai, Sheng

    2016-10-01

    Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall is fully reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode.

  17. The Confidence-Accuracy Relationship in Diagnostic Assessment: The Case of the Potential Difference in Parallel Electric Circuits

    ERIC Educational Resources Information Center

    Saglam, Murat

    2015-01-01

    This study explored the relationship between accuracy of and confidence in performance of 114 prospective primary school teachers in answering diagnostic questions on potential difference in parallel electric circuits. The participants were required to indicate their confidence in their answers for each question. Bias and calibration indices were…

  18. Concomitant hypertension, bradycardia, and loss of transcranial electric motor evoked potentials during pedicle hook removal: report of a case.

    PubMed

    Ambardekar, A P; Sestokas, A K; Schwartz, D M; Flynn, J M; Rehman, M

    2010-12-01

    Neurophysiologic monitors in the form of transcranial electric motor evoked potentials (tceMEPs) and somatosensory evoked potentials (SSEPs) have become widely used modalities to monitor spinal cord function during major orthopedic spine procedures. In combination with invasive and non-invasive clinical monitoring and an anesthesia information management system (AIMS), we promptly recognized an acute change in hemodynamic and neurophysiologic parameters, managed intraoperative spinal cord contusion, and successfully minimized iatrogenic injury to the spinal cord during corrective spine surgery.

  19. Annual energy usage reduction and cost savings of a school: end-use energy analysis.

    PubMed

    Roslizar, Aiman; Alghoul, M A; Bakhtyar, B; Asim, Nilofar; Sopian, K

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m(2)/year, but can theoretically be reduced to 40.19 kWh/mm(2)/year.

  20. Annual Energy Usage Reduction and Cost Savings of a School: End-Use Energy Analysis

    PubMed Central

    Alghoul, M. A.; Bakhtyar, B.; Asim, Nilofar; Sopian, K.

    2014-01-01

    Buildings are among the largest consumers of energy. Part of the energy is wasted due to the habits of users and equipment conditions. A solution to this problem is efficient energy usage. To this end, an energy audit can be conducted to assess the energy efficiency. This study aims to analyze the energy usage of a primary school and identify the potential energy reductions and cost savings. A preliminary audit was conducted, and several energy conservation measures were proposed. The energy conservation measures, with reference to the MS1525:2007 standard, were modelled to identify the potential energy reduction and cost savings. It was found that the school's usage of electricity exceeded its need, incurring an excess expenditure of RM 2947.42. From the lighting system alone, it was found that there is a potential energy reduction of 5489.06 kWh, which gives a cost saving of RM 2282.52 via the improvement of lighting system design and its operating hours. Overall, it was found that there is a potential energy reduction and cost saving of 20.7% when the energy conservation measures are earnestly implemented. The previous energy intensity of the school was found to be 50.6 kWh/m2/year, but can theoretically be reduced to 40.19 kWh/mm2/year. PMID:25485294

  1. Qualified Tuition Savings Programs: The Impact on Household Saving.

    ERIC Educational Resources Information Center

    Coronado, Julia Lynn; McIntosh, Susan Hume

    This study analyzed the impact tuition savings plans are likely to have on household savings. State-sponsored college savings programs rely mainly on tax incentives to motivate parents to save for their children's education in earmarked accounts. The first such programs were prepaid tuition plans, and other types of qualified tuition savings…

  2. Additional Sawmill Electrical Energy Study.

    SciTech Connect

    Carroll, Hatch & Associates.

    1987-02-01

    This study was undertaken to investigate the potential for reducing use of electrical energy at lumber dry kilns by reducing fan speeds part way through the lumber drying process. It included three tasks: to quantify energy savings at a typical mill through field tests; to investigate the level of electric energy use at a representative sample of other mills and thereby to estimate the transferability of the conservation to the region; and to prepare a guidebook to present the technology to mill operators, and to allow them to estimate the economic value of adopting the technique at their facilities. This document reports on the first two tasks.

  3. Analysis of Potential Energy Corridors Proposed by the Western Electricity Coordinating Council

    SciTech Connect

    Kuiper, James A.; Cantwell, Brian J.; Hlava, Kevin J.; Moore, H Robert; Orr, Andrew B.; Zvolanek, Emily A.

    2014-02-24

    This report, Analysis of Potential Energy Corridors Proposed by the Western Electricity Coordinating Council (WECC), was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). The intent of WECC’s work was to identify planning-level energy corridors that the Department of Energy (DOE) and its affiliates could study in greater detail. Argonne was tasked by DOE to analyze the WECC Proposed Energy Corridors in five topic areas for use in reviewing and revising existing corridors, as well as designating additional energy corridors in the 11 western states. In compliance with Section 368 of the Energy Policy Act of 2005 (EPAct), the Secretaries of Energy, Agriculture, and the Interior (Secretaries) published a Programmatic Environmental Impact Statement in 2008 to address the proposed designation of energy transport corridors on federal lands in the 11 western states. Subsequently, Records of Decision designating the corridors were issued in 2009 by the Bureau of Land Management (BLM) and the U.S. Forest Service (USFS). The 2012 settlement of a lawsuit, brought by The Wilderness Society and others against the United States, which identified environmental concerns for many of the corridors requires, among other things, periodic reviews of the corridors to assess the need for revisions, deletions, or additions. A 2013 Presidential Memorandum requires the Secretaries to undertake a continuing effort to identify and designate energy corridors. The WECC Proposed Energy Corridors and their analyses in this report provide key information for reviewing and revising existing corridors, as well as designating additional energy corridors in the 11 western states. Load centers and generation hubs identified in the WECC analysis, particularly as they reflect renewable energy development, would be useful in reviewing and potentially updating the designated Section 368 corridor network. Argonne used Geographic Information System (GIS) technology to

  4. Observation of pressure stimulated voltages in rocks using an electric potential sensor

    SciTech Connect

    Aydin, A.; Prance, R. J.; Prance, H.; Harland, C. J.

    2009-09-21

    Recent interest in the electrical activity in rock and the use of electric field transients as candidates for earthquake precursors has led to studies of pressure stimulated currents in laboratory samples. In this paper, an electric field sensor is used to measure directly the voltages associated with these currents. Stress was applied as uniaxial compression to marble and granite at an approximately constant rate. In contrast with the small pressure stimulated currents previously measured, large voltage signals are reported. Polarity reversal of the signal was observed immediately before fracture for the marble, in agreement with previous pressure stimulated current studies.

  5. Extension to phase 2 energy savings evaluation of the commercial direct investment program

    SciTech Connect

    Trumble, D.; MacDonald, M.

    1994-08-01

    The results of an analysis of the commercial direct investment program of the Commonwealth Energy System (COM/Electric) is presented. The analysis extends results obtained in a previous impact evaluation of energy savings. The analysis includes over 1,000 buildings that participated in the program. The previous evaluation showed net program savings, using simple, aggregate annual measures of energy use and a control group adjustment, of about 8.7 GWh/yr (14% of pre-retrofit energy use) for an investment of $4.4 million, which leads to an investment cost ratio (investment divided by first year savings) of about $0.50/kWh. Inherent difficulties with simple, aggregate calculations, with the PRInceton Scorekeeping Method (PRISM), and with econometric approaches for these types of evaluations are discussed and an extension to PRISM proposed as an alternative. Energy savings for this program are estimated using both simple, aggregate data and the extended PRISM approach (two-stage regression modeling). The aggregate data provide important insight about program performance, while the two-stage regression modeling helps reduce variability in results. Overall, the impact evaluation results indicate that the net program investment cost ratio, the ratio of total costs to net electricity savings, is close to $0.60/kWh when weather and cost factors are included. Economic factors were included in savings estimate calculations, but the results indicated either data endogeneity or high variance problems, so economic effects cannot be inferred as being estimable for the data set on this small C/I program with the methods used here. Program performance is at the margin of acceptable performance, and because of this marginality, improvements in program execution are desirable. Program performance at the margin could be improved significantly by controlling for potentially poor retrofit choices.

  6. Retrofitting for energy savings

    SciTech Connect

    Elshout, R.V.

    1982-07-01

    An energy audit is a useful tool for assessing energy usage within a plant or individual unit. Comparison of measured energy usage with guideline values for the industry or particular processes will indicate energy inefficiency. Energy efficiency is a function of plant age, operating severity, feedstock type and the skill level of the operational personnel. As part of the audit, means for improving energy efficiency should be identified. Both capital costs for process modifications to improve energy usage and resulting operating cost savings can be quantified. With this information, individual energy saving projects can be evaluated along with other capital improvements to determine the merits of implementation. Generally speaking, most energy conservation projects can be justified by operating cost savings, particularly if future energy costs are considered. Physical space limitations within the plant and the cost of downtime for plant modifications must be considered.

  7. Synthesis, electrical and thermal conductivities, and potential applications of graphite fluoride fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1988-01-01

    Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Structural damage during high temperature fluorination can be reduced or eliminated by pretreating the fibers with bromine and/or fluorine. The electrical resistivity of the fibers was in the 0.01 to 10 to the 11th ohm-cm range. The thermal conductivity of these fibers ranged from 5 to 75 W/m-K, which is much larger than the thermal conductivity of glass (1.1 W/m-K), the commonly used fiber in epoxy composites. A composite made from graphite fluoride fibers and epoxy or PTFE may be highly thermally conducting and electrically insulating or semiconducting. The electrically insulating product may be used as heat sinks for electrical or electronic instruments.

  8. Alkali Metal Thermal to Electric Converter (AMTEC) Technology Development for Potential Deep Space Scientific Missions

    NASA Technical Reports Server (NTRS)

    Mondt, J.; Sievers, R.

    1998-01-01

    This paper describes the alkali metal thermal to electric converter (AMTEC) technology development effort over the past year. The vapor-vapor AMTEC cell technology is being developed for use with either a solar or nuclear heat sources for space.

  9. Chinese hotel general managers' perspectives on energy-saving practices

    NASA Astrophysics Data System (ADS)

    Zhu, Yidan

    As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.

  10. A systems model and potential leverage points for base load electric generating options

    SciTech Connect

    Brownson, D.A.; Hanson, D.J.; Price, L.G.; Sebo, D.E.

    1993-09-01

    The mission and structure of electric utilities may change significantly to meet the challenges on the next several decades. In addition, providing electrical energy in an environmentally responsible manner will continue to be a major challenge. The methods of supplying electrical power may change dramatically in the future as utilities search for ways to improve the availability and reliability of electrical power systems. The role of large, base load generating capacity to supply the bulk of a utility`s electrical power is evolving, but it will continue to be important for many years to come. The objective of this study is to examine the systems structure of five base load capacity options available to a utility and identify areas where technological improvements could produce significant changes in their systems. These improvements would enhance the likelihood that these options would be selected for providing future electrical capacity. Technology improvements are identified and discussed, but it was beyond the scope of this work to develop strategies for specific Idaho National Engineering Laboratory involvement.

  11. Supermarket refrigeration assessment for the Commonwealth Electric Company

    SciTech Connect

    Tsaros, T.L.; Walker, D.H. )

    1991-07-01

    The Commonwealth Electric Company (COM/Electric) has initiated an incentive program to promote electric energy conservation within its service territory. The Electric Power Research Institute (EPRI) has assisted COM/Electric in assessing the impact on the utility and its customers of implementing energy efficient supermarket refrigeration in retrofit applications. The primary task of this assessment was to contact the supermarket chains and refrigeration contractors and suppliers in the COM/Electric service territory to determine the type of refrigeration employed and standard or novel retrofit equipment implemented in supermarkets. With this information, estimates were made of the potential energy savings that COM/Electric and the supermarkets could realize if supermarkets were retrofitted with energy efficient refrigeration equipment. It was determined that the refrigerated display case features offering the greatest potential for savings through retrofit installations include doors for medium temperature multideck cases, high-efficiency fan motors, anti-sweat heater controls, and vinyl strip curtains for walk-in coolers. The retrofit components associated with the compressor machine room that offer the greatest potential for savings include the use of low heat pressure control, hot gas defrost, and external liquid-suction heat exchangers and remote evaporative subcoolers for low temperature refrigeration. 6 refs., 14 figs., 26 tabs.

  12. Direct cortical stimulation but not transcranial electrical stimulation motor evoked potentials detect brain ischemia during brain tumor resection.

    PubMed

    Li, Fenghua; Deshaies, Eric M; Allott, Geoffrey; Canute, Gregory; Gorji, Reza

    2011-09-01

    Motor evoked potentials (MEPs) elicited by both direct cortical stimulation (DCS) and transcranial electrical stimulation are used during brain tumor resection. Parallel use of direct cortical stimulation motor evoked potentials (DCS-MEPs) and transcranial electrical stimulation motor evoked potentials (TCeMEPs) has been practiced during brain tumor resection. We report that DCS-MEPs elicited by direct subdural grid stimulation, but not TCeMEPs, detected brain ischemia during brain tumor resection. Following resection of a brainstem high-grade glioma in a 21-year-old, the threshold of cortical motor-evoked-potentials (cMEPs) increased from 13 mA to 20 mA while amplitudes decreased. No changes were noted in transcranial motor evoked potentials (TCMEPs), somatosensory evoked potentials (SSEPs), auditory evoked potentials (AEPs), anesthetics, or hemodynamic parameters. Our case showed the loss of cMEPs and SSEPs, but not TCeMEPs. Permanent loss of DCS-MEPs and SSEPs was correlated with permanent left hemiplegia in our patient even when appropriate action was taken. Parallel use of DCS- and TCeMEPs with SSEPs improves sensitivity of intraoperative detection of motor impairment. DCS may be superior to TCeMEPs during brain tumor resection.

  13. Fast charge exchange ions in high power impulse magnetron sputtering of titanium as probes for the electrical potential

    NASA Astrophysics Data System (ADS)

    Breilmann, W.; Maszl, C.; von Keudell, A.

    2017-03-01

    High power impulse magnetron sputtering (HiPIMS) plasmas exhibit a high ionization fraction of the sputtered material and ions with high kinetic energies, which produce thin films with superior quality. These ion energy distribution functions (IEDF) contain energetic peaks, which are believed to be linked to a distinct electrical potential hump {{Δ }}{{{Φ }}}{{ionization}{{zone}}} inside rotating localized ionization zones, so called spokes, at target power densities above 1 kW cm‑2. Any direct measurement of this electrical potential structure is, however, very difficult due to the dynamic nature of the spokes and the very high local power density, which hampers the use of conventional emissive probes. Instead, we use a careful analysis of the IEDFs for singly and doubly charged titanium ions from a HiPIMS plasma at varying target power density. The energy peaks in the IEDFs measured at the substrate depend on the point of ionization and any charge exchange collisions on the path between ionization and impact at the substrate. Thereby, the IEDFs contain a convoluted information about the electrical potential structure inside the plasma. The analysis of these IEDFs reveal that higher ionization states originate at high target power densities from the central part of the plasma spoke, whereas singly charged ions originate from the perimeter of the plasma spoke. Consequently, we observe different absolute ion energies with the energy of Ti2+ being slightly higher than two times the energy of Ti+. Additional peaks are observed in the IEDFs of Ti+ originating from charge exchange reactions from Ti2+ and Ti3+ with titanium neutrals. Based on this analysis of the IEDFs, the structure of the electrical potential inside a spoke is inferred yielding {{Δ }}{{{Φ }}}{{ionization}{{zone}}} = 25 V above the plasma potential, irrespective of target power density.

  14. High voltage electric potentials to enhance brain-derived neurotrophic factor levels in the brain.

    PubMed

    Yanamoto, Hiroji; Nakajo, Yukako; Kataoka, Hiroharu; Iihara, Koji

    2013-01-01

    Development of a safe method to increase brain-derived neurotrophic factor (BDNF) levels in the brain is expected to enhance learning and memory, induce tolerance to cerebral infarction or tolerance to depressive state, improve glucose metabolism, and suppress appetite and body weight. We have shown that repetitive applications of high-voltage electric potential (HELP) to the body increase BDNF levels in the brain, improving learning and memory in mice. Here, we investigated the effects of HELP treatment for a chronic period on the BDNF levels in the mouse brain, and on body weight in mice and humans. Adult mice were exposed to 3.1 or 5.4 kV HELP (on the body), 5 h a day for 24 weeks, and BDNF levels in the brain and alterations in body weight were analyzed. Humans [age, 53.2 ± 15.5 years old; BMI, 27.8 ± 5.6 (mean ± SD, n = 6)] were exposed to 3.9 kV HELP (on the body) for 1 h a day, continuing for 33 months (2.8 years) under the monitor of body weight. In mice, the HELP application elevated BDNF levels in the brain at least temporarily, affecting body weight in a voltage- and time-dependent manner. In humans, the HELP treatment reduced body weight compared to the pretreated initial values without any aversive effects (p < 0.002, one-way ANOVA with the post hoc Holm-Sidak test). The results in mice indicated that 3.1 kV HELP was considered insufficient for a continuous elevation of intracerebral BDNF, and 5.4 kV HELP was considered as excessive. HELP with an appropriate voltage can be utilized to increase BDNF levels in the brain for a prolonged period. We anticipate further investigations to clarify the effect of the optimal-leveled HELP therapy on memory disturbances, neurological deficits after stroke, depression, diabetes, obesity and metabolic syndrome.

  15. Save Our Water Resources.

    ERIC Educational Resources Information Center

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  16. Sign Up for Savings.

    ERIC Educational Resources Information Center

    Kennedy, Mike

    2002-01-01

    Discusses performance service contracts between educational facilities and energy services companies, in which the company provides the money for energy-efficiency improvements and the school pays the company an annual fee. The company guarantees the savings will meet or exceed the fee. (EV)

  17. Driver Education Saves Gas.

    ERIC Educational Resources Information Center

    American Automobile Association, Falls Church, VA. Traffic Engineering and Safety Dept.

    The argument that driver education should be dropped because driver education cars use gas is shortsighted. High school driver education is an excellent vehicle for teaching concepts of energy conservation. A small investment in fuel now can result in major savings of gasoline over a student's lifetime. In addition good driver education courses…

  18. New Savings through Sustainability

    ERIC Educational Resources Information Center

    Battise, Laura

    2011-01-01

    After three years of budget cuts, California school district leaders are hard-pressed to find ways to make further reductions without impacting educational quality. However, some seasoned leaders have turned to broad sustainability strategies to find new sources of savings and revenue. This article presents case studies in which three district…

  19. Save It! A Practical Family Kit on Saving Resources, Saving Money, and...Saving the Environment.

    ERIC Educational Resources Information Center

    Environment Canada, Edmonton (Alberta). Public Affairs.

    Suggestions and practical advice are offered for all members of a family in this guide on environmental stewardship. This publication contains information on a variety of home and work related environmental concerns. The environmental consequences of daily activities are discussed and specific recommendations are offered for saving energy,…

  20. Life Saving Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    By 1870, American and British inventors had found other ways to use rockets. For example, the Congreve rocket was capable of carrying a line over 1,000 feet to a stranded ship. In 1914, an estimated 1,000 lives were saved by this technique.

  1. Lighting up Savings.

    ERIC Educational Resources Information Center

    Ryerson, Charles

    1996-01-01

    Suggests group relamping in educational facilities as a more efficient method than spot replacement of failed lamps. It can reduce operating costs, improve lighting quality, and help with federal and state regulations compliance. The implementation of group relamping is discussed in terms of planning, energy savings, and environmental issues. (RE)

  2. Project Kid-Save.

    ERIC Educational Resources Information Center

    Benson, Stephen A.; And Others

    1996-01-01

    Describes Project Kid-Save, a program designed by Arizona's Monument Valley High School to provide a safety net for failing students and to support adoption of the North Central Association's outcomes accreditation approach. Reviews the program's five components and evaluates the relative success of each. (11 citations) (MAB)

  3. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  4. Mutagenic and genotoxic potential of direct electric current in Escherichia coli and Salmonella thyphimurium strains.

    PubMed

    Gomes, Marina das Neves; Cardoso, Janine Simas; Leitão, Alvaro Costa; Quaresma, Carla Holandino

    2016-05-01

    Direct electric current has several therapeutic uses such as antibacterial and antiprotozoal action, tissues scarring and regeneration, as well as tumor treatment. This method has shown promising results in vivo and in vitro, with significant efficacy and almost no side effects. Considering lack of studies regarding direct electric current mutagenic and/or genotoxic effects, the present work evaluated both aspects by using five different bacterial experimental assays: survival of repair-deficient mutants, Salmonella-histidine reversion mutagenesis (Ames test), forward mutations to rifampicin resistance, phage reactivation, and lysogenic induction. In these experimental conditions, cells were submitted to an approach that allows evaluation of anodic, cathodic, and electro-ionic effects generated by 2 mA of direct electric current, with doses ranging from 0.36 to 3.60 Coulombs. Our results showed these doses did not induce mutagenic or genotoxic effects.

  5. Bose-Einstein condensates in strong electric fields: Effective gauge potentials and rotating states

    SciTech Connect

    Kailasvuori, J.M.; Hansson, T.H.; Kavoulakis, G.M.

    2002-11-01

    Magnetically trapped atoms in Bose-Einstein condensates are spin polarized. Since the magnetic field is inhomogeneous, the atoms acquire Berry phases of the Aharonov-Bohm type during adiabatic motion. In the presence of an electric field, there is an additional Aharonov-Casher effect. Taking into account the limitations on the strength of the electric fields due to the polarizability of the atoms, we investigate the extent to which these effects can be used to induce rotation in a Bose-Einstein condensate.

  6. Characterization of fatigue crack initiation and propagation in Ti-6Al-4V with electrical potential drop technique

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Telesman, Jack

    1988-01-01

    Electrical potential methods have been used in the past primarily to monitor crack length in long crack specimens subjected to fatigue loading. An attempt was made to develop test procedures for monitoring the fatigue crack initiation and the growth of short fatigue cracks in a turbine disk alloy with the electrical potential drop technique (EPDT). In addition, the EPDT was also applied to monitor the fatigue crack growth in long crack specimens of the same alloy. The resolution of the EPDT for different specimen geometries was determined. Factors influencing the EPDT are identified and the applicability of EPDT in implementing damage tolerant design concepts for turbine disk materials is discussed. The experimental procedure adopted and the results obtained is discussed. No substantial differences were observed between the fatigue crack growth data of short and long crack specimens.

  7. Efficient calculation of the quasi-static electrical potential on a tetrahedral mesh and its implementation in STEPS.

    PubMed

    Hepburn, Iain; Cannon, Robert; De Schutter, Erik

    2013-01-01

    We describe a novel method for calculating the quasi-static electrical potential on tetrahedral meshes, which we call E-Field. The E-Field method is implemented in STEPS, which performs stochastic spatial reaction-diffusion computations in tetrahedral-based cellular geometry reconstructions. This provides a level of integration between electrical excitability and spatial molecular dynamics in realistic cellular morphology not previously achievable. Deterministic solutions are also possible. By performing the Rallpack tests we demonstrate the accuracy of the E-Field method. Efficient node ordering is an important practical consideration, and we find that a breadth-first search provides the best solutions, although principal axis ordering suffices for some geometries. We discuss potential applications and possible future directions, and predict that the E-Field implementation in STEPS will play an important role in the future of multiscale neural simulations.

  8. Efficient calculation of the quasi-static electrical potential on a tetrahedral mesh and its implementation in STEPS

    PubMed Central

    Hepburn, Iain; Cannon, Robert; De Schutter, Erik

    2013-01-01

    We describe a novel method for calculating the quasi-static electrical potential on tetrahedral meshes, which we call E-Field. The E-Field method is implemented in STEPS, which performs stochastic spatial reaction-diffusion computations in tetrahedral-based cellular geometry reconstructions. This provides a level of integration between electrical excitability and spatial molecular dynamics in realistic cellular morphology not previously achievable. Deterministic solutions are also possible. By performing the Rallpack tests we demonstrate the accuracy of the E-Field method. Efficient node ordering is an important practical consideration, and we find that a breadth-first search provides the best solutions, although principal axis ordering suffices for some geometries. We discuss potential applications and possible future directions, and predict that the E-Field implementation in STEPS will play an important role in the future of multiscale neural simulations. PMID:24194715

  9. Going "social" to access experimental and potentially life-saving treatment: an assessment of the policy and online patient advocacy environment for expanded access.

    PubMed

    Mackey, Tim K; Schoenfeld, Virginia J

    2016-02-02

    Social media is fundamentally altering how we access health information and make decisions about medical treatment, including for terminally ill patients. This specifically includes the growing phenomenon of patients who use online petitions and social media campaigns in an attempt to gain access to experimental drugs through expanded access pathways. Importantly, controversy surrounding expanded access and "compassionate use" involves several disparate stakeholders, including patients, manufacturers, policymakers, and regulatory agencies-all with competing interests and priorities, leading to confusion, frustration, and ultimately advocacy. In order to explore this issue in detail, this correspondence article first conducts a literature review to describe how the expanded access policy and regulatory environment in the United States has evolved over time and how it currently impacts access to experimental drugs. We then conducted structured web searches to identify patient use of online petitions and social media campaigns aimed at compelling access to experimental drugs. This was carried out in order to characterize the types of communication strategies utilized, the diseases and drugs subject to expanded access petitions, and the prevalent themes associated with this form of "digital" patient advocacy. We find that patients and their families experience mixed results, but still gravitate towards the use of online campaigns out of desperation, lack of reliable information about treatment access options, and in direct response to limitations of the current fragmented structure of expanded access regulation and policy currently in place. In response, we discuss potential policy reforms to improve expanded access processes, including advocating greater transparency for expanded access programs, exploring use of targeted economic incentives for manufacturers, and developing systems to facilitate patient information about existing treatment options. This includes

  10. A new corps of trained Grand-Aides has the potential to extend reach of primary care workforce and save money.

    PubMed

    Garson, Arthur; Green, Donna M; Rodriguez, Lia; Beech, Richard; Nye, Christopher

    2012-05-01

    Because the Affordable Care Act will expand health insurance to cover an estimated thirty-two million additional people, new approaches are needed to expand the primary care workforce. One possible solution is Grand-Aides®, who are health care professionals operating under the direct supervision of nurses, and who are trained and equipped to conduct telephone consultations or make primary care home visits to patients who might otherwise be seen in emergency departments and clinics. We conducted pilot tests with Grand-Aides in two pediatric Medicaid settings: an urban federally qualified health center in Houston, Texas, and a semi-rural emergency department in Harrisonburg, Virginia. We estimated that Grand-Aides and their supervisors averted 62 percent of drop-in visits at the Houston clinic and would have eliminated 74 percent of emergency department visits at the Virginia test site. We calculated the cost of the Grand-Aides program to be $16.88 per encounter. That compares with current Medicaid payments of $200 per clinic visit in Houston and $175 per emergency department visit in Harrisonburg. In addition to reducing health care costs, Grand-Aides have the potential to make a substantial impact in reducing congestion in primary care practices and emergency departments.

  11. Saving Energy Through Advanced Power Strips (Poster)

    SciTech Connect

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  12. Effect of pulsed electric field treatment on hot-boned muscles of different potential tenderness.

    PubMed

    Suwandy, Via; Carne, Alan; van de Ven, Remy; Bekhit, Alaa El-Din A; Hopkins, David L

    2015-07-01

    In this study, the effect of pulsed electric field (PEF) treatment and ageing on the quality of beef M. longissimus lumborum (LL) and M. semimembranosus (SM) muscles was evaluated, including the tenderness, water loss and post-mortem proteolysis. Muscles were obtained from 12 steers (6 steers for each muscle), removed from the carcasses 4 hour postmortem and were treated with pulsed electric field within 2h. Six different pulsed electric field intensities (voltages of 5 and 10 kV × frequencies of 20, 50 and 90 Hz) plus a control were applied to each muscle to determine the optimum treatment conditions. Beef LL was found to get tougher with increasing treatment frequency whereas beef SM muscle was found to have up to 21.6% reduction in the shear force with pulsed electric field treatment. Post-mortem proteolysis showed an increase in both troponin and desmin degradation in beef LL treated with low intensity PEF treatment (20 Hz) compared to non-treated control samples.

  13. Estimating potential stranded commitments for U.S. investor-owned electric utilities

    SciTech Connect

    Baxter, L.; Hirst, E.

    1995-01-01

    New technologies, low natural gas prices, and federal and state utility regions are restructuring the electricity industry. Yesterday`s vertically integrated utility with a retail monopoly franchise may be a very different organization in a few years. Conferences, regulatory-commission hearings, and other industry fora are dominated by debates over the extent and form of utility deintegration, wholesale competition, and retail wheeling. A key obstacle to restructuring the electricity industry is stranded commitments. Past investments, power-purchase contracts, and public-policy-driven programs that made sense in an era of cost-of-service regulation may not be cost-effective in a competitive power market. Regulators, utilities, and other parties face tough decisions concerning the mitigation and allocation of these stranded commitments. The authors developed and applied a simple method to calculate the amount of stranded commitments facing US investor-owned electric utilities. The results obtained with this method depend strongly on a few key assumptions: (1) the fraction of utility sales that is at risk with respect to competition, (2) the market price of electric generation, and (3) the number of years during which the utility would lose money because of differences between its embedded cost of production and the market price.

  14. On the relationship between the tree and its environment, based on electrical potential difference monitoring on trunk of trees

    NASA Astrophysics Data System (ADS)

    Koppan, A.; Fenyvesi, A.; Szarka, L.; Wesztergom, V.

    2002-05-01

    Electrical potential differences (EPD) in the trunk of a Turkey oak tree (measured by using non-polarising electrodes deepened in the sap wood) have been continuously recorded in the Geophysical Observatory "Istv n Széchenyi" of the Hungarian Academy of Sciences since 1997. Besides of various geophysical observations, meteorological and direct sap-flow measurements have also been carried out in the observatory. As it was found (Kopp n A., Szarka L., Wesztergom V., 2000: Annual fluctuation in amplitudes of daily variations of electrical signals measured in the trunk of a standing tree. C.R. Acad. Sci. Paris, Life Sciences 323, 559-563), the measured electric potential difference data have a characteristic sinusoidal daily fluctuation, and the intensity of the diurnal variations has a double-peak annual characteristics, which coincides with the life activity maximums of the tree. We have found a remarkable inter-correlation between trunk EPD, water potential of air (derived from meteorological data), and direct sap flow velocity data from a neighboring tree. All these results clearly demonstrate that the sap streaming due to the transpiration and root pressure generates the largest part of measured potential differences. The ratio of the flow velocity of a diluted solution forced through stems and the potential differences was found to be constant (Gindl, W., L”ppert, H.-G., Wimmer, R., 1999: Relationship between streaming potential and sap velocity in Salix alba L. Phyton, 39, 217-224.). On the contrary in our in-vivo experiments the relationship between the measured sap flow velocity and EPD is non-linear, which means that the conductivity (i.e. ion concentration) of the xylem sap itself also has a daily fluctuation.

  15. NREL Evaluates Performance of Fast-Charge Electric Buses

    SciTech Connect

    2016-09-16

    This real-world performance evaluation is designed to enhance understanding of the overall usage and effectiveness of electric buses in transit operation and to provide unbiased technical information to other agencies interested in adding such vehicles to their fleets. Initial results indicate that the electric buses under study offer significant fuel and emissions savings. The final results will help Foothill Transit optimize the energy-saving potential of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals. help Foothill Transit optimize the energy-saving potential of its transit fleet. NREL's performance evaluations help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their bottom line and operational goals.

  16. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock

    NASA Astrophysics Data System (ADS)

    Bakalov, D.; Schiller, S.

    2014-01-01

    The systematic shifts of the transition frequencies in the molecular hydrogen ions are of relevance to ultra-high-resolution radio-frequency, microwave and optical spectroscopy of these systems, performed in ion traps. We develop the ab initio description of the interaction of the electric quadrupole moment of this class of molecules with the static electric field gradients present in ion traps. In good approximation, it is described in terms of an effective perturbation Hamiltonian. An approximate treatment is then performed in the Born-Oppenheimer approximation. We give an expression of the electric quadrupole coupling parameter valid for all hydrogen molecular ion species and evaluate it for a large number of states of H{2/+}, HD+, and D{2/+}. The systematic shifts can be evaluated as simple expectation values of the perturbation Hamiltonian. Results on radio-frequency, one-photon electric dipole (E1), and two-photon E1 transitions between hyperfine states in HD+ are reported. For two-photon E1 transitions between rotationless states, the shifts vanish. For a large subset of rovibrational one-photon transitions, the absolute values of the quadrupole shifts range from 0.3 to 10 Hz for an electric field gradient of 108 V/m2. We point out an experimental procedure for determining the quadrupole shift which will allow reducing its contribution to the uncertainty of unperturbed rovibrational transition frequencies to the 1 × 10-15 fractional level and, for selected transitions, even below it. The combined contributions of black-body radiation, Zeeman, Stark and quadrupole effects are considered for a large set of transitions, and it is estimated that the total transition frequency uncertainty of selected transitions can be reduced below the 1 × 10-15 level.

  17. Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis.

    PubMed

    Whitmore, Nathan W; Lin, Shih-Chieh

    2016-05-15

    Local field potentials (LFPs) are commonly thought to reflect the aggregate dynamics in local neural circuits around recording electrodes. However, we show that when LFPs are recorded in awake behaving animals against a distal reference on the skull as commonly practiced, LFPs are significantly contaminated by non-local and non-neural sources arising from the reference electrode and from movement-related noise. In a data set with simultaneously recorded LFPs and electroencephalograms (EEGs) across multiple brain regions while rats perform an auditory oddball task, we used independent component analysis (ICA) to identify signals arising from electrical reference and from volume-conducted noise based on their distributed spatial pattern across multiple electrodes and distinct power spectral features. These sources of distal electrical signals collectively accounted for 23-77% of total variance in unprocessed LFPs, as well as most of the gamma oscillation responses to the target stimulus in EEGs. Gamma oscillation power was concentrated in volume-conducted noise and was tightly coupled with the onset of licking behavior, suggesting a likely origin of muscle activity associated with body movement or orofacial movement. The removal of distal signal contamination also selectively reduced correlations of LFP/EEG signals between distant brain regions but not within the same region. Finally, the removal of contamination from distal electrical signals preserved an event-related potential (ERP) response to auditory stimuli in the frontal cortex and also increased the coupling between the frontal ERP amplitude and neuronal activity in the basal forebrain, supporting the conclusion that removing distal electrical signals unmasked local activity within LFPs. Together, these results highlight the significant contamination of LFPs by distal electrical signals and caution against the straightforward interpretation of unprocessed LFPs. Our results provide a principled approach to

  18. Real-Space Distributions of Electrical Potential in Planar and Porous Peroveskite Solar Cells: Carrier Separation and Transport

    SciTech Connect

    Jiang, Chun-Sheng; Yang, Mengjin; Zhou, Yuanyuan; To, Bobby; Nanayakkara, Sanjini; Luther, Joseph; Zhou, Weilie; Berry, Joseph J.; Van de Lagemaat, Jao; Padture, Nitin P.; Zhu, Kai; Al-Jassim, Mowafak M.

    2015-06-14

    We study the carrier transport and separation in planar and porous PS devices, which is one of the most fundamental operation mechanisms of solar cells, by profiling the electrical potential across the devices. We found that the PV devices work by p-n junction at the TiO2/PS interface for the both device structures. Combining the potential profiling results with the solar cell performance parameters taken on the optimized and thickened devices, we found that mobility is the main factor limiting the device performance. Improving the mobility both within grains and across grain boundaries (or enlarging the grain size) are expected to significantly improve the device efficiency.

  19. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios.

    PubMed

    Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad

    2014-12-02

    The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.

  20. Roof Savings Calculator Suite

    SciTech Connect

    New, Joshua R; Garrett, Aaron; Erdem, Ender; Huang, Yu

    2013-11-22

    The software options currently supported by the simulation engine can be seen/experienced at www.roofcalc.com. It defaults all values to national averages with options to test a base-case (residential or commercial) building versus a comparison building with inputs for building type, location, building vintage, conditioned area, number of floors, and window-to-wall ratio, cooling system efficiency, type of heating, heating system efficiency, duct location, roof/ceiling insulation level, above-sheathing ventilation, radiant barrier, roof thermal mass, roof solar reflectance, roof thermal emittance, utility costs, roof pitch. The Roof Savings Caculator Suite adds utilities and website/web service and the integration of AtticSim with DOE-2.1E, with the end-result being Roof Savings Calculator.

  1. Comfortably saving energy

    NASA Astrophysics Data System (ADS)

    Elich, H. J.

    1984-04-01

    A central heating control system saving energy and improving comfort was digitally implemented. Based on control principles and simulation a control algorithm was determined. Two microcomputers are used to process room and boiler sensor data and are connected with each other by two-wire communication. The system provides a low and constant boiler temperature, an accurately controlled room temperature, a built-in pump switch, and the possibility to adjust the temperature four times a day.

  2. Improving High School Students' Understanding of Potential Difference in Simple Electric Circuits

    ERIC Educational Resources Information Center

    Liegeois, Laurent; Chasseigne, G'erard; Papin, Sophie; Mullet, Etienne

    2003-01-01

    This paper reports two studies into the understanding of the concept of potential difference in the current-potential difference-resistance context among 8th-12th graders (Study 1), and the efficiency of a learning device derived from Social Judgment Theory (Study 2). These two studies showed that: (a) when asked to infer potential difference from…

  3. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom

    2013-06-01

    Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.

  4. Electric industry restructuring, ancillary services, and the potential impact on wind

    SciTech Connect

    Kirby, B.; Hirst, E.; Parsons, B.; Porter, K.

    1997-12-31

    The new competitive electric power environment raises increased challenges for wind power. The DOE and EPRI wind programs have dealt extensively with the traditional vertically integrated utility planning and operating environment in which the host utility owns the generation (or purchases the power) and provides dispatch and transmission services. Under this traditional environment, 1794 MW of wind power, principally in California, have been successfully integrated into the U.S. electric power system. Another 4200 MW are installed elsewhere in the world. As issues have arisen, such as intermittency and voltage regulation, they have been successfully addressed with accepted power system procedures and practices. For an intermittent, non-dispatchable resource such as wind, new regulatory rules affecting power transmission services, raise questions about which ancillary services wind plants will be able to sell, which they will be required to purchase, and what the economic impacts will be on individual wind projects. This paper begins to look at issues of concern to wind in a restructured electric industry. The paper first briefly looks at the range of unbundled services and comments on their unique significance to wind. To illustrate the concerns that arise with restructuring, the paper then takes a more detailed look at a single service: regulation. Finally, the paper takes a brief look at technologies and strategies that could improve the competitive position of wind.

  5. Potential growth of nuclear and coal electricity generation in the US

    SciTech Connect

    Bloomster, C.H.; Merrill, E.T.

    1989-08-01

    Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity over the next fifty years. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will require solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear, the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. This report assesses the impacts associated with a range of projected growth rates in electricity demand over the next 50 years. The resource requirements and waste generation resulting from pursuing the coal and nuclear fuel options to meet the projected growth rates are estimated. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Improvements in technology and waste management practices must be pursued to mitigate environmental and safety concerns about electricity generation from both options. 34 refs., 18 figs., 14 tabs.

  6. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil.

    PubMed

    Araújo, Marcelo Guimarães; Magrini, Alessandra; Mahler, Cláudio Fernando; Bilitewski, Bernd

    2012-02-01

    Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the "boom" in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

  7. Good practice in saving energy at school

    NASA Astrophysics Data System (ADS)

    Veronesi, Paola; Bonazzi, Enrico

    2014-05-01

    We teach students between 14 and 18 years old at a high school in Italy. In the first class, one of the topics we treat is related to the atmosphere. The students learn the composition of air, the importance of the natural greenhouse effect in keeping the average temperature of the planet and how human activity is increasing the level of greenhouse gases, enhancing greenhouse effect and causing global warming. It is possible to reach this knowledge using different materials and methods such as schoolbooks, articles, websites or films, individual or group work, but as students gradually become aware of the problem of climate change due to global warming, it is necessary to propose a solution that can be experienced and measured by students. This is the aim of the project "Switch off the light, to switch on the future". The project doesn't need special materials to be carried out but all the people in the community who work and "live" at school should participate in it. The project deals directly with saving electric energy, by changing the habits of the use of electricity. Saving electric energy means saving CO2 emitted to atmosphere, and consequently contributing to the reduction of greenhouse gases emission. Normally, lights in the school are switched on in the early morning and switched off at the end of lessons. Nobody is responsible to turn out the lights in classes, so students choose one or two "Light guardians" who are responsible for the light management. Simple rules for light management are written and distributed in the classes so that the action of saving energy is spread all over the school. One class participates in the daily data collection from the electricity meter, before and after the beginning of the action. At the end of the year the data are treated and presented to the community, verifying if the electric consumption has been cut down or not. This presentation is public, with students who directly introduce collected data, results and

  8. Electrical Double Layer Potential Distribution in Nanoporous Electrodes from Molecular Modeling and Classical Electrodynamics Analysis

    NASA Astrophysics Data System (ADS)

    Ney, Evan Marshall

    Computer energy models were developed for controller-in-the loop co-simulation using the EnergyPlus software and the Building Controls Virtual Testbed. Models were constructed to approximate building envelopes and mechanical systems. The models simulated typical inputs expected by building controllers and desired output signals were communicated back into EnergyPlus at set simulation time increments. This research extends previous work which demonstrated control of economizing function of an air handling unit by investigating control of additional functions including supply air temperature control. By adjusting the supply air temperature modulation range according to techniques described in this paper it is estimated that up to 124 MWh (7%) savings in total facility energy would be realized. Additional research was performed into virtual control of multiple air handling units and multiple controllers-in-the-loop. The challenge of programming controllers for constant air volume units with no zone reheat terminals is examined. Reduction of hours of unmet heating setpoint during occupied times as well as effects on system energy usage are realized. Effects of adjusting system performance towards minimizing unmet hours may result in up to a 30% increase in energy use. Suitability of energy modeling and co-simulation for pre-commissioning building automation and control systems is discussed.

  9. Hybrid vehicle assessment. Phase 1: Petroleum savings analysis

    NASA Technical Reports Server (NTRS)

    Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H. C.

    1984-01-01

    The results of a comprehensive analysis of near term electric hybrid vehicles are presented, with emphasis on their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles are first modeled. The projected U.S. fleet composition is estimated, and conceptual hybrid vehicle designs are conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates are then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of sevral conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle mission battery combination. Conclusions and recommendations are presented, and development recommendations are identified.

  10. Augmentation of motor evoked potentials using multi-train transcranial electrical stimulation in intraoperative neurophysiologic monitoring during spinal surgery.

    PubMed

    Tsutsui, Shunji; Iwasaki, Hiroshi; Yamada, Hiroshi; Hashizume, Hiroshi; Minamide, Akihito; Nakagawa, Yukihiro; Nishi, Hideto; Yoshida, Munehito

    2015-02-01

    Transcranial motor evoked potentials (TcMEPs) are widely used to monitor motor function during spinal surgery. Improvements in transcranial stimulation techniques and general anesthesia have made it possible to record reliable and reproducible potentials. However, TcMEPs are much smaller in amplitude compared with compound muscle action potentials (CMAPs) evoked by maximal peripheral nerve stimulation. In this study, multi-train transcranial electrical stimulation (mt-TES) was introduced to enhance TcMEPs, and the optimal setting of mt-TES was investigated. In 30 patients undergoing surgical correction of spinal deformities (4 males and 26 females with normal motor status; age range 11-75 years), TcMEPs from the abductor hallucis (AH) and quadriceps femoris (QF) were analyzed. A multipulse (train) stimulus with an individual pulse width of 0.5 ms and an inter-pulse interval of 2 ms was delivered repeatedly (2-7 times) at different rates (2, 5, and 10 Hz). TcMEP amplitudes increased with the number of train stimuli for AH, with the strongest facilitation observed at 5 Hz. The response amplitude increased 6.1 times on average compared with single-train transcranial electrical stimulation (st-TES). This trend was also observed in the QF. No adverse events (e.g., seizures, cardiac arrhythmias, scalp burns, accidental injury resulting from patient movement) were observed in any patients. Although several facilitative techniques using central or peripheral stimuli, preceding transcranial electrical stimulation, have been recently employed to augment TcMEPs during surgery, responses are still much smaller than CMAPs. Changing from conventional st-TES to mt-TES has potential to greatly enhance TcMEP responses.

  11. From Chemical Gardens to Fuel Cells: Generation of Electrical Potential and Current Across Self-Assembling Iron Mineral Membranes.

    PubMed

    Barge, Laura M; Abedian, Yeghegis; Russell, Michael J; Doloboff, Ivria J; Cartwright, Julyan H E; Kidd, Richard D; Kanik, Isik

    2015-07-06

    We examine the electrochemical gradients that form across chemical garden membranes and investigate how self-assembling, out-of-equilibrium inorganic precipitates-mimicking in some ways those generated in far-from-equilibrium natural systems-can generate electrochemical energy. Measurements of electrical potential and current were made across membranes precipitated both by injection and solution interface methods in iron-sulfide and iron-hydroxide reaction systems. The battery-like nature of chemical gardens was demonstrated by linking multiple experiments in series which produced sufficient electrical energy to light an external light-emitting diode (LED). This work paves the way for determining relevant properties of geological precipitates that may have played a role in hydrothermal redox chemistry at the origin of life, and materials applications that utilize the electrochemical properties of self-organizing chemical systems.

  12. Potential Logistics Cost Savings from Engine Commonality

    DTIC Science & Technology

    2007-12-01

    Bowden, Mr. Bruce Eberhard, Mrs. Janice Eberhard, Mr. Doug “Zing” Fogel, Mr. David Horn, Mr. Hank Houtman, Professor Keebom Kang, Mr. Don Keeton ...engines. Engine competition between PW and GEAE begins in fiscal year 2011 , when production is expected to have delivered less that 100 aircraft...supported at the 70 percent service level (D. Keeton , personal communication, August 29, 2007). A more thorough discussion of the modeling

  13. Residential lighting: Use and potential savings

    SciTech Connect

    1996-09-01

    The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatt hours (kWh) used for lighting. The survey contained more detailed questions about the number of indoor lights used for specific amounts of time and more detailed questions about the use of outdoor lights than did previous surveys. In addition to these basic questions on the Household Questionnaire, the 1993 RECS also included a supplementary questionnaire, administered to a subset of households, that contained more detailed information about the types of lights used in the household, the rooms in which they were located, and the amount of time they were used.

  14. THE RELATION OF THE STABILITY OF PROTOPLASMIC FILMS IN NOCTILUCA TO THE DURATION AND INTENSITY OF AN APPLIED ELECTRIC POTENTIAL.

    PubMed

    Lund, E J; Logan, G A

    1925-03-20

    1. The experiments demonstrate that when a constant electric potential of sufficient intensity is applied to Noctiluca, the protoplasmic films which represent a part of the visible continuous phase of the cytoplasm and plasma membrane at the surface of the cell, become unstable and break down, thus releasing the acid contents of one of the internal discontinuous phases present in the cytoplasm of Noctiluca. This process which occurs first at anode then at the cathode side of the cell, appears to be a selective deemulsification or coalescence similar to that at the surface of an emulsion having a viscous continuous phase. 2. The experiments demonstrate that Nernst's equation See PDF for Equation which expresses approximately the relation of duration and intensity of a constant electric current to threshold stimulation of striated muscle, applies equally well to the process of anodal coalescence in Noctiluca. 3. Anodal and cathodal coalescence have different thresholds, due to the fact that the semipermeable plasma film at the surface of the cell is asymmetric with respect to the direction of the applied current. Attention is called to the possible relation between this phenomenon and the conditions occurring at the synapse between neurons. 4. The stability of the protoplasmic films in relation to the applied electric potential is greater in young cells than in old cells, or in other words the threshold intensity of the stimulus is higher for young than for old cells. 5. Attention is called to the occurrence in the same cell of different receptor-affector mechanisms having a corresponding difference in intensity threshold when an electric current is acting as a stimulus.

  15. The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion databasea)

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Wilks, S. C.; Bellei, C.; Li, C. K.; Petrasso, R. D.

    2011-05-01

    The generation of strong, self-generated electric fields (GV/m) in direct-drive, inertial-confinement-fusion (ICF) capsules has been reported [Rygg et al., Science 319, 1223 (2008); Li et al., Phys. Rev. Lett. 100, 225001 (2008)]. A candidate explanation for the origin of these fields based on charge separation across a plasma shock front was recently proposed [Amendt et al., Plasma Phys. Controlled Fusion 51 124048 (2009)]. The question arises whether such electric fields in imploding capsules can have observable consequences on target performance. Two well-known anomalies come to mind: (1) an observed ≈2× greater-than-expected deficit of neutrons in an equimolar D3He fuel mixture compared with hydrodynamically equivalent D [Rygg et al., Phys. Plasmas 13, 052702 (2006)] and DT [Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuels, and (2) a similar shortfall of neutrons when trace amounts of argon are mixed with D in indirect-drive implosions [Lindl et al., Phys. Plasmas 11, 339 (2004)]. A new mechanism based on barodiffusion (or pressure gradient-driven diffusion) in a plasma is proposed that incorporates the presence of shock-generated electric fields to explain the reported anomalies. For implosions performed at the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)], the (low Mach number) return shock has an appreciable scale length over which the lighter D ions can diffuse away from fuel center. The depletion of D fuel is estimated and found to lead to a corresponding reduction in neutrons, consistent with the anomalies observed in experiments for both argon-doped D fuels and D3He equimolar mixtures. The reverse diffusional flux of the heavier ions toward fuel center also increases the pressure from a concomitant increase in electron number density, resulting in lower stagnation pressures and larger imploded cores in agreement with gated, self-emission, x-ray imaging data.

  16. An evaluation of the Fort Polk energy savings performance contract

    SciTech Connect

    Hughes, P.J.; Shonder, J.A.

    1998-11-01

    The US Army, in cooperation with an energy services company (ESCO), used private capital to retrofit 4,003 family housing units on the Fort Polk, Louisiana, military base with geothermal heat pumps (GHPs). The project was performed under an energy savings performance contract (ESPC) that provides for the Army and the ESCO to share the cost savings realized through the energy retrofit over the 20-year life of the contract. Under the terms of the contract, the ESCO is responsible for maintaining the GHPs and provides ongoing measurement and verification (M and V) to assure cost and energy savings to the Army. An independent evaluation conducted by the Department of Energy`s Oak Ridge National Laboratory indicates that the GHP systems in combination with other energy retrofit measures have reduced annual whole-community electrical consumption by 33%, and natural gas consumption by 100%. These energy savings correspond to an estimated reduction in CO{sub 2} emissions of 22,400 tons per year. Peak electrical demand has been reduced by 43%. The electrical energy and demand savings correspond to an improvement in the whole-community annual electric load factor from 0.52 to 0.62. As a result of the project, Fort Polk saves about $450,000 annually and benefits from complete renewal of the major energy consuming systems in family housing and maintenance of those systems for 20 years. Given the magnitude of the project, the cost and energy savings achieved, and the lessons learned during its design and implementation, the Fort Polk ESPC can provide a model for other housing-related energy savings performance contracts in both the public and private sectors.

  17. Potential benefits of long-distance electricity transmission in China for air quality and climate

    NASA Astrophysics Data System (ADS)

    Peng, W.; Mauzerall, D. L.; Yuan, J.; Zhao, Y.; Lin, M.; Zhang, Q.

    2015-12-01

    China is expanding west-to-east long-distance electricity transmission capacity with the aim of reducing eastern coal power production and resulting air pollution. In addition to coal power, this new grid capacity can be used to transport renewable-generated electricity with resulting climate co-benefits. Here we use an integrated assessment to evaluate the air quality and climate benefits of twelve proposed transmission lines in China, and compare two energy-by-wire strategies that transmit 1) only coal power (Coal-by-wire, CbW) or 2) combined renewable plus coal power (Renewable and coal-by-wire, (RE+C)bW), with 3) the current practice of transporting coal by rail for conversion to electricity near eastern demand centers (Coal-by-rail, CbR). Based on a regional atmospheric chemistry model, WRF-Chem, electricity transmission through the proposed lines leads to 2-3 μg/m3 (2-7%) reduction in the annual mean concentrations of fine particulate matter (PM2.5) in the eastern provinces relative to 2010 levels, roughly ~1 μg/m3 greater than the reduction achieved in CbR where dirty coal units are locally replaced with efficient ones. Although the eastern air quality improvement is similar irrespective of the fuel source to power the lines, adding coal generation results in up to 3% increase in annual mean PM2.5 levels in some exporting provinces, whereas such increase is not observed when most added capacity is renewable-based. Counting both the economic value of reduced carbon emissions and the health-related air quality benefits can significantly improve the cost-effectiveness of transmitting both renewable and coal power. Comparing (RE+C)bW with the two coal-based options, we find not only 20% larger reduction in air-pollution-related deaths, but also three times greater reduction in CO2 emissions. Our study hence demonstrates the significance of coordinating renewable energy planning with transmission planning to simultaneously tackle air pollution and climate

  18. Fuel saving device

    SciTech Connect

    Imbert, J. C.

    1984-01-10

    The present invention relates to a fuel saving device adaptable to all types of carburetors, petrol engines and domestic or industrial burners, constituted by a solenoid generating a magnetic field which has an influence on the air-fuel mixture. Said solenoid has a red copper coil, has its axis oriented in parallel to the axis of the engine, and, periodically, in a first pre-determined direction, during the moon phase which goes from the full moon to the new moon, and in a second, opposite, direction, during the moon phase going from the new moon to the full moon. The invention finds an application in motor engine of low consumption.

  19. Publishers: Save Authors' Time.

    PubMed

    Moustafa, Khaled

    2017-02-02

    Scientific journals ask authors to put their manuscripts, at the submission stage, sometimes in a complex style and a specific pagination format that are time consuming while it is unclear yet that the submitted manuscripts will be accepted. In the case of rejections, authors need to submit to another journal most likely with a different style and formatting that require additional work and time. To save authors' time, publishers should allow authors to submit their manuscripts in any format and to comply with the style required by the targeted journal only in revised versions, but not at the submission step when the manuscripts are not yet approved for publication.

  20. Saving all the bits

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1990-01-01

    The scientific tradition of saving all the data from experiments for independent validation and for further investigation is under profound challenge by modern satellite data collectors and by supercomputers. The volume of data is beyond the capacity to store, transmit, and comprehend the data. A promising line of study is discovery machines that study the data at the collection site and transmit statistical summaries of patterns observed. Examples of discovery machines are the Autoclass system and the genetic memory system of NASA-Ames, and the proposal for knowbots by Kahn and Cerf.