Sample records for electricity system reliability

  1. Applying reliability analysis to design electric power systems for More-electric aircraft

    NASA Astrophysics Data System (ADS)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  2. Hawaii electric system reliability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and formore » application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.« less

  3. Hawaii Electric System Reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loose, Verne William; Silva Monroy, Cesar Augusto

    2012-08-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers’ views of reliability “worth” and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and formore » application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers’ views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.« less

  4. 75 FR 14097 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Commission 18 CFR Part 40 [Docket No. RM09-18-000; 130 FERC ] 61,204] Revision to Electric Reliability... Reliability Organization (ERO) to revise its definition of the term ``bulk electric system'' to include all... compliance with mandatory Reliability Standards. The Commission believes that a 100 kV threshold for...

  5. 18 CFR 39.3 - Electric Reliability Organization certification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... operators of the Bulk-Power System, and other interested parties for improvement of the Electric Reliability... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Electric Reliability..., Reliability Standards that provide for an adequate level of reliability of the Bulk-Power System, and (2) Has...

  6. Bulk electric system reliability evaluation incorporating wind power and demand side management

    NASA Astrophysics Data System (ADS)

    Huang, Dange

    Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.

  7. 76 FR 73608 - Reliability Technical Conference, North American Electric Reliability Corporation, Public Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... or municipal authority play in forming your bulk power system reliability plans? b. Do you support..., North American Electric Reliability Corporation (NERC) Nick Akins, CEO of American Electric Power (AEP..., EL11-62-000] Reliability Technical Conference, North American Electric Reliability Corporation, Public...

  8. Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Posse, Christian

    2005-09-15

    The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabási-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using other methods and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.

  9. Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.; Posse, Christian

    2005-09-15

    The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabasi-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using standard power engineering methods, and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.

  10. 75 FR 15371 - Time Error Correction Reliability Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... Electric Reliability Council of Texas (ERCOT) manages the flow of electric power to 22 million Texas customers. As the independent system operator for the region, ERCOT schedules power on an electric grid that... Coordinating Council (WECC) is responsible for coordinating and promoting bulk electric system reliability in...

  11. 76 FR 16263 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ...'s Reliability Standards Development Process, to revise its definition of the term ``bulk electric... definition of ``bulk electric system'' through the NERC Standards Development Process to address the... undertake the process of revising the bulk electric system definition to address the Commission's concerns...

  12. Structural Probability Concepts Adapted to Electrical Engineering

    NASA Technical Reports Server (NTRS)

    Steinberg, Eric P.; Chamis, Christos C.

    1994-01-01

    Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.

  13. Electrical service reliability: the customer perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsa, M.E.; Hub, K.A.; Krohm, G.C.

    1978-09-01

    Electric-utility-system reliability criteria have traditionally been established as a matter of utility policy or through long-term engineering practice, generally with no supportive customer cost/benefit analysis as justification. This report presents results of an initial study of the customer perspective toward electric-utility-system reliability, based on critical review of over 20 previous and ongoing efforts to quantify the customer's value of reliable electric service. A possible structure of customer classifications is suggested as a reasonable level of disaggregation for further investigation of customer value, and these groups are characterized in terms of their electricity use patterns. The values that customers assign tomore » reliability are discussed in terms of internal and external cost components. A list of options for effecting changes in customer service reliability is set forth, and some of the many policy issues that could alter customer-service reliability are identified.« less

  14. 78 FR 803 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...In this Final Rule, pursuant to section 215 of the Federal Power Act, the Federal Energy Regulatory Commission (Commission) approves modifications to the currently-effective definition of ``bulk electric system'' developed by the North American Electric Reliability Corporation (NERC), the Commission-certified Electric Reliability Organization. The Commission finds that the modified definition of ``bulk electric system'' removes language allowing for regional discretion in the currently-effective bulk electric system definition and establishes a bright-line threshold that includes all facilities operated at or above 100 kV. The modified definition also identifies specific categories of facilities and configurations as inclusions and exclusions to provide clarity in the definition of ``bulk electric system.'' In this Final Rule, the Commission also approves: NERC's revisions to its Rules of Procedure, which create an exception process to add elements to, or remove elements from, the definition of ``bulk electric system'' on a case-by-case basis; NERC's form entitled ``Detailed Information To Support an Exception Request'' that entities will use to support requests for exception from the ``bulk electric system'' definition; and NERC's implementation plan for the revised ``bulk electric system'' definition.

  15. Reliability Analysis of the Electrical Control System of Subsea Blowout Preventers Using Markov Models

    PubMed Central

    Liu, Zengkai; Liu, Yonghong; Cai, Baoping

    2014-01-01

    Reliability analysis of the electrical control system of a subsea blowout preventer (BOP) stack is carried out based on Markov method. For the subsea BOP electrical control system used in the current work, the 3-2-1-0 and 3-2-0 input voting schemes are available. The effects of the voting schemes on system performance are evaluated based on Markov models. In addition, the effects of failure rates of the modules and repair time on system reliability indices are also investigated. PMID:25409010

  16. 75 FR 72664 - System Personnel Training Reliability Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ...Under section 215 of the Federal Power Act, the Commission approves two Personnel Performance, Training and Qualifications (PER) Reliability Standards, PER-004-2 (Reliability Coordination--Staffing) and PER-005-1 (System Personnel Training), submitted to the Commission for approval by the North American Electric Reliability Corporation, the Electric Reliability Organization certified by the Commission. The approved Reliability Standards require reliability coordinators, balancing authorities, and transmission operators to establish a training program for their system operators, verify each of their system operators' capability to perform tasks, and provide emergency operations training to every system operator. The Commission also approves NERC's proposal to retire two existing PER Reliability Standards that are replaced by the standards approved in this Final Rule.

  17. Metroliner Auxiliary Power Electrical System Reliability Study

    DOT National Transportation Integrated Search

    1971-06-01

    The reliability of the electrical system of any vehicle is greatly affected by the way the system is configured. The propulsion and braking systems of a train must be unaffected by failures occurring in the nonessential power areas. With these criter...

  18. Research on Novel Algorithms for Smart Grid Reliability Assessment and Economic Dispatch

    NASA Astrophysics Data System (ADS)

    Luo, Wenjin

    In this dissertation, several studies of electric power system reliability and economy assessment methods are presented. To be more precise, several algorithms in evaluating power system reliability and economy are studied. Furthermore, two novel algorithms are applied to this field and their simulation results are compared with conventional results. As the electrical power system develops towards extra high voltage, remote distance, large capacity and regional networking, the application of a number of new technique equipments and the electric market system have be gradually established, and the results caused by power cut has become more and more serious. The electrical power system needs the highest possible reliability due to its complication and security. In this dissertation the Boolean logic Driven Markov Process (BDMP) method is studied and applied to evaluate power system reliability. This approach has several benefits. It allows complex dynamic models to be defined, while maintaining its easy readability as conventional methods. This method has been applied to evaluate IEEE reliability test system. The simulation results obtained are close to IEEE experimental data which means that it could be used for future study of the system reliability. Besides reliability, modern power system is expected to be more economic. This dissertation presents a novel evolutionary algorithm named as quantum evolutionary membrane algorithm (QEPS), which combines the concept and theory of quantum-inspired evolutionary algorithm and membrane computation, to solve the economic dispatch problem in renewable power system with on land and offshore wind farms. The case derived from real data is used for simulation tests. Another conventional evolutionary algorithm is also used to solve the same problem for comparison. The experimental results show that the proposed method is quick and accurate to obtain the optimal solution which is the minimum cost for electricity supplied by wind farm system.

  19. 78 FR 38311 - Reliability Technical Conference Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... issues related to the reliability of the Bulk-Power System. The agenda for this conference is attached... Reliability Technical Docket No. AD13-6-000 Conference. North American Electric Docket No. RC11-6-004 Reliability Corporation. North American Electric Docket No. RR13-2-000 Reliability Corporation. Not...

  20. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  1. A Quantitative Assessment of Utility Reporting Practices for Reporting Electric Power Distribution Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamachi La Commare, Kristina

    Metrics for reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities for many years. This study examines current utility practices for collecting and reporting electricity reliability information and discusses challenges that arise in assessing reliability because of differences among these practices. The study is based on reliability information for year 2006 reported by 123 utilities in 37 states representing over 60percent of total U.S. electricity sales. We quantify the effects that inconsistencies among current utility reporting practices have on comparisons of System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Indexmore » (SAIFI) reported by utilities. We recommend immediate adoption of IEEE Std. 1366-2003 as a consistent method for measuring and reporting reliability statistics.« less

  2. CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph

    2003-07-30

    Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) andmore » Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.« less

  3. 75 FR 51025 - Application to Export Electric Energy; Vitol Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... adversely impact on the reliability of the U.S. electric power supply system. Copies of this application... DEPARTMENT OF ENERGY [OE Docket No. EA-370] Application to Export Electric Energy; Vitol Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application...

  4. 7 CFR 1730.61 - RUS policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., or reliability on the borrower's electric power system or other electric power systems interconnected to the borrower's electric power system. The Agency encourages borrowers to consider model policy... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.61 RUS policy...

  5. 7 CFR 1730.61 - RUS policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., or reliability on the borrower's electric power system or other electric power systems interconnected to the borrower's electric power system. The Agency encourages borrowers to consider model policy... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.61 RUS policy...

  6. A Historical and Engineering View of Power Transmission Systems in Kansai Electric Power Co., Inc.

    NASA Astrophysics Data System (ADS)

    Ito, Shunichi; Akiyama, Tetsuo

    During our work in operations related to power transmission technology, we have encountered various natural calamities and man-made disasters. Over the years, we learned many valuable lessons from these bitter experiences, and we now have more reliable, cost-effective and flexible electric power systems. This paper describes the new technologies we have introduced in the facilities making up the power systems and how we operate these systems and facilities. It also takes up the Southern Hyogo Earthquake and loss of Ohi nuclear power generation due to galloping phenomena as typical examples showing how a set of measures as mentioned above substantially improved the reliability of the electric power systems to such an extent that the Japanese electric power systems have attained the world's highest level of reliability. These facts prove that steady and continuous efforts are a prerequisite to success for all power engineers.

  7. Electric service reliability cost/worth assessment in a developing country

    NASA Astrophysics Data System (ADS)

    Pandey, Mohan Kumar

    Considerable work has been done in developed countries to optimize the reliability of electric power systems on the basis of reliability cost versus reliability worth. This has yet to be considered in most developing countries, where development plans are still based on traditional deterministic measures. The difficulty with these criteria is that they cannot be used to evaluate the economic impacts of changing reliability levels on the utility and the customers, and therefore cannot lead to an optimum expansion plan for the system. The critical issue today faced by most developing countries is that the demand for electric power is high and growth in supply is constrained by technical, environmental, and most importantly by financial impediments. Many power projects are being canceled or postponed due to a lack of resources. The investment burden associated with the electric power sector has already led some developing countries into serious debt problems. This thesis focuses on power sector issues facing by developing countries and illustrates how a basic reliability cost/worth approach can be used in a developing country to determine appropriate planning criteria and justify future power projects by application to the Nepal Integrated Electric Power System (NPS). A reliability cost/worth based system evaluation framework is proposed in this thesis. Customer surveys conducted throughout Nepal using in-person interviews with approximately 2000 sample customers are presented. The survey results indicate that the interruption cost is dependent on both customer and interruption characteristics, and it varies from one location or region to another. Assessments at both the generation and composite system levels have been performed using the customer cost data and the developed NPS reliability database. The results clearly indicate the implications of service reliability to the electricity consumers of Nepal, and show that the reliability cost/worth evaluation is both possible and practical in a developing country. The average customer interruption costs of Rs 35/kWh at Hierarchical Level I and Rs 26/kWh at Hierarchical Level II evaluated in this research work led to an optimum reserve margin of 7.5%, which is considerably lower than the traditional reserve margin of 15% used in the NPS. A similar conclusion may result in other developing countries facing difficulties in power system expansion planning using the traditional approach. A new framework for system planning is therefore recommended for developing countries which would permit an objective review of the traditional system planning approach, and the evaluation of future power projects using a new approach based on fundamental principles of power system reliability and economics.

  8. Performance Issues for a Changing Electric Power Industry

    EIA Publications

    1995-01-01

    Provides an overview of some of the factors affecting reliability within the electric bulk power system. Historical and projected data related to reliability issues are discussed on a national and regional basis. Current research on economic considerations associated with reliability levels is also reviewed.

  9. 77 FR 49441 - Electricity Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... recommendations to the Assistant Secretary for Electricity Delivery and Energy Reliability on programs to modernize the Nation's electric power system. Additionally, the renewal of the EAC has been determined to be... Energy Reliability, Department of Energy. ACTION: Notice of Renewal. SUMMARY: Pursuant to Section 14(a)(2...

  10. Inventing the future of reliability: FERC's recent orders and the consolidation of reliability authority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skees, J. Daniel

    2010-06-15

    The Energy Policy Act of 2005 established mandatory reliability standard enforcement under a system in which the Federal Energy Regulatory Commission and the Electric Reliability Organization would have their own spheres of responsibility and authority. Recent orders, however, reflect the Commission's frustration with the reliability standard drafting process and suggest that the Electric Reliability Organization's discretion is likely to receive less deference in the future. (author)

  11. Final Report to the National Energy Technology Laboratory on FY14- FY15 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vittal, Vijay; Lampis, Anna Rosa

    The Power System Engineering Research Center (PSERC) engages in technological, market, and policy research for an efficient, secure, resilient, adaptable, and economic U.S. electric power system. PSERC, as a founding partner of the Consortium for Electric Reliability Technology Solutions (CERTS), conducted a multi-year program of research for U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) to develop new methods, tools, and technologies to protect and enhance the reliability and efficiency of the U.S. electric power system as competitive electricity market structures evolve, and as the grid moves toward wide-scale use of decentralized generation (such asmore » renewable energy sources) and demand-response programs. Phase I of OE’s funding for PSERC, under cooperative agreement DE-FC26-09NT43321, started in fiscal year (FY) 2009 and ended in FY2013. It was administered by DOE’s National Energy Technology Laboratory (NETL) through a cooperative agreement with Arizona State University (ASU). ASU provided sub-awards to the participating PSERC universities. This document is PSERC’s final report to NETL on the activities for OE, conducted through CERTS, from September 2015 through September 2017 utilizing FY 2014 to FY 2015 funding under cooperative agreement DE-OE0000670. PSERC is a thirteen-university consortium with over 30 industry members. Since 1996, PSERC has been engaged in research and education efforts with the mission of “empowering minds to engineer the future electric energy system.” Its work is focused on achieving: • An efficient, secure, resilient, adaptable, and economic electric power infrastructure serving society • A new generation of educated technical professionals in electric power • Knowledgeable decision-makers on critical energy policy issues • Sustained, quality university programs in electric power engineering. PSERC core research is funded by industry, with a budget supporting approximately 30 principal investigators and some 70 graduate students and other researchers. Its researchers are multi-disciplinary, conducting research in three principal areas: power systems, power markets and policy, and transmission and distribution technologies. The research is collaborative; each project involves researchers typically at two universities working with industry advisors who have expressed interest in the project. Examples of topics for recent PSERC research projects include grid integration of renewables and energy storage, new tools for taking advantage of increased penetration of real-time system measurements, advanced system protection methods to maintain grid reliability, and risk and reliability assessment of increasingly complex cyber-enabled power systems. A PSERC’s objective is to proactively address the technical and policy challenges of U.S. electric power systems. To achieve this objective, PSERC works with CERTS to conduct technical research on advanced applications and investigate the design of fair and transparent electricity markets; these research topics align with CERTS research areas 1 and 2: Real-time Grid Reliability Management (Area 1), and Reliability and Markets (Area 2). The CERTS research areas overlap with the PSERC research stems: Power Systems, Power Markets, and Transmission and Distribution Technologies, as described on the PSERC website (see http://www.pserc.org/research/research_program.aspx). The performers were with Arizona State University (ASU), Cornell University (CU), University of California at Berkeley (UCB), and University of Illinois at Urbana-Champaign (UIUC). PSERC research activities in the area of reliability and markets focused on electric market and power policy analyses. The resulting studies suggest ways to frame best practices using organized markets for managing U.S. grid assets reliably and to identify highest priority areas for improvement. PSERC research activities in the area of advanced applications focused on mid- to long-term software research and development, with anticipated outcomes that move innovative ideas toward real-world application. Under the CERTS research area of Real-time Grid Reliability Management, PSERC has been focused on Advanced Applications Research and Development (AARD), a subgroup of activities that works to develop advanced applications and tools to more effectively operate the electricity delivery system, by enabling advanced analysis, visualization, monitoring and alarming, and decision support capabilities for grid operators.« less

  12. Basic Principles of Electrical Network Reliability Optimization in Liberalised Electricity Market

    NASA Astrophysics Data System (ADS)

    Oleinikova, I.; Krishans, Z.; Mutule, A.

    2008-01-01

    The authors propose to select long-term solutions to the reliability problems of electrical networks in the stage of development planning. The guide lines or basic principles of such optimization are: 1) its dynamical nature; 2) development sustainability; 3) integrated solution of the problems of network development and electricity supply reliability; 4) consideration of information uncertainty; 5) concurrent consideration of the network and generation development problems; 6) application of specialized information technologies; 7) definition of requirements for independent electricity producers. In the article, the major aspects of liberalized electricity market, its functions and tasks are reviewed, with emphasis placed on the optimization of electrical network development as a significant component of sustainable management of power systems.

  13. 20--500 watt AMTEC auxiliary electric power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1996-12-31

    Numerous design studies have been completed on Alkali Metal Thermal to Electric Converter (AMTEC) power systems for space applications demonstrating their substantial increase in performance. Recently design studies have been initiated to couple AMTEC power conversion with fossil fueled combustion systems. This paper describes the results of a Phase 1 SBIR effort to design an innovative, efficient, reliable, long life AMTEC Auxiliary Electric Power System (AEPS) for remote site applications (20--500 watts). The concept uses high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated with a combustor and recuperator. These multi-tube AMTEC cells are low cost,more » reliable, long life static converters. AMTEC technology is ideal for auxiliary electric power supplies that must operate reliably over a broad range of temperatures, fuel sources, power levels, and operational specifications. The simplicity, efficiency (20% systems) and modularity of this technology allow it to fill applications as varied as light-weight backpacks, remote site power supplies, and military base power. Phase 1 demonstrated the feasibility of a 20% system design, and showed that the development needs to focus on identifying long life AMTEC cell components, determining the AMTEC cell and system reliability, and demonstrating that a 20 watt AMTEC system is 3--5 times more efficient than existing systems for the same application.« less

  14. A new approach to power quality and electricity reliability monitoring-case study illustrations of the capabilities of the I-GridTM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divan, Deepak; Brumsickle, William; Eto, Joseph

    2003-04-01

    This report describes a new approach for collecting information on power quality and reliability and making it available in the public domain. Making this information readily available in a form that is meaningful to electricity consumers is necessary for enabling more informed private and public decisions regarding electricity reliability. The system dramatically reduces the cost (and expertise) needed for customers to obtain information on the most significant power quality events, called voltage sags and interruptions. The system also offers widespread access to information on power quality collected from multiple sites and the potential for capturing information on the impacts ofmore » power quality problems, together enabling a wide variety of analysis and benchmarking to improve system reliability. Six case studies demonstrate selected functionality and capabilities of the system, including: Linking measured power quality events to process interruption and downtime; Demonstrating the ability to correlate events recorded by multiple monitors to narrow and confirm the causes of power quality events; and Benchmarking power quality and reliability on a firm and regional basis.« less

  15. 75 FR 80391 - Electric Reliability Organization Interpretations of Interconnection Reliability Operations and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... configuration to maintain system stability, acceptable voltage or power flows.\\12\\ \\12\\ In the Western... prevent system instability or cascading outages, and protect other facilities in response to transmission... nature used to address system reliability vulnerabilities to prevent system instability, cascading...

  16. Nuclear electric propulsion operational reliability and crew safety study: NEP systems/modeling report

    NASA Technical Reports Server (NTRS)

    Karns, James

    1993-01-01

    The objective of this study was to establish the initial quantitative reliability bounds for nuclear electric propulsion systems in a manned Mars mission required to ensure crew safety and mission success. Finding the reliability bounds involves balancing top-down (mission driven) requirements and bottom-up (technology driven) capabilities. In seeking this balance we hope to accomplish the following: (1) provide design insights into the achievability of the baseline design in terms of reliability requirements, given the existing technology base; (2) suggest alternative design approaches which might enhance reliability and crew safety; and (3) indicate what technology areas require significant research and development to achieve the reliability objectives.

  17. 77 FR 57563 - Combined Notice Of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    .... Applicants: New York Independent System Operator, Inc., Niagara Mohawk Power Corporation. Description.... Take notice that the Commission received the following electric reliability filings: Docket Numbers: RR12-13-000. Applicants: North American Electric Reliability Corporation. Description: Update to...

  18. Study of aircraft electrical power systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  19. Reliable aluminum contact formation by electrostatic bonding

    NASA Astrophysics Data System (ADS)

    Kárpáti, T.; Pap, A. E.; Radnóczi, Gy; Beke, B.; Bársony, I.; Fürjes, P.

    2015-07-01

    The paper presents a detailed study of a reliable method developed for aluminum fusion wafer bonding assisted by the electrostatic force evolving during the anodic bonding process. The IC-compatible procedure described allows the parallel formation of electrical and mechanical contacts, facilitating a reliable packaging of electromechanical systems with backside electrical contacts. This fusion bonding method supports the fabrication of complex microelectromechanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) structures with enhanced temperature stability, which is crucial in mechanical sensor applications such as pressure or force sensors. Due to the applied electrical potential of  -1000 V the Al metal layers are compressed by electrostatic force, and at the bonding temperature of 450 °C intermetallic diffusion causes aluminum ions to migrate between metal layers.

  20. A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles

    NASA Astrophysics Data System (ADS)

    Xia, Quan; Wang, Zili; Ren, Yi; Sun, Bo; Yang, Dezhen; Feng, Qiang

    2018-05-01

    With the rapid development of lithium-ion battery technology in the electric vehicle (EV) industry, the lifetime of the battery cell increases substantially; however, the reliability of the battery pack is still inadequate. Because of the complexity of the battery pack, a reliability design method for a lithium-ion battery pack considering the thermal disequilibrium is proposed in this paper based on cell redundancy. Based on this method, a three-dimensional electric-thermal-flow-coupled model, a stochastic degradation model of cells under field dynamic conditions and a multi-state system reliability model of a battery pack are established. The relationships between the multi-physics coupling model, the degradation model and the system reliability model are first constructed to analyze the reliability of the battery pack and followed by analysis examples with different redundancy strategies. By comparing the reliability of battery packs of different redundant cell numbers and configurations, several conclusions for the redundancy strategy are obtained. More notably, the reliability does not monotonically increase with the number of redundant cells for the thermal disequilibrium effects. In this work, the reliability of a 6 × 5 parallel-series configuration is the optimal system structure. In addition, the effect of the cell arrangement and cooling conditions are investigated.

  1. Reliability measurement for mixed mode failures of 33/11 kilovolt electric power distribution stations.

    PubMed

    Alwan, Faris M; Baharum, Adam; Hassan, Geehan S

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.

  2. Reliability Measurement for Mixed Mode Failures of 33/11 Kilovolt Electric Power Distribution Stations

    PubMed Central

    Alwan, Faris M.; Baharum, Adam; Hassan, Geehan S.

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter and shape parameters and . Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models. PMID:23936346

  3. Final Report to the National Energy Technology Laboratory on FY09-FY13 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vittal, Vijay

    2015-11-04

    The Consortium for Electric Reliability Technology Solutions (CERTS) was formed in 1999 in response to a call from U.S. Congress to restart a federal transmission reliability R&D program to address concerns about the reliability of the U.S. electric power grid. CERTS is a partnership between industry, universities, national laboratories, and government agencies. It researches, develops, and disseminates new methods, tools, and technologies to protect and enhance the reliability of the U.S. electric power system and the efficiency of competitive electricity markets. It is funded by the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability (OE). This reportmore » provides an overview of PSERC and CERTS, of the overall objectives and scope of the research, a summary of the major research accomplishments, highlights of the work done under the various elements of the NETL cooperative agreement, and brief reports written by the PSERC researchers on their accomplishments, including research results, publications, and software tools.« less

  4. 18 CFR 40.2 - Mandatory Reliability Standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-POWER SYSTEM § 40.2 Mandatory Reliability Standards. (a) Each applicable user, owner or operator of the Bulk-Power System must comply with Commission-approved Reliability Standards developed by the Electric... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Mandatory Reliability...

  5. Design of fuel cell powered data centers for sufficient reliability and availability

    NASA Astrophysics Data System (ADS)

    Ritchie, Alexa J.; Brouwer, Jacob

    2018-04-01

    It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.

  6. 18 CFR 39.11 - Reliability reports.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Electric Reliability Organization shall conduct assessments of the adequacy of the Bulk-Power System in... assessments as determined by the Commission of the reliability of the Bulk-Power System in North America and... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Reliability reports. 39...

  7. Optimal Wind Power Uncertainty Intervals for Electricity Market Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying; Zhou, Zhi; Botterud, Audun

    It is important to select an appropriate uncertainty level of the wind power forecast for power system scheduling and electricity market operation. Traditional methods hedge against a predefined level of wind power uncertainty, such as a specific confidence interval or uncertainty set, which leaves the questions of how to best select the appropriate uncertainty levels. To bridge this gap, this paper proposes a model to optimize the forecast uncertainty intervals of wind power for power system scheduling problems, with the aim of achieving the best trade-off between economics and reliability. Then we reformulate and linearize the models into a mixedmore » integer linear programming (MILP) without strong assumptions on the shape of the probability distribution. In order to invest the impacts on cost, reliability, and prices in a electricity market, we apply the proposed model on a twosettlement electricity market based on a six-bus test system and on a power system representing the U.S. state of Illinois. The results show that the proposed method can not only help to balance the economics and reliability of the power system scheduling, but also help to stabilize the energy prices in electricity market operation.« less

  8. 18 CFR 39.8 - Delegation to a Regional Entity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... agreement promotes effective and efficient administration of Bulk-Power System reliability. (d) The... Interconnection-wide basis promotes effective and efficient administration of Bulk-Power System reliability and... THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT...

  9. 78 FR 77574 - Protection System Maintenance Reliability Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... protection system component type, except that the maintenance program for all batteries associated with the... Electric System reliability and promoting efficiency through consolidation [of protection system-related... ITC that PRC-005-2 promotes efficiency by consolidating protection system maintenance requirements...

  10. 75 FR 71613 - Mandatory Reliability Standards for Interconnection Reliability Operating Limits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Reliability Standards. The proposed Reliability Standards were designed to prevent instability, uncontrolled... Reliability Standards.\\2\\ The proposed Reliability Standards were designed to prevent instability... the SOLs, which if exceeded, could expose a widespread area of the bulk electric system to instability...

  11. Electric system restructuring and system reliability

    NASA Astrophysics Data System (ADS)

    Horiuchi, Catherine Miller

    In 1996 the California legislature passed AB 1890, explicitly defining economic benefits and detailing specific mechanisms for initiating a partial restructuring the state's electric system. Critics have since sought re-regulation and proponents have asked for patience as the new institutions and markets take shape. Other states' electric system restructuring activities have been tempered by real and perceived problems in the California model. This study examines the reduced regulatory controls and new constraints introduced in California's limited restructuring model using utility and regulatory agency records from the 1990's to investigate effects of new institutions and practices on system reliability for the state's five largest public and private utilities. Logit and negative binomial regressions indicate negative impact from the California model of restructuring on system reliability as measured by customer interruptions. Time series analysis of outage data could not predict the wholesale power market collapse and the subsequent rolling blackouts in early 2001; inclusion of near-outage reliability disturbances---load shedding and energy emergencies---provided a measure of forewarning. Analysis of system disruptions, generation capacity and demand, and the role of purchased power challenge conventional wisdom on the causality of Californian's power problems. The quantitative analysis was supplemented by a targeted survey of electric system restructuring participants. Findings suggest each utility and the organization controlling the state's electric grid provided protection from power outages comparable to pre-restructuring operations through 2000; however, this reliability has come at an inflated cost, resulting in reduced system purchases and decreased marginal protection. The historic margin of operating safety has fully eroded, increasing mandatory load shedding and emergency declarations for voluntary and mandatory conservation. Proposed remedies focused on state-funded contracts and government-managed power authorities may not help, as the findings suggest pricing models, market uncertainty, interjurisdictional conflict and an inability to respond to market perturbations are more significant contributors to reduced regional generation availability than the particular contract mechanisms and funding sources used for power purchases.

  12. Survey of aircraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Brandner, J. J.

    1972-01-01

    Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability.

  13. The welfare effects of integrating renewable energy into electricity markets

    NASA Astrophysics Data System (ADS)

    Lamadrid, Alberto J.

    The challenges of deploying more renewable energy sources on an electric grid are caused largely by their inherent variability. In this context, energy storage can help make the electric delivery system more reliable by mitigating this variability. This thesis analyzes a series of models for procuring electricity and ancillary services for both individuals and social planners with high penetrations of stochastic wind energy. The results obtained for an individual decision maker using stochastic optimization are ambiguous, with closed form solutions dependent on technological parameters, and no consideration of the system reliability. The social planner models correctly reflect the effect of system reliability, and in the case of a Stochastic, Security Constrained Optimal Power Flow (S-SC-OPF or SuperOPF), determine reserve capacity endogenously so that system reliability is maintained. A single-period SuperOPF shows that including ramping costs in the objective function leads to more wind spilling and increased capacity requirements for reliability. However, this model does not reflect the inter temporal tradeoffs of using Energy Storage Systems (ESS) to improve reliability and mitigate wind variability. The results with the multiperiod SuperOPF determine the optimum use of storage for a typical day, and compare the effects of collocating ESS at wind sites with the same amount of storage (deferrable demand) located at demand centers. The collocated ESS has slightly lower operating costs and spills less wind generation compared to deferrable demand, but the total amount of conventional generating capacity needed for system adequacy is higher. In terms of the total system costs, that include the capital cost of conventional generating capacity, the costs with deferrable demand is substantially lower because the daily demand profile is flattened and less conventional generation capacity is then needed for reliability purposes. The analysis also demonstrates that the optimum daily pattern of dispatch and reserves is seriously distorted if the stochastic characteristics of wind generation are ignored.

  14. Ensuring reliability in expansion schemes.

    PubMed

    Kamal-Uddin, Abu Sayed; Williams, Donald Leigh

    2005-01-01

    Existing electricity power supplies must serve, or be adapted to serve, the expansion of hospital buildings. With the existing power supply assets of many hospitals being up to 20 years old, assessing the security and reliability of the power system must be given appropriate priority to avoid unplanned outages due to overloads and equipment failures. It is imperative that adequate contingency is planned for essential and non-essential electricity circuits. This article describes the methodology undertaken, and the subsequent recommendations that were made, when evaluating the security and reliability of electricity power supplies to a number of major London hospitals. The methodology described aligns with the latest issue of NHS Estates HTM 2011 'Primary Electrical Infrastructure Emergency Electrical Services Design Guidance' (to which ERA Technology has contributed).

  15. Multidisciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  16. Multi-Disciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  17. Apples to Apples: Equivalent-Reliability Power Systems Across Diverse Resource Mix Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, Gordon W; Frew, Bethany A; Sigler, Devon

    Electricity market research is highly price sensitive, and prices are strongly influenced by balance of supply and demand. This work looks at how to combine capacity expansion models and reliability assessment tools to assess equivalent-reliability power systems across diverse resource mix scenarios.

  18. 78 FR 12042 - Electric Grid Integration Technical Workshops

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    .... The documents are the Electricity Distribution System Workshop Discussion Summary and the Electricity... FURTHER INFORMATION CONTACT: Caitlin A. Callaghan, National Electricity Delivery Division, Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy, Forrestal Building, Room 8E-032, 1000...

  19. 7 CFR 1730.21 - Inspections and tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reliability and security of the electric power grid, cause significant risk to the safety and health of the... AGRICULTURE ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Operations and Maintenance Requirements § 1730.21... parts of its electric system, annually exercise its ERP, and maintain records of such inspections and...

  20. Reliability and economy -- Hydro electricity for Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahromi-Shirazi, M.J.; Zarbakhsh, M.H.

    1998-12-31

    Reliability is the probability that a device or system will perform its function adequately, for the period of time intended, under the operating conditions intended. Reliability and economy are two important factors in operating any system, especially in power generation. Due to the high rate in population growth in Iran, the experts have estimated that the demand for electricity will be about 63,000 MW in the next 25 years, the installed power is now about 26,000 MW. Therefore, the energy policy decision made in Iran is to go to power generation by hydroelectric plants because of reliability, availability of watermore » resources and the economics of hydroelectric power.« less

  1. 76 FR 66057 - North American Electric Reliability Corporation; Order Approving Regional Reliability Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... system conditions when the system experiences dynamic events such as low frequency oscillations, or... R8 requires that dynamic disturbance recorders function continuously. To capture system disturbance... recording capability necessary to monitor the response of the Bulk-Power System to system disturbances...

  2. Reliability Analysis of Differential Relay as Main Protection Transformer Using Fuzzy Logic Algorithm

    NASA Astrophysics Data System (ADS)

    Mulyadi, Y.; Sucita, T.; Sumarto; Alpani, M.

    2018-02-01

    Electricity supply demand is increasing every year. It makes PT. PLN (Persero) is required to provide optimal customer service and satisfaction. Optimal service depends on the performance of the equipment of the power system owned, especially the transformer. Power transformer is an electrical equipment that transforms electricity from high voltage to low voltage or vice versa. However, in the electrical power system, is inseparable from interference included in the transformer. But, the disturbance can be minimized by the protection system. The main protection transformer is differential relays. Differential relays working system using Kirchoff law where inflows equal outflows. If there are excessive currents that interfere then the relays will work. But, the relay can also experience decreased performance. Therefore, this final project aims to analyze the reliability of the differential relay on the transformer in three different substations. Referring to the standard applied by the transmission line protection officer, the differential relay shall have slope characteristics of 30% in the first slope and 80% in the second slope when using two slopes and 80% when using one slope with an instant time and the corresponding ratio. So, the results obtained on the Siemens differential release have a reliable slope characteristic with a value of 30 on the fuzzy logic system. In a while, ABB a differential relay is only 80% reliable because two experiments are not reliable. For the time, all the differential relays are instant with a value of 0.06 on the fuzzy logic system. For ratios, the differential relays ABB have a better value than others brand with a value of 151 on the fuzzy logic system.

  3. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  4. A high voltage electrical power system for low Earth orbit applications

    NASA Technical Reports Server (NTRS)

    Lanier, J. R., Jr.; Bush, J. R., Jr.

    1984-01-01

    The results of testing a high voltage electrical power system (EPS) breadboard using high voltage power processing equipment developed at Marshall Space Flight Center and Ni-Cd batteries are discussed. These test results are used to extrapolate to an efficient, reliable, high capacity EPS for near term low Earth orbit, high power applications. EPS efficiencies, figures of merit, and battery reliability with a battery protection and reconditioning circuit are presented.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet describes the collaboration between NREL, SolarCity, and the Hawaiian Electric Companies at the Energy Systems Integration Facility (ESIF) to address the safety, reliability, and stability challenges of interconnecting high penetrations of distributed photovoltaics with the electric power system.

  6. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  7. 76 FR 23171 - Electric Reliability Organization Interpretations of Interconnection Reliability Operations and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... (MW and MVAR), or system configuration to maintain system stability, acceptable voltage or power flows... identified system conditions to prevent system instability or cascading outages, and protect other facilities... instability, cascading outages, and protect other facilities in response to contingencies. Therefore, a...

  8. What is system control?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirst, E.; Kirby, B.

    1999-11-01

    Just as the aviation industry needs air-traffic controllers to manage the movement of airplanes for safety and commerce, so too, the electricity industry requires system operators. The electrical-system-control functions encompass a range of activities that support commercial transactions and maintain bulk-power reliability. As part of a project for the Edison Electric Institute, the authors examined the functions and costs of system control and the issues that need to be resolved in a restructured electricity industry (Hirst and Kirby 1998).

  9. 77 FR 39858 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...'' as used in the NERC Glossary. \\25\\ Id. at 15. \\26\\ Id. at 16. 16. NERC also explains that, while the...: Through http://www.ferc.gov . Documents created electronically using word processing software should be...'s Glossary of Terms Used in Reliability Standards (NERC Glossary) developed by the North American...

  10. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. We explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for longterm reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs« less

  11. 18 CFR 40.3 - Availability of Reliability Standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Availability of Reliability Standards. 40.3 Section 40.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... THE BULK-POWER SYSTEM § 40.3 Availability of Reliability Standards. The Electric Reliability...

  12. 18 CFR 292.308 - Standards for operating reliability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reliability. 292.308 Section 292.308 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... SMALL POWER PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying... may establish reasonable standards to ensure system safety and reliability of interconnected...

  13. The effect of the NERC CIP standards on the reliability of the North American Bulk Electric System

    DOE PAGES

    Ladendorff, Marlene Z.

    2016-06-01

    Considerable money and effort has been expended by generation, transmission, and distribution entities in North America to implement the North American Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) standards for the bulk electric system. Assumptions have been made that as a result of the implementation of the standards, the grid is more cyber secure than it was pre-NERC CIP, but are there data supporting these claims, or only speculation? Has the implementation of the standards had an effect on the grid? Furthermore, developing a research study to address these and other questions provided surprising results.

  14. The all electric airplane-benefits and challenges

    NASA Technical Reports Server (NTRS)

    Spitzer, C. R.; Hood, R. V.

    1982-01-01

    The all electric aircraft considered in the present investigation is an aircraft which has digital flight crucial controls, electromechanical actuators, and electrical secondary power. There are no hydraulic or pneumatic systems. The characteristics of an all electric aircraft are related to reduced acquisition cost, reduced weight, reduced fuel consumption, increased reliability, reduced support equipment, simpler maintenance, an expanded flight envelope, and improved survivability. An additional benefit is the dramatically increased design flexibility and mission adaptability. However, the implementation of the all electric aircraft concept requires the resolution of a number of major technology issues. Issues in the digital flight controls area are related to achieving the required levels of safety and reliability in a cost effective manner. Other challenges which have to be met are concerned with electromechanical actuators, environmental control and ice protection systems, and engine technology.

  15. In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnitt, R. A.

    2008-06-01

    The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

  16. Optimal Wind Energy Integration in Large-Scale Electric Grids

    NASA Astrophysics Data System (ADS)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create profit for investors for renting their transmission capacity, and cheaper electricity for end users. We propose a hybrid method based on a heuristic and deterministic method to attain new transmission lines additions and increase transmission capacity. Renewable energy resources (RES) have zero operating cost, which makes them very attractive for generation companies and market participants. In addition, RES have zero carbon emission, which helps relieve the concerns of environmental impacts of electric generation resources' carbon emission. RES are wind, solar, hydro, biomass, and geothermal. By 2030, the expectation is that more than 30% of electricity in the U.S. will come from RES. One major contributor of RES generation will be from wind energy resources (WES). Furthermore, WES will be an important component of the future generation portfolio. However, the nature of WES is that it experiences a high intermittency and volatility. Because of the great expectation of high WES penetration and the nature of such resources, researchers focus on studying the effects of such resources on the electric grid operation and its adequacy from different aspects. Additionally, current market operations of electric grids add another complication to consider while integrating RES (e.g., specifically WES). Mandates by market rules and long-term analysis of renewable penetration in large-scale electric grid are also the focus of researchers in recent years. We advocate a method for high-wind resources penetration study on large-scale electric grid operations. PMU is a geographical positioning system (GPS) based device, which provides immediate and precise measurements of voltage angle in a high-voltage transmission system. PMUs can update the status of a transmission line and related measurements (e.g., voltage magnitude and voltage phase angle) more frequently. Every second, a PMU can provide 30 samples of measurements compared to traditional systems (e.g., supervisory control and data acquisition [SCADA] system), which provides one sample of measurement every 2 to 5 seconds. Because PMUs provide more measurement data samples, PMU can improve electric grid reliability and observability. (Abstract shortened by UMI.)

  17. 78 FR 41339 - Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ...] Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards AGENCY: Federal... Reliability Standards identified by the North American Electric Reliability Corporation (NERC), the Commission-certified Electric Reliability Organization. FOR FURTHER INFORMATION CONTACT: Kevin Ryan (Legal Information...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touati, Said; Chennai, Salim; Souli, Aissa

    The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how wellmore » a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)« less

  19. Small space station electrical power system design concepts

    NASA Technical Reports Server (NTRS)

    Jones, G. M.; Mercer, L. N.

    1976-01-01

    A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.

  20. Reliability Modeling of Microelectromechanical Systems Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Perera. J. Sebastian

    2000-01-01

    Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.

  1. PERFORMANCE OF SOLAR HOT WATER COLLECTORS FOR ELECTRICITY PRODUCTION AND CLIMATE CONTROL

    EPA Science Inventory

    We will systematically evaluate commercially available solar thermal collectors and thermal storage systems for use in residential scale co-generative heat and electrical power systems. Currently, reliable data is unavailable over the range of conditions and installations thes...

  2. 75 FR 65624 - Notice of Attendance at North American Electric Reliability Corporation Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Electric Reliability Corporation Meetings October 19, 2010. The Federal Energy Regulatory Commission hereby... Electric Reliability Corporation meetings: NERC Board of Trustees Meeting November 3, 2010, Wednesday..., North American Electric Reliability Corporation; Docket No. RC08-5, North American Electric Reliability...

  3. 18 CFR 39.3 - Electric Reliability Organization certification.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Electric Reliability... CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.3 Electric Reliability Organization certification. (a) Any...

  4. 18 CFR 39.3 - Electric Reliability Organization certification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Electric Reliability... CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.3 Electric Reliability Organization certification. (a) Any...

  5. 18 CFR 39.3 - Electric Reliability Organization certification.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Electric Reliability... CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.3 Electric Reliability Organization certification. (a) Any...

  6. 18 CFR 39.3 - Electric Reliability Organization certification.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Electric Reliability... CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.3 Electric Reliability Organization certification. (a) Any...

  7. Electrical insulation design requirements and reliability goals

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    1983-11-01

    The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.

  8. A pulse-compression-ring circuit for high-efficiency electric propulsion.

    PubMed

    Owens, Thomas L

    2008-03-01

    A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.

  9. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. Furthermore, we explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for long-term reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs.« less

  10. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE PAGES

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron; ...

    2016-03-22

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. Furthermore, we explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for long-term reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs.« less

  11. 46 CFR 169.619 - Reliability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Reliability. 169.619 Section 169.619 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.619 Reliability. (a) Except where the OCMI judges it impracticable, the...

  12. 46 CFR 169.619 - Reliability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Reliability. 169.619 Section 169.619 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.619 Reliability. (a) Except where the OCMI judges it impracticable, the...

  13. Direct drive options for electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    1995-01-01

    Power processing units (PPU's) in an electric propulsion system provide many challenging integration issues. The PPU must provide power to the electric thruster while maintaining compatibility with all of the spacecraft power and data systems. Inefficiencies in the power processor produce heat, which must be radiated to the environment in order to ensure reliable operation. Although PPU efficiencies are generally greater than 0.9, heat loads are often substantial. This heat must be rejected by thermal control systems which generally have specific masses of 15-30 kg/kW. PPU's also represent a large fraction of the electric propulsion system dry mass. Simplification or elimination of power processing in a propulsion system would reduce the electric propulsion system specific mass and improve the overall reliability and performance. A direct drive system would eliminate all or some of the power supplies required to operate a thruster by directly connecting the various thruster loads to the solar array. The development of concentrator solar arrays has enabled power bus voltages in excess of 300 V which is high enough for direct drive applications for Hall thrusters such as the Stationary Plasma Thruster (SPT). The option of solar array direct drive for SPT's is explored to provide a comparison between conventional and direct drive system mass.

  14. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  15. An automated system using spatial oversampling for optical mapping in murine atria. Development and validation with monophasic and transmembrane action potentials.

    PubMed

    Yu, Ting Yue; Syeda, Fahima; Holmes, Andrew P; Osborne, Benjamin; Dehghani, Hamid; Brain, Keith L; Kirchhof, Paulus; Fabritz, Larissa

    2014-08-01

    We developed and validated a new optical mapping system for quantification of electrical activation and repolarisation in murine atria. The system makes use of a novel 2nd generation complementary metal-oxide-semiconductor (CMOS) camera with deliberate oversampling to allow both assessment of electrical activation with high spatial and temporal resolution (128 × 2048 pixels) and reliable assessment of atrial murine repolarisation using post-processing of signals. Optical recordings were taken from isolated, superfused and electrically stimulated murine left atria. The system reliably describes activation sequences, identifies areas of functional block, and allows quantification of conduction velocities and vectors. Furthermore, the system records murine atrial action potentials with comparable duration to both monophasic and transmembrane action potentials in murine atria. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. 77 FR 11515 - Application To Export Electric Energy; Pilot Power Group, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... reliability of the U.S. electric power supply system. Copies of this application will be made available, upon... DEPARTMENT OF ENERGY [OE Docket No. EA-383] Application To Export Electric Energy; Pilot Power... application. SUMMARY: Pilot Power Group, Inc. (Pilot Power) has applied for authority to transmit electric...

  17. Trial application of reliability technology to emergency diesel generators at the Trojan Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S.M.; Boccio, J.L.; Karimian, S.

    1986-01-01

    In this paper, a trial application of reliability technology to the emergency diesel generator system at the Trojan Nuclear Power Plant is presented. An approach for formulating a reliability program plan for this system is being developed. The trial application has shown that a reliability program process, using risk- and reliability-based techniques, can be interwoven into current plant operational activities to help in controlling, analyzing, and predicting faults that can challenge safety systems. With the cooperation of the utility, Portland General Electric Co., this reliability program can eventually be implemented at Trojan to track its effectiveness.

  18. Towards Smart Grid Dynamic Ratings

    NASA Astrophysics Data System (ADS)

    Cheema, Jamal; Clark, Adrian; Kilimnik, Justin; Pavlovski, Chris; Redman, David; Vu, Maria

    2011-08-01

    The energy distribution industry is giving greater attention to smart grid solutions as a means for increasing the capabilities, efficiency and reliability of the electrical power network. The smart grid makes use of intelligent monitoring and control devices throughout the distribution network to report on electrical properties such as voltage, current and power, as well as raising network alarms and events. A further aspect of the smart grid embodies the dynamic rating of electrical assets of the network. This fundamentally involves a rating of the load current capacity of electrical assets including feeders, transformers and switches. The mainstream approach to rate assets is to apply the vendor plate rating, which often under utilizes assets, or in some cases over utilizes when environmental conditions reduce the effective rated capacity, potentially reducing lifetime. Using active intelligence we have developed a rating system that rates assets in real time based upon several events. This allows for a far more efficient and reliable electrical grid that is able to extend further the life and reliability of the electrical network. In this paper we describe our architecture, the observations made during development and live deployment of the solution into operation. We also illustrate how this solution blends with the smart grid by proposing a dynamic rating system for the smart grid.

  19. 75 FR 72909 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ...) Comments 135 (b) Commission Determination 139 6. Impact on Generation Owners and Operators 142 (a) Comments... Organization, the electrical generation resources, transmission lines, interconnections with neighboring... above that interconnect with registered generation facilities are excluded from NPCC's list of bulk...

  20. Electric machine differential for vehicle traction control and stability control

    NASA Astrophysics Data System (ADS)

    Kuruppu, Sandun Shivantha

    Evolving requirements in energy efficiency and tightening regulations for reliable electric drivetrains drive the advancement of the hybrid electric (HEV) and full electric vehicle (EV) technology. Different configurations of EV and HEV architectures are evaluated for their performance. The future technology is trending towards utilizing distinctive properties in electric machines to not only to improve efficiency but also to realize advanced road adhesion controls and vehicle stability controls. Electric machine differential (EMD) is such a concept under current investigation for applications in the near future. Reliability of a power train is critical. Therefore, sophisticated fault detection schemes are essential in guaranteeing reliable operation of a complex system such as an EMD. The research presented here emphasize on implementation of a 4kW electric machine differential, a novel single open phase fault diagnostic scheme, an implementation of a real time slip optimization algorithm and an electric machine differential based yaw stability improvement study. The proposed d-q current signature based SPO fault diagnostic algorithm detects the fault within one electrical cycle. The EMD based extremum seeking slip optimization algorithm reduces stopping distance by 30% compared to hydraulic braking based ABS.

  1. Fiberoptics technology and its application to propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1983-01-01

    Electro-optical systems have many advantages over conventional electrical systems. Among these are optics' insensitivity to electro-magnetic interference, good electrical isolation and the ability to make measurements in highly explosive areas without risk. These advantages promise to help improve the reliability of future aircraft engine control systems which will be entirely electronic digital. To improve the reliability of these systems, especially against lightning strikes, passive, optical, sensors and fiberoptic transmission lines are being considered for use in future engine systems. Also under consideration are actuators which receive their command signals over fiber optic cables. This paper reviews concepts used for optical instrumentation and actuation systems and discusses work being done by NASA Lewis Research Center in this area.

  2. Photovoltaic power system reliability considerations

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1980-01-01

    An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy.

  3. A Senior Project-Based Multiphase Motor Drive System Development

    ERIC Educational Resources Information Center

    Abdel-Khalik, Ayman S.; Massoud, Ahmed M.; Ahmed, Shehab

    2016-01-01

    Adjustable-speed drives based on multiphase motors are of significant interest for safety-critical applications that necessitate wide fault-tolerant capabilities and high system reliability. Although multiphase machines are based on the same conceptual theory as three-phase machines, most undergraduate electrical machines and electric drives…

  4. Precise time and time interval applications to electric power systems

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1992-01-01

    There are many applications of precise time and time interval (frequency) in operating modern electric power systems. Many generators and customer loads are operated in parallel. The reliable transfer of electrical power to the consumer partly depends on measuring power system frequency consistently in many locations. The internal oscillators in the widely dispersed frequency measuring units must be syntonized. Elaborate protection and control systems guard the high voltage equipment from short and open circuits. For the highest reliability of electric service, engineers need to study all control system operations. Precise timekeeping networks aid in the analysis of power system operations by synchronizing the clocks on recording instruments. Utility engineers want to reproduce events that caused loss of service to customers. Precise timekeeping networks can synchronize protective relay test-sets. For dependable electrical service, all generators and large motors must remain close to speed synchronism. The stable response of a power system to perturbations is critical to continuity of electrical service. Research shows that measurement of the power system state vector can aid in the monitoring and control of system stability. If power system operators know that a lightning storm is approaching a critical transmission line or transformer, they can modify operating strategies. Knowledge of the location of a short circuit fault can speed the re-energizing of a transmission line. One fault location technique requires clocks synchronized to one microsecond. Current research seeks to find out if one microsecond timekeeping can aid and improve power system control and operation.

  5. A study on reliability of power customer in distribution network

    NASA Astrophysics Data System (ADS)

    Liu, Liyuan; Ouyang, Sen; Chen, Danling; Ma, Shaohua; Wang, Xin

    2017-05-01

    The existing power supply reliability index system is oriented to power system without considering actual electricity availability in customer side. In addition, it is unable to reflect outage or customer’s equipment shutdown caused by instantaneous interruption and power quality problem. This paper thus makes a systematic study on reliability of power customer. By comparing with power supply reliability, reliability of power customer is defined and extracted its evaluation requirements. An indexes system, consisting of seven customer indexes and two contrast indexes, are designed to describe reliability of power customer from continuity and availability. In order to comprehensively and quantitatively evaluate reliability of power customer in distribution networks, reliability evaluation method is proposed based on improved entropy method and the punishment weighting principle. Practical application has proved that reliability index system and evaluation method for power customer is reasonable and effective.

  6. Fuzzy Logic as a Tool to Compare Reliability of Torsion Bar System

    DTIC Science & Technology

    2009-12-17

    A paper by Arati Dexit, Harpreet Singh and Kassem Saab presents a possible scenario of simulating reliability using Fuzzy Logic.[4] This...29, Issue: 3 [2]. Weibell.com: “ Overview of System Reliability” [3]. Arati MDixit, Harpreet Singh, and Kassem Saab Department of Electrical

  7. The Challenge Posed by Geomagnetic Activity to Electric Power Reliability: Evidence From England and Wales

    NASA Astrophysics Data System (ADS)

    Forbes, Kevin F.; St. Cyr, O. C.

    2017-10-01

    This paper addresses whether geomagnetic activity challenged the reliability of the electric power system during part of the declining phase of solar cycle 23. Operations by National Grid in England and Wales are examined over the period of 11 March 2003 through 31 March 2005. This paper examines the relationship between measures of geomagnetic activity and a metric of challenged electric power reliability known as the net imbalance volume (NIV). Measured in megawatt hours, NIV represents the sum of all energy deployments initiated by the system operator to balance the electric power system. The relationship between geomagnetic activity and NIV is assessed using a multivariate econometric model. The model was estimated using half-hour settlement data over the period of 11 March 2003 through 31 December 2004. The results indicate that geomagnetic activity had a demonstrable effect on NIV over the sample period. Based on the parameter estimates, out-of-sample predictions of NIV were generated for each half hour over the period of 1 January to 31 March 2005. Consistent with the existence of a causal relationship between geomagnetic activity and the electricity market imbalance, the root-mean-square error of the out-of-sample predictions of NIV is smaller; that is, the predictions are more accurate, when the statistically significant estimated effects of geomagnetic activity are included as drivers in the predictions.

  8. 78 FR 38851 - Electric Reliability Organization Proposal To Retire Requirements in Reliability Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... 215 of the Federal Power Act, the Commission proposes to approve the retirement of 34 requirements... of the Reliability Standards. In addition, the Commission proposes to withdraw 41 outstanding...-Power System. This proposal is part of the Commission's ongoing effort to review its requirements and...

  9. IEEE Honors DeBlasio with Steinmetz Award | News | NREL

    Science.gov Websites

    for the Interconnection of Distributed Resources with the Electric Power System) removed many of the grid utilizing distributed generation, including renewable electric systems," DeBalsio said. " sustained dedication to the growth and development of the Photovoltaic Testing and Reliability, Distributed

  10. Power processing for electric propulsion

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Herron, B. G.; Gant, G. D.

    1975-01-01

    The potential of achieving up to 30 per cent more spacecraft payload or 50 per cent more useful operating life by the use of electric propulsion in place of conventional cold gas or hydrazine systems in science, communications, and earth applications spacecraft is a compelling reason to consider the inclusion of electric thruster systems in new spacecraft design. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. This paper will present electron bombardment ion thruster requirements; review the performance characteristics of present power processing systems; discuss design philosophies and alternatives in areas such as inverter type, arc protection, and control methods; and project future performance potentials for meeting goals in the areas of power processor weight (10 kg/kW), efficiency (approaching 92 per cent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).

  11. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  12. 10 CFR 205.374 - Responses from “entities” designated in the application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Emergency... appropriate Regional Electric Reliability Council. Pursuant to section 202(c) of the Federal Power Act, DOE... Electric Power § 205.374 Responses from “entities” designated in the application. Each “entity” designated...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Lynn; Arquit Niederberger, Anne

    Abstract— Lighting systems have the ability to transform the economic and educational infrastructure of disadvantaged communities, and eradicating “light poverty” has become one of the primary goals of the International Year of Light 2015. Solid-state lighting (SSL) technology, based on light-emitting diode (LED) light sources, has emerged as the next generation of lighting technology, with a current global market penetration of roughly 5%. This paper will report on recent research on understanding SSL lighting system reliability (failure modes, environmental stressors, electrical power quality); discuss the implications of SSL technology reliability for providing lighting services; and suggest practical approaches to ensuremore » SSL reliability to benefit humanity. Among the key findings from this work is that LED sources can be extremely reliable, withstanding a broad range of environmental stresses without failure. Nonetheless, SSL lighting systems can have a negative impact on electrical power reliability, as well as on the affordability of lighting services, without attention to the quality of the accompanying power infrastructure. It is therefore critical to ensure that the performance of the power supply electronics used in lighting systems is matched to the quality of the power source, when evaluating energy efficient lighting choices.« less

  14. American lifelines alliance efforts to improve electric power transmission reliability

    USGS Publications Warehouse

    Nishenko, S.P.; Savage, W.U.; Honegger, D.G.; McLane, T.R.; ,

    2002-01-01

    A study was performed on American Lifelines Alliance (ALA) efforts to improve electric power transmission reliability. ALA is a public-private partnership project, with the goal of reducing risks to lifelines from natural hazards and human threat events. The mechanism used by ALA for developing national guidelines for lifeline systems is dependent upon using existing Standards Developing Organizations (SDO) accredited by the American National Standards Institute (ANSI) as means to achieve national consensus.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weston, F.; Harrington, C.; Moskovitz, D.

    Distributed resources can provide cost-effective reliability and energy services - in many cases, obviating the need for more expensive investments in wires and central station electricity generating facilities. Given the unique features of distributed resources, the challenge facing policymakers today is how to restructure wholesale markets for electricity and related services so as to reveal the full value that distributed resources can provide to the electric power system (utility grid). This report looks at the functions that distributed resources can perform and examines the barriers to them. It then identifies a series of policy and operational approaches to promoting DRmore » in wholesale markets. This report is one in the State Electricity Regulatory Policy and Distributed Resources series developed under contract to NREL (see Annual Technical Status Report of the Regulatory Assistance Project: September 2000-September 2001, NREL/SR-560-32733). Other titles in this series are: (1) Distributed Resource Distribution Credit Pilot Programs - Revealing the Value to Consumers and Vendors, NREL/SR-560-32499; (2) Distributed Resources and Electric System Reliability, NREL/SR-560-32498; (3) Distribution System Cost Methodologies for Distributed Generation, NREL/SR-560-32500; (4) Distribution System Cost Methodologies for Distributed Generation Appendices, NREL/SR-560-32501« less

  16. Electrical power technology for robotic planetary rovers

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Shirbacheh, M.; Bents, D. J.; Bozek, J. M.

    1993-01-01

    Power technologies which will enable a range of robotic rover vehicle missions by the end of the 1990s and beyond are discussed. The electrical power system is the most critical system for reliability and life, since all other on board functions (mobility, navigation, command and data, communications, and the scientific payload instruments) require electrical power. The following are discussed: power generation, energy storage, power management and distribution, and thermal management.

  17. openECA Platform and Analytics Alpha Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Russell

    The objective of the Open and Extensible Control and Analytics (openECA) Platform for Phasor Data project is to develop an open source software platform that significantly accelerates the production, use, and ongoing development of real-time decision support tools, automated control systems, and off-line planning systems that (1) incorporate high-fidelity synchrophasor data and (2) enhance system reliability while enabling the North American Electric Reliability Corporation (NERC) operating functions of reliability coordinator, transmission operator, and/or balancing authority to be executed more effectively.

  18. openECA Platform and Analytics Beta Demonstration Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Russell

    The objective of the Open and Extensible Control and Analytics (openECA) Platform for Phasor Data project is to develop an open source software platform that significantly accelerates the production, use, and ongoing development of real-time decision support tools, automated control systems, and off-line planning systems that (1) incorporate high-fidelity synchrophasor data and (2) enhance system reliability while enabling the North American Electric Reliability Corporation (NERC) operating functions of reliability coordinator, transmission operator, and/or balancing authority to be executed more effectively.

  19. Smart grid technologies in local electric grids

    NASA Astrophysics Data System (ADS)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  20. 75 FR 36385 - Reliability Standards Development and NERC and Regional Entity Enforcement Supplemental Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... Standards Development and NERC and Regional Entity Enforcement Supplemental Notice of Technical Conference... development and enforcement of mandatory Reliability Standards for the Bulk-Power System by the North American Electric Reliability Corporation and the Regional Entities. The conference will be held on Tuesday, July 6...

  1. 78 FR 58295 - Commission Information Collection Activities (FERC-725A); Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... submitting the information collection FERC-725A, Mandatory Reliability Standards for the Bulk Power System... collection analysis associated with its approval of Reliability Standard EOP-004-2, in an order published in... solicitation and is making this notation in its submission to OMB. \\1\\ North American Electric Reliability Corp...

  2. 77 FR 39691 - Commission Information Collection Activities (FERC-725); Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... information collection FERC-725, Certification of Electric Reliability Organization; Procedures for Electric Reliability Standards, to the Office of Management and Budget (OMB) for review of the information collection..., Certification of Electric Reliability Organization; Procedures for Electric Reliability Standards. OMB Control...

  3. Potential for deserts to supply reliable renewable electric power

    NASA Astrophysics Data System (ADS)

    Labordena, Mercè; Lilliestam, Johan

    2015-04-01

    To avoid dangerous climate change, the electricity systems must be decarbonized by mid-century. The world has sufficient renewable electricity resources for complete power sector decarbonization, but an expansion of renewables poses several challenges for the electricity systems. First, wind and solar PV power are intermittent and supply-controlled, making it difficult to securely integrate this fluctuating generation into the power systems. Consequently, power sources that are both renewable and dispatchable, such as biomass, hydro and concentrating solar power (CSP), are particularly important. Second, renewable power has a low power density and needs vast areas of land, which is problematic both due to cost reasons and due to land-use conflicts, in particular with agriculture. Renewable and dispatchable technologies that can be built in sparsely inhabited regions or on land with low competition with agriculture would therefore be especially valuable; this land-use competition greatly limits the potential for hydro and biomass electricity. Deserts, however, are precisely such low-competition land, and are at the same time the most suited places for CSP generation, but this option would necessitate long transmission lines from remote places in the deserts to the demand centers such as big cities. We therefore study the potential for fleets of CSP plants in the large deserts of the world to produce reliable and reasonable-cost renewable electricity for regions with high and/or rapidly increasing electricity demand and with a desert within or close to its borders. The regions in focus here are the European Union, North Africa and the Middle East, China and Australia. We conduct the analysis in three steps. First, we identify the best solar generation areas in the selected deserts using geographic information systems (GIS), and applying restrictions to minimize impact on biodiversity, soils, human heath, and land-use and land-cover change. Second, we identify transmission corridors from the generation areas to the demand centers in the target regions, using a GIS-based transmission algorithm that minimizes economic, social and environmental costs. Third, we use the multi-scale energy system model Calliope to specify the optimal configuration and operation of the CSP fleet to reliably follow the demand every hour of the year in the target regions, and to calculate the levelized cost of doing so, including both generation and transmission costs. The final output will show whether and how much reliable renewable electricity can be supplied from CSP fleets in deserts to demand centers in adjacent regions, at which costs this is possible, as well as a detailed description of the routes of HVDC transmission links. We expect to find that the potential for deserts to supply reliable CSP to the regions in focus is very large in all cases, despite the long distances.

  4. Power system characteristics for more electric aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1993-01-01

    It should not be suprising that more electric aircraft must meet significantly more difficult electrical power system requirements than were considereed when today's power distribution systems were being developed. Electric power, no longer a secondary system, will become a critical element of the primary control system. Functional reliability requiirements will be extremely stringent and can only be met by controlling element redundancy within a distributed power system. Existing electrical systems were not developed to have both the power system and the control/sensing elements distributed and yet meet the requirements of lighting tolerance and high intensity radio frequency (HIRF). In addition, the operation of electric actuators involves high transient loading and reverse energy flows. Such phenomena were also not anticipated when power quality was specified for either 270 vdc or 400 Hertz ac power systems. This paper will expand upon the issues and discuss some of the technologies involved in their resolution.

  5. Reliability as the big persuader to privatize the electrical system in Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez B., C.E.

    1998-12-31

    Throughout the past five years, the Venezuelan authorities, especially the Fondo de Inversiones de Venezuela (FIV), have done a major effort to privatize many of the state owned industries, among them, the electrical public utilities and some important electrical power generation plants or systems based on thermal generation. Mainly along the recent past years, black and brownouts have become more frequent in the system. In other words, system reliability has been diminishing, as a consequence of investment capital and O and M expenses have been reduced to levels below the required by the system. Public opinion is exercising pressure onmore » politicians, so signals are that Congress will probably approve during the current or beginning of next years the required laws to expedite privatization and assure incentives and guaranties to investors. This paper deals with the insides of all these aspects, and with how soon privatization will be carried out. The FIV has been committed to implement this process.« less

  6. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    NASA Technical Reports Server (NTRS)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  7. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilitiesmore » of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.« less

  8. 75 FR 65312 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...: Request for Reauthorization and Extension of Existing Blanket Authorization to Acquire Securities under.... Applicants: Western Electricity Coordinating Council. Description: Notice of Proposed Cancellation of Western Electricity Coordinating Council's Reliability Management System. Filed Date: 10/12/2010. Accession Number...

  9. Grid-Level Application of Electrical Energy Storage: Example Use Cases in the United States and China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Gevorgian, Vahan; Wang, Caixia

    Electrical energy storage (EES) systems are expected to play an increasing role in helping the United States and China-the world's largest economies with the two largest power systems-meet the challenges of integrating more variable renewable resources and enhancing the reliability of power systems by improving the operating capabilities of the electric grid. EES systems are becoming integral components of a resilient and efficient grid through a diverse set of applications that include energy management, load shifting, frequency regulation, grid stabilization, and voltage support.

  10. 77 FR 65873 - North American Electric Reliability Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Electric Reliability Corporation; Notice of Filing Take notice that on October 12, 2012, the North American Electric Reliability Corporation (NERC) submitted a compliance filing in accordance with the Federal Energy Regulatory Commission's Order (FERC or Commission) in North American Electric Reliability Corporation, 140...

  11. 77 FR 32629 - North American Electric Reliability Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... Electric Reliability Corporation; Notice of Filing Take notice that on May 14, 2012, the North American Electric Reliability Corporation (NERC) submitted a compliance filing in accordance with the Federal Energy Regulatory Commission's Order (FERC or Commission) in North American Electric Reliability Corporation, 138...

  12. 78 FR 18333 - North American Electric Reliability Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Electric Reliability Corporation; Notice of Filing Take notice that on March 15, 2013, the North American Electric Reliability Corporation (NERC) submitted a compliance filing and report in accordance with the Federal Energy Regulatory Commission's Order (FERC or Commission) in North American Electric Reliability...

  13. 78 FR 9687 - North American Electric Reliability Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Electric Reliability Corporation; Notice of Filing Take notice that on February 1, 2013, the North American Electric Reliability Corporation (NERC) submitted a compliance filing in accordance with the Federal Energy Regulatory Commission's Order (FERC or Commission) in North American Electric Reliability Corporation, 141...

  14. Power processing for electric propulsion

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Herron, B. G.; Gant, G. D.

    1975-01-01

    The inclusion of electric thruster systems in spacecraft design is considered. The propulsion requirements of such spacecraft dictate a wide range of thruster power levels and operational lifetimes, which must be matched by lightweight, efficient, and reliable thruster power processing systems. Electron bombardment ion thruster requirements are presented, and the performance characteristics of present power processing systems are reviewed. Design philosophies and alternatives in areas such as inverter type, arc protection, and control methods are discussed along with future performance potentials for meeting goals in the areas of power process or weight (10 kg/kW), efficiency (approaching 92 percent), reliability (0.96 for 15,000 hr), and thermal control capability (0.3 to 5 AU).

  15. IEC 61850: Technology Standards and Cyber-Security Threats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youssef, Tarek A; El Hariri, mohamed; Bugay, Nicole

    Substations constitute a fundamental part in providing reliable electricity to consumers. For a substation to maintain electricity reliability and its own real-time operability, communication between its components is inevitable. Before the emergence of IEC 61850, inter-substation communication was established via expensive copper wires with limited capabilities. IEC 61850 is the standard set by the International Electrotechnical Commission (IEC) Technical Committee Number 57 Working Group 10 and IEEE for Ethernet (IEEE 802.3)-based communication in electrical substations. Like many power grid systems standards, IEC 61850 was set without extensive consideration for critical security measures. This paper discusses IEC 61850 technology standards andmore » applications thoroughly and points out major security vulnerabilities it introduces in the context of current cyber-physical smart grid systems.« less

  16. The advantages of the high voltage solar array for electric propulsion

    NASA Technical Reports Server (NTRS)

    Sater, B. L.

    1973-01-01

    The high voltage solar array offers improvements in efficiency, weight, and reliability for the electric propulsion power system. Conventional power processes and problems associated with ion thruster operation using SERT 2 experience are discussed and the advantages of the HVSA concept for electric propulsion are presented. Tests conducted operating the SERT 2 thruster system in conjunction with HVSA are reported. Thruster operation was observed to be normal and in some respects improved.

  17. Geomagnetic storms: Potential economic impacts on electric utilities

    NASA Astrophysics Data System (ADS)

    Barnes, P. R.; Vandyke, J. W.

    1991-03-01

    Geomagnetic storms associated with sunspot and solar flare activity can disturb communications and disrupt electric power. A very severe geomagnetic storm could cause a major blackout with an economic impact of several billion dollars. The vulnerability of electric power systems in the northeast United States will likely increase during the 1990s because of the trend of transmitting large amounts of power over long distance to meet the electricity demands of this region. A comprehensive research program and a warning satellite to monitor the solar wind are needed to enhance the reliability of electric power systems under the influence of geomagnetic storms.

  18. 76 FR 23222 - Electric Reliability Organization Interpretation of Transmission Operations Reliability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... applications or print-to-PDF format, and not in a scanned format, at http://www.ferc.gov/docs-filing/efiling....3d 1342 (DC Cir. 2009). \\5\\ Mandatory Reliability Standards for the Bulk-Power System, Order No. 693... applications or print-to-PDF format and not in a scanned format. Commenters filing electronically do not need...

  19. 75 FR 52528 - Mandatory Reliability Standards for the Bulk-Power System; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Frequency Response in the Wholesale Electric Grid on Thursday, September 23, from 10 a.m. to approximately 4... Order No. 693 the Commission approved Reliability Standard BAL-003-0 as mandatory and enforceable and directed the ERO to develop a modification to BAL-003-0 through the Reliability Standards development...

  20. 78 FR 18333 - North American Electric Reliability Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Electric Reliability Corporation; Notice of Filing Take notice that on March 11, 2013, the North American Electric Reliability Corporation and SERC Reliability Corporation submitted a compliance filing in accordance with the Federal Energy Regulatory Commission's Order (FERC or Commission) in Regional Reliability...

  1. 75 FR 81601 - North American Electric Reliability Corporation; Notice of Compliance Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Electric Reliability Corporation; Notice of Compliance Filing December 20, 2010. Take notice that on December 1, 2010, North American Electric Reliability Corporation, in response to Paragraph 274 of the... Transfer Capability Reliability Standards. \\1\\ Mandatory Reliability Standards for the Calculation of...

  2. 78 FR 29209 - Revisions to Electric Reliability Organization Definition of Bulk Electric System and Rules of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    .../ or clarification of Order No. 773: NERC, American Public Power Association (APPA); American Wind... developed a list of facilities that have the potential to cause cascading problems on the system as well as... with particular tests and outlined general problems with the material impact tests used to determine...

  3. 75 FR 78979 - Application to Export Electric Energy; Twin Rivers Paper Company Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    .... Twin Rivers has requested an export authorization in order to be able to supply emergency power as... proposed action will not adversely impact on the reliability of the U.S. electric power supply system... electric energy from the United States to Canada pursuant to section 202(e) of the Federal Power Act. DATES...

  4. Reliability Analysis of the Space Station Freedom Electrical Power System

    DTIC Science & Technology

    1989-08-01

    Cleveland, Ohio, who assisted in obtaining related research materials and provided feedback on our efforts to produce a dynamic analysis tool useful to...System software that we used to do our analysis of the electrical power system. Thanks are due to Dr. Vira Chankong, my thesis advisor, for his...a frequency duration analysis . Using a transition rate matrix with a model of the photovoltaic and solar dynamic systems, they have one model that

  5. Climate and water resource change impacts and adaptation potential for US power supply

    DOE PAGES

    Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.; ...

    2017-10-30

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less

  6. Climate and water resource change impacts and adaptation potential for US power supply

    NASA Astrophysics Data System (ADS)

    Miara, Ariel; Macknick, Jordan E.; Vörösmarty, Charles J.; Tidwell, Vincent C.; Newmark, Robin; Fekete, Balazs

    2017-11-01

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptation strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. Climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.

  7. Climate and water resource change impacts and adaptation potential for US power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miara, Ariel; Macknick, Jordan E.; Vorosmarty, Charles J.

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptationmore » strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. As a result, climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.« less

  8. Identifying Electricity Capacity at Risk to Changes in Climate and Water Resources in the United States

    NASA Astrophysics Data System (ADS)

    Miara, A.; Macknick, J.; Vorosmarty, C. J.; Corsi, F.; Fekete, B. M.; Newmark, R. L.; Tidwell, V. C.; Cohen, S. M.

    2016-12-01

    Thermoelectric plants supply 85% of electricity generation in the United States. Under a warming climate, the performance of these power plants may be reduced, as thermoelectric generation is dependent upon cool ambient temperatures and sufficient water supplies at adequate temperatures. In this study, we assess the vulnerability and reliability of 1,100 operational power plants (2015) across the contiguous United States under a comprehensive set of climate scenarios (five Global Circulation Models each with four Representative Concentration Pathways). We model individual power plant capacities using the Thermoelectric Power and Thermal Pollution model (TP2M) coupled with the Water Balance Model (WBM) at a daily temporal resolution and 5x5 km spatial resolution. Together, these models calculate power plant capacity losses that account for geophysical constraints and river network dynamics. Potential losses at the single-plant level are put into a regional energy security context by assessing the collective system-level reliability at the North-American Electricity Reliability Corporation (NERC) regions. Results show that the thermoelectric sector at the national level has low vulnerability under the contemporary climate and that system-level reliability in terms of available thermoelectric resources relative to thermoelectric demand is sufficient. Under future climates scenarios, changes in water availability and warm ambient temperatures lead to constraints on operational capacity and increased vulnerability at individual power plant sites across all regions in the United States. However, there is a strong disparity in regional vulnerability trends and magnitudes that arise from each region's climate, hydrology and technology mix. Despite increases in vulnerabilities at the individual power plant level, regional energy systems may still be reliable (with no system failures) due to sufficient back-up reserve capacities.

  9. Climate and Water Vulnerability of the US Electricity Grid Under High Penetrations of Renewable Energy

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; O'Connell, M.; Vorosmarty, C. J.; Newmark, R. L.

    2017-12-01

    The US power sector is highly dependent upon water resources for reliable operations, primarily for thermoelectric cooling and hydropower technologies. Changes in the availability and temperature of water resources can limit electricity generation and cause outages at power plants, which substantially affect grid-level operational decisions. While the effects of water variability and climate changes on individual power plants are well documented, prior studies have not identified the significance of these impacts at the regional systems-level at which the grid operates, including whether there are risks for large-scale blackouts, brownouts, or increases in production costs. Adequately assessing electric grid system-level impacts requires detailed power sector modeling tools that can incorporate electric transmission infrastructure, capacity reserves, and other grid characteristics. Here, we present for the first time, a study of how climate and water variability affect operations of the power sector, considering different electricity sector configurations (low vs. high renewable) and environmental regulations. We use a case study of the US Eastern Interconnection, building off the Eastern Renewable Generation Integration Study (ERGIS) that explored operational challenges of high penetrations of renewable energy on the grid. We evaluate climate-water constraints on individual power plants, using the Thermoelectric Power and Thermal Pollution (TP2M) model coupled with the PLEXOS electricity production cost model, in the context of broader electricity grid operations. Using a five minute time step for future years, we analyze scenarios of 10% to 30% renewable energy penetration along with considerations of river temperature regulations to compare the cost, performance, and reliability tradeoffs of water-dependent thermoelectric generation and variable renewable energy technologies under climate stresses. This work provides novel insights into the resilience and reliability of different configurations of the US electric grid subject to changing climate conditions.

  10. 77 FR 74655 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... the following electric reliability filings: Docket Numbers: RD13-2-000. Applicants: North American Electric Reliability Corporation. Description: Petition of the North American Electric Reliability... that the Commission received the following electric rate filings: Docket Numbers: ER13-342-001...

  11. Finite element based electric motor design optimization

    NASA Technical Reports Server (NTRS)

    Campbell, C. Warren

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.

  12. Adequacy assessment of composite generation and transmission systems incorporating wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Gao, Yi

    The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.

  13. Scoping study on trends in the economic value of electricity reliability to the U.S. economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph; Koomey, Jonathan; Lehman, Bryan

    During the past three years, working with more than 150 organizations representing public and private stakeholders, EPRI has developed the Electricity Technology Roadmap. The Roadmap identifies several major strategic challenges that must be successfully addressed to ensure a sustainable future in which electricity continues to play an important role in economic growth. Articulation of these anticipated trends and challenges requires a detailed understanding of the role and importance of reliable electricity in different sectors of the economy. This report is intended to contribute to that understanding by analyzing key aspects of trends in the economic value of electricity reliability inmore » the U.S. economy. We first present a review of recent literature on electricity reliability costs. Next, we describe three distinct end-use approaches for tracking trends in reliability needs: (1) an analysis of the electricity-use requirements of office equipment in different commercial sectors; (2) an examination of the use of aggregate statistical indicators of industrial electricity use and economic activity to identify high reliability-requirement customer market segments; and (3) a case study of cleanrooms, which is a cross-cutting market segment known to have high reliability requirements. Finally, we present insurance industry perspectives on electricity reliability as an example of a financial tool for addressing customers' reliability needs.« less

  14. Grid Modernization | NREL

    Science.gov Websites

    development to improve the nation's electrical grid infrastructure, making it more flexible, reliable Standard, IEEE 1547 Blue cover page of report with hexagon shapes over electric grid Basic Research Needs Controls Power Systems Design and Studies Security and Resilience Institutional Support NREL grid research

  15. Parts and Components Reliability Assessment: A Cost Effective Approach

    NASA Technical Reports Server (NTRS)

    Lee, Lydia

    2009-01-01

    System reliability assessment is a methodology which incorporates reliability analyses performed at parts and components level such as Reliability Prediction, Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) to assess risks, perform design tradeoffs, and therefore, to ensure effective productivity and/or mission success. The system reliability is used to optimize the product design to accommodate today?s mandated budget, manpower, and schedule constraints. Stand ard based reliability assessment is an effective approach consisting of reliability predictions together with other reliability analyses for electronic, electrical, and electro-mechanical (EEE) complex parts and components of large systems based on failure rate estimates published by the United States (U.S.) military or commercial standards and handbooks. Many of these standards are globally accepted and recognized. The reliability assessment is especially useful during the initial stages when the system design is still in the development and hard failure data is not yet available or manufacturers are not contractually obliged by their customers to publish the reliability estimates/predictions for their parts and components. This paper presents a methodology to assess system reliability using parts and components reliability estimates to ensure effective productivity and/or mission success in an efficient manner, low cost, and tight schedule.

  16. 77 FR 31345 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... electric reliability filings: Docket Numbers: RR12-9-000. Applicants: North American Electric Reliability Corp. Description: Petition of the North American Electric Reliability Corporation for Approval of... that the Commission received the following electric rate filings: Docket Numbers: ER11-2780-002...

  17. Research on the full life cycle management system of smart electric energy meter

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  18. Five Indisputable Facts on Modern Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Aaron P; Brinkman, Gregory L; Lopez, Anthony J

    This presentation overviews five indisputable facts about modern power systems: Fact one: The grid can handle more renewable generation than previously thought. Fact two: Geographic and resource diversity provide additional reliability to the system. Fact three: Wind and solar forecasting provide significant value. Fact four: Our electric power markets were not originally designed for variable renewables -- but they could be adapted. Fact five: Modern power electronics are creating new sources of essential reliability services.

  19. Application of photovoltaic electric power to the rural education/communication needs of developing countries

    NASA Technical Reports Server (NTRS)

    Cabraal, A.; Delansanta, D.; Burrill, G.

    1982-01-01

    The suitability (i.e., cost competitiveness and reliability) of photovoltaic (PV) power systems for rural applications in developing countries is considered. Potential application sectors include health delivery, education and communication where small amounts of electricity are needed to meet critical needs.

  20. Network reliability maximization for stochastic-flow network subject to correlated failures using genetic algorithm and tabu\\xA0search

    NASA Astrophysics Data System (ADS)

    Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun

    2018-07-01

    Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.

  1. Active Reliability Engineering - Technical Concept and Program Plan. A Solid-State Systems Approach to Increased Reliability and Availability in Military Systems.

    DTIC Science & Technology

    1983-10-05

    battle damage. Others are local electrical power and cooling disruptions. Again, a highly critical function is lost if its computer site is destroyed. A...formalized design of the test bed to meet the requirements of the functional description and goals of the program. AMTEC --Z3IT TASKS: 610, 710, 810

  2. Electrical safety during transplantation.

    PubMed

    Amicucci, G L; Di Lollo, L; Fiamingo, F; Mazzocchi, V; Platania, G; Ranieri, D; Razzano, R; Camin, G; Sebastiani, G; Gentile, P

    2010-01-01

    Technologic innovations enable management of medical equipment and power supply systems, with improvements that can affect the technical aspects, economics, and quality of medical service. Herein are outlined some technical guidelines, proposed by Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro, for increasing the effectiveness of the power supply system and the safety of patients and surgeons in the operating room, with particular focus on transplantation. The dependence of diagnoses and therapies on operation of the electrical equipment can potentially cause great risk to patients. Moreover, it is possible that faulty electrical equipment could produce current that may flow through the patient. Because patients are particularly vulnerable when their natural protection is considerably decreased, as during transplantation or other surgery, power supply systems must operate with a high degree of reliability and quality to prevent risk, and must be designed to reduce hazards from direct and indirect contact. Reliability of the power supply system is closely related to the quality of the project, choice of materials, and management of the system (eg, quality and frequency of servicing). Among the proposed guidelines, other than normal referencing, are (1) adoption of a monitoring system to improve the quality of the electrical parameters in the operating room, (2) institution of emergency procedures for management of electrical faults, (3) a procedure for management of fires in the operating room, (4) and maintenance interventions and inspections of medical devices to maintain minimal requirements of safety and performance. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Energy Systems Integration Partnerships: NREL + Cogent Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdahl, Sonja E

    2017-08-09

    NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.

  4. TOPEX electrical power system

    NASA Technical Reports Server (NTRS)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  5. 75 FR 65964 - Version One Regional Reliability Standard for Resource and Demand Balancing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Standard developed by the Western Electricity Coordinating Council and approved by the North American... Electricity Coordinating Council 6 C. WECC Regional Reliability Standard BAL-002-WECC-1... 9 II. Discussion 14... Electricity Coordinating Council (WECC) and approved by the North American Electric Reliability Corporation...

  6. Control and Communication for a Secure and Reconfigurable Power Distribution System

    NASA Astrophysics Data System (ADS)

    Giacomoni, Anthony Michael

    A major transformation is taking place throughout the electric power industry to overlay existing electric infrastructure with advanced sensing, communications, and control system technologies. This transformation to a smart grid promises to enhance system efficiency, increase system reliability, support the electrification of transportation, and provide customers with greater control over their electricity consumption. Upgrading control and communication systems for the end-to-end electric power grid, however, will present many new security challenges that must be dealt with before extensive deployment and implementation of these technologies can begin. In this dissertation, a comprehensive systems approach is taken to minimize and prevent cyber-physical disturbances to electric power distribution systems using sensing, communications, and control system technologies. To accomplish this task, an intelligent distributed secure control (IDSC) architecture is presented and validated in silico for distribution systems to provide greater adaptive protection, with the ability to proactively reconfigure, and rapidly respond to disturbances. Detailed descriptions of functionalities at each layer of the architecture as well as the whole system are provided. To compare the performance of the IDSC architecture with that of other control architectures, an original simulation methodology is developed. The simulation model integrates aspects of cyber-physical security, dynamic price and demand response, sensing, communications, intermittent distributed energy resources (DERs), and dynamic optimization and reconfiguration. Applying this comprehensive systems approach, performance results for the IEEE 123 node test feeder are simulated and analyzed. The results show the trade-offs between system reliability, operational constraints, and costs for several control architectures and optimization algorithms. Additional simulation results are also provided. In particular, the advantages of an IDSC architecture are highlighted when an intermittent DER is present on the system.

  7. Air Starters for Transit Buses

    DOT National Transportation Integrated Search

    1983-05-01

    This study was conducted to familiarize transit agencies with the potential benefits gained by utilizing air starting systems as an alternative to electrical starting systems. The potential benefits include improved starting reliability under hot and...

  8. Consistency Analysis and Data Consultation of Gas System of Gas-Electricity Network of Latvia

    NASA Astrophysics Data System (ADS)

    Zemite, L.; Kutjuns, A.; Bode, I.; Kunickis, M.; Zeltins, N.

    2018-02-01

    In the present research, the main critical points of gas transmission and storage system of Latvia have been determined to ensure secure and reliable gas supply among the Baltic States to fulfil the core objectives of the EU energy policies. Technical data of critical points of the gas transmission and storage system of Latvia have been collected and analysed with the SWOT method and solutions have been provided to increase the reliability of the regional natural gas system.

  9. The assessment of exploitation process of power for access control system

    NASA Astrophysics Data System (ADS)

    Wiśnios, Michał; Paś, Jacek

    2017-10-01

    The safety of public utility facilities is a function not only of effectiveness of the electronic safety systems, used for protection of property and persons, but it also depends on the proper functioning of their power supply systems. The authors of the research paper analysed the power supply systems, which are used in buildings for the access control system that is integrated with the closed-circuit TV. The Access Control System is a set of electronic, electromechanical and electrical devices and the computer software controlling the operation of the above-mentioned elements, which is aimed at identification of people, vehicles allowed to cross the boundary of the reserved area, to prevent from crossing the reserved area and to generate the alarm signal informing about the attempt of crossing by an unauthorised entity. The industrial electricity with appropriate technical parameters is a basis of proper functioning of safety systems. Only the electricity supply to the systems is not equivalent to the operation continuity provision. In practice, redundant power supply systems are used. In the carried out reliability analysis of the power supply system, various power circuits of the system were taken into account. The reliability and operation requirements for this type of system were also included.

  10. Electromagnetic disturbance of electric drive system signal is extracted based on PLS

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Wang, Chuanqi; Yang, Weidong; Zhang, Xu; Jiang, Li; Hou, Shuai; Chen, Xichen

    2018-05-01

    At present ISO11452 and GB/T33014 specified by electromagnetic immunity are narrowband electromagnetic radiation, but our exposure to electromagnetic radiation at ordinary times is not only a narrowband electromagnetic radiation, and some broadband electromagnetic radiation, and even some of the more complex electromagnetic environment. In terms of Electric vehicles, electric drive system is a kind of complex electromagnetic disturbance source, is not only a narrow-band signal, there are a lot of broadband signal, this paper puts forward PLS data processing method is adopted to analyze the electric drive system of electromagnetic disturbance, this kind of method to extract the data can be provide reliable data support for future standards.

  11. 75 FR 10229 - Application for Presidential Permit; Champlain Hudson Power Express, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    .... electric power supply system under normal and contingency conditions, and any other factors that DOE may... Power Express, Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Champlain Hudson Power Express, Inc. (CHPEI) has applied for a Presidential...

  12. Isotope Brayton electric power system for the 500 to 2500 watt range

    NASA Technical Reports Server (NTRS)

    Macosko, R. P.; Barna, G. J.; Block, H. B.; Ingle, B. D.

    1972-01-01

    An extensive study was conducted at the Lewis Research Center to evaluate an isotope Brayton electric power system for use in the 500 to 2500 W power range. Overall system simplicity was emphasized in order to reduce parasitic power losses and improve system reliability. Detailed parametric cycle analysis, conceptual component designs, and evaluation of system packaging were included. A single-loop system (gas) with six major components including one rotating unit was selected. Calculated net system efficiency varies from 23 to 28 percent over the power range.

  13. Mission Options for an Electric Propulsion Demonstration Flight Test

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1989-01-01

    Several mission options are discussed for an electric propulsion space test which provides operational and performance data for ion and arcjet propulsion systems and testing of APSA arrays and a super power system. The results of these top-level studies are considered preliminary. Ion propulsion system design and architecture for the purposes of performing orbit raising missions for payloads in the range of 2400 to 2700 kg are described. Focus was placed on a design which can be characterized by simplicity, reliability, and performance. Systems of this design are suitable for an electric propulsion precursor flight which would provide proof of principle data necessary for more ambitious and complex missions.

  14. Smart Operations in Distributed Energy Resources System

    NASA Astrophysics Data System (ADS)

    Wei, Li; Jie, Shu; Zhang-XianYong; Qing, Zhou

    Smart grid capabilities are being proposed to help solve the challenges concerning system operations due to that the trade-offs between energy and environmental needs will be constantly negotiated while a reliable supply of electricity needs even greater assurance in case of that threats of disruption have risen. This paper mainly explores models for distributed energy resources system (DG, storage, and load),and also reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be solved as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  15. 78 FR 43198 - Flexible and Local Resources Needed for Reliability in the California Wholesale Electric Market...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... Local Resources Needed for Reliability in the California Wholesale Electric Market; Notice of Staff... Flexible and Local Resources Needed for Reliability in the California Wholesale Electric Market July 31... development of a durable, market-based mechanism to provide incentives to insure reliability needs are met...

  16. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Sarah L; Hotchkiss, Elizabeth L; Bilello, Daniel E

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growingmore » electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.« less

  17. Specification and testing for power by wire aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Kenney, Barbara H.

    1993-01-01

    A power by wire aircraft is one in which all active functions other than propulsion are implemented electrically. Other nomenclature are 'all electric airplane,' or 'more electric airplane.' What is involved is the task of developing and certifying electrical equipment to replace existing hydraulics and pneumatics. When such functions, however, are primary flight controls which are implemented electrically, new requirements are imposed that were not anticipated by existing power system designs. Standards of particular impact are the requirements of ultra-high reliability, high peak transient bi-directional power flow, and immunity to electromagnetic interference and lightning. Not only must the electromagnetic immunity of the total system be verifiable, but box level tests and meaningful system models must be established to allow system evaluation. This paper discusses some of the problems, the system modifications involved, and early results in establishing wiring harness and interface susceptibility requirements.

  18. Future evolution of distributed systems for smart grid - The challenges and opportunities to using decentralized energy system

    NASA Astrophysics Data System (ADS)

    Konopko, Joanna

    2015-12-01

    A decentralized energy system is a relatively new approach in the power industry. Decentralized energy systems provide promising opportunities for deploying renewable energy sources locally available as well as for expanding access to clean energy services to remote communities. The electricity system of the future must produce and distribute electricity that is reliable and affordable. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. In this paper, the major issues and challenges in distributed systems for smart grid are discussed and future trends are presented. The smart grid technologies and distributed generation systems are explored. A general overview of the comparison of the traditional grid and smart grid is also included.

  19. Development of technology for creating intelligent control systems for power plants and propulsion systems for marine robotic systems

    NASA Astrophysics Data System (ADS)

    Iakovleva, E. V.; Momot, B. A.

    2017-10-01

    The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.

  20. Thin-film reliability and engineering overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  1. Thin-film reliability and engineering overview

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    1984-10-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  2. Aerospace reliability applied to biomedicine.

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Vargo, D. J.

    1972-01-01

    An analysis is presented that indicates that the reliability and quality assurance methodology selected by NASA to minimize failures in aerospace equipment can be applied directly to biomedical devices to improve hospital equipment reliability. The Space Electric Rocket Test project is used as an example of NASA application of reliability and quality assurance (R&QA) methods. By analogy a comparison is made to show how these same methods can be used in the development of transducers, instrumentation, and complex systems for use in medicine.

  3. Summary of gas bearing applications in the field of space electric power systems

    NASA Technical Reports Server (NTRS)

    Dunn, J. H.; Ream, L. W.

    1972-01-01

    The testing and evaluation of different bearing systems to be used in the turbine-alternator-compressor of a closed Brayton cycle electric power system are described. A specification of each bearing is presented along with the results of the evaluation and a comparison of the merits and limitations of each bearing. The contribution of improved bearings to the power supply reliability, potential life, and ability to accept shock and vibration is examined.

  4. Reliability Evaluation of Computer Systems

    DTIC Science & Technology

    1979-04-01

    detection mechanisms. The model rrvided values for the system availa bility, mean time before failure (VITBF) , and the proportion of time that the 4 system...Stanford University Comm~iuter Science 311, (also Electrical Engineering 482), Advanced Computer Organization. Graduate course in computer architeture

  5. Flat conductor cable for electrical packaging

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Flat conductor cable (FCC) is relatively new, highly promising means for electrical packaging and system integration. FCC offers numerous desirable traits (weight, volume and cost savings, flexibility, high reliability, predictable and repeatable electrical characteristics) which make it extremely attractive as a packaging medium. FCC, today, finds wide application in everything from integration of lunar equipment to the packaging of electronics in nuclear submarines. Described are cable construction and means of termination, applicable specifications and standards, and total FCC systems. A list of additional sources of data is also included for more intensive study.

  6. Impacts of Interior Permanent Magnet Machine Technology for Electric Vehicles

    DTIC Science & Technology

    2012-01-01

    corrosion constraints of magnets  Minimum gear and more direct drive  Regenerative braking and short charging cycle of batteries  Impulse...be found in limited applications such as, antilock braking system (ABS) of the vehicles. Considering the performance enhancement and reliability of... system forms the backbone of modern society. Electricity and its accessibility is one of the major engineering achievements. In order to maintain and

  7. 18 CFR 39.10 - Changes to an Electric Reliability Organization Rule or Regional Entity Rule.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Changes to an Electric Reliability Organization Rule or Regional Entity Rule. 39.10 Section 39.10 Conservation of Power and Water... ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.10 Changes to an Electric...

  8. 18 CFR 39.10 - Changes to an Electric Reliability Organization Rule or Regional Entity Rule.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Changes to an Electric Reliability Organization Rule or Regional Entity Rule. 39.10 Section 39.10 Conservation of Power and Water... ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.10 Changes to an Electric...

  9. 18 CFR 39.10 - Changes to an Electric Reliability Organization Rule or Regional Entity Rule.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Changes to an Electric Reliability Organization Rule or Regional Entity Rule. 39.10 Section 39.10 Conservation of Power and Water... ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.10 Changes to an Electric...

  10. 18 CFR 39.10 - Changes to an Electric Reliability Organization Rule or Regional Entity Rule.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Changes to an Electric Reliability Organization Rule or Regional Entity Rule. 39.10 Section 39.10 Conservation of Power and Water... ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.10 Changes to an Electric...

  11. Advancing electric-vehicle development with pure-lead-tin battery technology

    NASA Astrophysics Data System (ADS)

    O'Brien, W. A.; Stickel, R. B.; May, G. J.

    Electric-vehicle (EV) development continues to make solid progress towards extending vehicle range, reliability and ease of use, aided significantly by technological advances in vehicle systems. There is, however, a widespread misconception that current battery technologies are not capable of meeting even the minimum user requirements that would launch EVs into daily use. Existing pure-lead-tin technology is moving EVs out of research laboratories and onto the streets, in daily side-by-side operation with vehicles powered by conventional gasoline and alternative fuels. This commercially available battery technology can provide traffic-compatible performance in a reliable and affordable manner, and can be used for either pure EVs or hybrid electric vehicles (HEVs). Independent results obtained when applying lead-tin batteries in highly abusive conditions, both electrically and environmentally, are presented. The test fleet of EVs is owned and operated by Arizona Public Service (APS), an electric utility in Phoenix, AZ, USA. System, charger and battery development will be described. This gives a single charge range of up to 184 km at a constant speed of 72 km h -1, and with suitable opportunity charging, a 320 km range in a normal 8 h working day.

  12. 77 FR 4031 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... notice that the Commission received the following electric reliability filings: Docket Numbers: RD11-3-000. Applicants: North American Electric Reliability Corporation. Description: Compliance Filing of the North American Electric Reliability Corporation in Response to November 17, 2011 Order Approving...

  13. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  14. Cyber: A Flexible Deterrent Option

    DTIC Science & Technology

    2013-02-14

    to come on when they throw a switch and other electrical appliances throughout the house to work without any commercial power interruption. For...power plants this means maintaining the electrical grid and the supervisory control and data acquisition (SCADA) systems at a reliable rate of “99.99999...on the grid.”36 The researchers “simply instructed it to make rapid changes in the electricity cycles that powered the equipment: fast, slow, fast

  15. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Emmanuel

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controlsmore » can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key findings and research suggestions discussed at the event. Discussions at the workshop will aid DOE in developing a set of distinct initiatives that can be pursued by government and industry to realize promising technological pursuits. DOE plans to use the results of the Dialogue coupled with ongoing technical analysis of efficiency opportunities within the coal-fired fleet, and additional studies to develop a comprehensive strategy for capitalizing on thermal efficiency improvements. Expected Power Plant Efficiency Improvements include developing cost-effective, efficient, and reliable technologies for boilers, turbines, and sensors and controls to improve the reliability and efficiency of existing coal-based power plants. The Office of Fossil Energy at DOE plans to work with industry to develop knowledge pertaining to advanced technologies and systems that industry can subsequently develop. These technologies and systems will increase reliability, add operational flexibility and improve efficiency, thereby providing more robust power generation infrastructure. The following table lists the research suggestions and questions for further investigation that were identified by participants in each session of the dialogue.« less

  16. An Analytical Performance Assessment of a Fuel Cell-powered, Small Electric Airplane

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Freeh, Joshua E.; Wickenheiser, Timothy J.

    2003-01-01

    Rapidly emerging fuel cell power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and with exception of water vapor zero emissions. This paper describes an analytical feasibility and performance assessment conducted by NASA's Glenn Research Center of a fuel cell-powered, propeller-driven, small electric airplane based on a model of the MCR 01 two-place kitplane.

  17. 78 FR 26024 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... reliability filings: Docket Numbers: RR13-5-000. Applicants: North American Electric Reliability Corporation. Description: Petition of the North American Electric Reliability Corporation for Approval of Amendments to Delegation Agreement with Midwest Reliability Organization--Amendments to the MRO Regional Reliability...

  18. Power Quality and Reliability Project

    NASA Technical Reports Server (NTRS)

    Attia, John O.

    2001-01-01

    One area where universities and industry can link is in the area of power systems reliability and quality - key concepts in the commercial, industrial and public sector engineering environments. Prairie View A&M University (PVAMU) has established a collaborative relationship with the University of'Texas at Arlington (UTA), NASA/Johnson Space Center (JSC), and EP&C Engineering and Technology Group (EP&C) a small disadvantage business that specializes in power quality and engineering services. The primary goal of this collaboration is to facilitate the development and implementation of a Strategic Integrated power/Systems Reliability and Curriculum Enhancement Program. The objectives of first phase of this work are: (a) to develop a course in power quality and reliability, (b) to use the campus of Prairie View A&M University as a laboratory for the study of systems reliability and quality issues, (c) to provide students with NASA/EPC shadowing and Internship experience. In this work, a course, titled "Reliability Analysis of Electrical Facilities" was developed and taught for two semesters. About thirty seven has benefited directly from this course. A laboratory accompanying the course was also developed. Four facilities at Prairie View A&M University were surveyed. Some tests that were performed are (i) earth-ground testing, (ii) voltage, amperage and harmonics of various panels in the buildings, (iii) checking the wire sizes to see if they were the right size for the load that they were carrying, (iv) vibration tests to test the status of the engines or chillers and water pumps, (v) infrared testing to the test arcing or misfiring of electrical or mechanical systems.

  19. 77 FR 21522 - Lake Tahoe Basin Management Unit and Tahoe National Forest, CA; Calpeco 625 and 650 Electrical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit and Tahoe National... hereby given that the USDA Forest Service (USFS), Lake Tahoe Basin Management Unit (LTBMU), together with... reliable electrical transmission system for the north Lake Tahoe area, while accommodating currently...

  20. Well-Designed Wholesale Electricity Markets Support System Flexibility |

    Science.gov Websites

    electricity markets drive efficient solutions to meet reliability needs in a least-cost manner, and they can service (which is typically provided by conventional generators as a part of interconnection through cost variable generation and load (net load) economically and reducing use of regulating reserves-cost

  1. 75 FR 27767 - Application To Rescind Presidential Permit; Joint Application for Presidential Permit; Fraser...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... sale of the facilities, which occurred on April 29, 2010. Since restructuring of the electric power... power system. Therefore, a requirement to provide non-discriminatory open access transmission service... determine that the proposed action will not adversely impact on the reliability of the U.S. electric power...

  2. 78 FR 65640 - Notice of Commissioner and Staff Attendance at North American Electric Reliability Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... Attendance at North American Electric Reliability Corporation Meetings The Federal Energy Regulatory... following meetings: North American Electric Reliability Corporation Member Representatives Committee and..., Compliance Committee, and Standards Oversight and Technology Committee Meetings The Westin Buckhead Atlanta...

  3. 78 FR 7773 - Notice of Commissioner and Staff Attendance at North American Electric Reliability Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Attendance at North American Electric Reliability Corporation Meetings The Federal Energy Regulatory... following meetings: North American Electric Reliability Corporation, Member Representatives Committee and... Resources Committee, and Standards Oversight and Technology Committee Meetings. Hotel del Coronado, 1500...

  4. A fuzzy set approach for reliability calculation of valve controlling electric actuators

    NASA Astrophysics Data System (ADS)

    Karmachev, D. P.; Yefremov, A. A.; Luneva, E. E.

    2017-02-01

    The oil and gas equipment and electric actuators in particular frequently perform in various operational modes and under dynamic environmental conditions. These factors affect equipment reliability measures in a vague, uncertain way. To eliminate the ambiguity, reliability model parameters could be defined as fuzzy numbers. We suggest a technique that allows constructing fundamental fuzzy-valued performance reliability measures based on an analysis of electric actuators failure data in accordance with the amount of work, completed before the failure, instead of failure time. Also, this paper provides a computation example of fuzzy-valued reliability and hazard rate functions, assuming Kumaraswamy complementary Weibull geometric distribution as a lifetime (reliability) model for electric actuators.

  5. Reliability evaluation of microgrid considering incentive-based demand response

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Cheng; Zhang, Yong-Jun

    2017-07-01

    Incentive-based demand response (IBDR) can guide customers to adjust their behaviour of electricity and curtail load actively. Meanwhile, distributed generation (DG) and energy storage system (ESS) can provide time for the implementation of IBDR. The paper focus on the reliability evaluation of microgrid considering IBDR. Firstly, the mechanism of IBDR and its impact on power supply reliability are analysed. Secondly, the IBDR dispatch model considering customer’s comprehensive assessment and the customer response model are developed. Thirdly, the reliability evaluation method considering IBDR based on Monte Carlo simulation is proposed. Finally, the validity of the above models and method is studied through numerical tests on modified RBTS Bus6 test system. Simulation results demonstrated that IBDR can improve the reliability of microgrid.

  6. AGUACLARA: CLEAN WATER FOR SMALL COMMUNITIES

    EPA Science Inventory

    We will systematically evaluate commercially available solar thermal collectors and thermal storage systems for use in residential scale co-generative heat and electrical power systems. Currently, reliable data is unavailable over the range of conditions and installations thes...

  7. Did Geomagnetic Activity Challenge Electric Power Reliability During Solar Cycle 23? Evidence from the PJM Regional Transmission Organization in North America

    NASA Technical Reports Server (NTRS)

    Forbes, Kevin F.; Cyr, Chris St

    2012-01-01

    During solar cycle 22, a very intense geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in Canada. This event clearly demonstrated that geomagnetic storms have the potential to lead to blackouts. This paper addresses whether geomagnetic activity challenged power system reliability during solar cycle 23. Operations by PJM Interconnection, LLC (hereafter PJM), a regional transmission organization in North America, are examined over the period 1 April 2002 through 30 April 2004. During this time PJM coordinated the movement of wholesale electricity in all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia in the United States. We examine the relationship between a proxy of geomagnetically induced currents (GICs) and a metric of challenged reliability. In this study, GICs are proxied using magnetometer data from a geomagnetic observatory located just outside the PJM control area. The metric of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive power conditions. The statistical methods employed make it possible to disentangle the effects of GICs on power system operations from purely terrestrial factors. The results of the analysis indicate that geomagnetic activity can significantly increase the likelihood that the system operator will dispatch generating units based on system stability considerations rather than economic merit.

  8. An adequacy-constrained integrated planning method for effective accommodation of DG and electric vehicles in smart distribution systems

    NASA Astrophysics Data System (ADS)

    Tan, Zhukui; Xie, Baiming; Zhao, Yuanliang; Dou, Jinyue; Yan, Tong; Liu, Bin; Zeng, Ming

    2018-06-01

    This paper presents a new integrated planning framework for effective accommodating electric vehicles in smart distribution systems (SDS). The proposed method incorporates various investment options available for the utility collectively, including distributed generation (DG), capacitors and network reinforcement. Using a back-propagation algorithm combined with cost-benefit analysis, the optimal network upgrade plan, allocation and sizing of the selected components are determined, with the purpose of minimizing the total system capital and operating costs of DG and EV accommodation. Furthermore, a new iterative reliability test method is proposed. It can check the optimization results by subsequently simulating the reliability level of the planning scheme, and modify the generation reserve margin to guarantee acceptable adequacy levels for each year of the planning horizon. Numerical results based on a 32-bus distribution system verify the effectiveness of the proposed method.

  9. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  10. Metrics for the National SCADA Test Bed Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Philip A.; Mortensen, J.; Dagle, Jeffery E.

    2008-12-05

    The U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) National SCADA Test Bed (NSTB) Program is providing valuable inputs into the electric industry by performing topical research and development (R&D) to secure next generation and legacy control systems. In addition, the program conducts vulnerability and risk analysis, develops tools, and performs industry liaison, outreach and awareness activities. These activities will enhance the secure and reliable delivery of energy for the United States. This report will describe metrics that could be utilized to provide feedback to help enhance the effectiveness of the NSTB Program.

  11. 77 FR 65679 - Notice of Commissioner and Staff Attendance at North American Electric Reliability Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... Attendance at North American Electric Reliability Corporation Meetings The Federal Energy Regulatory... following meetings: North American Electric Reliability Corporation Member Representatives Committee and Board of Trustees Meetings Board of Trustees Compliance Committee and Standards Oversight and Technology...

  12. 78 FR 26349 - Notice of Commissioner and Staff Attendance at North American Electric Reliability Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... Attendance at North American Electric Reliability Corporation Meetings The Federal Energy Regulatory... following meetings: North American Electric Reliability Corporation Member Representatives Committee and... Standards Oversight and Technology Committee Meetings Sheraton Boston Hotel, 39 Dalton Street, Boston, MA...

  13. 76 FR 62802 - North American Electric Reliability Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. RC11-6-000] North American Electric Reliability Corporation; Notice of Filing Take notice that on September 30, 2011, the North American Electric Reliability Corporation (NERC) filed a petition requesting Federal Energy Regulatory...

  14. 77 FR 59745 - Delegation of Authority Regarding Electric Reliability Organization's Budget, Delegation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ...; Order No. 766] Delegation of Authority Regarding Electric Reliability Organization's Budget, Delegation... Electric Reliability Organization (ERO) filings. In particular, this Final Rule transfers delegated... delegation agreements, and ERO policies and procedures. DATES: This rule is effective October 1, 2012. FOR...

  15. 77 FR 11517 - Rapid Response Team for Transmission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ...: Office of Electricity Delivery and Energy Reliability, Department of Energy, DoE. ACTION: Request for information. SUMMARY: The Department of Energy's Office of Electricity Delivery and Energy Reliability is... Electricity Delivery and Energy Reliability, Mail Code: OE-20, U.S. Department of Energy, 1000 Independence...

  16. 76 FR 21889 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ...-Tag Information to Commission Staff. E-7 RD11-4-000 North American Electric Reliability Corporation. E... and Control; and Voltage and Reactive. E-10 RM10-8-000 Electric Reliability Organization... Standards. E-11 RM10-29-000 Electric Reliability Organization Interpretation of Transmission Operations...

  17. The Typical General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Turnbull, Andrew

    1999-01-01

    The reliability of General Aviation aircraft is unknown. In order to "assist the development of future GA reliability and safety requirements", a reliability study needs to be performed. Before any studies on General Aviation aircraft reliability begins, a definition of a typical aircraft that encompasses most of the general aviation characteristics needs to be defined. In this report, not only is the typical general aviation aircraft defined for the purpose of the follow-on reliability study, but it is also separated, or "sifted" into several different categories where individual analysis can be performed on the reasonably independent systems. In this study, the typical General Aviation aircraft is a four-place, single engine piston, all aluminum fixed-wing certified aircraft with a fixed tricycle landing gear and a cable operated flight control system. The system breakdown of a GA aircraft "sifts" the aircraft systems and components into five categories: Powerplant, Airframe, Aircraft Control Systems, Cockpit Instrumentation Systems, and the Electrical Systems. This breakdown was performed along the lines of a failure of the system. Any component that caused a system to fail was considered a part of that system.

  18. The ac propulsion system for an electric vehicle, phase 1

    NASA Astrophysics Data System (ADS)

    Geppert, S.

    1981-08-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  19. Status of commercial phosphoric acid fuel cell system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    In both the electric utility and onsite integrated energy system applications, reducing cost and increasing reliability are the main technology drivers. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, was materials. The differences in approach among the three major participants (United Technologies Corporation, Westinghouse Electric Corporation/Energy Research Corporation, and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  20. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  1. States of Cybersecurity: Electricity Distribution System Discussions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, Ivonne; Ingram, Michael; Martin, Maurice

    State and local entities that oversee the reliable, affordable provision of electricity are faced with growing and evolving threats from cybersecurity risks to our nation's electricity distribution system. All-hazards system resilience is a shared responsibility among electric utilities and their regulators or policy-setting boards of directors. Cybersecurity presents new challenges and should be a focus for states, local governments, and Native American tribes that are developing energy-assurance plans to protect critical infrastructure. This research sought to investigate the implementation of governance and policy at the distribution utility level that facilitates cybersecurity preparedness to inform the U.S. Department of Energy (DOE),more » Office of Energy Policy and Systems Analysis; states; local governments; and other stakeholders on the challenges, gaps, and opportunities that may exist for future analysis. The need is urgent to identify the challenges and inconsistencies in how cybersecurity practices are being applied across the United States to inform the development of best practices, mitigations, and future research and development investments in securing the electricity infrastructure. By examining the current practices and applications of cybersecurity preparedness, this report seeks to identify the challenges and persistent gaps between policy and execution and reflect the underlying motivations of distinct utility structures as they play out at the local level. This study aims to create an initial baseline of cybersecurity preparedness within the distribution electricity sector. The focus of this study is on distribution utilities not bound by the cybersecurity guidelines of the North American Electric Reliability Corporation (NERC) to examine the range of mechanisms taken by state regulators, city councils that own municipal utilities, and boards of directors of rural cooperatives.« less

  2. Evaluating the Impacts of Climate Change on the Operations and Future Development of the U.S. Electricity System

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Cohen, S. M.; Averyt, K.; Macknick, J.; Meldrum, J.; Sullivan, P.

    2014-12-01

    Climate change has the potential to exacerbate reliability concerns for the power sector through changes in water availability and air temperatures. The power sector is responsible for 41% of U.S. freshwater withdrawals, primarily for power plant cooling needs, and any changes in the water available for the power sector, given increasing competition among water users, could affect decisions about new power plant builds and reliable operations for existing generators. Similarly, increases in air temperatures can reduce power plant efficiencies, which in turn increases fuel consumption as well as water withdrawal and consumption rates. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory's (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water runoff projections from Coupled Model Intercomparison Project 5 (CMIP5) data are applied to surface water available to generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water availability for the 134 electricity balancing regions in the ReEDS model. In addition, air temperature changes are considered for their impacts on electricity load, transmission capacity, and power plant efficiencies and water use rates. Mean climate projections have only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water access to offset climate impacts. Climate impacts are notable in southwestern states, which experience reduced water access purchases and a greater share of water acquired from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  3. Satellite auxiliary-propulsion selection techniques. Addendum: A survey of auxiliary electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.

    1971-01-01

    A review of electric thrusters for satellite auxiliary propulsion was conducted at JPL during the past year. Comparisons of the various thrusters for attitude propulsion and east-west and north-south stationkeeping were made based upon performance, mass, power, and demonstrated life. Reliability and cost are also discussed. The method of electrical acceleration of propellant served to divide the thruster systems into two groups: electrostatic and electromagnetic. Ion and colloid thrusters fall within the electrostatically accelerated group while MPD and pulsed plasma thrusters comprise the electromagnetically accelerated group. The survey was confined to research in the United States with accent on flight and flight prototype systems.

  4. Systems Integration Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstrationmore » projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.« less

  5. High-reliability gas-turbine combined-cycle development program: Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, K.G.; Sanderson, R.A.; Smith, M.J.

    This three-volume report presents the results of Phase II of the multiphase EPRI-sponsored High-Reliability Gas Turbine Combined-Cycle Development Program whose goal is to achieve a highly reliable gas turbine combined-cycle power plant, available by the mid-1980s, which would be an economically attractive baseload generation alternative for the electric utility industry. The Phase II program objective was to prepare the preliminary design of this power plant. This volume presents information of the reliability, availability, and maintainability (RAM) analysis of a representative plant and the preliminary design of the gas turbine, the gas turbine ancillaries, and the balance of plant including themore » steam turbine generator. To achieve the program goals, a gas turbine was incorporated which combined proven reliability characteristics with improved performance features. This gas turbine, designated the V84.3, is the result of a cooperative effort between Kraftwerk Union AG and United Technologies Corporation. Gas turbines of similar design operating in Europe under baseload conditions have demonstrated mean time between failures in excess of 40,000 hours. The reliability characteristics of the gas turbine ancillaries and balance-of-plant equipment were improved through system simplification and component redundancy and by selection of component with inherent high reliability. A digital control system was included with logic, communications, sensor redundancy, and mandual backup. An independent condition monitoring and diagnostic system was also included. Program results provide the preliminary design of a gas turbine combined-cycle baseload power plant. This power plant has a predicted mean time between failure of nearly twice the 3000-hour EPRI goal. The cost of added reliability features is offset by improved performance, which results in a comparable specific cost and an 8% lower cost of electricity compared to present market offerings.« less

  6. Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.

    PubMed

    Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan

    2012-01-01

    Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.

  7. 75 FR 67960 - North American Electric Reliability Corporation; Notice of Compliance Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. RM06-16-011] North American Electric Reliability Corporation; Notice of Compliance Filing October 28, 2010. Take notice that on October 25, 2010, the North American Electric Reliability Corporation (NERC), submitted a compliance filing...

  8. 75 FR 4374 - North American Electric Reliability Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM06-22-011] North American Electric Reliability Corporation; Notice of Filing January 20, 2010. Take notice that on January 19, 2010, North American Electric Reliability Corporation (NERC) filed additional information that will allow the...

  9. 78 FR 25260 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    .... Comments Due: 5 p.m. ET 5/9/13. Take notice that the Commission received the following electric reliability filings: Docket Numbers: RD13-8-000. Applicants: North American Electric Reliability Corporation. Description: Petition of the North American Electric Reliability Corporation for Approval of an Interpretation...

  10. NASA Puffin Electric Tailsitter VTOL Concept

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.

    2010-01-01

    Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.

  11. Operation and planning of coordinated natural gas and electricity infrastructures

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and reliability. With the growing reliance on natural gas and widespread utilization of highly efficient combined heat and power (CHP), it is also questionable that whether the independent design of infrastructures can meet potential challenges of future energy supply. To address this issue, this thesis proposed an optimization framework for a sustainable multiple energy system expansion planning based on an energy hub model while considering the energy efficiency, emission and reliability performance. In addition, we introduced the probabilistic reliability evaluation and flow network analysis into the multiple energy system design in order to obtain an optimal and reliable network topology.

  12. Answer to the dynamic (fretting effect) and static (oxide) behavior of electric contact surfaces: based on a five-year infrared thermographic study

    NASA Astrophysics Data System (ADS)

    Paez-Leon, Cristobal D.; Patino, Antonio R.; Aguillon, Luis

    1991-03-01

    This paper describes the results of a five-year study carried out in 38 power substations (230, 115, 34.5 and 13.8 Kv), located in the Western power electric system of CADAFE (Venezuela's national Electric Utility). A total of 154 hot spots were found between 1980 and 1982, a time span considered a reliable source of information in connection with methodology, term and results. The distribution of hot spots found during those years was 77, 33 and 44. The reduction of the spot/substation parameter was found to be 4.1, 3.3 and 3.1, respectively. Every item detected could have been the cause of major interruptions, locally and regionally, or even the system's blackout. The methodology used to determine the major concentration of findings and their location on the equipment, followed the sequence of Pareto's Diagram and Ishikawa's Graphic. Based on the results of the study whose results are presented here, a lubricant and compound-aid connector for Al-Al and bimetallic electric connections was formulated, developed, manufactured, tested (at IREQ laboratories) and traded (CONECTECH CAC- 01). To date, the whole process represents 12 years of work. The connector's behavior and reliability are being tested throughout Venezuela's national electric system (responsible for the supply of around 50,000 Gwh/year) with the use of 12 Tons of CONECTECH CAC-01.

  13. Advanced energy system program

    NASA Astrophysics Data System (ADS)

    Trester, K.

    1989-02-01

    The objectives of the program are to design, develop and demonstrate a natural-gas-fueled, highly recuperated, 50 kW Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Marketing studies have shown that this Advanced Energy System (AES), with its many unique and cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantages of the system that result in low cost of ownership are high electrical efficiency (30 percent, HHV), low maintenance, high reliability and long life (20 years).

  14. Large space telescope, phase A. Volume 5: Support systems module

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the support systems module for the Large Space Telescope are discussed. The following systems and described: (1) thermal control, (2) electrical, (3) communication and data landing, (4) attitude control system, and (5) structural features. Analyses of maintainability and reliability considerations are included.

  15. 77 FR 44610 - Notice of Filing; North American Electric Reliability Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RC08-5-003] Notice of Filing; North American Electric Reliability Corporation Take notice that on July 18, 2012, North American Electric Reliability Corporation (NERC) submitted a filing to comply with the Commission's directive in its...

  16. 18 CFR 376.204 - Delegation of Commission authority during emergency conditions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the Office of Energy Projects; (v) Director of the Office of Electric Reliability; (vi) Director of... Energy Projects, in order of seniority; (x) Deputy Directors, Office of Electric Reliability, in order of... Energy Projects; Assistant Directors and Division heads, Office of Electric Reliability; Deputy Associate...

  17. 77 FR 45598 - North American Electric Reliability Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. RM06-16-000] North American Electric Reliability Corporation; Notice of Filing Take notice that on March 16, 2012, the North American Electric Reliability Corporation (NERC) submitted a filing proposing to amend the NERC Glossary Definition...

  18. Control and Optimization of Electric Ship Propulsion Systems with Hybrid Energy Storage

    NASA Astrophysics Data System (ADS)

    Hou, Jun

    Electric ships experience large propulsion-load fluctuations on their drive shaft due to encountered waves and the rotational motion of the propeller, affecting the reliability of the shipboard power network and causing wear and tear. This dissertation explores new solutions to address these fluctuations by integrating a hybrid energy storage system (HESS) and developing energy management strategies (EMS). Advanced electric propulsion drive concepts are developed to improve energy efficiency, performance and system reliability by integrating HESS, developing advanced control solutions and system integration strategies, and creating tools (including models and testbed) for design and optimization of hybrid electric drive systems. A ship dynamics model which captures the underlying physical behavior of the electric ship propulsion system is developed to support control development and system optimization. To evaluate the effectiveness of the proposed control approaches, a state-of-the-art testbed has been constructed which includes a system controller, Li-Ion battery and ultra-capacitor (UC) modules, a high-speed flywheel, electric motors with their power electronic drives, DC/DC converters, and rectifiers. The feasibility and effectiveness of HESS are investigated and analyzed. Two different HESS configurations, namely battery/UC (B/UC) and battery/flywheel (B/FW), are studied and analyzed to provide insights into the advantages and limitations of each configuration. Battery usage, loss analysis, and sensitivity to battery aging are also analyzed for each configuration. In order to enable real-time application and achieve desired performance, a model predictive control (MPC) approach is developed, where a state of charge (SOC) reference of flywheel for B/FW or UC for B/UC is used to address the limitations imposed by short predictive horizons, because the benefits of flywheel and UC working around high-efficiency range are ignored by short predictive horizons. Given the multi-frequency characteristics of load fluctuations, a filter-based control strategy is developed to illustrate the importance of the coordination within the HESS. Without proper control strategies, the HESS solution could be worse than a single energy storage system solution. The proposed HESS, when introduced into an existing shipboard electrical propulsion system, will interact with the power generation systems. A model-based analysis is performed to evaluate the interactions of the multiple power sources when a hybrid energy storage system is introduced. The study has revealed undesirable interactions when the controls are not coordinated properly, and leads to the conclusion that a proper EMS is needed. Knowledge of the propulsion-load torque is essential for the proposed system-level EMS, but this load torque is immeasurable in most marine applications. To address this issue, a model-based approach is developed so that load torque estimation and prediction can be incorporated into the MPC. In order to evaluate the effectiveness of the proposed approach, an input observer with linear prediction is developed as an alternative approach to obtain the load estimation and prediction. Comparative studies are performed to illustrate the importance of load torque estimation and prediction, and demonstrate the effectiveness of the proposed approach in terms of improved efficiency, enhanced reliability, and reduced wear and tear. Finally, the real-time MPC algorithm has been implemented on a physical testbed. Three different efforts have been made to enable real-time implementation: a specially tailored problem formulation, an efficient optimization algorithm and a multi-core hardware implementation. Compared to the filter-based strategy, the proposed real-time MPC achieves superior performance, in terms of the enhanced system reliability, improved HESS efficiency, and extended battery life.

  19. Identification and Ranking of Critical Assets within an Electrical Grid under Threat of Cyber Attack

    NASA Astrophysics Data System (ADS)

    Boyer, Blake R.

    This paper examines the ranking of critical assets within an electrical grid under threat of cyber attack.1 Critical to this analysis is the assumption of zero hour exploits namely, the threat of an immediate attack as soon as a vulnerability is discovered. Modeling shows that over time load fluctuations as well as other system variations will change the importance of each asset in the delivery of bulk power. As opposed to classic stability studies where risk can be shown to be greatest during high load periods, the zero hour exploit-cyber-risk assumes that vulnerabilities will be attacked as soon as they are discovered. The probability of attacks is made uniform over time to include any and all possible attacks. Examining the impact of an attack and how the grid reacts immediately following an attack will identify and determine the criticality of each asset. This work endeavors to fulfill the NERC Critical Infrastructure Protection Requirements CIP-001-1 through CIP-009-2, cyber security requirements for the reliable supply of bulk power to customers throughout North America. 1Critical assets will here refer to facilities, systems, and equipment, which, if destroyed, degraded, or otherwise rendered unavailable, would affect the reliability or operability of the Bulk Electric System, NERC Glossary of Terms Used in Reliability Standards, 2009

  20. Integration of SPS with utility system networks

    NASA Technical Reports Server (NTRS)

    Kaupang, B. M.

    1980-01-01

    The integration of Satellite Power System (SPS) power in electric utility power systems is discussed. Specifically, the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power, and the impacts on the electric utility system from utilizing SPS power to serve part of the system load are treated. It is concluded that if RF beam control is an acceptable method for power control, and that the site distribution of SPS rectennas do not cause a very high local penetration (40 to 50%), SPS may be integrated into electric utility system with a few negative impacts. Increased regulating duty on the conventional generation, and a potential impact on system reliability for SPS penetration in excess of about 25% appear to be two areas of concern.

  1. 75 FR 12737 - Application To Export Electric Energy; Integrys Energy Services, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... reliability of the U.S. electric power supply system. Copies of this application will be made available, upon... Federal Power Act. DATES: Comments, protests, or requests to intervene must be submitted on or before... energy from the United States to Canada as a power marketer for a period of five years. That...

  2. Strategies, Protections and Mitigations for Electric Grid from Electromagnetic Pulse Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, Rita Ann; Frickey, Steven Jay

    2016-01-01

    The mission of DOE’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electricity delivery system, enhance the security and reliability of America’s energy infrastructure and facilitate recovery from disruptions to the energy supply. One of the threats OE is concerned about is a high-altitude electro-magnetic pulse (HEMP) from a nuclear explosion and eletro-magnetic pulse (EMP) or E1 pulse can be generated by EMP weapons. DOE-OE provides federal leadership and technical guidance in addressing electric grid issues. The Idaho National Laboratory (INL) was chosen to conduct the EMP study for DOE-OE due tomore » its capabilities and experience in setting up EMP experiments on the electric grid and conducting vulnerability assessments and developing innovative technology to increase infrastructure resiliency. This report identifies known impacts to EMP threats, known mitigations and effectiveness of mitigations, potential cost of mitigation, areas for government and private partnerships in protecting the electric grid to EMP, and identifying gaps in our knowledge and protection strategies.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Cui, Mingjian; Hodge, Bri-Mathias

    The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most ofmore » the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.« less

  4. The advantages of the high voltage solar array for electric propulsion

    NASA Technical Reports Server (NTRS)

    Sater, B. L.

    1973-01-01

    The high voltage solar array (HVSA) offers improvements in efficiency, weight, and reliability for the electric propulsion power system. The basic HVSA technology involves designing the solar array to deliver power in the form required by the ion thruster. This paper delves into conventional power processes and problems associated with ion thruster operation using SERT II experience for examples. In this light, the advantages of the HVSA concept for electric propulsion are presented. Tests conducted operating the SERT II thruster system in conjunction with HVSA are discussed. Thruster operation was observed to be normal and in some respects improved.

  5. Creation of Power Reserves Under the Market Economy Conditions

    NASA Astrophysics Data System (ADS)

    Mahnitko, A.; Gerhards, J.; Lomane, T.; Ribakov, S.

    2008-09-01

    The main task of the control over an electric power system (EPS) is to ensure reliable power supply at the least cost. In this case, requirements to the electric power quality, power supply reliability and cost limitations on the energy resources must be observed. The available power reserve in an EPS is the necessary condition to keep it in operation with maintenance of normal operating variables (frequency, node voltage, power flows via the transmission lines, etc.). The authors examine possibilities to create power reserves that could be offered for sale by the electric power producer. They consider a procedure of price formation for the power reserves and propose a relevant mathematical model for a united EPS, the initial data being the fuel-cost functions for individual systems, technological limitations on the active power generation and consumers' load. As the criterion of optimization the maximum profit for the producer is taken. The model is exemplified by a concentrated EPS. The computations have been performed using the MATLAB program.

  6. Development and optimization of a stove-powered thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Mastbergen, Dan

    Almost a third of the world's population still lacks access to electricity. Most of these people use biomass stoves for cooking which produce significant amounts of wasted thermal energy, but no electricity. Less than 1% of this energy in the form of electricity would be adequate for basic tasks such as lighting and communications. However, an affordable and reliable means of accomplishing this is currently nonexistent. The goal of this work is to develop a thermoelectric generator to convert a small amount of wasted heat into electricity. Although this concept has been around for decades, previous attempts have failed due to insufficient analysis of the system as a whole, leading to ineffective and costly designs. In this work, a complete design process is undertaken including concept generation, prototype testing, field testing, and redesign/optimization. Detailed component models are constructed and integrated to create a full system model. The model encompasses the stove operation, thermoelectric module, heat sinks, charging system and battery. A 3000 cycle endurance test was also conducted to evaluate the effects of operating temperature, module quality, and thermal interface quality on the generator's reliability, lifetime and cost effectiveness. The results from this testing are integrated into the system model to determine the lowest system cost in $/Watt over a five year period. Through this work the concept of a stove-based thermoelectric generator is shown to be technologically and economically feasible. In addition, a methodology is developed for optimizing the system for specific regional stove usage habits.

  7. Reliability of a k—out—of—n : G System with Identical Repairable Elements

    NASA Astrophysics Data System (ADS)

    Sharifi, M.; Nia, A. Torabi; Shafie, P.; Norozi-Zare, F.; Sabet-Ghadam, A.

    2009-09-01

    k—out—of—n models, are one of the most useful models to calculate the reliability of complex systems like electrical and mechanical devices. In this paper, we consider a k—out—of—n : G system with identical elements. The failure rate of each element is constant. The elements are repairable and the repair rate of each element is constant. The system works when at least k elements work. The system of equations are established and sought for the parameters like MTTF in real time situation. It seems that this model can tackle more realistic situations.

  8. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  9. Electromagnetic Pumps for Conductive-Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Polzin, K. A.

    2005-01-01

    There has been a recent, renewed interest in high-power electric thrusters for application in nuclear-electric propulsion systems. Two of the most promising thrusters utilize liquid metal propellants: the lithium-fed magnetoplasmadynamic thruster and the bismuth-fed Hall thruster. An important element of part of the maturation of these thrusters will be the development of compact, reliable conductive-propellant feed system components. In the present paper we provide design considerations and experimental calibration data for electromagnetic (EM) pumps. The role of an electromagnetic pump in a liquid metal feed system is to establish a pressure gradient between the propellant reservoir and the thruster - to establish the requisite mass flow rate. While EM pumps have previously been used to a limited extent in nuclear reactor cooling loops, they have never been implemented in electric propulsion (EP) systems. The potential benefit of using EM pumps for EP are reliability (no moving parts) and the ability to precisely meter the propellant flow rate. We have constructed and tested EM pumps that use gallium, lithium, and bismuth propellants. Design details, test results (pressure developed versus current), and material compatibility issues are reported. It is concluded that EM pumps are a viable technology for application in both laboratory and flight EP conductive-propellant feed systems.

  10. 76 FR 71011 - Reliability Technical Conference Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... Reliability Technical Conference. Docket No. AD12-1-000 North American Electric Docket No. RC11-6-000... Chief Executive Officer, North American Electric Reliability Corporation (NERC) Kevin Burke, Chairman... and Reliability, American Public Power Association (APPA); NERC Standards Committee Chairman Deborah...

  11. Concept report: Microprocessor control of electrical power system

    NASA Technical Reports Server (NTRS)

    Perry, E.

    1977-01-01

    An electrical power system which uses a microprocessor for systems control and monitoring is described. The microprocessor controlled system permits real time modification of system parameters for optimizing a system configuration, especially in the event of an anomaly. By reducing the components count, the assembling and testing of the unit is simplified, and reliability is increased. A resuable modular power conversion system capable of satisfying a large percentage of space applications requirements is examined along with the programmable power processor. The PC global controller which handles systems control and external communication is analyzed, and a software description is given. A systems application summary is also included.

  12. Development and evaluation of a long-term, implantable, electrically actuated left ventricular assist system: THI/Gould LVAS.

    PubMed

    Norman, J C; McGee, M G; Fuqua, J M; Igo, S R; Turner, S A; Sterling, R; Urrutia, C O; Frazier, O H; Clay, W C; Chambers, J A

    1983-02-01

    A long-term, implantable, electrically actuated left ventricular assist system (THI/Gould LVAS) is being developed and characterized in vitro and in vivo for utilization in patients with end-stage heart disease. This system consists of five major components: a long-term, implantable blood pump (THI E-type ALVAD); an electrical-mechanical energy converter (Gould Model V); a control unit with batteries; a volume compensation system; and an external power supply and monitoring unit. Two of these components (blood pump and electrical-mechanical energy converter) have been integrated, and are undergoing chronic in vivo evaluations in calves. Thus far, 44 pneumatically and electrically actuated THI/Gould LVAS evaluations have been performed. This experience has resulted in greater than 6.5 years of actuation in vivo, with durations exceeding 1 year. System in vivo performance in terms of durability, mechanical reliability, hemodynamic effectiveness, and biocompatibility has been satisfactory. Demonstration of long-term (2-year) effectiveness in supporting the circulation is the ultimate goal.

  13. Critical Assessment of the Foundations of Power Transmission and Distribution Reliability Metrics and Standards.

    PubMed

    Nateghi, Roshanak; Guikema, Seth D; Wu, Yue Grace; Bruss, C Bayan

    2016-01-01

    The U.S. federal government regulates the reliability of bulk power systems, while the reliability of power distribution systems is regulated at a state level. In this article, we review the history of regulating electric service reliability and study the existing reliability metrics, indices, and standards for power transmission and distribution networks. We assess the foundations of the reliability standards and metrics, discuss how they are applied to outages caused by large exogenous disturbances such as natural disasters, and investigate whether the standards adequately internalize the impacts of these events. Our reflections shed light on how existing standards conceptualize reliability, question the basis for treating large-scale hazard-induced outages differently from normal daily outages, and discuss whether this conceptualization maps well onto customer expectations. We show that the risk indices for transmission systems used in regulating power system reliability do not adequately capture the risks that transmission systems are prone to, particularly when it comes to low-probability high-impact events. We also point out several shortcomings associated with the way in which regulators require utilities to calculate and report distribution system reliability indices. We offer several recommendations for improving the conceptualization of reliability metrics and standards. We conclude that while the approaches taken in reliability standards have made considerable advances in enhancing the reliability of power systems and may be logical from a utility perspective during normal operation, existing standards do not provide a sufficient incentive structure for the utilities to adequately ensure high levels of reliability for end-users, particularly during large-scale events. © 2015 Society for Risk Analysis.

  14. Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    NASA Technical Reports Server (NTRS)

    Buchholz, R.; Mathur, A. K.

    1979-01-01

    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.

  15. Rural Productivity Zones (RPZs) for microenterprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, R.D.

    1997-12-01

    In this paper the authors discuss the concept of rural productivity zones (RPZs) which are defined as a business incubator to foster income-producing opportunities for the rural poor. The essential ingredients of such a program include: electric power; business development assistance; office services; and quality work space. The electric power source must be a good quality system, consisting of a diesel/wind/photovoltaic hybrid type system, providing reliable service, with a local maintenance program and a functional load management program.

  16. First Steps in the Smart Grid Framework: An Optimal and Feasible Pathway Toward Power System Reform in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracho, Riccardo; Linvill, Carl; Sedano, Richard

    With the vision to transform the power sector, Mexico included in the new laws and regulations deployment of smart grid technologies and provided various attributes to the Ministry of Energy and the Energy Regulatory Commission to enact public policies and regulation. The use of smart grid technologies can have a significant impact on the integration of variable renewable energy resources while maintaining reliability and stability of the system, significantly reducing technical and non-technical electricity losses in the grid, improving cyber security, and allowing consumers to make distributed generation and demand response decisions. This report describes for Mexico's Ministry of Energymore » (SENER) an overall approach (Optimal Feasible Pathway) for moving forward with smart grid policy development in Mexico to enable increasing electric generation from renewable energy in a way that optimizes system stability and reliability in an efficient and cost-effective manner.« less

  17. New reactor technology: safety improvements in nuclear power systems.

    PubMed

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  18. Intelligent vehicle electrical power supply system with central coordinated protection

    NASA Astrophysics Data System (ADS)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-07-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  19. Autonomously managed electrical power systems

    NASA Technical Reports Server (NTRS)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  20. An experimental system for symmetric capacitive rf discharge studies

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.

    1990-09-01

    An experimental system has been designed and built to comprehensively study the electrical and plasma characteristics in symmetric capacitively coupled rf discharges at low gas pressures. Descriptions of the system concept, the discharge chamber, the vacuum-gas control system, and the rf matching and electrical measurement system are presented together with some results of electrical measurements carried out in an argon discharge at 13.56 MHz. The system has been specifically designed to facilitate external discharge parameter measurements and probe measurements and to be compatible with a wide variety of other diagnostics. External electrical measurements and probe measurements within the discharge show that it is an ideal vehicle to study low-pressure rf discharge physics. Measurements from this system should be comparable to one-dimensional rf symmetric capacitive discharge theories and may help to verify them. Although only a few results are given here, the system has been operated reliably over a wide range of gas pressures and should give reproducible and accurate results for discharge electrical characteristics and plasma parameters over a wide range of driving frequency and gas components.

  1. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    USDA-ARS?s Scientific Manuscript database

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  2. Energy Advantages for Green Schools

    ERIC Educational Resources Information Center

    Griffin, J. Tim

    2012-01-01

    Because of many advantages associated with central utility systems, school campuses, from large universities to elementary schools, have used district energy for decades. District energy facilities enable thermal and electric utilities to be generated with greater efficiency and higher system reliability, while requiring fewer maintenance and…

  3. Fault tolerant operation of switched reluctance machine

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and experiments. With the proposed optimal waveform, torque production is greatly improved under the same Root Mean Square (RMS) current constraint. Additionally, position sensorless operation methods under phase faults are investigated to account for the combination of physical position sensor and phase winding faults. A comprehensive solution for position sensorless operation under single and multiple phases fault are proposed and validated through experiments. Continuous position sensorless operation with seamless transition between various numbers of phase fault is achieved.

  4. Fault tree applications within the safety program of Idaho Nuclear Corporation

    NASA Technical Reports Server (NTRS)

    Vesely, W. E.

    1971-01-01

    Computerized fault tree analyses are used to obtain both qualitative and quantitative information about the safety and reliability of an electrical control system that shuts the reactor down when certain safety criteria are exceeded, in the design of a nuclear plant protection system, and in an investigation of a backup emergency system for reactor shutdown. The fault tree yields the modes by which the system failure or accident will occur, the most critical failure or accident causing areas, detailed failure probabilities, and the response of safety or reliability to design modifications and maintenance schemes.

  5. Feasible Electricity Infrastructure Pathways in the Context of Climate-Water Change Constraints

    NASA Astrophysics Data System (ADS)

    Miara, A.; Vorosmarty, C. J.; Macknick, J.; Cohen, S. M.; Tidwell, V. C.; Newmark, R. L.; Fekete, B. M.; Corsi, F.; Sun, Y.; Proussevitch, A. A.; Glidden, S.

    2017-12-01

    The carbon and water intensity of US electricity generation has recently decreased due to the natural gas revolution and deployment of renewable technologies. Yet, power plants that require water for cooling still provide 80% of electricity generation and projected climate-water conditions may limit their power output and affect reliability. Understanding the connections and tradeoffs across water, electricity and climate systems is timely, as the nation tries to mitigate and adapt to a changing climate. Electricity expansion models are used to provide insight on power sector pathways given certain policy goals and economic conditions, but do not typically account for productivity limitations due to physical climate-water constraints. Here, we account for such constraints by coupling an electricity expansion model (Regional Energy Deployment System - ReEDS) with the combined Water Balance and Thermoelectric Power and Thermal Pollution Models (WBM-TP2M), which calculate the available capacity at power plants as a function of hydrologic flows, climate conditions, power plant technology and environmental regulations. To fully capture and incorporate climate-water impacts into ReEDS, a specific rule-set was designed for the temporal and spatial downscaling and up-scaling of ReEDS results into WBM-TP2M inputs and visa versa - required to achieve a modeling `loop' that will enable convergence on a feasible solution in the context of economic and geophysical constraints and opportunities. This novel modeling approach is the next phase of research for understanding electricity system vulnerabilities and adaptation measures using energy-water-climate modeling, which to-date has been limited by a focus on individual generators without analyzing power generation as a collective regional system. This study considers four energy policy/economic pathways under future climate-water resource conditions, designed under the National Energy Water System assessment framework. Results highlight the importance of linking Earth-system and economic modeling tools and provide insight on potential electricity infrastructure pathways that are sustainable, in terms lowering both water use and carbon emissions, and reliable in the face of future climate-water resource constraints.

  6. 18 CFR 39.6 - Conflict of a Reliability Standard with a Commission Order.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT RULES CONCERNING CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.6 Conflict of a Reliability Standard with...

  7. 2017 NREL Photovoltaic Reliability Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    NREL's Photovoltaic (PV) Reliability Workshop (PVRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology -- both critical goals for moving PV technologies deeper into the electricity marketplace.

  8. Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy

    NASA Astrophysics Data System (ADS)

    Bagen

    The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion systems and energy storage in electric power systems and provide useful input to the managerial decision process.

  9. PCB-level Electro thermal Coupling Simulation Analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Runjing; Shao, Xuchen

    2017-10-01

    Power transmission network needs to transmit more current with the increase of the power density. The problem of temperature rise and the reliability is becoming more and more serious. In order to accurately design the power supply system, we must consider the influence of the power supply system including Joule heat, air convection and other factors. Therefore, this paper analyzes the relationship between the electric circuit and the thermal circuit on the basis of the theory of electric circuit and thermal circuit.

  10. Overcoming the Adoption Barrier to Electric Flight

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Nickol, Craig L.; Jones, Frank P.; Yasky, Richard J.; Woodham, Kurt; Fell, Jared S.; Litherland, Brandon L.; Loyselle, Patricia L.; Provenza, Andrew J.; Kohlman, Lee W.; hide

    2016-01-01

    Electrically-powered aircraft can enable dramatic increases in efficiency and reliability, reduced emissions, and reduced noise as compared to today's combustion-powered aircraft. This paper describes a novel flight demonstration concept that will enable the benefits of electric propulsion, while keeping the extraordinary convenience and utility of common fuels available at today's airports. A critical gap in airborne electric propulsion research is addressed by accommodating adoption at the integrated aircraft-airport systems level, using a confluence of innovative but proven concepts and technologies in power generation and electricity storage that need to reside only on the airframe. Technical discriminators of this demonstrator concept include (1) a novel, high-efficiency power system that utilizes advanced solid oxide fuel cells originally developed for ultra-long-endurance aircraft, coupled with (2) a high-efficiency, high-power electric propulsion system selected from mature products to reduce technical risk, assembled into (3) a modern, high-performance demonstration platform to provide useful and compelling data, both for the targeted early adopters and the eventual commercial market.

  11. 76 FR 39470 - Integrated Resource Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... region's natural resources. One component of this mission is the generation, transmission, and sale of reliable and affordable electric energy. TVA operates the nation's largest public power system, producing 4... 56 directly served large industrial and Federal customers. The TVA Act requires the TVA power system...

  12. Reactor power system deployment and startup

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.

    1985-01-01

    This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.

  13. Photovoltaic Module Reliability Workshop 2011: February 16-17, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  14. Photovoltaic Module Reliability Workshop 2014: February 25-26, 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2014-02-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  15. Photovoltaic Module Reliability Workshop 2013: February 26-27, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-10-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  16. Photovoltaic Module Reliability Workshop 2010: February 18-19, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, J.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  17. 2016 NREL Photovoltaic Module Reliability Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology - both critical goals for moving PV technologies deeper into the electricity marketplace.

  18. 2015 NREL Photovoltaic Module Reliability Workshops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  19. Toward an electrical power utility for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.

    1989-01-01

    Future electrical power requirements for space exploration are discussed. Megawatts of power with enough reliability for multi-year missions and with enough flexibility to adapt to needs unanticipated at design time are some of the criteria which space power systems must be able to meet. The reasons for considering the power management and distribution in the various systems, from a total mission perspective rather than simply extrapolating current spacecraft design practice, are discussed. A utility approach to electric power integrating requirements from a broad selection of current development programs, with studies in which both space and terrestrial technologies are conceptually applied to exploration mission scenarios, is described.

  20. 76 FR 73607 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... Request AGENCY: Office of Electricity Delivery and Energy Reliability (OE), U.S. Department of Energy (DOE). ACTION: Notice and Request for OMB Review and Comment. SUMMARY: The Office of Electricity Delivery and... Copeland, Office of Electricity Delivery and Energy Reliability (Attn: Comments on OE-417 Electric...

  1. Performance evaluation method of electric energy data acquire system based on combination of subjective and objective weights

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Ding, Zhongan; Deng, Bofa; Yan, Shengteng

    2017-10-01

    According to the characteristics of electric energy data acquire system (EEDAS), considering the availability of each index data and the connection between the index integrity, establishing the performance evaluation index system of electric energy data acquire system from three aspects as master station system, communication channel, terminal equipment. To determine the comprehensive weight of each index based on triangular fuzzy number analytic hierarchy process with entropy weight method, and both subjective preference and objective attribute are taken into consideration, thus realize the performance comprehensive evaluation more reasonable and reliable. Example analysis shows that, by combination with analytic hierarchy process (AHP) and triangle fuzzy numbers (TFN) to establish comprehensive index evaluation system based on entropy method, the evaluation results not only convenient and practical, but also more objective and accurate.

  2. Business Cases for Microgrids: Modeling Interactions of Technology Choice, Reliability, Cost, and Benefit

    NASA Astrophysics Data System (ADS)

    Hanna, Ryan

    Distributed energy resources (DERs), and increasingly microgrids, are becoming an integral part of modern distribution systems. Interest in microgrids--which are insular and autonomous power networks embedded within the bulk grid--stems largely from the vast array of flexibilities and benefits they can offer stakeholders. Managed well, they can improve grid reliability and resiliency, increase end-use energy efficiency by coupling electric and thermal loads, reduce transmission losses by generating power locally, and may reduce system-wide emissions, among many others. Whether these public benefits are realized, however, depends on whether private firms see a "business case", or private value, in investing. To this end, firms need models that evaluate costs, benefits, risks, and assumptions that underlie decisions to invest. The objectives of this dissertation are to assess the business case for microgrids that provide what industry analysts forecast as two primary drivers of market growth--that of providing energy services (similar to an electric utility) as well as reliability service to customers within. Prototypical first adopters are modeled--using an existing model to analyze energy services and a new model that couples that analysis with one of reliability--to explore interactions between technology choice, reliability, costs, and benefits. The new model has a bi-level hierarchy; it uses heuristic optimization to select and size DERs and analytical optimization to schedule them. It further embeds Monte Carlo simulation to evaluate reliability as well as regression models for customer damage functions to monetize reliability. It provides least-cost microgrid configurations for utility customers who seek to reduce interruption and operating costs. Lastly, the model is used to explore the impact of such adoption on system-wide greenhouse gas emissions in California. Results indicate that there are, at present, co-benefits for emissions reductions when customers adopt and operate microgrids for private benefit, though future analysis is needed as the bulk grid continues to transition toward a less carbon intensive system.

  3. FOR Allocation to Distribution Systems based on Credible Improvement Potential (CIP)

    NASA Astrophysics Data System (ADS)

    Tiwary, Aditya; Arya, L. D.; Arya, Rajesh; Choube, S. C.

    2017-02-01

    This paper describes an algorithm for forced outage rate (FOR) allocation to each section of an electrical distribution system subject to satisfaction of reliability constraints at each load point. These constraints include threshold values of basic reliability indices, for example, failure rate, interruption duration and interruption duration per year at load points. Component improvement potential measure has been used for FOR allocation. Component with greatest magnitude of credible improvement potential (CIP) measure is selected for improving reliability performance. The approach adopted is a monovariable method where one component is selected for FOR allocation and in the next iteration another component is selected for FOR allocation based on the magnitude of CIP. The developed algorithm is implemented on sample radial distribution system.

  4. Sensitivities and Tipping Points of Power System Operations to Fluctuations Caused by Water Availability and Fuel Prices

    NASA Astrophysics Data System (ADS)

    O'Connell, M.; Macknick, J.; Voisin, N.; Fu, T.

    2017-12-01

    The western US electric grid is highly dependent upon water resources for reliable operation. Hydropower and water-cooled thermoelectric technologies represent 67% of generating capacity in the western region of the US. While water resources provide a significant amount of generation and reliability for the grid, these same resources can represent vulnerabilities during times of drought or low flow conditions. A lack of water affects water-dependent technologies and can result in more expensive generators needing to run in order to meet electric grid demand, resulting in higher electricity prices and a higher cost to operate the grid. A companion study assesses the impact of changes in water availability and air temperatures on power operations by directly derating hydro and thermo-electric generators. In this study we assess the sensitivities and tipping points of water availability compared with higher fuel prices in electricity sector operations. We evaluate the impacts of varying electricity prices by modifying fuel prices for coal and natural gas. We then analyze the difference in simulation results between changes in fuel prices in combination with water availability and air temperature variability. We simulate three fuel price scenarios for a 2010 baseline scenario along with 100 historical and future hydro-climate conditions. We use the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions under each combination of fuel price and water constraint. Some of the metrics evaluated are total production cost, generation type mix, emissions, transmission congestion, and reserve procurement. These metrics give insight to how strained the system is, how much flexibility it still has, and to what extent water resource availability or fuel prices drive changes in the electricity sector operations. This work will provide insights into current electricity operations as well as future cases of increased penetration of variable renewable generation technologies such as wind and solar.

  5. A Method of Evaluating Operation of Electric Energy Meter

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Li, Tianyang; Cao, Fei; Chu, Pengfei; Zhao, Xinwang; Huang, Rui; Liu, Liping; Zhang, Chenglin

    2018-05-01

    The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.

  6. New understandings of failure modes in SSL luminaires

    NASA Astrophysics Data System (ADS)

    Shepherd, Sarah D.; Mills, Karmann C.; Yaga, Robert; Johnson, Cortina; Davis, J. Lynn

    2014-09-01

    As SSL products are being rapidly introduced into the market, there is a need to develop standard screening and testing protocols that can be performed quickly and provide data surrounding product lifetime and performance. These protocols, derived from standard industry tests, are known as ALTs (accelerated life tests) and can be performed in a timeframe of weeks to months instead of years. Accelerated testing utilizes a combination of elevated temperature and humidity conditions as well as electrical power cycling to control aging of the luminaires. In this study, we report on the findings of failure modes for two different luminaire products exposed to temperature-humidity ALTs. LEDs are typically considered the determining component for the rate of lumen depreciation. However, this study has shown that each luminaire component can independently or jointly influence system performance and reliability. Material choices, luminaire designs, and driver designs all have significant impacts on the system reliability of a product. From recent data, it is evident that the most common failure modes are not within the LED, but instead occur within resistors, capacitors, and other electrical components of the driver. Insights into failure modes and rates as a result of ALTs are reported with emphasis on component influence on overall system reliability.

  7. 75 FR 56082 - Commission Information Collection Activities (FERC-725E); Comment Request; Submitted for OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... the reliability of the interstate grid through the granting of authority to provide for a system of... to enforce Reliability Standards under delegated authority from the ERO.\\2\\ On June 8, 2008 in an... proposed by the Western Electricity Coordinating Council (WECC).\\3\\ \\1\\ 16 U.S.C. 824o(e)(4). \\2\\ 16 U.S.C...

  8. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.

    PubMed

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall

    2014-01-01

    The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.

  9. 78 FR 65416 - Supplemental Environmental Impact Statement-Integrated Resource Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... this mission is the generation, transmission, and sale of reliable and affordable electric energy. TVA Power System TVA operates the nation's largest public power system, producing 4 percent of all the... requires the TVA power system to be self-supporting and operated on a nonprofit basis and directs TVA to...

  10. Research Staff | Advanced Manufacturing Research | NREL

    Science.gov Websites

    SYSTEMS CENTER Kevin Bennion leads NREL's Thermal Sciences and Systems research task focused on thermal vehicle thermal management and vehicle systems analysis. He came to NREL from Ford Motor Company, where he focused on thermal management and reliability for power electronics and electric machines for several

  11. Operational environments for electrical power wiring on NASA space systems

    NASA Technical Reports Server (NTRS)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  12. Propulsion system research and development for electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  13. Improved Reliability Models for Mechanical and Electrical Components at Navigation Lock and Dam and Flood Risk Management Facilities

    DTIC Science & Technology

    2013-04-01

    official Department of the Army position unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT...56 A2 Mechanical system - shafts ...80 A23 Mechanical system – strut spindle pin

  14. Photovoltaic Module Reliability Workshop 2012: February 28 - March 1, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, S.

    2013-11-01

    NREL's Photovoltaic (PV) Module Reliability Workshop (PVMRW) brings together PV reliability experts to share information, leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology--both critical goals for moving PV technologies deeper into the electricity marketplace.

  15. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  16. Electrical breakdown detection system for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Ghilardi, Michele; Busfield, James J. C.; Carpi, Federico

    2017-04-01

    Electrical breakdown of dielectric elastomer actuators (DEAs) is an issue that has to be carefully addressed when designing systems based on this novel technology. Indeed, in some systems electrical breakdown might have serious consequences, not only in terms of interruption of the desired function but also in terms of safety of the overall system (e.g. overheating and even burning). The risk for electrical breakdown often cannot be completely avoided by simply reducing the driving voltages, either because completely safe voltages might not generate sufficient actuation or because internal or external factors might change some properties of the actuator whilst in operation (for example the aging or fatigue of the material, or an externally imposed deformation decreasing the distance between the compliant electrodes). So, there is the clear need for reliable, simple and cost-effective detection systems that are able to acknowledge the occurrence of a breakdown event, making DEA-based devices able to monitor their status and become safer and "selfaware". Here a simple solution for a portable detection system is reported that is based on a voltage-divider configuration that detects the voltage drop at the DEA terminals and assesses the occurrence of breakdown via a microcontroller (Beaglebone Black single-board computer) combined with a real-time, ultra-low-latency processing unit (Bela cape an open-source embedded platform developed at Queen Mary University of London). The system was used to both generate the control signal that drives the actuator and constantly monitor the functionality of the actuator, detecting any breakdown event and discontinuing the supplied voltage accordingly, so as to obtain a safer controlled actuation. This paper presents preliminary tests of the detection system in different scenarios in order to assess its reliability.

  17. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  18. Electric organ discharges and electric images during electrolocation

    NASA Technical Reports Server (NTRS)

    Assad, C.; Rasnow, B.; Stoddard, P. K.

    1999-01-01

    Weakly electric fish use active electrolocation - the generation and detection of electric currents - to explore their surroundings. Although electrosensory systems include some of the most extensively understood circuits in the vertebrate central nervous system, relatively little is known quantitatively about how fish electrolocate objects. We believe a prerequisite to understanding electrolocation and its underlying neural substrates is to quantify and visualize the peripheral electrosensory information measured by the electroreceptors. We have therefore focused on reconstructing both the electric organ discharges (EODs) and the electric images resulting from nearby objects and the fish's exploratory behaviors. Here, we review results from a combination of techniques, including field measurements, numerical and semi-analytical simulations, and video imaging of behaviors. EOD maps are presented and interpreted for six gymnotiform species. They reveal diverse electric field patterns that have significant implications for both the electrosensory and electromotor systems. Our simulations generated predictions of the electric images from nearby objects as well as sequences of electric images during exploratory behaviors. These methods are leading to the identification of image features and computational algorithms that could reliably encode electrosensory information and may help guide electrophysiological experiments exploring the neural basis of electrolocation.

  19. Opportunity for offshore wind to reduce future demand for coal-fired power plants in China with consequent savings in emissions of CO2.

    PubMed

    Lu, Xi; McElroy, Michael B; Chen, Xinyu; Kang, Chongqing

    2014-12-16

    Although capacity credits for wind power have been embodied in power systems in the U.S. and Europe, the current planning framework for electricity in China continues to treat wind power as a nondispatchable source with zero contribution to firm capacity. This study adopts a rigorous reliability model for the electric power system evaluating capacity credits that should be recognized for offshore wind resources supplying power demands for Jiangsu, China. Jiangsu is an economic hub located in the Yangtze River delta accounting for 10% of the total electricity consumed in China. Demand for electricity in Jiangsu is projected to increase from 331 TWh in 2009 to 800 TWh by 2030. Given a wind penetration level of 60% for the future additional Jiangsu power supply, wind resources distributed along the offshore region of five coastal provinces in China (Shandong, Jiangsu, Shanghai, Zhejiang, and Fujian) should merit a capacity credit of 12.9%, the fraction of installed wind capacity that should be recognized to displace coal-fired systems without violating the reliability standard. In the high-coal-price scenario, with 60% wind penetration, reductions in CO2 emissions relative to a business as usual reference could be as large as 200.2 million tons of CO2 or 51.8% of the potential addition, with a cost for emissions avoided of $29.0 per ton.

  20. 75 FR 41166 - Office of Electricity Delivery and Energy Reliability; Notice of Reestablishment of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... DEPARTMENT OF ENERGY Office of Electricity Delivery and Energy Reliability; Notice of Reestablishment of the Electricity Advisory Committee Pursuant to Section 14(a)(2)(A) of the Federal Advisory... Administration, notice is hereby given that the Electricity Advisory Committee has been reestablished for a two...

  1. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  2. Critical assessment of density functional theory for computing vibrational (hyper)polarizabilities

    NASA Astrophysics Data System (ADS)

    Zaleśny, R.; Bulik, I. W.; Mikołajczyk, M.; Bartkowiak, W.; Luis, J. M.; Kirtman, B.; Avramopoulos, A.; Papadopoulos, M. G.

    2012-12-01

    Despite undisputed success of the density functional theory (DFT) in various branches of chemistry and physics, an application of the DFT for reliable predictions of nonlinear optical properties of molecules has been questioned a decade ago. As it was shown by Champagne, et al. [1, 2, 3] most conventional DFT schemes were unable to qualitatively predict the response of conjugated oligomers to a static electric field. Long-range corrected (LRC) functionals, like LC-BLYP or CAM-B3LYP, have been proposed to alleviate this deficiency. The reliability of LRC functionals for evaluating molecular (hyper)polarizabilities is studied for various groups of organic systems, with a special focus on vibrational corrections to the electric properties.

  3. Assuring long-term reliability of concentrator PV systems

    NASA Astrophysics Data System (ADS)

    McConnell, R.; Garboushian, V.; Brown, J.; Crawford, C.; Darban, K.; Dutra, D.; Geer, S.; Ghassemian, V.; Gordon, R.; Kinsey, G.; Stone, K.; Turner, G.

    2009-08-01

    Concentrator PV (CPV) systems have attracted significant interest because these systems incorporate the world's highest efficiency solar cells and they are targeting the lowest cost production of solar electricity for the world's utility markets. Because these systems are just entering solar markets, manufacturers and customers need to assure their reliability for many years of operation. There are three general approaches for assuring CPV reliability: 1) field testing and development over many years leading to improved product designs, 2) testing to internationally accepted qualification standards (especially for new products) and 3) extended reliability tests to identify critical weaknesses in a new component or design. Amonix has been a pioneer in all three of these approaches. Amonix has an internal library of field failure data spanning over 15 years that serves as the basis for its seven generations of CPV systems. An Amonix product served as the test CPV module for the development of the world's first qualification standard completed in March 2001. Amonix staff has served on international standards development committees, such as the International Electrotechnical Commission (IEC), in support of developing CPV standards needed in today's rapidly expanding solar markets. Recently Amonix employed extended reliability test procedures to assure reliability of multijunction solar cell operation in its seventh generation high concentration PV system. This paper will discuss how these three approaches have all contributed to assuring reliability of the Amonix systems.

  4. 30 CFR 285.429 - What criteria will MMS consider in deciding whether to renew a lease or grant?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... existing technology. (b) Availability and feasibility of new technology. (c) Environmental and safety... generation capacity and reliability within the regional electrical distribution and transmission system. ...

  5. Isotope Brayton electric power system for the 500 to 2500 watt range.

    NASA Technical Reports Server (NTRS)

    Macosko, R. P.; Barna, G. J.; Block, H. B.; Ingle, B. D.

    1972-01-01

    An extensive study was conducted at the Lewis Research Center to evaluate an isotope Brayton electric power system for use in the 500 to 2500 W power range. The study emphasized overall system simplicity in order to reduce parasitic power losses and improve system reliability. The study included detailed parametric cycle analysis, conceptual component designs, and evaluation of system packaging. The study has resulted in the selection of a single-loop system (gas) with six major components including one rotating unit. Calculated net system efficiency varies from 23 to 28% over the power range. The use of the Pu-238 heat source being developed for the Multi-Hundred-Watt Radioisotope Thermoelectric Generator program was assumed.

  6. Distributed Electrical Energy Systems: Needs, Concepts, Approaches and Vision (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Zhang, Jun; Gao, Wenzhong

    Intelligent distributed electrical energy systems (IDEES) are featured by vast system components, diversifled component types, and difficulties in operation and management, which results in that the traditional centralized power system management approach no longer flts the operation. Thus, it is believed that the blockchain technology is one of the important feasible technical paths for building future large-scale distributed electrical energy systems. An IDEES is inherently with both social and technical characteristics, as a result, a distributed electrical energy system needs to be divided into multiple layers, and at each layer, a blockchain is utilized to model and manage its logicmore » and physical functionalities. The blockchains at difierent layers coordinate with each other and achieve successful operation of the IDEES. Speciflcally, the multi-layer blockchains, named 'blockchain group', consist of distributed data access and service blockchain, intelligent property management blockchain, power system analysis blockchain, intelligent contract operation blockchain, and intelligent electricity trading blockchain. It is expected that the blockchain group can be self-organized into a complex, autonomous and distributed IDEES. In this complex system, frequent and in-depth interactions and computing will derive intelligence, and it is expected that such intelligence can bring stable, reliable and efficient electrical energy production, transmission and consumption.« less

  7. Practical aspects of instrumentation system installation, volume 13

    NASA Technical Reports Server (NTRS)

    Borek, R. W.; Pool, A. (Editor); Sanderson, K. C. (Editor)

    1981-01-01

    A review of factors influencing installation of aircraft flight test instrumentation is presented. Requirements, including such factors as environment, reliability, maintainability, and system safety are discussed. The assessment of the mission profile is followed by an overview of electrical and mechanical installation factors with emphasis on shock/vibration isolation systems and standardization of the electric wiring installation, two factors often overlooked by instrumentation engineers. A discussion of installation hardware reviews the performance capabilities of wiring, connectors, fuses and circuit breakers, and a guide to proper selections is provided. The discussion of the installation is primarily concerned with the electrical wire routing, shield terminations and grounding. Also inclued are some examples of installation mistakes that could affect system accuracy. System verification procedures and special considerations such as sneak circuits, pyrotechnics, aircraft antenna patterns, and lightning strikes are discussed.

  8. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    NASA Astrophysics Data System (ADS)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates risk, well-being and energy based indices to provide realistic cost/reliability measures of utilizing renewable energy. The concepts presented and the examples illustrated in this thesis will help system planners to decide on appropriate installation sites, the types and mix of different energy generating sources, the optimum operating policies, and the optimum generation expansion plans required to meet increasing load demands in small isolated power systems containing photovoltaic and wind energy sources.

  9. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes.

    PubMed

    Jacobson, Mark Z; Delucchi, Mark A; Cameron, Mary A; Frew, Bethany A

    2015-12-08

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050-2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide.

  10. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes

    PubMed Central

    Jacobson, Mark Z.; Delucchi, Mark A.; Cameron, Mary A.; Frew, Bethany A.

    2015-01-01

    This study addresses the greatest concern facing the large-scale integration of wind, water, and solar (WWS) into a power grid: the high cost of avoiding load loss caused by WWS variability and uncertainty. It uses a new grid integration model and finds low-cost, no-load-loss, nonunique solutions to this problem on electrification of all US energy sectors (electricity, transportation, heating/cooling, and industry) while accounting for wind and solar time series data from a 3D global weather model that simulates extreme events and competition among wind turbines for available kinetic energy. Solutions are obtained by prioritizing storage for heat (in soil and water); cold (in ice and water); and electricity (in phase-change materials, pumped hydro, hydropower, and hydrogen), and using demand response. No natural gas, biofuels, nuclear power, or stationary batteries are needed. The resulting 2050–2055 US electricity social cost for a full system is much less than for fossil fuels. These results hold for many conditions, suggesting that low-cost, reliable 100% WWS systems should work many places worldwide. PMID:26598655

  11. Selenide isotope generator for the Galileo mission. Reliability program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-01

    The reliability program plan for the Selenide Isotope Generator (SIG) program is presented. It delineates the specific tasks that will be accomplished by Teledyne Energy Systems and its suppliers during design, development, fabrication and test of deliverable Radioisotopic Thermoelectric Generators (RTG), Electrical Heated Thermoelectric Generators (ETG) and associated Ground Support Equipment (GSE). The Plan is formulated in general accordance with procedures specified in DOE Reliability Engineering Program Requirements Publication No. SNS-2, dated June 17, 1974. The Reliability Program Plan presented herein defines the total reliability effort without further reference to Government Specifications. The reliability tasks to be accomplished are delineatedmore » herein and become the basis for contract compliance to the extent specified in the SIG contract Statement of Work.« less

  12. 75 FR 35011 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Processes Manual Incorporating Proposed Revisions to the Reliability Standards Development Process. Filed..., June 21, 2010. Take notice that the Commission received the following electric reliability filings: Docket Numbers: RR10-12-000. Applicants: North American Electric Reliability Corp. Description: Petition...

  13. Interdependent networks: the fragility of control

    PubMed Central

    Morris, Richard G.; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Kevin; Tuffner, Frank; Elizondo, Marcelo

    Regulated electricity utilities are required to provide safe and reliable service to their customers at a reasonable cost. To balance the objectives of reliable service and reasonable cost, utilities build and operate their systems to operate under typical historic conditions. As a result, when abnormal events such as major storms or disasters occur, it is not uncommon to have extensive interruptions in service to the end-use customers. Because it is not cost effective to make the existing electrical infrastructure 100% reliable, society has come to expect disruptions during abnormal events. However, with the increasing number of abnormal weather events, themore » public is becoming less tolerant of these disruptions. One possible solution is to deploy microgrids as part of a coordinated resiliency plan to minimize the interruption of power to essential loads. This paper evaluates the feasibility of using microgrids as a resiliency resource, including their possible benefits and the associated technical challenges. A use-case of an operational microgrid is included.« less

  15. Reliability Testing of NASA Piezocomposite Actuators

    NASA Technical Reports Server (NTRS)

    Wilkie, W.; High, J.; Bockman, J.

    2002-01-01

    NASA Langley Research Center has developed a low-cost piezocomposite actuator which has application for controlling vibrations in large inflatable smart space structures, space telescopes, and high performance aircraft. Tests show the NASA piezocomposite device is capable of producing large, directional, in-plane strains on the order of 2000 parts-per-million peak-to-peak, with no reduction in free-strain performance to 100 million electrical cycles. This paper describes methods, measurements, and preliminary results from our reliability evaluation of the device under externally applied mechanical loads and at various operational temperatures. Tests performed to date show no net reductions in actuation amplitude while the device was moderately loaded through 10 million electrical cycles. Tests were performed at both room temperature and at the maximum operational temperature of the epoxy resin system used in manufacture of the device. Initial indications are that actuator reliability is excellent, with no actuator failures or large net reduction in actuator performance.

  16. 18 CFR 39.2 - Jurisdiction and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT RULES CONCERNING CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC... and Hawaii), the Electric Reliability Organization, any Regional Entities, and all users, owners and...

  17. Circuit for connecting the Videoton-340 with the ES-1030 as an operator console

    NASA Technical Reports Server (NTRS)

    Uskov, V. A.; PRYADIN

    1979-01-01

    A system of connection of the Videoton-340 text display to the standard ES-7070 unit, for use as an operator console, partially replacing and supplementing the ES-7070 electric typewriter, is described. The interactions, including the specific instructions, among the Videoton-340, the Consul-260.1 electric typewriter and the ES-7070, which is the means of user access to the unified system of computers, are presented. Users at the Institute of Space Research note the reliability, high information output rate, noiselessness and convenience of the keyboard of the system.

  18. Reliability Prediction Approaches For Domestic Intelligent Electric Energy Meter Based on IEC62380

    NASA Astrophysics Data System (ADS)

    Li, Ning; Tong, Guanghua; Yang, Jincheng; Sun, Guodong; Han, Dongjun; Wang, Guixian

    2018-01-01

    The reliability of intelligent electric energy meter is a crucial issue considering its large calve application and safety of national intelligent grid. This paper developed a procedure of reliability prediction for domestic intelligent electric energy meter according to IEC62380, especially to identify the determination of model parameters combining domestic working conditions. A case study was provided to show the effectiveness and validation.

  19. Electric Power Infrastructure Reliability and Security (EPIRS) Reseach and Development Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rick Meeker; L. Baldwin; Steinar Dale

    2010-03-31

    Power systems have become increasingly complex and face unprecedented challenges posed by population growth, climate change, national security issues, foreign energy dependence and an aging power infrastructure. Increased demand combined with increased economic and environmental constraints is forcing state, regional and national power grids to expand supply without the large safety and stability margins in generation and transmission capacity that have been the rule in the past. Deregulation, distributed generation, natural and man-made catastrophes and other causes serve to further challenge and complicate management of the electric power grid. To meet the challenges of the 21st century while also maintainingmore » system reliability, the electric power grid must effectively integrate new and advanced technologies both in the actual equipment for energy conversion, transfer and use, and in the command, control, and communication systems by which effective and efficient operation of the system is orchestrated - in essence, the 'smart grid'. This evolution calls for advances in development, integration, analysis, and deployment approaches that ultimately seek to take into account, every step of the way, the dynamic behavior of the system, capturing critical effects due to interdependencies and interaction. This approach is necessary to better mitigate the risk of blackouts and other disruptions and to improve the flexibility and capacity of the grid. Building on prior Navy and Department of Energy investments in infrastructure and resources for electric power systems research, testing, modeling, and simulation at the Florida State University (FSU) Center for Advanced Power Systems (CAPS), this project has continued an initiative aimed at assuring reliable and secure grid operation through a more complete understanding and characterization of some of the key technologies that will be important in a modern electric system, while also fulfilling an education and outreach mission to provide future energy workforce talent and support the electric system stakeholder community. Building upon and extending portions of that research effort, this project has been focused in the following areas: (1) Building high-fidelity integrated power and controls hardware-in-the-loop research and development testbed capabilities (Figure 1). (2) Distributed Energy Resources Integration - (a) Testing Requirements and Methods for Fault Current Limiters, (b) Contributions to the Development of IEEE 1547.7, (c) Analysis of a STATCOM Application for Wind Resource Integration, (d) Development of a Grid-Interactive Inverter with Energy Storage Elements, (e) Simulation-Assisted Advancement of Microgrid Understanding and Applications; (3) Availability of High-Fidelity Dynamic Simulation Tools for Grid Disturbance Investigations; (4) HTS Material Characterization - (a) AC Loss Studies on High Temperature Superconductors, (b) Local Identification of Current-Limiting Mechanisms in Coated Conductors; (5) Cryogenic Dielectric Research; and (6) Workshops, education, and outreach.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahidehpour, Mohammad

    Starting in October 2008, Illinois Institute of Technology (IIT), in collaboration with over 20 participating members, led an extensive effort to develop, demonstrate, promote, and commercialize a microgrid system and offer supporting technologies that will achieve Perfect Power at the main campus of IIT. A Perfect Power system, as defined by the Galvin Electricity Initiative (GEI), is a system that cannot fail to meet the electric needs of the individual end-user. The Principle Investigator of this Perfect Power project was Dr. Mohammad Shahidehpour, Director of the Robert W. Galvin Center for Electricity Innovation at IIT. There were six overall objectivesmore » of the Perfect Power project: (1) Demonstrate the higher reliability introduced by the microgrid system at IIT; (2) Demonstrate the economics of microgrid operations; (3) Allow for a decrease of fifty percent (50%) of grid electricity load; (4) Create a permanent twenty percent (20%) decrease in peak load from 2007 level; (5) Defer planned substation through load reduction; (6) Offer a distribution system design that can be replicated in urban communities.« less

  1. The Effect of Power Protection Equipment on Explosion Hazards and on the Reliability of Power Supply to Longwall Systems

    NASA Astrophysics Data System (ADS)

    Boron, Sergiusz

    2017-06-01

    Operational safety of electrical machines and equipment depends, inter alia, on the hazards resulting from their use and on the scope of applied protective measures. The use of insufficient protection against existing hazards leads to reduced operational safety, particularly under fault conditions. On the other hand, excessive (in relation to existing hazards) level of protection may compromise the reliability of power supply. This paper analyses the explosion hazard created by earth faults in longwall power supply systems and evaluates existing protection equipment from the viewpoint of its protective performance, particularly in the context of explosion hazards, and also assesses its effect on the reliability of power supply.

  2. Simulation and Control Lab Development for Power and Energy Management for NASA Manned Deep Space Missions

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Beach, Raymond F.; Soeder, James F.; McNelis, Nancy B.; May, Ryan; Dever, Timothy P.; Trase, Larry

    2014-01-01

    The development of distributed hierarchical and agent-based control systems will allow for reliable autonomous energy management and power distribution for on-orbit missions. Power is one of the most critical systems on board a space vehicle, requiring quick response time when a fault or emergency is identified. As NASAs missions with human presence extend beyond low earth orbit autonomous control of vehicle power systems will be necessary and will need to reliably function for long periods of time. In the design of autonomous electrical power control systems there is a need to dynamically simulate and verify the EPS controller functionality prior to use on-orbit. This paper presents the work at NASA Glenn Research Center in Cleveland, Ohio where the development of a controls laboratory is being completed that will be utilized to demonstrate advanced prototype EPS controllers for space, aeronautical and terrestrial applications. The control laboratory hardware, software and application of an autonomous controller for demonstration with the ISS electrical power system is the subject of this paper.

  3. AST Critical Propulsion and Noise Reduction Technologies for Future Commercial Subsonic Engines Area of Interest 1.0: Reliable and Affordable Control Systems

    NASA Technical Reports Server (NTRS)

    Myers, William; Winter, Steve

    2006-01-01

    The General Electric Reliable and Affordable Controls effort under the NASA Advanced Subsonic Technology (AST) Program has designed, fabricated, and tested advanced controls hardware and software to reduce emissions and improve engine safety and reliability. The original effort consisted of four elements: 1) a Hydraulic Multiplexer; 2) Active Combustor Control; 3) a Variable Displacement Vane Pump (VDVP); and 4) Intelligent Engine Control. The VDVP and Intelligent Engine Control elements were cancelled due to funding constraints and are reported here only to the state they progressed. The Hydraulic Multiplexing element developed and tested a prototype which improves reliability by combining the functionality of up to 16 solenoids and servo-valves into one component with a single electrically powered force motor. The Active Combustor Control element developed intelligent staging and control strategies for low emission combustors. This included development and tests of a Controlled Pressure Fuel Nozzle for fuel sequencing, a Fuel Multiplexer for individual fuel cup metering, and model-based control logic. Both the Hydraulic Multiplexer and Controlled Pressure Fuel Nozzle system were cleared for engine test. The Fuel Multiplexer was cleared for combustor rig test which must be followed by an engine test to achieve full maturation.

  4. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    1991-01-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  5. Drought and Heat Wave Impacts on Electricity Grid Reliability in Illinois

    NASA Astrophysics Data System (ADS)

    Stillwell, A. S.; Lubega, W. N.

    2016-12-01

    A large proportion of thermal power plants in the United States use cooling systems that discharge large volumes of heated water into rivers and cooling ponds. To minimize thermal pollution from these discharges, restrictions are placed on temperatures at the edge of defined mixing zones in the receiving waters. However, during extended hydrological droughts and heat waves, power plants are often granted thermal variances permitting them to exceed these temperature restrictions. These thermal variances are often deemed necessary for maintaining electricity reliability, particularly as heat waves cause increased electricity demand. Current practice, however, lacks tools for the development of grid-scale operational policies specifying generator output levels that ensure reliable electricity supply while minimizing thermal variances. Such policies must take into consideration characteristics of individual power plants, topology and characteristics of the electricity grid, and locations of power plants within the river basin. In this work, we develop a methodology for the development of these operational policies that captures necessary factors. We develop optimal rules for different hydrological and meteorological conditions, serving as rule curves for thermal power plants. The rules are conditioned on leading modes of the ambient hydrological and meteorological conditions at the different power plant locations, as the locations are geographically close and hydrologically connected. Heat dissipation in the rivers and cooling ponds is modeled using the equilibrium temperature concept. Optimal rules are determined through a Monte Carlo sampling optimization framework. The methodology is applied to a case study of eight power plants in Illinois that were granted thermal variances in the summer of 2012, with a representative electricity grid model used in place of the actual electricity grid.

  6. 78 FR 15363 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ...-1173-001; ER12-1173-002. Applicants: PJM Interconnection, L.L.C., American Electric Power Service Corporation. Description: American Electric Power Service Corporation on behalf of Indiana Michigan Power... reliability filings. Docket Numbers: RD13-5-000. Applicants: North American Electric Reliability Corporation...

  7. Reliability considerations of a fuel cell backup power system for telecom applications

    NASA Astrophysics Data System (ADS)

    Serincan, Mustafa Fazil

    2016-03-01

    A commercial fuel cell backup power unit is tested in real life operating conditions at a base station of a Turkish telecom operator. The fuel cell system responds to 256 of 260 electric power outages successfully, providing the required power to the base station. Reliability of the fuel cell backup power unit is found to be 98.5% at the system level. On the other hand, a qualitative reliability analysis at the component level is carried out. Implications of the power management algorithm on reliability is discussed. Moreover, integration of the backup power unit to the base station ecosystem is reviewed in the context of reliability. Impact of inverter design on the stability of the output power is outlined. Significant current harmonics are encountered when a generic inverter is used. However, ripples are attenuated significantly when a custom design inverter is used. Further, fault conditions are considered for real world case studies such as running out of hydrogen, a malfunction in the system, or an unprecedented operating scheme. Some design guidelines are suggested for hybridization of the backup power unit for an uninterrupted operation.

  8. Reliability Issues in Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey; Shah, Ashwin

    2005-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  9. Reliability Issues in Stirling Radioisotope Power Systems

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Schreiber, Jeffrey G.

    2004-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  10. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system formore » purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.« less

  11. A brief review on key technologies in the battery management system of electric vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng

    2018-04-01

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

  12. SNAP-8 power conversion system design review

    NASA Technical Reports Server (NTRS)

    Lopez, L. P.

    1970-01-01

    The conceptual design of the SNAP-8 electrical generating system configurations are reviewed including the evolution of the PCS configuration, and the current concepts. The reliabilities of two alternative PCS-G heat rejection loop configurations with two radiator design concepts are also reviewed. A computer program for calculating system pressure loss using multiple-loop flow analysis is included.

  13. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    Reducing cost and increasing reliability were the technology drivers in both the electric utility and on-site integrated energy system applications. The longstanding barrier to the attainment of these goals was materials. Differences in approaches and their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection, and system design philosophy were discussed.

  14. Security attack detection algorithm for electric power gis system based on mobile application

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Feng, Renjun; Wang, Liming; Huang, Wei; Guo, Yajuan

    2017-05-01

    Electric power GIS is one of the key information technologies to satisfy the power grid construction in China, and widely used in power grid construction planning, weather, and power distribution management. The introduction of electric power GIS based on mobile applications is an effective extension of the geographic information system that has been widely used in the electric power industry. It provides reliable, cheap and sustainable power service for the country. The accurate state estimation is the important conditions to maintain the normal operation of the electric power GIS. Recent research has shown that attackers can inject the complex false data into the power system. The injection attack of this new type of false data (load integrity attack LIA) can successfully bypass the routine detection to achieve the purpose of attack, so that the control center will make a series of wrong decision. Eventually, leading to uneven distribution of power in the grid. In order to ensure the safety of the electric power GIS system based on mobile application, it is very important to analyze the attack mechanism and propose a new type of attack, and to study the corresponding detection method and prevention strategy in the environment of electric power GIS system based on mobile application.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buche, D. L.; Perry, S.

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  16. Application of high performance asynchronous socket communication in power distribution automation

    NASA Astrophysics Data System (ADS)

    Wang, Ziyu

    2017-05-01

    With the development of information technology and Internet technology, and the growing demand for electricity, the stability and the reliable operation of power system have been the goal of power grid workers. With the advent of the era of big data, the power data will gradually become an important breakthrough to guarantee the safe and reliable operation of the power grid. So, in the electric power industry, how to efficiently and robustly receive the data transmitted by the data acquisition device, make the power distribution automation system be able to execute scientific decision quickly, which is the pursuit direction in power grid. In this paper, some existing problems in the power system communication are analysed, and with the help of the network technology, a set of solutions called Asynchronous Socket Technology to the problem in network communication which meets the high concurrency and the high throughput is proposed. Besides, the paper also looks forward to the development direction of power distribution automation in the era of big data and artificial intelligence.

  17. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    NASA Astrophysics Data System (ADS)

    Aggarwal, Ankur

    With the semiconductor industry racing toward a historic transition, nano chips with less than 45 nm features demand I/Os in excess of 20,000 that support computing speed in terabits per second, with multi-core processors aggregately providing highest bandwidth at lowest power. On the other hand, emerging mixed signal systems are driving the need for 3D packaging with embedded active components and ultra-short interconnections. Decreasing I/O pitch together with low cost, high electrical performance and high reliability are the key technological challenges identified by the 2005 International Technology Roadmap for Semiconductors (ITRS). Being able to provide several fold increase in the chip-to-package vertical interconnect density is essential for garnering the true benefits of nanotechnology that will utilize nano-scale devices. Electrical interconnections are multi-functional materials that must also be able to withstand complex, sustained and cyclic thermo-mechanical loads. In addition, the materials must be environmentally-friendly, corrosion resistant, thermally stable over a long time, and resistant to electro-migration. A major challenge is also to develop economic processes that can be integrated into back end of the wafer foundry, i.e. with wafer level packaging. Device-to-system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect will not satisfy the thermo-mechanical reliability requirements at very fine pitches of the order of 30 microns and less. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. A novel chip-package interconnection technology is developed to address the IC packaging requirements beyond the ITRS projections and to introduce innovative design and fabrication concepts that will further advance the performance of the chip, the package, and the system board. The nano-structured interconnect technology simultaneously packages all the ICs intact in wafer form with quantum jump in the number of interconnections with the lowest electrical parasitics. The intrinsic properties of nano materials also enable several orders of magnitude higher interconnect densities with the best mechanical properties for the highest reliability and yet provide higher current and heat transfer densities. Nano-structured interconnects provides the ability to assemble the packaged parts on the system board without the use of underfill materials and to enable advanced analog/digital testing, reliability testing, and burn-in at wafer level. This thesis investigates the electrical and mechanical performance of nanostructured interconnections through modeling and test vehicle fabrication. The analytical models evaluate the performance improvements over solder and compliant interconnections. Test vehicles with nano-interconnections were fabricated using low cost electro-deposition techniques and assembled with various bonding interfaces. Interconnections were fabricated at 200 micron pitch to compare with the existing solder joints and at 50 micron pitch to demonstrate fabrication processes at fine pitches. Experimental and modeling results show that the proposed nano-interconnections could enhance the reliability and potentially meet all the system performance requirements for the emerging micro/nano-systems.

  18. Improving electrical power systems reliability through locally controlled distributed curtailable load

    NASA Astrophysics Data System (ADS)

    Dehbozorgi, Mohammad Reza

    2000-10-01

    Improvements in power system reliability have always been of interest to both power companies and customers. Since there are no sizable electrical energy storage elements in electrical power systems, the generated power should match the load demand at any given time. Failure to meet this balance may cause severe system problems, including loss of generation and system blackouts. This thesis proposes a methodology which can respond to either loss of generation or loss of load. It is based on switching of electric water heaters using power system frequency as the controlling signal. The proposed methodology encounters, and the thesis has addressed, the following associated problems. The controller must be interfaced with the existing thermostat control. When necessary to switch on loads, the water in the tank should not be overheated. Rapid switching of blocks of load, or chattering, has been considered. The contributions of the thesis are: (A) A system has been proposed which makes a significant portion of the distributed loads connected to a power system to behave in a predetermined manner to improve the power system response during disturbances. (B) The action of the proposed system is transparent to the customers. (C) The thesis proposes a simple analysis for determining the amount of such loads which might be switched and relates this amount to the size of the disturbances which can occur in the utility. (D) The proposed system acts without any formal communication links, solely using the embedded information present system-wide. (E) The methodology of the thesis proposes switching of water heater loads based on a simple, localized frequency set-point controller. The thesis has identified the consequent problem of rapid switching of distributed loads, which is referred to as chattering. (F) Two approaches have been proposed to reduce chattering to tolerable levels. (G) A frequency controller has been designed and built according to the specifications required to switch electric water heater loads in response to power system disturbances. (H) A cost analysis for building and installing the distributed frequency controller has been carried out. (I) The proposed equipment and methodology has been implemented and tested successfully. (Abstract shortened by UMI.)

  19. Loss of Load Probability Calculation for West Java Power System with Nuclear Power Plant Scenario

    NASA Astrophysics Data System (ADS)

    Azizah, I. D.; Abdullah, A. G.; Purnama, W.; Nandiyanto, A. B. D.; Shafii, M. A.

    2017-03-01

    Loss of Load Probability (LOLP) index showing the quality and performance of an electrical system. LOLP value is affected by load growth, the load duration curve, forced outage rate of the plant, number and capacity of generating units. This reliability index calculation begins with load forecasting to 2018 using multiple regression method. Scenario 1 with compositions of conventional plants produce the largest LOLP in 2017 amounted to 71.609 days / year. While the best reliability index generated in scenario 2 with the NPP amounted to 6.941 days / year in 2015. Improved reliability of systems using nuclear power more efficiently when compared to conventional plants because it also has advantages such as emission-free, inexpensive fuel costs, as well as high level of plant availability.

  20. Evaluation of indeterminacy of initial data for cad system of electric engine suspension

    NASA Astrophysics Data System (ADS)

    Antipin, D. Ya; Izmerov, O. V.; Shorokhov, S. G.; Nadtochey, D. G.

    2018-03-01

    The research of the variants of the suspension of the traction electric motor of diesel locomotives was performed. It was found that the method of designing the suspension does not take into consideration the possible changes of the characteristics of the parts in operation conditions. Variants of the suspension design were proposed and patented, which provide the work reliability despite the operating conditions.

  1. Graphical Contingency Analysis for the Nation's Electric Grid

    ScienceCinema

    Zhenyu (Henry) Huang

    2017-12-09

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agalgaonkar, Yashodhan P.; Hammerstrom, Donald J.

    The Pacific Northwest Smart Grid Demonstration (PNWSGD) was a smart grid technology performance evaluation project that included multiple U.S. states and cooperation from multiple electric utilities in the northwest region. One of the local objectives for the project was to achieve improved distribution system reliability. Toward this end, some PNWSGD utilities automated their distribution systems, including the application of fault detection, isolation, and restoration and advanced metering infrastructure. In light of this investment, a major challenge was to establish a correlation between implementation of these smart grid technologies and actual improvements of distribution system reliability. This paper proposes using Welch’smore » t-test to objectively determine and quantify whether distribution system reliability is improving over time. The proposed methodology is generic, and it can be implemented by any utility after calculation of the standard reliability indices. The effectiveness of the proposed hypothesis testing approach is demonstrated through comprehensive practical results. It is believed that wider adoption of the proposed approach can help utilities to evaluate a realistic long-term performance of smart grid technologies.« less

  3. Three empirical essays in energy economics

    NASA Astrophysics Data System (ADS)

    Pless, Jacquelyn Ryan

    This dissertation explores society's relationship with energy systems. Focusing on two areas of energy economics---electricity reliability and clean energy technology adoption---my objective is to provide insights on energy markets that can contribute towards informing energy policy and improving quality of life. In the first chapter, I examine how firm-level corruption on the demand side of the electricity sector impacts electricity reliability in developing countries. Showing that bribes for electricity connections are closely related to power outages experienced by firms, this chapter demonstrates how consumer-level corrupt behavior negatively impacts electricity service provision. In the second chapter, I study homeowners' stated information searching about solar photovoltaic (PV) adoption in California's residential market. Exploring differences between the types of information sought by consumers adopting solar through third-party ownership (TPO) relative to consumers who purchase solar systems outright (host-ownership (HO)), this chapter sheds light on differences between business model consumer preferences in the residential solar PV market. Lastly, in the third chapter I estimate solar subsidy pass-through to the prices faced by consumers in California's residential solar PV market and ask whether incidence differs for TPO consumers where subsidies are directed to the third party owner of the system (or the "seller") and HO consumers where subsidies go directly to the consumer (or the "buyer"). I find that TPO consumers capture more than 100 percent of every dollar of solar subsidy while HO consumers capture less than 100 percent of every dollar. This is surprising because standard economic theory predicts that the relative benefit of a subsidy does not depend on to whom it is directed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph H.; Stewart, Emma M.; Smith, Travis

    This report addresses the potential use of phasor measurement units (PMUs) within electricity distribution systems, and was written to assess whether or not PMUs could provide significant benefit, at the national level. We analyze examples of present and emerging distribution-system issues related to reliability, integration of distributed energy resources, and the changing electrical characteristics of load. We find that PMUs offer important and irreplaceable advantages over present approaches. However, we also find that additional research and development for standards, testing and calibration, demonstration projects, and information sharing is needed to help industry capture these benefits.

  5. Space nuclear power applied to electric propulsion

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Darooka, D.; Isenberg, L.

    1989-01-01

    Space reactor power systems with characteristics ideal for advanced spacecraft systems applications are discussed. These characteristics are: high power-to-weight ratio (15 to 33 W/kg); high volume density (high ballistic coefficient); no preferential orientation in orbit; long operational life; high reliability; and total launch and operational safety. These characteristics allow the use of electric propulsion to raise spacecraft from low earth parking orbits to operational orbits, greatly increasing the useful orbit payload for a given launch vehicle by eliminating the need for a separation injection stage. A proposed demonstration mission is described.

  6. AMIE Delivers Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, Karma; Green, Johney; Jackson, Roderick

    ORNL and many industry partners developed the Additive Manufacturing Integrated Energy (AMIE) demonstration to address electricity supply and reliability challenges via an integrated approach to power generation, storage, and use. AMIE demonstrates rapid innovation through additive manufacturing (3D printing) to connect a natural gas-powered hybrid electric vehicle to a high-performance building that produces, consumes, and stores renewable energy. To offset power supply disruptions, the vehicle’s engine can provide complementary power to the building. Fitted with an advanced power control system and then scaled up, this concept can support electricity needs worldwide.

  7. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  8. AMIE Delivers Innovation

    ScienceCinema

    Sawyer, Karma; Green, Johney; Jackson, Roderick; Love, Lonnie

    2018-01-16

    ORNL and many industry partners developed the Additive Manufacturing Integrated Energy (AMIE) demonstration to address electricity supply and reliability challenges via an integrated approach to power generation, storage, and use. AMIE demonstrates rapid innovation through additive manufacturing (3D printing) to connect a natural gas-powered hybrid electric vehicle to a high-performance building that produces, consumes, and stores renewable energy. To offset power supply disruptions, the vehicle’s engine can provide complementary power to the building. Fitted with an advanced power control system and then scaled up, this concept can support electricity needs worldwide.

  9. Test and evaluation of 23 electric vehicles for state-of-the-art assessment

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Denington, R. J.

    1978-01-01

    Data developed by ERDA used to evaluate the performance parameters of modern electric vehicles is presented with reference to range, acceleration, coast-down, and braking. Eight of the tested vehicles had some type of regenerative braking system, which provided range increases from 1 to 31 percent. In comparison with conventional vehicles, performance was found to be lower, and reliability poorer. Energy consumption was the same, but electric power is less damaging to the environment than hydrocarbon fuels, and does not use up an increasingly scarce resource.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARTONE, ERIK

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  11. System Assessment of a High Power 3-U CubeSat

    NASA Technical Reports Server (NTRS)

    Shaw, Katie

    2016-01-01

    The Advanced eLectrical Bus (ALBus) CubeSat project is a technology demonstration mission of a 3-UCubeSat with an advanced, digitally controlled electrical power system capability and novel use of Shape Memory Alloy (SMA) technology for reliable deployable solar array mechanisms. The objective of the project is to, through an on orbit demonstration, advance the state of power management and distribution (PMAD) capabilities to enable future missions requiring higher power, flexible and reliable power systems. The goals of the mission include demonstration of: 100 Watt distribution to a target electrical load, efficient battery charging in the orbital environment, flexible power system distribution interfaces, adaptation of power system control on orbit, and reliable deployment of solar arrays and antennas utilizing re-settable SMA mechanisms. The power distribution function of the ALBus PMAD system is unique in the total power to target load capability of 100 W, the flexibility to support centralized or point-to-load regulation and ability to respond to fast transient power requirements. Power will be distributed from batteries at 14.8 V, 6.5 A to provide 100 W of power directly to a load. The deployable solar arrays utilize NASA Glenn Research Center superelastic and activated Nitinol(Nickel-Titanium alloy) Shape Memory Alloy (SMA) technology for hinges and a retention and release mechanism. The deployable solar array hinge design features utilization of the SMA material properties for dual purpose. The hinge uses the shape memory properties of the SMA to provide the spring force to deploy the arrays. The electrical conductivity properties of the SMA also enables the design to provide clean conduits for power transfer from the deployable arrays to the power management system. This eliminates the need for electrical harnesses between the arrays and the PMAD system in the ALBus system design. The uniqueness of the SMA retention and release mechanism design is the ability to reset the mechanism, allowing functional tests of the mechanisms prior to flight with no degradation of performance. The project is currently in preparation at the NASA Glenn Research Center for a launch in late calendar year of 2017. The 100 Watt power distribution and dual purpose, re-settable SMA mechanisms introduced several system level challenges due to the physical constraints in volume, mass and surface area of 3-U CubeSats. Several trade studies and design cycles have been completed to develop a system which supports the project objectives. This paper is a report on the results of the system level trade studies and assessments. The results include assessment of options for thermal control of 100 Watts of power dissipation, data from system analyses and engineering development tests, limitations of the 3-U system and extensibility to larger scale CubeSat missions.

  12. System Statement of Tasks of Calculating and Providing the Reliability of Heating Cogeneration Plants in Power Systems

    NASA Astrophysics Data System (ADS)

    Biryuk, V. V.; Tsapkova, A. B.; Larin, E. A.; Livshiz, M. Y.; Sheludko, L. P.

    2018-01-01

    A set of mathematical models for calculating the reliability indexes of structurally complex multifunctional combined installations in heat and power supply systems was developed. Reliability of energy supply is considered as required condition for the creation and operation of heat and power supply systems. The optimal value of the power supply system coefficient F is based on an economic assessment of the consumers’ loss caused by the under-supply of electric power and additional system expences for the creation and operation of an emergency capacity reserve. Rationing of RI of the industrial heat supply is based on the use of concept of technological margin of safety of technological processes. The definition of rationed RI values of heat supply of communal consumers is based on the air temperature level iside the heated premises. The complex allows solving a number of practical tasks for providing reliability of heat supply for consumers. A probabilistic model is developed for calculating the reliability indexes of combined multipurpose heat and power plants in heat-and-power supply systems. The complex of models and calculation programs can be used to solve a wide range of specific tasks of optimization of schemes and parameters of combined heat and power plants and systems, as well as determining the efficiency of various redundance methods to ensure specified reliability of power supply.

  13. Research on Operation Assessment Method for Energy Meter

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Xu, Renheng

    2018-03-01

    The existing electric energy meter rotation maintenance strategy regularly checks the electric energy meter and evaluates the state. It only considers the influence of time factors, neglects the influence of other factors, leads to the inaccuracy of the evaluation, and causes the waste of resources. In order to evaluate the running state of the electric energy meter in time, a method of the operation evaluation of the electric energy meter is proposed. The method is based on extracting the existing data acquisition system, marketing business system and metrology production scheduling platform that affect the state of energy meters, and classified into error stability, operational reliability, potential risks and other factors according to the influencing factors, based on the above basic test score, inspecting score, monitoring score, score of family defect detection. Then, according to the evaluation model according to the scoring, we evaluate electric energy meter operating state, and finally put forward the corresponding maintenance strategy of rotation.

  14. Electrical, Electronic, and Electromechanical (EEE) parts management and control requirements for NASA space flight programs

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This document establishes electrical, electronic, and electromechanical (EEE) parts management and control requirements for contractors providing and maintaining space flight and mission-essential or critical ground support equipment for NASA space flight programs. Although the text is worded 'the contractor shall,' the requirements are also to be used by NASA Headquarters and field installations for developing program/project parts management and control requirements for in-house and contracted efforts. This document places increased emphasis on parts programs to ensure that reliability and quality are considered through adequate consideration of the selection, control, and application of parts. It is the intent of this document to identify disciplines that can be implemented to obtain reliable parts which meet mission needs. The parts management and control requirements described in this document are to be selectively applied, based on equipment class and mission needs. Individual equipment needs should be evaluated to determine the extent to which each requirement should be implemented on a procurement. Utilization of this document does not preclude the usage of other documents. The entire process of developing and implementing requirements is referred to as 'tailoring' the program for a specific project. Some factors that should be considered in this tailoring process include program phase, equipment category and criticality, equipment complexity, and mission requirements. Parts management and control requirements advocated by this document directly support the concept of 'reliability by design' and are an integral part of system reliability and maintainability. Achieving the required availability and mission success objectives during operation depends on the attention given reliability and maintainability in the design phase. Consequently, it is intended that the requirements described in this document are consistent with those of NASA publications, 'Reliability Program Requirements for Aeronautical and Space System Contractors,' NHB 5300.4(1A-l); 'Maintainability Program Requirements for Space Systems,' NHB 5300.4(1E); and 'Quality Program Provisions for Aeronautical and Space System Contractors,' NHB 5300.4(1B).

  15. Advancement of a 30K W Solar Electric Propulsion System Capability for NASA Human and Robotic Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Manzella, David H.

    2012-01-01

    Solar Electric Propulsion has evolved into a demonstrated operational capability performing station keeping for geosynchronous satellites, enabling challenging deep-space science missions, and assisting in the transfer of satellites from an elliptical orbit Geostationary Transfer Orbit (GTO) to a Geostationary Earth Orbit (GEO). Advancing higher power SEP systems will enable numerous future applications for human, robotic, and commercial missions. These missions are enabled by either the increased performance of the SEP system or by the cost reductions when compared to conventional chemical propulsion systems. Higher power SEP systems that provide very high payload for robotic missions also trade favorably for the advancement of human exploration beyond low Earth orbit. Demonstrated reliable systems are required for human space flight and due to their successful present day widespread use and inherent high reliability, SEP systems have progressively become a viable entrant into these future human exploration architectures. NASA studies have identified a 30 kW-class SEP capability as the next appropriate evolutionary step, applicable to wide range of both human and robotic missions. This paper describes the planning options, mission applications, and technology investments for representative 30kW-class SEP mission concepts under consideration by NASA

  16. Sensor Systems for Prognostics and Health Management

    PubMed Central

    Cheng, Shunfeng; Azarian, Michael H.; Pecht, Michael G.

    2010-01-01

    Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented. PMID:22219686

  17. Sensor systems for prognostics and health management.

    PubMed

    Cheng, Shunfeng; Azarian, Michael H; Pecht, Michael G

    2010-01-01

    Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented.

  18. Design of Electrical Systems for Rocket Propulsion Test Facilities at the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Hughes, Mark S.; Davis, Dawn M.; Bakker, Henry J.; Jensen, Scott L.

    2007-01-01

    This viewgraph presentation reviews the design of the electrical systems that are required for the testing of rockets at the Rocket Propulsion Facility at NASA Stennis Space Center (NASA SSC). NASA/SSC s Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware. These must be accurate reliable comprehensive and timely. Data acquisition in a rocket propulsion test environment is challenging: severe temporal transient dynamic environments, large thermal gradients, vacuum to 15 ksi pressure regimes SSC has developed and employs DAS, control systems and control systems and robust instrumentation that effectively satisfies these challenges.

  19. Product reliability and thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Gaston, Ryan; Feist, Rebekah; Yeung, Simon; Hus, Mike; Bernius, Mark; Langlois, Marc; Bury, Scott; Granata, Jennifer; Quintana, Michael; Carlson, Carl; Sarakakis, Georgios; Ogden, Douglas; Mettas, Adamantios

    2009-08-01

    Despite significant growth in photovoltaics (PV) over the last few years, only approximately 1.07 billion kWhr of electricity is estimated to have been generated from PV in the US during 2008, or 0.27% of total electrical generation. PV market penetration is set for a paradigm shift, as fluctuating hydrocarbon prices and an acknowledgement of the environmental impacts associated with their use, combined with breakthrough new PV technologies, such as thin-film and BIPV, are driving the cost of energy generated with PV to parity or cost advantage versus more traditional forms of energy generation. In addition to reaching cost parity with grid supplied power, a key to the long-term success of PV as a viable energy alternative is the reliability of systems in the field. New technologies may or may not have the same failure modes as previous technologies. Reliability testing and product lifetime issues continue to be one of the key bottlenecks in the rapid commercialization of PV technologies today. In this paper, we highlight the critical need for moving away from relying on traditional qualification and safety tests as a measure of reliability and focus instead on designing for reliability and its integration into the product development process. A drive towards quantitative predictive accelerated testing is emphasized and an industrial collaboration model addressing reliability challenges is proposed.

  20. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  1. Electrical Actuation Technology Bridging

    NASA Astrophysics Data System (ADS)

    Hammond, Monica; Sharkey, John

    1993-05-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  2. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  3. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2011-11-15

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  4. Real-time performance monitoring and management system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  5. Performance Analysis of Isolated Hybrid Power Plant Model with Dynamic Load Conditions - Morning, Noon and Afternoon Transitions

    NASA Astrophysics Data System (ADS)

    Irawati, Rina

    2018-02-01

    Diesel Generator with Photovoltaic Hybrid Power Plant is one of the solutions for supply electric demand to isolated area. The energy sources that can be used for hybrid system are such as photovoltaic, wind turbine, and biomass or biogas, because these sources are almost available in every isolated area. This research used a model of hybrid system from diesel generator and 1.28 kWp photovoltaic power plant. The reliability and some of power quality of this system tested by 1300VA house hold daily load characteristic effectively 24 hour. Power quality and some electricity parameters during transition mode for each resource will be analyzed. Furthermore the power quality analyze will be conducted and evaluated base on Electrical Engineers' Association (EEA).

  6. 78 FR 48661 - Application for Presidential Permit; Soule River Hydroelectric Project: Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Hydroelectric Project: Correction AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application; correction. SUMMARY: The Department of Energy (DOE) Office of Electricity Delivery..., Office of Electricity Delivery and Energy Reliability (OE-20), U.S. Department of Energy, 1000...

  7. Examination of local and systemic in vivo responses to electrical injury using an electrical burn delivery system.

    PubMed

    Shupp, Jeffrey W; Moffatt, Lauren T; Nguyen, Thu; Ramella-Roman, Jessica C; Hammamieh, Rasha; Miller, Stacy-Ann; Leto, Ellen J; Jo, Daniel Y; Randad, Pranay R; Jett, Marti; Jeng, James C; Jordan, Marion H

    2012-01-01

    Electrical injuries are devastating and are difficult to manage due to the complexity of the tissue damage and physiological impacts. A paucity of literature exists which describes models for electrical injury. To date, those models have been used primarily to demonstrate thermal and morphological effects at the points of contact. Creating a more representative model for human injury and further elucidating the physics and pathophysiology of this unique form of tissue injury could be helpful in designing stage-appropriate therapy and improving limb salvage. An electrical burn delivery system was developed to accurately and reliably deliver electrical current at varying exposure times. A series of Sprague-Dawley rats were anesthetized and subjected to injury with 1000 V of direct current at incremental exposure times (2-20 seconds). Whole blood and plasma were obtained immediately before shock, immediately postinjury, and then hourly for 3 hours. Laser Doppler images of tissue adjacent to the entrance and exit wounds were obtained at the outlined time points to provide information on tissue perfusion. The electrical exposure was nonlethal in all animals. The size and the depth of contact injury increased in proportion to the exposure times and were reproducible. Skin adjacent to injury (both entrance and exit sites) exhibited marked edema within 30 minutes. In adjacent skin of upper extremity wounds, mean perfusion units increased immediately postinjury and then gradually decreased in proportion to the severity of the injuries. In the lower extremity, this phenomenon was only observed for short contact times, while longer contact times had marked malperfusion throughout. In the plasma, interleukin-10 and vascular endothelial growth factor levels were found to be augmented by injury. Systemic transcriptome analysis revealed promising information about signal networks involved in dermatological, connective tissue, and neurological pathophysiological processes. A reliable and reproducible in vivo model has been developed for characterizing the pathophysiology of high-tension electrical injury. Changes in perfusion were observed near and between entrance and exit wounds that appear consistent with injury severity. Further studies are underway to correlate differential mRNA expression with injury severity.

  8. Advanced Cogeneration Technology Economic Optimization Study (ACTEOS)

    NASA Technical Reports Server (NTRS)

    Nanda, P.; Ansu, Y.; Manuel, E. H., Jr.; Price, W. G., Jr.

    1980-01-01

    The advanced cogeneration technology economic optimization study (ACTEOS) was undertaken to extend the results of the cogeneration technology alternatives study (CTAS). Cost comparisons were made between designs involving advanced cogeneration technologies and designs involving either conventional cogeneration technologies or not involving cogeneration. For the specific equipment cost and fuel price assumptions made, it was found that: (1) coal based cogeneration systems offered appreciable cost savings over the no cogeneration case, while systems using coal derived liquids offered no costs savings; and (2) the advanced cogeneration systems provided somewhat larger cost savings than the conventional systems. Among the issues considered in the study included: (1) temporal variations in steam and electric demands; (2) requirements for reliability/standby capacity; (3) availability of discrete equipment sizes; (4) regional variations in fuel and electricity prices; (5) off design system performance; and (6) separate demand and energy charges for purchased electricity.

  9. 78 FR 63172 - Commission Information Collection Activities (FERC-733); Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Electric Reliability Corporation (NERC) and EIA, to fielding and collecting data using a FERC designed... Commission in time to complete the 2014 report to Congress. NERC, as the Electric Reliability Organization... dispatchable and non-dispatchable resources that it needs to conduct its reliability work. Reporting demand...

  10. Solar Newsletter | Solar Research | NREL

    Science.gov Websites

    , General Electric Optimize Voltage Control for Utility-Scale PV As utilities increasingly add solar power components that may be used to integrate distributed solar PV onto distribution systems. More than 335 data Innovation Award for Grid Reliability PV Demonstration First Solar, the California Independent System

  11. Tracking and data relay satellite system configuration and tradeoff study. Volume 4: Spacecraft and subsystem design, part 1

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1972-01-01

    The design and development of the Tracking and Data Relay satellite are discussed. The subjects covered are: (1) spacecraft mechanical and structural design, (2) attitude stabilization and control subsystem, (3) propulsion system, (4) electrical power subsystem, (5) thermal control, and (6) reliability engineering.

  12. A Wavelet-based Fast Discrimination of Transformer Magnetizing Inrush Current

    NASA Astrophysics Data System (ADS)

    Kitayama, Masashi

    Recently customers who need electricity of higher quality have been installing co-generation facilities. They can avoid voltage sags and other distribution system related disturbances by supplying electricity to important load from their generators. For another example, FRIENDS, highly reliable distribution system using semiconductor switches or storage devices based on power electronics technology, is proposed. These examples illustrates that the request for high reliability in distribution system is increasing. In order to realize these systems, fast relaying algorithms are indispensable. The author proposes a new method of detecting magnetizing inrush current using discrete wavelet transform (DWT). DWT provides the function of detecting discontinuity of current waveform. Inrush current occurs when transformer core becomes saturated. The proposed method detects spikes of DWT components derived from the discontinuity of the current waveform at both the beginning and the end of inrush current. Wavelet thresholding, one of the wavelet-based statistical modeling, was applied to detect the DWT component spikes. The proposed method is verified using experimental data using single-phase transformer and the proposed method is proved to be effective.

  13. Distribution System Reliability Analysis for Smart Grid Applications

    NASA Astrophysics Data System (ADS)

    Aljohani, Tawfiq Masad

    Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.

  14. 76 FR 35867 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Request AGENCY: Office of Electricity Delivery and Energy Reliability (OE), U.S. Department of Energy (DOE... Office of Electricity Delivery and Energy Reliability is soliciting comments on the proposed revisions... or by Fax 202-586-2623 is recommended. The mailing address is Office of Electricity Delivery and...

  15. 78 FR 11633 - Application To Export Electric Energy; ConocoPhillips Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ...Phillips Company AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of Application. SUMMARY: ConocoPhillips Company (CoP) has applied to renew its authority to transmit electric... Delivery and Energy Reliability, Mail Code: OE-20, U.S. Department of Energy, 1000 Independence Avenue SW...

  16. 75 FR 22579 - Application To Export Electric Energy; Morgan Stanley Capital Group Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... Stanley Capital Group Inc. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION...: Office of Electricity Delivery and Energy Reliability, Mail Code: OE-20, U.S. Department of Energy, 1000.... Zabrocki, Morgan Stanley & Co. Incorporated, 2000 Westchester Ave., Purchase, NY 10577 and Daniel E. Frank...

  17. 76 FR 67430 - Application To Export Electric Energy; Tenaska Power Services Co.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... Services Co. AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: Tenaska Power Services Co. (Tenaska) has applied to renew its authority to transmit... of Electricity Delivery and Energy Reliability, Mail Code: OE-20, U.S. Department of Energy, 1000...

  18. Do intensity ratings and skin conductance responses reliably discriminate between different stimulus intensities in experimentally induced pain?

    PubMed

    Breimhorst, Markus; Sandrock, Stephan; Fechir, Marcel; Hausenblas, Nadine; Geber, Christian; Birklein, Frank

    2011-01-01

    The present study addresses the question whether pain-intensity ratings and skin conductance responses (SCRs) are able to detect different intensities of phasic painful stimuli and to determine the reliability of this discrimination. For this purpose, 42 healthy participants of both genders were assigned to either electrical, mechanical, or laser heat-pain stimulation (each n = 14). A whole range of single brief painful stimuli were delivered on the right volar forearm of the dominant hand in a randomized order. Pain-intensity ratings and SCRs were analyzed. Using generalizability theory, individual and gender differences were the main contributors to the variability of both intensity ratings and SCRs. Most importantly, we showed that pain-intensity ratings are a reliable measure for the discrimination of different pain stimulus intensities in the applied modalities. The reliability of SCR was adequate when mechanical and heat stimuli were tested but failed for the discrimination of electrical stimuli. Further studies are needed to reveal the reason for this lack of accuracy for SCRs when applying electrical pain stimuli. Our study could help researchers to better understand the relationship between pain and activation of the sympathetic nervous system. Pain researchers are furthermore encouraged to consider individual and gender differences when measuring pain intensity and the concomitant SCRs in experimental settings. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  19. Solar power satellite system definition study. Volume 1, phase 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed.

  20. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less

  1. Optical sensors for electrical elements of a medium voltage distribution network

    NASA Astrophysics Data System (ADS)

    De Maria, Letizia; Bartalesi, Daniele; Serragli, Paolo; Paladino, Domenico

    2012-04-01

    The aging of most of the components of the National transmission and distribution system can potentially influence the reliability of power supply in a Medium Voltage (MV) network. In order to prevent possible dangerous situations, selected diagnostic indicators on electrical parts exploiting reliable and potentially low-cost sensors are required. This paper presents results concerning two main research activities regarding the development and application of innovative optical sensors for the diagnostic of MV electrical components. The first concerns a multi-sensor prototype for the detection of pre-discharges in MV switchboards: it is the combination of three different types of sensors operating simultaneously to detect incipient failure and to reduce the occurrence of false alarms. The system is real-time controlled by an embedded computer through a LabView interface. The second activity refers to a diagnostic tool to provide significant real-time information about early aging of MV/Low Voltage (LV) transformers by means of its vibration fingerprint. A miniaturized Optical Micro-Electro-Mechanical System (MEMS) based unit has been assembled for vibration measurements, wireless connected to a remote computer and controlled via LabView interface. Preliminary comparative tests were carried out with standard piezoelectric accelerometers on a conventional MV/LV test transformer under open circuit and in short-circuited configuration.

  2. America in Space: The First Decade - Spacecraft Power

    NASA Technical Reports Server (NTRS)

    Corliss, William R.

    1970-01-01

    Electrical power is necessary for every manned and unmanned spacecraft, with the exception of a few special-purpose Earth satellites. It is the reliable flow and availability of electrical power that allows man to extend his personal ventures safely beyond the atmosphere and keeps unmanned scientific payloads serving as useful tools for space exploration and applications. Electric power is essential to space communications, guidance, control, tracking, telemetry, life-support systems, sensors, data handling and storage, and to assure the proper functioning of countless experimental and housekeeping systems and subsystems aboard operating spacecraft. It remains the task of the National Aeronautics and Space Administration, since NASA's founding in 1958, to fully investigate the chemical, nuclear and solar sources of energy and to see how best they can be converted to reliable spacecraft power. The research and technology of power-generating systems illustrates a seldom recognized goal of NASA - to assure this Nation a freedom of choice; the choice, in this case, being that of going where we wish to go in the atmosphere or in space. Technical capability is the key to such freedom. Power requirements and profiles are reviewed and power sources, including batteries, fuel cells, solar cell, RTGs and nuclear fission power plants in space, are highlighted.

  3. 10 CFR 500.3 - Electric regions-electric region groupings for reliability measurements under the Powerplant and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Electric regions-electric region groupings for reliability measurements under the Powerplant and Industrial Fuel Use Act of 1978. 500.3 Section 500.3 Energy DEPARTMENT OF... Coordination Group (FCG)—24. 8. Middle South Utilities—25. 9. Southern Company—22, 23. 10. Gulf States Group—35...

  4. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  5. High-Frequency ac Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Mildice, James

    1987-01-01

    Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.

  6. Foundational Report Series. Advanced Distribution management Systems for Grid Modernization (Importance of DMS for Distribution Grid Modernization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianhui

    2015-09-01

    Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reductionmore » of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.« less

  7. The all-electric aircraft - A systems view and proposed NASA research Programs

    NASA Technical Reports Server (NTRS)

    Spitzer, C. R.

    1984-01-01

    It is expected that all-electric aircraft, whether military or commercial, will exhibit reduced weight, acquisition cost and fuel consumption, an expanded flight envelope and improved survivability and reliability, simpler maintenance, and reduced support equipment. Also noteworthy are dramatic improvements in mission adaptability, based on the degree to which control system performance relies on easily exchanged software. Flight-critical secondary power and control systems whose malfunction would mean loss of an aircraft pose failure detection and design methodology problems, however, that have only begun to be addressed. NASA-sponsored research activities concerned with these problems and prospective benefits are presently discussed.

  8. Design criteria and candidate electrical power systems for a reusable Space Shuttle booster.

    NASA Technical Reports Server (NTRS)

    Merrifield, D. V.

    1972-01-01

    This paper presents the results of a preliminary study to establish electrical power requirements, investigate candidate power sources, and select a representative power generation concept for the NASA Space Shuttle booster stage. Design guidelines and system performance requirements are established. Candidate power sources and combinations thereof are defined and weight estimates made. The selected power source concept utilizes secondary silver-zinc batteries, engine-driven alternators with constant speed drive, and an airbreathing gas turbine. The need for cost optimization, within safety, reliability, and performance constraints, is emphasized as being the most important criteria in design of the final system.

  9. Power system modeling and optimization methods vis-a-vis integrated resource planning (IRP)

    NASA Astrophysics Data System (ADS)

    Arsali, Mohammad H.

    1998-12-01

    The state-of-the-art restructuring of power industries is changing the fundamental nature of retail electricity business. As a result, the so-called Integrated Resource Planning (IRP) strategies implemented on electric utilities are also undergoing modifications. Such modifications evolve from the imminent considerations to minimize the revenue requirements and maximize electrical system reliability vis-a-vis capacity-additions (viewed as potential investments). IRP modifications also provide service-design bases to meet the customer needs towards profitability. The purpose of this research as deliberated in this dissertation is to propose procedures for optimal IRP intended to expand generation facilities of a power system over a stretched period of time. Relevant topics addressed in this research towards IRP optimization are as follows: (1) Historical prospective and evolutionary aspects of power system production-costing models and optimization techniques; (2) A survey of major U.S. electric utilities adopting IRP under changing socioeconomic environment; (3) A new technique designated as the Segmentation Method for production-costing via IRP optimization; (4) Construction of a fuzzy relational database of a typical electric power utility system for IRP purposes; (5) A genetic algorithm based approach for IRP optimization using the fuzzy relational database.

  10. Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures

    DOE PAGES

    Zlotnik, Anatoly; Roald, Line; Backhaus, Scott; ...

    2016-03-24

    The extensive installation of gas-fired power plants in many parts of the world has led electric systems to depend heavily on reliable gas supplies. The use of gas-fired generators for peak load and reserve provision causes high intraday variability in withdrawals from high-pressure gas transmission systems. Such variability can lead to gas price fluctuations and supply disruptions that affect electric generator dispatch, electricity prices, and threaten the security of power systems and gas pipelines. These infrastructures function on vastly different spatio-temporal scales, which prevents current practices for separate operations and market clearing from being coordinated. Here in this article, wemore » apply new techniques for control of dynamic gas flows on pipeline networks to examine day-ahead scheduling of electric generator dispatch and gas compressor operation for different levels of integration, spanning from separate forecasting, and simulation to combined optimal control. We formulate multiple coordination scenarios and develop tractable physically accurate computational implementations. These scenarios are compared using an integrated model of test networks for power and gas systems with 24 nodes and 24 pipes, respectively, which are coupled through gas-fired generators. The analysis quantifies the economic efficiency and security benefits of gas-electric coordination and dynamic gas system operation.« less

  11. Distribution System Pricing with Distributed Energy Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hledik, Ryan; Lazar, Jim; Schwartz, Lisa

    Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoidsmore » unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.« less

  12. Integrated topology for an aircraft electric power distribution system using MATLAB and ILP optimization technique and its implementation

    NASA Astrophysics Data System (ADS)

    Madhikar, Pratik Ravindra

    The most important and crucial design feature while designing an Aircraft Electric Power Distribution System (EPDS) is reliability. In EPDS, the distribution of power is from top level generators to bottom level loads through various sensors, actuators and rectifiers with the help of AC & DC buses and control switches. As the demands of the consumer is never ending and the safety is utmost important, there is an increase in loads and as a result increase in power management. Therefore, the design of an EPDS should be optimized to have maximum efficiency. This thesis discusses an integrated tool that is based on a Need Based Design method and Fault Tree Analysis (FTA) to achieve the optimum design of an EPDS to provide maximum reliability in terms of continuous connectivity, power management and minimum cost. If an EPDS is formulated as an optimization problem then it can be solved with the help of connectivity, cost and power constraints by using a linear solver to get the desired output of maximum reliability at minimum cost. Furthermore, the thesis also discusses the viability and implementation of the resulted topology on typical large aircraft specifications.

  13. Multistage Stochastic Programming and its Applications in Energy Systems Modeling and Optimization

    NASA Astrophysics Data System (ADS)

    Golari, Mehdi

    Electric energy constitutes one of the most crucial elements to almost every aspect of life of people. The modern electric power systems face several challenges such as efficiency, economics, sustainability, and reliability. Increase in electrical energy demand, distributed generations, integration of uncertain renewable energy resources, and demand side management are among the main underlying reasons of such growing complexity. Additionally, the elements of power systems are often vulnerable to failures because of many reasons, such as system limits, weak conditions, unexpected events, hidden failures, human errors, terrorist attacks, and natural disasters. One common factor complicating the operation of electrical power systems is the underlying uncertainties from the demands, supplies and failures of system components. Stochastic programming provides a mathematical framework for decision making under uncertainty. It enables a decision maker to incorporate some knowledge of the intrinsic uncertainty into the decision making process. In this dissertation, we focus on application of two-stage and multistage stochastic programming approaches to electric energy systems modeling and optimization. Particularly, we develop models and algorithms addressing the sustainability and reliability issues in power systems. First, we consider how to improve the reliability of power systems under severe failures or contingencies prone to cascading blackouts by so called islanding operations. We present a two-stage stochastic mixed-integer model to find optimal islanding operations as a powerful preventive action against cascading failures in case of extreme contingencies. Further, we study the properties of this problem and propose efficient solution methods to solve this problem for large-scale power systems. We present the numerical results showing the effectiveness of the model and investigate the performance of the solution methods. Next, we address the sustainability issue considering the integration of renewable energy resources into production planning of energy-intensive manufacturing industries. Recently, a growing number of manufacturing companies are considering renewable energies to meet their energy requirements to move towards green manufacturing as well as decreasing their energy costs. However, the intermittent nature of renewable energies imposes several difficulties in long term planning of how to efficiently exploit renewables. In this study, we propose a scheme for manufacturing companies to use onsite and grid renewable energies provided by their own investments and energy utilities as well as conventional grid energy to satisfy their energy requirements. We propose a multistage stochastic programming model and study an efficient solution method to solve this problem. We examine the proposed framework on a test case simulated based on a real-world semiconductor company. Moreover, we evaluate long-term profitability of such scheme via so called value of multistage stochastic programming.

  14. Accelerated degradation of silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Clemson University has been engaged for the past five years in a program to determine the reliability attributes of solar cells by means of accelerated test procedures. The cells are electrically measured and visually inspected and then subjected for a period of time to stress in excess of that normally encountered in use, and then they are reinspected. Changes are noted and the process repeated. This testing has thus far involved 23 different unencapsulated cell types from 12 different manufacturers, and 10 different encapsulated cell types from 9 different manufacturers. Reliability attributes of metallization systems can be classified as major or minor, depending on the severity of the effects observed. As a result of the accelerated testing conducted under the Clemson program, major effects have been observed related to contact resistance and to mechanical adherence and solderability. This paper does not attempt a generalized survey of accelerated test results, but rather concentrates on one particular attribute of metallization that has been observed to cause electrical degradation - increased contact resistance due to Schottky barrier formation. In this example basic semiconductor theory was able to provide an understanding of the electrical effects observed during accelerated stress testing.

  15. Linking the open source, spatial electrification tool (ONSSET) and the open source energy modelling system (OSeMOSYS), with a focus on Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Arderne, Christopher; Siyal, Shahid; Zepeda, Eduardo; Taliotis, Constantinos; Bazilian, Morgan; de Roo, Ad; Tanvez, Yann; Oudalov, Alexandre; Scholtz, Ernst

    2017-04-01

    In September 2015, the United Nations General Assembly adopted Agenda 2030, which comprises a set of 17 Sustainable Development Goals (SDGs) defined by 169 targets. "Ensuring access to affordable, reliable, sustainable and modern energy for all by 2030" is the seventh goal (SDG7). While access to energy refers to more than electricity, the latter is the central focus of this work. According to the World Bank's 2015 Global Tracking Framework, roughly 15% of world population (or 1.1 billion people) lack access to electricity, and many more rely on poor quality electricity services. The majority of those without access (87%) reside in rural areas. This paper presents results of a Geographic Information Systems (GIS) approach coupled with open access data and linked to the Electricity Model Base for Africa (TEMBA), a model that represents each continental African country's electricity supply system. We present least-cost electrification strategies on a country-by-country basis for Sub-Saharan Africa. The electrification options include grid extension, mini-grid and stand-alone systems for rural, peri-urban, and urban contexts across the economy. At low levels of electricity demand there is a strong penetration of standalone technologies. However, higher electricity demand levels move the favourable electrification option from stand-alone systems to mini grid and to grid extensions.

  16. Issues in International Energy Consumption Analysis: Electricity Usage in India’s Housing Sector

    EIA Publications

    2014-01-01

    India offers a unique set of features for studying electricity use in the context of a developing country. First, it has a rapidly developing economy with high yearly growth rates in gross domestic product (GDP). Second, it has the second -largest population in the world and is likely to have the largest population in the future. Third, its electric system is maturing—with known difficulties (outages, shortages, issues with reliability and quality) that are characteristic of a developing country. This article focuses on electricity use in the residential sector of India and discusses key trends and provides an overview of available usage estimates from various sources. Indian households are an interesting environment where many of India’s unique features interact. The recent economic gains correlate with rising incomes and possible changes in living standards, which could affect electricity or other energy use within households. Additionally, the maturing electric system and large population in India both offer opportunities to study a range of interactions between electrification and electricity usage in a developing country.

  17. Study of component technologies for fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Lee, W. D.; Mathias, S.

    1980-01-01

    Heating, ventilation and air conditioning equipment are integrated with three types of fuel cells. System design and computer simulations are developed to utilize the thermal energy discharge of the fuel in the most cost effective manner. The fuel provides all of the electric needs and a loss of load probability analysis is used to ensure adequate power plant reliability. Equipment cost is estimated for each of the systems analyzed. A levelized annual cost reflecting owning and operating costs including the cost of money was used to select the most promising integrated system configurations. Cash flows are presented for the most promising 16 systems. Several systems for the 96 unit apartment complex (a retail store was also studied) were cost competitive with both gas and electric based conventional systems. Thermal storage is shown to be beneficial and the optimum absorption chiller sizing (waste heat recovery) in connection with electric chillers are developed. Battery storage was analyzed since the system is not electric grid connected. Advanced absorption chillers were analyzed as well. Recommendations covering financing, technical development, and policy issues are given to accelerate the commercialization of the fuel cell for on-site power generation in buildings.

  18. Comparison study of the technical characteristics and financial analysis of electric battery storage systems for residential grid

    NASA Astrophysics Data System (ADS)

    Palivos, Marios; Vokas, Georgios A.; Anastasiadis, Anestis; Papageorgas, Panagiotis; Salame, Chafic

    2018-05-01

    One of the major energy issues of our days is reliable and effective energy generation and supply of electricity grids. In recent years there has been experienced a rapid development and implementation of Renewable Energy Sources (RES) worldwide. On one hand, many Gigawatts of grid-connected renewables are being installed and on the other many Megawatts of hybrid renewable systems for residential use are being installed making use of electric battery systems, in order to cover all daily energy and power needs during. New types of batteries are being developed and many companies have made great progress providing a variety of electricity storage products. The purpose of this research is firstly to highlight the necessity and also the importance of the use of energy storage systems and secondly, through detailed technical and financial simulation analysis using HOMER Pro-optimization software, to compare the technical characteristics and performance of energy storage systems by various leading companies when installed in a residential renewable energy system with a specific load and at the same time to provide the most efficient system economically. Results concerning the operation and the choice of a storage system are derived.

  19. A Cooling System for the EAPU Shuttle Upgrade

    NASA Technical Reports Server (NTRS)

    Tongue, Stephen; Guyette, Greg; Irbeck, Bradley

    2001-01-01

    The Shuttle orbiter currently uses hydrazine-powered APU's for powering its hydraulic system pumps. To enhance vehicle safety and reliability, NASA is pursuing an APU upgrade where the hydrazine powered turbine is replaced by an electric motor pump and battery power supply. This EAPU (Electric APU) upgrade presents several thermal control challenges most notably the new requirement for moderate temperature control of high-power electron ics at 132 of (55.6 C). This paper describes how the existing Water Spray Boiler (WSB), which currently cools the hydraulic fluid and APU lubrication oil, is being modified to provide EAPU thermal management.

  20. Electrical actuation technology bridging, volume 1

    NASA Astrophysics Data System (ADS)

    Hammond, Monica S.; Doane, George B., III

    1993-01-01

    This document contains the proceedings from the conference. The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  1. COMPASS Final Report: Saturn Moons Orbiter Using Radioisotope Electric Propulsion (REP): Flagship Class Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document

  2. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  3. Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration.

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line optionsmore » would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.« less

  4. DMS Advanced Applications for Accommodating High Penetrations of DERs and Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Annabelle; Veda, Santosh; Maitra, Arindam

    Efficient and effective management of the electric distribution system requires an integrated approach to allow various systems to work in harmony, including distribution management systems (DMS), distributed energy resources (DERs), distributed energy resources management systems, and microgrids. This study highlights some outcomes from a recent project sponsored by the US Department of Energy, Office of Electricity Delivery and Energy Reliability, including information about (i) the architecture of these integrated systems and (ii) expanded functions of two example DMS applications to accommodate DERs: volt-var optimisation and fault location, isolation, and service restoration. In addition, the relevant DER group functions necessary tomore » support communications between the DMS and a microgrid controller in grid-tied mode are identified.« less

  5. Limited electricity access in health facilities of sub-Saharan Africa: a systematic review of data on electricity access, sources, and reliability

    PubMed Central

    Adair-Rohani, Heather; Zukor, Karen; Bonjour, Sophie; Wilburn, Susan; Kuesel, Annette C; Hebert, Ryan; Fletcher, Elaine R

    2013-01-01

    ABSTRACT Background: Access to electricity is critical to health care delivery and to the overarching goal of universal health coverage. Data on electricity access in health care facilities are rarely collected and have never been reported systematically in a multi-country study. We conducted a systematic review of available national data on electricity access in health care facilities in sub-Saharan Africa. Methods: We identified publicly-available data from nationally representative facility surveys through a systematic review of articles in PubMed, as well as through websites of development agencies, ministries of health, and national statistics bureaus. To be included in our analysis, data sets had to be collected in or after 2000, be nationally representative of a sub-Saharan African country, cover both public and private health facilities, and include a clear definition of electricity access. Results: We identified 13 health facility surveys from 11 sub-Saharan African countries that met our inclusion criteria. On average, 26% of health facilities in the surveyed countries reported no access to electricity. Only 28% of health care facilities, on average, had reliable electricity among the 8 countries reporting data. Among 9 countries, an average of 7% of facilities relied solely on a generator. Electricity access in health care facilities increased by 1.5% annually in Kenya between 2004 and 2010, and by 4% annually in Rwanda between 2001 and 2007. Conclusions: Energy access for health care facilities in sub-Saharan African countries varies considerably. An urgent need exists to improve the geographic coverage, quality, and frequency of data collection on energy access in health care facilities. Standardized tools should be used to collect data on all sources of power and supply reliability. The United Nations Secretary-General's “Sustainable Energy for All” initiative provides an opportunity to comprehensively monitor energy access in health care facilities. Such evidence about electricity needs and gaps would optimize use of limited resources, which can help to strengthen health systems. PMID:25276537

  6. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Lawrence E.

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  7. 46 CFR 169.621 - Communications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Communications. 169.621 Section 169.621 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.621 Communications. A reliable means of voice communications must be...

  8. 46 CFR 169.621 - Communications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Communications. 169.621 Section 169.621 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.621 Communications. A reliable means of voice communications must be...

  9. 46 CFR 169.621 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Communications. 169.621 Section 169.621 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.621 Communications. A reliable means of voice communications must be...

  10. 46 CFR 169.621 - Communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Communications. 169.621 Section 169.621 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.621 Communications. A reliable means of voice communications must be...

  11. Electrical characteristics of high-power AlGaN-GaN high electron mobility transistors irradiated with protons and heavy ions

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Bonsall, Jeremy; Lingley, Zachary; Brodie, Miles; Mason, Maribeth

    2017-02-01

    High electron mobility transistors (HEMTs) based on AlGaN-GaN hetero-structures are finding an increasing number of commercial and military applications that require high voltage, high power, and high efficiency operation. In recent years, leading GaN HEMT manufacturers have reported excellent RF power characteristics and encouraging reliability, but long-term reliability in the space environment still remains a major concern due to a large number of defects and traps present both in the bulk as well as at the surface, leading to undesirable characteristics including current collapse. Furthermore, degradation mechanisms in GaN HEMTs are still not well understood. Thus, reliability and radiation effects of GaN HEMTs should be studied before solid state power amplifiers (SSPAs) based on GaN HEMT technology are successfully deployed in space satellite systems. For the present study, we investigated electrical characteristics of high-power GaN HEMTs irradiated with protons and heavy ions under various irradiation and biasing conditions.

  12. Microcircuit Reliability Bibliography. Volume 4. 1976 Annual Reference Supplement. (Document Numbers 11045-11745)

    DTIC Science & Technology

    1976-04-01

    State Electron- Res. Lab., Eindhoven, Neth.) icw 16, no. 12, 1315-20, Dec. 1973 ATMOS-AN ELECTRICALLY REPROGRAMMABLE READ-ONLY MEMORY DEVICE. IEEE Trans...transistor is described that can be used nular and array geometry contacts by as an electrically reprogrammable read- the pr~nciple of superposition. It is...digital tuning techniques for FM and typical automobile systems can be readily television, and pocket pagers. Tn. implemented by COS1440S monolithic

  13. A Framework for Testing Automated Detection, Diagnosis, and Remediation Systems on the Smart Grid

    NASA Technical Reports Server (NTRS)

    Lau, Shing-hon

    2011-01-01

    America's electrical grid is currently undergoing a multi-billion dollar modernization effort aimed at producing a highly reliable critical national infrastructure for power - a Smart Grid. While the goals for the Smart Grid include upgrades to accommodate large quantities of clean, but transient, renewable energy and upgrades to provide customers with real-time pricing information, perhaps the most important objective is to create an electrical grid with a greatly increased robustness.

  14. Evaluation of power system security and development of transmission pricing method

    NASA Astrophysics Data System (ADS)

    Kim, Hyungchul

    The electric power utility industry is presently undergoing a change towards the deregulated environment. This has resulted in unbundling of generation, transmission and distribution services. The introduction of competition into unbundled electricity services may lead system operation closer to its security boundaries resulting in smaller operating safety margins. The competitive environment is expected to lead to lower price rates for customers and higher efficiency for power suppliers in the long run. Under this deregulated environment, security assessment and pricing of transmission services have become important issues in power systems. This dissertation provides new methods for power system security assessment and transmission pricing. In power system security assessment, the following issues are discussed (1) The description of probabilistic methods for power system security assessment; (2) The computation time of simulation methods; (3) on-line security assessment for operation. A probabilistic method using Monte-Carlo simulation is proposed for power system security assessment. This method takes into account dynamic and static effects corresponding to contingencies. Two different Kohonen networks, Self-Organizing Maps and Learning Vector Quantization, are employed to speed up the probabilistic method. The combination of Kohonen networks and Monte-Carlo simulation can reduce computation time in comparison with straight Monte-Carlo simulation. A technique for security assessment employing Bayes classifier is also proposed. This method can be useful for system operators to make security decisions during on-line power system operation. This dissertation also suggests an approach for allocating transmission transaction costs based on reliability benefits in transmission services. The proposed method shows the transmission transaction cost of reliability benefits when transmission line capacities are considered. The ratio between allocation by transmission line capacity-use and allocation by reliability benefits is computed using the probability of system failure.

  15. Development of large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Baldwin, D. H.; Kennard, J.

    1985-01-01

    A program to develop large, horizontal-axis wind turbines is discussed. The program is directed toward developing the technology for safe, reliable, environmentally acceptable large wind turbines that can generate a significant amount of electricity at costs competitive with those of conventional electricity-generating systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Several ongoing projects in large-wind-turbine development are directed toward meeting the technology requirements for utility applications. The machines based on first-generation technology (Mod-OA and Mod-1) successfully completed their planned periods of experimental operation in June, 1982. The second-generation machines (Mod-2) are in operation at selected utility sites. A third-generation machine (Mod-5) is under contract. Erection and initial operation of the Mod-5 in Hawaii should take place in 1986. Each successive generation of technology increased reliability and energy capture while reducing the cost of electricity. These advances are being made by gaining a better understanding of the system-design drivers, improving the analytical design tools, verifying design methods with operating field data, and incorporating new technology and innovative designs. Information is given on the results from the first- and second-generation machines (Mod-OA, - 1, and -2), the status of the Department of Interior, and the status of the third-generation wind turbine (Mod-5).

  16. Optimizing the U.S. Electric System with a High Penetration of Renewables

    NASA Astrophysics Data System (ADS)

    Corcoran, B. A.; Jacobson, M. Z.

    2013-12-01

    As renewable energy generators are increasingly being installed throughout the U.S., there is growing interest in interconnecting diverse renewable generators (primarily wind and solar) across large geographic areas through an enhanced transmission system. This reduces variability in the aggregate power output, increases system reliability, and allows for the development of the best overall group of renewable technologies and sites to meet the load. Studies are therefore needed to determine the most efficient and economical plan to achieve large area interconnections in a future electric system with a high penetration of renewables. This research quantifies the effects of aggregating electric load together with diverse renewable generation throughout the ten Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. A deterministic linear program has been built in AMPL (A Mathematical Programming Language) to solve for the least-cost organizational structure and system (generators, transmission, and storage) for a highly renewable electric grid. The analysis will 1) examine a highly renewable 2006 electric system, including various sensitivity cases and additional system components such as additional load from electric vehicles, and 2) create a 'roadmap' from the existing 2006 system to a highly renewable system in 2030, accounting for projected price and demand changes and generator retirements based on age and environmental regulations. Ideally, results from this study will offer insight for a federal renewable energy policy (such as a renewable portfolio standard) and how to best organize U.S. regions for transmission planning.

  17. Control system of mutually coupled switched reluctance motor drive of mining machines in generator mode

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.

    2017-09-01

    One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.

  18. 10 CFR 500.3 - Electric regions-electric region groupings for reliability measurements under the Powerplant and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Areas (PSA's) as authorized by section 202(a) of the Federal Power Act except where noted. They will be... Reliability Council (NERC) region with historical coordination policies. (b) The PSA's referred to in the... with DOE for an official determination. Electric Region Groupings and FERC PSA's: 1. Allegheny Power...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewablemore » energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.« less

  20. Implementation of Smart Metering based on Internet of Things

    NASA Astrophysics Data System (ADS)

    Kaur, Milanpreet; Mathew, Lini, Dr.; Alokdeep; Kumar, Ajay

    2018-03-01

    From the aspect of saving energy, there is a continuous modification in communication technology and information in order to satisfy all customers demand. Today customers are demanding for accurate energy measurement, timely data and for good customer services. The best solution is smart grid system with various communication technologies which can be cost effective and electrical section to have a bidirectional communication in which information about electrical energy consumption is shared between consumers as well as by utility for remote checking. This paper describes the monitoring of energy consumption with Arduino Uno board and Ethernet using IoT (Internet of Things) concept. This proposed design eliminates human inclusion in the conservation of electricity. The consumer can receive the information about consumption of energy by using IP address on their devices. The web client code is uploaded for checking the client information such as location, content, connection, and disconnection to the web server. This proposed system gives reliable and accurate information regarding electrical energy management system (EMS) through Internet of things (IoT).

  1. Reduction technique of drop voltage and power losses to improve power quality using ETAP Power Station simulation model

    NASA Astrophysics Data System (ADS)

    Satrio, Reza Indra; Subiyanto

    2018-03-01

    The effect of electric loads growth emerged direct impact in power systems distribution. Drop voltage and power losses one of the important things in power systems distribution. This paper presents modelling approach used to restructrure electrical network configuration, reduce drop voltage, reduce power losses and add new distribution transformer to enhance reliability of power systems distribution. Restructrure electrical network was aimed to analyse and investigate electric loads of a distribution transformer. Measurement of real voltage and real current were finished two times for each consumer, that were morning period and night period or when peak load. Design and simulation were conduct by using ETAP Power Station Software. Based on result of simulation and real measurement precentage of drop voltage and total power losses were mismatch with SPLN (Standard PLN) 72:1987. After added a new distribution transformer and restructrured electricity network configuration, the result of simulation could reduce drop voltage from 1.3 % - 31.3 % to 8.1 % - 9.6 % and power losses from 646.7 watt to 233.29 watt. Result showed, restructrure electricity network configuration and added new distribution transformer can be applied as an effective method to reduce drop voltage and reduce power losses.

  2. The Future of Low-Carbon Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel

    Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  3. The Future of Low-Carbon Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel

    We review future global demand for electricity and major technologies positioned to supply it with minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal, and biomass), nuclear fission, and fossil power with CO2 capture and sequestration. We discuss two breakthrough technologies (space solar power and nuclear fusion) as exciting but uncertain additional options for low-net GHG emissions (i.e., low-carbon) electricity generation. In addition, we discuss grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes). For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs, and other issues as appropriate. Although no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  4. The Future of Low-Carbon Electricity

    DOE PAGES

    Greenblatt, Jeffery B.; Brown, Nicholas R.; Slaybaugh, Rachel; ...

    2017-07-10

    Here, we review future global demand for electricity and major technologies positioned to supply itwith minimal greenhouse gas (GHG) emissions: renewables (wind, solar, water, geothermal and biomass), nuclear fission, and fossil power with CO 2 capture and sequestration. Two breakthrough technologies (space solar power and nuclear fusion) are discussed as exciting but uncertain additional options for low net GHG emissions (“low-carbon”) electricity generation. Grid integration technologies (monitoring and forecasting of transmission and distribution systems, demand-side load management, energy storage, and load balancing with low-carbon fuel substitutes) are also discussed. For each topic, recent historical trends and future prospects are reviewed,more » along with technical challenges, costs and other issues as appropriate. While no technology represents an ideal solution, their strengths can be enhanced by deployment in combination, along with grid integration that forms a critical set of enabling technologies to assure a reliable and robust future low-carbon electricity system.« less

  5. Novel Straight and Circular Road Driving Control of Electric Power Assisted Wheelchair Based on Fuzzy Algorithm

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Tadakuma, Susumu

    This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  6. Identification of advantageous electricity generation options in sub-Saharan Africa integrating existing resources

    NASA Astrophysics Data System (ADS)

    Szabó, Sándor; Moner-Girona, Magda; Kougias, Ioannis; Bailis, Rob; Bódis, Katalin

    2016-10-01

    Pioneering approaches are needed to accelerate universal access to electricity while simultaneously transitioning to reliable, sustainable and affordable energy systems. In sub-Saharan Africa (SSA), the challenges lie in attracting the private sector to complement public investments. Here, we present an integrated ‘low-hanging-fruit’ approach aimed at boosting private investment and speeding up the deployment of renewable energy systems in SSA. We analyse the potential of existing energy infrastructure, where a significant upfront investment has already been made, to be exploited for electricity generation. We develop a comprehensive methodology to identify and select suitable locations in SSA and estimate their potential for exploitation. These locations have been further analysed in terms of power capacity potential, electricity output, investments needed and population to be benefited. This strategy to attract additional finance can easily be reproduced, engaging private investors while simultaneously helping to achieve the United Nations (UN) Sustainable Development Goals on energy.

  7. Cost-effective solutions to maintaining smart grid reliability

    NASA Astrophysics Data System (ADS)

    Qin, Qiu

    As the aging power systems are increasingly working closer to the capacity and thermal limits, maintaining an sufficient reliability has been of great concern to the government agency, utility companies and users. This dissertation focuses on improving the reliability of transmission and distribution systems. Based on the wide area measurements, multiple model algorithms are developed to diagnose transmission line three-phase short to ground faults in the presence of protection misoperations. The multiple model algorithms utilize the electric network dynamics to provide prompt and reliable diagnosis outcomes. Computational complexity of the diagnosis algorithm is reduced by using a two-step heuristic. The multiple model algorithm is incorporated into a hybrid simulation framework, which consist of both continuous state simulation and discrete event simulation, to study the operation of transmission systems. With hybrid simulation, line switching strategy for enhancing the tolerance to protection misoperations is studied based on the concept of security index, which involves the faulted mode probability and stability coverage. Local measurements are used to track the generator state and faulty mode probabilities are calculated in the multiple model algorithms. FACTS devices are considered as controllers for the transmission system. The placement of FACTS devices into power systems is investigated with a criterion of maintaining a prescribed level of control reconfigurability. Control reconfigurability measures the small signal combined controllability and observability of a power system with an additional requirement on fault tolerance. For the distribution systems, a hierarchical framework, including a high level recloser allocation scheme and a low level recloser placement scheme, is presented. The impacts of recloser placement on the reliability indices is analyzed. Evaluation of reliability indices in the placement process is carried out via discrete event simulation. The reliability requirements are described with probabilities and evaluated from the empirical distributions of reliability indices.

  8. Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities.

    PubMed

    Bilich, Andrew; Langham, Kevin; Geyer, Roland; Goyal, Love; Hansen, James; Krishnan, Anjana; Bergesen, Joseph; Sinha, Parikhit

    2017-01-17

    Access to a reliable source of electricity creates significant benefits for developing communities. Smaller versions of electricity grids, known as microgrids, have been developed as a solution to energy access problems. Using attributional life cycle assessment, this project evaluates the environmental and energy impacts of three photovoltiac (PV) microgrids compared to other energy options for a model village in Kenya. When normalized per kilowatt hour of electricity consumed, PV microgrids, particularly PV-battery systems, have lower impacts than other energy access solutions in climate change, particulate matter, photochemical oxidants, and terrestrial acidification. When compared to small-scale diesel generators, PV-battery systems save 94-99% in the above categories. When compared to the marginal electricity grid in Kenya, PV-battery systems save 80-88%. Contribution analysis suggests that electricity and primary metal use during component, particularly battery, manufacturing are the largest contributors to overall PV-battery microgrid impacts. Accordingly, additional savings could be seen from changing battery manufacturing location and ensuring end of life recycling. Overall, this project highlights the potential for PV microgrids to be feasible, adaptable, long-term energy access solutions, with health and environmental advantages compared to traditional electrification options.

  9. 78 FR 70163 - Communication of Operational Information between Natural Gas Pipelines and Electric Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... a continued high level of reliability of interstate natural gas pipelines and that this will, in turn, ensure a continued high level of reliability of the electric transmission grid.\\40\\ Consumers...

  10. Electrical distribution studies for the 200 Area tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisler, J.B.

    1994-08-26

    This is an engineering study providing reliability numbers for various design configurations as well as computer analyses (Captor/Dapper) of the existing distribution system to the 480V side of the unit substations. The objective of the study was to assure the adequacy of the existing electrical system components from the connection at the high voltage supply point through the transformation and distribution equipment to the point where it is reduced to its useful voltage level. It also was to evaluate the reasonableness of proposed solutions of identified deficiencies and recommendations of possible alternate solutions. The electrical utilities are normally considered themore » most vital of the utility systems on a site because all other utility systems depend on electrical power. The system accepts electric power from the external sources, reduces it to a lower voltage, and distributes it to end-use points throughout the site. By classic definition, all utility systems extend to a point 5 feet from the facility perimeter. An exception is made to this definition for the electric utilities at this site. The electrical Utility System ends at the low voltage section of the unit substation, which reduces the voltage from 13.8 kV to 2,400, 480, 277/480 or 120/208 volts. These transformers are located at various distances from existing facilities. The adequacy of the distribution system which transports the power from the main substation to the individual area substations and other load centers is evaluated and factored into the impact of the future load forecast.« less

  11. A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.

    PubMed

    Farajidavar, Aydin; O'Grady, Gregory; Rao, Smitha M N; Cheng, Leo K; Abell, Thomas; Chiao, J-C

    2012-06-01

    Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical userinter face. The front-end module conditions the analogue signals, then digitizes and loads the data into a radio for transmission. Data receipt at the backend is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35 × 35 × 27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124 h operation when utilizing a 560 mAh, 3 V battery. In vivo,slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles min−1), automated activation time detection was modestly better for the wireless system (5% versus 14% FP rate), and signal amplitudes were modestly higher via the wireless system (462 versus 3 86μV; p<0.001). This telemetric system for slow wave acquisition is reliable,power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients.0967-3334/

  12. A miniature bidirectional telemetry system for in-vivo gastric slow wave recordings

    PubMed Central

    Farajidavar, Aydin; O’Grady, Gregory; Rao, Smitha M.N.; Cheng, Leo K; Abell, Thomas; Chiao, J.-C.

    2012-01-01

    Stomach contractions are initiated and coordinated by an underlying electrical activity (slow waves), and electrical dysrhythmias accompany motility diseases. Electrical recordings taken directly from the stomach provide the most valuable data, but face technical constraints. Serosal or mucosal electrodes have cables that traverse the abdominal wall, or a natural orifice, causing discomfort and possible infection, and restricting mobility. These problems motivated the development of a wireless system. The bidirectional telemetric system constitutes a front-end transponder, a back-end receiver and a graphical user interface. The front-end module conditions the analog signals, then digitizes and loads the data into a radio for transmission. Data receipt at the back-end is acknowledged via a transceiver function. The system was validated in a bench-top study, then validated in-vivo using serosal electrodes connected simultaneously to a commercial wired system. The front-end module was 35×35×27 mm3 and weighed 20 g. Bench-top tests demonstrated reliable communication within a distance range of 30 m, power consumption of 13.5 mW, and 124-hour operation when utilizing a 560-mAh, 3-V battery. In-vivo, slow wave frequencies were recorded identically with the wireless and wired reference systems (2.4 cycles/min), automated activation time detection was modestly better for the wireless system (5% vs 14% false positive rate), and signal amplitudes were modestly higher via the wireless system (462 vs 386 μV; p<0.001). This telemetric system for slow wave acquisition is reliable, power efficient, readily portable and potentially implantable. The device will enable chronic monitoring and evaluation of slow wave patterns in animals and patients. PMID:22635054

  13. The Diagnostic Challenge Competition: Probabilistic Techniques for Fault Diagnosis in Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Reliable systems health management is an important research area of NASA. A health management system that can accurately and quickly diagnose faults in various on-board systems of a vehicle will play a key role in the success of current and future NASA missions. We introduce in this paper the ProDiagnose algorithm, a diagnostic algorithm that uses a probabilistic approach, accomplished with Bayesian Network models compiled to Arithmetic Circuits, to diagnose these systems. We describe the ProDiagnose algorithm, how it works, and the probabilistic models involved. We show by experimentation on two Electrical Power Systems based on the ADAPT testbed, used in the Diagnostic Challenge Competition (DX 09), that ProDiagnose can produce results with over 96% accuracy and less than 1 second mean diagnostic time.

  14. Improving Distribution Resiliency with Microgrids and State and Parameter Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuffner, Francis K.; Williams, Tess L.; Schneider, Kevin P.

    Modern society relies on low-cost reliable electrical power, both to maintain industry, as well as provide basic social services to the populace. When major disturbances occur, such as Hurricane Katrina or Hurricane Sandy, the nation’s electrical infrastructure can experience significant outages. To help prevent the spread of these outages, as well as facilitating faster restoration after an outage, various aspects of improving the resiliency of the power system are needed. Two such approaches are breaking the system into smaller microgrid sections, and to have improved insight into the operations to detect failures or mis-operations before they become critical. Breaking themore » system into smaller sections of microgrid islands, power can be maintained in smaller areas where distribution generation and energy storage resources are still available, but bulk power generation is no longer connected. Additionally, microgrid systems can maintain service to local pockets of customers when there has been extensive damage to the local distribution system. However, microgrids are grid connected a majority of the time and implementing and operating a microgrid is much different than when islanded. This report discusses work conducted by the Pacific Northwest National Laboratory that developed improvements for simulation tools to capture the characteristics of microgrids and how they can be used to develop new operational strategies. These operational strategies reduce the cost of microgrid operation and increase the reliability and resilience of the nation’s electricity infrastructure. In addition to the ability to break the system into microgrids, improved observability into the state of the distribution grid can make the power system more resilient. State estimation on the transmission system already provides great insight into grid operations and detecting abnormal conditions by leveraging existing measurements. These transmission-level approaches are expanded to using advanced metering infrastructure and other distribution-level measurements to create a three-phase, unbalanced distribution state estimation approach. With distribution-level state estimation, the grid can be operated more efficiently, and outages or equipment failures can be caught faster, improving the overall resilience and reliability of the grid.« less

  15. Experimental investigation into the fault response of superconducting hybrid electric propulsion electrical power system to a DC rail to rail fault

    NASA Astrophysics Data System (ADS)

    Nolan, S.; Jones, C. E.; Munro, R.; Norman, P.; Galloway, S.; Venturumilli, S.; Sheng, J.; Yuan, W.

    2017-12-01

    Hybrid electric propulsion aircraft are proposed to improve overall aircraft efficiency, enabling future rising demands for air travel to be met. The development of appropriate electrical power systems to provide thrust for the aircraft is a significant challenge due to the much higher required power generation capacity levels and complexity of the aero-electrical power systems (AEPS). The efficiency and weight of the AEPS is critical to ensure that the benefits of hybrid propulsion are not mitigated by the electrical power train. Hence it is proposed that for larger aircraft (~200 passengers) superconducting power systems are used to meet target power densities. Central to the design of the hybrid propulsion AEPS is a robust and reliable electrical protection and fault management system. It is known from previous studies that the choice of protection system may have a significant impact on the overall efficiency of the AEPS. Hence an informed design process which considers the key trades between choice of cable and protection requirements is needed. To date the fault response of a voltage source converter interfaced DC link rail to rail fault in a superconducting power system has only been investigated using simulation models validated by theoretical values from the literature. This paper will present the experimentally obtained fault response for a variety of different types of superconducting tape for a rail to rail DC fault. The paper will then use these as a platform to identify key trades between protection requirements and cable design, providing guidelines to enable future informed decisions to optimise hybrid propulsion electrical power system and protection design.

  16. Descriptive Model of Generic WAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauer, John F.; DeSteese, John G.

    The Department of Energy’s (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nation’s electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the milestone to develop a generic WAMS model description that will provide a basis for the security analysis planned in the next phase of this study.

  17. Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Bitteker, L. J.; Jones, J. E.

    2001-01-01

    Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted Mars missions during the 2018 opportunity.

  18. Electric field effects on current–voltage relationships in microfluidic channels presenting multiple working electrodes in the weak-coupling limit

    DOE PAGES

    Contento, Nicholas M.; Bohn, Paul W.

    2014-05-23

    While electrochemical methods are well suited for lab-on-a-chip applications, reliably coupling multiple, electrode-controlled processes in a single microfluidic channel remains a considerable challenge, because the electric fields driving electrokinetic flow make it difficult to establish a precisely known potential at the working electrode(s). The challenge of coupling electrochemical detection with microchip electrophoresis is well known; however, the problem is general, arising in other multielectrode arrangements with applications in enhanced detection and chemical processing. Here, we study the effects of induced electric fields on voltammetric behavior in a microchannel containing multiple in-channel electrodes, using a Fe(CN) 6 3/4- model system. Whenmore » an electric field is induced by applying a cathodic potential at one inchannel electrode, the half-wave potential (E 1/2) for the oxidation of ferrocyanide at an adjacent electrode shifts to more negative potentials. The E 1/2 value depends linearly on the electric field current at a separate in-channel electrode. The observed shift in E 1/2 is quantitatively described by a model, which accounts for the change in solution potential caused by the iR drop along the length of the microchannel. The model, which reliably captures changes in electrode location and solution conductivity, apportions the electric field potential between iR drop and electrochemical potential components, enabling the study of microchannel electric field magnitudes at low applied potentials. In the system studied, the iR component of the electric field potential increases exponentially with applied current before reaching an asymptotic value near 80 % of the total applied potential. The methods described will aid in the development and interpretation of future microchip electrochemistry methods, particularly those that benefit from the coupling of electrokinetic and electrochemical phenomena at low voltages.« less

  19. Reliability of solid-state lighting electrical drivers subjected to WHTOL accelerated aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lall, Pradeep; Sakalauku, Peter; Davis, Lynn

    An investigation of a solid-state lighting (SSL) luminaire with the focus on the electronic driver which has been exposed to a standard wet hot temperature operating life (WHTOL) of 85% RH and 85°C in order to assess reliability of prolonged exposer to a harsh environment has been conducted. SSL luminaires are beginning introduced as head lamps in some of today's luxury automobiles and may also be fulfilling a variety of important outdoor applications such as overhead street lamps, traffic signals and landscape lighting. SSL luminaires in these environments are almost certain to encounter excessive moisture from humidity and high temperaturesmore » for a persistent period of time. The lack of accelerated test methods for LEDs to assess long-term reliability prior to introduction into the marketplace, a need for SSL physics based PHM modeling indicators for assessment and prediction of LED life, as well as the U.S. Department of Energy's R&D roadmap to replace todays lighting with SSL luminaires makes it important to increase the understanding of the reliability of SSL devices, specifically, in harsh environment applications. In this work, a set of SSL electrical drivers were investigated to determine failure mechanisms that occur during prolonged harsh environment applications. Each driver consists of four aluminum electrolytic capacitors (AECs) of three different types and was considered the weakest component inside the SSL electrical driver. The reliability of the electrical driver was assessed by monitoring the change in capacitance and the change in equivalent series resistance for each AEC, as well as monitoring the luminous flux of the SSL luminaire or the output of the electrical driver. The luminous flux of a pristine SSL electrical driver was also monitored in order to detect minute changes in the electrical drivers output and to aid in the investigation of the SSL luminaires reliability. The failure mechanisms of the electrical drivers have been determined and are presented in this paper.« less

  20. Comparative assessment of out-of-core nuclear thermionic power systems

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Koenig, D. R.; Prickett, W. Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds.

  1. Mitigating Interconnection Challenges of the High Penetration Utility-Interconnected Photovoltaic (PV) in the Electrical Distribution Systems: Cooperative Research and Development Final Report, CRADA Number CRD-14-563

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sudipta

    Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of the electric power systems. Some of the urgent areas for research, as identified by inverter manufacturers, installers and utilities, are potential for transient overvoltage from PV inverters, multi-inverter anti-islanding, impact of smart inverters on volt-VAR support, impact of bidirectional power flow, and potential for distributed generation curtailment solutions to mitigate grid stability challenges. Under this project, NREL worked with SolarCity to address these challenges through research, testing and analysis at the Energy System Integration Facility (ESIF). Inverters from differentmore » manufacturers were tested at ESIF and NREL's unique power hardware-in-the-loop (PHIL) capability was utilized to evaluate various system-level impacts. Through the modeling, simulation, and testing, this project eliminated critical barriers on high PV penetration and directly supported the Department of Energy's SunShot goal of increasing the solar PV on the electrical grid.« less

  2. Switch: a planning tool for power systems with large shares of intermittent renewable energy.

    PubMed

    Fripp, Matthias

    2012-06-05

    Wind and solar power are highly variable, so it is it unclear how large a role they can play in future power systems. This work introduces a new open-source electricity planning model--Switch--that identifies the least-cost strategy for using renewable and conventional generators and transmission in a large power system over a multidecade period. Switch includes an unprecedented amount of spatial and temporal detail, making it possible to address a new type of question about the optimal design and operation of power systems with large amounts of renewable power. A case study of California for 2012-2027 finds that there is no maximum possible penetration of wind and solar power--these resources could potentially be used to reduce emissions 90% or more below 1990 levels without reducing reliability or severely raising the cost of electricity. This work also finds that policies that encourage customers to shift electricity demand to times when renewable power is most abundant (e.g., well-timed charging of electric vehicles) could make it possible to achieve radical emission reductions at moderate costs.

  3. 78 FR 74126 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... Installed Capacity Requirement, Hydro Quebec Interconnection Capability Credits and Related Values for the.... Take notice that the Commission received the following electric reliability filings: Docket Numbers: RR13-3-001. Applicants: North American Electric Reliability Corporation. Description: Compliance Filing...

  4. 76 FR 14006 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Matters. A-2 AD02-7-000 Customer Matters, Reliability, Security and Market Operations. Electric E-1 ER03-563-066 Devon Power LLC. E-2 OMITTED. E-3 NP10-18-000 North American Electric Reliability Corporation. [[Page 14007

  5. Ancillary-service costs for 12 US electric utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, B.; Hirst, E.

    1996-03-01

    Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintainmore » the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.« less

  6. Grid-independent residential power systems

    NASA Astrophysics Data System (ADS)

    Nelson, Robert E.

    1996-02-01

    A self-powered, gas-fired, warm air furnace is evaluated as a candidate for the autonomous generation of electrical power. A popular, commercial residential furnace is analyzed for electrical power requirements. Available energy conversion concepts are considered for this application, and the thermophotovoltaic (TPV) option is selected due to reliability and cost. The design and the internal components peculiar to the TPV converter will be covered. Operating results, including NOx emission, will be summarized. This work was sponsored by the Basic Research Group, Gas Research Institute, Chicago, IL.

  7. Final Report for Clean, Reliable, Affordable Energy that Reflects the Values of the Pinoleville Pomo Nation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Lenora; Sampsel, Zachary N

    This report aims to present and analyze information on the potential of renewable energy power systems and electric vehicle charging near the Pinoleville Pomo Nation in Ukiah, California to provide an environmentally-friendly, cost-effective energy and transportation options for development. For each renewable energy option we examine, solar, wind, microhydro, and biogas in this case, we compiled technology and cost information for construction, estimates of energy capacity, and data on electricity exports rates.

  8. Electric prototype power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.

    1977-01-01

    An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.

  9. Solar powered Stirling cycle electrical generator

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  10. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  11. The Potential of Energy Storage Systems with Respect to Generation Adequacy and Economic Viability

    NASA Astrophysics Data System (ADS)

    Bradbury, Kyle Joseph

    Intermittent energy resources, including wind and solar power, continue to be rapidly added to the generation fleet domestically and abroad. The variable power of these resources introduces new levels of stochasticity into electric interconnections that must be continuously balanced in order to maintain system reliability. Energy storage systems (ESSs) offer one potential option to compensate for the intermittency of renewables. ESSs for long-term storage (1-hour or greater), aside from a few pumped hydroelectric installations, are not presently in widespread use in the U.S. The deployment of ESSs would be most likely driven by either the potential for a strong internal rate of return (IRR) on investment and through significant benefits to system reliability that independent system operators (ISOs) could incentivize. To assess the potential of ESSs three objectives are addressed. (1) Evaluate the economic viability of energy storage for price arbitrage in real-time energy markets and determine system cost improvements for ESSs to become attractive investments. (2) Estimate the reliability impact of energy storage systems on the large-scale integration of intermittent generation. (3) Analyze the economic, environmental, and reliability tradeoffs associated with using energy storage in conjunction with stochastic generation. First, using real-time energy market price data from seven markets across the U.S. and the physical parameters of fourteen ESS technologies, the maximum potential IRR of each technology from price arbitrage was evaluated in each market, along with the optimal ESS system size. Additionally, the reductions in capital cost needed to achieve a 10% IRR were estimated for each ESS. The results indicate that the profit-maximizing size of an ESS is primarily determined by its technological characteristics (round-trip charge/discharge efficiency and self-discharge) and not market price volatility, which instead increases IRR. This analysis demonstrates that few ESS technologies are likely to be implemented by investors alone. Next, the effects of ESSs on system reliability are quantified. Using historic data for wind, solar, and conventional generation, a correlation-preserving, copula-transform model was implemented in conjunction with Markov chain Monte Carlo framework for estimating system reliability indices. Systems with significant wind and solar penetration (25% or greater), even with added energy storage capacity, resulted in considerable decreases in generation adequacy. Lastly, rather than analyzing the reliability and costs in isolation of one another, system reliability, cost, and emissions were analyzed in 3-space to quantify and visualize the system tradeoffs. The modeling results implied that ESSs perform similarly to natural gas combined cycle (NGCC) systems with respect to generation adequacy and system cost, with the primary difference being that the generation adequacy improvements are less for ESSs than that of NGCC systems and the increase in LCOE is greater for ESSs than NGCC systems. Although ESSs do not appear to offer greater benefits than NGCC systems for managing energy on time intervals of 1-hour or more, we conclude that future research into short-term power balancing applications of ESSs, in particular for frequency regulation, is necessary to understand the full potential of ESSs in modern electric interconnections.

  12. Solid-Body Fuse Developed for High- Voltage Space Power Missions

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Baez, Anastacio N.

    2001-01-01

    AEM Incorporated has completed the development, under a NASA Glenn Research Center contract, of a solid-body fuse for high-voltage power systems of satellites and spacecraft systems. High-reliability fuses presently defined by MIL-PRF-23419 do not meet the increased voltage and amperage requirements for the next generation of spacecraft. Solid-body fuses exhibit electrical and mechanical attributes that enable these fuses to perform reliably in the vacuum and high-vibration and -shock environments typically present in spacecraft applications. The construction and screening techniques for solid-body fuses described by MIL-PRF-23419/12 offer an excellent roadmap for the development of high-voltage solid-body fuses.

  13. About increasing informativity of diagnostic system of asynchronous electric motor by extracting additional information from values of consumed current parameter

    NASA Astrophysics Data System (ADS)

    Zhukovskiy, Y.; Korolev, N.; Koteleva, N.

    2018-05-01

    This article is devoted to expanding the possibilities of assessing the technical state of the current consumption of asynchronous electric drives, as well as increasing the information capacity of diagnostic methods, in conditions of limited access to equipment and incompleteness of information. The method of spectral analysis of the electric drive current can be supplemented by an analysis of the components of the current of the Park's vector. The research of the hodograph evolution in the moment of appearance and development of defects was carried out using the example of current asymmetry in the phases of an induction motor. The result of the study is the new diagnostic parameters of the asynchronous electric drive. During the research, it was proved that the proposed diagnostic parameters allow determining the type and level of the defect. At the same time, there is no need to stop the equipment and taky it out of service for repair. Modern digital control and monitoring systems can use the proposed parameters based on the stator current of an electrical machine to improve the accuracy and reliability of obtaining diagnostic patterns and predicting their changes in order to improve the equipment maintenance systems. This approach can also be used in systems and objects where there are significant parasitic vibrations and unsteady loads. The extraction of useful information can be carried out in electric drive systems in the structure of which there is a power electric converter.

  14. Numerical modeling of uncertainty and variability in the technology, manufacturing, and economics of crystalline silicon photovoltaics

    NASA Astrophysics Data System (ADS)

    Ristow, Alan H.

    2008-10-01

    Electricity generated from photovoltaics (PV) promises to satisfy the world's ever-growing thirst for energy without significant pollution and greenhouse gas emissions. At present, however, PV is several times too expensive to compete economically with conventional sources of electricity delivered via the power grid. To ensure long-term success, must achieve cost parity with electricity generated by conventional sources of electricity. This requires detailed understanding of the relationship between technology and economics as it pertains to PV devices and systems. The research tasks of this thesis focus on developing and using four types of models in concert to develop a complete picture of how solar cell technology and design choices affect the quantity and cost of energy produced by PV systems. It is shown in this thesis that high-efficiency solar cells can leverage balance-of-systems (BOS) costs to gain an economic advantage over solar cells with low efficiencies. This advantage is quantified and dubbed the "efficiency premium." Solar cell device models are linked to models of manufacturing cost and PV system performance to estimate both PV system cost and performance. These, in turn, are linked to a model of levelized electricity cost to estimate the per-kilowatt-hour cost of electricity produced by the PV system. A numerical PV module manufacturing cost model is developed to facilitate this analysis. The models and methods developed in this thesis are used to propose a roadmap to high-efficiency multicrystalline-silicon PV modules that achieve cost parity with electricity from the grid. The impact of PV system failures on the cost of electricity is also investigated; from this, a methodology is proposed for improving the reliability of PV inverters.

  15. 18 CFR 39.5 - Reliability Standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... 39.5 Section 39.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT RULES CONCERNING CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC...

  16. Magnetically operated limit switch has improved reliability, minimizes arcing

    NASA Technical Reports Server (NTRS)

    Steiner, R.

    1966-01-01

    Limit switch for reliable, low-travel, snap action with negligible arcing uses an electrically nonconductive permanent magnet consisting of a ferrimagnetic ceramic and ferromagnetic pole shoes which form a magnetic and electrically conductive circuit with a ferrous-metal armature.

  17. 30% CPV Module Milestone

    NASA Astrophysics Data System (ADS)

    Gordon, Robert; Kinsey, Geoff; Nayaak, Adi; Garboushian, Vahan

    2010-10-01

    Concentrating Photovoltaics has held out the promise of low cost solar electricity for now several decades. Steady progress towards this goal in the 80's and 90's gradually produced more efficient and reliable systems. System efficiency is regarded as the largest factor in lowering the electricity cost and the relatively recent advent of the terrestrial multi-junction solar cell has pressed this race forward dramatically. CPV systems are now exhibiting impressive AC field efficiencies of 25% and more, approximately twice that of the best flat plate systems available today. Amonix inc. has just tested their latest generation multi-junction module design, achieving over 31% DC efficiency at near PVUSA test conditions. Inculcating this design into their next MegaModule is forthcoming, but the expected AC system field efficiency should be significantly higher than current 25% levels.

  18. Low Current Surface Flashover for Initiation of Electric Propulsion Devices

    NASA Astrophysics Data System (ADS)

    Dary, Omar G.

    There has been a recent increase in interest in miniaturization of propulsion systems for satellites. These systems are needed to propel micro- and nano-satellites, where platforms are much smaller than conventional satellites and require smaller levels of thrust. Micro-propulsion systems for these satellites are in their infancy and they must manage with smaller power systems and smaller propellant volumes. Electric propulsion systems operating on various types of electric discharges are typically used for these needs. One of the central components of such electrical micropropulsion systems are ignitor subsystems, which are required for creation the breakdown and initiation of the main discharge. Ignitors have to provide reliable ignition for entire lifetime of the micropropulsion system. Electric breakdown in vacuum usually require high voltage potentials of hundreds of kilovolts per mm to induce breakdown. The breakdown voltage can be significantly decreased (down to several kVs per mm) if dielectric surface flashover is utilized. However, classical dielectric surface flashover operates at large electric current (100s of Amperes) and associated with overheating and damage of the electrodes/dielectric assembly after several flashover events. The central idea of this work was to eliminate the damage to the flashover electrode assembly by limiting the flashover currents to low values in milliampere range (Low Current Surface Flashover -LCSF) and utilize LCSF system as an ignition source for the main discharge on the micropropulsion system. The main objective of this research was to create a robust LCSF ignition system, capable producing a large number of surface flashover triggering events without significant damage to the LCSF electrode assembly. The thesis aims to characterize the plasma plume created at LCSF, study electrodes ablation and identify conditions required for robust triggering of main discharge utilized on micro-propulsion system. Conditioning of a new LCSF assembly (flashover current was limited to <100 mA in all experiments) was measured and breakdown voltages in the range of 8kV to 12kV were observed for the fully conditioned assembly. No damage to the LCSF electrode assembly was observed after about 104 LCSF events. The LCSF assembly created sufficient amount of seed plasma in order to bridge a vacuum gap between the high-current electrodes and to reliably ignite high-current arcs (10A-12A arc were used in this work). Ignition of the high-current arc was observed at three different cases of LCSF with limiting currents 100 mA, 33 mA and 20 mA respectively. Plasma parameter measurements were conducted with variety of Langmuir probes inside the LCSF plume. Ion currents created by the LCSF were primarily expelled directly perpendicular from the insulator surface. The plasma expansion for the LCSF assembly was measured to be 2 x 106-6 x 106 cm/s. Plasma density was measured to range 10 10-1011 cm-3. The plasma density was maximal near the LCSF assembly and quickly reduced radially. Temporal decay of the plasma was observed on a time scale of about 5 micros after the LCSF event. The results of this work are significant for creation of ignitor for micropropulsion systems. LCSF system offers reliable triggering for numerous ignition pulses for entire lifetime of the micropropulsion system and reduces complexity and volume of the system by excluding moving parts and the need for an external gas tanks.

  19. Short Term Load Forecasting with Fuzzy Logic Systems for power system planning and reliability-A Review

    NASA Astrophysics Data System (ADS)

    Holmukhe, R. M.; Dhumale, Mrs. Sunita; Chaudhari, Mr. P. S.; Kulkarni, Mr. P. P.

    2010-10-01

    Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.

  20. Identification of high performance and component technology for space electrical power systems for use beyond the year 2000

    NASA Technical Reports Server (NTRS)

    Maisel, James E.

    1988-01-01

    Addressed are some of the space electrical power system technologies that should be developed for the U.S. space program to remain competitive in the 21st century. A brief historical overview of some U.S. manned/unmanned spacecraft power systems is discussed to establish the fact that electrical systems are and will continue to become more sophisticated as the power levels appoach those on the ground. Adaptive/Expert power systems that can function in an extraterrestrial environment will be required to take an appropriate action during electrical faults so that the impact is minimal. Manhours can be reduced significantly by relinquishing tedious routine system component maintenance to the adaptive/expert system. By cataloging component signatures over time this system can set a flag for a premature component failure and thus possibly avoid a major fault. High frequency operation is important if the electrical power system mass is to be cut significantly. High power semiconductor or vacuum switching components will be required to meet future power demands. System mass tradeoffs have been investigated in terms of operating at high temperature, efficiency, voltage regulation, and system reliability. High temperature semiconductors will be required. Silicon carbide materials will operate at a temperature around 1000 K and the diamond material up to 1300 K. The driver for elevated temperature operation is that radiator mass is reduced significantly because of inverse temperature to the fourth power.

  1. Ab initio molecular dynamics in a finite homogeneous electric field.

    PubMed

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  2. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ela, E.; Milligan, M.; Bloom, A.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  3. Inverter testing at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Ginn, Jerry W.; Bonn, Russell H.; Sittler, Greg

    1997-02-01

    Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems (BOS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory.

  4. Wavelet-based information filtering for fault diagnosis of electric drive systems in electric ships.

    PubMed

    Silva, Andre A; Gupta, Shalabh; Bazzi, Ali M; Ulatowski, Arthur

    2017-09-22

    Electric machines and drives have enjoyed extensive applications in the field of electric vehicles (e.g., electric ships, boats, cars, and underwater vessels) due to their ease of scalability and wide range of operating conditions. This stems from their ability to generate the desired torque and power levels for propulsion under various external load conditions. However, as with the most electrical systems, the electric drives are prone to component failures that can degrade their performance, reduce the efficiency, and require expensive maintenance. Therefore, for safe and reliable operation of electric vehicles, there is a need for automated early diagnostics of critical failures such as broken rotor bars and electrical phase failures. In this regard, this paper presents a fault diagnosis methodology for electric drives in electric ships. This methodology utilizes the two-dimensional, i.e. scale-shift, wavelet transform of the sensor data to filter optimal information-rich regions which can enhance the diagnosis accuracy as well as reduce the computational complexity of the classifier. The methodology was tested on sensor data generated from an experimentally validated simulation model of electric drives under various cruising speed conditions. The results in comparison with other existing techniques show a high correct classification rate with low false alarm and miss detection rates. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Terrestrial Applications of Extreme Environment Stirling Space Power Systems

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger. W.

    2012-01-01

    NASA has been developing power systems capable of long-term operation in extreme environments such as the surface of Venus. This technology can use any external heat source to efficiently provide electrical power and cooling; and it is designed to be extremely efficient and reliable for extended space missions. Terrestrial applications include: use in electric hybrid vehicles; distributed home co-generation/cooling; and quiet recreational vehicle power generation. This technology can reduce environmental emissions, petroleum consumption, and noise while eliminating maintenance and environmental damage from automotive fluids such as oil lubricants and air conditioning coolant. This report will provide an overview of this new technology and its applications.

  6. Optimal control for wind turbine system via state-space method

    NASA Astrophysics Data System (ADS)

    Shanoob, Mudhafar L.

    Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on using type 1 servo system that depends on the full state feedback variables and tracking error. The LQR improves the transient stability and time response of the wind turbine system in all three-disturbance scenarios. The results of both methods are deeply explained in the simulation section.

  7. Reliability Assessment Approach for Stirling Convertors and Generators

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Schreiber, Jeffrey G.; Zampino, Edward; Best, Timothy

    2004-01-01

    Stirling power conversion is being considered for use in a Radioisotope Power System for deep-space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power. Quantifying the reliability of a Radioisotope Power System that utilizes Stirling power conversion technology is important in developing and demonstrating the capability for long-term success. A description of the Stirling power convertor is provided, along with a discussion about some of the key components. Ongoing efforts to understand component life, design variables at the component and system levels, related sources, and the nature of uncertainties is discussed. The requirement for reliability also is discussed, and some of the critical areas of concern are identified. A section on the objectives of the performance model development and a computation of reliability is included to highlight the goals of this effort. Also, a viable physics-based reliability plan to model the design-level variable uncertainties at the component and system levels is outlined, and potential benefits are elucidated. The plan involves the interaction of different disciplines, maintaining the physical and probabilistic correlations at all the levels, and a verification process based on rational short-term tests. In addition, both top-down and bottom-up coherency were maintained to follow the physics-based design process and mission requirements. The outlined reliability assessment approach provides guidelines to improve the design and identifies governing variables to achieve high reliability in the Stirling Radioisotope Generator design.

  8. Electrical Characterization of Semiconductor Materials and Devices

    NASA Astrophysics Data System (ADS)

    Deen, M.; Pascal, Fabien

    Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

  9. Power grid operation risk management: V2G deployment for sustainable development

    NASA Astrophysics Data System (ADS)

    Haddadian, Ghazale J.

    The production, transmission, and delivery of cost--efficient energy to supply ever-increasing peak loads along with a quest for developing a low-carbon economy require significant evolutions in the power grid operations. Lower prices of vast natural gas resources in the United States, Fukushima nuclear disaster, higher and more intense energy consumptions in China and India, issues related to energy security, and recent Middle East conflicts, have urged decisions makers throughout the world to look into other means of generating electricity locally. As the world look to combat climate changes, a shift from carbon-based fuels to non-carbon based fuels is inevitable. However, the variability of distributed generation assets in the electricity grid has introduced major reliability challenges for power grid operators. While spearheading sustainable and reliable power grid operations, this dissertation develops a multi-stakeholder approach to power grid operation design; aiming to address economic, security, and environmental challenges of the constrained electricity generation. It investigates the role of Electric Vehicle (EV) fleets integration, as distributed and mobile storage assets to support high penetrations of renewable energy sources, in the power grid. The vehicle-to-grid (V2G) concept is considered to demonstrate the bidirectional role of EV fleets both as a provider and consumer of energy in securing a sustainable power grid operation. The proposed optimization modeling is the application of Mixed-Integer Linear Programing (MILP) to large-scale systems to solve the hourly security-constrained unit commitment (SCUC) -- an optimal scheduling concept in the economic operation of electric power systems. The Monte Carlo scenario-based approach is utilized to evaluate different scenarios concerning the uncertainties in the operation of power grid system. Further, in order to expedite the real-time solution of the proposed approach for large-scale power systems, it considers a two-stage model using the Benders Decomposition (BD). The numerical simulation demonstrate that the utilization of smart EV fleets in power grid systems would ensure a sustainable grid operation with lower carbon footprints, smoother integration of renewable sources, higher security, and lower power grid operation costs. The results, additionally, illustrate the effectiveness of the proposed MILP approach and its potentials as an optimization tool for sustainable operation of large scale electric power systems.

  10. Motor Drive Technologies for the Power-by-Wire (PBW) Program: Options, Trends and Tradeoffs

    NASA Technical Reports Server (NTRS)

    Elbuluk, Malik E.; Kankam, M. David

    1995-01-01

    Power-By-Wire (PBW) is a program involving the replacement of hydraulic and pneumatic systems currently used in aircraft with an all-electric secondary power system. One of the largest loads of the all-electric secondary power system will be the motor loads which include pumps, compressors and Electrical Actuators (EA's). Issues of improved reliability, reduced maintenance and efficiency, among other advantages, are the motivation for replacing the existing aircraft actuators with electrical actuators. An EA system contains four major components. These are the motor, the power electronic converters, the actuator and the control system, including the sensors. This paper is a comparative literature review in motor drive technologies, with a focus on the trends and tradeoffs involved in the selection of a particular motor drive technology. The reported research comprises three motor drive technologies. These are the induction motor (IM), the brushless dc motor (BLDCM) and the switched reluctance motor (SRM). Each of the three drives has the potential for application in the PBW program. Many issues remain to be investigated and compared between the three motor drives, using actual mechanical loads expected in the PBW program.

  11. Bringing Superconductor Digital Technology to the Market Place

    NASA Astrophysics Data System (ADS)

    Nisenoff, Martin

    The unique properties of superconductivity can be exploited to provide the ultimate in electronic technology for systems such as ultra-precise analogue-to-digital and digital-to-analogue converters, precise DC and AC voltage standards, ultra high speed logic circuits and systems (both digital and hybrid analogue-digital systems), and very high throughput network routers and supercomputers which would have superior electrical performance at lower overall electrical power consumption compared to systems with comparable performance which are fabricated using conventional room temperature technologies. This potential for high performance electronics with reduced power consumption would have a positive impact on slowing the increase in the demand for electrical utility power by the information technology community on the overall electrical power grid. However, before this technology can be successfully brought to the commercial market place, there must be an aggressive investment of resources and funding to develop the required infrastructure needed to yield these high performance superconductor systems, which will be reliable and available at low cost. The author proposes that it will require a concerted effort by the superconductor and cryogenic communities to bring this technology to the commercial market place or make it available for widespread use in scientific instrumentation.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buche, D. L.

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects. This report is second in a series of reports detailing this effort.

  13. 78 FR 14836 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Members of SGIP 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ...; Electric Reliability Council of Texas (ERCOT), Austin, TX; Helikon.net , Washington, DC; Honeywell... Systems Engineering Research Center (PSERC), Tempe, AZ; Samsung Telecommunications America, Richardson, TX... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and...

  14. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-12-01

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the company's energy use, and reduce costs in an environmentally responsible manner.

  15. Reliable low-cost battery voltage indicator for light aircraft and automobiles

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1973-01-01

    Voltage indicator fits into cigarette lighter socket and utilizes light emitting and Zener diodes to display three levels of battery voltage. Indicator is superior to typical conventional electrical system indicators in that it gives a positive discrete indication of battery voltage. It is simple, inexpensive, and rugged.

  16. PHOBOS Exploration using Two Small Solar Electric Propulsion (SEP) Spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, J. J.; Baker, J. D.; McElrath, T. P.; Piacentine, J. S.; Snyder, J. S.

    2012-01-01

    Phobos Surveyor Mission concept provides an innovative low cost, highly reliable approach to exploring the inner solar system 1/16/2013 3 Dual manifest launch. Use only flight proven, well characterize commercial off-the-shelf components. Flexible mission architecture allows for a slew of unique measurements.

  17. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  18. Formal Specifications for an Electrical Power Grid System Stability and Reliability

    DTIC Science & Technology

    2015-09-01

    expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB...analyze the power grid system requirements and express the critical runtime behavior using first-order logic. First, we identify observable...Verification System, and Type systems to name a few [5]. Theorem proving’s specification dimension is dependent on the expressive power of the formal

  19. Revenue Sufficiency and Reliability in a Zero Marginal Cost Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frew, Bethany A.

    Features of existing wholesale electricity markets, such as administrative pricing rules and policy-based reliability standards, can distort market incentives from allowing generators sufficient opportunities to recover both fixed and variable costs. Moreover, these challenges can be amplified by other factors, including (1) inelastic demand resulting from a lack of price signal clarity, (2) low- or near-zero marginal cost generation, particularly arising from low natural gas fuel prices and variable generation (VG), such as wind and solar, and (3) the variability and uncertainty of this VG. As power systems begin to incorporate higher shares of VG, many questions arise about themore » suitability of the existing marginal-cost-based price formation, primarily within an energy-only market structure, to ensure the economic viability of resources that might be needed to provide system reliability. This article discusses these questions and provides a summary of completed and ongoing modelling-based work at the National Renewable Energy Laboratory to better understand the impacts of evolving power systems on reliability and revenue sufficiency.« less

  20. Revenue Sufficiency and Reliability in a Zero Marginal Cost Future: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frew, Bethany A.; Milligan, Michael; Brinkman, Greg

    Features of existing wholesale electricity markets, such as administrative pricing rules and policy-based reliability standards, can distort market incentives from allowing generators sufficient opportunities to recover both fixed and variable costs. Moreover, these challenges can be amplified by other factors, including (1) inelastic demand resulting from a lack of price signal clarity, (2) low- or near-zero marginal cost generation, particularly arising from low natural gas fuel prices and variable generation (VG), such as wind and solar, and (3) the variability and uncertainty of this VG. As power systems begin to incorporate higher shares of VG, many questions arise about themore » suitability of the existing marginal-cost-based price formation, primarily within an energy-only market structure, to ensure the economic viability of resources that might be needed to provide system reliability. This article discusses these questions and provides a summary of completed and ongoing modelling-based work at the National Renewable Energy Laboratory to better understand the impacts of evolving power systems on reliability and revenue sufficiency.« less

  1. The Future of Electricity Resource Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahrl, Fredrich; Mills, Andrew; Lavin, Luke

    Electricity resource planning is the process of identifying longer-term investments to meet electricity reliability requirements and public policy goals at a reasonable cost. Resource planning processes provide a forum for regulators, electric utilities, and electricity industry stakeholders to evaluate the economic, environmental, and social benefits and costs of different investment options. By facilitating a discussion on future goals, challenges and strategies, resource planning processes often play an important role in shaping utility business decisions. Resource planning emerged more than three decades ago in an era of transition, where declining electricity demand and rising costs spurred fundamental changes in electricity industrymore » regulation and structure. Despite significant changes in the industry, resource planning continues to play an important role in supporting investment decision making. Over the next two decades, the electricity industry will again undergo a period of transition, driven by technological change, shifting customer preferences and public policy goals. This transition will bring about a gradual paradigm shift in resource planning, requiring changes in scope, approaches and methods. Even as it changes, resource planning will continue to be a central feature of the electricity industry. Its functions — ensuring the reliability of high voltage (“bulk”) power systems, enabling oversight of regulated utilities and facilitating low-cost compliance with public policy goals — are likely to grow in importance as the electricity industry enters a new period of technological, economic and regulatory change. This report examines the future of electricity resource planning in the context of a changing electricity industry. The report examines emerging issues and evolving practices in five key areas that will shape the future of resource planning: (1) central-scale generation, (2) distributed generation, (3) demand-side resources, (4) transmission and (5) uncertainty and risk management. The analysis draws on a review of recent resource plans for 10 utilities that reflect some of the U.S. electricity industry’s extensive diversity.« less

  2. Sizing community energy storage systems to reduce transformer overloading with emphasis on plug-in electric vehicle loads

    NASA Astrophysics Data System (ADS)

    Trowler, Derik Wesley

    The research objective of this study was to develop a sizing method for community energy storage systems with emphasis on preventing distribution transformer overloading due to plug-in electric vehicle charging. The method as developed showed the formulation of a diversified load profile based upon residential load data for several customers on the American Electric Power system. Once a load profile was obtained, plug-in electric vehicle charging scenarios which were based upon expected adoption and charging trends were superimposed on the load profile to show situations where transformers (in particular 25 kVA, 50 kVA, and 100 kVA) would be overloaded during peak hours. Once the total load profiles were derived, the energy and power requirements of community energy storage systems were calculated for a number of scenarios with different combinations of numbers of homes and plug-in electric vehicles. The results were recorded and illustrated into charts so that one could determine the minimum size per application. Other topics that were covered in this thesis were the state of the art and future trends in plug-in electric vehicle and battery chemistry adoption and development. The goal of the literature review was to confirm the already suspected notion that Li-ion batteries are best suited and soon to be most cost-effective solution for applications requiring small, efficient, reliable, and light-weight battery systems such as plug-in electric vehicles and community energy storage systems. This thesis also includes a chapter showing system modeling in MATLAB/SimulinkRTM. All in all, this thesis covers a wide variety of considerations involved in the designing and deploying of community energy storage systems intended to mitigate the effects of distribution transformer overloading.

  3. An assessment of alternative fuel cell designs for residential and commercial cogeneration

    NASA Technical Reports Server (NTRS)

    Wakefield, R. A.

    1980-01-01

    A comparative assessment of three fuel cell systems for application in different buildings and geographic locations is presented. The study was performed at the NASA Lewis Center and comprised the fuel cell design, performance in different conditions, and the economic parameters. Applications in multifamily housing, stores and hospitals were considered, with a load of 10kW-1 MW. Designs were traced through system sizing, simulation/evaluation, and reliability analysis, and a computer simulation based on a fourth-order representation of a generalized system was performed. The cells were all phosphoric acid type cells, and were found to be incompatible with gas/electric systems and more favorable economically than the gas/electric systems in hospital uses. The methodology used provided an optimized energy-use pattern and minimized back-up system turn-on.

  4. Reliability of the quench protection system for the LHC superconducting elements

    NASA Astrophysics Data System (ADS)

    Vergara Fernández, A.; Rodríguez-Mateos, F.

    2004-06-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed.

  5. [Design of low-intermediate frequency electrotherapy and pain assessment system].

    PubMed

    Liang, Chunyan; Tian, Xuelong; Yu, Xuehong; Luo, Hongyan

    2014-06-01

    Aiming at the single treatment and the design separation between treatment and assessment in electrotherapy equipment, a kind of system including low-intermediate frequency treatment and efficacy evaluation was developed. With C8051F020 single-chip microcomputer as the core and the circuit design and software programming used, the system realized the random switch of therapeutic parameters, the collection, display and data storage of pressure pain threshold in the assessment. Experiment results showed that the stimulus waveform, current intensity, frequency, duty ratio of the system output were adjustable, accurate and reliable. The obtained pressure pain threshold had a higher accuracy (< 0.3 N) and better stability, guiding the parameter choice in the precise electrical stimulation. It, therefore, provides a reliable technical support for the treatment and curative effect assessment.

  6. The state of energy storage in electric utility systems and its effect on renewable energy resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, N S

    1994-08-01

    This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed themore » cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.« less

  7. The transmission system as main actor in electricity market development in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrescu, A.M.; Mihailescu, F.

    1998-07-01

    At the beginning of 1998, Romanian Electricity Authority (RENEL) was a fully integrated generation, transmission and distribution company, which managed all aspects of planning, design, and operation of Romania' s electricity sector. This form of vertically integrated organization has enabled to develop the high voltage transmission system in order to transfer electricity from the large power plants on indigenous coal (lignite) to the deficit electricity areas. An analysis based on specific characteristics of Romanian Transmission System allows the identification of a suitable model cost for transmission services evaluation. The transmission electricity tariff as a market tool has become a necessitymore » for the heterogeneous Romanian power systems from the repartition of the generation against the demand location point of view. The experience of the power system development planner shows that the most suitable model for the transmission electricity system cost assessment is the rated zones in order to reflect the geographical imbalance of generation and demand and the ability of the transmission system to accommodate this imbalance. Setting principles for the cost evaluation has to be sustained by the service evaluation on the grid nodes at the interface between transmission system and distribution system. This cost evaluation under the form of incentives for new producers has to be reconsidered year by year taking into account the evolution in time both production side and demand side. The incentives have to be addressed directly to the producers and must be strong enough to provide an efficient reliable operation of the whole power system. Transmission planners have to develop new approaches to deal with the uncertainties of the market; a combination of market forces and regulation seems to ensure the best way for the quality and security of the power system beside of the efficiency of all actors from the electricity market.« less

  8. 75 FR 5779 - Proposed Emergency Agency Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... proposed collection of information, including the validity of the methodology and assumptions used; (c... Collection Request Title: Electricity Delivery and Energy Reliability Recovery Act Smart Grid Grant Program..., Chief Operating Officer, Electricity Delivery and Energy Reliability. [FR Doc. 2010-2422 Filed 2-3-10; 8...

  9. The Cost of Saving Electricity Through Energy Efficiency Programs Funded by Utility Customers: 2009–2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Ian M.; Goldman, Charles A.; Murphy, Sean

    The average cost to utilities to save a kilowatt-hour (kWh) in the United States is 2.5 cents, according to the most comprehensive assessment to date of the cost performance of energy efficiency programs funded by electricity customers. These costs are similar to those documented earlier. Cost-effective efficiency programs help ensure electricity system reliability at the most affordable cost as part of utility planning and implementation activities for resource adequacy. Building on prior studies, Berkeley Lab analyzed the cost performance of 8,790 electricity efficiency programs between 2009 and 2015 for 116 investor-owned utilities and other program administrators in 41 states. Themore » Berkeley Lab database includes programs representing about three-quarters of total spending on electricity efficiency programs in the United States.« less

  10. A Novel Concept for the Rapid Deployment of Electric Power Cables. Phase 1.

    DTIC Science & Technology

    1987-04-30

    cable toward the tactical position that requires power. The approach effectively neutralisasl both man-made and naturally occurring deployment...guided system with a reputation for extreme accuracy, it is anticipated that the cable can be delivered to a user located within a 1000 foot range...thus readily available, because it is an effective and reliable weapon system. The system has been up-graded several times which indicates that its

  11. Electric Motor Thermal Management R&D. Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennion, Kevin

    With the push to reduce component volumes, lower costs, and reduce weight without sacrificing performance or reliability, the challenges associated with thermal management increase for power electronics and electric motors. Thermal management for electric motors will become more important as the automotive industry continues the transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform, and as thermal management improves, there will be a direct trade-off between motor performance, efficiency, cost, and the sizingmore » of electric motors to operate within the thermal constraints. The goal of this research project is to support broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management. Work in FY15 focused on two areas related to motor thermal management: passive thermal performance and active convective cooling. Passive thermal performance emphasized the thermal impact of materials and thermal interfaces among materials within an assembled motor. The research tasks supported the publication of test methods and data for thermal contact resistances and direction-dependent thermal conductivity within an electric motor. Active convective cooling focused on measuring convective heat-transfer coefficients using automatic transmission fluid (ATF). Data for average convective heat transfer coefficients for direct impingement of ATF jets was published. Also, experimental hardware for mapping local-scale and stator-scale convective heat transfer coefficients for ATF jet impingement were developed.« less

  12. Development of Analytical Algorithm for the Performance Analysis of Power Train System of an Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Ho; Lee, Kee-Man; Lee, Sang-Heon

    Power train system design is one of the key R&D areas on the development process of new automobile because an optimum size of engine with adaptable power transmission which can accomplish the design requirement of new vehicle can be obtained through the system design. Especially, for the electric vehicle design, very reliable design algorithm of a power train system is required for the energy efficiency. In this study, an analytical simulation algorithm is developed to estimate driving performance of a designed power train system of an electric. The principal theory of the simulation algorithm is conservation of energy with several analytical and experimental data such as rolling resistance, aerodynamic drag, mechanical efficiency of power transmission etc. From the analytical calculation results, running resistance of a designed vehicle is obtained with the change of operating condition of the vehicle such as inclined angle of road and vehicle speed. Tractive performance of the model vehicle with a given power train system is also calculated at each gear ratio of transmission. Through analysis of these two calculation results: running resistance and tractive performance, the driving performance of a designed electric vehicle is estimated and it will be used to evaluate the adaptability of the designed power train system on the vehicle.

  13. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  14. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  15. Estimation of Faults in DC Electrical Power System

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott

    2009-01-01

    This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.

  16. Practical application of power conditioning to electric propulsion for passenger vehicles

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Lee, F. C.; Nehl, T. W.; Overton, B. P.

    1980-01-01

    A functional model 15 HP, 120 volt, 4-pole, 7600 r.p.m. samarium-cobalt permanent magnet type brushless dc motor-transistorized power conditioner unit was designed, fabricated and tested for specific use in propulsion of electric passenger vehicles. This new brushless motor system, including its power conditioner package, has a number of important advantages over existing systems such as reduced weight and volume, higher reliability, and potential for improvements in efficiencies. These advantages are discussed in this paper in light of the substantial test data collected during experimentation with the newly developed conditioner motor propulsion system. Details of the power conditioner design philosophy and particulars are given in the paper. Also, described here are the low level electronic design and operation in relation to the remainder of the system.

  17. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 3: Experimental System Descriptions. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The design and development of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system consists of five subsystems: the collector, power conversion, energy transport, energy storage, and the plant control subsystem. The collector subsystem consists of concentrator, receiver, and tower assemblies. The energy transport subsystem uses a mixture of salts with a low melting temperature to transport thermal energy. A steam generator drives a steam Rankine cycle turbine which drives an electrical generator to produce electricity. Thermal and stress analysis tests are performed on each subsystem in order to determine the operational reliability, the minimum risk of failure, and the maintenance and repair characteristics.

  18. Electrically induced spontaneous emission in open electronic system

    NASA Astrophysics Data System (ADS)

    Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration

    A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.

  19. The NASA Lewis large wind turbine program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Baldwin, D. H.

    1981-01-01

    The program is directed toward development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generation systems. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. Advances are made by gaining a better understanding of the system design drivers, improvements in the analytical design tools, verification of design methods with operating field data, and the incorporation of new technology and innovative designs. An overview of the program activities is presented and includes results from the first and second generation field machines (Mod-OA, -1, and -2), the design phase of the third generation wind turbine (Mod-5) and the advanced technology projects. Also included is the status of the Department of Interior WTS-4 machine.

  20. Recording of Electric Signal Passing Through a Pylon in Direct Skeletal Attachment of Leg Prostheses with Neuromuscular Control

    PubMed Central

    Pitkin, M.; Cassidy, C.; Muppavarapu, R.; Edell, David

    2012-01-01

    Direct recordings were made of electrical signals emanating from the muscles in a rabbit’s residuum. The signals were transmitted via wires attached on one end to the muscles, and on the other to an external recording system. The cable was held in a titanium tube inside a pylon that had been transcutaneously implanted into the residuum’s bone. The tube was surrounded by porous titanium cladding to enhance its bond with the bone and with the skin of the residuum. This study was the first known attempt to merge the technology of direct skeletal attachment of limb prostheses with the technology of neuromuscular control of prostheses, providing a safe and reliable passage of the electrical signal from the muscles inside the residuum to the outside recording system. PMID:22345523

Top