Science.gov

Sample records for electricity transmission infrastructure

  1. Vulnerability of electricity transmission infrastructure to natural hazards

    NASA Astrophysics Data System (ADS)

    Komendantova, Nadejda

    2016-04-01

    Electricity transmission system is a very complex system, which consists of several elements, such as overhead lines, substations and transformers, covers wide areas, is interconnected with several networks with numerous inter-dependencies. This highly integrated system is exposed to several hazards, leading to interruption of power supply. Natural hazards, such as an increased frequency of extreme weather events, including storms, icing, wet snow deposits, lighting, floods, avalanches, rock falls and landslides or changing air temperature have effects on transmission and lead to destruction of this infrastructure, which is also critical for society as it guarantees functioning of vital for society services. The reliability of critical electricity transmission infrastructure depends on its ability to ensure normal operation, to limit number of incidents and to avoid major incidents and to limit consequences of major incidents. The concept of reliability is closely connected with the concept of resilience, which is understood, in general, as the ability of a system to react and recover from anticipated disturbances and events. In regards to electricity transmission resilience is the ability of the power system to adapt, self-organize and recover or achieve the level even higher than those before the shock. This paper reviews three major natural hazards disasters, which resulted in significant blackouts in Europe. The first one is the 2003 blackout in Italy, which was caused by flash-over from trees. The second one is the 2003 blackout in Sweden, which was caused by rainstorms. The third one is the 2005 blackout in Germany, which was caused by wet snow. The inter-comparative analysis of these events allowed us to develop recommendations on electricity transmission network resilience.

  2. Energy Transmission and Infrastructure

    SciTech Connect

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  3. 18 CFR 35.35 - Transmission infrastructure investment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Transmission... AND TARIFFS Transmission Infrastructure Investment Provisions § 35.35 Transmission infrastructure...) rate treatments for transmission of electric energy in interstate commerce by public utilities for...

  4. 18 CFR 35.35 - Transmission infrastructure investment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Transmission... AND TARIFFS Transmission Infrastructure Investment Provisions § 35.35 Transmission infrastructure...) rate treatments for transmission of electric energy in interstate commerce by public utilities for...

  5. 18 CFR 35.35 - Transmission infrastructure investment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Transmission... AND TARIFFS Transmission Infrastructure Investment Provisions § 35.35 Transmission infrastructure...) rate treatments for transmission of electric energy in interstate commerce by public utilities for...

  6. Cyberwarfare on the Electricity Infrastructure

    SciTech Connect

    Murarka, N.; Ramesh, V.C.

    2000-03-20

    The report analyzes the possibility of cyberwarfare on the electricity infrastructure. The ongoing deregulation of the electricity industry makes the power grid all the more vulnerable to cyber attacks. The report models the power system information system components, models potential threats and protective measures. It therefore offers a framework for infrastructure protection.

  7. Impacts of Climate Change on the California Electricity Infrastructure

    NASA Astrophysics Data System (ADS)

    Dale, L. L.; Sathaye, J.; Lucena, A.; Koy, K.; Larsen, P.; Fitts, G.; Lewis, S. M.

    2012-12-01

    We present the results of a study of the impact of climate change on the energy infrastructure of California , including temperature impacts on power plant capacity, electricity generation, transmission lines, substation capacity, and peak electricity demand; wildfire impacts near transmission lines; and sea level encroachment upon power plants, substations, and natural gas facilities. End-of-century impacts were projected with respect to A2 and B1 Intergovernmental Panel on Climate Change scenarios. The study quantifies the effect of high ambient temperatures on electricity generation, the capacity of transmission lines, and the demand for peak power. It shows that atmospheric warming may necessitate up to 38 percent additional peak generation capacity and up to 31 percent additional transmission capacity. The study demonstrates that key transmission corridors are vulnerable to increased fire frequency. For example it shows a 40 percent increased probability of wildfire exposure for some major transmission lines, including the transmission line bringing hydropower generation from the Pacific Northwest during peak demand periods. Finally, the study identifies energy infrastructure vulnerable to sea level encroachment. Up to 25 current coastal power plants and 86 substations are at risk of flooding or compromised operation due to sea level rise.

  8. Regional study on investment for transmission infrastructure in China based on the State Grid data

    NASA Astrophysics Data System (ADS)

    Wei, Wendong; Wu, Xudong; Wu, Xiaofang; Xi, Qiangmin; Ji, Xi; Li, Guoping

    2016-06-01

    Transmission infrastructure is an integral component of safeguarding the stability of electricity delivery. However, existing studies of transmission infrastructure mostly rely on a simple review of the network, while the analysis of investments remains rudimentary. This study conducted the first regionally focused analysis of investments in transmission infrastructure in China to help optimize its structure and reduce investment costs. Using State Grid data, the investment costs, under various voltages, for transmission lines and transformer substations are calculated. By analyzing the regional profile of cumulative investment in transmission infrastructure, we assess correlations between investment, population, and economic development across the regions. The recent development of ultra-high-voltage transmission networks will provide policy-makers new options for policy development.

  9. Regional study on investment for transmission infrastructure in China based on the State Grid data

    NASA Astrophysics Data System (ADS)

    Wei, Wendong; Wu, Xudong; Wu, Xiaofang; Xi, Qiangmin; Ji, Xi; Li, Guoping

    2017-03-01

    Transmission infrastructure is an integral component of safeguarding the stability of electricity delivery. However, existing studies of transmission infrastructure mostly rely on a simple review of the network, while the analysis of investments remains rudimentary. This study conducted the first regionally focused analysis of investments in transmission infrastructure in China to help optimize its structure and reduce investment costs. Using State Grid data, the investment costs, under various voltages, for transmission lines and transformer substations are calculated. By analyzing the regional profile of cumulative investment in transmission infrastructure, we assess correlations between investment, population, and economic development across the regions. The recent development of ultra-high-voltage transmission networks will provide policy-makers new options for policy development.

  10. 18 CFR 35.35 - Transmission infrastructure investment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Transmission infrastructure investment. 35.35 Section 35.35 Conservation of Power and Water Resources FEDERAL ENERGY... transmission infrastructure development. The Commission will approve recovery of prudently-incurred...

  11. 18 CFR 35.35 - Transmission infrastructure investment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transmission infrastructure investment. 35.35 Section 35.35 Conservation of Power and Water Resources FEDERAL ENERGY... transmission infrastructure development. The Commission will approve recovery of prudently-incurred...

  12. ELECTRIC INFRASTRUCTURE TECHNOLOGY, TRAINING, AND ASSESSMENT PROGRAM

    SciTech Connect

    TREMEL, CHARLES L

    2007-06-28

    The objective of this Electric Infrastructure Technology, Training and Assessment Program was to enhance the reliability of electricity delivery through engineering integration of real-time technologies for wide-area applications enabling timely monitoring and management of grid operations. The technologies developed, integrated, tested and demonstrated will be incorporated into grid operations to assist in the implementation of performance-based protection/preventive measures into the existing electric utility infrastructure. This proactive approach will provide benefits of reduced cost and improved reliability over the typical schedule-based and as needed maintenance programs currently performed by utilities. Historically, utilities have relied on maintenance and inspection programs to diagnose equipment failures and have used the limited circuit isolation devices, such as distribution main circuit breakers to identify abnormal system performance. With respect to reliable problem identification, customer calls to utility service centers are often the sole means for utilities to identify problem occurrences and determine restoration methodologies. Furthermore, monitoring and control functions of equipment and circuits are lacking; thus preventing timely detection and response to customer outages. Finally, the two-way flow of real-time system information is deficient, depriving decision makers of key information required to effectively manage and control current electric grid demands to provide reliable customer service in abnormal situations. This Program focused on advancing technologies and the engineering integration required to incorporate them into the electric grid operations to enhance electrical system reliability and reduce utility operating costs.

  13. SimWIND: A Geospatial Infrastructure Model for Wind Energy Production and Transmission

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Phillips, B. R.; Bielicki, J. M.

    2009-12-01

    Wind is a clean, enduring energy resource with a capacity to satisfy 20% or more of the electricity needs in the United States. A chief obstacle to realizing this potential is the general paucity of electrical transmission lines between promising wind resources and primary load centers. Successful exploitation of this resource will therefore require carefully planned enhancements to the electric grid. To this end, we present the model SimWIND for self-consistent optimization of the geospatial arrangement and cost of wind energy production and transmission infrastructure. Given a set of wind farm sites that satisfy meteorological viability and stakeholder interest, our model simultaneously determines where and how much electricity to produce, where to build new transmission infrastructure and with what capacity, and where to use existing infrastructure in order to minimize the cost for delivering a given amount of electricity to key markets. Costs and routing of transmission line construction take into account geographic and social factors, as well as connection and delivery expenses (transformers, substations, etc.). We apply our model to Texas and consider how findings complement the 2008 Electric Reliability Council of Texas (ERCOT) Competitive Renewable Energy Zones (CREZ) Transmission Optimization Study. Results suggest that integrated optimization of wind energy infrastructure and cost using SimWIND could play a critical role in wind energy planning efforts.

  14. Electrical transmission line diametrical retainer

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  15. Investigating the effect of increased wind generation capacity on investment in transmission infrastructure

    NASA Astrophysics Data System (ADS)

    Braswell, Michael G.

    The transmission network that connects electricity generators with consumers is a critical yet often-overlooked component of the nation's electrical power infrastructure. However, the transmission grid has suffered from chronic underinvestment in recent decades due to various economic and regulatory factors that impede timely and efficient investments in transmission. One factor that might help offset these obstacles to transmission is the growth in wind power generation. The assumption among many in the electrical power industry is that wind power investments necessarily require greater investment in transmission due to the fact that wind power is a geographically-restricted resource and cannot always be situated close to areas of high electricity demand. However, to date there have been few, if any, empirical studies to verify this connection. This paper discusses a state-by-state empirical study exploring the relationship between increased wind generation capacity and the level of investment in transmission infrastructure. This study begins with the hypothesis that increases in installed wind generation capacity, in combination with other policies that promote wind energy more generally, should result in higher levels of transmission investment. Using data from the Federal Energy Regulatory Commission (FERC) and the American Wind Energy Association (AWEA), this paper develops regression models suggesting that wind investment has a small but distinct positive impact on transmission investment. This paper then explores the effects of other state renewable energy promotion policies, and discusses the policy implications of these findings.

  16. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  17. Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure

    SciTech Connect

    Marnay, Chris; Venkataramanan, Giri

    2006-02-01

    The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

  18. Colorado Electrical Transmission Grid

    DOE Data Explorer

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  19. Impacts of Climate Change on Electric Transmission Capacity and Peak Electricity Load in the United States

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M. D.; Eisenberg, D. A.; Gorman, B.; Johnson, N.

    2015-12-01

    Climate change may hinder future electricity reliability by reducing electric transmission capacity while simultaneously increasing electricity demand. This study estimates potential climate impacts to electric transmission capacity and peak electricity load in the United States. Electric power cables suffer decreased transmission capacity as they get hotter; similarly, during the summer peak period, electricity demand typically increases with hotter ambient air temperatures due to increased cooling loads. As atmospheric carbon concentrations increase, higher air temperatures may strain power infrastructure by reducing transmission capacity and increasing peak electricity loads. Taken together, these coincident impacts may have unpredictable consequences for electric power reliability. We estimate the effects of climate change on both the rated capacity of transmission infrastructure and expected electricity demand for 120 electrical utilities across the United States. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with downscaled CMIP5 temperature projections to determine the relative change in rated ampacity over the twenty-first century. Next, we assess the impact of climate change on electricity demand by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We use downscaled temperature projections from 11 CMIP5 GCM models under 3 atmospheric carbon scenarios. We find that by mid-century (2040-2060), climate change may reduce average summertime transmission capacity by 4-6% relative to the 1990-2010 reference period. At the same time, peak summertime loads may rise by roughly 2-12% on average due to increases in daily maximum air temperature. In the absence of energy efficiency gains, demand-side management programs

  20. State Transmission Infrastructure Authorities: The Story So Far; December 2007 - December 2008

    SciTech Connect

    Porter, K.; Fink. S.

    2008-05-01

    This report examines the status and future direction of state transmission infrastructure authorities. It summarizes common characteristics, discusses current transmission projects, and outlines common issues the state infrastructure authorities have faced.

  1. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  2. Wildlife and electric power transmission

    USGS Publications Warehouse

    Ellis, D.H.; Goodwin, J.G.; Hunt, J.R.; Fletcher, John L.; Busnel, R.G.

    1978-01-01

    Hundreds of thousands of miles of transmission lines have been introduced into our natural environment. These lines and their corridors can be damaging or beneficial to wildlife communities depending on how they are designed, where they are placed, and when they are constructed and maintained. With the current trend toward UHV systems, new problems (associated with additional increments in audible noise, electric and magnetic force fields, etc.) must be addressed. We recommend the following areas for careful study: (1) the response of wilderness species to transmission lines and line construction and maintenance activities (2) the magnitude of bird collision and electrocution mortality, (3) the response of power corridor and power tower in habiting wildlife to laboratory and field doses of electro-chemical oxidants, corona noise, electric and magnetic fields, etc., (4) the productivity of tower inhabiting birds compared with nearby non-tower nesters, and (5) the influence of powerline corridors on mammalian and avian migration patterns. It is our hope that the questions identified in this study will help stimulate further research so that we can maximize wildlife benefits and minimize wildlife detriments.

  3. Operation and planning of coordinated natural gas and electricity infrastructures

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaping

    Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and

  4. Island Concept Electrically Variable Transmission (EVT)

    DTIC Science & Technology

    2006-10-01

    all-wheel-drive (AWD) hybrid electric vehicle (HEV) design approach for extreme off- road dynamic performances focusing primarily on the powertrain...technologies (such as electric traction, powertrain hybridization, and electrically variable transmission (EVT) concepts) can provide for ground vehicles ...the benefits, and potential limitations of the new technologies. Just as one cannot expect to use a “conventional” vehicle with electric

  5. Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow.

    PubMed

    Liu, Cong; Shahidehpour, Mohammad; Wang, Jianhui

    2011-06-01

    This paper focuses on transient characteristics of natural gas flow in the coordinated scheduling of security-constrained electricity and natural gas infrastructures. The paper takes into account the slow transient process in the natural gas transmission systems. Considering their transient characteristics, natural gas transmission systems are modeled as a set of partial differential equations (PDEs) and algebraic equations. An implicit finite difference method is applied to approximate PDEs by difference equations. The coordinated scheduling of electricity and natural gas systems is described as a bi-level programming formulation from the independent system operator's viewpoint. The objective of the upper-level problem is to minimize the operating cost of electric power systems while the natural gas scheduling optimization problem is nested within the lower-level problem. Numerical examples are presented to verify the effectiveness of the proposed solution and to compare the solutions for steady-state and transient models of natural gas transmission systems.

  6. 75 FR 22770 - National Electric Transmission Congestion Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... National Electric Transmission Congestion Study AGENCY: Office of Electricity Delivery and Energy Reliability (OE), Department of Energy. ACTION: Notice of Availability of 2009 National Electric Transmission... notice that it has issued a National Electric Transmission Congestion Study (2009 Congestion Study)...

  7. Analysis of the infrastructure for recharging electric vehicles

    SciTech Connect

    Kaiser, R.; Graver, C.

    1980-01-01

    An analysis of the infrastructure ofr recharging electric vehicles (EV), equivalent to the refueling infrastructure for internal combustion engines (ICE), shows that many of the infrastructure elements required to recharge a large number of EV's in the U.S. are already in place. The U.S. utility industry has sufficient capacity to support at least 13 million EV's if they are recharged at night. There are at least 20 million single-family homes where an EV could be recharged by adding a 230 volt, 50 amp branch circuit and outlet. This support is not uniformly distributed, however, and will depend on the local housing stock characteristics. With respect to range-extension support, transient recharging stations could supply emergency recharging, but would not be desirable for routine use. Battery exchange would be feasible once there are enough EV's on the road. A range-extension hybrid could use the existing ICE refueling infrastructure, but would require further technical development, and would still depend somewhat on petroleum availability.

  8. Electrical Transmission on the Lunar Surface. Part 1; DC Transmission

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.

    2001-01-01

    This report summarizes a portion of the results from a grant at Auburn University to study the electrical and thermal energy management for lunar facilities. Over the past year (June 1989 to May 1990) the following topics have been investigated: June 1989 to November 1989 - Literature survey, assessment of lunar power needs, and overview study of the requirements of a lunar power system; November 1989 to April 1990 - Develop models for the study of dc electrical power transmission lines for the lunar surface; March 1990 to May 1990 - Develop models for the study of ac electrical power transmission lines for the lunar surface. Because of the large amount of information in the model development and application to a wide parameter space this report is being bound separately. This report specifically contains the model development and parameter study for dc electrical power transmission lines. The end of the funding year (May 1990) will conclude with an annual report including the literature survey, the overview of the requirements of a lunar power system, and summaries of the dc and ac models of electrical transmission lines.

  9. Electrical Transmission Line Diametrical Retention Mechanism

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  10. Cost-effective electric vehicle charging infrastructure siting for Delhi

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ˜10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  11. Positioning the electric utility to build information infrastructure

    SciTech Connect

    Not Available

    1994-11-01

    In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

  12. Essays on electricity transmission investment and financial transmission rights

    NASA Astrophysics Data System (ADS)

    Shang, Wenzhuo

    The U.S. electric power industry has been going through fundamental restructuring and realignment since the 1990's. Many issues and problems have emerged during the transition, and both economists and engineers have been looking for the solutions fervently. In this dissertation, which consists primarily of three essays, we apply economics theory and techniques to the power industry and address two related issues, transmission investment and financial transmission rights (FTRs). The first essay takes the decentralized perspective and investigates the efficiency attribute of market-based transmission investment under perfect competition. We clarify, for the first time, the nature of the externality created by loop flows that causes transmission investment to be inefficient. Our findings have important implications for better understanding of transmission market design and creating incentives for efficient transmission investment. In the second essay, we define several rules for allocating transmission investment cost within the framework of cooperative game theory. These rules provide fair, stable or efficient cost allocations in theory and are good benchmarks against which the allocation mechanism in practice can be compared and improved upon. In the last essay, we make exploratory efforts in analyzing and assessing empirically the performance of the Midwest independent system operator (MISO) FTR auction market. We reveal some stylized facts about this young market and find that it is not efficient under the risk-neutrality assumption. We also point out and correct the drawbacks in previous related work and suggest about more complete empirical work in future. In all, this dissertation makes both theoretic and empirical analysis of the two hot issues related to the power industry and comes up with findings that have important implications for the development of this industry.

  13. Real Option Cost Vulnerability Analysis of Electrical Infrastructure

    NASA Astrophysics Data System (ADS)

    Prime, Thomas; Knight, Phil

    2015-04-01

    Critical infrastructure such as electricity substations are vulnerable to various geo-hazards that arise from climate change. These geo-hazards range from increased vegetation growth to increased temperatures and flood inundation. Of all the identified geo-hazards, coastal flooding has the greatest impact, but to date has had a low probability of occurring. However, in the face of climate change, coastal flooding is likely to occur more often due to extreme water levels being experienced more frequently due to sea-level rise (SLR). Knowing what impact coastal flooding will have now and in the future on critical infrastructure such as electrical substations is important for long-term management. Using a flood inundation model, present day and future flood events have been simulated, from 1 in 1 year events up to 1 in 10,000 year events. The modelling makes an integrated assessment of impact by using sea-level and surge to simulate a storm tide. The geographical area the model covers is part of the Northwest UK coastline with a range of urban and rural areas. The ensemble of flood maps generated allows the identification of critical infrastructure exposed to coastal flooding. Vulnerability has be assessed using an Estimated Annual Damage (EAD) value. Sampling SLR annual probability distributions produces a projected "pathway" for SLR up to 2100. EAD is then calculated using a relationship derived from the flood model. Repeating the sampling process allows a distribution of EAD up to 2100 to be produced. These values are discounted to present day values using an appropriate discount rate. If the cost of building and maintain defences is also removed from this a Net Present Value (NPV) of building the defences can be calculated. This distribution of NPV can be used as part of a cost modelling process involving Real Options, A real option is the right but not obligation to undertake investment decisions. In terms of investment in critical infrastructure resilience this

  14. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    NASA Astrophysics Data System (ADS)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  15. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  16. Advanced simulation for analysis of critical infrastructure : abstract cascades, the electric power grid, and Fedwire.

    SciTech Connect

    Glass, Robert John, Jr.; Stamber, Kevin Louis; Beyeler, Walter Eugene

    2004-08-01

    Critical Infrastructures are formed by a large number of components that interact within complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of hardware/software control, or implicitly through the action/reaction of people. Individual infrastructures influence others and grow, adapt, and thus evolve in response to their multifaceted physical, economic, cultural, and political environments. Simply put, critical infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center (NISAC), we are studying infrastructures as complex adaptive systems. In one of AMTI's efforts, we are focusing on cascading failure as can occur with devastating results within and between infrastructures. Over the past year we have synthesized and extended the large variety of abstract cascade models developed in the field of complexity science and have started to apply them to specific infrastructures that might experience cascading failure. In this report we introduce our comprehensive model, Polynet, which simulates cascading failure over a wide range of network topologies, interaction rules, and adaptive responses as well as multiple interacting and growing networks. We first demonstrate Polynet for the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We then apply Polynet to two very different critical infrastructures: the high voltage electric power transmission system which relays electricity from generators to groups of distribution-level consumers, and Fedwire which is a Federal Reserve service for sending large-value payments between banks and other large financial institutions. For these two applications, we tailor interaction rules to represent appropriate unit behavior and consider the influence of random transactions within two stylized networks: a regular homogeneous array and a

  17. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    NASA Astrophysics Data System (ADS)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  18. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect

    Markel, T.

    2010-04-01

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  19. Do topological models provide good information about electricity infrastructure vulnerability?

    PubMed

    Hines, Paul; Cotilla-Sanchez, Eduardo; Blumsack, Seth

    2010-09-01

    In order to identify the extent to which results from topological graph models are useful for modeling vulnerability in electricity infrastructure, we measure the susceptibility of power networks to random failures and directed attacks using three measures of vulnerability: characteristic path lengths, connectivity loss, and blackout sizes. The first two are purely topological metrics. The blackout size calculation results from a model of cascading failure in power networks. Testing the response of 40 areas within the Eastern U.S. power grid and a standard IEEE test case to a variety of attack/failure vectors indicates that directed attacks result in larger failures using all three vulnerability measures, but the attack-vectors that appear to cause the most damage depend on the measure chosen. While the topological metrics and the power grid model show some similar trends, the vulnerability metrics for individual simulations show only a mild correlation. We conclude that evaluating vulnerability in power networks using purely topological metrics can be misleading.

  20. A Theoretical Secure Enterprise Architecture for Multi Revenue Generating Smart Grid Sub Electric Infrastructure

    ERIC Educational Resources Information Center

    Chaudhry, Hina

    2013-01-01

    This study is a part of the smart grid initiative providing electric vehicle charging infrastructure. It is a refueling structure, an energy generating photovoltaic system and charge point electric vehicle charging station. The system will utilize advanced design and technology allowing electricity to flow from the site's normal electric service…

  1. Onsite and Electric Backup Capabilities at Critical Infrastructure Facilities in the United States

    SciTech Connect

    Phillips, Julia A.; Wallace, Kelly E.; Kudo, Terence Y.; Eto, Joseph H.

    2016-04-01

    The following analysis, conducted by Argonne National Laboratory’s (Argonne’s) Risk and Infrastructure Science Center (RISC), details an analysis of electric power backup of national critical infrastructure as captured through the Department of Homeland Security’s (DHS’s) Enhanced Critical Infrastructure Program (ECIP) Initiative. Between January 1, 2011, and September 2014, 3,174 ECIP facility surveys have been conducted. This study focused first on backup capabilities by infrastructure type and then expanded to infrastructure type by census region.

  2. Aeolic vibration of aerial electricity transmission cables

    NASA Astrophysics Data System (ADS)

    Avila, A.; Rodriguez-Vera, Ramon; Rayas, Juan A.; Barrientos, Bernardino

    2005-02-01

    A feasibility study for amplitude and frequency vibration measurement in aerial electricity transmission cable has been made. This study was carried out incorporating a fringe projection method for the experimental part and horizontal taut string model for theoretical one. However, this kind of model ignores some inherent properties such as cable sag and cable inclination. Then, this work reports advances on aeolic vibration considering real cables. Catenary and sag are considered in our theoretical model in such a way that an optical theodolite for measuring has been used. Preliminary measurements of the catenary as well as numerical simulation of a sagged cable vibration are given.

  3. ELECTRICAL SUBSTATION RELIABILITY EVALUATION WITH EMPHASIS ON EVOLVING INTERDEPENDENCE ON COMMUNICATION INFRASTRUCTURE.

    SciTech Connect

    AZARM,M.A.; BARI,R.; YUE,M.; MUSICKI,Z.

    2004-09-12

    This study developed a probabilistic methodology for assessment of the reliability and security of electrical energy distribution networks. This included consideration of the future grid system, which will rely heavily on the existing digitally based communication infrastructure for monitoring and protection. Event tree and fault tree methods were utilized. The approach extensively modeled the types of faults that a grid could potentially experience, the response of the grid, and the specific design of the protection schemes. We demonstrated the methods by applying it to a small sub-section of a hypothetical grid based on an existing electrical grid system of a metropolitan area. The results showed that for a typical design that relies on communication network for protection, the communication network reliability could contribute significantly to the frequency of loss of electrical power. The reliability of the communication network could become a more important contributor to the electrical grid reliability as the utilization of the communication network significantly increases in the near future to support ''smart'' transmission and/or distributed generation.

  4. Cyber-Physical Systems for Critical Infrastructure Protection: A Wireless Sensor Network Application for Electric Grid Monitoring

    NASA Astrophysics Data System (ADS)

    Saint, Martin

    Critical infrastructure includes resources which are essential to the function of society. Despite an increased focus on protecting U.S. critical infrastructure, some sectors including the electric grid are more vulnerable than ever. Existing critical infrastructure protection (CIP) regulations and the monitoring and control systems used to achieve them have not met performance expectations. This indicates that the next generation of grid control should explore new architectures. This thesis explores the question of whether a cyber-physical system in the form of wireless sensor networks can be used to improve CIP. We examine efforts by others to design a wireless sensor module for monitoring transmission and distribution lines, and note that this work includes little information about the performance of the communications subsystem. Laboratory testing of throughput and reliability for one example communication network are undertaken here, along with consideration of the short message service as one alternative for backhauling sensor data.

  5. 78 FR 4873 - Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... on Electrical Protective Equipment (29 CFR 1910.137) and Electric Power Generation, Transmission, and... Equipment Standard (29 CFR 1910.137) and the Electric Power Generation, Transmission, and Distribution... the equipment-testing requirements of the Standard. Electric Power Generation, Transmission,...

  6. Comparing the Topological and Electrical Structure of the North American Electric Power Infrastructure

    NASA Astrophysics Data System (ADS)

    Cotilla-Sanchez, Eduardo; Hines, Paul D. H.; Barrows, Clayton; Blumsack, Seth

    2012-12-01

    The topological (graph) structure of complex networks often provides valuable information about the performance and vulnerability of the network. However, there are multiple ways to represent a given network as a graph. Electric power transmission and distribution networks have a topological structure that is straightforward to represent and analyze as a graph. However, simple graph models neglect the comprehensive connections between components that result from Ohm's and Kirchhoff's laws. This paper describes the structure of the three North American electric power interconnections, from the perspective of both topological and electrical connectivity. We compare the simple topology of these networks with that of random (Erdos and Renyi, 1959), preferential-attachment (Barabasi and Albert, 1999) and small-world (Watts and Strogatz, 1998) networks of equivalent sizes and find that power grids differ substantially from these abstract models in degree distribution, clustering, diameter and assortativity, and thus conclude that these topological forms may be misleading as models of power systems. To study the electrical connectivity of power systems, we propose a new method for representing electrical structure using electrical distances rather than geographic connections. Comparisons of these two representations of the North American power networks reveal notable differences between the electrical and topological structure of electric power networks.

  7. Reorganization of the electric transmission system in Argentina

    SciTech Connect

    Sbertoli, L.V. )

    1994-06-01

    The Argentine electric system was developed from isolated local services, and, as the years went by, it became a well-integrated grid. Except for some services in the southernmost region, the national interconnected system supplies electric power to final users throughout the country. The paper discusses: Argentine interconnected system; private companies and public service; electric power sector transformation; transmission network privatization; transmission rates; concession (license) contract; extensions and other transmission concessions.

  8. Design of synchromesh mechanism to optimization manual transmission's electric vehicle

    NASA Astrophysics Data System (ADS)

    Zainuri, Fuad; Sumarsono, Danardono A.; Adhitya, Muhammad; Siregar, Rolan

    2017-03-01

    Significant research has been attempted on a vehicle that lead to the development of transmission that can reduce energy consumption and improve vehicle efficiency. Consumers also expect safety, convenience, and competitive prices. Automatic transmission (AT), continuously variable transmission (CVT), and dual clutch transmission (DCT) is the latest transmission developed for road vehicle. From literature reviews that have been done that this transmission is less effective on electric cars which use batteries as a power source compared to type manual transmission, this is due to the large power losses when making gear changes. Zeroshift system is the transmission can do shift gears with no time (zero time). It was developed for the automatic manual transmission, and this transmission has been used on racing vehicles to eliminate deceleration when gear shift. Zeroshift transmission still use the clutch to change gear in which electromechanical be used to replace the clutch pedal. Therefore, the transmission is too complex for the transmission of electric vehicles, but its mechanism is considered very suitable to increase the transmission efficiency. From this idea, a new innovation design transmission will be created to electric car. The combination synchromesh with zeroshift mechanism for the manual transmission is a transmission that is ideal for improving the transmission efficiency. Installation synchromesh on zeroshift mechanism is expected to replace the function of the clutch MT, and assisted with the motor torque setting when to change gear. Additionally to consider is the weight of the transmission, ease of manufacturing, ease of installation with an electric motor, as well as ease of use by drivers is a matter that must be done to obtain a new transmission system that is suitable for electric cars.

  9. Electric Power Infrastructure Reliability and Security (EPIRS) Reseach and Development Initiative

    SciTech Connect

    Rick Meeker; L. Baldwin; Steinar Dale; Alexander Domijan; Davild Larbalestier; Hui Li; Peter McLaren; Sastry Pamidi; Horatio Rodrigo; Michael Steurer

    2010-03-31

    Power systems have become increasingly complex and face unprecedented challenges posed by population growth, climate change, national security issues, foreign energy dependence and an aging power infrastructure. Increased demand combined with increased economic and environmental constraints is forcing state, regional and national power grids to expand supply without the large safety and stability margins in generation and transmission capacity that have been the rule in the past. Deregulation, distributed generation, natural and man-made catastrophes and other causes serve to further challenge and complicate management of the electric power grid. To meet the challenges of the 21st century while also maintaining system reliability, the electric power grid must effectively integrate new and advanced technologies both in the actual equipment for energy conversion, transfer and use, and in the command, control, and communication systems by which effective and efficient operation of the system is orchestrated - in essence, the 'smart grid'. This evolution calls for advances in development, integration, analysis, and deployment approaches that ultimately seek to take into account, every step of the way, the dynamic behavior of the system, capturing critical effects due to interdependencies and interaction. This approach is necessary to better mitigate the risk of blackouts and other disruptions and to improve the flexibility and capacity of the grid. Building on prior Navy and Department of Energy investments in infrastructure and resources for electric power systems research, testing, modeling, and simulation at the Florida State University (FSU) Center for Advanced Power Systems (CAPS), this project has continued an initiative aimed at assuring reliable and secure grid operation through a more complete understanding and characterization of some of the key technologies that will be important in a modern electric system, while also fulfilling an education and outreach

  10. ELECTRICAL SUBSTATION RELIABILITY EVALUATION WITH EMPHASIS ON EVOLVING INTERDEPENDENCE ON COMMUNICATION INFRASTRUCTURE.

    SciTech Connect

    AZARM,M.A.BARI,R.A.MUSICKI,Z.

    2004-01-15

    The objective of this study is to develop a methodology for a probabilistic assessment of the reliability and security of electrical energy distribution networks. This includes consideration of the future grid system, which will rely heavily on the existing digitally based communication infrastructure for monitoring and protection. Another important objective of this study is to provide information and insights from this research to Consolidated Edison Company (Con Edison) that could be useful in the design of the new network segment to be installed in the area of the World Trade Center in lower Manhattan. Our method is microscopic in nature and relies heavily on the specific design of the portion of the grid being analyzed. It extensively models the types of faults that a grid could potentially experience, the response of the grid, and the specific design of the protection schemes. We demonstrate that the existing technology can be extended and applied to the electrical grid and to the supporting communication network. A small subsection of a hypothetical grid based on the existing New York City electrical grid system of Con Edison is used to demonstrate the methods. Sensitivity studies show that in the current design the frequency for the loss of the main station is sensitive to the communication network reliability. The reliability of the communication network could become a more important contributor to the electrical grid reliability as the utilization of the communication network significantly increases in the near future to support ''smart'' transmission and/or distributed generation. The identification of potential failure modes and their likelihood can support decisions on potential modifications to the network including hardware, monitoring instrumentation, and protection systems.

  11. Infrastructure of Baltic Region Transmission System: Analysis of Technical and Economic Factors of its Development

    NASA Astrophysics Data System (ADS)

    Obushevs, A.; Oleinikova, I.; Mutule, A.

    2014-08-01

    The operational conditions of new networks dictate new requirements for the transmission planning, which would include the electricity market figures and a sizable involvement of renewable generation. This paper focuses on the transmission expansion planning techniques based on the calculations of optimal power flows and on the concept of development planning and sustainability. A description is given for the mathematical model of calculations and analysis of transmission system. The results have shown that the Baltic transmission system infrastructure can successfully be analyzed based on the proposed methodology and developed mathematical model Baltijas valstu (Latvijas, Lietuvas un Igaunijas) energosistēmas ir cieši saistītas vēsturiski, un to darbība nav iespējama bez savstarpējas sadarbības attīstības un darba režīmu jautājumos. Ekonomisko attiecību īstenošanu enerģētikas sektorā paātrināja elektroenerģijas tirgus attīstība. Baltijas valstu enerģētikas politika ir integrēta ES enerģētikas stratēģijas sastāvdaļa, nosakot trīs galvenos mērķus: enerģētikas nozares konkurētspēja, ilgtspējīga attīstība un drošība. Visas trīs Baltijas energosistēmas veica lielu darba apjomu iekārtu modernizācijā un standartu saskaņošanā, kuras ir saskaņā ar Eiropas Savienības prasībām, kā arī par tirgus attiecību un tehnoloģiju standartu ieviešanu, lai nodrošinātu energoapgādes drošību un elektroenerģijas pieejamību patērētājiem Tomēr, ņemot vērā strauji mainīgos ārējos apstākļus, it īpaši ģeopolitiskos faktorus, Baltijas valstu enerģētikas politika būtu jāizskata ar mērķi novērtēt, kā šie faktori ietekmē energosistēmas ilgtspējīgu attīstību kopumā. No iepriekš minētā izriet, ka nepieciešama jauna nacionāla enerģētikas stratēģija, kura stiprinātu efektīvu ekonomisko un sociālo pamatu ilgtspējīgu attīstību Baltijas valstu nacionālā ekonomikā. Šī darba m

  12. Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts

    SciTech Connect

    Wood, Eric; Raghavan, Sesha; Rames, Clement; Eichman, Joshua; Melaina, Marc

    2017-01-01

    Given the complex issues associated with plug-in electric vehicle (PEV) charging and options in deploying charging infrastructure, there is interest in exploring scenarios of future charging infrastructure deployment to provide insight and guidance to national and regional stakeholders. The complexity and cost of PEV charging infrastructure pose challenges to decision makers, including individuals, communities, and companies considering infrastructure installations. The value of PEVs to consumers and fleet operators can be increased with well-planned and cost-effective deployment of charging infrastructure. This will increase the number of miles driven electrically and accelerate PEV market penetration, increasing the shared value of charging networks to an expanding consumer base. Given these complexities and challenges, the objective of the present study is to provide additional insight into the role of charging infrastructure in accelerating PEV market growth. To that end, existing studies on PEV infrastructure are summarized in a literature review. Next, an analysis of current markets is conducted with a focus on correlations between PEV adoption and public charging availability. A forward-looking case study is then conducted focused on supporting 300,000 PEVs by 2025 in Massachusetts. The report concludes with a discussion of potential methodology for estimating economic impacts of PEV infrastructure growth.

  13. Recovery Act-SmartGrid regional demonstration transmission and distribution (T&D) Infrastructure

    SciTech Connect

    Hedges, Edward T.

    2015-01-31

    This document represents the Final Technical Report for the Kansas City Power & Light Company (KCP&L) Green Impact Zone SmartGrid Demonstration Project (SGDP). The KCP&L project is partially funded by Department of Energy (DOE) Regional Smart Grid Demonstration Project cooperative agreement DE-OE0000221 in the Transmission and Distribution Infrastructure application area. This Final Technical Report summarizes the KCP&L SGDP as of April 30, 2015 and includes summaries of the project design, implementation, operations, and analysis performed as of that date.

  14. Electricity Supply Infrastructure Improvements: Final Technical Status Report, December 2010

    SciTech Connect

    Piekarski, D.; Brad, D.

    2011-02-01

    This report is about a work effort where the overall objectives were to establish a methodology and approach for selected transmission and distribution (T&D) grid modernization; monitor the results; and report on the findings, recommendations, and lessons learned. The work reported addressed T&D problems and solutions, related reliability issues, equipment and operation upgrades, and respective field testing.

  15. Electric motor as the controlled mechanical transmission

    NASA Astrophysics Data System (ADS)

    Kukielka, Krzysztof

    2006-03-01

    The paper shows the possibility of using a brushless torque motor as controlled mechanical transmission. A development system for testing the torque motors was described and role of each component was discussed. Measured and observed phenomena of the research has shown the possibility of control the output rotations, preserving torque with simultaneous power consumption or its recovery, dependent on demanded transmission parameters.

  16. Electrical and Biological Effects of Transmission Lines: A Review.

    SciTech Connect

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  17. Impact of electric vehicles on the IEEE 34 node distribution infrastructure

    DOE PAGES

    Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.

    2014-10-01

    With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less

  18. Impact of electric vehicles on the IEEE 34 node distribution infrastructure

    SciTech Connect

    Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.

    2014-10-01

    With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts to the grid.

  19. 4. Electric motor and transmission wheel on southeast wall of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Electric motor and transmission wheel on southeast wall of Oil House. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Oil House, 650 feet Southeast of Cliff & Mechanic Streets, Scranton, Lackawanna County, PA

  20. 117. Maricopa Dam Water System, Electric Transmission Lines, Catwalk, Derrick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Maricopa Dam Water System, Electric Transmission Lines, Catwalk, Derrick at Elev. +65. October 15, 1934. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  1. Transmission Pricing Issues for Electricity Generation From Renewable Resources

    EIA Publications

    1999-01-01

    This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

  2. Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity

    PubMed Central

    Pereda, Alberto E.; Curti, Sebastian; Hoge, Gregory; Cachope, Roger; Flores, Carmen E.; Rash, John E.

    2012-01-01

    The term synapse applies to cellular specializations that articulate the processing of information within neural circuits by providing a mechanism for the transfer of information between two different neurons. There are two main modalities of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding of the properties and modifiability of chemical transmission, less is still known regarding the plastic properties of electrical synapses, whose structural correlate is the gap junction. A wealth of data indicates that, rather than passive intercellular channels, electrical synapses are more dynamic and modifiable than was generally perceived. This article will discuss the factors determining the strength of electrical transmission and review current evidence demonstrating its dynamic properties. Like their chemical counterparts, electrical synapses can also be plastic and modifiable. PMID:22659675

  3. Flex-gear electrical power transmission

    NASA Technical Reports Server (NTRS)

    Vranish, John; Peritt, Jonathan

    1993-01-01

    This study was conducted to develop an alternative way of transferring electricity across a continuously rotating joint, with little wear and the potential for low electrical noise. The problems with wires, slip rings, electromagnetic couplings, and recently invented roll-rings are discussed. Flex-gears, an improvement of roll-rings, are described. An entire class of flexgear devices is developed. Finally, the preferred flex-gear device is optimized for maximum electrical contact and analyzed for average mechanical power loss and maximum stress. For a device diameter of six inches, the preferred device is predicted to have a total electrical contact area of 0.066 square inches. In the preferred device, a small amount of internal sliding produces a 0.003 inch-pound torque that resists the motion of the device.

  4. Advanced continuously variable transmissions for electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  5. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform

  6. Electricity generation and transmission planning in deregulated power markets

    NASA Astrophysics Data System (ADS)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the

  7. The potential of electricity transmission corridors in forested areas as bumblebee habitat

    PubMed Central

    Hill, Bruce

    2016-01-01

    Declines in pollinator abundance and diversity are not only a conservation issue, but also a threat to crop pollination. Maintained infrastructure corridors, such as those containing electricity transmission lines, are potentially important wild pollinator habitat. However, there is a lack of evidence comparing the abundance and diversity of wild pollinators in transmission corridors with other important pollinator habitats. We compared the diversity of a key pollinator group, bumblebees (Bombus spp.), between transmission corridors and the surrounding semi-natural and managed habitat types at 10 sites across Sweden's Uppland region. Our results show that transmission corridors have no impact on bumblebee diversity in the surrounding area. However, transmission corridors and other maintained habitats such as roadsides have a level of bumblebee abundance and diversity comparable to semi-natural grasslands and host species that are important for conservation and ecosystem service provision. Under the current management regime, transmission corridors already provide valuable bumblebee habitat, but given that host plant density is the main determinant of bumblebee abundance, these areas could potentially be enhanced by establishing and maintaining key host plants. We show that in northern temperate regions the maintenance of transmission corridors has the potential to contribute to bumblebee conservation and the ecosystem services they provide. PMID:28018640

  8. The potential of electricity transmission corridors in forested areas as bumblebee habitat.

    PubMed

    Hill, Bruce; Bartomeus, Ignasi

    2016-11-01

    Declines in pollinator abundance and diversity are not only a conservation issue, but also a threat to crop pollination. Maintained infrastructure corridors, such as those containing electricity transmission lines, are potentially important wild pollinator habitat. However, there is a lack of evidence comparing the abundance and diversity of wild pollinators in transmission corridors with other important pollinator habitats. We compared the diversity of a key pollinator group, bumblebees (Bombus spp.), between transmission corridors and the surrounding semi-natural and managed habitat types at 10 sites across Sweden's Uppland region. Our results show that transmission corridors have no impact on bumblebee diversity in the surrounding area. However, transmission corridors and other maintained habitats such as roadsides have a level of bumblebee abundance and diversity comparable to semi-natural grasslands and host species that are important for conservation and ecosystem service provision. Under the current management regime, transmission corridors already provide valuable bumblebee habitat, but given that host plant density is the main determinant of bumblebee abundance, these areas could potentially be enhanced by establishing and maintaining key host plants. We show that in northern temperate regions the maintenance of transmission corridors has the potential to contribute to bumblebee conservation and the ecosystem services they provide.

  9. Hemichannel composition and electrical synaptic transmission: molecular diversity and its implications for electrical rectification

    PubMed Central

    Palacios-Prado, Nicolás; Huetteroth, Wolf; Pereda, Alberto E.

    2014-01-01

    Unapposed hemichannels (HCs) formed by hexamers of gap junction proteins are now known to be involved in various cellular processes under both physiological and pathological conditions. On the other hand, less is known regarding how differences in the molecular composition of HCs impact electrical synaptic transmission between neurons when they form intercellular heterotypic gap junctions (GJs). Here we review data indicating that molecular differences between apposed HCs at electrical synapses are generally associated with rectification of electrical transmission. Furthermore, this association has been observed at both innexin and connexin (Cx) based electrical synapses. We discuss the possible molecular mechanisms underlying electrical rectification, as well as the potential contribution of intracellular soluble factors to this phenomenon. We conclude that asymmetries in molecular composition and sensitivity to cellular factors of each contributing hemichannel can profoundly influence the transmission of electrical signals, endowing electrical synapses with more complex functional properties. PMID:25360082

  10. State-society relations and electricity infrastructure: Negotiating national energy security in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Caron, Cynthia Marie

    In this dissertation, I use electricity production and distribution and grid expansion as a lens to view and understand state-society relations. After discussing how electricity has resource-like characteristics and institutional characteristics as a field of organization, I examine how groups in society interact with state officials and their corresponding institutions over electricity production and distribution and the pursuit of national energy security. Taking Sri Lanka as the focus of my inquiry, I conducted a qualitative research project to: (1) identify how class, ethnicity, and locality (urban or rural location) are constitutive of and constituted by electricity-infrastructure development and grid expansion initiatives; (2) identify how grid expansion contributes to processes of social inclusion and exclusion by reconstituting on-grid and off-grid populations, and; (3) determine the effects of privatization and environmental regulation on relationships between the state and groups in society. The methodological approaches include analyses of open-ended interviews, participant observation, surveys of government documents, and speeches and sermons delivered at protests against power-plant sitings to examine how groups in society engage the state as a social force. The study finds that privatization occurring in Sri Lanka's energy sector may have the effect of maintaining exclusion from electricity access rather than increasing access to electricity as the neoliberal paradigm asserts. Environmental regulations enable groups in society to include their concerns into the development process and to challenge state decision making that have been made on their behalf by the Ceylon Electricity Board (CEB). The research suggests that class, ethnic, and rural-urban relations are constitutive factors in electricity production and distribution that complement foci on the technical and economic dimensions of electricity-infrastructure planning.

  11. Electric transmission line flashover prediction system

    NASA Astrophysics Data System (ADS)

    Amarh, Felix

    Near industrial, agricultural, or coastal areas, contamination is a frequent cause of insulator flashover, most cases of which result in lengthy service interruptions. Utilities spend significant amounts of money on insulator washing and cleaning before the restoration of the service. Laboratory studies and industrial experience have shown that both contamination and wetting of insulator surfaces, which initiate the flow of leakage current, are required for insulator flashover. The leakage current leading to flashover has distinctive stages of development. Flashover is preceded by dry-band arcing and extension of the arc to bridge the insulator. This combination significantly modifies both the magnitude and shape of the leakage current. A condition-based monitoring (CBM) system that monitors the easily measurable insulator leakage current as a means of assessing pollution severity and would possibly predict an approaching flashover could prove beneficial to utilities. The overall aim of this project is the development of a system that monitors pollution build-up through the signature changes in the leakage current and alerts an operator when there is a danger of flashover. The operator can, in turn, order maintenance personnel to wash the insulators. This will safeguard against unforeseen flashovers, since the system is constantly being monitored and diagnosed. Additionally, the washing cycles of insulators will be optimized, saving money and eventually rendering the power transmission system more reliable.

  12. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  13. Impacts of Demand-Side Resources on Electric Transmission Planning

    SciTech Connect

    Hadley, Stanton W.; Sanstad, Alan H.

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  14. Transmission Lines: An Overview of Electrical Properties and Environmental Effects.

    SciTech Connect

    United States. Bonneville Power Administration. Biological Studies Task Team.

    1982-03-01

    A brief overview is provided of environmental and biological effects of high-voltage power transmission lines. Paragraph length descriptions of electric fields, induced voltage and currents, biological effects, magnetic fields, corona, radio and television interference, and ozone are given. 13 figs.

  15. Electric vehicle drive train with direct coupling transmission

    SciTech Connect

    Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  16. Electric vehicle drive train with direct coupling transmission

    DOEpatents

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  17. Engineering the electrical characteristics of resonant type metamaterial transmission lines

    NASA Astrophysics Data System (ADS)

    Martin, F.; Bonache, J.; Gil, M.; Sisó, G.

    2008-04-01

    This paper is focused on the control of the electrical characteristics of resonant type metamaterial transmission lines, that is, transmission lines loaded with complementary split ring resonators (CSRRs). The key parameters of metamaterial transmission lines for microwave and millimetre wave circuit design are the characteristic impedance and the phase constant (rather than the effective magnetic permeability or dielectric permittivity). Thanks to the presence of reactive elements loading the host line, metamaterial transmission lines exhibit a major design flexibility that can be useful for circuit design purposes. Specifically, we can tailor the dispersion diagram and the characteristic impedance to some extent. By virtue of this, it is possible the design of microwave and millimetre wave components with superior performance in terms of bandwidth, or the design of multi-band components, both of interest in modern wireless communication systems. Thanks to the small electrical size of the unit cell of such lines, the resulting metamaterial-based components are also very small and fully compatible with planar technology (that is, no lumped elements are used). Different examples are provided to illustrate the possibilities of resonant type metamaterial transmission lines. This includes hybrid couplers, power dividers and phase shifters, among others. The paper includes also the theoretical foundations of the approach.

  18. Electric Power High-Voltage Transmission Lines: Design Options, Cost, and Electric and Magnetic Field Levels

    SciTech Connect

    Stoffel, J. B.; Pentecost, E. D.; Roman, R. D.; Traczyk, P. A.

    1994-11-01

    The aim of this report is to provide background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist preparers and reviewers of the section on alternatives in environmental documents. This report will give the reviewing individual a better appreciation of the factors affecting EMF strengths near high-voltage transmission lines and the approaches that might be used to reduce EMF impacts on humans and other biological species in the vicinity of high-voltage overhead or underground alternating-current (ac) or direct-current (dc) transmission lines.

  19. CNQX and AMPA inhibit electrical synaptic transmission: a potential interaction between electrical and glutamatergic synapses

    PubMed Central

    Li, Qin; Burrell, Brian D.

    2008-01-01

    Electrical synapses play an important role in signaling between neurons and the synaptic connections between many neurons possess both electrical and chemical components. Although modulation of electrical synapses is frequently observed, the cellular processes that mediate such changes have not been studied as thoroughly as plasticity in chemical synapses. In the leech (Hirudo sp), the competitive AMPA receptor antagonist CNQX inhibited transmission at the rectifying electrical synapse of a mixed glutamatergic/electrical synaptic connection. This CNQX-mediated inhibition of the electrical synapse was blocked by concanavalin A (Con A) and dynamin inhibitory peptide (DIP), both of which are known to inhibit endocytosis of neurotransmitter receptors. CNQX-mediated inhibition was also blocked by pep2-SVKI (SVKI), a synthetic peptide that prevents internalization of AMPA-type glutamate receptor. AMPA itself also inhibited electrical synaptic transmission and this AMPA-mediated inhibition was partially blocked by Con A, DIP and SVKI. Low frequency stimulation induced long-term depression (LTD) in both the electrical and chemical components of these synapses and this LTD was blocked by SVKI. GYKI 52466, a selective non-competitive antagonist of AMPA receptors, did not affect the electrical EPSP, although it did block the chemical component of these synapses. CNQX did not affect non-rectifying electrical synapses in two different pairs of neurons. These results suggest an interaction between AMPA-type glutamate receptors and the gap junction proteins that mediate electrical synaptic transmission. This putative interaction between glutamate receptors and gap junction proteins represents a novel mechanism for regulating the strength of synaptic transmission. PMID:18601913

  20. Optimization of cascade-resilient electrical infrastructures and its validation by power flow modeling.

    PubMed

    Fang, Yiping; Pedroni, Nicola; Zio, Enrico

    2015-04-01

    Large-scale outages on real-world critical infrastructures, although infrequent, are increasingly disastrous to our society. In this article, we are primarily concerned with power transmission networks and we consider the problem of allocation of generation to distributors by rewiring links under the objectives of maximizing network resilience to cascading failure and minimizing investment costs. The combinatorial multiobjective optimization is carried out by a nondominated sorting binary differential evolution (NSBDE) algorithm. For each generators-distributors connection pattern considered in the NSBDE search, a computationally cheap, topological model of failure cascading in a complex network (named the Motter-Lai [ML] model) is used to simulate and quantify network resilience to cascading failures initiated by targeted attacks. The results on the 400 kV French power transmission network case study show that the proposed method allows us to identify optimal patterns of generators-distributors connection that improve cascading resilience at an acceptable cost. To verify the realistic character of the results obtained by the NSBDE with the embedded ML topological model, a more realistic but also more computationally expensive model of cascading failures is adopted, based on optimal power flow (namely, the ORNL-Pserc-Alaska) model). The consistent results between the two models provide impetus for the use of topological, complex network theory models for analysis and optimization of large infrastructures against cascading failure with the advantages of simplicity, scalability, and low computational cost.

  1. 75 FR 53687 - Southern Montana Electric Generation & Transmission Cooperative, Inc. v. NorthWestern Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ...] Southern Montana Electric Generation & Transmission Cooperative, Inc. v. NorthWestern Corporation; Notice...) Rules of Practice and Procedure, 18 CFR 385.206, Southern Montana Electric Generation &...

  2. American lifelines alliance efforts to improve electric power transmission reliability

    USGS Publications Warehouse

    Nishenko, S.P.; Savage, W.U.; Honegger, D.G.; McLane, T.R.; ,

    2002-01-01

    A study was performed on American Lifelines Alliance (ALA) efforts to improve electric power transmission reliability. ALA is a public-private partnership project, with the goal of reducing risks to lifelines from natural hazards and human threat events. The mechanism used by ALA for developing national guidelines for lifeline systems is dependent upon using existing Standards Developing Organizations (SDO) accredited by the American National Standards Institute (ANSI) as means to achieve national consensus.

  3. Collapse and pull - down analysis of high voltage electricity transmission towers subjected to cyclonic wind

    NASA Astrophysics Data System (ADS)

    Ahmed, Ammar; Arthur, Craig; Edwards, Mark

    2010-06-01

    Bulk electricity transmission lines are linear assets that can be very exposed to wind effects, particularly where they traverse steep topography or open coastal terrain in cyclonic regions. Interconnected nature of the lattice type towers and conductors also, present complex vulnerabilities. These relate to the direction of wind attack to the conductors and the cascading failure mechanisms in which the failure of a single tower has cascading effects on neighbouring towers. Such behaviour is exacerbated by the finely tuned nature of tower design which serves to minimize cost and reserve strength at design wind speeds. There is a clear need to better quantify the interdependent vulnerabilities of these critical infrastructure assets in the context of the severe wind hazard. This paper presents a novel methodology developed for the Critical Infrastructure Protection Modelling and Analysis (CIPMA) capability for assessing local wind speeds and the likelihood of tower failure for a range of transmission tower and conductor types. CIPMA is a program managed by the Federal Attorney-General's Department and Geoscience Australia is leading the technical development. The methodology then involves the development of heuristically derived vulnerability models that are consistent with Australian industry experience and full-scale static tower testing results, considering isolated tower loss along with three interdependent failure mechanisms to give overall likelihoods of failure.

  4. Hazard analysis for magnetic induction from electric transmission lines

    NASA Astrophysics Data System (ADS)

    Taylor, R. J.

    1983-06-01

    The potential hazard of magnetic induction from electric transmission lines was investigated. A literature search was accomplished, measurements were made and compared with the theories found in the literature and a new approach was developed for estimating the hazardous potential of magnetically induced voltage in fences which could be grasped by barefoot children under wet conditions. Conditions under which representative transmission lines could induce such voltage were explored. For example, a standard three-phase horizontal 500 KV transmission line carrying 1000 A was estimated to induce 10.5 V in a 900 M fence 30 M from the center of the line. It was also found that third harmonic currents can magnetically induce significant voltages compared to those induced by 60 HZ currents umder some circumstances.

  5. Design studies of continuously variable transmissions for electric vehicles

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Loewenthal, S. H.; Fischer, G. K.

    1981-01-01

    Preliminary design studies were performed on four continuously variable transmission (CVT) concepts for use with a flywheel equipped electric vehicle of 1700 kg gross weight. Requirements of the CVT's were a maximum torque of 450 N-m (330 lb-ft), a maximum output power of 75 kW (100 hp), and a flywheel speed range of 28,000 to 14,000 rpm. Efficiency, size, weight, cost, reliability, maintainability, and controls were evaluated for each of the four concepts which included a steel V-belt type, a flat rubber belt type, a toroidal traction type, and a cone roller traction type. All CVT's exhibited relatively high calculated efficiencies (68 percent to 97 percent) over a broad range of vehicle operating conditions. Estimated weight and size of these transmissions were comparable to or less than equivalent automatic transmission. The design of each concept was carried through the design layout stage.

  6. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    SciTech Connect

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions.

  7. 76 FR 44323 - National Grid Transmission Services Corporation; Bangor Hydro Electric Company; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... Energy Regulatory Commission National Grid Transmission Services Corporation; Bangor Hydro Electric... of the Commission's Rules of Practice and Procedure, 18 CFR 385.207, National Grid Transmission Services Corporation and Bangor Hydro Electric Company (collectively, NEL Parties) filed a petition...

  8. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  9. Area of Interest 4.Technical Interest to Electric Infrastructure Planners on Other Subjects

    SciTech Connect

    Eto, Joseph H.

    2015-07-01

    In 2010, the U.S. Department of Energy (DOE) provided $60M in funding to five regional entities to conduct interregional transmission planning activities: the Eastern Interconnection Planning Collaborative (EIPC); the Eastern Interconnection States Planning Council (EISPC); the Transmission Expansion Planning and Policy Committee (TEPPC); the State Provincial Steering Committee (SPSC);and the Electricity Reliability Council of Texas (ERCOT). DOE also provided funding to the Lawrence Berkeley National Laboratory (LBNL) to support aspects of these interregional transmission planning activities. LBNL’s support involved both technical assistance to DOE in its oversight of the activities conducted by the five regional entities and the preparation of six, standalone technical studies that were conducted in direct support for specific entities. This is the final report on LBNL’s activities. It consists of summaries of each activity; references are provided to each of the stand-alone studies.

  10. Computation of electric power production cost with transmission contraints

    NASA Astrophysics Data System (ADS)

    Earle, Robert Leonard

    The production cost in operating an electric power system is the cost of generation to meet the customer load or demand. Production costing models are used in analysis of electric power systems to estimate this cost for various purposes such as evaluating long term investments in generating capacity, contracts for sales, purchases, or trades of power. A multi-area production costing model includes the effects of transmission constraints in calculating costs. Including transmission constraints in production costing models is important because the electric power industry is interconnected and trades or sales of power amongst systems can lower costs. This thesis develops an analytical model for multi-area production costing. The advantage of this approach is that it explicitly examines the underlying structure of the problem. The major contributions of our research are as follows. First, we develop the multivariate model not just for transportation type models of electric power network flows, but also for the direct current power flow model. Second, this thesis derives the multi-area production cost curve in the general case. This new result gives a simple formula for determination of system cost and the gradient of cost with respect to transmission capacities. Third, we give an algorithm for generating the non-redundant constraints from a Gale-Hoffman type region. The Gale-Hoffman conditions characterize feasibility of flow in a network. We also gather together some existing and new results on Gale-Hoffman regions and put them in a unified framework. Fourth, in order to derive the multi-area production cost curves and also to perform the integration of the multivariate Edgeworth series, we need wedge shaped regions (a wedge is the affine image of an orthant). We give an algorithm for decomposing any polyhedral set into wedges. Fifth, this thesis gives a new method for one dimensional numerical integration of the trivariate normal. The best methods previously known

  11. Simultaneous transmission of accurate time and stable frequency through bidirectional channel over telecommunication infrastructure with excessive spans

    NASA Astrophysics Data System (ADS)

    Vojtech, Josef; Smotlacha, Vladimir; Skoda, Pavel

    2015-09-01

    In this paper, we present simultaneous transmission of accurate time and stable frequency over 306 km long fiber link. The fiber link belongs to the Time and Frequency infrastructure that is being gradually developed and which shares fiber footprint with data network. The link had been originally deployed with wavelength division multiplexing systems for C and L band systems. But it has been recently upgraded to support 800 GHz wide super-channel with single signal path for both directions. This bidirectional super-channel spans over two extensive segments with attenuation of 28 and 25 dB.

  12. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be...

  13. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be...

  14. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be...

  15. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be...

  16. 50 CFR 29.21-8 - Electric power transmission line rights-of-way.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Electric power transmission line rights-of... General Regulations § 29.21-8 Electric power transmission line rights-of-way. By accepting a right-of-way for a power transmission line, the applicant thereby agrees and consents to comply with and be...

  17. Preliminary assessment of the tradeoffs between the electric motor and the transmission in electric vehicles

    NASA Technical Reports Server (NTRS)

    Levi, E.

    1983-01-01

    The efficiency, weight, and cost of various propulsion system for 4-passenger electric vehicles are compared. These systems comprise the electric motor and the required speed reducing transmission to obtain the appropriate speed at the wheel. Three types of motors, dc synchronous, and squirrel-cage were considered at 6000 ycm and 24 000 rpm for a peak power of 40 kW. Two types of gearing selected were a single speed differential and a differential with a differential with a 4-speed gearbox. Only components that were readily realizable within present state-of-the-art were considered.

  18. Micro Climate Assessment of Grid-Connected Electric Drive Vehicles and Charging Infrastructure. Final Report

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-12-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America to conduct several U.S. Department of Defense-based micro-climate studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). The study included Joint Base Lewis McChord, located in Washington State; Naval Air Station Whidbey Island, located in Washington State; and United States Marine Corp Base Camp Lejeune, located in North Carolina. The project was divided into four tasks for each of the three bases studied. Task 1 consisted of surveying the non-tactical fleet of vehicles to begin review of vehicle mission assignments and types of vehicles in service. In Task 2, the daily operational characteristics of the vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. Results of the data analysis and observations were provided. Individual observations of these selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements). It also provided the basis for recommendations related to placement of PEV charging infrastructure. In Task 4, an implementation approach was provided for near-term adoption of PEVs into the respective fleets. Each facility was provided detailed reports on each of these tasks. This paper summarizes and provides observations on the project and completes Intertek’s required actions.

  19. 77 FR 3958 - Coordination of Federal Authorizations for Electric Transmission Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 900 RIN 1901-AB18 Coordination of Federal Authorizations for Electric... Electric Transmission Facilities has been extended until February 27, 2012. DATES: DOE will accept comments... electric transmission facilities pursuant to section 216(h) of the Federal Power Act (FPA). The...

  20. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  1. Electronic control system for control of electronic electric shift apparatus for manual transmission

    SciTech Connect

    Tury, E.L.; Thoe, G.A.

    1989-04-18

    An electrical control apparatus is described for control of a manual transmission apparatus in a motor vehicle having a plurality of transmission states selected by the position of a shift select lever, the electrical control apparatus comprising: a first electric motor; means drive by the first electric motor and operative in response to energization of the first electric motor to move the shift select lever laterally between left, center, and right locations; a second electric motor; means driven by the second electric motor and operative in response to energization of the second electric motor to move the shift select lever longitudinally between forward, neutral, and rearward locations; operator input means operative to generate a desired transmission sate signal corresponding to manual operator input; a first transmission state sensing means for indicating the left, center, or right location of the shift select lever; a second transmission state sensing means for indicating the forward, neutral or rearward location of the shift select lever; and a logic control unit connected to the operator input means and the first and second transmission state sensing means for generation of a sequence of motor drive signals corresponding to the sequence of motions required for movement of the shift select lever from the present transmission state to the desired transmission state when the desired transmission state differs from the present transmission state, the motor drive signals including a clockwise motor drive signal, a counter-clockwise motor drive signal, a shift up motor drive signal and a shift down motor drive signal.

  2. 76 FR 37809 - The Connecticut Transmission Municipal Electric Energy Cooperative; Notice of Request for Waiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission The Connecticut Transmission Municipal Electric Energy Cooperative; Notice... Municipal Electric Energy Cooperative filed a petition requesting full waiver or exemption from...

  3. How the Timing of Climate Change Policy Affects Infrastructure Turnover in the Electricity Sector: Engineering, Economic and Policy Considerations

    NASA Astrophysics Data System (ADS)

    Izard, Catherine Finlay

    The electricity sector is responsible for producing 35% of US greenhouse gas (GHG) emissions. Estimates suggest that ideally, the electricity sector would be responsible for approximately 85% of emissions abatement associated with climate polices such as America's Clean Energy and Security Act (ACES). This is equivalent to ˜50% cumulative emissions reductions below projected cumulative business-as-usual (BAU) emissions. Achieving these levels of emissions reductions will require dramatic changes in the US electricity generating infrastructure: almost all of the fossil-generation fleet will need to be replaced with low-carbon sources and society is likely to have to maintain a high build rate of new capacity for decades. Unfortunately, the inertia in the electricity sector means that there may be physical constraints to the rate at which new electricity generating capacity can be built. Because the build rate of new electricity generating capacity may be limited, the timing of regulation is critical---the longer the U.S. waits to start reducing GHG emissions, the faster the turnover in the electricity sector must occur in order to meet the same target. There is a real, and thus far unexplored, possibility that the U.S. could delay climate change policy implementation for long enough that it becomes infeasible to attain the necessary rate of turnover in the electricity sector. This dissertation investigates the relationship between climate policy timing and infrastructure turnover in the electricity sector. The goal of the dissertation is to answer the question: How long can we wait before constraints on infrastructure turnover in the electricity sector make achieving our climate goals impossible? Using the Infrastructure Flow Assessment Model, which was developed in this work, this dissertation shows that delaying climate change policy increases average retirements rates by 200-400%, increases average construction rates by 25-85% and increases maximum construction

  4. The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility

    NASA Astrophysics Data System (ADS)

    Neubauer, Jeremy; Wood, Eric

    2014-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility due to factors including driver range anxiety and access to charging infrastructure. In this paper we apply NREL's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to range anxiety and different charging infrastructure scenarios, including variable time schedules, power levels, and locations (home, work, and public installations). We find that the effects of range anxiety can be significant, but are reduced with access to additional charging infrastructure. We also find that (1) increasing home charging power above that provided by a common 15 A, 120 V circuit offers little added utility, (2) workplace charging offers significant utility benefits to select high mileage commuters, and (3) broadly available public charging can bring many lower mileage drivers to near-100% utility while strongly increasing the achieved miles of high mileage drivers.

  5. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    SciTech Connect

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper studies the role of public charging infrastructure in increasing PHEV s share of driving on electricity and the resulting petroleum use reduction. Using vehicle activity data obtained from the GPS-tracking household travel survey in Austin, Texas, gasoline and electricity consumptions of PHEVs in real world driving context are estimated. Driver s within-day recharging behavior, constrained by travel activities and public charger network, is modeled as a boundedly rational decision and incorporated in the energy use estimation. The key findings from the Austin dataset include: (1) public charging infrastructure makes PHEV a competitive vehicle choice for consumers without a home charger; (2) providing sufficient public charging service is expected to significantly reduce petroleum consumption of PHEVs; and (3) public charging opportunities offer greater benefits for PHEVs with a smaller battery pack, as within-day recharges compensate battery capacity.

  6. Electrical Power Transmission and Distribution Safety. Module SH-40. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on electrical power transmission and distribution safety is one of 50 modules concerned with job safety and health. This module focuses on some of the general safety rules, techniques, and procedures that are essential in establishing a safe environment for the electrical power transmission worker. Following the introduction,…

  7. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  8. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  9. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  10. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  11. 18 CFR 42.1 - Requirement that Transmission Organizations with Organized Electricity Markets Offer Long-Term...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Transmission Organizations with Organized Electricity Markets Offer Long-Term Firm Transmission Rights. 42.1... ELECTRICITY MARKETS § 42.1 Requirement that Transmission Organizations with Organized Electricity Markets... with one or more organized electricity markets (administered either by it or by another entity) to...

  12. Electric Utility Transmission and Distribution Line Engineering Program

    SciTech Connect

    Peter McKenny

    2010-08-31

    Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working

  13. Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect

    Kuiper, James A.; Krummel, John R.; Hlava, Kevin J.; Moore, H. Robert; Orr, Andrew B.; Schlueter, Scott O.; Sullivan, Robert G.; Zvolanek, Emily A.

    2016-11-21

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines.

  14. Dual-polarization multi-band OFDM versus single-carrier DP-QPSK for 100 Gb/s long-haul WDM transmission over legacy infrastructure.

    PubMed

    Karaki, J; Giacoumidis, E; Grot, D; Guillossou, T; Gosset, C; Le Bidan, R; Le Gall, T; Jaouën, Y; Pincemin, E

    2013-07-15

    The transmission performance of coherent dual-polarization multi-band OFDM (DP-MB-OFDM) and QPSK (DP-QPSK) are experimentally compared for 100 Gb/s long-haul transport over legacy infrastructure combining G.652 fiber and 10 Gb/s WDM system. It is shown that DP-MB-OFDM and DP-QPSK have nearly the same performance at 100 Gb/s after transmission over a 10 × 100-km fiber line. Furthermore, the origin of performance degradations and limitations of the DP-MB-OFDM is explored numerically, as well as the impact of transmission distance and sub-band spacing.

  15. Energy landscapes: Coal canals, oil pipelines, and electricity transmission wires in the mid-Atlantic, 1820--1930

    NASA Astrophysics Data System (ADS)

    Jones, Christopher F.

    2009-12-01

    Coal canals, oil pipelines, and electricity transmission wires transformed the built environment of the American mid-Atlantic region between 1820 and 1930. By transporting coal, oil, and electrons cheaply, reliably, and in great quantities, these technologies reshaped the energy choices available to mid-Atlantic residents. In particular, canals, pipelines, and wires created new energy landscapes: systems of transport infrastructure that enabled the ever-increasing consumption of fossil fuels. Energy Landscapes integrates history of technology, environmental history, and business history to provide new perspectives on how Americans began to use fossil fuels and the social implications of these practices. First, I argue that the development of transport infrastructure played critical, and underappreciated, roles in shaping social energy choices. Rather than simply responding passively to the needs of producers and consumers, canals, pipelines, and wires structured how, when, where, and in what quantities energy was used. Second, I analyze the ways fossil fuel consumption transformed the society, economy, and environment of the mid-Atlantic. I link the consumption of coal, oil, and electricity to the development of an urban and industrialized region, the transition from an organic to a mineral economy, and the creation of a society dependent on fossil fuel energy.

  16. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no

  17. A study of electric power transmission lines for use on the lunar surface

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.; Gaustad, Krista L.

    1991-01-01

    Analytical models have been developed to study the operating characteristics of electrical transmission lines for use on the lunar surface. Important design considerations for a transmission line operating on the lunar surface are mass, temperature, and efficiency. Transmission line parameters which impact these considerations include voltage, power loss, and waveform. The electrical and thermal models developed are used to calculate transmission line mass, size, and temperature as a function of voltage, geometry, waveform, location, and efficiency. The analyses include ac and dc for above and below ground operation. Geometries studied include a vacuum-insulated, two-wire transmission line and a solid-dielectric insulated, coaxial transmission line. A brief discussion of design considerations and the models developed is followed by results for parameter studies for both dc and ac transmission lines.

  18. High speed electrical transmission line design and characterization

    NASA Astrophysics Data System (ADS)

    Bates, R.; Buttar, C.; Buytaert, J.; Eklund, L.; de Acedo, L. F. S.; Longstaff, I.; Naik, S.; Sullivan, S.; Wraight, K.

    2017-02-01

    High Energy Physics (HEP) experiments have unique requirements for data communication. High data speeds, combined with extreme restrictions on materials allowed, leads to custom transmission lines. This paper will present transmission line design theory, simulation and testing methods. Transmission line designs options like flexes and rigid PCBs as well as cables will be studied. Finite Element Analysis (FEA) software packages simulate energy dissipation and quality of transmitted signals. The characterisation techniques of time-domain reflectometry and frequency-domain measurements are discussed and compared. Bit-error-rate testing is presented and its limitations for design discussed. Methods to improve quality, like three different types of equalization are described.

  19. Earthquake resistant construction of electric transmission and telecommunication facilities serving the Federal government report

    SciTech Connect

    Yokel, F.Y.

    1990-02-01

    The vulnerability of electrical transmission and telecommunication facilities to damage in past earthquakes, as well as available standards and technologies to protect these facilities against earthquake damage are reviewed. An overview is presented of measures taken by various Federal agencies to protect electrical transmission and telecommunication facilities against earthquake hazards. It is concluded that while most new facilities which are owned and operated by Federal agencies are presently designed to provide some, though not necessarily adequate, earthquake resistance, there generally is no effort to retrofit existing facilities. No evidence was found of requirements to protect electrical transmission and communication facilities which have major contractual obligations to serve the Federal Government and only limited seismic design requirements are stipulated for electrical transmission systems constructed with Federal funding.

  20. Power electronics in electric utilities: HVDC power transmission systems

    SciTech Connect

    Nozari, F.; Patel, H.S.

    1988-04-01

    High Voltage Direct Current (HVDC) power transmission systems constitute an important application of power electronics technology. This paper reviews salient aspects of this growing industry. The paper summarizes the history of HVDC transmission and discusses the economic and technical reasons responsible for development of HVDC systems. The paper also describes terminal design and basic configurations of HVDC systems, as well as major equipments of HVDC transmission system. In this regard, the state-of-the-art technology in the equipments constructions are discussed. Finally, the paper reviews future developments in the HVDC transmission systems, including promising technologies, such as multiterminal configurations, Gate Turn-Off (GTO) devices, forced commutation converters, and new advances in control electronics.

  1. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOEpatents

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  2. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses.

    PubMed

    Liu, Ping; Chen, Bojun; Mailler, Roger; Wang, Zhao-Wen

    2017-03-20

    Neurons communicate through chemical synapses and electrical synapses (gap junctions). Although these two types of synapses often coexist between neurons, little is known about whether they interact, and whether any interactions between them are important to controlling synaptic strength and circuit functions. By studying chemical and electrical synapses between premotor interneurons (AVA) and downstream motor neurons (A-MNs) in the Caenorhabditis elegans escape circuit, we found that disrupting either the chemical or electrical synapses causes defective escape response. Gap junctions between AVA and A-MNs only allow antidromic current, but, curiously, disrupting them inhibits chemical transmission. In contrast, disrupting chemical synapses has no effect on the electrical coupling. These results demonstrate that gap junctions may serve as an amplifier of chemical transmission between neurons with both electrical and chemical synapses. The use of antidromic-rectifying gap junctions to amplify chemical transmission is potentially a conserved mechanism in circuit functions.

  3. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses

    PubMed Central

    Liu, Ping; Chen, Bojun; Mailler, Roger; Wang, Zhao-Wen

    2017-01-01

    Neurons communicate through chemical synapses and electrical synapses (gap junctions). Although these two types of synapses often coexist between neurons, little is known about whether they interact, and whether any interactions between them are important to controlling synaptic strength and circuit functions. By studying chemical and electrical synapses between premotor interneurons (AVA) and downstream motor neurons (A-MNs) in the Caenorhabditis elegans escape circuit, we found that disrupting either the chemical or electrical synapses causes defective escape response. Gap junctions between AVA and A-MNs only allow antidromic current, but, curiously, disrupting them inhibits chemical transmission. In contrast, disrupting chemical synapses has no effect on the electrical coupling. These results demonstrate that gap junctions may serve as an amplifier of chemical transmission between neurons with both electrical and chemical synapses. The use of antidromic-rectifying gap junctions to amplify chemical transmission is potentially a conserved mechanism in circuit functions. PMID:28317880

  4. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    SciTech Connect

    McLaren, Joyce; Miller, John; O'Shaughnessy, Eric; Wood, Eric; Shapiro, Evan

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  5. Electric Power Generation, Transmission and Distribution (NAICS 2211)

    EPA Pesticide Factsheets

    Find EPA regulatory information for electrical utilities, including coal-fired power plants. Includes links to NESHAPs for RICE, stationary combustion engines, fossil fuel waste, cooling water, effluent guidelines. Find information on the MATS rule.

  6. CO2 emissions associated with electric vehicle charging: The impact of electricity generation mix, charging infrastructure availability and vehicle type

    SciTech Connect

    McLaren, Joyce; Miller, John; O’Shaughnessy, Eric; Wood, Eric; Shapiro, Evan

    2016-06-01

    The emission reduction benefits of EVs are dependent on the time and location of charging. An analysis of battery electric and plug-in hybrid vehicles under four charging scenarios and five electricity grid profiles shows that CO2 emissions are highly dependent on the percentage of fossil fuels in the grid mix. Availability of workplace charging generally results in lower emissions, while restricting charging to off-peak hours results in higher total emissions.

  7. Calculation and measurement of electric field under HVDC transmission lines

    NASA Astrophysics Data System (ADS)

    Kasdi, A.; Zebboudj, Y.; Yala, H.

    2007-03-01

    A stable corona discharge in a two conductors-to-plane configuration is analysed in this paper. A linear biased probe, without end-effect, has been adapted to a linear geometry and is used for the first time to measure the ground-plane current density and electric field during the bipolar corona. The values of the electric field and the current density are maximum under the two coronating conductors and decrease when moving away from them. Furthermore, a hybrid technique is developed to obtain a general solution of the governing equations of the coupled space-charge and electric field problem. The technique is to use the finite-element method (FEM) to solve Poisson's equation, and the method of characteristic (MOC) to find the charge density from a current-continuity relation. The model avoids resorting to the Deutsch assumption. The computed values are in good agreement with experimental data.

  8. Cultured Construction: Global Evidence of the Impact of National Values on Renewable Electricity Infrastructure Choice.

    PubMed

    Kaminsky, Jessica A

    2016-02-16

    Renewable electricity is an important tool in the fight against climate change, but globally these technologies are still in the early stages of diffusion. To contribute to our understanding of the factors driving this diffusion, I study relationships between national values (measured by Hofstede's cultural dimensions) and renewable electricity adoption at the national level. Existing data for 66 nations (representing an equal number of developed and developing economies) are used to fuel the analysis. Somewhat dependent on limited available data on controls for grid reliability and the cost of electricity, I discover that three of Hofstede's dimensions (high uncertainty avoidance, low masculinity-femininity, and high individualism-collectivism) have significant exponential relationships with renewable electricity adoption. The dimension of uncertainty avoidance appears particularly appropriate for practical application. Projects or organizations implementing renewable electricity policy, designs, or construction should particularly attend to this cultural dimension. In particular, as the data imply that renewable technologies are being used to manage risk in electricity supply, geographies with unreliable grids are particularly likely to be open to renewable electricity technologies.

  9. How dangerous are mobile phones, transmission masts, and electricity pylons?

    PubMed

    Wood, A W

    2006-04-01

    Electrical power and mobile communications deliver enormous benefit to society, but there are concerns whether the electric and magnetic field (EMF) emissions associated with the delivery of this benefit are linked to cancer or other health hazards. This article reviews the strength of the available epidemiological and laboratory evidence and notes that this falls short of what is normally required to establish a causal link. However, because of scientific uncertainty a cautious approach is often advocated, but here, too, there may be a tendency to judge these risks more harshly than those in other areas with similar strength of evidence.

  10. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  11. Terminal Blackout: Critical Electric Infrastructure Vulnerabilities and Civil-Military Resiliency

    DTIC Science & Technology

    2013-10-01

    DANGER Threats to the electric grid (cyber, solar, non-nuclear electromagnetic pulse [NNEMP] and high-altitude nuclear electromagnetic pulse [ HEMP ...issue of massive and cascading loss of the electric grid, emphatically reiterating the dire warnings of the EMP Commission report, in which HEMP ...intentional attack), or on the strength, nature, and direction of an earth-bound CME, smaller electronics—such as those used in transportation and health

  12. 75 FR 41895 - Emerson Power Transmission, a Division of Emerson Electric Co., Including On-Site Leased From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Employment and Training Administration Emerson Power Transmission, a Division of Emerson Electric Co..., 2010, applicable to workers of Emerson Power Transmission, a Division of Emerson Electric Co... were employed on-site at the Ithaca, New York, location of Emerson Power Transmission, a Division...

  13. Comparison of electrically driven lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.

    1988-01-01

    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.

  14. Millikelvin thermal and electrical performance of lossy transmission line filters

    SciTech Connect

    Slichter, Daniel; Naaman, Ofer; Siddiqi, Irfan

    2009-03-11

    We report on the scattering parameters and Johnson noise emission of low-pass stripline filters employing a magnetically loaded silicone dielectric down to 25 mK. The transmission characteristic of a device with f-3dB=1.3 GHz remains essentially unchanged upon cooling. Another device with f-edB=0.4 GHz, measured in its stopband, exhibits a steady state noise power emission consistent with a temperature difference of a few mK relative to a well-anchored cryogenic microwave attenuator at temperatures down to 25 mK, thus presenting a matched thermal load.

  15. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Naval Air Station Whidbey Island: Task 3

    SciTech Connect

    Schey, Steve; Francfort, Jim

    2015-07-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 Vehicle Utilization report provided the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.

  16. Geography and the costs of urban energy infrastructure: The case of electricity and natural gas capital investments

    NASA Astrophysics Data System (ADS)

    Senyel, Muzeyyen Anil

    Investments in the urban energy infrastructure for distributing electricity and natural gas are analyzed using (1) property data measuring distribution plant value at the local/tax district level, and (2) system outputs such as sectoral numbers of customers and energy sales, input prices, company-specific characteristics such as average wages and load factor. Socio-economic and site-specific urban and geographic variables, however, often been neglected in past studies. The purpose of this research is to incorporate these site-specific characteristics of electricity and natural gas distribution into investment cost model estimations. These local characteristics include (1) socio-economic variables, such as income and wealth; (2) urban-related variables, such as density, land-use, street pattern, housing pattern; (3) geographic and environmental variables, such as soil, topography, and weather, and (4) company-specific characteristics such as average wages, and load factor. The classical output variables include residential and commercial-industrial customers and sales. In contrast to most previous research, only capital investments at the local level are considered. In addition to aggregate cost modeling, the analysis focuses on the investment costs for the system components: overhead conductors, underground conductors, conduits, poles, transformers, services, street lighting, and station equipment for electricity distribution; and mains, services, regular and industrial measurement and regulation stations for natural gas distribution. The Box-Cox, log-log and additive models are compared to determine the best fitting cost functions. The Box-Cox form turns out to be superior to the other forms at the aggregate level and for network components. However, a linear additive form provides a better fit for end-user related components. The results show that, in addition to output variables and company-specific variables, various site-specific variables are statistically

  17. Analysis of Operational Data: A Proof of Concept for Assessing Electrical Infrastructure Impact

    DTIC Science & Technology

    2015-11-01

    Classification System NCC Near-Constant Contrast NOAA National Oceanic and Atmospheric Administration NPP National Polar- orbiting Partnership OE...cogeneration, solar , wind, geothermal, etc.) or by prime mover (i.e., steam turbine, water turbine, gas turbine, etc.). Power plants are typically...transmission towers, power poles, and substations. 4.2 VIIRS The NOAA VIIRS sensor onboard the Suomi National Polar- orbiting Part- nership (NPP) satellite

  18. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  19. Electrically induced transmissivity modulation in polymeric thin film Fabry-Perot etalons

    SciTech Connect

    Eldering, C.A.; Kowel, S.T.; Knoesen, A. )

    1989-10-15

    We report the observation of electrically induced changes in transmissivity in Fabry-Perot devices consisting of spin-cast azo-dye/polymer films deposited between gold mirrors. In poled samples the observed modulation shows a linear dependence on the applied modulating voltage. The ratio of the transmissivity modulation observed using incident transverse magnetic polarization to that observed using transverse electric polarization is used to demonstrate that the electrooptic effect dominates the modulation. This is, to our knowledge, the first reported use of a polymeric thin film linear electrooptic material in a Fabry-Perot structure and demonstrates the use of etalons to enhance electrooptic effects in very thin films.

  20. Nonlinear behavior of electric power transmission through an elastic wall by acoustic waves and piezoelectric transducers.

    PubMed

    Yang, Zengtao; Yang, Jiashi; Hu, Yuantai

    2008-11-01

    Weakly nonlinear behavior of electric power transmission through an elastic wall by piezoelectric transducers and acoustic waves near resonance is studied based on the cubic theory of nonlinear electroelasticity. An approximate analytical solution is obtained. Output voltage is calculated and plotted. Basic nonlinear behaviors of the power transmission structure are examined. It is found that near nonlinear resonance the electrical input-output relation loses its linearity, becomes multi-valued, and experiences jumps due to large mechanical deformations. The behavior below and above resonance is qualitatively different and is qualitatively material dependent.

  1. Theoretical analysis of AC electric field transmission into biological tissue through frozen saline for electroporation.

    PubMed

    Xiao, Chunyan; Rubinsky, Boris

    2014-12-01

    An analytical model was used to explore the feasibility of sinusoidal electric field transmission across a frozen saline layer into biological tissue. The study is relevant to electroporation and permeabilization of the cell membrane by electric fields. The concept was analyzed for frequencies in the range of conventional electroporation frequencies and electric field intensity. Theoretical analysis for a variety of tissues show that the transmission of electroporation type electric fields through a layer of frozen saline into tissue is feasible and the behavior of this composite system depends on tissue type, frozen domain temperature, and frequency. Freezing could become a valuable method for adherence of electroporation electrodes to moving tissue surfaces, such as the heart in the treatment of atrial fibrillation or blood vessels for the treatment of restenosis.

  2. Effects of asymmetry, transmission delay and noises on the stability of an elementary electricity network

    NASA Astrophysics Data System (ADS)

    Dongmo, Eric Donald; Woafo, Paul

    2015-07-01

    We numerically study the effects of the asymmetry of the transmission lines capabilities, of the transmission delay and power noises, on the stability of an elementary electricity network consisting of one machine and two generators. It is found that the asymmetry increases the stability of the system. It is also found that the threshold value of the perturbation intensity leading to the network instability decreases as the time delay increases. When the system is subject to a stochastic perturbation, its stability depends not only on the noises intensity, but also on the time delay and the value of the transmission lines capabilities.

  3. Electrical and mechanical design criteria for EHV and UHV: overhead transmission lines

    SciTech Connect

    Not Available

    1980-06-01

    The results are presented of a program devoted to the selection of electrical and mechanical design criteria and parameters for overhead power transmission lines for ac systems rated at from 345 to 1100 kV and for dc systems rated at from 600 to 1200 kV. Information is included on the environmental effects, i.e., audible noise and electric fields, of the lines, mechanical and economic requirements, safety, failures, grounding, and lightning protection. (LCL)

  4. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  5. A study of electric transmission lines for use on the lunar surface

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.; Weber, Jennifer R.

    1994-01-01

    The sources for electrical power on a lunar base are said to include solar/chemical, nuclear (static conversion), and nuclear (dynamic conversion). The transmission of power via transmission lines is more practical than power beaming or superconducting because of its low cost and reliable, proven technology. Transmission lines must have minimum mass, maximum efficiency, and the ability to operate reliably in the lunar environment. The transmission line design includes conductor material, insulator material, conductor geometry, conductor configuration, line location, waveform, phase selection, and frequency. This presentation oulines the design. Liquid and gaseous dielectrics are undesirable for long term use in the lunar vacuum due to a high probability of loss. Thus, insulation for high voltage transmission line will most likely be solid dielectric or vacuum insulation.

  6. The design of an electro-hydraulically controlled, manual transmission for a hybrid electric vehicle

    SciTech Connect

    Davis, G.W.; Hoff, C.J.

    1998-07-01

    An electro-hydraulically controlled, manual transmission has been developed for the Department of Energy's FutureCar Challenge. This project which is jointly sponsored by the DOE and the Partnership for a New Generation of Vehicles (PNGV) seeks to modify a production mid-size car to reach 80 mpg, yet still maintain the safety and consumer acceptability of the original vehicle. To meet this challenge, a 1996 Ford Taurus has been modified into a parallel drive, hybrid electric vehicle. The propulsion system of this vehicle is based on a DC electric motor, which is coupled via a belt drive, in parallel, with a 1.9 liter turbo-charged, direct injection diesel engine. Both propulsion units are then coupled to the transmission. The OEM automatic transmission has been replaced with a five-speed, manual transmission, which was adapted from an earlier model year production Taurus SHO vehicle. This transmission is both lighter and more mechanically efficient than the automatic transmission. In order to provide the automatic transmission shifting capabilities expected by the consumer for a vehicle of this size, an electro-hydraulic control unit was designed and built. This unit automatically engages the clutch and shifts gears as required during vehicle operation. Gear selection is controlled by a programmable logic controller (PLC), which utilizes throttle and vehicle speed input signals. Additionally, the driver may select gears using a modified steering-column PRNDL selector. This paper discusses the final design of this system and provides an evaluation of its performance.

  7. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    NASA Astrophysics Data System (ADS)

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. K.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-02-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

  8. Transmission cost minimization strategies for wind-electric generating facilities

    SciTech Connect

    Gonzalez, R.

    1997-12-31

    Integrating wind-electric generation facilities into existing power systems presents opportunities not encountered in conventional energy projects. Minimizing outlet cost requires probabilistic value-based analyses appropriately reflecting the wind facility`s operational characteristics. The wind resource`s intermittent nature permits relaxation of deterministic criteria addressing outlet configuration and capacity required relative to facility rating. Equivalent capacity ratings of wind generation facilities being a fraction of installed nameplate rating, outlet design studies contingency analyses can concentrate on this fractional value. Further, given its non-dispatchable, low capacity factor nature, a lower level of redundancy in outlet facilities is appropriate considering the trifling contribution to output unreliability. Further cost reduction opportunities arise from {open_quotes}wind speed/generator power output{close_quotes} and {open_quotes}wind speed/overhead conductor rating{close_quotes} functions` correlation. Proper analysis permits the correlation`s exploitation to safely increase line ratings. Lastly, poor correlation between output and utility load may permit use of smaller conductors, whose higher (mostly off-peak) losses are economically justifiable.

  9. Control of terahertz nonlinear transmission with electrically gated graphene metadevices.

    PubMed

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U K; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-02-20

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

  10. Control of terahertz nonlinear transmission with electrically gated graphene metadevices

    PubMed Central

    Choi, Hyun Joo; Baek, In Hyung; Kang, Bong Joo; Kim, Hyeon-Don; Oh, Sang Soon; Hamm, Joachim M.; Pusch, Andreas; Park, Jagang; Lee, Kanghee; Son, Jaehyeon; Jeong, Young U. k.; Hess, Ortwin; Rotermund, Fabian; Min, Bumki

    2017-01-01

    Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms. PMID:28216677

  11. Flexible gas insulated transmission line having regions of reduced electric field

    DOEpatents

    Cookson, Alan H.; Fischer, William H.; Yoon, Kue H.; Meyer, Jeffry R.

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  12. Understanding Cognitive and Collaborative Work: Observations in an Electric Transmission Operations Control Center

    SciTech Connect

    Obradovich, Jodi H.

    2011-09-30

    This paper describes research that is part of an ongoing project to design tools to assist in the integration of renewable energy into the electric grid. These tools will support control room dispatchers in real-time system operations of the electric power transmission system which serves much of the Western United States. Field observations comprise the first phase of this research in which 15 operators have been observed over various shifts and times of day for approximately 90 hours. Findings describing some of the cognitive and environmental challenges of managing the dynamically changing electric grid are presented.

  13. Opportunities for Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    SciTech Connect

    Jackson, Roderick K.; Onar, Omer C.; Kirkham, Harold; Fisher, Emily; Burkes, Klaehn; Starke, Michael R.; Mohammed, Olama; Weeks, George

    2015-04-01

    Since 2000, more than 172 quads of electricity have been transmitted on the US transmission and distribution (T&D) grid. Given this significant amount of energy flow, establishing and maintaining an efficient T&D grid is paramount. As shown in the figure below, the total percentage of overall losses in the US electric grid is approximately 6% (5.12% in 2012) (30% lower than the world average since 2000). While these efficiency losses appear to be relatively small from a percentage perspective, the total estimated electricity loss during this time is 10.8 quads.

  14. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  15. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  16. Improving Electricity Resource-Planning Processes by Consideringthe Strategic Benefits of Transmission

    SciTech Connect

    Budhraja, Vikram; Mobasheri, Fred; Ballance, John; Dyer, Jim; Silverstein, Alison; Eto, Joseph

    2009-03-02

    Current methods of evaluating the economic impacts of new electricity transmission projects fail to capture the many strategic benefits of these projects, such as those resulting from their long life, dynamic changes to the system, access to diverse fuels, and advancement of public policy goals to integrate renewable-energy resources and reduce greenhouse gas emissions.

  17. 78 FR 70163 - Communication of Operational Information between Natural Gas Pipelines and Electric Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ...In this Final Rule, the Federal Energy Regulatory Commission (Commission) amends the Commission's regulations to provide explicit authority to interstate natural gas pipelines and public utilities that own, operate, or control facilities used for the transmission of electric energy in interstate commerce to share non-public, operational information with each other for the purpose of promoting......

  18. Master-Slave Control Scheme in Electric Vehicle Smart Charging Infrastructure

    PubMed Central

    Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit

    2014-01-01

    WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging. PMID:24982956

  19. Master-slave control scheme in electric vehicle smart charging infrastructure.

    PubMed

    Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit

    2014-01-01

    WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging.

  20. Preparing the Way for New Policy Regarding Adaptation of US Electricity Infrastructure to Climate Change

    SciTech Connect

    Allen, Melissa R

    2013-10-01

    The following pages represent the status of policy regarding adaptation of the electric grid to climate change and proposed directions for new policy development. While strides are being made to understand the current climate and to predict hazards it may present to human systems, both the science and the policy remain at present in an analytical state. The policy proposed in this document involves first continued computational modeling of outcomes which will produce a portfolio of options to be considered in light of specific region-related risks. It is proposed that the modeling continue not only until reasonable policy at various levels of jurisdiction can be derived from its outcome but also on a continuing basis so that as improvements in the understanding of the state and trajectory of climate science along with advancements in technology arise, they can be incorporated into an appropriate and evolving policy.

  1. Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.

  2. Combined use of the air monitoring system in production and transmission of electricity

    SciTech Connect

    Jakl, F.; Bakic, K.; Valencic, L.

    1997-08-01

    The paper presents a double use of the EIS (Environmental Information System) network for scheduling of thermal electricity generation with regard to ecological conditions (air quality in the vicinity of thermal power plants), and for control of the thermal loading of important transmission lines with regard to meteorological conditions. The Slovenian ecological monitoring system was set up fifteen years ago with the task of assuring acquisition of data about air pollution in the vicinity of thermal power plants. In the meantime it has been constantly upgraded and improved. At the end of 1994 immission, emission and meteorological data started to be on-line transmitted to the National Dispatching Centre. Problems with space and restrictions encountered at the construction of new transmission lines made researchers look for solutions that would allow a greater loading of transmission lines without threatening the system reliability. A method was consequently theoretically implemented about the monitoring of the thermal loading of the most important 400 kV transmission lines supported with meteorological data obtained from the EIS measuring system. Transmission of data from EIS into the Dispatching Centre, supported with an adequate software, will facilitate efficient control of the system at consideration of ecological limitations (electricity production in thermal power plants) and at the same time a more efficient exploitation of transmission lines in view of meteorological conditions. The main idea of this paper is the use of the same meteorological system for controlling both, thermal power generation and loading of important 400 kV overhead lines.

  3. Beam damage by the induced electric field in transmission electron microscopy.

    PubMed

    Jiang, Nan

    2016-04-01

    Electric fields can be induced by electron irradiation of insulating thin film materials. In this work, the electric fields under a broad beam illumination in transmission electron microscopy (TEM) are analyzed for insulating samples. Some damage phenomena observed can be interpreted by the mechanism of damage by the induced electric field (DIEF). For broad-beam illumination in an ultra-thin specimen, the electric field near the center of the illumination may not be strong, but at the periphery of the illumination the electric field can be significant. Therefore, damage may be easily observed in these regions rather than at the center of the illumination. For a beam which is broad compared to the specimen thickness, e.g. 100∼1000nm, a strong electric field pointing inward into the specimen near the surface region may result in cation diffusion into the specimen and/or anion diffusion out to the surface region. Meanwhile, a strong electric field perpendicular to the beam direction near the edge of the illumination may attract anions into the illuminated region, but eject cations to the periphery. For a wedge-shaped specimen, the electric field points inward into thicker region, driving cations toward the thicker region, while attracting anions to the edge region. On the sharp edge, a strong electric field pointing outward may be responsible for the edge-smoothing effect observed in insulating materials.

  4. Critical points and transitions in an electric power transmission model for cascading failure blackouts.

    PubMed

    Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E.

    2002-12-01

    Cascading failures in large-scale electric power transmission systems are an important cause of blackouts. Analysis of North American blackout data has revealed power law (algebraic) tails in the blackout size probability distribution which suggests a dynamical origin. With this observation as motivation, we examine cascading failure in a simplified transmission system model as load power demand is increased. The model represents generators, loads, the transmission line network, and the operating limits on these components. Two types of critical points are identified and are characterized by transmission line flow limits and generator capability limits, respectively. Results are obtained for tree networks of a regular form and a more realistic 118-node network. It is found that operation near critical points can produce power law tails in the blackout size probability distribution similar to those observed. The complex nature of the solution space due to the interaction of the two critical points is examined.(c) 2002 American Institute of Physics.

  5. Electrical transmission lines in Montana: Mitigation of impacts to soil and biological sources

    SciTech Connect

    McCollough, S.A.; Ring, T.W.

    1990-12-31

    In Montana, the routing and construction of large electrical transmission lines are regulated by the Montana Major Facility Siting Act. Under this act, impacts to resources are minimized through avoidance by routing, where possible, and by mitigating remaining impacts. Land disturbed by the construction of transmission lines considered in this paper ranges from 1681 acres for a 500-kV line across 156 miles of mountainous terrain to 11 acres for a 100-kV line across 27 miles of nearly level terrain. Line access accounts for most of the disturbance, especially when graded roads are built in mountainous terrain. Land disturbed by transmission line construction is susceptible to soil erosion and weed infestation. These problems are addressed through revegetation, erosion control, and herbicide application. Transmission lines can displace wildlife from critical habitats by disruptive construction activities or by improving human access to previously secure range. Wildlife impacts can be reduced by restricting construction periods and gating roads.

  6. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    SciTech Connect

    Francfort, Jim; Bennett, Brion; Carlson, Richard; Garretson, Thomas; Gourley, LauraLee; Karner, Donal; McGuire, Patti; Scoffield, Don; Kirkpatrick, Mindy; Shrik, Matthew; Salisbury, Shawn; Schey, Stephen; Smart, John; White, Sera; Wishard, Jeffery

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles and charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the

  7. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    PubMed

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented.

  8. Securing energy assets and infrastructure 2007

    SciTech Connect

    2006-06-15

    This report describes in detail the energy industry's challenges and solutions for protecting critical assets including oil and gas infrastructure, transmission grids, power plants, storage, pipelines, and all aspects of strategic industry assets. It includes a special section on cyber-terrorism and protecting control systems. Contents: Section I - Introduction; U.S Energy Trends; Vulnerabilities; Protection Measures. Section II - Sector-wise Vulnerabilities Assessments and Security Measures: Coal, Oil and Petroleum, Natural Gas, Electric Power, Cybersecurity and Control Systems, Key Recommendations; Section III - Critical Infrastructure Protection Efforts: Government Initiatives, Agencies, and Checklists.

  9. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Marine Corps Base Camp Lejeune. Task 3

    SciTech Connect

    Schey, Stephen; Francfort, Jim

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense-based studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at Marine Corps Base Camp Lejeune to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 vehicle utilization report provided results of the data analysis and observations related to the replacement of current vehicles with PEVs. Finally, this report provides an assessment of charging infrastructure required to support the suggested PEV replacements. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune Fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from Marine Corps Base Camp Lejeune personnel.

  10. Impacts to Electric Power Grid Infrastructures From the Violent Sun-Earth Connection Events of October-November 2003

    NASA Astrophysics Data System (ADS)

    Kappenman, J. G.

    2004-05-01

    The solar flare activity of October-November 2003 reached historic intensity levels and produced several large Earth-directed CME's that had the potential to cause historically large geomagnetic storms as well. These CME's did cause various geomagnetic storm indices, particularly the regional K and Planetary Kp index, to reach maximum levels for many hours. However, the resulting geomagnetic storms, while causing isolated and important disruptions to power grids, were not of historically large size when considering the rate-of-change of regional geomagnetic fields in many locations. Impacts to power grids are caused by large dB/dt variations in regional geomagnetic fields, in most cases the peak geomagnetic disturbance intensities (in nT/min) were only a fraction of what has occurred during historically large geomagnetic storm events. A review will be provided of the CME passages and features of the passage that drove resulting geomagnetic storm events and impacts to electric power grid infrastructures on October 29-30, 2003. A brief overview of the geomagnetic storm disturbance morphologies and intensities relative to other noteworthy storms will also be provided.

  11. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    NASA Astrophysics Data System (ADS)

    Samaras, Constantine

    cycle assessment to evaluate options and opportunities for large GHG reductions from plug-in hybrids. After the options and uncertainties are framed, engineering economic analysis is used to evaluate the policy actions required for adoption of PHEVs at scale and the implications for low-carbon electricity investments. A logistic PHEV adoption model is constructed to parameterize implications for low-carbon electricity infrastructure investments and climate policy. This thesis concludes with an examination of what lessons can be learned for climate, innovation, and low-carbon energy policies from the evolution of wind power from an emerging alternative energy technology to a utility-scale power source. Policies to promote PHEVs and other emerging energy technologies can take lessons learned from the successes and challenges of wind power's development to optimize low-carbon energy policy and R&D programs going forward. The need for integrated climate policy, energy policy, sustainability, and urban mobility solutions will accelerate in the next two decades as concerns regarding GHG emissions and petroleum resources continue to be environmental and economic priorities. To assist in informing the discussions on climate policy and low-carbon energy R&D, this research and its methods will provide stakeholders in government and industry with plug-in hybrid and energy policy choices based on life cycle assessment, engineering economics, and systems analysis.

  12. Decision-Support Software for Grid Operators: Transmission Topology Control for Infrastructure Resilience to the Integration of Renewable Generation

    SciTech Connect

    2012-03-16

    GENI Project: The CRA team is developing control technology to help grid operators more actively manage power flows and integrate renewables by optimally turning on and off entire power lines in coordination with traditional control of generation and load resources. The control technology being developed would provide grid operators with tools to help manage transmission congestion by identifying the facilities whose on/off status must change to lower generation costs, increase utilization of renewable resources and improve system reliability. The technology is based on fast optimization algorithms for the near to real-time change in the on/off status of transmission facilities and their software implementation.

  13. Electrical signal transmission in a bone cell network: the influence of a discrete gap junction

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Weinbaum, S.; Cowin, S. C.

    1998-01-01

    A refined electrical cable model is formulated to investigate the role of a discrete gap junction in the intracellular transmission of electrical signals in an electrically coupled system of osteocytes and osteoblasts in an osteon. The model also examines the influence of the ratio q between the membrane's electrical time constant and the characteristic time of pore fluid pressure, the circular, cylindrical geometry of the osteon, and key simplifying assumptions in our earlier continuous cable model (see Zhang, D., S. C. Cowin, and S. Weinbaum. Electrical signal transmission and gap junction regulation in a bone cell network: A cable model for an osteon. Ann. Biomed. Eng. 25:379-396, 1997). Using this refined model, it is shown that (1) the intracellular potential amplitude at the osteoblastic end of the osteonal cable retains the character of a combination of a low-pass and a high-pass filter as the corner frequency varies in the physiological range; (2) the presence of a discrete gap junction near a resting osteoblast can lead to significant modulation of the intracellular potential and current in the osteoblast for measured values of the gap junction coupling strength; and (3) the circular, cylindrical geometry of the osteon is well simulated by the beam analogy used in Zhang et al.

  14. Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang

    2016-11-01

    This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.

  15. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.

    PubMed

    Delucchi, M A; Yang, C; Burke, A F; Ogden, J M; Kurani, K; Kessler, J; Sperling, D

    2014-01-13

    Concerns about climate change, urban air pollution and dependence on unstable and expensive supplies of foreign oil have led policy-makers and researchers to investigate alternatives to conventional petroleum-fuelled internal-combustion-engine vehicles in transportation. Because vehicles that get some or all of their power from an electric drivetrain can have low or even zero emissions of greenhouse gases (GHGs) and urban air pollutants, and can consume little or no petroleum, there is considerable interest in developing and evaluating advanced electric vehicles (EVs), including pure battery-electric vehicles, plug-in hybrid electric vehicles and hydrogen fuel-cell electric vehicles. To help researchers and policy-makers assess the potential of EVs to mitigate climate change and reduce petroleum use, this paper discusses the technology of EVs, the infrastructure needed for their development, impacts on emissions of GHGs, petroleum use, materials use, lifetime costs, consumer acceptance and policy considerations.

  16. [Study on signal transmission characteristics of meridian based on electrical network theory and experiments].

    PubMed

    Wang, Zhi-Gong; Lü, Xiao-Ying; Gao, Jian-Yun; Wang, Yu-Hang; Huang, Cen-Yu; Chen, Yue-Lin; Xing, Li-Yang; Wang, Gui-Ying

    2011-08-01

    Study on features of acupoints with resistance test in the past half century is reviewed in this article. Mechanism and technology of the method are introduced as well as its shortcomings. The determination method of signal transmission along meridians with the combination of electrical network theories and practice is advanced. And the result of a series experiments on one meridian at the superficial part of the body are given as well. Thus, it is concluded that the signals of the point-in/point-out and the signals along a non-meridian path with the same distance are significantly different, which gives a verification of the feasibility of the method by using electrical network theories to set out characteristics of signal transmission along meridians dynamically.

  17. Tucson Electric Power Company Sahuarita-Nogales Transmission Line Draft Environmental Impact Statement

    SciTech Connect

    N /A

    2003-08-27

    Tucson Electric Power Company (TEP) has applied to the U.S. Department of Energy (DOE) for a Presidential Permit to construct and operate a double-circuit, 345,000-volt (345-kV) electric transmission line across the United States border with Mexico. Under Executive Order (EO) 10485 of September 3, 1953, as amended by EO 12038 of February 3, 1978, a Presidential Permit is required to construct, connect, operate, or maintain facilities at the U.S. international border for the transmission of electric energy between the United States and a foreign country. DOE has determined that the issuance of a Presidential Permit to TEP for the proposed project would constitute a major Federal action that may have a significant impact on the environment within the meaning of the ''National Environmental Policy Act of 1969'' (NEPA) 42 United States Code (U.S.C.) {section}4321 et seq. For this reason, DOE has prepared this Draft Environmental Impact Statement (EIS) to evaluate potential environmental impacts from the proposed Federal action (granting a Presidential Permit for the proposed transmission facilities) and reasonable alternatives, including the No Action Alternative. This EIS was prepared in accordance with Section 102(2)(c) of NEPA, Council of Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508), and DOE NEPA Implementing Procedures (10 CFR 1021). DOE is the lead Federal Agency, as defined by 40 CFR 1501.5. The U.S. Department of Agriculture Forest Service (USFS), the Bureau of Land Management (BLM) of the U.S. Department of the Interior, and the U.S. Section of the International Boundary and Water Commission, U.S. and Mexico (USIBWC), are cooperating agencies. Each of these organizations will use the EIS for its own NEPA purposes, as described in the Federal Agencies' Purpose and Need and Authorizing Actions section of this summary. The 345-kV double-circuit transmission line would consist of twelve transmission line wires, or

  18. Field experiment of laser energy transmission and laser to electric conversion

    SciTech Connect

    Yugami, H.; Kanamori, Y.; Arashi, H.; Niino, M.; Moro, A.; Eguchi, K.; Okada, Y.; Endo, A.

    1997-12-31

    In this paper, the authors report the result of the field experiment of laser power transmission over 500m using different laser systems, i.e., CO{sub 2}, YAG, etc. The efficiency of energy transmission for long time period under various meteorological conditions was measured. They have observed large and long time scale fluctuation of beam pointing. It is found that the position of laser beam at the receiving site is correlated with the temperature difference between laser path height and ground. The laser to electricity conversion experiment has been performed using GaAs, c-Si, tandem-type a-Si, and CuInSe{sub 2} (CIS) solar cells. Finally, they briefly introduce the proposal on the space experiment of laser power transmission at Japanese Experiment Module (JEM) on the international space station.

  19. Strengthening future electricity grid of the Netherlands by integration of HTS transmission cables

    NASA Astrophysics Data System (ADS)

    Zuijderduin, Roy; Chevtchenko, Oleg; Smit, Johan; Aanhaanen, Gert; Ross, Rob

    2014-05-01

    The electricity grid of the Netherlands is changing. There is a call of society to use more underground cables, less overhead lines (OHL) and to reduce magnetic emissions. At the same time, parts of the future transmission grid need strengthening depending on the electricity demand in the coming decades [1]. Novel high temperature superconductor (HTS) AC transmission cables can play a role in strengthening the grid. The advantages as compared to alternatives, are: economic, underground, higher power capacity, lower losses, reduced magnetic field emissions in (existing) OHL, compact: less occupation of land and less permits needed, a possibility to keep 380 kV voltage level in the grid for as long as needed. The main obstacles are: the relatively high price of HTS tapes and insufficient maturity of the HTS cable technology. In the paper we focus on a 34 km long connection in the transmission grid (to be strengthened in three of the four of TenneT scenarios [1]), present the network study results, derive the requirements for corresponding HTS transmission cable system and compare HTS system to the alternatives (OHLs and XLPE cables).

  20. Mixed Electrical-Chemical Transmission between Hippocampal Mossy Fibers and Pyramidal Cells

    PubMed Central

    Vivar, Carmen; Traub, Roger D.; Gutiérrez, Rafael

    2011-01-01

    Morphological and electrophysiological studies have shown that granule cell axons, the mossy fibers (MFs), establish gap junctions and, therefore, electrical communication among them. That granule cells express gap junctional proteins in their axons suggests the possibility that their terminals express them as well. If this were to be the case, mixed electrical-chemical communication could be supported, as MF terminals normally use glutamate for fast communication with their target cells. Here we present electrophysiological and modeling studies consistent with this hypothesis. We show that MF activation produced fast spikelets followed by excitatory postsynaptic potentials in pyramidal cells (PCs), which, unlike the spikelets, underwent frequency potentiation and were strongly depressed by activation of metabotropic glutamate receptors, as expected from transmission of MF origin. The spikelets, which persisted during blockade of chemical transmission, wee potentiated by dopamine and suppressed by the gap junction blocker carbenoxolone. The various waveforms evoked by MF stimulation were replicated in a multi-compartment model of a PC by brief current pulse injections into the proximal apical dendritic compartment, where MFs are known to contact PCs. Mixed electrical and glutamatergic communication between granule cells and some PCs in CA3 may ensure the activation of sets of PCs, bypassing the strong action of concurrent feed-forward inhibition that granule cells activate. Importantly, MF-to-PC electrical coupling may allow bidirectional, possibly graded communication that can be faster than chemical synapses and subject to different forms of modulation. PMID:22151275

  1. Infrastructure: A technology battlefield in the 21st century

    SciTech Connect

    Drucker, H.

    1997-12-31

    A major part of technological advancement has involved the development of complex infrastructure systems, including electric power generation, transmission, and distribution networks; oil and gas pipeline systems; highway and rail networks; and telecommunication networks. Dependence on these infrastructure systems renders them attractive targets for conflict in the twenty-first century. Hostile governments, domestic and international terrorists, criminals, and mentally distressed individuals will inevitably find some part of the infrastructure an easy target for theft, for making political statements, for disruption of strategic activities, or for making a nuisance. The current situation regarding the vulnerability of the infrastructure can be summarized in three major points: (1) our dependence on technology has made our infrastructure more important and vital to our everyday lives, this in turn, makes us much more vulnerable to disruption in any infrastructure system; (2) technologies available for attacking infrastructure systems have changed substantially and have become much easier to obtain and use, easy accessibility to information on how to disrupt or destroy various infrastructure components means that almost anyone can be involved in this destructive process; (3) technologies for defending infrastructure systems and preventing damage have not kept pace with the capability for destroying such systems. A brief review of these points will illustrate the significance of infrastructure and the growing dangers to its various elements.

  2. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  3. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  4. Management of the geomagnetically induced current risks on the national grid company's electric power transmission system

    NASA Astrophysics Data System (ADS)

    Erinmez, I. Arslan; Kappenman, John G.; Radasky, William A.

    2002-03-01

    The National Grid Company plc (NGC) is the owner and operator of one of the world's largest privatised high-voltage electric power transmission systems in England and Wales at 400 and 275kV. As owner operator it is responsible for the secure and reliable delivery of electrical energy to all the 25 million electricity supply customers in England and Wales. The transmission and distribution systems in UK have experienced significant effects during past geomagnetic storm events especially during solar cycles 21 and 22. These effects included generator reactive power output swings, voltage dips, negative sequence alarms and transformer failures. Geomagnetically induced current (GIC) monitoring was installed in 1989 and operational procedures were put in place based on global solar weather forecasts. These measures were not capable of delivering reliable information and thus gave many false operational alarms. Their only real use was for post event forensic purposes. Since the cycle 22 solar peak activity the UK transmission system has developed to become more meshed, heavily loaded and dependent on the availability of reactive compensation equipment for voltage control. NGC carried out GIC impact risk assessment in 1998. This reviewed available options for managing this risk including investigation of blocking measures, a reliable local GIC forecast, GIC monitoring, a review of transmission equipment capabilities to withstand GIC conditions and operational procedures to manage the risk. As a result of the risk assessment NGC completed installation of a Metatech Spacecast/Powercast space weather forecasting system in May 1999. EPRI Sunburst 2000 based transformer monitoring systems were fully integrated in January 2000 in time for peak solar storm activity in solar cycle 23. This paper will describe the risk analysis undertaken, the risk management processes put in place and the performance of the forecasting and monitoring systems, respectively.

  5. In Situ Transmission Electron Microscope Observation of Carbon Nanotubes in Electric Fields

    NASA Astrophysics Data System (ADS)

    Okai, Makoto; Fujieda, Tadashi; Hidaka, Kishio; Muneyoshi, Takahiko; Yaguchi, Tomio

    2005-04-01

    Transmission electron microscope is used to examine the movements of carbon nanotubes in electric fields. Carbon nanotubes lying along the surface of the cathode electrode start to move into alignment with the electric field vector when the field strength reaches 0.5 V/μm and become increasingly well-aligned with the vector as field strength increases. The carbon nanotubes return to their original positions when the electric field strength returns to zero. We also examine the abrupt breakdown of carbon nanotubes when the electric field is maintained at 5.5 V/μm. The corresponding breakdown emission current density is estimated as 3.4× 107 A/cm2. The distance between the nearest nanotubes standing to align with the electric field vector is approximately 2 μm. This fact means that emission site density could be increased up to 3× 107 points/cm2 (which corresponds to one tube for each 2 μm square).

  6. Powertrain dynamics and control of a two speed dual clutch transmission for electric vehicles

    NASA Astrophysics Data System (ADS)

    Walker, Paul; Zhu, Bo; Zhang, Nong

    2017-02-01

    The purpose of this paper is to demonstrate the application of torque based powertrain control for multi-speed power shifting capable electric vehicles. To do so simulation and experimental studies of the shift transient behaviour of dual clutch transmission equipped electric vehicle powertrains is undertaken. To that end a series of power-on and power-off shift control strategies are then developed for both up and down gear shifts, taking note of the friction load requirements to maintain positive driving load for power-on shifting. A mathematical model of an electric vehicle powertrain is developed including a DC equivalent circuit model for the electric machine and multi-body dynamic model of the powertrain system is then developed and integrated with a hydraulic clutch control system model. Integral control of the powertrain is then performed through simulations on the develop powertrain system model for each of the four shift cases. These simulation results are then replicated on a full scale powertrain test rig. To evaluate the performance of results shift duration and vehicle jerk are used as metrics to demonstrate that the presented strategies are effective for shift control in electric vehicles. Qualitative comparison of both theoretical and experimental results demonstrates reasonable agreement between simulated and experimental outcomes.

  7. Mitigating the Detrimental Impacts of Solar PV Penetration on Electric Power Transmission Systems

    NASA Astrophysics Data System (ADS)

    Prakash, Nitin

    At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO 2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.

  8. Overhead electric power transmission line jumpering system for bundles of five or more subconductors

    DOEpatents

    Winkelman, Paul F.

    1982-01-01

    Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

  9. Potential benefits of long-distance electricity transmission in China for air quality and climate

    NASA Astrophysics Data System (ADS)

    Peng, W.; Mauzerall, D. L.; Yuan, J.; Zhao, Y.; Lin, M.; Zhang, Q.

    2015-12-01

    China is expanding west-to-east long-distance electricity transmission capacity with the aim of reducing eastern coal power production and resulting air pollution. In addition to coal power, this new grid capacity can be used to transport renewable-generated electricity with resulting climate co-benefits. Here we use an integrated assessment to evaluate the air quality and climate benefits of twelve proposed transmission lines in China, and compare two energy-by-wire strategies that transmit 1) only coal power (Coal-by-wire, CbW) or 2) combined renewable plus coal power (Renewable and coal-by-wire, (RE+C)bW), with 3) the current practice of transporting coal by rail for conversion to electricity near eastern demand centers (Coal-by-rail, CbR). Based on a regional atmospheric chemistry model, WRF-Chem, electricity transmission through the proposed lines leads to 2-3 μg/m3 (2-7%) reduction in the annual mean concentrations of fine particulate matter (PM2.5) in the eastern provinces relative to 2010 levels, roughly ~1 μg/m3 greater than the reduction achieved in CbR where dirty coal units are locally replaced with efficient ones. Although the eastern air quality improvement is similar irrespective of the fuel source to power the lines, adding coal generation results in up to 3% increase in annual mean PM2.5 levels in some exporting provinces, whereas such increase is not observed when most added capacity is renewable-based. Counting both the economic value of reduced carbon emissions and the health-related air quality benefits can significantly improve the cost-effectiveness of transmitting both renewable and coal power. Comparing (RE+C)bW with the two coal-based options, we find not only 20% larger reduction in air-pollution-related deaths, but also three times greater reduction in CO2 emissions. Our study hence demonstrates the significance of coordinating renewable energy planning with transmission planning to simultaneously tackle air pollution and climate

  10. Transmission electron microscopy and electrical transport investigations performed on the same single-walled carbon nanotube

    SciTech Connect

    Philipp, G.; Burghard, M.; Roth, S.

    1998-08-11

    Electrical transport measurements and high resolution transmission electron microscopy performed on the same (rope of) single-walled carbon nanotube(s) (SWCNTs) allow to establish links between structural and electronic properties of the tubes. The tubes are deposited on electron transparent ultrathin Si{sub 3}N{sub 4}-membranes bearing Cr/AuPd-electrodes defined by electron beam lithography. TEM-micrographs of the setup reveal mostly ropes consisting of 2-3 tubes which also appear on a scanning force microscope image of the same area. A current-voltage trace of the ropes at 4.2 K is also presented.

  11. Power transmission cable development for the Space Station Freedom electrical power system

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  12. Low frequency electric field variations during HF transmissions on a mother-daughter rocket

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Maynard, M. C.; Holtet, J. A.; Karlsen, N. O.; Egeland, A.; Moe, T. E.; Troim, J.

    1977-01-01

    HF wave propagation experiments were conducted on Mother-Daughter rockets in the polar ionosphere. Swept frequency transmissions from the Mother, nominally covering the range from 0.5 to 5 MHz in both CW and pulse modes, are received by the Daughter. In the most recent rocket of the series, the Mother also contained an AC electric field spectrometer covering the frequency range from 10 Hz to 100 kHz in four decade bands. The low frequency response of the ionosphere with respect to waves emitted from the onboard HF transmitter is examined.

  13. Electrical resistivity imaging in transmission between surface and underground tunnel for fault characterization

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Boyle, A.; Grychtol, B.; Cabrera, J.; Marteau, J.; Adler, A.

    2016-05-01

    Electrical resistivity images supply information on sub-surface structures and are classically performed to characterize faults geometry. Here we use the presence of a tunnel intersecting a regional fault to inject electrical currents between surface and the tunnel to improve the image resolution at depth. We apply an original methodology for defining the inversion parametrization based on pilot points to better deal with the heterogeneous sounding of the medium. An increased region of high spatial resolution is shown by analysis of point spread functions as well as inversion of synthetics. Such evaluations highlight the advantages of using transmission measurements by transferring a few electrodes from the main profile to increase the sounding depth. Based on the resulting image we propose a revised structure for the medium surrounding the Cernon fault supported by geological observations and muon flux measurements.

  14. Wind power development in the United States: Effects of policies and electricity transmission congestion

    NASA Astrophysics Data System (ADS)

    Hitaj, Claudia

    In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations

  15. Design and control of a novel two-speed Uninterrupted Mechanical Transmission for electric vehicles

    NASA Astrophysics Data System (ADS)

    Fang, Shengnan; Song, Jian; Song, Haijun; Tai, Yuzhuo; Li, Fei; Sinh Nguyen, Truong

    2016-06-01

    Conventional all-electric vehicles (EV) adopt single-speed transmission due to its low cost and simple construction. However, with the adoption of this type of driveline system, development of EV technology leads to the growing performance requirements of drive motor. Introducing a multi-speed or two-speed transmission to EV offers the possibility of efficiency improvement of the whole powertrain. This paper presents an innovative two-speed Uninterrupted Mechanical Transmission (UMT), which consists of an epicyclic gearing system, a centrifugal clutch and a brake band, allowing the seamless shifting between two gears. Besides, driver's intention is recognized by the control system which is based on fuzzy logic controller (FLC), utilizing the signals of vehicle velocity and accelerator pedal position. The novel UMT shows better dynamic and comfort performance in compare with the optimized AMT with the same gear ratios. Comparison between the control strategy with recognition of driver intention and the conventional two-parameter gear shifting strategy is presented. And the simulation and analysis of the middle layer of optimal gearshift control algorithm is detailed. The results indicate that the UMT adopting FLC and optimal control method provides a significant improvement of energy efficiency, dynamic performance and shifting comfort for EV.

  16. Transmission probabilities of rarefied flows in the application of atmosphere-breathing electric propulsion

    NASA Astrophysics Data System (ADS)

    Binder, T.; Boldini, P. C.; Romano, F.; Herdrich, G.; Fasoulas, S.

    2016-11-01

    Atmosphere-Breathing Electric Propulsion systems (ABEP) are currently investigated to utilize the residual atmosphere as propellant for drag-compensating thrusters on spacecraft in (very) low orbits. The key concept for an efficient intake of such a system is to feed a large fraction of the incoming flow to the thruster by a high transmission probability Θ for the inflow while Θ for the backflow should be as low as possible. This is the case for rarefied flows through tube-like structures of arbitrary cross section when assuming diffuse wall reflections inside and after these ducts, and entrance velocities u larger than thermal velocities vt h∝√{kBT /m } . The theory of transmission for free molecular flow through cylinders is well known for u = 0, but less research results are available for u > 0. In this paper, the desired theoretical characteristics of intakes for ABEP are pointed out, a short review of transmission probabilities is given, and results of Monte Carlo simulations concerning Θ are presented. Based on simple algebraic relations, an intake can be optimized in terms of collection efficiency by choosing optimal ducts. It is shown that Θ depends only on non-dimensional values of the duct geometry combined with vth and u. The simulation results of a complete exemplary ABEP configuration illustrate the influence of modeling quality in terms of inflow conditions and inter-particle collisions.

  17. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    SciTech Connect

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these

  18. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Eyer, James M.

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  19. Connexin35 Mediates Electrical Transmission at Mixed Synapses on Mauthner Cells

    PubMed Central

    Pereda, A.; O’Brien, J.; Nagy, J. I.; Bukauskas, F.; Davidson, K. G. V.; Kamasawa, N.; Yasumura, T.; Rash, J. E.

    2007-01-01

    Auditory afferents terminating as “large myelinated club endings” on goldfish Mauthner cells are identifiable “mixed” (electrical and chemical) synaptic terminals that offer the unique opportunity to correlate physiological properties with biochemical composition and specific ultrastructural features of individual synapses. By combining confocal microscopy and freeze-fracture replica immunogold labeling (FRIL), we demonstrate that gap junctions at these synapses contain connexin35 (Cx35). This connexin is the fish ortholog of the neuron-specific human and mouse connexin36 that is reported to be widely distributed in mammalian brain and to be responsible for electrical coupling between many types of neurons. Similarly, connexin35 was found at gap junctions between neurons in other brain regions, suggesting that connexin35-mediated electrical transmission is common in goldfish brain. Conductance of gap junction channels at large myelinated club endings is known to be dynamically modulated by the activity of their colocalized glutamatergic synapses. We show evidence by confocal microscopy for the presence of the NR1 subunit of the NMDA glutamate receptor subtype, proposed to be a key regulatory element, at these large endings. Furthermore, we also show evidence by FRIL double-immunogold labeling that the NR1 subunit of the NMDA glutamate receptor is present at postsynaptic densities closely associated with gap junction plaques containing Cx35 at mixed synapses across the goldfish hindbrain. Given the widespread distribution of electrical synapses and glutamate receptors, our results suggest that the plastic properties observed at these identifiable junctions may apply to other electrical synapses, including those in mammalian brain. PMID:12930787

  20. Evidence for the transmission of information through electric potentials in injured avocado trees.

    PubMed

    Oyarce, Patricio; Gurovich, Luis

    2011-01-15

    Electrical excitability and signaling, frequently associated with rapid responses to environmental stimuli, have been documented in both animals and higher plants. The presence of electrical potentials (EPs), such as action potentials (APs) and variation potentials (VPs), in plant cells suggests that plants make use of ion channels to transmit information over long distances. The reason why plants have developed pathways for electrical signal transmission is most probably the necessity to respond rapidly, for example, to environmental stress factors. We examined the nature and specific characteristics of the electrical response to wounding in the woody plant Persea americana (avocado). Under field conditions, wounds can be the result of insect activity, strong winds or handling injury during fruit harvest. Evidence for extracellular EP signaling in avocado trees after mechanical injury was expressed in the form of variation potentials. For tipping and pruning, signal velocities of 8.7 and 20.9 cm/s, respectively, were calculated, based on data measured with Ag/AgCl microelectrodes inserted at different positions of the trunk. EP signal intensity decreased with increasing distance between the tipping and pruning point and the electrode. Recovery time to pre-tipping or pre-pruning EP values was also affected by the distance and signal intensity from the tipping or pruning point to the specific electrode position. Real time detection of remote EP signaling can provide an efficient tool for the early detection of insect attacks, strong wind damage or handling injury during fruit harvest. Our results indicate that electrical signaling in avocado, resulting from microenvironment modifications, can be quantitatively related to the intensity and duration of the stimuli, as well as to the distance between the stimuli site and the location of EP detection. These results may be indicative of the existence of a specific kind of proto-nervous system in plants.

  1. A proposal to Improve Electric Power Transmission Efficiency of the Transmission line from Yekepa to Buchanan of the CLSG Power System Redevelopment Interconnection Project Using FACTS Devices

    NASA Astrophysics Data System (ADS)

    Jackson, Samuel Mulbah

    This Work examined improving the electric power transmission efficiency of a portion of the CLSG (Cote d'Ivoire, Liberia, Sierra Leone, and Guinea) Interconnection Redevelopment Project of 1141 km high voltage transmission line. As with all ac transmission, present, new, and upgraded, they exhibit four electrical properties: resistance, inductance, capacitance, and conductance. These parameters affect the transmission line's ability to fulfil its function as part of the power system. A transmission system functions are to transport electric power from a generating source to a central point, to transport bulk power from a central point to wholesale delivery points (sub transmission substations), and to act as a tie points with interconnecting transmission lines from other power systems for emergency or economic reasons. In this work a portion of the CLSG Interconnection was simulated in MATLAB using different loading conditions. In determining voltage, current, and power, all sending end and receiving end quantities were determined at different sending end power levels. This was done on an incremental basis starting from 25 MW to 300 MW at 0.8 power factor. The results obtained from these produced data that were then used to plot graphs, among them the voltage profiles of the line at different loading conditions. The line loadability curves produced at different loading conditions were also plotted. So these curves provided illumination on the behavior and deficiencies of the line. Those deficiencies meant that there was a need for modification so as to keep the system in a safe operating voltage condition at different loading conditions. The line was compensated where needed, employing shunt capacitive compensation under different loading conditions for the purpose of making the receiving end voltage equal with the sending end voltage or within usable voltage levels. The line compensation provided a flat voltage profile at those loading conditions.

  2. Supplying Reliable Electricity and Reducing Transmission Requirements by Interconnecting Wind Farms

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Jacobson, M. Z.

    2007-12-01

    Wind is the world's fastest growing electric energy source. Because it is intermittent, though, wind is not used to supply baseload electric power today. Interconnecting wind farms through the transmission grid is a simple and effective way of reducing deliverable wind power swings caused by wind intermittency. As more farms are interconnected in an array, wind speed correlation among sites decreases and so does the probability that all sites experience the same wind regime at the same time. Consequently, the array behaves more and more similarly to a single farm with steady wind speed and thus steady deliverable wind power. In this study, benefits of interconnecting wind farms were evaluated for 19 sites, located in the Midwestern United States, with annual average wind speeds at 80 m above ground, the hub height of modern wind turbines, greater than 6.9 m/s (class 3 or greater). It was found that an average of 33% and a maximum of 47% of yearly-averaged wind power from interconnected farms can be used as reliable, baseload electric power. Equally significant, interconnecting multiple wind farms to a common point, then connecting that point to a far-away city can allow the long-distance portion of transmission capacity to be reduced, for example, by 20% with only a 1.6% loss of energy. Although most parameters, such as intermittency, improved less than linearly as the number of interconnected sites increased, no saturation of the benefits was found. Thus, the benefits of interconnection continue to increase with more and more interconnected sites.

  3. Regional Transmission Projects: Finding Solutions

    SciTech Connect

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association

  4. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    PubMed

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-02-04

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  5. Intelligent Video Surveillance for Detecting Snow and Ice Coverage on Electrical Insulators of Power Transmission Lines

    NASA Astrophysics Data System (ADS)

    Gu, Irene Y. H.; Sistiaga, Unai; Berlijn, Sonja M.; Fahlström, Anders

    One of the problems for electrical power delivery through power lines in northern countries is when snow or ice accumulates on electrical insulators. This could lead to snow or ice-induced outages and voltage collapse, causing huge economic loss. This paper proposes a novel real-time intelligent surveillance and image analysis system for detecting and estimating the snow and ice coverage on electric insulators using images captured from an outdoor 420 kV power transmission line. In addition, the swing angle of insulators is estimated, as large swing angles due to wind cause short circuits. Hybrid techniques by combining histogram, edges, boundaries and cross-correlations are employed for handling a broad range of scenarios caused by changing weather and lighting conditions. Experiments have been conducted on the captured images over several month periods. Results have shown that the proposed system has provided valuable estimation results. For image pixels related to snows on the insulator, the current system has yielded an average detection rate of 93% for good quality images, and 67.6% for images containing large amount of poor quality ones, and the corresponding average false alarm ranges from 9% to 18.1%. Further improvement may be achieved by using video-based analysis and improved camera settings.

  6. Relative Localization in Wireless Sensor Networks for Measurement of Electric Fields under HVDC Transmission Lines

    PubMed Central

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-01-01

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions. PMID:25658390

  7. Propagation of Epileptiform Activity Can Be Independent of Synaptic Transmission, Gap Junctions, or Diffusion and Is Consistent with Electrical Field Transmission

    PubMed Central

    Zhang, Mingming; Ladas, Thomas P.; Qiu, Chen; Shivacharan, Rajat S.; Gonzalez-Reyes, Luis E.

    2014-01-01

    The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission. PMID:24453330

  8. Propagation of epileptiform activity can be independent of synaptic transmission, gap junctions, or diffusion and is consistent with electrical field transmission.

    PubMed

    Zhang, Mingming; Ladas, Thomas P; Qiu, Chen; Shivacharan, Rajat S; Gonzalez-Reyes, Luis E; Durand, Dominique M

    2014-01-22

    The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission.

  9. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  10. Transmission Line Security Monitor: Final Report

    SciTech Connect

    John Svoboda

    2011-04-01

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  11. Zinc and cadmium in soils and plants near electrical transmission (hydro) towers

    SciTech Connect

    Jones, R.; Burgess, M.S.E.

    1984-10-01

    Concentrations of Zn and Cd were determined in plants and soils around and beneath corroding galvanized electrical transmission (hydro) towers located in different habitats near Peterborough, Ontario. High concentrations of Zn occurred in a well-drained, uncultivated drumlin soil around and beneath a tower. The pattern of contamination indicated spread of Zn by runoff and by wind-driven spray and water droplets from the tower. Plants growing close to this tower accumulated Zn but apparently were not adversely affected, probably because of low Zn availability in the soil. In a cultivated field, the distribution of Zn around the base of a tower seemed to be affected by soil cultivation and by crop removal. Concentrations of Cd were not elevated in plants or soils beneath or near towers in this study. 2 figures, 2 tables.

  12. Engineering analysis of electrical effects for the COTP 500KV transmission line and EBMUD aqueduct corridor

    SciTech Connect

    Lewis, O.C.; Bell, G.K.; Ma, J.

    1995-12-31

    A study was conducted to determine AC electrical interference effects arising in the East Bay Municipal Utility District`s (EBMUD) Mokelumne Aqueducts due to their proximity to the Olinda-Tracy 500 kilovolt (kV) transmission line operated by the Western Area Power Administration (WESTERN). A six-wire gradient control wire mitigation system selected by EBMUD was modeled and evaluated. The study shows that the mitigation system performs satisfactorily under all conditions examined. During steady state conditions, touch voltages are maintained below 15 volts throughout the entire length of the three aqueducts. During fault conditions, touch voltages are maintained below 263 volts, the design limit calculated according to ANSI/IEEE Standard 80. The currents flowing through the isolator/surge protectors do not exceed the ratings of these devices, during steady state and fault conditions.

  13. Comment on "Dynamics and properties of waves in a modified Noguchi electrical transmission line".

    PubMed

    Kenmogne, Fabien; Yemélé, David; Marquié, Patrick

    2016-09-01

    A recent paper [Phys. Rev. E 91, 022925 (2015)PRESCM1539-375510.1103/PhysRevE.91.022925] presents the derivation of the nonlinear equation modeling envelope waves in a specific case of band passed filter discrete nonlinear electrical transmission line (NLTL), called "A modified Noguchi electrical transmission line" according to the authors. Using the reductive perturbation approach in the semidiscrete approximation, they showed that the modulated waves propagating in this NLTL are described by the ordinary nonlinear Schrödinger (NLS) equation. On the basis of their results, the authors claimed that all previous works on the band passed filter NLTL, which considered the vanishing of the dc component of the signal voltage, are incorrect, and this dc term is nonzero. As a consequence, the dispersion and nonlinearity coefficients of the NLS equation are strongly different from those usually obtained, and they found, according to the sign of the product PQ, the existence of one more region (compared to the work of Marquié et al. [Phys. Rev. E 49, 828 (1994)]PLEEE81063-651X10.1103/PhysRevE.49.828) in the dispersion curve that allows the motion of envelope solitons of higher frequency in the system. In this Comment we provide sufficient theoretical and numerical evidence showing that the evidence obtained by the authors otherwise is due to certain terms missed in their mathematical developments when they derived the NLS equation. Our results also suggest that the previous work of Marquié and co-workers correctly predict the fact that the dc term of the signal voltage does not exist and there exist only two regions in the dispersion curve according to the sign of the product PQ.

  14. Comment on "Dynamics and properties of waves in a modified Noguchi electrical transmission line"

    NASA Astrophysics Data System (ADS)

    Kenmogne, Fabien; Yemélé, David; Marquié, Patrick

    2016-09-01

    A recent paper [Phys. Rev. E 91, 022925 (2015), 10.1103/PhysRevE.91.022925] presents the derivation of the nonlinear equation modeling envelope waves in a specific case of band passed filter discrete nonlinear electrical transmission line (NLTL), called "A modified Noguchi electrical transmission line" according to the authors. Using the reductive perturbation approach in the semidiscrete approximation, they showed that the modulated waves propagating in this NLTL are described by the ordinary nonlinear Schrödinger (NLS) equation. On the basis of their results, the authors claimed that all previous works on the band passed filter NLTL, which considered the vanishing of the dc component of the signal voltage, are incorrect, and this dc term is nonzero. As a consequence, the dispersion and nonlinearity coefficients of the NLS equation are strongly different from those usually obtained, and they found, according to the sign of the product P Q , the existence of one more region (compared to the work of Marquié et al. [Phys. Rev. E 49, 828 (1994)], 10.1103/PhysRevE.49.828) in the dispersion curve that allows the motion of envelope solitons of higher frequency in the system. In this Comment we provide sufficient theoretical and numerical evidence showing that the evidence obtained by the authors otherwise is due to certain terms missed in their mathematical developments when they derived the NLS equation. Our results also suggest that the previous work of Marquié and co-workers correctly predict the fact that the dc term of the signal voltage does not exist and there exist only two regions in the dispersion curve according to the sign of the product P Q .

  15. Analysis of the reasons for accidents and of protective measures against induced voltage on aerial electrical transmission lines

    SciTech Connect

    Misrikhanov, M. Sh.; Mirzaabdullaev, A. O.

    2009-01-15

    The problem of safety during work on aerial transmission lines under an induced voltage is examined. Results are presented from a study of the causes of accidents over the last 20 years in electrical grids in this country. A determination of different levels of induced voltage on disconnected aerial transmission lines as a function of their grounding scheme is proposed. The order of magnitudes for each level are given, along with approximate expressions for calculating them.

  16. Inductive intrinsic localized modes in a one-dimensional nonlinear electric transmission line

    NASA Astrophysics Data System (ADS)

    Sato, M.; Mukaide, T.; Nakaguchi, T.; Sievers, A. J.

    2016-07-01

    The experimental properties of intrinsic localized modes (ILMs) have long been compared with theoretical dynamical lattice models that make use of nonlinear onsite and/or nearest-neighbor intersite potentials. Here it is shown for a one-dimensional lumped electrical transmission line that a nonlinear inductive component in an otherwise linear parallel capacitor lattice makes possible a new kind of ILM outside the plane wave spectrum. To simplify the analysis, the nonlinear inductive current equations are transformed to flux transmission line equations with analog onsite hard potential nonlinearities. Approximate analytic results compare favorably with those obtained from a driven damped lattice model and with eigenvalue simulations. For this mono-element lattice, ILMs above the top of the plane wave spectrum are the result. We find that the current ILM is spatially compressed relative to the corresponding flux ILM. Finally, this study makes the connection between the dynamics of mass and force constant defects in the harmonic lattice and ILMs in a strongly anharmonic lattice.

  17. Agent-based modeling of complex infrastructures

    SciTech Connect

    North, M. J.

    2001-06-01

    Complex Adaptive Systems (CAS) can be applied to investigate complex infrastructures and infrastructure interdependencies. The CAS model agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) allow investigation of the electric power infrastructure, the natural gas infrastructure and their interdependencies.

  18. Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line

    NASA Astrophysics Data System (ADS)

    Kengne, E.; Lakhssassi, A.; Liu, W. M.

    2015-06-01

    We study analytically the dynamics of modulated waves in a dissipative modified Noguchi nonlinear electrical network. In the continuum limit, we use the reductive perturbation method in the semidiscrete limit to establish that the propagation of modulated waves in the network is governed by a dissipative nonlinear Schrödinger (NLS) equation. Motivated with a solitary wave type of solution to the NLS equation, we use both the direct method and the Weierstrass's elliptic function method to present classes of bright, kink, and dark solitary wavelike solutions to the dissipative NLS equation of the network. Through the exact solitary wavelike solutions to the dissipative NLS equation, we investigate the effects of the dissipative elements of the network on wave propagation. We show that the wave amplitude decreases and its width increases when the dissipative element of the network increases. It has been also found that the dissipative element of the network can be used to manipulate the motion of solitary waves through the network. This work presents a good analytical approach of investigating the propagation of solitary waves through discrete electrical transmission lines and is very important for studying modulational instability.

  19. Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line.

    PubMed

    Kengne, E; Lakhssassi, A; Liu, W M

    2015-06-01

    We study analytically the dynamics of modulated waves in a dissipative modified Noguchi nonlinear electrical network. In the continuum limit, we use the reductive perturbation method in the semidiscrete limit to establish that the propagation of modulated waves in the network is governed by a dissipative nonlinear Schrödinger (NLS) equation. Motivated with a solitary wave type of solution to the NLS equation, we use both the direct method and the Weierstrass's elliptic function method to present classes of bright, kink, and dark solitary wavelike solutions to the dissipative NLS equation of the network. Through the exact solitary wavelike solutions to the dissipative NLS equation, we investigate the effects of the dissipative elements of the network on wave propagation. We show that the wave amplitude decreases and its width increases when the dissipative element of the network increases. It has been also found that the dissipative element of the network can be used to manipulate the motion of solitary waves through the network. This work presents a good analytical approach of investigating the propagation of solitary waves through discrete electrical transmission lines and is very important for studying modulational instability.

  20. Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Sattar, Golam Shabbir; Keramat, Mumnunul; Shahid, Shamsuddin

    2016-03-01

    The vertical electrical soundings (VESs) are carried out in 24 selective locations of Chapai-Nawabganj area of northwest Bangladesh to determine the transmissivity and hydraulic conductivity of the aquifer. Initially, the transmissivity and hydraulic conductivity are determined from the pumping data of nearby available production wells. Afterwards, the T and K are correlated with geoelectrical resistance and the total resistivity of the aquifer. The present study deciphers the functional analogous relations of the geoelectrical resistance with the transmissivity and the total resistivity with the hydraulic conductivity of the aquifer in northwest Bangladesh. It has been shown that the given equations provide reasonable values of transmissivity and hydraulic conductivity where pumping test information is unavailable. It can be expected that the aquifer properties viz. transmissivity and hydraulic conductivity of geologically similar area can be determined with the help of the obtained equations by conducting VES experiments.

  1. A Model for Optimizing the Combination of Solar Electricity Generation, Supply Curtailment, Transmission and Storage

    NASA Astrophysics Data System (ADS)

    Perez, Marc J. R.

    /south bearing. Using technical and economic data reflecting today's real costs for solar generation technology, storage and electric transmission in combination with this model, we determined the minimum cost combination of these solutions to transform the variable output from solar plants into 3 distinct output profiles: A constant output equivalent to a baseload power plant, a well-defined seasonally-variable output with no weather-induced variability and a variable output but one that is 100% predictable on a multi-day ahead basis. In order to do this, over 14,000 model runs were performed by varying the desired output profile, the amount of energy curtailment, the penetration of solar energy and the geographic region across the continental United States. Despite the cost of supplementary electric transmission, geographic interconnection has the potential to reduce the levelized cost of electricity when meeting any of the studied output profiles by over 65% compared to when only storage is used. Energy curtailment, despite the cost of underutilizing solar energy capacity, has the potential to reduce the total cost of electricity when meeting any of the studied output profiles by over 75% compared to when only storage is used. The three variability mitigation strategies are thankfully not mutually exclusive. When combined at their ideal levels, each of the regions studied saw a reduction in cost of electricity of over 80% compared to when only energy storage is used to meet a specified output profile. When including current costs for solar generation, transmission and energy storage, an optimum configuration can conservatively provide guaranteed baseload power generation with solar across the entire continental United States (equivalent to a nuclear power plant with no down time) for less than 0.19 per kilowatt-hour. If solar is preferentially clustered in the southwest instead of evenly spread throughout the United States, and we adopt future expected costs for solar

  2. Transmission

    SciTech Connect

    Sugano, K.

    1988-12-27

    A transmission is described which consists of: an input shaft; an output shaft; a first planetary gear set including a first sun gear selectively connectable by a first clutch to the input shaft, a first carrier selectively connectable by a second clutch to the input shaft and a first ring gear connected to the output shaft. The first sun gear selectively held stationary by a first brake, the first carrier is allowed to rotate in the same forward direction as the input shaft when the second clutch is engaged, but prevented from rotating in a reverse direction opposite to the forward direction by a first one-way clutch, the first carrier being selectively held stationary by a second brake; a second planetary gear set including a second sun gear connected to the input shaft, a second carrier connected to the first ring gear and also the the output shaft, and a second ring gear.

  3. Unbundled infrastructure firms: Competition and continuing regulation

    NASA Astrophysics Data System (ADS)

    Hogendorn, Christiaan Paul

    Unbundled infrastructure firms provide conduits for electricity transmission, residential communications, etc. but are vertically disintegrated from "content" functions such as electricity generation or world-wide-web pages. These conduits are being deregulated, and this dissertation examines whether the deregulated conduits will behave in an efficient and competitive manner. The dissertation presents three essays, each of which develops a theoretical model of the behavior of conduit firms in a market environment. The first essay considers the prospects for competition between multiple conduits in the emerging market for broadband (high-speed) residential Internet access. It finds that such competition is likely to emerge as demand for these services increase. The second essay shows how a monopoly electricity or natural gas transmission conduit can facilitate collusion between suppliers of the good. It shows that this is an inefficient effect of standard price-cap regulation. The third essay considers the supply chain of residential Internet access and evaluates proposed "open access" regulation that would allow more than one firm to serve customers over the same physical infrastructure. It shows that the amount of content available to consumers does not necessarily increase under open access.

  4. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    SciTech Connect

    Werley, Kenneth Alan; Mccown, Andrew William

    2016-06-26

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. This third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.

  5. Critical Infrastructure Consequence Modeler v 0.5.0 Beta

    SciTech Connect

    Chavez, Lozanne; & Richardson, Bryan

    2009-08-11

    Implements previously developed methodology to calculate total disutility to an organization caused by impacts imposed upon the physical system in question (electric power transmission system, water system, etc).Critical infrastructure utility personnel will use this as a planning tool to determine where system weaknesses are and where improvements should be made such that the consequence of some impact is no longer higher than acceptable.

  6. Individual welfare maximization in electricity markets including consumer and full transmission system modeling

    NASA Astrophysics Data System (ADS)

    Weber, James Daniel

    1999-11-01

    This dissertation presents a new algorithm that allows a market participant to maximize its individual welfare in the electricity spot market. The use of such an algorithm in determining market equilibrium points, called Nash equilibria, is also demonstrated. The start of the algorithm is a spot market model that uses the optimal power flow (OPF), with a full representation of the transmission system. The OPF is also extended to model consumer behavior, and a thorough mathematical justification for the inclusion of the consumer model in the OPF is presented. The algorithm utilizes price and dispatch sensitivities, available from the Hessian matrix of the OPF, to help determine an optimal change in an individual's bid. The algorithm is shown to be successful in determining local welfare maxima, and the prospects for scaling the algorithm up to realistically sized systems are very good. Assuming a market in which all participants maximize their individual welfare, economic equilibrium points, called Nash equilibria, are investigated. This is done by iteratively solving the individual welfare maximization algorithm for each participant until a point is reached where all individuals stop modifying their bids. It is shown that these Nash equilibria can be located in this manner. However, it is also demonstrated that equilibria do not always exist, and are not always unique when they do exist. It is also shown that individual welfare is a highly nonconcave function resulting in many local maxima. As a result, a more global optimization technique, using a genetic algorithm (GA), is investigated. The genetic algorithm is successfully demonstrated on several systems. It is also shown that a GA can be developed using special niche methods, which allow a GA to converge to several local optima at once. Finally, the last chapter of this dissertation covers the development of a new computer visualization routine for power system analysis: contouring. The contouring algorithm is

  7. An Infrastructure Roadmap.

    ERIC Educational Resources Information Center

    Furgeson, Steven P.

    2002-01-01

    Describes how a master infrastructure plan for electrical and mechanical systems can help determine annual maintenance budgets, form annual capital-improvement budgets, take a snapshot of existing conditions, and lead to better energy management. Discusses important elements in such plans. (EV)

  8. Co-Optimization of Electricity Transmission and Generation Resources for Planning and Policy Analysis: Review of Concepts and Modeling Approaches

    SciTech Connect

    Krishnan, Venkat; Ho, Jonathan; Hobbs, Benjamin F.; Liu, Andrew L.; McCalley, James D.; Shahidehpour, Mohammad; Zheng, Qipeng P.

    2016-05-01

    The recognition of transmission's interaction with other resources has motivated the development of co-optimization methods to optimize transmission investment while simultaneously considering tradeoffs with investments in electricity supply, demand, and storage resources. For a given set of constraints, co-optimized planning models provide solutions that have lower costs than solutions obtained from decoupled optimization (transmission-only, generation-only, or iterations between them). This paper describes co-optimization and provides an overview of approaches to co-optimizing transmission options, supply-side resources, demand-side resources, and natural gas pipelines. In particular, the paper provides an up-to-date assessment of the present and potential capabilities of existing co-optimization tools, and it discusses needs and challenges for developing advanced co-optimization models.

  9. Environmental justice: a contrary finding for the case of high-voltage electric power transmission lines.

    PubMed

    Wartenberg, Daniel; Greenberg, Michael R; Harris, Gerald

    2010-05-01

    Environmental justice is the consideration of whether minority and/or lower-income residents in a geographic area are likely to have disproportionately higher exposures to environmental toxins than those living elsewhere. Such situations have been identified for a variety of factors, such as air pollution, hazardous waste, water quality, noise, residential crowding, and housing quality. This study investigates the application of this concept to high-voltage electric power transmission lines (HVTL), which some perceive as a health risk because of the magnetic fields they generate, and also as esthetically unpleasing. We mapped all 345 kV and higher voltage HVTL in New York State and extracted and summarized proximate US Census sociodemographic and housing characteristic data into four categories on the basis of distances from HVTL. Contrary to our expectation, people living within 2000 ft from HVTL were more likely to be exposed to magnetic fields, white, of higher income, more educated and home owners, than those living farther away, particularly in urban areas. Possible explanations for these patterns include the desire for the open space created by the rights-of-way, the preference for new homes/subdivisions that are often located near HVTL, and moving closer to HVTL before EMFs were considered a risk. This study suggests that environmental justice may not apply to all environmental risk factors and that one must be cautious in generalizing. In addition, it shows the utility of geographical information system methodology for summarizing information from extremely large populations, often a challenge in epidemiology.

  10. Helium Scanning Transmission Ion Microscopy and Electrical Characterization of Glass Nanocapillaries with Reproducible Tip Geometries.

    PubMed

    Zweifel, Ludovit P; Shorubalko, Ivan; Lim, Roderick Y H

    2016-02-23

    Nanopores fabricated from glass microcapillaries are used in applications ranging from scanning ion conductance microscopy to single-molecule detection. Still, evaluating the nanocapillary tip by a noninvasive means remains challenging. For instance, electron microscopy characterization techniques can charge, heat, and contaminate the glass surface and typically require conductive coatings that influence the final tip geometry. Per contra, electrical characterization by the means of ion current through the capillary lumen provides only indirect geometrical details of the tips. Here, we show that helium scanning transmission ion microscopy provides a nondestructive and precise determination of glass nanocapillary tip geometries. This enables the reproducible fabrication of axially asymmetric blunt, bullet, and hourglass-shaped tips with opening diameters from 20 to 400 nm by laser-assisted pulling. Accordingly, this allows for an evaluation of how tip shape, pore diameter, and opening angle impact ionic current rectification behavior and the translocation of single molecules. Our analysis shows that current drops and translocation dwell times are dominated by the pore diameter and opening angles regardless of nanocapillary tip shape.

  11. Recent advances in the mitigation of AC voltages occurring in pipelines located close to electric transmission lines

    SciTech Connect

    Southey, R.D.; Dawalibi, F.P. ); Vukonich, W. )

    1994-04-01

    In joint-use corridors where both pipelines and AC electric transmission lines are present, a portion of the energy contained in the electromagnetic field surrounding the electric transmission lines is captured by each pipeline, resulting in induced AC voltages which vary in magnitude throughout the length of each pipeline. During a fault on any of the transmission lines, energization of the earth by supporting structures near the fault can result in large voltages appearing locally between the earth and the steel wall of any nearby pipeline. Some form of mitigation is usually required to reduce these voltages to acceptable levels for the protection of personnel and of the pipeline itself. This paper presents a new mitigation design approach which not only reduces AC voltages effectively and economically, but also provides cathodic protection for the protected pipeline. Performance of this new mitigation method is illustrated with results from computer simulations, which show how important it is to have an accurate electrical model of the soil structure in any interference study. Results from large-scale mitigation design studies performed for ANR Pipeline Company and other gas transmission companies are presented.

  12. Building safeguards infrastructure

    SciTech Connect

    Stevens, Rebecca S; Mcclelland - Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  13. Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy

    PubMed Central

    Shibata, Naoya; Findlay, Scott D.; Sasaki, Hirokazu; Matsumoto, Takao; Sawada, Hidetaka; Kohno, Yuji; Otomo, Shinya; Minato, Ryuichiro; Ikuhara, Yuichi

    2015-01-01

    Precise measurement and characterization of electrostatic potential structures and the concomitant electric fields at nanodimensions are essential to understand and control the properties of modern materials and devices. However, directly observing and measuring such local electric field information is still a major challenge in microscopy. Here, differential phase contrast imaging in scanning transmission electron microscopy with segmented type detector is used to image a p-n junction in a GaAs compound semiconductor. Differential phase contrast imaging is able to both clearly visualize and quantify the projected, built-in electric field in the p-n junction. The technique is further shown capable of sensitively detecting the electric field variations due to dopant concentration steps within both p-type and n-type regions. Through live differential phase contrast imaging, this technique can potentially be used to image the electromagnetic field structure of new materials and devices even under working conditions. PMID:26067359

  14. Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy.

    PubMed

    Shibata, Naoya; Findlay, Scott D; Sasaki, Hirokazu; Matsumoto, Takao; Sawada, Hidetaka; Kohno, Yuji; Otomo, Shinya; Minato, Ryuichiro; Ikuhara, Yuichi

    2015-06-12

    Precise measurement and characterization of electrostatic potential structures and the concomitant electric fields at nanodimensions are essential to understand and control the properties of modern materials and devices. However, directly observing and measuring such local electric field information is still a major challenge in microscopy. Here, differential phase contrast imaging in scanning transmission electron microscopy with segmented type detector is used to image a p-n junction in a GaAs compound semiconductor. Differential phase contrast imaging is able to both clearly visualize and quantify the projected, built-in electric field in the p-n junction. The technique is further shown capable of sensitively detecting the electric field variations due to dopant concentration steps within both p-type and n-type regions. Through live differential phase contrast imaging, this technique can potentially be used to image the electromagnetic field structure of new materials and devices even under working conditions.

  15. Green Infrastructure

    EPA Science Inventory

    Large paved surfaces keep rain from infiltrating the soil and recharging groundwater supplies. Alternatively, Green infrastructure uses natural processes to reduce and treat stormwater in place by soaking up and storing water. These systems provide many environmental, social, an...

  16. Research recommendations for ac interfacing between electric utility transmission and distribution systems and wind, photovoltaics, and OTEC energy systems

    NASA Astrophysics Data System (ADS)

    Longrigg, P.; Buell, E. H.

    1985-03-01

    Work that deals semiquantitatively with many integration problems that may have to be solved as wind, photovoltaic, and ocean energy systems are tied into electrical transmission utility grids is documented. The problems that will arise as these distributed storage and generation (DSG) energy systems are integrated into the electric utility grids are not yet fully known, and their extent may depend on the level of penetration of the DSGs into the grid network. Aspects of DSG integration covered are fuse and relay coordination, harmonics, communications, control protocols, safety, and artificial intelligence (computer driven controls). An appendix on the effects of electromagnetic pulse is also included.

  17. Transmission network-based energy and environmental assessment of plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Valentine, Keenan; Acquaviva, Jonathan; Foster, E. J.; Zhang, K. Max

    2011-03-01

    The introduction of plug-in hybrid electric vehicles (PHEVs) is expected to have a significant impact on regional power systems and pollutant emissions. This paper analyzes the effects of various penetrations of PHEVs on the marginal fuel dispatch of coal, natural gas and oil, and on pollutant emissions of CO2, NOx, SO2 in the New York Metropolitan Area for two battery charging scenarios in a typical summer and winter day. A model of the AC transmission network of the Northeast Power Coordinating Council (NPCC) region with 693 generators is used to realistically incorporate network constraints into an economic dispatch model. A data-based transportation model of approximately 1 million commuters in NYMA is used to determine battery charging pattern. Results show that for all penetrations of PHEVs network-constrained economic dispatch of generation is significantly more realistic than unconstrained cases. Coal, natural gas and oil units are on the margin in the winter, and only natural gas and oil units are on the margin in the summer. Hourly changes in emissions from transportation and power production are dominated by vehicular activity with significant overall emissions reductions for CO2 and NOx, and a slight increase for SO2. Nighttime regulated charging produces less overall emissions than unregulated charging from when vehicles arrive home for the summer and vice versa for the winter. As PHEVs are poised to link the power and transportation sectors, data-based models combining network constraints and economic dispatch have been shown to improve understanding and facilitate control of this link.

  18. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    SciTech Connect

    Eto, Joseph; Stovall, John P.

    2003-04-01

    The California Energy Commission directed the Consortium for Electric Reliability Technology Solutions to analyze possible future scenarios for the California electricity system and assess transmission research and development (R&D) needs, with special emphasis on prioritizing public-interest R&D needs, using criteria developed by the Energy Commission. The scenarios analyzed in this report are not predictions, nor do they express policy preferences of the project participants or the Energy Commission. The public-interest R&D needs that are identified as a result of the analysis are one input that will be considered by the Energy Commission's Public Interest Energy Research staff in preparing a transmission R&D plan.

  19. Chronic exposure to a 60-Hz electric field: effects on synaptic transmission and peripheral nerve function in the rat.

    PubMed

    Jaffe, R A; Laszewski, B L; Carr, D B; Phillips, R D

    1980-01-01

    Several reports have suggested that the nervous system can be affected by exposure to electric fields and that these effects may have detrimental health consequences for the exposed organism. The purpose of this study was to investigate the effects of chronic (30-day) exposure of rats to a 60Hz, 100-kV/m electric field on synaptic transmission and peripheral-nerve function. One hundred forty-four rats, housed in individual polycarbonate cages were exposed to uniform, vertical, 60-Hz electric fields in a system free of corona discharge and ozone formation and in which the animals did not receive spark discharges or other shocks during exposure. Following 30 days of exposure to the electric field, superior cervical sympathetic ganglia, vagus and sciatic nerves were removed from rats anesthetized with urethan, placed in a temperature-controlled chamber, and superfused with a modified mammalian Ringer's solution equilibrated with 95% O2 and 5% CO2. Several measures and tests were used to characterize synaptic transmission and peripheral-nerve function. These included amplitude, area, and configuration of the postsynaptic or whole-nerve compound-action potential; conduction velocity; accommodation; refractory period; strength-duration curves; conditioning-test (C-T) response, frequency response; post-tetanic response; and high-frequency-induced fatigue. The results of a series of neurophysiologic tests and measurements indicate that only synaptic transmission is significantly and consistently affected by chronic (30-day) exposure to a 60-Hz, 100-kV/m electric field. Specifically, and increase in synaptic excitability was detected in replicated measurements of the C-T response ratio. In addition, there are trends in other data that can be interpreted to suggest a generalized increase in neuronal excitability in exposed animals.

  20. ITER Cryoplant Infrastructures

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Monneret, E.; Voigt, T.; Vincent, G.; Forgeas, A.; Simon, M.

    2017-02-01

    The ITER Tokamak requires an average 75 kW of refrigeration power at 4.5 K and 600 kW of refrigeration Power at 80 K to maintain the nominal operation condition of the ITER thermal shields, superconducting magnets and cryopumps. This is produced by the ITER Cryoplant, a complex cluster of refrigeration systems including in particular three identical Liquid Helium Plants and two identical Liquid Nitrogen Plants. Beyond the equipment directly part of the Cryoplant, colossal infrastructures are required. These infrastructures account for a large part of the Cryoplants lay-out, budget and engineering efforts. It is ITER Organization responsibility to ensure that all infrastructures are adequately sized and designed to interface with the Cryoplant. This proceeding presents the overall architecture of the cryoplant. It provides order of magnitude related to the cryoplant building and utilities: electricity, cooling water, heating, ventilation and air conditioning (HVAC).

  1. Overview of U.S. electric utilities: Transmission and distribution systems

    SciTech Connect

    Brown, R.D.

    1994-12-31

    I hope this brief description of the US electric utility industry has been interesting and informative. No doubt many characteristics, concerns, and research efforts mirror those of the electric utility industry in South Korea. It is hoped that through workshops such as this that electric utilities, manufacturers and consultants may learn from each other for the mutual benefit of all.

  2. Puget Sound Area Electric Reliability Plan. Appendix E: Transmission Reinforcement Analysis : Draft Environmental Impact Statement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1991-09-01

    Five transmission line options and several reactive (voltage support) options are presently being considered as possible solutions to the PSAERP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. These options were derived from earlier study work that was summarized in Puget Sound Reinforcement Transmission Options'' and New Cross Mountain Transmission Line Alternative: The Crosstie'', which are attached. The initial Transmission Options study report recognized the value to system performance of adding an entirely new circuit rather than rebuilding an existing one. However, siting realities require that rebuild options be considered. Typically, the most attractive rebuild options would be the lowest capacity (lowest voltage) circuits. But because of corridor location, length and terminal proximity, the rebuild options listed below appear to be the most promising. Schematic diagrams and QV Curves of each option are also attached. It should be noted that Snoqualmie and Echo Lake refer to the same station east of Puget Sound and Naneum and Kittitas refer to the same station in the Ellensburg area. 100 figs., 20 tabs.

  3. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  4. Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse

    PubMed Central

    Yao, Cong; Vanderpool, Kimberly G.; Delfiner, Matthew; Eddy, Vanessa; Lucaci, Alexander G.; Soto-Riveros, Carolina; Yasumura, Thomas; Rash, John E.

    2014-01-01

    In contrast to the knowledge of chemical synapses, little is known regarding the properties of gap junction-mediated electrical synapses in developing zebrafish, which provide a valuable model to study neural function at the systems level. Identifiable “mixed” (electrical and chemical) auditory synaptic contacts known as “club endings” on Mauthner cells (2 large reticulospinal neurons involved in tail-flip escape responses) allow exploration of electrical transmission in fish. Here, we show that paralleling the development of auditory responses, electrical synapses at these contacts become anatomically identifiable at day 3 postfertilization, reaching a number of ∼6 between days 4 and 9. Furthermore, each terminal contains ∼18 gap junctions, representing between 2,000 and 3,000 connexon channels formed by the teleost homologs of mammalian connexin 36. Electrophysiological recordings revealed that gap junctions at each of these contacts are functional and that synaptic transmission has properties that are comparable with those of adult fish. Thus a surprisingly small number of mixed synapses are responsible for the acquisition of auditory responses by the Mauthner cells, and these are likely sufficient to support escape behaviors at early developmental stages. PMID:25080573

  5. Population as a proxy for infrastructure in the determination of event response and recovery resource allocations

    DOE PAGES

    Stamber, Kevin L.; Unis, Carl J.; Shirah, Donald N.; ...

    2016-04-01

    Research into modeling of the quantification and prioritization of resources used in the recovery of lifeline critical infrastructure following disruptive incidents, such as hurricanes and earthquakes, has shown several factors to be important. Among these are population density and infrastructure density, event effects on infrastructure, and existence of an emergency response plan. The social sciences literature has a long history of correlating the population density and infrastructure density at a national scale, at a country-to-country level, mainly focused on transportation networks. This effort examines whether these correlations can be repeated at smaller geographic scales, for a variety of infrastructure types,more » so as to be able to use population data as a proxy for infrastructure data where infrastructure data is either incomplete or insufficiently granular. Using the best data available, this effort shows that strong correlations between infrastructure density for multiple types of infrastructure (e.g. miles of roads, hospital beds, miles of electric power transmission lines, and number of petroleum terminals) and population density do exist at known geographic boundaries (e.g. counties, service area boundaries) with exceptions that are explainable within the social sciences literature. Furthermore, the correlations identified provide a useful basis for ongoing research into the larger resource utilization problem.« less

  6. Population as a proxy for infrastructure in the determination of event response and recovery resource allocations

    SciTech Connect

    Stamber, Kevin L.; Unis, Carl J.; Shirah, Donald N.; Gibson, Jessica A.; Fogleman, William E.; Kaplan, Paul

    2016-04-01

    Research into modeling of the quantification and prioritization of resources used in the recovery of lifeline critical infrastructure following disruptive incidents, such as hurricanes and earthquakes, has shown several factors to be important. Among these are population density and infrastructure density, event effects on infrastructure, and existence of an emergency response plan. The social sciences literature has a long history of correlating the population density and infrastructure density at a national scale, at a country-to-country level, mainly focused on transportation networks. This effort examines whether these correlations can be repeated at smaller geographic scales, for a variety of infrastructure types, so as to be able to use population data as a proxy for infrastructure data where infrastructure data is either incomplete or insufficiently granular. Using the best data available, this effort shows that strong correlations between infrastructure density for multiple types of infrastructure (e.g. miles of roads, hospital beds, miles of electric power transmission lines, and number of petroleum terminals) and population density do exist at known geographic boundaries (e.g. counties, service area boundaries) with exceptions that are explainable within the social sciences literature. Furthermore, the correlations identified provide a useful basis for ongoing research into the larger resource utilization problem.

  7. Wireless acoustic-electric feed-through for power and signal transmission

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor); Doty, Benjamin (Inventor); Badescu, Mircea (Inventor); Chang, Zensheu (Inventor)

    2011-01-01

    An embodiment provides electrical energy from a source on one side of a medium to a load on the other side of the medium, the embodiment including a first piezoelectric to generate acoustic energy in response to electrical energy from the source, and a second piezoelectric to convert the received acoustic energy to electrical energy used by the load. Other embodiments are described and claimed.

  8. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    SciTech Connect

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  9. Determing the Time Dependence of Electrical Gradients in Railguns using the Transmission Line

    DTIC Science & Technology

    2008-09-01

    Phys., 40, 274-283. Feynman , R., Leighton, R., and Sands, M. 1964: The Feynman Lectures in Physics vol II, 3rd ed. Addison Wesley, 238 pp...2) This is similar to the familiar transmission line equation ( Feynman , et al, 1964) relating the gradient of the voltage along a transmission...strong function of time (skin effect) while LX is relatively insensitive to time. We attribute this to fundamental differences in the physics of the

  10. Biological effects from electric fields associated with high voltage transmission lines

    SciTech Connect

    Not Available

    1983-11-01

    Efforts during the past year by the US Department of Energy and the Electric Power Research Institute-funded laboratories to investigate the biological effects from electric fields are described in resume form. Investigations generally have been summarized with objectives, accomplishments of the past year, and some indication of projected studies.

  11. Climate Change and Future U.S. Electricity Infrastructure: the Nexus between Water Availability, Land Suitability, and Low-Carbon Technologies

    NASA Astrophysics Data System (ADS)

    Rice, J.; Halter, T.; Hejazi, M. I.; Jensen, E.; Liu, L.; Olson, J.; Patel, P.; Vernon, C. R.; Voisin, N.; Zuljevic, N.

    2014-12-01

    Integrated assessment models project the future electricity generation mix under different policy, technology, and socioeconomic scenarios, but they do not directly address site-specific factors such as interconnection costs, population density, land use restrictions, air quality, NIMBY concerns, or water availability that might affect the feasibility of achieving the technology mix. Moreover, since these factors can change over time due to climate, policy, socioeconomics, and so on, it is important to examine the dynamic feasibility of integrated assessment scenarios "on the ground." This paper explores insights from coupling an integrated assessment model (GCAM-USA) with a geospatial power plant siting model (the Capacity Expansion Regional Feasibility model, CERF) within a larger multi-model framework that includes regional climate, hydrologic, and water management modeling. GCAM-USA is a dynamic-recursive market equilibrium model simulating the impact of carbon policies on global and national markets for energy commodities and other goods; one of its outputs is the electricity generation mix and expansion at the state-level. It also simulates water demands from all sectors that are downscaled as input to the water management modeling. CERF simulates siting decisions by dynamically representing suitable areas for different generation technologies with geospatial analyses (informed by technology-specific siting criteria, such as required mean streamflow per the Clean Water Act), and then choosing siting locations to minimize interconnection costs (to electric transmission and gas pipelines). CERF results are compared across three scenarios simulated by GCAM-USA: 1) a non-mitigation scenario (RCP8.5) in which conventional fossil-fueled technologies prevail, 2) a mitigation scenario (RCP4.5) in which the carbon price causes a shift toward nuclear, carbon capture and sequestration (CCS), and renewables, and 3) a repeat of scenario (2) in which CCS technologies are

  12. 76 FR 75875 - Plan for Conduct of 2012 Electric Transmission Congestion Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... document makes a correction to that notice. FOR FURTHER INFORMATION CONTACT: David Meyer, DOE Office of Electricity Delivery and Energy Reliability, (202) 586-1411, david.meyer@hq.doe.gov . Correction The...

  13. 77 FR 44603 - Briefings on Preliminary Findings of 2012 National Electric Transmission Congestion Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    .... FOR FURTHER INFORMATION CONTACT: David Meyer, DOE Office of Electricity Delivery and Energy Reliability, david.meyer@hq.doe.gov , or call 202- 586-1411. SUPPLEMENTARY INFORMATION: The Energy Policy...

  14. DWDM VSB modulation-format optical transmission: Effects of optical filtering and electrical equalization

    NASA Astrophysics Data System (ADS)

    Binh, Le Nguyen

    2008-10-01

    The transmission of 40 Gb/s wavelength multiplexed channels under vestigial single side band modulation format is transmitted over long haul optically amplified fiber systems. Bit-error-rate (BER) of 10 -12 or better can be achieved across all channels. Optical filters are designed with asymmetric roll-off bands. Simulations of the transmission performance, BER versus receiver sensitivity are demonstrated with wavelength channel spacing of 20-40 GHz. An optical filter, whose passband is 28 GHz and 20 dB cut-off band, performs best for 40 Gb/s bit rate due to optimum filtering and minimum noise contribution. Furthermore the single-sideband property of VSB format can assist linear equalization by electronic processing. The transmission performance is accurately evaluated based on the eye opening using a fast statistical method based on an equivalent Gaussian probability density distribution (pdf) which is derived from multiple peaks pdf of distorted eye diagram.

  15. Political efficacy and familiarity as predictors of attitudes towards electric transmission lines in the United States

    DOE PAGES

    Joe, Jeffrey C.; Hendrickson, Kelsie; Wong, Maria; ...

    2016-05-18

    Public opposition to the construction (i.e., siting) of new high voltage overhead transmission lines is not a new or isolated phenomenon. Past research has posited a variety of reasons, applied general theories, and has provided empirical evidence to explain public opposition. The existing literature, while clarifying many elements of the issue, does not yet fully explain the complexities underlying this public opposition phenomenon. As a result, the current study demonstrated how two overlooked factors, people’s sense of political efficacy and their familiarity (i.e., prior exposure) with transmission lines, explained attitudes of support and opposition to siting new power lines.

  16. Enhanced INL Power Grid Test Bed Infrastructure – Phase I

    SciTech Connect

    Reid, Carol Ann; West, Grayson Shawn; McBride, Scott Alan

    2014-06-01

    Idaho National Laboratory (INL), a Department of Energy (DOE) laboratory, owns, operates, and maintains transmission and distribution power grid infrastructure to support the INL multi program mission. Sections of this power infrastructure, known as the INL Power Grid Test Bed, have been and are being used by government and industry to develop, demonstrate, and validate technologies for the modern grid, including smart grid, on a full scale utility test bed. INL’s power grid includes 61 miles of 140 MW, 138 kV rated electrical power transmission supplying seven main substations, each feeding a separate facility complex (or ‘city’) within the INL’s 890 square mile Site. This power grid is fed by three commercial utilities into the INL’s main control substation, but is operated independently from the commercial utility through its primary substation and command and control center. Within the INL complex, one of the seven complexes, the Critical Infrastructure Test Range Complex (CITRC), has been designated as the INL complex for supporting critical infrastructure research and testing. This complex includes its own substation and 13.8kV distribution network, all configurable and controlled by the INL research and development programs. Through investment partnership with the DOE Office of Electricity Delivery and Energy Reliability (DOE OE), INL is enhancing its existing distribution infrastructure to expand the types of testing that can be conducted and increase flexibility for testing configurations. The enhancement of the INL Power Grid Test Bed will enable development and full scale testing of smart-grid-related technologies and smart devices including testing interoperability, operational performance, reliability, and resiliency contribution at multiple distribution voltage classes, specifically 15kV, 25kV, and 35kV. The expected time frame for completion of the Phase I portion of the enhancement would be 4th quarter fiscal year (FY) 2015.

  17. Economic inefficiency of passive transmission rights in congested electricity systems with competitive generation

    SciTech Connect

    Oren, S.S.

    1997-02-01

    In their paper, Harvey, Hogan and Pope (1996) argue that trading, reconfiguration and opportunity cost compensation of TCRs can be accomplished within a pool-based system by turning these TCRs over to the ISO in return for TCCs. The optimal dispatch by the ISO can be viewed as an optimal reconfiguration which maximizes the value of the TCRs and the opportunity costs (or value) resulting from such reconfiguration accrues to the TCC holders. The argument that transmission trading is implicit in economic dispatch fails, however, to recognize the strategic implication of replacing active trading in transmission capacity with passive ownership compensated ex-post based on the energy trading outcomes. The analysis supporting the above argument and its conclusion hinge on the premises that the energy market does not react to the way in which transmission property rights are being exercised, and that in the absence of locational market power in generation bid prices will be driven to marginal costs. These premises are based on economic theory that has not dealt explicitly with the implication of congested distribution channels and has not been substantiated by any empirical evidence. On the contrary, limited experimental results suggest that in the absence of active market participation by transmission rights owners, bid prices for generation may deviate from marginal costs which will defeat the TCC-based approach. 21 refs., 5 figs.

  18. 75 FR 43519 - Parker-Davis Project; Transmission Capacity for Renewable Energy Between Electrical District No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Area Power Administration Parker-Davis Project; Transmission Capacity for Renewable Energy Between... purpose of transmitting renewable energy. Specifically, Western is soliciting interest from entities looking to transfer renewable energy from the area south of Phoenix, Arizona to the Palo Verde market...

  19. Optical wireless transmission at 1.6-Tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures

    NASA Astrophysics Data System (ADS)

    Parca, Giorgia; Shahpari, Ali; Carrozzo, Valeria; Tosi Beleffi, Giorgio Maria; Teixeira, Antonio L. J.

    2013-11-01

    We present a high-data rate optical wireless system. The implemented system exploits polarization (PM) and wavelength multiplexing, achieving the transmission of a total capacity of 1.6 Tbit/s over hybrid fiber free-space optics (FSO) system with no optical-electronic-optical conversion at the interfaces with air. Quadrature phase shift keying modulation in each channel and coherent detection were used. The system allows enough power budget to support the record transmission of 16 channels, operating each at 100 Gbit/s over 40 km of fiber and 80 m of FSO between two buildings. Performance of the fully transparent connection is presented in terms of bit-error rate.

  20. Cyber and physical infrastructure interdependencies.

    SciTech Connect

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  1. A Gastrointestinal Electrical Stimulation System Based on Transcutaneous Power Transmission Technology

    PubMed Central

    Zhu, Bingquan; Wang, Yongbing; Yan, Guozheng; Jiang, Pingping; Liu, Zhiqiang

    2014-01-01

    Electrical stimulation has been suggested as a possible treatment for various functional gastrointestinal disorders (FGID). This paper presents a transcutaneous power supplied implantable electrical stimulation system. This technology solves the problem of supplying extended power to an implanted electrical stimulator. After implantation, the stimulation parameters can be reprogrammed by the external controller and then transmitted to the implanted stimulator. This would enable parametric studies to investigate the efficacy of various stimulation parameters in promoting gastrointestinal contractions. A pressure detector in the internal stimulator can provide real-time feedback about variations in the gastrointestinal tract. An optimal stimulation protocol leading to cecal contractions has been proposed: stimulation bursts of 3 ms pulse width, 10 V amplitude, 40 Hz frequency, and 20 s duration. The animal experiment demonstrated the functionality of the system and validated the effects of different stimulation parameters on cecal contractions. PMID:25053939

  2. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission

    PubMed Central

    Baltz, Thomas; Voigt, Thomas

    2015-01-01

    The modulation of neuronal activity by means of electrical stimulation is a successful therapeutic approach for patients suffering from a variety of central nervous system disorders. Prototypic networks formed by cultured cortical neurons represent an important model system to gain general insights in the input–output relationships of neuronal tissue. These networks undergo a multitude of developmental changes during their maturation, such as the excitatory–inhibitory shift of the neurotransmitter GABA. Very few studies have addressed how the output properties to a given stimulus change with ongoing development. Here, we investigate input–output relationships of cultured cortical networks by probing cultures with and without functional GABAAergic synaptic transmission with a set of stimulation paradigms at various stages of maturation. On the cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher rates were increasingly ineffective. Similarly, on the network level, lowest stimulation rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual recovery of the network excitability within tens of milliseconds was in contrast to an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic transmission. In these GABA deficient cultures evoked responses were prolonged and had multiple discharges. Furthermore, the network excitability changed periodically, with a very slow spontaneous change of the overall network activity in the minute range, which was not observed in cultures with absent GABAAergic synaptic transmission. The electrically evoked activity of cultured cortical networks, therefore, is governed by at least two potentially interacting mechanisms: A refractory period in the order of a few seconds and a very slow GABA dependent oscillation of the network excitability. PMID:26236196

  3. The effect of non-linear capacitances in the localization properties of aperiodic dual electric transmission lines

    NASA Astrophysics Data System (ADS)

    Lazo, Edmundo; Garrido, Alejandro; Neira, Félix

    2016-11-01

    This study investigates the localization properties of dual electric transmission lines with non-linear capacitances. The VC,n voltage across each capacitor is selected as a non-linear function of the electric charge qn, i.e., VC,n = qn(1/Cn -ɛn|qn|2) where Cn is the linear part of the capacitance and ɛn the amplitude of the non-linear term. We follow a binary distribution of values of ɛn, according to the Thue-Morse m-tupling sequence. The localization behavior of this non-linear case indicates that the case m = 2 does not belong to the m ≥ 3, family because when m changes from m = 2 to m = 3, the number of extended states diminishes dramatically. This proves the topological difference of the m = 2 and m = 3 families. However, by increasing m values, localization behavior of the m-tupling family resembles that of the m = 2, case because the system begins to regain its extended states. The exact same result was obtained recently in the study of linear direct transmission lines with m-tupling distribution of inductances. Consequently, we state that the localization behavior of the m-tupling family as a function of the m value is independent of both the linear and the non-linear system under study, but independent of the kind of transmission line (dual or direct). This is curious behavior of the m-tupling family and thus deserves more scholarly attention.

  4. 76 FR 77432 - Coordination of Federal Authorizations for Electric Transmission Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR... AGENCY: Office of Electricity Delivery and Energy Reliability, Department of Energy. ACTION: Notice of proposed rulemaking. SUMMARY: The Department of Energy (DOE) proposes to amend its regulations for...

  5. Transmission at a 'direct' electrical connexion mediated by an interneurone in the leech.

    PubMed Central

    Muller, K J; Scott, S A

    1981-01-01

    1. Touch sensory neurones in the leech excite a rapidly conducting interneurone called the S-cell. Although the electrical synaptic connexion between the two cells is monosynaptic by physiological criteria, intracellular staining reveals that the touch cells and the S-cell do not make contact, but instead are linked by a pair of small interneurones. 2. The electrical coupling between touch cells and S-cells rectifies, in that depolarizing current but not hyperpolarizing current passes from the touch cell into the S-cell. The rectifying junction is between the touch cells and coupling interneurones, while the connexion between coupling interneurones and the S-cell passes current in both directions. 3. Selective destruction of the coupling interneurones by intracellular injection of a protease interrupts the disynaptic electrical connexion between touch and S-cells. 4. The touch cell's geometry and membrane properties account for the failure of impulses that are generated in certain portions of the receptive field in the skin to propagate beyond the first branch-points of the touch cell axon within the ganglion. Conduction block at branch-points is used to examine physiologically the spatial distribution of contacts between the touch cell and the coupling interneurones. In addition, it is shown that under natural conditions branch-point failure presynaptically reduces the effectiveness of the electrical synaptic connexions. Images Plate 1 Plate 2 Plate 3 Plate 4 PMID:6267257

  6. DEFENSE CRITICAL INFRASTRUCTURE: Actions Needed to Improve the Identificaiton and Management of Electrical Power Risks and Vulnerabilities to DOD Critical Assets

    DTIC Science & Technology

    2009-10-01

    geothermal energy DOD-generated electricity supply based on wind energy DOD-generated electricity supply based on biomass energy DOD-generated...supply based on geothermal energy f. DOD-generated electricity supply based on wind energy g. DOD-generated electricity supply based on biomass ... energy h. DOD-generated electricity supply based on nuclear energy 9. How long, collectively, can back-up electrical power sources identified in

  7. Evaluating the potential impact of transmission constraints on the operation of a competitive electricity market in Illinois.

    SciTech Connect

    Cirillo, R.; Thimmapuram, P.; Veselka, T.; Koritarov, V.; Conzelmann, G.; Macal, C.; Boyd, G.; North, M.; Overbye, T.; Cheng, X.; Decision and Information Sciences; Univ. of Illinois

    2006-04-30

    Despite the current adequacy of the generation and transmission system in Illinois, there is concern that the uncertainties of electricity restructuring warrant a more detailed analysis to determine if there might be pitfalls that have not been identified under current conditions. The problems experienced elsewhere in the country emphasize the need for an evaluation of how Illinois might fare under a restructured electricity market. The Illinois Commerce Commission (ICC) commissioned this study to be undertaken as a joint effort by the University of Illinois at Urbana-Champaign and Argonne National Laboratory to evaluate the Illinois situation in the 2007 period when restructuring is scheduled to be fully implemented in the State. The purpose of this study is to make an initial determination if the transmission system in Illinois and the surrounding region would be able to support a competitive electricity market, would allow for effective competition to keep prices in check, and would allow for new market participants to effectively compete for market share. The study seeks to identify conditions that could reasonably be expected to occur that would enable a company to exercise market power in one or more portions of the State and thereby create undue pressure on the prices charged to customers and/or inhibit new market participants from entering the market. The term 'market power' has many different definitions, and there is no universal agreement on how to measure it. For the purposes of this study, the term is defined as the ability to raise prices and increase profitability by unilateral action. A more complete definition is provided later. With this definition, the central question of this analysis becomes: 'Can a company, acting on its own, raise electricity prices and increase its profits?' It should be noted that the intent of the study is not to predict whether or not such market power would be exercised by any company. Rather, it is designed to determine

  8. Making green infrastructure healthier infrastructure.

    PubMed

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  9. Making green infrastructure healthier infrastructure

    PubMed Central

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion. PMID:26615823

  10. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    SciTech Connect

    Oosthoek, J. L. M.; Kooi, B. J.; Voogt, F. C.; Attenborough, K.; Verheijen, M. A.; Hurkx, G. A. M.; Gravesteijn, D. J.

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  11. Corona ions from overhead transmission voltage powerlines: effect on direct current electric field and ambient particle concentration levels.

    PubMed

    J-Fatokun, Folasade; Jayaratne, Rohan; Morawska, Lidia; Birtwhistle, David; Rachman, Rihandanu; Mengersen, Kerrie

    2010-01-01

    Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at the comprehensive investigation of corona ions, vertical direct current electric field (dc e-field), ambient aerosol particle charge, and particle number concentration levels in the proximity of some high/subtransmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion, and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels, however, remained relatively constant (10(3) particle cm(-3)), irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity, and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.

  12. Note: electrical detection and quantification of Spin Rectification Effect enabled by shorted microstrip transmission line technique.

    PubMed

    Soh, Wee Tee; Peng, Bin; Chai, Guozhi; Ong, C K

    2014-02-01

    We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni80Fe20) thin film strip sputtered onto SiO2 substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected.

  13. Determining the Time Dependence of Electrical Gradients in Railguns Using the Transmission Line Model

    DTIC Science & Technology

    2008-12-01

    The Feynman Lectures in Physics vol II, 3rd ed. Addison Wesley, 238 pp. Kerrisk, J.F., 1981: Current Distribution and Inductance Calculations for...sides of Eq. (1) gives: ∂V(x,t) /∂x = - LX (t)di(t)/dt-2RX(t)i(t) (2) This is similar to the familiar transmission line equation ( Feynman ...relatively insensitive to time. We attribute this to fundamental differences in the physics of the two processes. The IR voltages are a function of the

  14. Note: Electrical detection and quantification of spin rectification effect enabled by shorted microstrip transmission line technique

    SciTech Connect

    Soh, Wee Tee; Ong, C. K.; Peng, Bin; Chai, Guozhi

    2014-02-15

    We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni{sub 80}Fe{sub 20}) thin film strip sputtered onto SiO{sub 2} substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected.

  15. Transmission of rectal electric waves: is it through circular or longitudinal smooth muscle layers or both?

    PubMed

    Shafik, A; El-Sibai, O

    2001-04-01

    The rectum possesses electric activity in the form of pacesetter (PPs) and action potentials (APs). In recent studies we suggested that the waves are not initiated by the extrarectal autonomic innervation but might be triggered by a 'rectosigmoid pacemaker' and are transmitted in the rectal wall through the rectal musculature and not the enteric nerve plexus. To investigate whether the rectal waves are transmitted through the circular or longitudinal muscle layer, the rectum of 18 mongrel dogs was exposed under anesthesia through an abdominal incision. Three electrodes were applied to the rectal wall (longitudinal muscle layer) and another 3 electrodes to the circular muscle; the latter was exposed by splitting apart the fibers of the longitudinal muscle. Rectal electric activity and pressure were recorded from the 6 electrodes before and after performing individual myotomy of the rectal longitudinal (9 dogs), circular (9 dogs), and then the whole muscle layers (18 dogs). The myotomy was performed proximal to and between the electrodes. Pacesetter (PPs) and action potentials (APs) were recorded from the 3 electrodes on the longitudinal muscle but no waves were registered from those on the circular muscle. After longitudinal muscle myotomy was performed between electrodes 1 and 2, PPs and APs were recorded from electrode 1 but not 2 and 3 and when performed proximally to electrode 1, no waves were registered. The rectal pressure increased concomitantly with occurrence of APs. Circular muscle myotomy effected no change in the rectal electric activity recorded from the 3 electrodes applied to the longitudinal muscle. In total muscle myotomy, the electric waves were recorded from the electrodes proximal but not distal to the myotomy. We propose that the motile activity of the rectal longitudinal muscle is initiated by the electric activity which appears to be triggered by the rectosigmoid pacemaker, while that of the circular muscle fibers is believed to be initiated

  16. Sitting duck or wise old owl. [electricity generation and transmission and public relations

    SciTech Connect

    Rappoport, D.M.

    1993-02-15

    Utilities are building few generating stations these days, but modest customer growth means that transmission and distribution facilities must be built or rebuilt in the coming years. This means a customer typically opposing a construction project is likely to be a suburbanite worried about the effect a distribution or transmission line or substation may have on home values as well as the potential health risks posed by that facility. Those worried about the prospect of falling home prices or potential health risks have the motivation and the means to make life difficult for utilities that don't understand how the rules of the game have changed. While the profile of the protestors has changed in recent years, the views of many utility executives have not. Too many still believe the public can be ignored when it comes to siting facilities or structuring rates. Utilities will spend mightily to mollify the public after it becomes angry. But it would be less costly - and more productive - to invest in advance in an ongoing program to help avoid an angry public. If that approach is successful, those in media and government relations will find they have fewer brushfires.

  17. Essays on empirical analysis of multi-unit auctions: Impacts of financial transmission rights on the restructured electricity industry

    NASA Astrophysics Data System (ADS)

    Zang, Hailing

    This dissertation uses recently developed empirical methodologies for the study of multi-unit auctions to test the impacts of Financial Transmission Rights (FTRs) on the competitiveness of restructured electricity markets. FTRs are a special type of financial option that hedge against volatility in the cost of transporting electricity over the grid. Policy makers seek to use the prices of FTRs as market signals to incentivize efficient investment and utilization of transmission capacity. However, prices will not send the correct signals if market participants strategically use FTRs. This dissertation uses data from the Texas electricity market to test whether the prices of FTRs are efficient to achieve such goals. The auctions studied are multi-unit, uniform-price, sealed-bid auctions. The first part of the dissertation studies the auctions on the spot market of the wholesale electricity industry. I derive structural empirical models to test theoretical predictions as to whether bidders fully internalize the effect of FTRs on profits into their bidding decisions. I find that bidders are learning as to how to optimally bid above marginal cost for their inframarginal capacities. The bidders also learn to bid to include FTRs into their profit maximization problem during the course of the first year. But starting from the second year, they deviated from optimal bidding that includes FTRs in the profit maximization problems. Counterfactual analysis show that the primary effect of FTRs on market outcomes is changing the level of prices rather than production efficiency. Finally, I find that in most months, the current allocations of FTRs are statistically equivalent to the optimal allocations. The second part of the dissertation studies the bidding behavior in the FTR auctions. I find that FTRs' strategic impact on the FTR purchasing behavior is significant for large bidders---firms exercising market power in the FTR auctions. Second, trader forecasts future FTR credit

  18. Human perception of electric fields and ion currents associated with high-voltage DC transmission lines.

    PubMed

    Blondin, J P; Nguyen, D H; Sbeghen, J; Goulet, D; Cardinal, C; Maruvada, P S; Plante, M; Bailey, W H

    1996-01-01

    The objective of this study was to assess the ability of humans to detect the presence of DC electric field and ion currents. An exposure chamber simulating conditions present in the vicinity of high-voltage DC (HVDC) lines was designed and built for this purpose. In these experiments, the facility was used to expose observers to DC electric fields up to 50 kV/m and ion current densities up to 120 nA/m2. Forty-eight volunteers (25 women and 23 men) between the ages of 18 and 57 years served as observers. Perception of DC fields was examined by using two psychophysical methods: an adaptive staircase procedure and a rating method derived from signal-detection theory. Subjects completed three different series of observations by using each of these methods; one was conducted without ion currents, and the other two involved various combinations of electric fields and ion currents. Overall, subjects were significantly more likely to detect DC fields as the intensity increased. Observers were able to detect the presence of DC fields alone, but only at high intensities; the average threshold was 45 kV/m. Except in the most sensitive individuals, ion current densities up to 60 nA/m2 did not significantly facilitate the detection of DC fields. However, higher ion current densities were associated with a substantial lowering of sensory thresholds in a large majority of observers. Data analysis also revealed large variations in perceptual thresholds among observers. Normative data indicating DC field and ion current intensities that can be detected by 50% of all observers are provided. In addition, for the most sensitive observers, several other detection proportions were derived from the distribution of individual detection capabilities. These data can form the basis for environmental guidelines relating to the design of HVDC lines.

  19. Anharmonicity, neural-like lattices, and fast signal/electric transmission

    NASA Astrophysics Data System (ADS)

    Velarde, Manuel G.

    2007-02-01

    Anharmonic interactions in lattices may sustain robust oscillatory modes and (nonlinear) waves including solitons. This is illustrated here by using an exponentially repulsive interaction introduced by Toda. To cope with friction and dissipation -always present in real systems- and hence to make robust, e.g., solitons, following Lord Rayleigh, an appropriate input-output energy balance is added to the dynamics. Noise (and hence temperature) is also incorporated by embedding the system in a Gaussian, white noise environment (thermal bath). In the particular case of a lattice ring with six units it is shown how such a Toda-Rayleigh lattice can be used as a Central Pattern Generator of three different oscillatory modes. These three modes are shown to map three walking (metachronal/low speed, caterpillar/medium speed, and tripod/fast speed) gaits in insects (hexapods). An electronic implementation (diodes map easily exponential interactions) of the Toda-Rayleigh lattice ring is also discussed, including leg motor controls for an hexapod robot. Finally, the Toda-Rayleigh mechanical lattice is converted into an electromechanical wire-like, lattice electric conductor. This is done by considering the lattice units as positive ion cores and adding free electrons to the system. The coupling of Toda dynamics with Coulomb interactions yields remarkable current-field/voltage and current-temperature characteristics in the presence of an external electric field. An Ohmic-non Ohmic transition is possible in the lattice conductor. Such feature permits to consider it as a neural-like conveyor of subsonic (Ohmic) and fast supersonic (non-Ohmic) electric or other signals.

  20. The historical significance of work with electric organs for the study of cholinergic transmission.

    PubMed

    Whittaker, V P

    1989-01-01

    The historical significance of work with electric organs for the development of electrobiology and our understanding of the cholinergic synapse at the cell and molecular biological level is traced from its earliest beginning in folk medicine, through the controversy on bioelectricity between Galvani and Volta to the present day, the last decades of which have seen the sequencing of the nicotinic acetylcholine receptor, the isolation and biochemical characterization of the cholinergic vesicle and much else. In the concluding section of the review the continued relevance and usefulness of the electromotor system as a model for future neurobiological research is emphasized.

  1. Improvement of Steering Feel of Electric Power Steering System with Variable Gear Transmission System Using Decoupling Control

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Yokoi, Akitoshi; Iwasaki, Makoto; Ukai, Hiroyuki; Matsui, Nobuyuki; Ito, Norihisa; Uryu, Nobuhiko; Mukai, Yasuhiko

    In this paper a new control method of Electric Power Steering (EPS) system with Variable Gear Transmission System (VGTS) is proposed. The control purpose is to achieve the desired steering gear ratio and the desired power assist with good steering feel. The basic idea of controller design is to apply decoupling control to this system and to separately design controllers for two decoupled systems. The angle control system and the torque control system are designed for the decoupled systems. In the angle control system the PID control is used for the desired gear ratio. In the torque control system the PID control is used for the desired assist torque designed so as to achieve good steering feel. In order to evaluate steering feel the Lissajous curve between the steering torque and steering angle is used. The effectiveness of the proposed controller is verified experimentally.

  2. Independent transmission system operators and their role in maintaining reliability in a restructured electric power industry

    SciTech Connect

    1998-01-01

    This report summarizes the current status of proposals to form Independent System Operators (ISOs) to operate high-voltage transmission systems in the United States and reviews their potential role in maintaining bulk power system reliability. As background information, the likely new industry structure, nature of deregulated markets, and institutional framework for bulk power system reliability are reviewed. The report identifies issues related to the formation of ISOs and their roles in markets and in reliability, and describes potential policy directions for encouraging the formation of effective ISOs and ensuring bulk system reliability. Two appendices are provided, which address: (1) system operation arrangements in other countries, and (2) summaries of regional U.S. ISO proposals.

  3. 3 CFR 9047 - Proclamation 9047 of October 31, 2013. Critical Infrastructure Security and Resilience Month, 2013

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Infrastructure Security and Resilience Month, 2013 9047 Proclamation 9047 Presidential Documents Proclamations Proclamation 9047 of October 31, 2013 Proc. 9047 Critical Infrastructure Security and Resilience Month, 2013By... massive electrical grids that power our Nation. During Critical Infrastructure Security and...

  4. Studies of acoustic-electric feed-throughs for power transmission through structures

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Doty, Benjamin; Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph; Aldrich, Jack; Chang, Zensheu

    2006-01-01

    There are numerous engineering design problems where the use of wires to transfer power and communicate data thru the walls of a structure is prohibitive or significantly difficult that it may require a complex design. Using physical feedthroughs in such systems may make them susceptible to leakage of chemicals or gasses, loss of pressure or vacuum, as well as difficulties in providing adequate thermal or electrical insulation. Moreover, feeding wires thru a wall of a structure reduces the strength of the structure and makes the structure prone to cracking due to fatigue that can result from cyclic loading and stress concentrations. One area that has already been identified to require a wireless alternative to electrical feedthroughs is the container of the Mars Sample Return Mission, which will need wireless sensors to sense a pressure leak and to avoid potential contamination. The idea of using elastic or acoustic waves to transfer power was suggested recently by [Y. Hu, et al., July 2003]. This system allows for the avoidance of cabling or wiring. The technology is applicable to the transfer of power for actuation, sensing and other tasks inside any sealed container or vacuum/pressure vessel. An alternative approach to the modeling presented previously [Sherrit et a., 2005] used network analysis to solve the same problem in a clear and expandable manner. Experimental tests on three different designs of these devices were performed. The three designs used different methods of coupling the piezoelectric element to the wall. In the first test the piezoelectric material was bolted using a backing structure. In the second test the piezoelectric was clamped after the application of grease and finally the piezoelectric element was attached using a conductive epoxy. The mechanical clamp with grease produced the highest measured efficiency of 53% however this design was the least practical from a fabrication viewpoint. The power transfer efficiency of conductive epoxy

  5. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    NASA Astrophysics Data System (ADS)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  6. Water Supply Infrastructure System Surety

    SciTech Connect

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  7. Treatment of biodiversity issues in impact assessment of electricity power transmission lines: A Finnish case review

    SciTech Connect

    Soederman, Tarja . E-mail: tarja.soderman@ymparisto.fi

    2006-05-15

    The Environmental Impact Assessment (EIA) process concerning the route of a 400 kV power transmission line between Loviisa and Hikiae in southern Finland was reviewed in order to assess how biodiversity issues are treated and to provide suggestions on how to improve the effectiveness of treatment of biodiversity issues in impact assessment of linear development projects. The review covered the whole assessment process, including interviews of stakeholders, participation in the interest group meetings and review of all documents from the project. The baseline studies and assessment of direct impacts in the case study were detailed but the documentation, both the assessment programme and the assessment report, only gave a partial picture of the assessment process. All existing information, baseline survey and assessment methods should be addressed in the scoping phase in order to promote interaction between all stakeholders. In contrast to the assessment of the direct effects, which first emphasized impacts on the nationally important and protected flying squirrel but later expanded to deal with the assessment of impacts on ecologically important sites, the indirect and cumulative impacts of the power line were poorly addressed. The public was given the opportunity to become involved in the EIA process. However, they were more concerned with impacts on their properties and less so on biodiversity and species protection issues. This suggests that the public needs to become more informed about locally important features of biodiversity.

  8. Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy.

    PubMed

    Müller-Caspary, Knut; Krause, Florian F; Grieb, Tim; Löffler, Stefan; Schowalter, Marco; Béché, Armand; Galioit, Vincent; Marquardt, Dennis; Zweck, Josef; Schattschneider, Peter; Verbeeck, Johan; Rosenauer, Andreas

    2016-05-12

    This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10×10 available pixels.

  9. Development of a bidirectional transcutaneous optical data transmission system for artificial hearts allowing long-distance data communication with low electric power consumption.

    PubMed

    Okamoto, Eiji; Yamamoto, Yoshiro; Inoue, Yusuke; Makino, Tsutomu; Mitamura, Yoshinori

    2005-01-01

    We have developed a wavelength division bidirectional transcutaneous optical data transmission system using amplitude shift keying (ASK) modulation. The bidirectional optical data transmission system consists of two kinds of light emitting diodes (LEDs) having different wavelengths and an ASK modulator and demodulator. Two narrow directional visible LEDs with a peak output wavelength of 590 nm were used to transmit data from inside the body to outside the body, and a narrow directional near-infrared LED with a peak output wavelength of 940 nm was used for transmission from outside the body to inside the body. The ASK modulator employs a carrier pulse signal (50 kHz) to support a maximum data transmission rate of 9600 bps. An in vitro experiment showed that the maximum tissue thickness of near-infrared optical data transmission without error was 45 mm; the figure was 20 mm for visible optical data transmission. There was no interference between the signals under full-duplex data transmission. Electric power consumption for the data transmission links was 122 mW for near-infrared light and 162 mW (81 mW x 2) for visible light. From the above results, a bidirectional transcutaneous optical data transmission system promises adequate performance for monitoring and control of an artificial heart.

  10. Strategic plan for infrastructure optimization

    SciTech Connect

    Donley, C.D.

    1998-05-27

    This document represents Fluor Daniel Hanford`s and DynCorp`s Tri-Cities Strategic Plan for Fiscal Years 1998--2002, the road map that will guide them into the next century and their sixth year of providing safe and cost effective infrastructure services and support to the Department of Energy (DOE) and the Hanford Site. The Plan responds directly to the issues raised in the FDH/DOE Critical Self Assessment specifically: (1) a strategy in place to give DOE the management (systems) and physical infrastructure for the future; (2) dealing with the barriers that exist to making change; and (3) a plan to right-size the infrastructure and services, and reduce the cost of providing services. The Plan incorporates initiatives from several studies conducted in Fiscal Year 1997 to include: the Systems Functional Analysis, 200 Area Water Commercial Practices Plan, $ million Originated Cost Budget Achievement Plan, the 1OO Area Vacate Plan, the Railroad Shutdown Plan, as well as recommendations from the recently completed Review of Hanford Electrical Utility. These and other initiatives identified over the next five years will result in significant improvements in efficiency, allowing a greater portion of the infrastructure budget to be applied to Site cleanup. The Plan outlines a planning and management process that defines infrastructure services and structure by linking site technical base line data and customer requirements to work scope and resources. The Plan also provides a vision of where Site infrastructure is going and specific initiatives to get there.

  11. Energy Infrastructure and Extreme Events (Invited)

    NASA Astrophysics Data System (ADS)

    Wakimoto, R. M.

    2013-12-01

    The country's energy infrastructure is sensitive to the environment, especially extreme events. Increasing global temperatures, intense storms, and space weather have the potential to disrupt energy production and transport. It can also provide new opportunities as illustrated by the opening of the Northwest Passage. The following provides an overview of some of the high impacts of major geophysical events on energy production and transport. Future predictions of hurricanes suggest that we can expect fewer storms but they will be associated with stronger winds and more precipitation. The winds and storm surge accompanying hurricane landfall along the Gulf States has had a major impact on the coastal energy infrastructure and the oil/natural gas platforms. The impact of these surges will increase with predicted sea level rise. Hurricane Katrina caused damage to crude oil pipelines and refineries that reduced oil production by 19% for the year. The disruption that can occur is not necessarily linked with the maximum winds of the tropical storm as recently shown by Hurricane Sandy which was classified as a ';post-tropical cyclone' during landfall. Another intense circulation, the tornado, can also cause power outages and network breaks from high winds that can topple power poles or damage power lines from fallen trees. Fortunately, the Moore tornado, rated EF5, did not have a major impact on the oil and gas infrastructure in Oklahoma. The impact of earthquakes and tsunamis on energy was illustrated in Japan in 2011 with the shutdown of the Fukushima Daiichi plant. Other studies have suggested that there are areas in the United States where the energy services are highly vulnerable to major earthquakes that would disrupt electrical and gas networks for extended periods of time. Seismic upgrades to the energy infrastructure would help mitigate the impact. In 1859, a coronal mass ejection triggered a geomagnetic storm that disrupted communication wires around the world

  12. Downhole transmission system

    DOEpatents

    Hall, David R.; Fox, Joe

    2008-01-15

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

  13. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    SciTech Connect

    Sathaye, Jayant; Dale, Larry; Larsen, Peter; Fitts, Gary; Koy, Kevin; Lewis, Sarah; Lucena, Andre

    2011-06-22

    This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end of the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.

  14. Electrical stimulation of reward sites in the ventral tegmental area increases dopamine transmission in the nucleus accumbens of the rat.

    PubMed

    Fiorino, D F; Coury, A; Fibiger, H C; Phillips, A G

    1993-06-30

    In vivo microdialysis with HPLC-ED was used to measure dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the nucleus accumbens of the rat, prior, during, and after 15-min periods of electrical brain stimulation at sites in the ventral tegmental area (VTA) that supported intracranial self-stimulation (ICSS). In the first experiment, both ICSS and yoked stimulation of the VTA evoked significant increases in extracellular concentrations of DA, its metabolites, and 5-HIAA. Comparable results from ICSS and yoked groups were interpreted as evidence that the rewarding properties of VTA stimulation were a causal factor in the elevated DA transmission in the nucleus accumbens, rather than intense operant behavior. Further evidence for this hypothesis came from a second set of data in which changes in extracellular DA levels during the measurement of rate/intensity functions for ICSS were positively correlated. 5-HIAA concentrations also increased during ICSS but these changes were not correlated with either ICSS rate or current intensity, suggesting that changes in serotonin metabolism were unlikely to subserve brain stimulation reward in the VTA. These results add to the growing body of evidence linking changes in extracellular DA in the mesolimbic DA system with both brain stimulation reward and the conditioned and unconditioned rewarding effects of biologically relevant stimuli.

  15. Electricity

    SciTech Connect

    Sims, B.

    1983-01-01

    Historical aspects of electricity are reviewed with individual articles on hydroelectric dams, coal-burning power plants, nuclear power plants, electricity distribution, and the energy future. A glossary is included. (PSB)

  16. El Paso Electric Company Diablo Substation to the US-Mexico border 115kV transmission line project. Final Environmental Assessment

    SciTech Connect

    Not Available

    1992-04-01

    This Environmental Assessment documents the analysis of alternative corridors for development and operation of a proposed 115 kilovolt transmission line using private lands and transporting power to the US-Mexico international border. The project will require (1) an amendment to El Paso Electric Company`s existing export authorization to transfer power across this border, and (2) a Presidential Permit for construction of the transmission line. The project would be located in Dona Ana county in southern New Mexico, approximately five miles west of El Paso, Texas. The alternative corridors, specific locations within those corridors, and structure types are identified and analyzed in the environmental studies.

  17. Flexible Transmission in the Smart Grid

    NASA Astrophysics Data System (ADS)

    Hedman, Kory Walter

    There is currently a national push to create a smarter electric grid; introducing new technologies that will create a more controllable and flexible grid is part of the smart grid concept and integral to its success. The full control of transmission assets are not currently built into electric energy dispatch optimization models. Optimal transmission switching is a straightforward way to leverage grid controllability: to make better use of the existing system and meet growing demand with existing infrastructure. Previous research has shown that transmission switching as a corrective mechanism can help relieve line overloading, voltage violations, etc. However, there has been limited focus on the use of transmission switching as a means to improve the economic efficiency of the network by incorporating the control of transmission assets into the overall economic dispatch problem. This research discusses the ways that the modeling of flexible transmission assets can benefit the multi-trillion dollar electric industry. It presents and analyzes novel formulations by which the operator can incorporate this flexibility into the economic dispatch formulation. This research focuses on modeling transmission assets so that they can be temporarily taken out of service, i.e., by opening breakers, or kept in service, i.e., by keeping the breakers closed. By incorporating this control into the network optimization problem, this provides the ability for the operator to consider the state of a transmission line as a decision variable instead of treating it as a static asset, which is the current practice today. The possible benefits demonstrated from this research indicate that the benefits to society are substantial. On the contrary, the benefits to individual market participants are uncertain; some will benefit and other will not. Consequently, this research also analyzes the impacts that optimal transmission switching may have on market participants as well as the policy

  18. A method for assessing occupational exposure to power-frequency magnetic fields for electricity generation and transmission workers.

    PubMed

    Renew, D C; Cook, R F; Ball, M C

    2003-09-01

    A new method for assessing both current and historical occupational exposures to magnetic fields has been developed and used in health studies involving a cohort of electricity generation and transmission workers in England and Wales. The exposure values are derived by calculation from engineering and operational data about the power stations rather than from measurements. They are provided for each of 11 job categories for each year of operation of each power station represented in the cohort. The engineering data are used to determine the average magnetic fields in specified areas of work within the power station and then applied to information about the time spent in these areas by each of the job categories. The operational data are used to adjust the exposures for each year according to the power station output for the year. Earlier methods used measurements or the advice of panels of experts to provide exposure scores for a number of job categories across all power stations and years. Such methods were not able to distinguish exposures from different power facilities or during the different years of their operation. Measurement surveys at 10 power stations of the magnetic fields in the work areas gave confidence that the calculations were realistic. Exposure measurements on 215 workers at three power stations were compared in job groups with the exposures predicted by the method. The Pearson correlation coefficient was 0.86 and the slope and intercept of the line of best fit were 0.87 and 0.07 microT respectively. The method gives a good prediction of measured exposure and is being used for studies of occupational exposure to magnetic fields and leukaemia, and of cardiovascular disease, and a reanalysis of brain cancer.

  19. Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method

    NASA Astrophysics Data System (ADS)

    Saïdou, Abdoulkary; Alidou, Mohamadou; Ousmanou, Dafounansou; Serge Yamigno, Doka

    2014-12-01

    We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete (G'/G)-expansion method, we solve the nonlinear differential—difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.

  20. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr.

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  1. Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353

    SciTech Connect

    Neubauer, J.

    2013-05-01

    Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

  2. Green Infrastructure Modeling Toolkit

    EPA Pesticide Factsheets

    EPA's Green Infrastructure Modeling Toolkit is a toolkit of 5 EPA green infrastructure models and tools, along with communication materials, that can be used as a teaching tool and a quick reference resource when making GI implementation decisions.

  3. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  4. Green Infrastructure Modeling Tools

    EPA Pesticide Factsheets

    Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.

  5. Sustainable Water Infrastructure

    EPA Pesticide Factsheets

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  6. Climate Action Benefits: Infrastructure

    EPA Pesticide Factsheets

    This page provides background on the relationship between infrastructure and climate change and describes what the CIRA Infrastructure analyses cover. It provides links to the subsectors Bridges, Roads, Urban Drainage, and Coastal Property.

  7. Transmission Line Security Monitor

    ScienceCinema

    None

    2016-07-12

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  8. Transmission Line Security Monitor

    SciTech Connect

    2011-01-01

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  9. Competitive Electricity Market Regulation in the United States: A Primer

    SciTech Connect

    Flores-Espino, Francisco; Tian, Tian; Chernyakhovskiy, Ilya; Chernyakhovskiy, Ilya; Miller, Mackay

    2016-12-01

    The electricity system in the United States is a complex mechanism where different technologies, jurisdictions and regulatory designs interact. Today, two major models for electricity commercialization operate in the United States. One is the regulated monopoly model, in which vertically integrated electricity providers are regulated by state commissions. The other is the competitive model, in which power producers can openly access transmission infrastructure and participate in wholesale electricity markets. This paper describes the origins, evolution, and current status of the regulations that enable competitive markets in the United States.

  10. Earth to space dc to dc power transmission system utilizing a microwave beam as source of energy for electric propelled interorbital vehicles

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1985-01-01

    The paper contributes to the credibility of an electric propelled interorbital transportation system by introducing a new low-mass source of continuous dc power for electric propulsion and illustrating how the source can be economically tied to an electric utility on earth by an electronically steered microwave beam. The new thin-film rectenna, which functions as the receiving end of an earth-to-space microwave power transmission system is described. It is easily fabricated, is over 80 percent efficient, has a specific mass of no more than 2 kilograms per kilowatt of continuous dc power output, and is well adapted for deployment in space. The paper then describes a complete system consisting of the interorbital vehicle and the microwave power transmission system that supplies it with power. A design scenario is used to obtain performance data from the system in terms of vehicle transfer times, payload fractions, and costs. Electric energy costs are found to be less than $1000 per kilogram of payload delivered to geosynchronous orbit from low-earth orbit.

  11. Michigan E85 Infrastructure

    SciTech Connect

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced

  12. Parallel digital forensics infrastructure.

    SciTech Connect

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  13. Current conflicts in U.S. Electric transmission planning, cost allocation and renewable energy policies: More heat than light?

    SciTech Connect

    Bloom, David; Forrester, J. Paul; Klugman, Nadav

    2010-12-15

    To surmount obstacles to expanding and upgrading the nation's transmission system that are impeding development of the renewables sector, it is critical that these issues be resolved quickly and on a consistent rather than ad hoc basis. (author)

  14. Continuous in-situ methane measurements at paddy fields in a rural area of India with poor electric infrastructure, using a low-cost instrument based on open-path near-IR laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hidemori, T.; Matsumi, Y.; Nakayama, T.; Kawasaki, M.; Sasago, H.; Takahashi, K.; Imasu, R.; Takeuchi, W.; Adachi, M.; Machida, T.; Terao, Y.; Nomura, S.; Dhaka, S. K.; Singh, J.

    2015-12-01

    In southeast and south Asia, the previous satellite observations suggest that the methane emission from rice paddies is significant and important source of methane during rainy season. Since it is difficult to measure methane stably and continuously at rural areas such as the paddy fields in terms of infrastructures and maintenances, there are large uncertainties in quantitative estimation of methane emission in these areas and there are needs for more certification between satellite and ground based measurements. To measure methane concentrations continuously at difficult situations such as the center of paddy fields and wetlands, we developed the continuous in-situ measurement system, not to look for your lost keys under the streetlight. The methane gas sensor is used an open-path laser based measurement instrument (LaserMethane, ANRITSU CORPORATION), which can quickly and selectively detect average methane concentrations on the optical path of the laser beam. The developed system has the power supply and telecommunication system to run the laser gas sensor in rural areas with poor electricity infrastructure.The methane measurement system was installed at paddy fields of Sonepat, Haryana on the north of Delhi in India and has been operated from the end of 2014. The air sampling along with our measurement has been carried out once a week during daytime to calibrate the laser instrument. We found that the seasonal variation of methane concentrations was different from the satellite observations and there were significant diurnal variations, which it was difficult to detect from occasional air samplings. We will present details of the measurement system and recent results of continuous methane measurements in India.

  15. Use of Electrical Penetration Graph Technology to Examine Transmission of ‘Candidatus Liberibacter solanacearum’ to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae)

    PubMed Central

    Mustafa, Tariq; Horton, David R.; Cooper, W. Rodney; Swisher, Kylie D.; Zack, Richard S.; Pappu, Hanu R.; Munyaneza, Joseph E.

    2015-01-01

    The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium ‘Candidatus Liberibacter solanacearum’ (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern). All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato (“inoculation access period”, or IAP) to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in exploring

  16. Use of Electrical Penetration Graph Technology to Examine Transmission of 'Candidatus Liberibacter solanacearum' to Potato by Three Haplotypes of Potato Psyllid (Bactericera cockerelli; Hemiptera: Triozidae).

    PubMed

    Mustafa, Tariq; Horton, David R; Cooper, W Rodney; Swisher, Kylie D; Zack, Richard S; Pappu, Hanu R; Munyaneza, Joseph E

    2015-01-01

    The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium 'Candidatus Liberibacter solanacearum' (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern). All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato ("inoculation access period", or IAP) to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in exploring questions

  17. Electricity exchange and the valuation of transnational transmission access: A case study of intra-regional integration of the electric industries of Argentina and Chile

    NASA Astrophysics Data System (ADS)

    Brereton, Beverly Ann

    The interconnection of neighboring electricity networks provides opportunities for the realization of synergies between electricity systems. Examples of the synergies to be realized are the rationalized management of the electricity networks whose fuel source domination differs, and the exploitation of non-coincident system peak demands. These factors allow technology diversity in the satisfaction of electricity demand, the coordination of planning and maintenance schedules between the networks by exploiting the cost differences in the pool of generation assets and the load configuration differences in the neighboring locations. The interconnection decision studied in this dissertation focused on the electricity networks of Argentina and Chile whose electricity systems operate in isolation at the current time. The cooperative game-theoretic framework was applied in the analysis of the decision facing the two countries and the net surplus to be derived from interconnection was evaluated. Measurement of the net gains from interconnection used in this study were reflected in changes in generating costs under the assumption that demand is fixed under all scenarios. With the demand for electricity assumed perfectly inelastic, passive or aggressive bidding strategies were considered under the scenarios for the generators in the two countries. The interconnection decision was modeled using a linear power flow model which utilizes linear programming techniques to reflect dispatch procedures based on generation bids. Results of the study indicate that the current interconnection project between Argentina and Chile will not result in positive net surplus under a variety of scenarios. Only under significantly reduced interconnection cost will the venture prove attractive. Possible sharing mechanisms were also explored in the research and a symmetric distribution of the net surplus to be derived under the reduced interconnection cost scenario was recommended to preserve equity

  18. Comment on "Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line" [Phys. Lett. A 373 (2009) 3801-3809

    NASA Astrophysics Data System (ADS)

    Yamgoué, Serge Bruno; Pelap, François Beceau

    2016-05-01

    We revisit the derivation of the equation modeling envelope waves in a discrete nonlinear electrical transmission line (NLTL) considered a few years back in Physics Letters A 373 (2009) 3801-3809. Using a combination of rotating wave approximation and the Gardner-Morikawa transformation, we show that the modulated waves are described by a new type of extended nonlinear Schrödinger equation. In addition the expressions of several coefficients of this equation are found to be strongly different from those given earlier. As a consequence, key relationships between these coefficients that sustained the previous analysis are broken.

  19. Study on reduction in electric field, charged voltage, ion current and ion density under HVDC transmission lines by parallel shield wires

    SciTech Connect

    Amano, Y.; Sunaga, Y.

    1989-04-01

    An important problem in the design and operation of HVDC transmission lines is to reduce electrical field effects such as ion flow electrification of objects, electric field, ion current and ion density at ground level in the vicinity of HVDC lines. Several models of shield wire were tested with the Shiobara HVDC test line. The models contain typical stranded wires that are generally used to reduce field effects at ground level, neutral conductors placed at lower parts of the DC line, and an ''earth corona model'' to cancel positive or negative ions intentionally by generating ions having opposite polarity to ions flowing into the wire. This report describes the experimental results of the effects of these shield wires and a method to predict shielding effects.

  20. Automated manual transmission controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.

    1999-12-28

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  1. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Hashimoto, Kumiko K.

    2016-12-01

    The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night

  2. 78 FR 59666 - Transmission Infrastructure Program; Proposed Transmission Infrastructure Program Updates and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... borrowing authority. The Project Development Phase may include activities associated with facilities studies... a loan can be issued using Western's borrowing authority. With this in mind, Western's involvement... activities often include facilities studies and designs; establishment of a WECC path rating;...

  3. Infrastructure Survey 2011

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2012

    2012-01-01

    In 2011, the Group of Eight (Go8) conducted a survey on the state of its buildings and infrastructure. The survey is the third Go8 Infrastructure survey, with previous surveys being conducted in 2007 and 2009. The current survey updated some of the information collected in the previous surveys. It also collated data related to aspects of the…

  4. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes"…

  5. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  6. Assessment of foetal exposure to the homogeneous magnetic field harmonic spectrum generated by electricity transmission and distribution networks.

    PubMed

    Fiocchi, Serena; Liorni, Ilaria; Parazzini, Marta; Ravazzani, Paolo

    2015-04-01

    During the last decades studies addressing the effects of exposure to Extremely Low Frequency Electromagnetic Fields (ELF-EMF) have pointed out a possible link between those fields emitted by power lines and childhood leukaemia. They have also stressed the importance of also including in the assessment the contribution of frequency components, namely harmonics, other than the fundamental one. Based on the spectrum of supply voltage networks allowed by the European standard for electricity quality assessment, in this study the exposure of high-resolution three-dimensional models of foetuses to the whole harmonic content of a uniform magnetic field with a fundamental frequency of 50 Hz, was assessed. The results show that the main contribution in terms of induced electric fields to the foetal exposure is given by the fundamental frequency component. The harmonic components add some contributions to the overall level of electric fields, however, due to the extremely low permitted amplitude of the harmonic components with respect to the fundamental, their amplitudes are low. The level of the induced electric field is also much lower than the limits suggested by the guidelines for general public exposure, when the amplitude of the incident magnetic field is set at the maximum permitted level.

  7. [Attributes of forest infrastructure].

    PubMed

    Gao, Jun-kai; Jin, Ying-shan

    2007-06-01

    This paper discussed the origin and evolution of the conception of ecological infrastructure, the understanding of international communities about the functions of forest, the important roles of forest in China' s economic development and ecological security, and the situations and challenges to the ongoing forestry ecological restoration programs. It was suggested that forest should be defined as an essential infrastructure for national economic and social development in a modern society. The critical functions of forest infrastructure played in the transition of forestry ecological development were emphasized. Based on the synthesis of forest ecosystem features, it was considered that the attributes of forest infrastructure are distinctive, due to the fact that it is constructed by living biological material and diversified in ownership. The forestry ecological restoration program should not only follow the basic principles of infrastructural construction, but also take the special characteristics of forests into consideration in studying the managerial system of the programs. Some suggestions for the ongoing programs were put forward: 1) developing a modern concept of ecosystem where man and nature in harmony is the core, 2) formulating long-term stable investments for forestry ecological restoration programs, 3) implementing forestry ecological restoration programs based on infrastructure construction principles, and 4) managing forests according to the principles of infrastructural construction management.

  8. Critical infrastructure: impacts of natural hazards and consequences

    NASA Astrophysics Data System (ADS)

    Petrova, Elena

    2014-05-01

    Critical infrastructure such as oil and gas pipelines, transmission facilities, heat-, and water supply, lines of communications, roads, railways as well as air and water transport play the key role in social and economic development of every country. Therefore, accidents causing failures and breakdowns of critical infrastructure facilities have the most drastic consequences for the society, economy, and environment. For example, road accidents cause the highest number of fatalities and injuries all over the world, especially in the middle-income countries. The so-called "blackouts" or accidental losses of electric power and power outages entail serious social troubles and heavy economic losses. The pipeline ruptures and oil-tanker crashes accompanied by oil releases cause the most severe environmental and large material damages. Critical infrastructure facilities are most vulnerable to the impacts of natural hazards that trigger many accidents in them especially in the regions most at natural risk. The Russian Federation has more than 2.6 million km of transmission facilities, 940,000 km of roads, 102,000 km of inland waterways, 86,000 km of railways, and more than 70,000 km of trunk pipelines. Many facilities are beyond of their service life and need reconstruction. A very high level of deterioration and "human factor" are the main cause of accidents, ruptures, and crashes. However, natural hazards and disasters also play an essential (sometimes a leading) role in triggering or magnifying accidents in these objects. Thus, natural factors cause more than 70 percent of all "blackouts", about 20 percent of accidents at heat- and water supply systems and water accidents, five percent of pipeline ruptures, and about two to three percent of air crashes, road, and railway accidents. The influence of natural factors is stronger in the North-Western and Central parts of the European Russia, in Krasnodarsky Territory (South of Russia) and in Far East that are more exposed

  9. [Biobanks European infrastructure].

    PubMed

    Kinkorová, Judita; Topolčan, Ondřej

    2016-01-01

    Biobanks are structured repositories of human tissue samples connected with specific information. They became an integral part of personalized medicine in the new millennium. At the European research area biobanks are isolated not well coordinated and connected to the network. European commission supports European infrastructure BBMRI-ERIC (Biobanks and Biomolecular Resources Research Infrastructure European Research Infrastructure Consortium), consortium of 54 members with more than 225 associated organizations, largely biobanks from over 30 countries. The aim is to support biomedical research using stored samples. Czech Republic is a member of the consortium as a national node BBMRI_CZ, consisting of five partners.

  10. MOEMS industrial infrastructure

    NASA Astrophysics Data System (ADS)

    van Heeren, Henne; Paschalidou, Lia

    2004-08-01

    numbers they want (several millions per year). The crossover point where building a dedicated facility becomes a realistic option, can differ very much depending on technology complexity, numbers and market value. Also history plays a role, companies with past experience in the production of a product and the necessary facilities and equipment will tend to achieve captive production. Companies not having a microtechnology history will tend to outsource, offering business opportunities for foundries. The number of foundries shows a steady growth over the years. The total availability of foundries, however, and their flexibility will, undoubtedly, rely on market potential and its size. Unlike design houses, foundries need to realise a substantial return on the "large" investments they make in terms of capital and infrastructure. These returns will be maximised through mass-produced products aimed at "killer" applications (accelerometers are only one example). The existence of professional suppliers of MOEMS packaging and assembly is an essential element in the supply chain and critical for the manufacturing and commercialisation of MOEMS products. In addition, the incorporation of packaging and assembly techniques at the front-end of the engineering cycle will pay back in terms of financial savings and shorter timescales to market. Packaging and assembly for MOEMS are, in general, more costly than their equivalents for standard integrated circuits. This is, primarily, due to the diversity of the interconnections (which are multi-functional and may incorporate: electrical, optical, fluidic etc). In addition, the high levels of accuracy and the potential sensitivity of the devices to mechanical and external influences play a major role in the cost aspects of the final MNT product. This article will give an overview of the package/assembly providers and foundry business models and analyse their contribution to the MOEMS supply chain illustrated with some typical examples. As

  11. IPHE Infrastructure Workshop Proceedings

    SciTech Connect

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  12. Critical Infrastructure Modeling System

    SciTech Connect

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method of Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.

  13. Green Infrastructure Modeling Toolkit

    EPA Science Inventory

    Green infrastructure, such as rain gardens, green roofs, porous pavement, cisterns, and constructed wetlands, is becoming an increasingly attractive way to recharge aquifers and reduce the amount of stormwater runoff that flows into wastewater treatment plants or into waterbodies...

  14. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect

    Jeong, Hyunju; Pandit, Arka; Crittenden, John; Xu, Ming; Perrings, Charles; Wang, Dali; Li, Ke; French, Steve

    2010-10-01

    and secondly, it also reduces the wastewater load to central facility. In addition, lesser dependency on the distribution network contributes to increased reliability and resiliency of the infrastructure. The goal of this research is to develop a framework which seeks an optimal combination of decentralized water and energy alternatives and centralized infrastructures based on physical and socio-economic environments of a region. Centralized and decentralized options related to water, wastewater and stormwater and distributed energy alternatives including photovoltaic (PV) generators, fuel cells and microturbines are investigated. In the context of the water-energy nexus, water recovery from energy alternatives and energy recovery from water alternatives are reflected. Alternatives recapturing nutrients from wastewater are also considered to conserve depleting resources. The alternatives are evaluated in terms of their life-cycle environmental impact and economic performance using a hybrid life cycle assessment (LCA) tool and cost benefit analysis, respectively. Meeting the increasing demand of a test bed, an optimal combination of the alternatives is designed to minimize environmental and economic impacts including CO2 emissions, human health risk, natural resource use, and construction and operation cost. The framework determines the optimal combination depending on urban density, transmission or conveyance distance or network, geology, climate, etc. Therefore, it will be also able to evaluate infrastructure resiliency against physical and socio-economic challenges such as population growth, severe weather, energy and water shortage, economic crisis, and so on.

  15. Clarkesville Green Infrastructure Implementation Strategy

    EPA Pesticide Factsheets

    The report outlines the 2012 technical assistance for Clarkesville, GA to develop a Green Infrastructure Implementation Strategy, which provides the basic building blocks for a green infrastructure plan:

  16. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.

    PubMed

    Ozeri, Shaul; Shmilovitz, Doron

    2014-09-01

    The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant.

  17. Critical Electric Infrastructure Protection Act of 2009

    THOMAS, 111th Congress

    Sen. Lieberman, Joseph I. [ID-CT

    2009-04-30

    04/30/2009 Read twice and referred to the Committee on Homeland Security and Governmental Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. MFC Communications Infrastructure Study

    SciTech Connect

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  19. No Dark Corners: Defending Against Insider Threats to Critical Infrastructure

    DTIC Science & Technology

    2009-09-01

    to public view, such as transmission lines and aqueducts , which may be visible or accessible by members of the public. Why has this not happened...infrastructure may be impossible to secure in some cases, as in transmission lines, aqueducts , and fiber-optic cables stretching across broad expanses of

  20. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    SciTech Connect

    Zhang, C.; Golberg, D. E-mail: golberg.dmitri@nims.go.jp; Xu, Z. E-mail: golberg.dmitri@nims.go.jp; Kvashnin, D. G.; Tang, D.-M.; Xue, Y. M.; Bando, Y.; Sorokin, P. B.

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  1. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Xu, Z.; Kvashnin, D. G.; Tang, D.-M.; Xue, Y. M.; Bando, Y.; Sorokin, P. B.; Golberg, D.

    2015-08-01

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  2. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    SciTech Connect

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  3. Nanoscale analysis of unstained biological specimens in water without radiation damage using high-resolution frequency transmission electric-field system based on FE-SEM

    SciTech Connect

    Ogura, Toshihiko

    2015-04-10

    Scanning electron microscopy (SEM) has been widely used to examine biological specimens of bacteria, viruses and proteins. Until now, atmospheric and/or wet biological specimens have been examined using various atmospheric holders or special equipment involving SEM. Unfortunately, they undergo heavy radiation damage by the direct electron beam. In addition, images of unstained biological samples in water yield poor contrast. We recently developed a new analytical technology involving a frequency transmission electric-field (FTE) method based on thermionic SEM. This method is suitable for high-contrast imaging of unstained biological specimens. Our aim was to optimise the method. Here we describe a high-resolution FTE system based on field-emission SEM; it allows for imaging and nanoscale examination of various biological specimens in water without radiation damage. The spatial resolution is 8 nm, which is higher than 41 nm of the existing FTE system. Our new method can be easily utilised for examination of unstained biological specimens including bacteria, viruses and protein complexes. Furthermore, our high-resolution FTE system can be used for diverse liquid samples across a broad range of scientific fields, e.g. nanoparticles, nanotubes and organic and catalytic materials. - Highlights: • We developed a high-resolution frequency transmission electric-field (FTE) system. • High-resolution FTE system is introduced in the field-emission SEM. • The spatial resolution of high-resolution FTE method is 8 nm. • High-resolution FTE system enables observation of the intact IgM particles in water.

  4. Non-destructive observation of intact bacteria and viruses in water by the highly sensitive frequency transmission electric-field method based on SEM

    SciTech Connect

    Ogura, Toshihiko

    2014-08-08

    Highlights: • We developed a high-sensitive frequency transmission electric-field (FTE) system. • The output signal was highly enhanced by applying voltage to a metal layer on SiN. • The spatial resolution of new FTE method is 41 nm. • New FTE system enables observation of the intact bacteria and virus in water. - Abstract: The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently, we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41 nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.

  5. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

    NASA Astrophysics Data System (ADS)

    Doughty, Christine; Tsang, Chin-Fu; Rosberg, Jan-Erik; Juhlin, Christopher; Dobson, Patrick F.; Birkholzer, Jens T.

    2016-11-01

    Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

  6. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

    NASA Astrophysics Data System (ADS)

    Doughty, Christine; Tsang, Chin-Fu; Rosberg, Jan-Erik; Juhlin, Christopher; Dobson, Patrick F.; Birkholzer, Jens T.

    2017-03-01

    Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

  7. Effects of testosterone on the electrical properties and nicotinic transmission of the major pelvic and coeliac ganglion neurones.

    PubMed

    Félix, B; Catalin, D; Miolan, J P; Niel, J P

    2001-02-01

    The effects of testosterone on the electrical properties and nicotinic activation of prevertebral ganglion neurones were investigated in vitro on the male rat major pelvic ganglion and rabbit coeliac ganglion. The electrical activity of the neurones was recorded using intracellular recording techniques. Nicotinic activation was triggered for neurones of the major pelvic ganglion by stimulating the hypogastric, pelvic and cavernous nerves and for coeliac neurones by stimulating the splanchnic nerves. Testosterone modified the resting membrane potential of neurones in the major pelvic ganglion by triggering a slow depolarization, and was without significant effect on the resting membrane potential of coeliac ganglion neurones. In neurones of the major pelvic and coeliac ganglia, testosterone had no significant effect on the firing pattern, on the characteristics of the action potential (firing threshold, duration, overshoot) and on the after-hyperpolarization (amplitude and duration). Testosterone affected, in opposite ways, the nicotinic activation of neurones of the two prevertebral ganglia. In the major pelvic ganglion, testosterone triggered an increase in the amplitude of excitatory postsynaptic potentials induced by stimulation of the hypogastric, pelvic and cavernous nerves with a single pulse, revealing a facilitation of nicotinic activation. On coeliac ganglion neurones, testosterone elicited a decrease in the amplitude of excitatory postsynaptic potentials induced by stimulation of the splanchnic nerves, indicating an inhibition of nicotinic activation. Our study shows that testosterone acts differently on neurones of prevertebral ganglia involved in the nervous control of different functions, its facilitatory action being exerted on neurones of the major pelvic ganglion which is particularly involved in the control of the urogenital tract. Our study reinforces the concept, derived from neuroanatomical and pharmacological studies, of the major pelvic

  8. Analysis of specific absorption rate and internal electric field in human biological tissues surrounding an air-core coil-type transcutaneous energy transmission transformer.

    PubMed

    Shiba, Kenji; Zulkifli, Nur Elina Binti; Ishioka, Yuji

    2016-11-21

    In this study, we analyzed the internal electric field E and specific absorption rate (SAR) of human biological tissues surrounding an air-core coil transcutaneous energy transmission transformer. Using an electromagnetic simulator, we created a model of human biological tissues consisting of a dry skin, wet skin, fat, muscle, and cortical bone. A primary coil was placed on the surface of the skin, and a secondary coil was located subcutaneously inside the body. The E and SAR values for the model representing a 34-year-old male subject were analyzed using electrical frequencies of 0.3-1.5 MHz. The transmitting power was 15 W, and the load resistance was 38.4 Ω. The results showed that the E values were below the International Commission on Non-ionizing Radiation Protection (ICNIRP) limit for the general public exposure between the frequencies of 0.9 and 1.5 MHz, and SAR values were well below the limit prescribed by the ICNIRP for the general public exposure between the frequencies of 0.3 and 1.2 MHz.

  9. An In Situ Electric Field Study of Magnetoelectric Coupling in PZT-LSMO Thin Film Heterostructures Using Polarized Neutron Reflectometry and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Spurgeon, Steven; Sloppy, Jennifer; Huang, Esther; Vasudevan, Rama; Lofland, Samuel; Lauter, Valeria; Valanoor, Nagarajan; Taheri, Mitra

    2013-03-01

    The development of ``spintronics'' devices based on charge and spin transport has signaled a paradigm shift in the design of data storage and computing technologies. Magnetoelectric materials, which exhibit intrinsic coupling between electronic and magnetic order, are ideal for these applications. Unfortunately, single-phase magnetoelectrics are exceedingly rare in nature and attention has turned to composite heterostructures that display coupled functionalities at interfaces. A promising system in which to explore this coupling is a thin film oxide heterostructure of the piezoelectric Pb(Zr0.2Ti0.8)O3 (PZT) and the half-metal La0.7Sr0.3MnO3 (LSMO). We show that it is possible to construct a capacitor-type device structure from these materials that may form the basis for an electrically-switched magnetic memory. We conduct polarized neutron reflectometry (PNR) measurements and measure changes in the magnetization depth profile throughout the composite under the reversal of an in situ electric field. We then correlate these PNR results to local strain and chemistry using transmission electron microscopy (TEM). We find that a combination of charge doping and strain mechanisms governs coupling in this system.

  10. Cyber Threats to Nuclear Infrastructures

    SciTech Connect

    Robert S. Anderson; Paul Moskowitz; Mark Schanfein; Trond Bjornard; Curtis St. Michel

    2010-07-01

    Nuclear facility personnel expend considerable efforts to ensure that their facilities can maintain continuity of operations against both natural and man-made threats. Historically, most attention has been placed on physical security. Recently however, the threat of cyber-related attacks has become a recognized and growing world-wide concern. Much attention has focused on the vulnerability of the electric grid and chemical industries to cyber attacks, in part, because of their use of Supervisory Control and Data Acquisition (SCADA) systems. Lessons learned from work in these sectors indicate that the cyber threat may extend to other critical infrastructures including sites where nuclear and radiological materials are now stored. In this context, this white paper presents a hypothetical scenario by which a determined adversary launches a cyber attack that compromises the physical protection system and results in a reduced security posture at such a site. The compromised security posture might then be malevolently exploited in a variety of ways. The authors conclude that the cyber threat should be carefully considered for all nuclear infrastructures.

  11. Evaluation of two herbicide techniques on electric transmission rights-of-way: Development of relatively stable shrublands

    NASA Astrophysics Data System (ADS)

    Dreyer, Glenn D.; Niering, William A.

    1986-01-01

    Postmanagement vegetation patterns were studied on five transmission rights-of-way subjected to over a decade of basal or stem-foliar herbicide applications designed to eliminate tall-growing trees. The basally treated lines had a mean of 100% greater shrub and 50% less herbaceous cover than stem-foliar treated lines due primarily to the lack of overspray damage to nontarget plant species with the basal technique. Persisting tree growth was also 50% less with basal treatments when Sassafras albidum, a rootsuckering problem species on all areas, was excluded. Tree seedling establishment on basally treated rights-of-way was 34% less than on stem-foliar treated lines. The creation of stable shrublands can potentially reduce the amount of future herbicide usage. These findings also lend support to the Initial Floristic Composition concept in vegetation development proposed by Egler. In southern New England, commercial basal applications can effectively control unwanted tree growth on rights-of-way while promoting the development of relatively stable shrublands which tend to inhibit the invasion of tree seedlings.

  12. On the Path to SunShot. Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and Transmission System

    SciTech Connect

    Denholm, Paul; Clark, Kara; O'Connell, Matt

    2016-05-01

    This report examines how the bulk power system may need to evolve to accommodate the increased photovoltaic (PV) penetration resulting from achievement of the U.S. Department of Energy's SunShot cost targets. The variable and uncertain nature of PV-generated electricity presents grid-integration challenges. For example, the changing net load associated with high midday PV generation and low electricity demand can create 'overgeneration' that requires curtailment of PV output and reduces PV's value and cost-competitiveness. Accommodating the changes in net load resulting from increased variable generation requires enhancements to a power system's 'flexibility,' or ability to balance supply and demand over multiple time scales through options including changes in system operation, flexible generation, reserves from solar, demand response, energy storage, and enhanced transmission and regional coordination. For utility-scale PV with a baseline SunShot levelized cost of electricity (LCOE) of 6 cents/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6 cents/kWh to almost 11 cents/kWh in a California grid system with limited flexibility. However, increasing system flexibility could minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. In the longer term, energy storage technologies--such as concentrating solar power with thermal energy storage--could facilitate the cost-effective integration of even higher PV penetration. Efficient deployment of the grid-flexibility options needed to maintain solar's value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  13. On the Path to SunShot - Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and Transmission System

    SciTech Connect

    Denholm, Paul; Clark, Kara; O'Connell, Matt

    2016-05-01

    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As the deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.

  14. Effects of interactions between stations on the calculation of geomagnetically induced currents in an electric power transmission system

    NASA Astrophysics Data System (ADS)

    Pirjola, R.

    2008-07-01

    "Geomagnetically induced currents" (GIC) in ground-based technological networks are a manifestation of space weather. GIC are a potential source of problems to the systems and therefore important in practice. GIC in a power system (or in principle in any other discretely-earthed system) can be calculated conveniently by using matrix equations presented earlier. Since temporal variations associated with GIC are slow compared to the 50/60 Hz frequency used in power transmission, a dc treatment is acceptable. An essential quantity in calculations of GIC in a power grid is the earthing impedance matrix, which is the transfer function coupling GIC flowing to (from) the Earth with the voltages between the earthing points, called nodes or (sub)stations, and a remote earth. The diagonal elements of the matrix equal the earthing resistances of the nodes whereas an off-diagonal element expresses how much GIC at one earthing point affects the voltage at another node. In GIC calculations, except for some special treatments of individual sites, the off-diagonal elements are usually neglected by saying simply that the earthing points (are assumed to) lie distantly enough. In this paper, we examine the effects of off-diagonal elements of the earthing impedance matrix, i.e. the effects of interactions between different stations, on GIC calculations in greater detail and more quantitatively than before. We consider a fictitious system that represents a high-voltage power grid and a simple "network" consisting of two stations with a line connecting them. For both systems, the conclusion can be drawn that the off-diagonal elements do not play a major role in practice. Modelling them only approximately, or even ignoring them, is not of great significance compared to other shortcomings involved in GIC calculations. This is particularly true when looking at a power grid as a whole although at some individual stations the neglect may lead to larger errors in GIC values.

  15. Electrical signal transmission and gap junction regulation in a bone cell network: a cable model for an osteon

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Cowin, S. C.; Weinbaum, S.

    1997-01-01

    A cable model is formulated to estimate the spatial distribution of intracellular electric potential and current, from the cement line to the lumen of an osteon, as the frequency of the loading and the conductance of the gap junction are altered. The model predicts that the characteristic diffusion time for the spread of current along the membrane of the osteocytic processes, 0.03 sec, is nearly the same as the predicted pore pressure relaxation time in Zeng et al. (Annals of Biomedical Engineering. 1994) for the draining of the bone fluid into the osteonal canal. This approximate equality of characteristic times causes the cable to behave as a high-pass, low-pass filter cascade with a maximum in the spectral response for the intracellular potential at approximately 30 Hz. This behavior could be related to the experiments of Rubin and McLeod (Osteoporosis, Academic Press, 1996) which show that live bone appears to be selectively responsive to mechanical loading in a specific frequency range (15-30 Hz) for several species.

  16. Kwajalein Infrastructure Prioritization Methodology

    DTIC Science & Technology

    2012-07-01

    GROUNDS-MAINTENANCE-SERVICE- CONTRACT-GUIDE-US-Army-Center>. David, Leonard. “ SpaceX Private Rocket Shifts to Island Launch.” 12 Aug. 2005. TechMedia...Network. 11 Sept. 2011. <http://www.space.com/1422- spacex -private-rocket-shifts-island-launch.html>. Kwajalein Infrastructure Prioritization

  17. Infrastructure Survey 2009

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2010

    2010-01-01

    In 2008 the Group of Eight (Go8) released a first report on the state of its buildings and infrastructure, based on a survey undertaken in 2007. A further survey was undertaken in 2009, updating some information about the assessed quality, value and condition of buildings and use of space. It also collated data related to aspects of the estate not…

  18. An Infrastructure Museum

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    This article invites teachers to let their students' imaginations soar as they become part of a team that will design a whole new kind of living technological museum, a facility that celebrates the world of infrastructure. In this activity, a new two-story building will be built, occupying a vacant corner parcel of land, approximately 150…

  19. Down hole transmission system

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy

    2007-07-24

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.

  20. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    SciTech Connect

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  1. Small passenger car transmission test: Dodge Omni A-404 transmission

    NASA Technical Reports Server (NTRS)

    Bujold, M. P.

    1980-01-01

    The small passenger car transmission test was initiated to supply electric vehicle manufacturers with technical information regarding the performance of commercially available transmissions. This transmission was tested in accordance with a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. Under these test conditions, the transmission attained maximum efficiencies in the mid eighty percent range for both drive performance test and coast performance tests.

  2. 10 μ m-thick four-quadrant transmissive silicon photodiodes for beam position monitor application: electrical characterization and gamma irradiation effects

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Pellegrini, G.; Quirion, D.; Hidalgo, S.; Godignon, P.; Matilla, O.; Juanhuix, J.; Fontserè, A.; Molas, B.; Pothin, D.; Fajardo, P.

    2017-01-01

    Silicon photodiodes are very useful devices as X-ray beam monitors in synchrotron radiation beamlines. Owing to Si absorption, devices thinner than 10 μ m are needed to achieve transmission over 90% for energies above 10 keV . In this work, new segmented four-quadrant diodes for beam alignment purposes are fabricated on both ultrathin (10 μ m-thick) and bulk silicon substrates. Four-quadrant diodes implementing different design parameters as well as auxiliary test structures (single diodes and MOS capacitors) are studied. An extensive electrical characterization, including current-voltage (I-V) and capacitance-voltage (C-V) techniques, is carried out on non-irradiated and gamma-irradiated devices up to 100 Mrad doses. Special attention is devoted to the study of radiation-induced charge build-up in diode interquadrant isolation dielectric, as well as its impact on device interquadrant resistance. Finally, the devices have been characterized with an 8 keV laboratory X-ray source at 108 ph/s and in BL13-XALOC ALBA Synchroton beamline with 1011 ph/s and energies from 6 to 16 keV . Sensitivity, spatial resolution and uniformity of the devices have been evaluated.

  3. Non-destructive observation of intact bacteria and viruses in water by the highly sensitive frequency transmission electric-field method based on SEM.

    PubMed

    Ogura, Toshihiko

    2014-08-08

    The high-resolution structural analysis of biological specimens by scanning electron microscopy (SEM) presents several advantages. Until now, wet bacterial specimens have been examined using atmospheric sample holders. However, images of unstained specimens in water using these holders exhibit very poor contrast and heavy radiation damage. Recently, we developed the frequency transmission electric-field (FTE) method, which facilitates the SEM observation of biological specimens in water without radiation damage. However, the signal detection system presents low sensitivity. Therefore, a high EB current is required to generate clear images, and thus reducing spatial resolution and inducing thermal damage to the samples. Here a high-sensitivity detection system is developed for the FTE method, which enhances the output signal amplitude by hundredfold. The detection signal was highly enhanced when voltage was applied to the metal layer on silicon nitride thin film. This enhancement reduced the EB current and improved the spatial resolution as well as the signal-to-noise ratio. The spatial resolution of a high-sensitive FTE system is 41nm, which is considerably higher than previous FTE system. New FTE system can easily be utilised to examine various unstained biological specimens in water, such as living bacteria and viruses.

  4. Did Geomagnetic Activity Challenge Electric Power Reliability During Solar Cycle 23? Evidence from the PJM Regional Transmission Organization in North America

    NASA Technical Reports Server (NTRS)

    Forbes, Kevin F.; Cyr, Chris St

    2012-01-01

    During solar cycle 22, a very intense geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in Canada. This event clearly demonstrated that geomagnetic storms have the potential to lead to blackouts. This paper addresses whether geomagnetic activity challenged power system reliability during solar cycle 23. Operations by PJM Interconnection, LLC (hereafter PJM), a regional transmission organization in North America, are examined over the period 1 April 2002 through 30 April 2004. During this time PJM coordinated the movement of wholesale electricity in all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia in the United States. We examine the relationship between a proxy of geomagnetically induced currents (GICs) and a metric of challenged reliability. In this study, GICs are proxied using magnetometer data from a geomagnetic observatory located just outside the PJM control area. The metric of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive power conditions. The statistical methods employed make it possible to disentangle the effects of GICs on power system operations from purely terrestrial factors. The results of the analysis indicate that geomagnetic activity can significantly increase the likelihood that the system operator will dispatch generating units based on system stability considerations rather than economic merit.

  5. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications.

    PubMed

    Bergerson, Joule A; Lave, Lester B

    2005-08-15

    We examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive.

  6. Automated manual transmission clutch controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.

    1999-11-30

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  7. In Situ Nuclear Characterization Infrastructure

    SciTech Connect

    James A. Smith; J. Rory Kennedy

    2011-11-01

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  8. Acoustic energy transmission in cast iron pipelines

    NASA Astrophysics Data System (ADS)

    Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.

    2015-12-01

    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

  9. California Hydrogen Infrastructure Project

    SciTech Connect

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  10. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  11. California Statewide PEV Infrastructure Assessment; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Melaina, Marc; Eichman, Joshua

    2015-06-10

    This presentation discusses how the California Statewide Plug-In Electric Vehicle (PEV) Infrastructure Assessment provides a framework for understanding the potential energy (kWh) and demand (MW) impacts of PEV market growth; how PEV travel simulations can inform the role of public infrastructure in future market growth; and how ongoing assessment updates and Alternative Fuels Data Center outreach can help coordinate stakeholder planning and decision making and reduce uncertainties.

  12. Essays on Infrastructure Design and Planning for Clean Energy Systems

    NASA Astrophysics Data System (ADS)

    Kocaman, Ayse Selin

    The International Energy Agency estimates that the number of people who do not have access to electricity is nearly 1.3 billion and a billion more have only unreliable and intermittent supply. Moreover, current supply for electricity generation mostly relies on fossil fuels, which are finite and one of the greatest threats to the environment. Rising population growth rates, depleting fuel sources, environmental issues and economic developments have increased the need for mathematical optimization to provide a formal framework that enables systematic and clear decision-making in energy operations. This thesis through its methodologies and algorithms enable tools for energy generation, transmission and distribution system design and help policy makers make cost assessments in energy infrastructure planning rapidly and accurately. In Chapter 2, we focus on local-level power distribution systems planning for rural electrification using techniques from combinatorial optimization. We describe a heuristic algorithm that provides a quick solution for the partial electrification problem where the distribution network can only connect a pre-specified number of households with low voltage lines. The algorithm demonstrates the effect of household settlement patterns on the electrification cost. We also describe the first heuristic algorithm that selects the locations and service areas of transformers without requiring candidate solutions and simultaneously builds a two-level grid network in a green-field setting. The algorithms are applied to real world rural settings in Africa, where household locations digitized from satellite imagery are prescribed. In Chapter 3 and 4, we focus on power generation and transmission using clean energy sources. Here, we imagine a country in the future where hydro and solar are the dominant sources and fossil fuels are only available in minimal form. We discuss the problem of modeling hydro and solar energy production and allocation, including

  13. Framework for Vulnerability Assessment of Coastal Infrastructure

    NASA Astrophysics Data System (ADS)

    Obrien, P. S.; Moritz, H. R.; White, K. D.

    2015-12-01

    Coastal infrastructure can be highly vulnerable to changing climate, including increasing sea levels and altered frequency and intensity of coastal storms. Existing coastal infrastructure may be of a sufficient age that it is already experiencing noticeable impacts from global sea level rise, and require a variety of potential preparedness and resilience measures to adapt to changing climate. Methods to determine vulnerability to changing sea level and support planning of potential future adaptation measures are needed for application to projects having multiple purposes (e.g., navigation, coastal risk reduction). Here we describe a potential framework for assessing projects with several components typical of existing coastal infrastructure spanning a range of engineering disciplines (e.g., hydrology, geotechnical, structural, electrical, and mechanical). The US Army Corps of Engineers (USACE) Climate Preparedness and Resilience Register (CPRR) framework is currently under development. It takes a tiered approach as described in earlier USACE guidance (Engineer Technical Letter 1100-2-1) using the three scenarios prescribed by Engineer Regulation ER 1100-2-8162. Level 1 is a qualitative assessment defining the major sea level change-related impacts and ranks them in order of soonest occurrence. Level 2 is a quantitative evaluation that analyzes current and future performance of individual project components, including electrical, mechanical and structural components and functions using the sea level change scenarios prescribed by ER 1100-2-8162. Level 3 proposes adaptation measures per ETL 1100-2-1 and evaluates changes in sea level change-related impacts.

  14. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience.

  15. An agent-based microsimulation of critical infrastructure systems

    SciTech Connect

    BARTON,DIANNE C.; STAMBER,KEVIN L.

    2000-03-29

    US infrastructures provide essential services that support the economic prosperity and quality of life. Today, the latest threat to these infrastructures is the increasing complexity and interconnectedness of the system. On balance, added connectivity will improve economic efficiency; however, increased coupling could also result in situations where a disturbance in an isolated infrastructure unexpectedly cascades across diverse infrastructures. An understanding of the behavior of complex systems can be critical to understanding and predicting infrastructure responses to unexpected perturbation. Sandia National Laboratories has developed an agent-based model of critical US infrastructures using time-dependent Monte Carlo methods and a genetic algorithm learning classifier system to control decision making. The model is currently under development and contains agents that represent the several areas within the interconnected infrastructures, including electric power and fuel supply. Previous work shows that agent-based simulations models have the potential to improve the accuracy of complex system forecasting and to provide new insights into the factors that are the primary drivers of emergent behaviors in interdependent systems. Simulation results can be examined both computationally and analytically, offering new ways of theorizing about the impact of perturbations to an infrastructure network.

  16. Infrastructure for microsystem production

    NASA Astrophysics Data System (ADS)

    van Heeren, Henne; Sanchez, Stefan; Elders, Job; Heideman, Rene G.

    1999-03-01

    Manufacturing of micro-systems differs from IC manufacturing because the market requires a diversity of products and lower volumes per product. In addition, a diversity of micro-technologies has been developed, including non-IC compatible processes and potentially IC compatible processes. An infrastructure for the production of micro- system devices is lacking. On one side the technology for MST is available at the universities and small university related companies. On the other side there are several small and medium enterprises and bigger companies wanting to implement MST devices in their products, but unwilling to be dependent on universities. Philips Electronics in the Netherlands and Twente MicroProducts realized this problem and have started a project to fill this gap. At this moment the basic of the infrastructure is available: OnStream BV, Eindhoven, The Netherlands, opened its waferfab and assembly facilities for the production of MST devices. Twente MicroProducts will take care of the design of the products and of the small-scale production. Integration of quality systems for maintenance, yield, statistical process control and production in a Manufacturing Execution System offers direct access for all people involved to all the relevant information. It also ensures quality of the products made. The available capabilities of the infrastructure in the current status are compared to the market needs. In this article, a description of a seamless Micro-System Engineering Foundry is given. A seamless organization is capable of helping the customer from design to production. Several examples are given.

  17. Agile Infrastructure Monitoring

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Ascenso, J.; Fedorko, I.; Fiorini, B.; Paladin, M.; Pigueiras, L.; Santos, M.

    2014-06-01

    At the present time, data centres are facing a massive rise in virtualisation and cloud computing. The Agile Infrastructure (AI) project is working to deliver new solutions to ease the management of CERN data centres. Part of the solution consists in a new "shared monitoring architecture" which collects and manages monitoring data from all data centre resources. In this article, we present the building blocks of this new monitoring architecture, the different open source technologies selected for each architecture layer, and how we are building a community around this common effort.

  18. The INSC Security Infrastructure

    DTIC Science & Technology

    2004-12-01

    Le but était de démontrer une infrastructure de réseau qui soutient la sécurité, l’interopérabilité, la maintenance, et la mobilité . La sécurité a...l’interopérabilité, la maintenance, et la mobilité . La sécurité a été fournie à la couche réseau en utilisant le protocole d’IPsec. Aucune sécurité

  19. Quantitative assessment of electrical resistivity tomography for monitoring DNAPLs migration - Comparison with high-resolution light transmission visualization in laboratory sandbox

    NASA Astrophysics Data System (ADS)

    Deng, Yaping; Shi, Xiaoqing; Xu, Hongxia; Sun, Yuanyuan; Wu, Jichun; Revil, André

    2017-01-01

    Real-time monitoring of dense non-aqueous phase liquids (DNAPLs) migration and distribution is essential for the decision of an effective remediation strategy. Light transmission visualization (LTV) has shown its accuracy and efficiency for measuring DNAPLs saturation and water content in the laboratory, but it cannot be implemented in three dimensional sandbox or field-scale sites. Recently developed electrical resistivity tomography (ERT) has been applied in monitoring the migration and distribution of DNAPLs in bench- and field-scale studies. However, the evaluation of the ability of ERT for monitoring DNAPLs migration by a direct comparison of ERT with high-resolution techniques such as LTV within an experimental system is still lacking. Two sandbox experiments with different permeability conditions are conducted to quantitatively assess the capability of ERT for monitoring the DNAPLs migration. During the injections, LTV method is used to visualize the DNAPLs migration and provide high-resolution saturation data while ERT method is applied to capture the change of resistivity. The results from the comparison between LTV and ERT methods show that ERT is successful in detecting the accumulation and flow bypassing phenomenon around the low-permeability lenses, as well as the penetration through the high-permeability lenses. There is a fair correlation between the resistivity and saturation with overall correlation coefficients above 0.6, except at last stage. However, using classical regularization techniques (based on smoothness), the area of DNAPLs plume determined by ERT is commonly overestimated. Compared to the plume around the low-permeability lenses, the plume around the high-permeability lenses estimated by ERT is more extensive due to larger resistivity contrasts. In addition, ERT measurements indicate that the resistivity increase caused by the low-saturation DNAPLs is not apparent enough, which is likely to be covered up under the changing

  20. Is there a need for government interventions to adapt energy infrastructures to climate change? A German case study

    NASA Astrophysics Data System (ADS)

    Groth, Markus; Cortekar, Jörg

    2015-04-01

    infrastructure, there might also occur efficiency losses in electricity transmission due to very high or very low temperatures. While vulnerabilities in power generation primarily result in efficiency losses, interferences on the grid level could cause power outages with cascade effects influencing other sectors of society and economy. The paper argues that these possible impacts of a changing climate should be taken into account in the upcoming infrastructure projects in the course of the Energiewende. Therefore governmental intervention - like legal obligations or incentives by the use of economic instruments - are for example justifiable regarding measures to adapt the grid infrastructure as a critical infrastructure that needs to be protected against current and future impacts of climate change.

  1. Nuclear hybrid energy infrastructure

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  2. EEW Implementation into Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Zulfikar, Can; Pinar, Ali

    2016-04-01

    In FP7 MARsite project WP9, the integration algorithm of existing strong motion networks with the critical infrastructures strong motion networks have been studied. In Istanbul, the existing Istanbul Earthquake Early Warning (IEEW) strong motion network consists of 15 stations including 10 on land and 5 ocean bottom stations. The system provides continuous online data and earthquake early warning alert depending on the exceedance of the threshold levels in ground motion acceleration in certain number of station within the certain time interval. The data transmission is provided through the fiber optic cable and satellite line alternatively. The early warning alert is transmitted to the critical infrastructures of Istanbul Natural Gas distribution line and Marmaray Tube Tunnel line in order to activate the local strong motion networks for the automatic shut-off mechanism. Istanbul Natural Gas distribution line has 1.800km steel and 15.200km polyethylene in total 18.000km gas pipeline in Istanbul. There are in total 750 district regulators in the city where the gas pressure is reduced from 20bar to 4bar and from there the gas is transmitted with polyethylene lines to service boxes. Currently, Istanbul Natural Gas Distribution Company (IGDAS) has its own strong motion network with 110 strong motion stations installed at the 110 of 750 district regulators. Once the IGDAS strong motion network is activated by the IEEW network, depending on the exceedance of the ground motion parameters threshold levels the gas flow is stopped at the district regulators. Other than the Earthquake Early Warning operation in IGDAS strong motion network, having the calculated ground motion parameters in the network provides damage maps for the buildings and natural gas pipeline network. The Marmaray Tube Tunnel connects the Europe and Asian sides of Istanbul City by a rail line. The tunnel is 1.4km length and consists of 13segments. There is strong motion monitoring network in the tunnel

  3. National transmission grid study

    SciTech Connect

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  4. The future of infrastructure security :

    SciTech Connect

    Garcia, Pablo; Turnley, Jessica Glicken; Parrott, Lori K.

    2013-05-01

    Sandia National Laboratories hosted a workshop on the future of infrastructure security on February 27-28, 2013, in Albuquerque, NM. The 17 participants came from backgrounds as diverse as federal policy, the insurance industry, infrastructure management, and technology development. The purpose of the workshop was to surface key issues, identify directions forward, and lay groundwork for cross-sectoral and cross-disciplinary collaborations. The workshop addressed issues such as the problem space (what is included in infrastructure problems?), the general types of threats to infrastructure (such as acute or chronic, system-inherent or exogenously imposed) and definitions of secure and resilient infrastructures. The workshop concluded with a consideration of stakeholders and players in the infrastructure world, and identification of specific activities that could be undertaken by the Department of Homeland Security (DHS) and other players.

  5. Electric vehicle propulsion alternatives

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  6. Utilities building NGV infrastructure

    SciTech Connect

    Not Available

    1994-04-01

    Gas utilities across the US are aggressively pursuing the natural gas vehicle market by putting in place the infrastructure needed to ensure the growth of the important market. The first annual P and GJ NGV Marketing Survey has revealed many utilities plant to build and continue building NGV fueling facilities. The NGV industry in the US is confronting a classic chicken-or-egg quandary. Fleet operators and individual drivers are naturally unwilling to commit to a natural gas vehicle fuel until sufficient fueling facilities are in place, yet service station operators are reluctant to add NGV refueling capacity until enough CNG vehicles are on the road to create demand. The future of the NGV market is bright, but continued research and product improvements by suppliers as well as LDCs is needed if the potential is to be fulfilled. Advances in refueling facilities must continue if the market is to develop.

  7. Toward disaster-resilient cities: characterizing resilience of infrastructure systems with expert judgments.

    PubMed

    Chang, Stephanie E; McDaniels, Timothy; Fox, Jana; Dhariwal, Rajan; Longstaff, Holly

    2014-03-01

    Resilient infrastructure systems are essential for cities to withstand and rapidly recover from natural and human-induced disasters, yet electric power, transportation, and other infrastructures are highly vulnerable and interdependent. New approaches for characterizing the resilience of sets of infrastructure systems are urgently needed, at community and regional scales. This article develops a practical approach for analysts to characterize a community's infrastructure vulnerability and resilience in disasters. It addresses key challenges of incomplete incentives, partial information, and few opportunities for learning. The approach is demonstrated for Metro Vancouver, Canada, in the context of earthquake and flood risk. The methodological approach is practical and focuses on potential disruptions to infrastructure services. In spirit, it resembles probability elicitation with multiple experts; however, it elicits disruption and recovery over time, rather than uncertainties regarding system function at a given point in time. It develops information on regional infrastructure risk and engages infrastructure organizations in the process. Information sharing, iteration, and learning among the participants provide the basis for more informed estimates of infrastructure system robustness and recovery that incorporate the potential for interdependent failures after an extreme event. Results demonstrate the vital importance of cross-sectoral communication to develop shared understanding of regional infrastructure disruption in disasters. For Vancouver, specific results indicate that in a hypothetical M7.3 earthquake, virtually all infrastructures would suffer severe disruption of service in the immediate aftermath, with many experiencing moderate disruption two weeks afterward. Electric power, land transportation, and telecommunications are identified as core infrastructure sectors.

  8. Meeting Hanford's Infrastructure Requirements - 12505

    SciTech Connect

    Flynn, Karen

    2012-07-01

    Hanford, by all accounts, is an enormous and complex project, with thousands of disparate, but co-mingled activities in motion on any given day. The primary target of the mission at Hanford is cleanup of the 586 square-mile site, but there is the equally vital mission of site services and infrastructure. Without functions like the well-maintained site roads, electricity, water, and emergency management services, not a single cleanup project could be undertaken. As the cleanup projects evolve - with new work-scope emerging, while existing projects are completed - there becomes a very real need to keep projects integrated and working to the same 'blueprint'. And the Hanford blueprint extends for years and includes myriad variables that come with meeting the challenges and complexities associated with Hanford cleanup. Because of an innovative and unique contracting strategy, the Department of Energy (DOE) found a way to keep the cleanup projects un-encumbered from the side task of having to self-provide their individual essential site services, thus allowing the cleanup contractors to concentrate their efforts on their primary mission of cleaning up the site. These infrastructure and support services also need to be provided efficiently and cost effectively - done primarily through 'right-sizing' efforts. The real innovation came when DOE had the foresight to include a second provision in this contract which specifically asked for a specialized role of site integrator and innovator, with a special emphasis placed on providing substantial cost savings for the government. The need for a true site integrator function was necessitated by the ever-increasing complexity of projects at Hanford and the progression of cleanup at others. At present, there are two main DOE offices overseeing the cleanup work and six primary contractors performing that work. Each of these contractors works to separate schedules and cleanup milestones, and the nature of the cleanup differs, but

  9. Low-carbon infrastructure strategies for cities

    NASA Astrophysics Data System (ADS)

    Kennedy, C. A.; Ibrahim, N.; Hoornweg, D.

    2014-05-01

    Reducing greenhouse gas emissions to avert potentially disastrous global climate change requires substantial redevelopment of infrastructure systems. Cities are recognized as key actors for leading such climate change mitigation efforts. We have studied the greenhouse gas inventories and underlying characteristics of 22 global cities. These cities differ in terms of their climates, income, levels of industrial activity, urban form and existing carbon intensity of electricity supply. Here we show how these differences in city characteristics lead to wide variations in the type of strategies that can be used for reducing emissions. Cities experiencing greater than ~1,500 heating degree days (below an 18 °C base), for example, will review building construction and retrofitting for cold climates. Electrification of infrastructure technologies is effective for cities where the carbon intensity of the grid is lower than ~600 tCO2e GWh-1 whereas transportation strategies will differ between low urban density (<~6,000 persons km-2) and high urban density (>~6,000 persons km-2) cities. As nation states negotiate targets and develop policies for reducing greenhouse gas emissions, attention to the specific characteristics of their cities will broaden and improve their suite of options. Beyond carbon pricing, markets and taxation, governments may develop policies and target spending towards low-carbon urban infrastructure.

  10. Airborne EM for mine infrastructure planning

    NASA Astrophysics Data System (ADS)

    Wijns, Chris

    2016-08-01

    Airborne electromagnetic (AEM) surveys with near-surface vertical resolution provide rapid and comprehensive coverage of a mine site ahead of infrastructure planning. In environments of sufficient electrical conductivity contrast, the data will map variations in the depth to bedrock, providing guidance for expected excavation depths for solid building foundations, or mine pre-strip volumes. Continuous coverage overcomes the severe areal limitation of relying only on drilling and test pits. An AEM survey in northern Finland illustrates the success of this approach for guiding the placement of a mine crusher and related infrastructure. The cost of the EM data collection and interpretation is insignificant in comparison to the US$300 million capital cost of the mine infrastructure. This environment of shallow glacial cover challenges the limits of AEM resolution, yet analysis of subsequently collected three-dimensional (3D) surface seismic data and actual pre-strip excavation depths reinforces the predictive, but qualitative, mapping capability of the AEM. It also highlights the need to tune the modelling via petrophysics for the specific goal of the investigation, and exposes the limitations of visual drill core logging.

  11. Simulating economic effects of disruptions in the telecommunications infrastructure.

    SciTech Connect

    Cox, Roger Gary; Barton, Dianne Catherine; Reinert, Rhonda K.; Eidson, Eric D.; Schoenwald, David Alan

    2004-01-01

    CommAspen is a new agent-based model for simulating the interdependent effects of market decisions and disruptions in the telecommunications infrastructure on other critical infrastructures in the U.S. economy such as banking and finance, and electric power. CommAspen extends and modifies the capabilities of Aspen-EE, an agent-based model previously developed by Sandia National Laboratories to analyze the interdependencies between the electric power system and other critical infrastructures. CommAspen has been tested on a series of scenarios in which the communications network has been disrupted, due to congestion and outages. Analysis of the scenario results indicates that communications networks simulated by the model behave as their counterparts do in the real world. Results also show that the model could be used to analyze the economic impact of communications congestion and outages.

  12. Education, Infrastructure and America's Future.

    ERIC Educational Resources Information Center

    Moseley-Braun, Carol

    1997-01-01

    Senator Carol Moseley-Braun, D-Ill., a recognized advocate for federal funding of educational facilities, describes the strategy of placing school infrastructure in the same category as commercial and transportation infrastructure. Three researchers in the facilities field present empirical evidence that facility conditions directly affect…

  13. The 1990 direct support infrastructure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The airport and cargo terminal were individually analyzed in depth as the principal direct infrastructure components having cross impacts with aircraft carrying cargo. Containerization was also addressed in depth as an infrastructure component since it categorically is linked with and cross impacted by the aircraft, the cargo terminal, the surface transport system, the shipper and consignee, and the actual cargo being moved.

  14. Multi-Scale Infrastructure Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) multi-scale infrastructure assessment project supports both water resource adaptation to climate change and the rehabilitation of the nation’s aging water infrastructure by providing tools, scientific data and information to progra...

  15. Distributed Data Integration Infrastructure

    SciTech Connect

    Critchlow, T; Ludaescher, B; Vouk, M; Pu, C

    2003-02-24

    The Internet is becoming the preferred method for disseminating scientific data from a variety of disciplines. This can result in information overload on the part of the scientists, who are unable to query all of the relevant sources, even if they knew where to find them, what they contained, how to interact with them, and how to interpret the results. A related issue is keeping up with current trends in information technology often taxes the end-user's expertise and time. Thus instead of benefiting from this information rich environment, scientists become experts on a small number of sources and technologies, use them almost exclusively, and develop a resistance to innovations that can enhance their productivity. Enabling information based scientific advances, in domains such as functional genomics, requires fully utilizing all available information and the latest technologies. In order to address this problem we are developing a end-user centric, domain-sensitive workflow-based infrastructure, shown in Figure 1, that will allow scientists to design complex scientific workflows that reflect the data manipulation required to perform their research without an undue burden. We are taking a three-tiered approach to designing this infrastructure utilizing (1) abstract workflow definition, construction, and automatic deployment, (2) complex agent-based workflow execution and (3) automatic wrapper generation. In order to construct a workflow, the scientist defines an abstract workflow (AWF) in terminology (semantics and context) that is familiar to him/her. This AWF includes all of the data transformations, selections, and analyses required by the scientist, but does not necessarily specify particular data sources. This abstract workflow is then compiled into an executable workflow (EWF, in our case XPDL) that is then evaluated and executed by the workflow engine. This EWF contains references to specific data source and interfaces capable of performing the desired

  16. The Spatial Footprint of Natural Gas-Fired Electricity

    NASA Astrophysics Data System (ADS)

    Jordaan, S. M.; Heath, G.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.; Marceau, D.

    2015-12-01

    Consistent comparisons of the amount of land required for different electricity generation technologies are challenging because land use associated with fossil fuel acquisition and delivery has not been well characterized or empirically grounded. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity (m2/MWh generated) through the novel combination of inventories of natural gas-related infrastructure, satellite imagery analysis and gas production estimates. We focus on seven counties that represent 98% of the total gas production in the Barnett Shale (Texas), evaluating over 500 sites across five life cycle stages (gas production, gathering, processing, transmission, and power generation as well as produced water disposal). We find that a large fraction of total life cycle land use is related to gathering (midstream) infrastructure, particularly pipelines; access roads related to all stages also contribute a large life cycle share. Results were sensitive to several inputs, including well lifetime, pipeline right of way, number of wells per site, variability of heat rate for electricity generation, and facility lifetime. Through this work, we have demonstrated a novel, highly-resolved and empirical method for estimating life cycle land use from natural gas infrastructure in an important production region. When replicated for other gas production regions and other fuels, the results can enable more empirically-grounded and robust comparisons of the land footprint of alternative energy choices.

  17. Europlanet Research Infrastructure: Planetary Simulation Facilities

    NASA Astrophysics Data System (ADS)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  18. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  19. Flexible Computational Science Infrastructure

    SciTech Connect

    Bergen, Ben; Moss, Nicholas; Charest, Marc Robert Joseph

    2016-04-06

    FleCSI is a compile-time configurable framework designed to support multi-physics application development. As such, FleCSI attempts to provide a very general set of infrastructure design patterns that can be specialized and extended to suit the needs of a broad variety of solver and data requirements. Current support includes multi-dimensional mesh topology, mesh geometry, and mesh adjacency information, n-dimensional hashed-tree data structures, graph partitioning interfaces, and dependency closures. FleCSI also introduces a functional programming model with control, execution, and data abstractions that are consistent with both MPI and state-of-the-art task-based runtimes such as Legion and Charm++. The FleCSI abstraction layer provides the developer with insulation from the underlying runtime, while allowing support for multiple runtime systems, including conventional models like asynchronous MPI. The intent is to give developers a concrete set of user-friendly programming tools that can be used now, while allowing flexibility in choosing runtime implementations and optimizations that can be applied to architectures and runtimes that arise in the future. The control and execution models in FleCSI also provide formal nomenclature for describing poorly understood concepts like kernels and tasks.

  20. National information infrastructure applications

    SciTech Connect

    Forslund, D.; George, J.; Greenfield, J.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop a telemedical application in which medical records are electronically searched and digital signatures of real CT scan data are indexed and used to characterize a range of diseases and are used to compare on-line medical data with archived clinical data rapidly. This system includes multimedia data management, interactive collaboration, data compression and transmission, remote data storage and retrieval, and automated data analysis integrated in a distributed application between Los Alamos and the National Jewish Hospital.

  1. Carbon emissions of infrastructure development.

    PubMed

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.

  2. Electricity Market Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the Electricity Market Module as it was used for the Annual Energy Outlook 2013. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

  3. The Fermilab data storage infrastructure

    SciTech Connect

    Jon A Bakken et al.

    2003-02-06

    Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework.

  4. Status of U.S. FCEV and Infrastructure Learning Demonstration Project (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2011-03-01

    Presented at the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC), 1 March 2011, Tokyo, Japan. This presentation summarizes the status of U.S. fuel cell electric vehicles and infrastructure learning demonstration project.

  5. Space weather and the safety of ground infrastructures. Numerical simulation and prediction of electromagnetic effects induced by real magnetospheric substorms in the Earth's models with real three-dimensional distribution of electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kuvshinov, Alexey; Filippov, Sergey; Kalegaev, Vladimir; Sidorova, Larisa; Mukhametdinova, Ludmila; Pankratov, Oleg; Alexeev, Dmitry

    Strong eruptions at Sun’s surface produce large release of matter (plasma), which, with a speed of 800-1000 km/s (the solar wind), flows into interplanetary space. If the Earth appears to be on the way of the solar wind the interaction of the wind with the Earth's magnetosphere and the ionosphere leads to abnormal disturbance of fluctuating geomagnetic field. In the middle latitudes, the disturbances (geomagnetic storms) last a few days and have amplitudes up to 400 nT. At high latitudes, these perturbations (magnetospheric substorms) last a few hours and have amplitudes up to 3000 nT. According to Faraday’s law of induction, the fluctuating magnetic field in turn generates a electric field. The electric field for intense substorms can reach hundreds of volts/km in the polar region and generate very high, the so-called geomagnetic induced currents in the ground-based systems, such as power grids and pipelines. These currents are one of the most dangerous factors affecting the operation of the above systems. Thus extremely topical task in the field of "space weather" is the quantification and prediction of spatio-temporal distribution of the electric field during substorm activity. Despite the abundance of works carried out in this direction, the problem is still far from a satisfactory solution. In the field of modeling, researchers are still working with highly simplified models of both the source and the conducting Earth. As for prediction the situation is even worse. In this presentation we discuss a general formalism which allows for simulating the electric fields induced by real magnetospheric substorms in the spherical model of the Earth with real three-dimensional distribution of conductivity. We show the first results of such simulations. We also discuss a concept to predict substorm spatio-temporal pattern of the electric field.

  6. Assessing Terrorist Motivations for Attacking Critical Infrastructure

    SciTech Connect

    Ackerman, G; Abhayaratne, P; Bale, J; Bhattacharjee, A; Blair, C; Hansell, L; Jayne, A; Kosal, M; Lucas, S; Moran, K; Seroki, L; Vadlamudi, S

    2006-12-04

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security and way of life. These complex and often interconnected systems have become so ubiquitous and essential to day-to-day life that they are easily taken for granted. Often it is only when the important services provided by such infrastructure are interrupted--when we lose easy access to electricity, health care, telecommunications, transportation or water, for example--that we are conscious of our great dependence on these networks and of the vulnerabilities that stem from such dependence. Unfortunately, it must be assumed that many terrorists are all too aware that CI facilities pose high-value targets that, if successfully attacked, have the potential to dramatically disrupt the normal rhythm of society, cause public fear and intimidation, and generate significant publicity. Indeed, revelations emerging at the time of this writing about Al Qaida's efforts to prepare for possible attacks on major financial facilities in New York, New Jersey, and the District of Columbia remind us just how real and immediate such threats to CI may be. Simply being aware that our nation's critical infrastructure presents terrorists with a plethora of targets, however, does little to mitigate the dangers of CI attacks. In order to prevent and preempt such terrorist acts, better understanding of the threats and vulnerabilities relating to critical infrastructure is required. The Center for Nonproliferation Studies (CNS) presents this document as both a contribution to the understanding of such threats and an initial effort at ''operationalizing'' its findings for use by analysts who work on issues of critical infrastructure protection. Specifically, this study focuses on a subsidiary aspect of CI threat assessment that has thus far remained largely unaddressed by contemporary terrorism research: the motivations and related factors that determine whether a terrorist

  7. Green Infrastructure for Arid Communities

    EPA Pesticide Factsheets

    how green infrastructure practices and the many associated benefits can be effective not only in wetter climates, but also for those communities in arid and semi-arid regions around the nation that have different precipitation patterns

  8. Incorporating Green Infrastructure into TMDLs

    EPA Pesticide Factsheets

    The fact sheet provides examples of how some states describe green infrastructure and low impact development activities in their TMDL implementation sections to address stormwater-source impaired waters.

  9. Next generation information communication infrastructure and case studies for future power systems

    NASA Astrophysics Data System (ADS)

    Qiu, Bin

    As power industry enters the new century, powerful driving forces, uncertainties and new functions are compelling electric utilities to make dramatic changes in their information communication infrastructure. Expanding network services such as real time measurement and monitoring are also driving the need for more bandwidth in the communication network. These needs will grow further as new remote real-time protection and control applications become more feasible and pervasive. This dissertation addresses two main issues for the future power system information infrastructure: communication network infrastructure and associated power system applications. Optical networks no doubt will become the predominant data transmission media for next generation power system communication. The rapid development of fiber optic network technology poses new challenges in the areas of topology design, network management and real time applications. Based on advanced fiber optic technologies, an all-fiber network is investigated and proposed. The study will cover the system architecture and data exchange protocol aspects. High bandwidth, robust optical networks could provide great opportunities to the power system for better service and efficient operation. In the dissertation, different applications are investigated. One of the typical applications is the SCADA information accessing system. An Internet-based application for the substation automation system will be presented. VLSI (Very Large Scale Integration) technology is also used for one-line diagrams auto-generation. High transition rate and low latency optical network is especially suitable for power system real time control. In the dissertation, a new local area network based Load Shedding Controller (LSC) for isolated power system will be presented. By using PMU (Phasor Measurement Unit) and fiber optic network, an AGE (Area Generation Error) based accurate wide area load shedding scheme will also be proposed. The objective

  10. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  11. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  12. Infrastructure dynamics: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Bencosme, A. J.

    1978-01-01

    The term infrastructure is used to denote the set of life support and public service systems which is necessary for the development of growth of human settlements. Included are some basic references in the field of dynamic simulation, as well as a number of relevant applications in the area of infrastructure planning. The intent is to enable the student or researcher to quickly identify such applications to the extent necessary for initiating further work in the field.

  13. Open Component Portability Infrastructure (OPENCPI)

    DTIC Science & Technology

    2013-03-01

    OPEN COMPONENT PORTABILITY INFRASTRUCTURE (OPENCPI) MERCURY FEDERAL SYSTEMS, INC. MARCH 2013 FINAL TECHNICAL REPORT...NUMBER OC 5f. WORK UNIT NUMBER PI 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Mercury Federal Systems, Inc. 1901 South Bell Street, Suite...Component Portability Infrastructure (OPENCPI) ,” AFRL-RI-RS-TR- 2009-257, Mercury Federal Systems, Inc., Arlington, VA, Nov 2009. 2. Kulp, J., “OpenCPI

  14. Hybrid-Vehicle Transmission System

    NASA Technical Reports Server (NTRS)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  15. Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis

    SciTech Connect

    May Permann

    2007-03-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

  16. 76 FR 49841 - Transmission Planning and Cost Allocation by Transmission Owning and Operating Public Utilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... section 206 of the Federal Power Act (FPA) to adopt reforms to its electric transmission planning and cost... efficient and cost-effective regional transmission planning. As discussed further below, the electric... anticompetitive practices existed in the electric industry and that, absent Commission action, such...

  17. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  18. Automated manual transmission mode selection controller

    DOEpatents

    Lawrie, Robert E.

    1999-11-09

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  19. Automated manual transmission shift sequence controller

    DOEpatents

    Lawrie, Robert E.; Reed, Richard G.; Rausen, David J.

    2000-02-01

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  20. Mechanism of biological effects observed in honey bees (Apis mellifera, L. ) hived under extra-high-voltage transmission lines: implications derived from bee exposure to simulated intense electric fields and shocks

    SciTech Connect

    Bindokas, V.P.; Gauger, J.R.; Greenberg, B.

    1988-01-01

    This work explores mechanisms for disturbance of honey bee colonies under a 765 kV, 60-Hz transmission line (electric (E) field = 7 kV/m) observed in previous studies. Proposed mechanisms fell into two categories: direct bee perception of enhanced in-hive E fields and perception of shock from induced currents. The adverse biological effects could be reproduced in simulations where only the worker bees were exposed to shock or to E field in elongated hive entranceways (= tunnels). We now report the results of full-scale experiments using the tunnel exposure scheme, which assesses the contribution of shock and intense E field to colony disturbance. Exposure of worker bees (1400 h) to 60-Hz E fields including 100 kV/m under moisture-free conditions within a nonconductive tunnel causes no deleterious affect on colony behavior. Exposure of bees in conductive (e.g., wet) tunnels produces bee disturbance, increased mortality, abnormal propolization, and possible impairment of colony growth. We propose that this substrate dependence of bee disturbance is the result of perception of shock from coupled body currents and enhanced current densities postulated to exist in the legs and thorax of bees on conductors. Similarly, disturbance occurs when bees are exposed to step-potential-induced currents. At 275-350 nA single bees are disturbed; at 600 nA bees begin abnormal propolization behavior; and stinging occurs at 900 nA. We conclude that biological effects seen in bee colonies under a transmission line are primarily the result of electric shock from induced hive currents. This evaluation is based on the limited effects of E-field exposure in tunnels, the observed disturbance thresholds caused by shocks in tunnels, and the ability of hives exposed under a transmission line to source currents 100-1,000 times the shock thresholds.

  1. Towards an Infrastructure for MLS Distributed Computing

    DTIC Science & Technology

    1998-01-01

    Distributed computing owes its success to the development of infrastructure, middleware, and standards (e.g., CORBA) by the computing industry. This...Government must protect national security information against unauthorized information flow. To support MLS distributed computing , a MLS infrastructure...protection of classified information and use both the emerging distributed computing and commercial security infrastructures. The resulting infrastructure

  2. Critical Infrastructures: Background, Policy, and Implementation

    DTIC Science & Technology

    2010-06-07

    Government Accountability Office, Critical Infrastructure Protection: Challenges for Selected Agencies and Industry Sectors. Repot to the Committee on...the federal government to develop and implement plans that would protect government -operated infrastructures and called for a dialogue between... government and the private sector to develop a National Infrastructure Assurance Plan that would protect all of the nation’s critical infrastructures by

  3. Infrastructure Commons in Economic Perspective

    NASA Astrophysics Data System (ADS)

    Frischmann, Brett M.

    This chapter briefly summarizes a theory (developed in substantial detail elsewhere)1 that explains why there are strong economic arguments for managing and sustaining infrastructure resources in an openly accessible manner. This theory facilitates a better understanding of two related issues: how society benefits from infrastructure resources and how decisions about how to manage or govern infrastructure resources affect a wide variety of public and private interests. The key insights from this analysis are that infrastructure resources generate value as inputs into a wide range of productive processes and that the outputs from these processes are often public goods and nonmarket goods that generate positive externalities that benefit society as a whole. Managing such resources in an openly accessible manner may be socially desirable from an economic perspective because doing so facilitates these downstream productive activities. For example, managing the Internet infrastructure in an openly accessible manner facilitates active citizen involvement in the production and sharing of many different public and nonmarket goods. Over the last decade, this has led to increased opportunities for a wide range of citizens to engage in entrepreneurship, political discourse, social network formation, and community building, among many other activities. The chapter applies these insights to the network neutrality debate and suggests how the debate might be reframed to better account for the wide range of private and public interests at stake.

  4. Transmission of electric and magnetic foetal cardiac signals in a case of ectopia cordis: the dominant role of the vernix. caseosa.

    PubMed

    Wakai, R T; Lengle, J M; Leuthold, A C

    2000-07-01

    Foetal electrocardiograms (fECGs) and foetal magnetocardiograms (fMCGs) were recorded in the 26th, 29th and 31st weeks of gestation from a foetus with ectopia cordis-a rare condition in which the heart lies outside the chest wall. This provided an opportunity to study foetal cardiograms uninfluenced by the insulating effects of the foetal skin and vernix caseosa. The fECG of the ectopia cordis foetus was striking. Unlike recordings from age-matched normal foetuses, recordings from this subject had very high signal-to-noise ratio and showed no anomalous signal transmission properties. In contrast, fMCGs recorded from the ectopia cordis foetus and normal foetuses were largely similar. Both showed high signal-to-noise ratio and signal transmission properties consistent with volume conduction. The findings corroborate the hypothesis that high foetal skin resistance due primarily to the vernix caseosa is responsible for the low amplitude and anomalous transmission properties of the normal fECG, and demonstrate that the fMCG is relatively insensitive to conductivity inhomogeneities.

  5. Joint accurate time and stable frequency distribution infrastructure sharing fiber footprint with research network

    NASA Astrophysics Data System (ADS)

    Vojtech, Josef; Slapak, Martin; Skoda, Pavel; Radil, Jan; Havlis, Ondrej; Altmann, Michal; Munster, Petr; Smotlacha, Vladimir; Kundrat, Jan; Velc, Radek; Altmannova, Lada; Hula, Miloslav

    2016-09-01

    In this paper, we present infrastructure for accurate time and stable frequency distribution. It is based on sharing of fibers of research and educational network carrying data traffic. Accurate time and stable frequency transmission uses mainly created dark channels amplified by special bidirectional amplifiers with the same propagation path for both directions. Paper also targets challenges joined with bidirectional transmission, which represents directional non-reciprocities and interaction with parallel data transmissions.

  6. Infrastructure for deployment of power systems

    NASA Technical Reports Server (NTRS)

    Sprouse, Kenneth M.

    1991-01-01

    A preliminary effort in characterizing the types of stationary lunar power systems which may be considered for emplacement on the lunar surface from the proposed initial 100-kW unit in 2003 to later units ranging in power from 25 to 825 kW is presented. Associated with these power systems are their related infrastructure hardware including: (1) electrical cable, wiring, switchgear, and converters; (2) deployable radiator panels; (3) deployable photovoltaic (PV) panels; (4) heat transfer fluid piping and connection joints; (5) power system instrumentation and control equipment; and (6) interface hardware between lunar surface construction/maintenance equipment and power system. This report: (1) presents estimates of the mass and volumes associated with these power systems and their related infrastructure hardware; (2) provides task breakdown description for emplacing this equipment; (3) gives estimated heat, forces, torques, and alignment tolerances for equipment assembly; and (4) provides other important equipment/machinery requirements where applicable. Packaging options for this equipment will be discussed along with necessary site preparation requirements. Design and analysis issues associated with the final emplacement of this power system hardware are also described.

  7. Encouraging an ecological evolution of data infrastructure

    NASA Astrophysics Data System (ADS)

    Parsons, M. A.

    2015-12-01

    Infrastructure is often thought of as a complex physical construct usually designed to transport information or things (e.g. electricity, water, cars, money, sound, data…). The Research Data Alliance (RDA) takes a more holistic view and considers infrastructure as a complex body of relationships between people, machines, and organisations. This paper will describe how this more ecological perspective leads RDA to define and govern an agile virtual organization. We seek to harness the power of the volunteer, through an open problem solving approach that focusses on the problems of our individual members and their organisations. We focus on implementing solutions that make data sharing work better without defining a priori what is necessary. We do not judge the fitness of a solution, per se, but instead assess how broadly the solution is adopted, recognizing that adoption is often the social challenge of technical problem. We seek to encourage a bottoms up approach with light guidance on principles from the top. The goal is to develop community solutions that solve real problems today yet are adaptive to changing technologies and needs.

  8. Toward Information Infrastructure Studies: Ways of Knowing in a Networked Environment

    NASA Astrophysics Data System (ADS)

    Bowker, Geoffrey C.; Baker, Karen; Millerand, Florence; Ribes, David

    This article presents Information Infrastructure Studies, a research area that takes up some core issues in digital information and organization research. Infrastructure Studies simultaneously addresses the technical, social, and organizational aspects of the development, usage, and maintenance of infrastructures in local communities as well as global arenas. While infrastructure is understood as a broad category referring to a variety of pervasive, enabling network resources such as railroad lines, plumbing and pipes, electrical power plants and wires, this article focuses on information infrastructure, such as computational services and help desks, or federating activities such as scientific data repositories and archives spanning the multiple disciplines needed to address such issues as climate warming and the biodiversity crisis. These are elements associated with the internet and, frequently today, associated with cyberinfrastructure or e-science endeavors. We argue that a theoretical understanding of infrastructure provides the context for needed dialogue between design, use, and sustainability of internet-based infrastructure services. This article outlines a research area and outlines overarching themes of Infrastructure Studies. Part one of the paper presents definitions for infrastructure and cyberinfrastructure, reviewing salient previous work. Part two portrays key ideas from infrastructure studies (knowledge work, social and political values, new forms of sociality, etc.). In closing, the character of the field today is considered.

  9. Permafrost Hazards and Linear Infrastructure

    NASA Astrophysics Data System (ADS)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  10. Development of a lunar infrastructure

    NASA Technical Reports Server (NTRS)

    Burke, J. D.

    1988-01-01

    The problem of building an infrastructure on the moon is discussed, assuming that earth-to-moon and moon-to-earth transport will be available. The sequence of events which would occur in the process of building an infrastructure is examined. The human needs which must be met on a lunar base are discussed, including minimal life support, quality of life, and growth stages. The technology available to meet these needs is reviewed and further research in fields related to a lunar base, such as the study of the moon's polar regions and the limits of lunar agriculture, is recommended.

  11. International Needs for Infrastructure Nde

    NASA Astrophysics Data System (ADS)

    Popovics, John; Boller, Christian; Cawley, Peter; Spencer, Billie F.; Wang, Ming L.; Washer, Glenn

    2009-03-01

    The Aging of Infrastructure is a world wide problem of increasing importance, with the specifics varying from region to region depending on the age and nature of critical structures. It is clear that the NDE and SHM tools being developed by the QNDE community can play an important role in addressing the Aging Infrastructure problem, and the special evening session is designed to provide perspective to the developers of that technology through an overview of the international needs. A panel of speakers with experience with the unique situations in different regions of the world will first make a series of short presentations. This will be followed by a general discussion period.

  12. Power transmission line monitoring system

    SciTech Connect

    Seppa, T.O.

    1993-08-17

    A method for monitoring the sag of an overhead power transmission line comprising the steps of: measuring the tension of the power line; producing an electrical signal representative of the tension measurement; processing said electrical signal in accordance with a predetermined tension-sag relationship to produce a second signal which is a function of sag of the power line; transmitting said second electrical signal to a distant location in a predetermined transmission mode; receiving the second signal at the distant location whereby current in the power line is adjusted in accordance with the received second signal.

  13. Feasibility demonstration of a novel, flat-belt, continuously variable transmission for automotive and electric-hybrid vehicle application. Final report

    SciTech Connect

    Kumm, E.L.

    1984-05-01

    The performance of the Kumm Flat Belt Continuously Variable Transmission (CVT) was determined over its design input speed, output torque, and speed ratio range. This report documents both the tests results and the design, fabrication, and assembly activities. A novel flat belt pulley concept is used in the CVT. This arrangement significantly reduces the required width of the pulleys and their actuators as compared to pulleys whose sheaves are moved axially by actuators to vary the belt radius ratio or pulley speed ratio. The operation of the flat belt pulley guideway discs positioning the belt by moving belt drive elements radially is shown.

  14. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.

    PubMed

    Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A

    2013-07-16

    We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.

  15. Space Transportation Infrastructure Supported By Propellant Depots

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Woodcock, Gordon

    2011-01-01

    A space transportation infrastructure is described that utilizes propellant depots to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicles such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to a Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing, and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. A Mars Orbital Depot is also described to support ongoing Mars missions. New concepts for vehicle designs are presented that can be launched on current 5-meter diameter expendable launch vehicles. These new reusable vehicle concepts include a LEO Depot, L1 Depot, and Mars Orbital Depot based on International Space Station (ISS) heritage hardware. The high-energy depots at L1 and Mars orbit are compatible with, but do not require, electric propulsion tug use for propellant and/or cargo delivery. New reusable in-space crew transportation vehicles include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot and the L1 Depot, a new reusable Lunar Lander for crew transportation between the L1 Depot and the lunar surface, and a Deep Space Habitat (DSH) to support crew missions from the L1 Depot to ESL2, Asteroid, and Mars destinations. A 6 meter diameter Mars lander concept is presented that can be launched without a fairing based on the Delta IV heavy Payload Planners Guide, which indicates feasibility of a 6.5 meter fairing. This lander would evolve to re-usable operations when propellant production is established on Mars. Figure 1 provides a summary of the possible missions this infrastructure can support. Summary mission profiles are presented

  16. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  17. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while

  18. EPA's Ongoing Green Infrastructure Research

    EPA Science Inventory

    Green Infrastructure is a concept originating in the United States in the mid-1990's that highlights the importance of the natural environment in decisions about land use planning. In particular there is an emphasis on the “life support” functions provided by the natural environm...

  19. Managing Mission-Critical Infrastructure

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2012-01-01

    In the library context, they depend on sophisticated business applications specifically designed to support their work. This infrastructure consists of such components as integrated library systems, their associated online catalogs or discovery services, and self-check equipment, as well as a Web site and the various online tools and services…

  20. Impact of Declining Rural Infrastructure.

    ERIC Educational Resources Information Center

    McKenzie, Fiona Haslem

    A study investigated the impact of declining rural community infrastructure on social, environmental, and economic well-being in Western Australia's central wheatbelt. Questionnaires were completed by 398 residents of the central wheatbelt, on-farm interviews were conducted with 68 respondents, and 4 focus groups were held in area towns.…

  1. Infrastructure for large space telescopes

    NASA Astrophysics Data System (ADS)

    MacEwen, Howard A.; Lillie, Charles F.

    2016-10-01

    It is generally recognized (e.g., in the National Aeronautics and Space Administration response to recent congressional appropriations) that future space observatories must be serviceable, even if they are orbiting in deep space (e.g., around the Sun-Earth libration point, SEL2). On the basis of this legislation, we believe that budgetary considerations throughout the foreseeable future will require that large, long-lived astrophysics missions must be designed as evolvable semipermanent observatories that will be serviced using an operational, in-space infrastructure. We believe that the development of this infrastructure will include the design and development of a small to mid-sized servicing vehicle (MiniServ) as a key element of an affordable infrastructure for in-space assembly and servicing of future space vehicles. This can be accomplished by the adaptation of technology developed over the past half-century into a vehicle approximately the size of the ascent stage of the Apollo Lunar Module to provide some of the servicing capabilities that will be needed by very large telescopes located in deep space in the near future (2020s and 2030s). We specifically address the need for a detailed study of these servicing requirements and the current proposals for using presently available technologies to provide the appropriate infrastructure.

  2. Internet 2 Distributed Storage Infrastructure.

    ERIC Educational Resources Information Center

    Simco, Greg

    2003-01-01

    The Distributed Storage Infrastructure (DSI) project, a cooperative effort of the University of Tennessee and University of North Carolina, is an example of the Internet 2 (I2) efforts to enable remote collaboration among the research and educational communities. It extends the domain of a distributed high-speed computing environment to enable…

  3. Green Infrastructure Models and Tools

    EPA Science Inventory

    The objective of this project is to modify and refine existing models and develop new tools to support decision making for the complete green infrastructure (GI) project lifecycle, including the planning and implementation of stormwater control in urban and agricultural settings,...

  4. 2009 Infrastructure Platform Review Report

    SciTech Connect

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass program‘s Infrastructure platform review meeting, held on February 19, 2009, at the Marriott Residence Inn, National Harbor, Maryland.

  5. Dynamic Line Rating Oncor Electric Delivery Smart Grid Program

    SciTech Connect

    Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie

    2013-05-04

    Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operation’s State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar

  6. Airborne biological hazards and urban transport infrastructure: current challenges and future directions.

    PubMed

    Nasir, Zaheer Ahmad; Campos, Luiza Cintra; Christie, Nicola; Colbeck, Ian

    2016-08-01

    Exposure to airborne biological hazards in an ever expanding urban transport infrastructure and highly diverse mobile population is of growing concern, in terms of both public health and biosecurity. The existing policies and practices on design, construction and operation of these infrastructures may have severe implications for airborne disease transmission, particularly, in the event of a pandemic or intentional release of biological of agents. This paper reviews existing knowledge on airborne disease transmission in different modes of transport, highlights the factors enhancing the vulnerability of transport infrastructures to airborne disease transmission, discusses the potential protection measures and identifies the research gaps in order to build a bioresilient transport infrastructure. The unification of security and public health research, inclusion of public health security concepts at the design and planning phase, and a holistic system approach involving all the stakeholders over the life cycle of transport infrastructure hold the key to mitigate the challenges posed by biological hazards in the twenty-first century transport infrastructure.

  7. Transmission eigenvalues

    NASA Astrophysics Data System (ADS)

    Cakoni, Fioralba; Haddar, Houssem

    2013-10-01

    In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission

  8. The detection of lubricating oil viscosity changes in gearbox transmission systems driven by sensorless variable speed drives using electrical supply parameters

    NASA Astrophysics Data System (ADS)

    Abusaad, S.; Brethee, K.; Assaeh, M.; Zhang, R.; Gu, F.; Ball, A. D.

    2015-07-01

    Lubrication oil plays a decisive role to maintain a reliable and efficient operation of gear transmissions. Many offline methods have been developed to monitor the quality of lubricating oils. This work focus on developing a novel online method to diagnose oil degradation based on the measurements from power supply system to the gearbox. Experimental studies based on an 10kW industrial gearbox fed by a sensorless variable speed drive (VSD) shows that measurable changes in both static power and dynamic behaviour are different with lube oils tested. Therefore, it is feasible to use the static power feature to indicate viscosity changes at low and moderate operating speeds. In the meantime, the dynamic feature can separate viscosity changes for all different tested cases.

  9. Automatic transmission

    SciTech Connect

    Miura, M.; Aoki, H.

    1988-02-02

    An automatic transmission is described comprising: an automatic transmission mechanism portion comprising a single planetary gear unit and a dual planetary gear unit; carriers of both of the planetary gear units that are integral with one another; an input means for inputting torque to the automatic transmission mechanism, clutches for operatively connecting predetermined ones of planetary gear elements of both of the planetary gear units to the input means and braking means for restricting the rotation of predetermined ones of planetary gear elements of both of the planetary gear units. The clutches are disposed adjacent one another at an end portion of the transmission for defining a clutch portion of the transmission; a first clutch portion which is attachable to the automatic transmission mechanism portion for comprising the clutch portion when attached thereto; a second clutch portion that is attachable to the automatic transmission mechanism portion in place of the first clutch portion for comprising the clutch portion when so attached. The first clutch portion comprising first clutch for operatively connecting the input means to a ring gear of the single planetary gear unit and a second clutch for operatively connecting the input means to a single gear of the automatic transmission mechanism portion. The second clutch portion comprising a the first clutch, the second clutch, and a third clutch for operatively connecting the input member to a ring gear of the dual planetary gear unit.

  10. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  11. Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    SciTech Connect

    Burman, K.; Olis, D.; Gevorgian, V.; Warren, A.; Butt, R.; Lilienthal, P.; Glassmire, J.

    2011-09-01

    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA), and British Virgin Islands (BVI) grids via a submarine cable system.

  12. Small passenger car transmission test: Mercury Lynx ATX transmission

    SciTech Connect

    Bujold, M P

    1981-09-01

    The small passenger car transmission test was initiated to supply electric vehicle manufacturers with technical information regarding the performance of commercially available transmissions. This information would enable EV manufacturers to design a more energy efficient vehicle. With this information the manufacturers would be able to estimate vehicle driving range as well as speed and torque requirements for specific road load performance characteristics. This report covers the 1981 Mercury Lynx ATX transaxle. This transmission was tested per a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. Under these test conditions the transmission attained maximum efficiencies in the 93% range for drive performance tests. The major results of this test are the torque, speed and efficiency curves which are located in the data section of this report. These graphs map performance characteristics for the Mercury Lynx ATX transmission.

  13. Small passenger car transmission test-Chevrolet 200 transmission

    NASA Technical Reports Server (NTRS)

    Bujold, M. P.

    1980-01-01

    The small passenger car transmission was tested to supply electric vehicle manufacturers with technical information regarding the performance of commerically available transmissions which would enable them to design a more energy efficient vehicle. With this information the manufacturers could estimate vehicle driving range as well as speed and torque requirements for specific road load performance characteristics. A 1979 Chevrolet Model 200 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. The transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. Torque, speed and efficiency curves map the complete performance characteristics for Chevrolet Model 200 transmission.

  14. Security Economics and Critical National Infrastructure

    NASA Astrophysics Data System (ADS)

    Anderson, Ross; Fuloria, Shailendra

    There has been considerable effort and expenditure since 9/11 on the protection of ‘Critical National Infrastructure' against online attack. This is commonly interpreted to mean preventing online sabotage against utilities such as electricity,oil and gas, water, and sewage - including pipelines, refineries, generators, storage depots and transport facilities such as tankers and terminals. A consensus is emerging that the protection of such assets is more a matter of business models and regulation - in short, of security economics - than of technology. We describe the problems, and the state of play, in this paper. Industrial control systems operate in a different world from systems previously studied by security economists; we find the same issues (lock-in, externalities, asymmetric information and so on) but in different forms. Lock-in is physical, rather than based on network effects, while the most serious externalities result from correlated failure, whether from cascade failures, common-mode failures or simultaneous attacks. There is also an interesting natural experiment happening, in that the USA is regulating cyber security in the electric power industry, but not in oil and gas, while the UK is not regulating at all but rather encouraging industry's own efforts. Some European governments are intervening, while others are leaving cybersecurity entirely to plant owners to worry about. We already note some perverse effects of the U.S. regulation regime as companies game the system, to the detriment of overall dependability.

  15. 76 FR 17934 - Infrastructure Protection Data Call

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HOMELAND SECURITY Infrastructure Protection Data Call AGENCY: National Protection and Programs Directorate, DHS...: Infrastructure Protection Data Call. OMB Number: 1670-NEW. Frequency: On occasion. Affected Public:...

  16. A Scalable Tools Communication Infrastructure

    SciTech Connect

    Buntinas, Darius; Bosilca, George; Graham, Richard L; Vallee, Geoffroy R; Watson, Gregory R.

    2008-01-01

    The Scalable Tools Communication Infrastructure (STCI) is an open source collaborative effort intended to provide high-performance, scalable, resilient, and portable communications and process control services for a wide variety of user and system tools. STCI is aimed specifically at tools for ultrascale computing and uses a component architecture to simplify tailoring the infrastructure to a wide range of scenarios. This paper describes STCI's design philosophy, the various components that will be used to provide an STCI implementation for a range of ultrascale platforms, and a range of tool types. These include tools supporting parallel run-time environments, such as MPI, parallel application correctness tools and performance analysis tools, as well as system monitoring and management tools.

  17. A modeling framework for investment planning in interdependent infrastructures in multi-hazard environments.

    SciTech Connect

    Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.; Nozick, Linda Karen; Prince, Michael

    2013-09-01

    Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research & Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorists actions based on assumptions regarding their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.

  18. Towards strength and stability : agent-based modeling of infrastructure markets.

    SciTech Connect

    North, M. J.; Decision and Information Sciences

    2001-01-01

    Complex Adaptive Systems (CASs) can be applied to investigate complex infrastructures and infrastructure interdependencies. Agent-based modeling (ABM) is a new CAS-based approach to the construction of models. The CAS agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) ABMs allow investigation of the electric power infrastructure, the natural gas infrastructure, and their interdependencies. The Swarm-based SMART models use sets of agents and interconnections to represent electric power and natural gas systems. A prototype virtual reality (VR) interface has also been constructed for a version of the SMART model. This tool is intended to explore the use of advanced interactive three-dimensional visualization in agent-based modeling. The Java-based FAST model is currently under construction. FAST is a complete redesign of the SMART models that includes improvements in the modeling environment, model detail, and representational fidelity. Developing ABMs is difficult but can be rewarding.

  19. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect

    Berscheid, Alan P.

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  20. Experimental determination of blast-wave pressure loading, thermal radiation protection, and electrical transmission loss for parabolic antenna models in simulated nuclear blast environments

    SciTech Connect

    George, J.H.

    1991-01-01

    A twelve-inch-diameter parabolic antenna model instrumented with eleven differential pressure sensors was tested at the Ballistics Research Laboratory, Aberdeen Proving Ground, Maryland. Transient pressure loading was determined for 37 different antenna model angular positions with respect to the direction of the blast wave at a peak overpressure of 3.0 pounds per square inch; limited data at 4.5 and 6.0 pounds per square inch were also investigated. The first millisecond of shock-wave interaction with the antenna features the most prominent fully reversed triangular pressure pulse. A blast function, F, was developed that accurately approximates the transient behavior of the blast wave resultant force and moment loading on the antenna model. The resultant blast force on the antenna model is minimized when the axis of the paraboloid of the model is rotated 82{degree} with respect to the direction of the blast wave. Four different thermal protective coatings were tested to evaluate the effects of coating color and thickness. Transmission-loss measurements were completed on eight different quartz-polyimide antenna models coated with Caapcoat and Ocean 477 thermal protective coatings.

  1. Infrastructure of electronic information management

    USGS Publications Warehouse

    Twitchell, G.D.

    2004-01-01

    The information technology infrastructure of an organization, whether it is a private, non-profit, federal, or academic institution, is key to delivering timely and high-quality products and services to its customers and stakeholders. With the evolution of the Internet and the World Wide Web, resources that were once "centralized" in nature are now distributed across the organization in various locations and often remote regions of the country. This presents tremendous challenges to the information technology managers, users, and CEOs of large world-wide corporations who wish to exchange information or get access to resources in today's global marketplace. Several tools and technologies have been developed over recent years that play critical roles in ensuring that the proper information infrastructure exists within the organization to facilitate this global information marketplace Such tools and technologies as JAVA, Proxy Servers, Virtual Private Networks (VPN), multi-platform database management solutions, high-speed telecommunication technologies (ATM, ISDN, etc.), mass storage devices, and firewall technologies most often determine the organization's success through effective and efficient information infrastructure practices. This session will address several of these technologies and provide options related to those that may exist and can be readily applied within Eastern Europe. ?? 2004 - IOS Press and the authors. All rights reserved.

  2. Decontamination of Drinking Water Infrastructure ...

    EPA Pesticide Factsheets

    Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.

  3. Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features

    SciTech Connect

    Toole, Gasper L.

    2009-01-01

    Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

  4. 75 FR 63826 - Transmission Infrastructure Program-TransWest Express Transmission Project Capacity

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... entities looking to transfer energy from the Carbon County, Wyoming area to the Clark County, Nevada area... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Western... Capacity AGENCY: Western Area Power Administration, Department of Energy. ACTION: Notice of request...

  5. [Infrastructure and adherence to hand hygiene: challenges to patient safety].

    PubMed

    Bathke, Janaína; de Cunico, Priscila Almeida; Maziero, Eliane Cristina Sanches; Cauduro, Fernanda Leticia Frates; Sarquis, Leila Maria Mansano; de Cruz, Elaine Drehmer Almeida

    2013-06-01

    Considering the importance of hands in the chain of transmission of microorganisms, this observational research investigated the material infrastructure and compliance of hand hygiene in an intensive care unit in the south of Brazil in 2010. The data was collected by direct non-participant observation and through the use of self-administered questionnaires to be completed by the 39 participants, which was analyzed with the assistance of the chi2 Test, descriptive statistics and quantitative discourse analysis. Although health professionals overestimate compliance rates, recognize the practice as relevant to the prevention of infection and refer there are no impeding factors, of the 1,277 opportunities observed, compliance was 26% and significantly lower before patient contact and the use of aseptic procedures than after patient contact: infrastructure was shown to be deficient. The results indicate risk to patient safety, and thus, the planning of corrective actions to promote hand washing is relevant.

  6. CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights

    SciTech Connect

    Eto, Joseph

    2003-07-30

    Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) and Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.

  7. Geospatial decision support framework for critical infrastructure interdependency assessment

    NASA Astrophysics Data System (ADS)

    Shih, Chung Yan

    Critical infrastructures, such as telecommunications, energy, banking and finance, transportation, water systems and emergency services are the foundations of modern society. There is a heavy dependence on critical infrastructures at multiple levels within the supply chain of any good or service. Any disruptions in the supply chain may cause profound cascading effect to other critical infrastructures. A 1997 report by the President's Commission on Critical Infrastructure Protection states that a serious interruption in freight rail service would bring the coal mining industry to a halt within approximately two weeks and the availability of electric power could be reduced in a matter of one to two months. Therefore, this research aimed at representing and assessing the interdependencies between coal supply, transportation and energy production. A proposed geospatial decision support framework was established and applied to analyze interdependency related disruption impact. By utilizing the data warehousing approach, geospatial and non-geospatial data were retrieved, integrated and analyzed based on the transportation model and geospatial disruption analysis developed in the research. The results showed that by utilizing this framework, disruption impacts can be estimated at various levels (e.g., power plant, county, state, etc.) for preventative or emergency response efforts. The information derived from the framework can be used for data mining analysis (e.g., assessing transportation mode usages; finding alternative coal suppliers, etc.).

  8. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    SciTech Connect

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system for purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.

  9. Network infrastructure for a large radiology environment

    NASA Astrophysics Data System (ADS)

    Humphrey, Louis M.; Do Van, Minh; Ravin, Carl E.

    1996-05-01

    As image transmission becomes a more important part of the way radiology departments operate, the need for a high speed network infrastructure has become more important. We have installed a high speed network in the department that uses the latest Asynchronous Transfer Mode (ATM) networking technology combined with Ethernet switching. This network combination is capable of handling a tremendous amount of data traffic while maintaining compatibility with the existing Ethernet environment. These network changes have significantly improved Ethernet throughput on some of the most heavily used segments of the network by effectively isolating common traffic onto different network segments using new network management software and capabilities that are the result of the ATM backbone. Additional capabilities have allowed us to provide a number of serves that would not have been available using older techniques and architecture. Careful planning of the network before any new installations or changes is important for overall network and traffic management. The installation of this high speed network has allowed us to make imaging within the department and throughout the Medical Center and the connected region a reality.

  10. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    Research infrastructures (RIs) are platforms integrating facilities, resources and services used by the research communities to conduct research and foster innovation. RIs include scientific equipment, e.g., sensor platforms, satellites or other instruments, but also scientific data, sample repositories or archives. E-infrastructures on the other hand provide the technological substratum and middleware to interlink distributed RI components with computing systems and communication networks. The resulting platforms provide the foundation for the design and implementation of RIs and play an increasing role in the advancement and exploitation of knowledge and technology. RIs are regarded as essential to achieve and maintain excellence in research and innovation crucial for the European Research Area (ERA). The implementation of RIs has to be considered as a long-term, complex development process often over a period of 10 or more years. The ongoing construction of Spatial Data Infrastructures (SDIs) provides a good example for the general complexity of infrastructure development processes especially in system-of-systems environments. A set of directives issued by the European Commission provided a framework of guidelines for the implementation processes addressing the relevant content and the encoding of data as well as the standards for service interfaces and the integration of these services into networks. Additionally, a time schedule for the overall construction process has been specified. As a result this process advances with a strong participation of member states and responsible organisations. Today, SDIs provide the operational basis for new digital business processes in both national and local authorities. Currently, the development of integrated RIs in Earth and Environmental Sciences is characterised by the following properties: • A high number of parallel activities on European and national levels with numerous institutes and organisations participating

  11. PRACE - The European HPC Infrastructure

    NASA Astrophysics Data System (ADS)

    Stadelmeyer, Peter

    2014-05-01

    The mission of PRACE (Partnership for Advanced Computing in Europe) is to enable high impact scientific discovery and engineering research and development across all disciplines to enhance European competitiveness for the benefit of society. PRACE seeks to realize this mission by offering world class computing and data management resources and services through a peer review process. This talk gives a general overview about PRACE and the PRACE research infrastructure (RI). PRACE is established as an international not-for-profit association and the PRACE RI is a pan-European supercomputing infrastructure which offers access to computing and data management resources at partner sites distributed throughout Europe. Besides a short summary about the organization, history, and activities of PRACE, it is explained how scientists and researchers from academia and industry from around the world can access PRACE systems and which education and training activities are offered by PRACE. The overview also contains a selection of PRACE contributions to societal challenges and ongoing activities. Examples of the latter are beside others petascaling, application benchmark suite, best practice guides for efficient use of key architectures, application enabling / scaling, new programming models, and industrial applications. The Partnership for Advanced Computing in Europe (PRACE) is an international non-profit association with its seat in Brussels. The PRACE Research Infrastructure provides a persistent world-class high performance computing service for scientists and researchers from academia and industry in Europe. The computer systems and their operations accessible through PRACE are provided by 4 PRACE members (BSC representing Spain, CINECA representing Italy, GCS representing Germany and GENCI representing France). The Implementation Phase of PRACE receives funding from the EU's Seventh Framework Programme (FP7/2007-2013) under grant agreements RI-261557, RI-283493 and RI

  12. Electrical Work in Schools.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto. School Business and Finance Branch.

    Most buildings rely on electricity for lighting, power, signals, and other communications. Electric energy is also used for heating and year-round thermal conditioning of spaces. Its ease of transmission, simple control and measurement, and relative safety make it a useful source of energy. This publication is intended to provide those persons…

  13. Japan's technology and manufacturing infrastructure

    NASA Technical Reports Server (NTRS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-01-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  14. Open Component Portability Infrastructure (OPENCPI)

    DTIC Science & Technology

    2009-11-01

    AFRL-RI-RS-TR-2009-257 Final Technical Report November 2009 OPEN COMPONENT PORTABILITY INFRASTRUCTURE (OPENCPI) Mercury ...ORGANIZATION NAME(S) AND ADDRESS(ES) Mercury Federal Systems, Inc. 1901 South Bell Street, Suite 402 Arlington, VA 22202-4511 8. PERFORMING ORGANIZATION...APPLICATIONS  30  6.0  REFERENCES  31  7.0  LIST OF ABBRVIATIONS AND ACRONYMS  32  APPENDIX A: ADDITIONAL REFERENCES  34  APPENDIX B:  MERCURY  CPI ITAR

  15. Critical node analysis (CNA) of electrical infrastructure networks

    NASA Astrophysics Data System (ADS)

    Venkateswaran, Venkat; Bennette, Walter

    2016-05-01

    This work addresses the problem of identifying the set of nodes in a power network critical to system operation. Formally, the CNA problem is the problem of identifying a minimum cardinality set of nodes to target in a power network in order to reduce throughput by a given factor. Since the defender may reroute flows in an attempt to restore throughput, the attack must anticipate and defeat this possibility. We develop here an algorithm to solve this problem. In our approach we model the problem as a bi-level optimization problem where the master problem attempts different attack combinations and the sub-problem responds with the best routing. The optimization problems that result from such a framework are mixed integer programs (MIPs), which we solve in our implementation using IBM CPLEX. The algorithm has been tested on several benchmark networks and appears to perform well. We have also developed variants that can be used for determining optimal restoration configuration post damage on large networks (4000 nodes, 8000 links) and for modeling propagation of failures after the initial attack. We report on computational experiments with these variants as well.

  16. Techniques to Remotely Identify and Evaluate Electrical Power System Infrastructure

    DTIC Science & Technology

    2006-02-01

    www.space.gc.ca/asc/eng/csa_sectors/earth/hyper_military.asp Dib, Ramzi, Line Parameters of Overhead Power Lines and Their Calculation Using the EMTP / ATP Line...locations in a substation switch yard. h (meter) Ev ( 115kV ) Ev (230kV) Ev (500kV) Hh( 115kV ) Hh(230kV) Hh(500kV) h = 0 meter 7 kV/m 5.5 kV/m 13.5 kV/m

  17. High current pulse transmission cable

    SciTech Connect

    Parsons, W.M.

    1990-09-28

    This invention is comprised of a transmission cable for carrying high current pulses in which an even numbered plurality of electrical conductors surrounds a central ground conductor. Each electrical conductor is connected so that it at any instant in time it will carry current of opposite polarity to the polarity carried by adjacent conductors. This arrangement cancels practically all of the external fields generated by current in the conductors.

  18. Integrating sea floor observatory data: the EMSO data infrastructure

    NASA Astrophysics Data System (ADS)

    Huber, Robert; Azzarone, Adriano; Carval, Thierry; Doumaz, Fawzi; Giovanetti, Gabriele; Marinaro, Giuditta; Rolin, Jean-Francois; Beranzoli, Laura; Waldmann, Christoph

    2013-04-01

    The European research infrastructure EMSO is a European network of fixed-point, deep-seafloor and water column observatories deployed in key sites of the European Continental margin and Arctic. It aims to provide the technological and scientific framework for the investigation of the environmental processes related to the interaction between the geosphere, biosphere, and hydrosphere and for a sustainable management by long-term monitoring also with real-time data transmission. Since 2006, EMSO is on the ESFRI (European Strategy Forum on Research Infrastructures) roadmap and has entered its construction phase in 2012. Within this framework, EMSO is contributing to large infrastructure integration projects such as ENVRI and COOPEUS. The EMSO infrastructure is geographically distributed in key sites of European waters, spanning from the Arctic, through the Atlantic and Mediterranean Sea to the Black Sea. It is presently consisting of thirteen sites which have been identified by the scientific community according to their importance respect to Marine Ecosystems, Climate Changes and Marine GeoHazards. The data infrastructure for EMSO is being designed as a distributed system. Presently, EMSO data collected during experiments at each EMSO site are locally stored and organized in catalogues or relational databases run by the responsible regional EMSO nodes. Three major institutions and their data centers are currently offering access to EMSO data: PANGAEA, INGV and IFREMER. In continuation of the IT activities which have been performed during EMSOs twin project ESONET, EMSO is now implementing the ESONET data architecture within an operational EMSO data infrastructure. EMSO aims to be compliant with relevant marine initiatives such as MyOceans, EUROSITES, EuroARGO, SEADATANET and EMODNET as well as to meet the requirements of international and interdisciplinary projects such as COOPEUS and ENVRI, EUDAT and iCORDI. A major focus is therefore set on standardization and

  19. Power transmission

    SciTech Connect

    Yale, O.S.

    1989-12-12

    This patent describes a power transmission. It comprises: in combination, a master gear having at least one annular tooth set, means for drivingly engaging the master gear with a power source, driven shaft, a yoke member attached to the shaft and including a screw pump housing extending radially with respect to the shaft with a pair of ports in spaced relation, a pump screw rotatable in the housing and a pump gear attached to the screw and engaging the annular tooth set, and a casing for transmission fluid. The pump housing being located for immersion in the fluid.

  20. Cascading of Fluctuations in Interdependent Energy Infrastructures. Gas-Grid Coupling

    SciTech Connect

    Chertkov, Michael; Lebedev, Vladimir; Backhaus, Scott N.

    2014-09-05

    The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals.

  1. Identifying, understanding, and analyzing critical infrastructure interdependencies.

    SciTech Connect

    Rinaldi, S. M.; Peerenboom, J. P.; Kelly, T. K.; Decision and Information Sciences

    2001-12-01

    The notion that our nation's critical infrastructures are highly interconnected and mutually dependent in complex ways, both physically and through a host of information and communications technologies (so-called 'cyberbased systems'), is more than an abstract, theoretical concept. As shown by the 1998 failure of the Galaxy 4 telecommunications satellite, the prolonged power crisis in California, and many other recent infrastructure disruptions, what happens to one infrastructure can directly and indirectly affect other infrastructures, impact large geographic regions and send ripples throughout the national a global economy. This article presents a conceptual framework for addressing infrastructure interdependencies that could serve as the basis for further understanding and scholarship in this important area. We use this framework to explore the challenges and complexities of interdependency. We set the stage for this discussion by explicitly defining the terms infrastructure, infrastructure dependencies, and infrastructure interdependencies and introducing the fundamental concept of infrastructures as complex adaptive systems. We then focus on the interrelated factors and system conditions that collectively define the six dimensions. Finally, we discuss some of the research challenges involved in developing, applying, and validating modeling and simulation methodologies and tools for infrastructure interdependency analysis.

  2. Decision support for mitigating the risk of tree induced transmission line failure in utility rights-of-way.

    PubMed

    Poulos, H M; Camp, A E

    2010-02-01

    Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.

  3. Methodology for prioritizing cyber-vulnerable critical infrastructure equipment and mitigation strategies.

    SciTech Connect

    Dawson, Lon Andrew; Stinebaugh, Jennifer A.

    2010-04-01

    The Department of Homeland Security (DHS), National Cyber Security Division (NSCD), Control Systems Security Program (CSSP), contracted Sandia National Laboratories to develop a generic methodology for prioritizing cyber-vulnerable, critical infrastructure assets and the development of mitigation strategies for their loss or compromise. The initial project has been divided into three discrete deliverables: (1) A generic methodology report suitable to all Critical Infrastructure and Key Resource (CIKR) Sectors (this report); (2) a sector-specific report for Electrical Power Distribution; and (3) a sector-specific report for the water sector, including generation, water treatment, and wastewater systems. Specific reports for the water and electric sectors are available from Sandia National Laboratories.

  4. US EPA/ORD Condition Assessment Research for Drinking Water Conveyance Infrastructure

    EPA Science Inventory

    This presentation describes research on condition assessment for drinking water transmission and distribution systems that EPA is conducting under the U.S. Environmental Protection Agency’s Aging Water Infrastructure (AWI) Research Program. This research program will help U.S. ...

  5. Development of Latvian Information Infrastructure and Tasks for Latvian Academic Library.

    ERIC Educational Resources Information Center

    Karnitis, Edwin

    1995-01-01

    Presents an overview of information infrastructure development in Latvia and discusses the role of the Latvian Academic Library. Describes Latvia's telecommunications, information network, data transmission, and electronic information services and reviews the types of electronic information sources that have been created. (Author/JMV)

  6. HIV Transmission

    MedlinePlus

    ... Abroad Treatment Basic Statistics Get Tested Find an HIV testing site near you. Enter ZIP code or city Follow HIV/AIDS CDC HIV CDC HIV/AIDS See RSS | ... on HIV Syndicated Content Website Feedback HIV/AIDS HIV Transmission Language: English Transmisión del VIH Recommend on ...

  7. Electric Vehicle Charging and the California Power Sector: Evaluating the Effect of Location and Time on Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Sohnen, Julia Meagher

    This thesis explores the implications of the increased adoption of plug-in electric vehicles in California through its effect on the operation of the state's electric grid. The well-to-wheels emissions associated with driving an electric vehicle depend on the resource mix of the electricity grid used to charge the battery. We present a new least-cost dispatch model, EDGE-NET, for the California electricity grid consisting of interconnected sub-regions that encompass the six largest state utilities that can be used to evaluate the impact of growing electric vehicle demand on existing power grid infrastructure system and energy resources. This model considers spatiality and temporal dynamics of energy demand and supply when determining the regional impacts of additional charging profiles on the current electricity network. Model simulation runs for one year show generation and transmission congestion to be reasonable similar to historical data. Model simulation results show that average emissions and system costs associated with electricity generation vary significantly by time of day, season, and location. Marginal cost and emissions also exhibit seasonal and diurnal differences, but show less spatial variation. Sensitivity of demand analysis shows that the relative changes to average emissions and system costs respond asymmetrically to increases and decreases in electricity demand. These results depend on grid mix at the time and the marginal power plant type. In minimizing total system cost, the model will choose to dispatch the lowest-cost resource to meet additional vehicle demand, regardless of location, as long as transmission capacity is available. Location of electric vehicle charging has a small effect on the marginal greenhouse gas emissions associated with additional generation, due to electricity losses in the transmission grid. We use a geographically explicit, charging assessment model for California to develop and compare the effects of two charging

  8. Computational Infrastructure for Geodynamics (CIG)

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.

    2004-12-01

    Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to

  9. Building a North American Spatial Data Infrastructure

    USGS Publications Warehouse

    Coleman, D.J.; Nebert, D.D.

    1998-01-01

    This paper addresses the state of spatial data infrastructures within North America in late 1997. After providing some background underlying the philosophy and development of the SDI concept, the authors discuss effects of technology, institutions, and standardization that confront the cohesive implementation of a common infrastructure today. The paper concludes with a comparative framework and specific examples of elements and initiatives defining respective spatial data infrastructure initiatives in the United States and Canada.

  10. Critical Infrastructures: Background, Policy, and Implementation

    DTIC Science & Technology

    2008-10-10

    Government Accountability Office, Critical Infrastructure Protection: Challenges for Selected Agencies and Industry Sectors. Repot to the Committee on...set up groups within the federal government to develop and implement plans that would protect government -operated infrastructures and called for a...dialogue between government and the private sector to develop a National Infrastructure Assurance Plan that would protect all of the nation’s critical

  11. Emergent Risks In Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Dynes, Scott

    Firms cannot function successfully without managing a host of internal and external organizational and process interdependencies. Part of this involves business continuity planning, which directly aects how resilient arm and its business sector are in the face of disruptions. This paper presents the results of eld studies related to information risk management practices in the health care and retail sectors. The studies explore information risk management coordinating signals within and across rms in these sectors as well as the potential eects of cyber disruptions on the rms as stand-alone entities and as part of a critical infrastructure. The health care case study investigates the impact of the Zotob worm on the ability to deliver medical care and treatment. The retail study examines the resilience of certain elements of the food supply chain to cyber disruptions.

  12. The Moral Dimensions of Infrastructure.

    PubMed

    Epting, Shane

    2016-04-01

    Moral issues in urban planning involving technology, residents, marginalized groups, ecosystems, and future generations are complex cases, requiring solutions that go beyond the limits of contemporary moral theory. Aside from typical planning problems, there is incongruence between moral theory and some of the subjects that require moral assessment, such as urban infrastructure. Despite this incongruence, there is not a need to develop another moral theory. Instead, a supplemental measure that is compatible with existing moral positions will suffice. My primary goal in this paper is to explain the need for this supplemental measure, describe what one looks like, and show how it works with existing moral systems. The secondary goal is to show that creating a supplemental measure that provides congruency between moral systems that are designed to assess human action and non-human subjects advances the study of moral theory.

  13. Enhancing Sustainable Communities With Green Infrastructure

    EPA Pesticide Factsheets

    This publication aims to help local governments, water utilities, nonprofit organizations, neighborhood groups, and other stakeholders integrate green infrastructure strategies into plans that can transform their communities.

  14. Tools for 21st Century infrastructure protection

    SciTech Connect

    Trost, S.R.

    1997-07-01

    The President`s Commission on Critical Infrastructure Protection (PCCEP) was formed under Executive Order 13010 to recommend a national strategy for protecting and assuring critical infrastructures. Eight critical infrastructure elements have been identified. This paper provides an overview of tools necessary to conduct in depth analysis and characterization of threats, vulnerabilities, and interdependencies of critical infrastructure subsystems, and their interaction with each other. Particular emphasis is placed on research requirements necessary to develop the next generation of tools. In addition to tools, a number of system level research suggestions are made including developing a system architecture, data flow models, national level resources, and a national test bed.

  15. Perspective: The Climate-Population-Infrastructure Modeling and Simulation Fertile Area for New Research

    SciTech Connect

    Allen, Melissa R; Fernandez, Steven J; Walker, Kimberly A; Fu, Joshua S

    2014-01-01

    Managing the risks posed by climate change and extreme weather to energy production and delivery is a challenge to communities worldwide. As climate conditions change, populations will shift, and demand will re-locate; and networked infrastructures will evolve to accommodate new load centers, and, hopefully, minimize vulnerability to natural disaster. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. Displaced population creates new demand for built infrastructure that in turn generates new economic activity that attracts new workers and associated households to the new locations. Infrastructures and their interdependencies will change in reaction to climate drivers as the networks expand into new population areas and as portions of the networks are abandoned as people leave. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. By combining climate and weather data, engineering algorithms and social theory it has been only recently possible to examine electricity demand response to increased climactic temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. These emerging results suggest a research agenda of coupling these disparate modelling approaches to understand the implications of climate change for protecting the nation s critical infrastructure.

  16. Essential infrastructure: national nuclear regulation.

    PubMed

    Paperiello, Carl J

    2011-01-01

    In order for nuclear power to expand to many countries that do not currently have it, it will be essential for these countries to have laws, regulations, guidance and organizations that can license or permit nuclear power plants and support nuclear facilities, ensure compliance by inspection, and enforce nuclear regulations. The viability of nuclear power worldwide depends on an extremely high level of safety everywhere, and compliance with a number of international treaties is required before supplier nations will provide the material, both hardware and software, to build and operate nuclear power plants. While infrastructure support can be obtained from the IAEA and other countries, an essential core of expertise must exist in the country seeking to establish domestic nuclear power generation. While some reliance can be placed on the safety reviews of standard reactor designs by the nuclear regulators in supplier nations, the certification of fuel design, the quality of instruments, and the matching of a new reactor to a proposed site in the importing nation will require site-specific reviews. National arrangements are also needed for emergency preparedness, environmental protection, fuel transportation and the storage, transportation and disposal of radioactive waste. If foreign contractors and consultants are engaged to perform much of the technical work for the regulatory body(s) that has to be performed by the importing nation, that nation must have a core cadre of technically knowledgeable regulators and an organization to provide management and oversight of the contractors and consultants. Consistency in national nuclear regulations, the deployment of standardized nuclear power plant designs and standardized supporting material infrastructure can promote the safe and secure worldwide growth in nuclear power.

  17. SPRUCE experiment data infrastructure development

    NASA Astrophysics Data System (ADS)

    Krassovski, Misha

    2013-04-01

    The SPRUCE experiment (http://mnspruce.ornl.gov) is the primary component of the Terrestrial Ecosystem Science Scientific Focus Area of ORNL's Climate Change Program, focused on terrestrial ecosystems and the mechanisms that underlie their responses to climatic change. The experimental work is to be conducted in a Picea mariana [black spruce] - Sphagnum spp. bog forest in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The site is located at the southern margin of the boreal peatland forest. It is an ecosystem considered especially vulnerable to climate change, and anticipated to be near its tipping point with respect to climate change. Responses to warming and interactions with increased atmospheric CO2 concentration are anticipated to have important feedbacks on the atmosphere and climate, because of the high carbon stocks harbored by such ecosystems. Both direct and indirect effects of these experimental perturbations will be analyzed to develop and refine models needed for full Earth system analyses. The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) provides data management support for the SPRUCE experiment including data infrastructure design, development, long-term storage and dissemination. This presentation is going to show how the whole data infrastructure was designed, discuss major problems that are common for remote observational systems and unique for this particular implementation. It will demonstrate the dataflow starting from the sensors and ending at the archiving/distribution points, discuss types of hardware and software used, and examine considerations that were used to choose them.

  18. MATHEMATICAL MODELS FOR SOME RADIO-FREQUENCY TRANSMISSION-LINE TRANSFORMERS

    DTIC Science & Technology

    MATRICES(MATHEMATICS), *PHASE SHIFT CIRCUITS, *RADIOFREQUENCY, *TRANSFORMERS, *TRANSMISSION LINES, BROADBAND, DIELECTRIC PROPERTIES, ELECTRICAL IMPEDANCE, FERRITES, IMPEDANCE MATCHING , MATHEMATICAL ANALYSIS.

  19. Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector

    SciTech Connect

    2009-12-31

    power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery

  20. Rotorcraft transmission

    NASA Technical Reports Server (NTRS)

    Coy, John J.

    1987-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command share an interest in advancing the technology for helicopter propulsion systems. In particular, this presentation outlines that portion of the program that applies to the drive train and its various mechanical components. The major goals of the program are to increase the life, reliability, and maintainability; reduce the weight, noise, and vibration; and maintain the relatively high mechanical efficiency of the gear train. The current activity emphasizes noise reduction technology and analytical code development followed by experimental verification. Selected significant advances in technology for transmissions are reviewed, including advanced configurations and new analytical tools. Finally, the plan for transmission research in the future is presented.