Sample records for electro magnetic interference

  1. Single phase bi-directional AC-DC converter with reduced passive components size and common mode electro-magnetic interference

    DOEpatents

    Mi, Chris; Li, Siqi

    2017-01-31

    A bidirectional AC-DC converter is presented with reduced passive component size and common mode electro-magnetic interference. The converter includes an improved input stage formed by two coupled differential inductors, two coupled common and differential inductors, one differential capacitor and two common mode capacitors. With this input structure, the volume, weight and cost of the input stage can be reduced greatly. Additionally, the input current ripple and common mode electro-magnetic interference can be greatly attenuated, so lower switching frequency can be adopted to achieve higher efficiency.

  2. Direction Finding in the Presence of Complex Electro-Magnetic Environment.

    DTIC Science & Technology

    1995-06-29

    compiling adversely affects the resolution capabilities of the MUSIC algorithm. A technique utilizing the terminal impedance matrix is devised to...performance of the MUSIC algorithm is also investigated.Interference power, as little as 15dB below the signal power from the near field scatterer greatly...reduces.the resolution capabilities of the MUSIC algorithm. A new away configuration is devised to suppress the interference. Modification of the MUSIC

  3. Machine Learning-Aided, Robust Wideband Spectrum Sensing for Cognitive Radios

    DTIC Science & Technology

    2015-06-12

    to even Approved for public release; distribution is unlimited. 2 on the order of a giga -Hertz (GHz). Due to wide bandwidth and noncontiguous...Frequency Band CS Compressive Sampling DFT Discrete Fourier Transform EMI Electro Magnetic Interference FFT Fast Fourier Transform GHz Giga Hertz Hz Hertz

  4. Electro-optic Mach-Zehnder Interferometer based Optical Digital Magnitude Comparator and 1's Complement Calculator

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Raghuwanshi, Sanjeev Kumar

    2016-06-01

    The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.

  5. 49 CFR Appendix A to Part 236 - Civil Penalties 1

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... electro-magnetic, electronic, or electrical apparatus 1,000 2,000 236.9Selection of circuits through....4Interference with normal functioning of device 5,000 7,500 236.5Design of control circuits on closed circuit principle 1,000 2,000 236.6Hand-operated switch equipped with switch circuit controller 1,000 2,000 236...

  6. 49 CFR Appendix A to Part 236 - Civil Penalties 1

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... electro-magnetic, electronic, or electrical apparatus 1,000 2,000 236.9Selection of circuits through....4Interference with normal functioning of device 5,000 7,500 236.5Design of control circuits on closed circuit principle 1,000 2,000 236.6Hand-operated switch equipped with switch circuit controller 1,000 2,000 236...

  7. Automatic Radiated Susceptibility Test System for Payload Equipment

    NASA Technical Reports Server (NTRS)

    Ngo, Hoai T.; Sturman, John C.; Sargent, Noel B.

    1995-01-01

    An automatic radiated susceptibility test system (ARSTS) was developed for NASA Lewis Research Center's Electro-magnetic Interference laboratory. According to MSFC-SPEC 521B, any electrical or electronic equipment that will be transported by the spacelab and space shuttle must be tested for susceptibility to electromagnetic interference. This state-of-the-art automatic test system performs necessary calculations; analyzes, processes, and records a great quantity of measured data; and monitors the equipment being tested in real-time and with minimal user intervention. ARSTS reduces costly test time, increases test accuracy, and provides reliable test results.

  8. Analog electro-optical readout of SiPMs achieves fast timing required for time-of-flight PET/MR

    PubMed Central

    Bieniosek, MF

    2015-01-01

    The design of combined positron emission tomography/magnetic resonance (PET/MR) systems presents a number of challenges to engineers, as it forces the PET system to acquire data in space constrained environment that is sensitive to electro-magnetic interference and contains high static, radio frequency (RF) and gradient fields. In this work we validate fast timing performance of a PET scintillation detector using a potentially very compact, very low power, and MR compatible readout method in which analog silicon photomultipliers (SiPM) signals are transmitted optically away from the MR bore with little or even no additional readout electronics. This analog ‘electro-optial’ method could reduce the entire PET readout in the MR bore to two compact, low power components (SiPMs and lasers). Our experiments show fast timing performance from analog electro-optical readout with and without pre-amplification. With 3mm × 3mm × 20mm lutetium-yttrium oxyorthosilicate (LYSO) crystals and Excelitas SiPMs the best two-sided fwhm coincident timing resolution achieved was 220 +/- 3ps in electrical mode, 230 +/- 2ps in electro-optical with preamp mode, and 253 +/- 2ps in electro-optical without preamp mode. Timing measurements were also performed with Hamamatsu SiPMs and 3mm × 3mm × 5mm crystals. In the future the timing degradation seen can be further reduced with lower laser noise or improvements SiPM rise time or gain. PMID:25905626

  9. Grounding and Shielding Requirements for the Radiation and EMP Environments of an Underground Nuclear Test

    DTIC Science & Technology

    1978-03-17

    the trailers as Electro-magnetic Interference ( EMI ) tight as possible; such items included removal of all unnecessary wiring penetrations, conductive...20 12. CABLE TRAYS, GROUT-FILLED ............ .................. 21 13. THE MESA TRAILER PARK CONSIDERATIONS...enclosed cable shields. 12. The mesa trailer park received some attention regarding the GSP, although not as intense as the tunnel environment. Specifically

  10. Electro-optical hybrid slip ring

    NASA Astrophysics Data System (ADS)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility. A laboratory scale non-contact Electro-Optical Hybrid Slip Ring system was successfully constructed, and its performance was determined. Experimental results affirmed the advantages of this new technology over current slip ring design.

  11. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    PubMed Central

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  12. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  13. Fiberoptics technology and its application to propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1983-01-01

    Electro-optical systems have many advantages over conventional electrical systems. Among these are optics' insensitivity to electro-magnetic interference, good electrical isolation and the ability to make measurements in highly explosive areas without risk. These advantages promise to help improve the reliability of future aircraft engine control systems which will be entirely electronic digital. To improve the reliability of these systems, especially against lightning strikes, passive, optical, sensors and fiberoptic transmission lines are being considered for use in future engine systems. Also under consideration are actuators which receive their command signals over fiber optic cables. This paper reviews concepts used for optical instrumentation and actuation systems and discusses work being done by NASA Lewis Research Center in this area.

  14. An active interference projector for the electro-optical test facility

    NASA Astrophysics Data System (ADS)

    Crowe, D. G.; Nowak, T. M.

    1980-09-01

    A projection system is described which can simulate emissions from flares, muzzle-flashes, shellbursts, and other emissive agents which may degrade the performance of electro-optical systems in the 0.5-15 micron spectral range. The simulation capability obtained will allow the apparent radiance and temporal characteristics of muzzleflashes and shellbursts to be mimicked at simulated ranges as close as 23 m within the Electro-Optical Test Facility. This demonstrates that tests of electro-optical system performance in the presence of interferers can be performed under laboratory conditions with higher repeatability and lower cost than field tests.

  15. Determining Tactical Usage Of Non-Lethal Weapons For Fixed Site Security Of U.S. Embassies

    DTIC Science & Technology

    2017-06-01

    Nigeria, including a bombing of the UN headquarters building in Abuja in 2011 (Mshelizza, 2011). Figure 2 shows a map of Nigeria, and Figure 3 shows a...radiofrequency countermeasures; electro-magnetic ( EM ) compatibility and deception; EM hardening, interference, intrusion, and jamming; electronic masking...Boko Haram claim U.N. bombing . Reuters. Retrieved from http://www.reuters.com/article/us-nigeria- bombing -claim- idUSTRE77S3ZO20110829 Nance, R. E

  16. Magnetic light cloaking control in the marine planktonic copepod Sapphirina

    NASA Astrophysics Data System (ADS)

    Kashiwagi, H.; Mizukawa, Y.; Iwasaka, M.; Ohtsuka, S.

    2017-05-01

    We investigated the light cloaking behavior of the marine planktonic copepod Sapphirina under a magnetic field. Optical interferences in the multi-laminated guanine crystal layer beneath the dorsal body surface create a brilliant structural color, which can be almost entirely removed by changing the light reflection. In the investigation, we immersed segments of Sapphirina in seawater contained in an optical chamber. When the derived Sapphirina segments were attached to the container surface, they were inert to magnetic fields up to 300 mT. However, when the back plate segments were attached to the substrate at a point, with most of the plate floating in the seawater, the plate rotated oppositely to the applied magnetic field. In addition, the brilliant parts of the Sapphirina back plate rotated backward and forward by changing the magnetic field directions. Our experiment suggests a new model of an optical micro-electro-mechanical system that is controllable by magnetic fields.

  17. Non-hermetic fiber optic transceivers for space applications

    NASA Astrophysics Data System (ADS)

    Tabbert, Chuck

    2017-11-01

    There is a commercial trend in high data-rate systems to place optical components in close proximity to the data source/sink. This trend forgoes the traditional module packaging approach to create compact components that are embedded near or within the package of high-performance ASICs. This approach reduces the power consumption and electro-magnetic interference (EMI) effects by reducing the length of copper interconnect signal paths. We present an overview of commercial trends and methods for fielding this technology within spacecraft.

  18. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI.

    PubMed

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S

    2015-05-07

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  19. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI

    NASA Astrophysics Data System (ADS)

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.

    2015-05-01

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  20. Sono-electro-magnetic therapy for treating chronic pelvic pain syndrome in men: a randomized, placebo-controlled, double-blind trial.

    PubMed

    Kessler, Thomas M; Mordasini, Livio; Weisstanner, Christian; Jüni, Peter; da Costa, Bruno R; Wiest, Roland; Thalmann, George N

    2014-01-01

    To assess the efficacy and safety of sono-electro-magnetic therapy compared to placebo in men with refractory CPPS. In a randomized, placebo-controlled, double-blind single center trial, we assessed the effect of sono-electro-magnetic therapy in men with treatment refractory CPPS. Sixty male patients were randomly assigned to treatment with either sono-electro-magnetic (n = 30) or placebo therapy (n = 30) for 12 weeks. The primary outcome was a change in the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) from baseline to 12 weeks. The 12-week difference between sono-electro-magnetic and placebo therapy in changes of the NIH-CPSI total score was -3.1 points (95% CI -6.8 to 0.6, p = 0.11). In secondary comparisons of NIH-CPSI sub-scores, we found differences between groups most pronounced for the quality-of-life sub-score (difference at 12 weeks -1.6, 95% CI -2.8 to -0.4, p = 0.015). In stratified analyses, the benefit of sono-electro-magnetic therapy appeared more pronounced among patients who had a symptom duration of 12 months or less (difference in NIH-CPSI total score -8.3, 95% CI -14.5 to 2.6) than in patients with a longer symptom duration (-0.8, 95% CI -4.6 to 3.1; p for interaction = 0.023). Sono-electro-magnetic therapy did not result in a significant improvement of symptoms in the overall cohort of treatment refractory CPPS patients compared to placebo treatment. Subgroup analysis indicates, however, that patients with a symptom-duration of 12 months or less may benefit from sono-electro-magnetic therapy, warranting larger randomized controlled trials in this subpopulation. ClinicalTrials.gov NCT00688506.

  1. Extreme Material Physical Properties and Measurements above 100 tesla

    NASA Astrophysics Data System (ADS)

    Mielke, Charles

    2011-03-01

    The National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility (PFF) at Los Alamos National Laboratory (LANL) offers extreme environments of ultra high magnetic fields above 100 tesla by use of the Single Turn method as well as fields approaching 100 tesla with more complex methods. The challenge of metrology in the extreme magnetic field generating devices is complicated by the millions of amperes of current and tens of thousands of volts that are required to deliver the pulsed power needed for field generation. Methods of detecting physical properties of materials are essential parts of the science that seeks to understand and eventually control the fundamental functionality of materials in extreme environments. De-coupling the signal of the sample from the electro-magnetic interference associated with the magnet system is required to make these state-of-the-art magnetic fields useful to scientists studying materials in high magnetic fields. The cutting edge methods that are being used as well as methods in development will be presented with recent results in Graphene and High-Tc superconductors along with the methods and challenges. National Science Foundation DMR-Award 0654118.

  2. Dynamic Strain Measured by Mach-Zehnder Interferometric Optical Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Yang, Chih-Min

    2012-01-01

    Optical fibers possess many advantages such as small size, light weight and immunity to electro-magnetic interference that meet the sensing requirements to a large extent. In this investigation, a Mach-Zehnder interferometric optical fiber sensor is used to measure the dynamic strain of a vibrating cantilever beam. A 3 × 3 coupler is employed to demodulate the phase shift of the Mach-Zehnder interferometer. The dynamic strain of a cantilever beam subjected to base excitation is determined by the optical fiber sensor. The experimental results are validated with the strain gauge. PMID:22737010

  3. Reflection and interference of electromagnetic waves in inhomogeneous media

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Kyle, H. L.

    1973-01-01

    Solutions were obtained of the wave equation for a plane horizontally polarized electro-magnetic wave incident on a semi infinite two dimensional inhomogeneous medium. Two problems were considered: An inhomogeneous half space, and an inhomogeneous layer of arbitrary thickness. Solutions of the wave equation were obtained in terms of Hankel functions with complex arguments. Numerical calculations were made of the reflection coefficient R at the interface of the homogeneous medium. The startling results show that the reflection coefficient for a complex dielectric constant with gradient, can be less than that of the same medium with zero gradient.

  4. The Scientific Papers of James Prescott Joule 2 Volume Set

    NASA Astrophysics Data System (ADS)

    Prescott Joule, James

    2011-03-01

    Volume 1: Description of an electro-magnetic engine; Description of an electro-magnetic engine, with experiments; On the use of electro-magnets made of iron wire for the electro-magnetic engine; Investigations in magnetism and electro-magnetism; Investigations in magnetism and electro-magnetism; Description of an electro-magnetic engine; On electro-magnetic forces; On electro-magnetic forces; On electro-magnetic forces; Description of a new electro-magnet; On a new class of magnetic forces; On voltaic apparatus; On the production of heat by voltaic electricity; On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis; On the electric origin of the heat of combustion; On the electrical origin of chemical heat; On Sir G. C. Haughton's experiments; On the heat evolved during the electrolysis of water; On the calorific effects of magneto-electricity, and on the mechanical value of heat; On the intermittent character of the voltaic current in certain cases of electrolysis; and on the intensities of various voltaic arrangements; On the changes of temperature produced by the rarefaction and condensation of air; On specific heat; On a new method for ascertaining the specific heat of bodies; Note on the employment of electrical currents for ascertaining the specific heat of bodies; On the mechanical equivalent of heat; On the existence of an equivalent relation between heat and the ordinary forms of mechanical power; On the heat disengaged in chemical combinations; On the effects of magnetism upon the dimensions of iron and steel bars; On matter, living force, and heat; On the mechanical equivalent of heat, as determined from the heat evolved by the function of fluids; On the theoretical velocity of sound; Expériences sur l'identité entre le calorique et la force méchanique. Détermination de l'équivalent par la chaleur dégagée pendant la friction du mercure; On shooting-stars; On the mechanical equivalent of heat, and on the constitution of elastic fluids; Some remarks on heat and the constitution of elastic fluids; On the mechanical equivalent of heat; On a remarkable appearance of lightning; On some amalgams; On the air-engine; Account of experiments with a powerful electro-magnet; On the economical production of mechanical effect from chemical forces; An account of some experiments with a large electro-magnet; Introductory research on the induction of magnetism by electric currents; On the fusion of metals by voltaic electricity; Note on Dalton's determination of the expansion of air by heat; On the utilization of the sewage of London and other large towns; Notice of experiments on the heat developed by friction in air; On the intensity of light during the recent solar eclipse; On an improved galvanometer; On the thermo-electricity of ferruginous metals, and on the thermal effects of stretching solid bodies; On the thermal effects of longitudinal compression of solids, with an investigation on the alterations of temperature accompanying changes of pressure in fluids; On some thermo-dynamic properties of solids; On the thermal effects of compressing fluids; On a method of testing the strength of steam-boilers; Experiments on the total heat of steam; Experiments on the passage of air through pipes and apertures in thin plates; On some amalgams; On the probable cause of electric storms; On the surface-condensation of steam; Notice of a compressing air-pump; Note on a mirage at Douglas; On a sensitive barometer; On a sensitive thermometer; Note on the meteor of February 6th, 1818; On a method of hardening steel wires for magnetic needles; On an instrument for showing rapid changes in magnetic declination; Determination of the dynamical equivalent of heat from the thermal effects of electric currents; Observations on the alteration of the freezing-point in thermometers; On a new

  5. Design and simulation of a 800 Mbit/s data link for magnetic resonance imaging wearables.

    PubMed

    Vogt, Christian; Buthe, Lars; Petti, Luisa; Cantarella, Giuseppe; Munzenrieder, Niko; Daus, Alwin; Troster, Gerhard

    2015-08-01

    This paper presents the optimization of electronic circuitry for operation in the harsh electro magnetic (EM) environment during a magnetic resonance imaging (MRI) scan. As demonstrator, a device small enough to be worn during the scan is optimized. Based on finite element method (FEM) simulations, the induced current densities due to magnetic field changes of 200 T s(-1) were reduced from 1 × 10(10) A m(-2) by one order of magnitude, predicting error-free operation of the 1.8V logic employed. The simulations were validated using a bit error rate test, which showed no bit errors during a MRI scan sequence. Therefore, neither the logic, nor the utilized 800 Mbit s(-1) low voltage differential swing (LVDS) data link of the optimized wearable device were significantly influenced by the EM interference. Next, the influence of ferro-magnetic components on the static magnetic field and consequently the image quality was simulated showing a MRI image loss with approximately 2 cm radius around a commercial integrated circuit of 1×1 cm(2). This was successively validated by a conventional MRI scan.

  6. Experimental Study for Reduction of Noises and Vibrations in Hermetic Type Compressor

    NASA Astrophysics Data System (ADS)

    Sano, Kiyoshi; Kawahara, Sadao; Akazawa, Teruyuki; Ishii, Noriaki

    A brushless DC motor with a permanent magnet rotor has been adopted for a scroll compressor for domestic-use air-conditioners because of a demand for compressor high efficiency. A waveform of the driving voltage in the inverter power supply unit is chopped by the PWM signal. Its duty ratio is increased/decreased to control the DC voltage in order to provide a wide range of rotation frequencies for the compressor. The driving voltage includes the carrier frequency and its harmonic components, which produce an electro-magnetic force in the moter, resulting in high electro-magnetic noise. In the present report, the author clarifies the relationships between the noise and the waveform of driving voltage and frequency response function of the motor. A method to improve the frequency response function by changing the stator shape in order to reduce electro-magnetic noise is presented. Subsequently, the influence on electro-magnetic noise from the waveform of driving voltage is examined. Furthermore, the electro-magnetic noises during inverter driving of an induction motor are presented.

  7. Polymer Coatings Reduce Electro-osmosis

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.

    1989-01-01

    Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.

  8. Electromechanical Frequency Filters

    NASA Astrophysics Data System (ADS)

    Wersing, W.; Lubitz, K.

    Frequency filters select signals with a frequency inside a definite frequency range or band from signals outside this band, traditionally afforded by a combination of L-C-resonators. The fundamental principle of all modern frequency filters is the constructive interference of travelling waves. If a filter is set up of coupled resonators, this interference occurs as a result of the successive wave reflection at the resonators' ends. In this case, the center frequency f c of a filter, e.g., set up of symmetrical λ/2-resonators of length 1, is given by f_c = f_r = v_{ph}/λ = v_{ph}/2l , where v ph is the phase velocity of the wave. This clearly shows the big advantage of acoustic waves for filter applications in comparison to electro-magnetic waves. Because v ph of acoustic waves in solids is about 104-105 smaller than that of electro-magnetic waves, much smaller filters can be realised. Today, piezoelectric materials and processing technologies exist that electromechanical resonators and filters can be produced in the frequency range from 1 kHz up to 10 GHz. Further requirements for frequency filters such as low losses (high resonator Q) and low temperature coefficients of frequency constants can also be fulfilled with these filters. Important examples are quartz-crystal resonators and filters (1 kHz-200 MHz) as discussed in Chap. 2, electromechanical channel filters (50 kHz and 130 kHz) for long-haul communication systems as discussed in this section, surface acoustic wave (SAW) filters (20 MHz-5 GHz), as discussed in Chap. 14, and thin film bulk acoustic resonators (FBAR) and filters (500 MHz-10 GHz), as discussed in Chap. 15.

  9. Note: An approach to 1000 T using the electro-magnetic flux compression.

    PubMed

    Nakamura, D; Sawabe, H; Takeyama, S

    2018-01-01

    The maximum magnetic field obtained by the electro-magnetic flux compression technique was investigated with respect to the initial seed magnetic field. It was found that the reduction in the seed magnetic field from 3.8 T to 3.0 T led to a substantial increase in the final peak magnetic field. The optical Faraday rotation method with a minimal size probe evades disturbances from electromagnetic noise and shockwave effects to detect such final peak fields in a reduced space of an inner wall of the imploding liner. The Faraday rotation signal recorded the maximum magnetic field increased significantly to the highest magnetic field of 985 T approaching 1000 T, ever achieved by the electro-magnetic flux compression technique as an indoor experiment.

  10. Electromagnetic interference of cardiac rhythmic monitoring devices to radio frequency identification: analytical analysis and mitigation methodology.

    PubMed

    Ogirala, Ajay; Stachel, Joshua R; Mickle, Marlin H

    2011-11-01

    Increasing density of wireless communication and development of radio frequency identification (RFID) technology in particular have increased the susceptibility of patients equipped with cardiac rhythmic monitoring devices (CRMD) to environmental electro magnetic interference (EMI). Several organizations reported observing CRMD EMI from different sources. This paper focuses on mathematically analyzing the energy as perceived by the implanted device, i.e., voltage. Radio frequency (RF) energy transmitted by RFID interrogators is considered as an example. A simplified front-end equivalent circuit of a CRMD sensing circuitry is proposed for the analysis following extensive black-box testing of several commercial pacemakers and implantable defibrillators. After careful understanding of the mechanics of the CRMD signal processing in identifying the QRS complex of the heart-beat, a mitigation technique is proposed. The mitigation methodology introduced in this paper is logical in approach, simple to implement and is therefore applicable to all wireless communication protocols.

  11. Facile synthesis of magnetic biochar/Fe3O4 nanocomposites using electro-magnetization technique and its application on the removal of acid orange 7 from aqueous media.

    PubMed

    Jung, Kyung-Won; Choi, Brian Hyun; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    This study introduces a new methodology to synthesize magnetic biochar/Fe3O4 nanocomposites (M-BC) from marine macroalgae using a facile electro-magnetization technique. M-BC was prepared by stainless steel electrode-based electrochemical system, followed by pyrolysis. Physical and chemical analyses revealed that the porosity and magnetic properties were simultaneously improved via the electro-magnetization process, which enabled not only higher adsorption performance, but also easier separation/recovery from aqueous media at post-adsorption stage using a bar magnet. The adsorption equilibrium studies reveal that the Sips model satisfactorily predicts the adsorption capacity, which found to be 190, 297, and 382mgg(-1) at 10, 20, and 30°C, respectively. The overall findings indicate that one-step electro-magnetization technique can be effectively utilized for the fabrication of biochar with concurrent acquisition of porosity and magnetism, which can bring about new directions in the practical use of adsorption process in environment remediation and mitigate crises originating from it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hybrid Electro-Optic Processor

    DTIC Science & Technology

    1991-07-01

    This report describes the design of a hybrid electro - optic processor to perform adaptive interference cancellation in radar systems. The processor is...modulator is reported. Included is this report is a discussion of the design, partial fabrication in the laboratory, and partial testing of the hybrid electro ... optic processor. A follow on effort is planned to complete the construction and testing of the processor. The work described in this report is the

  13. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3

    PubMed Central

    Wang, Y. L.; Liu, M. F.; Liu, R.; Xie, Y. L.; Li, X.; Yan, Z. B.; Liu, J.-M.

    2016-01-01

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder. PMID:27297396

  14. Quality Evaluation of Pork with Various Freezing and Thawing Methods

    PubMed Central

    2014-01-01

    In this study, the physicochemical and sensory quality characteristics due to the influence of various thawing methods on electro-magnetic and air blast frozen pork were examined. The packaged pork samples, which were frozen by air blast freezing at −45℃ or electro-magnetic freezing at −55℃, were thawed using 4 different methods: refrigeration (4±1℃), room temperature (RT, 25℃), cold water (15℃), and microwave (2450 MHz). Analyses were carried out to determine the drip and cooking loss, water holding capacity (WHC), moisture content and sensory evaluation. Frozen pork thawed in a microwave indicated relatively less thawing loss (0.63-1.24%) than the other thawing methods (0.68-1.38%). The cooking loss after electro-magnetic freezing indicated 37.4% by microwave thawing, compared with 32.9% by refrigeration, 36.5% by RT, and 37.2% by cold water in ham. The thawing of samples frozen by electro-magnetic freezing showed no significant differences between the methods used, while the moisture content was higher in belly thawed by microwave (62.0%) after electro-magnetic freezing than refrigeration (54.8%), RT (61.3%), and cold water (61.1%). The highest overall acceptability was shown for microwave thawing after electro-magnetic freezing but there were no significant differences compared to that of the other samples. PMID:26761493

  15. Changes in Ultrastructure and Sensory Characteristics on Electro-magnetic and Air Blast Freezing of Beef during Frozen Storage

    PubMed Central

    2015-01-01

    The ultrastructure in the beef muscle of the electro-magnetic resonance and air blast freezing during the frozen storage, and the changes in the quality characteristics after thawing were evaluated. The size of ice crystal was small and evenly formed in the initial freezing period, and it showed that the size was increased as the storage period was elapsed (p<0.05). The beef stored by the electro-magnetic resonance freezing showed the size of ice crystal with a lower rate of increase than the air blast freezing during the frozen storage. The thawing loss of beef stored by the electro-magnetic resonance freezing was significantly lower than the air blast freezing during frozen storage (p<0.05), and it showed that the thawing loss of the round was higher than the loin. Water holding capacity decreased as the storage period became longer while the electro-magnetic resonance freezing was higher than the air blast on 8 month (p<0.05). As a result of sensory evaluation, the beef stored by the electro-magnetic resonance freezing did not show the difference until 4 months, and it showed higher acceptability in comparison with the beef stored by the air blast freezing. Thus, it is considered that the freezing method has an effect on the change in the ultrastructure and quality characteristics of the beef. PMID:26761797

  16. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOEpatents

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  17. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    NASA Astrophysics Data System (ADS)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  18. A magneto-electro-optical effect in a plasmonic nanowire material

    PubMed Central

    Valente, João; Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.

    2015-01-01

    Electro- and magneto-optical phenomena play key roles in photonic technology enabling light modulators, optical data storage, sensors and numerous spectroscopic techniques. Optical effects, linear and quadratic in external electric and magnetic field are widely known and comprehensively studied. However, optical phenomena that depend on the simultaneous application of external electric and magnetic fields in conventional media are barely detectable and technologically insignificant. Here we report that a large reciprocal magneto-electro-optical effect can be observed in metamaterials. In an artificial chevron nanowire structure fabricated on an elastic nano-membrane, the Lorentz force drives reversible transmission changes on application of a fraction of a volt when the structure is placed in a fraction-of-tesla magnetic field. We show that magneto-electro-optical modulation can be driven to hundreds of thousands of cycles per second promising applications in magneto-electro-optical modulators and field sensors at nano-tesla levels. PMID:25906761

  19. Vibration and bending analyses of magneto-electro-thermo-elastic sandwich microplates resting on viscoelastic foundation

    NASA Astrophysics Data System (ADS)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-08-01

    Magneto-electro-thermo-mechanical bending and free vibration analysis of a sandwich microplate using strain gradient theory is expressed in this paper. The sandwich plate is made of a core and two integrated piezo-magnetic face sheets. The structure is subjected to electric and magnetic potentials, thermal loadings, and resting on Pasternak's foundation. Electro-magnetic equations are developed by considering the variation form of Hamilton's principle. The effects of important parameters of this problem such as applied electric and magnetic potentials, direct and shear parameter of foundation, three microlength-scale parameters, and two parameters of temperature rising are investigated on the vibration and bending results of problem.

  20. Planar Steering of a Single Ferrofluid Drop by Optimal Minimum Power Dynamic Feedback Control of Four Electromagnets at a Distance

    PubMed Central

    Probst, R.; Lin, J.; Komaee, A.; Nacev, A.; Cummins, Z.

    2010-01-01

    Any single permanent or electro magnet will always attract a magnetic fluid. For this reason it is difficult to precisely position and manipulate ferrofluid at a distance from magnets. We develop and experimentally demonstrate optimal (minimum electrical power) 2-dimensional manipulation of a single droplet of ferrofluid by feedback control of 4 external electromagnets. The control algorithm we have developed takes into account, and is explicitly designed for, the nonlinear (fast decay in space, quadratic in magnet strength) nature of how the magnets actuate the ferrofluid, and it also corrects for electro-magnet charging time delays. With this control, we show that dynamic actuation of electro-magnets held outside a domain can be used to position a droplet of ferrofluid to any desired location and steer it along any desired path within that domain – an example of precision control of a ferrofluid by magnets acting at a distance. PMID:21218157

  1. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  2. Evaluation of cable tension sensors of FAST reflector from the perspective of EMI

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Wang, Qiming; Egan, Dennis; Wu, Mingchang; Sun, Xiao

    2016-06-01

    The active reflector of FAST (five-hundred-meter aperture spherical radio telescope) is supported by a ring beam and a cable-net structure, in which nodes are actively controlled to form series of real-time paraboloids. To ensure the security and stability of the supporting structure, tension must be monitored for some typical cables. Considering the stringent requirements in accuracy and long-term stability, magnetic flux sensor, vibrating wire strain gauge and fiber bragg grating strain gauge are screened for the cable tension monitoring of the supporting cable-net. Specifically, receivers of radio telescopes have strict restriction on electro magnetic interference (EMI) or radio frequency interference (RFI). These three types of sensors are evaluated from the view of EMI/RFI. Firstly, these fundamentals are theoretically analyzed. Secondly, typical sensor signals are collected in the time and analyzed in the frequency domain, which shows the characteristic in the frequency domain. Finally, typical sensors are tested in an anechoic chamber to get the EMI levels. Theoretical analysis shows that Fiber Bragg Grating strain gauge itself will not lead to EMI/RFI. According to GJB151A, frequency domain analysis and test results show that for the vibrating wire strain gauge and magnetic flux sensor themselves, testable EMI/RFI levels are typically below the background noise of the anechoic chamber. FAST finally choses these three sensors as the monitoring sensors of its cable tension. The proposed study is also a reference to the monitoring equipment selection of other radio telescopes and large structures.

  3. Interferometric architectures based All-Optical logic design methods and their implementations

    NASA Astrophysics Data System (ADS)

    Singh, Karamdeep; Kaur, Gurmeet

    2015-06-01

    All-Optical Signal Processing is an emerging technology which can avoid costly Optical-electronic-optical (O-E-O) conversions which are usually compulsory in traditional Electronic Signal Processing systems, thus greatly enhancing operating bit rate with some added advantages such as electro-magnetic interference immunity and low power consumption etc. In order to implement complex signal processing tasks All-Optical logic gates are required as backbone elements. This review describes the advances in the field of All-Optical logic design methods based on interferometric architectures such as Mach-Zehnder Interferometer (MZI), Sagnac Interferometers and Ultrafast Non-Linear Interferometer (UNI). All-Optical logic implementations for realization of arithmetic and signal processing applications based on each interferometric arrangement are also presented in a categorized manner.

  4. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  5. Magnetic and electric bulge-test instrument for the determination of coupling mechanical properties of functional free-standing films and flexible electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zejun; Li, Faxin; Pei, Yongmao, E-mail: peiym@pku.edu.cn, E-mail: fangdn@pku.edu.cn

    2014-06-15

    For the first time a novel multi-field bulge-test instrument which enables measurements of the biaxial mechanical properties and electro-magnetic-mechanical coupling effect of free-standing films in external magnetic/electric fields was proposed. The oil pressure was designed with two ranges, 0–1 MPa for elastic small deformation and 0–7 MPa for plastic/damage large deformation. A magnetic field that was horizontal and uniform in the film plane was supplied by a hollow cylindrical magnet. The magnitude could be changed from 0 to 10 000 Oe by adjusting the position of the testing film. Meanwhile, an electric field applied on the film was provided by amore » voltage source (Maximum voltage: 1000 V; Maximum current: 1 A). Various signals related to deformation, mechanical loading, magnetic field, and electric field could be measured simultaneously without mutual interference, which was confirmed by the coincidence of the measured P-H curves for titanium (Ti)/nickel (Ni) specimens with/without external fields. A hardening phenomenon under magnetic/electric fields was observed for Ni and lead zirconate titanate specimens. The multi-field bulge-test instrument will provide a powerful research tool to study the deformation mechanism of functional films and flexible electronics in the coupling field.« less

  6. Sensitive Determination of 6-Thioguanine Using Caffeic Acid-functionalized Fe3O4 Nanoparticles as an Electrochemical Sensor

    NASA Astrophysics Data System (ADS)

    Amir, Md.; Tunesi, Mawada M.; Soomro, Razium A.; Baykal, Abdülhadi; Kalwar, Nazar H.

    2018-04-01

    The study demonstrates the potential application of caffeic acid-functionalized magnetite nanoparticles (CA-Fe3O4 NPs) as an effective electrode modifying material for the electrochemical oxidation of the 6-thioguanine (6-TG) drug. The functionalized Fe3O4 NPs were prepared using simple wet-chemical methodology where the used caffeic acid acted simultaneously as growth controlling and functionalizing agent. The study discusses the influence of an effective functionalization on the signal sensitivity observed for the electro-oxidation of 6-TG over CA-Fe3O4 NPs in comparison to a glassy carbon electrode modified with bare and nicotinic acid (NA)-functionalized Fe3O4 NPs. The experiment results provided sufficient evidence to support the importance of favorable functionality to achieve higher signal sensitivity for the electro-oxidation of 6-TG. The presence of favorable interactions between the active functional moieties of caffeic acid and 6-TG synergized with the greater surface area of magnetic NPs produces a stable electro-oxidation signal within the working range of 0.01-0.23 μM with sensitive up to 0.001 μM. Additionally, the sensor showed the strong anti-interference potential against the common co-existing drug molecules such as benzoic acid, acetaminophen, epinephrine, norepinephrine, glucose, ascorbic acid and l-cysteine. In addition, the successful quantification of 6-TG from the commercial tablets obtained from local pharmacy further signified the practical capability of the discussed sensor.

  7. Cyberwarfare and Operational Art

    DTIC Science & Technology

    2017-05-25

    Electronic Attack EMS Electro Magnetic Spectrum FM Field Manual FSB Federal Security Service (Russian Federation) GAO General Accounting Office GRU...Warfare, (Cambridge, MA: O’Reilly Media Inc., 2012), 74. 2 "The Bombe developed in Bletchley by Turing and Welshman and Babbage - all luminaries of...cyberspace domain’s fundamental characteristics. First, cyberspace requires the Electro Magnetic Spectrum ( EMS ) to propagate efficiently. Second

  8. Counter Electrical Generation and Distribution: An Assessment for Global Strike in 2035

    DTIC Science & Technology

    2012-02-15

    magnetic field . Satellites in low earth orbit (LEO) or high earth orbit (HEO) orbits would be disabled from effects of the ionizing electrons on...of delivery.34 High power microwaves may also offer an ability to “dial down” the electro- magnetic fields being used to fine tune the effects on the...target system and reduce collateral damage. At high levels of electro- magnetic fields , permanent and catastrophic damage to circuitry, power lines

  9. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  10. Impact of Electro-Magneto Concave Collector on the Characterizations of Electrospun Nanofibers

    NASA Astrophysics Data System (ADS)

    Shehata, Nader; Abdelkader, Mohamed

    2018-05-01

    We introduce a modified approach to produce aligned nanofibers through electro-magneto concave collectors. Both electric and magnetic fields distributions are simulated with COMSOL Multiphysics for different collectors including conventional, concave and modified concave collectors by adding magnetic discs in the back. Orientation matrices are evaluated for each collector in the study, and the highest degree of alignment is found to be with the modified concave collector with a percentage of 68%, followed by the concave collector with a percentage of 57%, which shows an improvement of the proposed method by adding a magnetic field. The generated nanofiber mats from the electro-magneto concave collector show improvements in both mechanical (Young's modulus = 117.66 MPa) and thermal properties compared to both concave and conventional collectors.

  11. Defense Small Business Innovation Research Program (SBIR). Defense Agencies Abstracts of Phase 2 Awards 1993

    DTIC Science & Technology

    1993-01-01

    to seven transmitters operating in the 1.71-1.85 and 2.2-2.3 GHz telemetry bands can simultaneously be connected to this antenna without interference ...HUNTINGTON BEACH, CA 92649 Contract#N: DAAA21-91-C-0034 Phone: (714) 373-5509 PI: Dr. Timothy M. Rynne Tide: Electromagnetic Interference (EMI)/Electro...y position data. The system is designed to counteract the severe multipath interference environment resulting from operation within a metal building

  12. 3D vector distribution of the electro-magnetic fields on a random gold film

    NASA Astrophysics Data System (ADS)

    Canneson, Damien; Berini, Bruno; Buil, Stéphanie; Hermier, Jean-Pierre; Quélin, Xavier

    2018-05-01

    The 3D vector distribution of the electro-magnetic fields at the very close vicinity of the surface of a random gold film is studied. Such films are well known for their properties of light confinement and large fluctuations of local density of optical states. Using Finite-Difference Time-Domain simulations, we show that it is possible to determine the local orientation of the electro-magnetic fields. This allows us to obtain a complete characterization of the fields. Large fluctuations of their amplitude are observed as previously shown. Here, we demonstrate large variations of their direction depending both on the position on the random gold film, and on the distance to it. Such characterization could be useful for a better understanding of applications like the coupling of point-like dipoles to such films.

  13. Transport of magneto-nanoparticles during electro-osmotic flow in a micro-tube in the presence of magnetic field for drug delivery application

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Shit, G. C.

    2017-11-01

    In this paper, we have examined the motion of magnetic-nanoparticles and the flow characteristics of biofluid in a micro-tube in the presence of externally applied magnetic field and electrokinetic effects. In the drug delivery system, the motion of the magnetic nanoparticles as carriers is important for therapeutic procedure in the treatment of tumor cells, infections and removing blood clots. The unidirectional electro-osmotic flow of biofluid is driven by the combined effects of pulsatile pressure gradient and electrokinetic force. The governing equation for unsteady electromagnetohydrodynamic flow subject to the no-slip boundary condition has been solved numerically by using Crank-Nicolson implicit finite difference scheme. We have analyzed the variation of axial velocity, velocity distribution of magnetic nanoparticles, volumetric flow rate and wall shear stress for various values of the non-dimensional parameters. The study reveals that blood flow velocity, carriers velocity and flow rate are strongly influenced by the electro-osmotic parameter as well as the Hartmann number. The particle mass parameter as well as the particle concentration parameter have efficient capturing effect on magnetic nanoparticles during blood flow through a micro-tube for drug delivery.

  14. Electro-optic polymeric reflection modulator based on plasmonic metamaterial

    NASA Astrophysics Data System (ADS)

    Abbas, A.; Swillam, M.

    2018-02-01

    A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.

  15. SEE Design Guide and Requirements for Electrical Deadfacing

    NASA Technical Reports Server (NTRS)

    Berki, Joe M.; Sargent, Noel; Kauffman, W. (Technical Monitor)

    2002-01-01

    The purpose of this design guide is to present information for understanding and mitigating the potential hazards associated with de-mating and mating powered electrical connectors on space flight vehicles. The process of staging is a necessary function in the launching of space vehicles and in the deployment of satellites, and now in manned assembly of systems in space. During this electrical interconnection process, various environments may be encountered that warrant the restriction of the voltage and current present across the pins of an electrical connector prior to separation, mating, or in a static open non-mated configuration. This process is called deadfacing. These potentially hazardous environments encompass the obvious explosive fuel vapors and human shock hazard, to multiple Electro-Magnetic Interference (EMI) phenomena related to the rapid rate of change in current as well as exposure to Radio Frequency (RF) fields.

  16. A Spherical Electro Optic High Voltage Sensor

    DTIC Science & Technology

    1989-06-01

    electro - optic (EO) crystal is introduced for photonic measurement of pulsed high-voltage fields. A spherical shape is used in order to reduce electric field gradients in the vicinity of the sensor. The sensor is pure dielectric and is interrogated remotely using a laser. The sensor does not require the connection of any conducting components, which results in the highest electrical isolation. The spherical nature of the crystal coupled with the incident laser beam, and crossed polarizers (intensity modulation scheme). automatically produces interference figures. The

  17. Electronic heterodyne recording of interference patterns

    NASA Technical Reports Server (NTRS)

    Merat, F. L.; Claspy, P. C.

    1979-01-01

    An electronic heterodyne technique is being investigated for video (i.e., television rate and format) recording of interference patterns. In the heterodyne technique electro-optic modulation is used to introduce a sinusoidal phase shift between the beams of an interferometer. For phase modulation frequencies between 0.1 and 15 MHz an image dissector camera may be used to scan the resulting temporally modulated interference pattern. Heterodyne detection of the camera output is used to selectively record the interference pattern. An advantage of such synchronous recording is that it permits recording of low-contrast fringes in high ambient light conditions. The application of this technique to the recording of holograms is discussed.

  18. Exchange-coupled hard magnetic Fe-Co/CoPt nanocomposite films fabricated by electro-infiltration

    NASA Astrophysics Data System (ADS)

    Wen, Xiao; Andrew, Jennifer S.; Arnold, David P.

    2017-05-01

    This paper introduces a potentially scalable electro-infiltration process to produce exchange-coupled hard magnetic nanocomposite thin films. Fe-Co/CoPt nanocomposite films are fabricated by deposition of CoFe2O4 nanoparticles onto Si substrate, followed by electroplating of CoPt. Samples are subsequently annealed under H2 to reduce the CoFe2O4 to magnetically soft Fe-Co and also induce L10 ordering in the CoPt. Resultant films exhibit 0.97 T saturation magnetization, 0.70 T remanent magnetization, 127 kA/m coercivity and 21.8 kJ/m3 maximum energy density. First order reversal curve (FORC) analysis and δM plot are used to prove the exchange coupling between soft and hard magnetic phases.

  19. Theoretical exploration of structural, electro-optical and magnetic properties of gallium-doped silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh; Chegel, Raad; Moradian, Rostam; Shahrokhi, Masoud

    2014-09-01

    The effects of gallium doping on the structural, electro-optical and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) are investigated by using spin-polarized density functional theory. It is found from the calculation of the formation energies that gallium substitution for silicon atom is preferred. Our results show that gallium substitution at either single carbon or silicon atom site in SiCNT could induce spontaneous magnetization. The optical studies based on dielectric function indicate that new transition peaks and a blue shift are observed after gallium doping.

  20. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    PubMed

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  1. Research on intelligent algorithm of electro - hydraulic servo control system

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  2. Development of an experimental system for characterization of high-temperature superconductors cooled by liquid hydrogen under the external magnetic field

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    2014-05-01

    An experimental system has been developed to investigate electro-magnetic properties of high-Tc superconductors cooled by liquid hydrogen under the external magnetic field of up to 7 T. A LH2 cryostat is concentrically mounted on the inside of a LHe cryostat to cool a NbTi superconducting magnet. The experimental system is installed in an explosion-proof room. Explosion proof electrical devices are used and current leads are covered with an enclosure filled with nitrogen gas. A remote control system has been developed. Furthermore, the effects of stray magnetic field on the existing and the new devices are investigated and electro-magnetic shielding panels and enclosure made of iron were designed. It is confirmed through the cryogenic test that the experimental system meets the design requirements.

  3. Nonlinear oscillation of a rigid body over high- Tc superconductors supported by electro-magnetic forces

    NASA Astrophysics Data System (ADS)

    Sugiura, T.; Ogawa, S.; Ura, H.

    2005-10-01

    Characteristics of high- Tc superconducting levitation systems are no contact support and stable levitation without control. They can be applied to supporting mechanisms in machines, such as linear-drives and magnetically levitated trains. But small damping due to noncontact support and nonlinearity in the magnetic force can easily cause complicated phenomena of nonlinear dynamics. This research deals with nonlinear oscillation of a rigid bar supported at its both ends by electro-magnetic forces between superconductors and permanent magnets as a simple modeling of the above application. Deriving the equation of motion, we discussed an effect of nonlinearity in the magnetic force on dynamics of the levitated body: occurrence of combination resonance in the asymmetrical system. Numerical analyses and experiments were also carried out, and their results confirmed the above theoretical prediction.

  4. Design, Fabrication and Characterization of Micro Opto-Electro-Mechanical Systems.

    DTIC Science & Technology

    1995-12-01

    interference problems (see Fig. 3-6). Improvements in the lithography of the MCNC process would allow for grating spaces of less than 2 gm and therefore...A micro-spectrometer has been fabricated using LIGA, an acronym for lithography , electroforming, and micromolding (the acronym came from the German...location for test samples and an adjustable mirror. The beams are brought back together to form an interference pattern. At an observation screen the

  5. A low-noise MEMS accelerometer for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  6. Modeling, measuring, and mitigating instability growth in liner implosions on Z

    NASA Astrophysics Data System (ADS)

    Peterson, Kyle

    2015-11-01

    Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. In this talk, we will discuss the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. We present simulations that show electro-thermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent magneto-Rayleigh-Taylor (MRT) instability growth. We discuss measurement results from experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electro-thermal instability growth on well-characterized initially solid aluminum or beryllium rods driven with a 20 MA, 100 ns risetime current pulse. These measurements show good agreement with electro-thermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. Recent experiments have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from the electro-thermal instability. These results provide further evidence that the inherent surface roughness of the target is not the dominant seed for the MRT instability, in contrast with most inertial confinement fusion approaches. These results suggest a new technique for substantially reducing the integral MRT growth in magnetically driven implosions. Indeed, recent results on the Z facility with 100 km/s Al and Be liner implosions show substantially reduced growth. These new results include axially magnetized, CH-coated beryllium liner radiographs in which the inner liner surface is observed to be remarkably straight and uniform at a radius of about 120 microns (convergence ratio ~20). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  7. Electro-impulse de-icing testing analysis and design

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Schrag, R. L.; Bernhart, W. D.; Friedberg, R. A.

    1988-01-01

    Electro-Impulse De-Icing (EIDI) is a method of ice removal by sharp blows delivered by a transient electromagnetic field. Detailed results are given for studies of the electrodynamic phenomena. Structural dynamic tests and computations are described. Also reported are ten sets of tests at NASA's Icing Research Tunnel and flight tests by NASA and Cessna Aircraft Company. Fabrication of system components are described and illustrated. Fatigue and electromagnetic interference tests are reported. Here, the necessary information for the design of an EIDI system for aircraft is provided.

  8. A Compact, Soft-Switching DC-DC Converter for Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Button, Robert; Redilla, Jack; Ayyanar, Raja

    2003-01-01

    A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.

  9. RF Noise Generation in High-Pressure Short-Arc DC Xenon Lamps

    NASA Astrophysics Data System (ADS)

    Minayeva, Olga; Doughty, Douglas

    2007-10-01

    Continuous direct current xenon arcs will generate RF noise under certain circumstance, which can lead to excessive electro- magnetic interference in systems that use these arcs as light sources. Phenomenological observations are presented for xenon arcs having arc gaps ˜1 mm, cold fill pressures of ˜2.5 MPa, and currents up to 30 amps. Using a loop antenna in the vicinity of an operating lamp, it is observed that as the current to the arc is lowered there is a reproducible threshold at which the RF noise generation begins. This threshold is accompanied by a small abrupt drop in voltage (˜0.2 volts). The RF emission appears in pulses ˜150 nsec wide separated by ˜300 nec - the pulse interval decreases with decreasing current. The properties of the RF emission as a function of arc parameters (such as pressure, arc gap, electrode design) will be discussed and a semi-quantitative model presented.

  10. Affordable Electro-Magnetic Interference (EMI) Testing on Large Space Vehicles

    NASA Technical Reports Server (NTRS)

    Aldridge, Edward; Curry, Bruce; Scully, Robert

    2015-01-01

    Objective: Perform System-Level EMI testing of the Orion Exploration Flight Test-1 (EFT-1) spacecraft in situ in the Kennedy Space Center's Neil Armstrong Operations & Checkout (O&C) Facility in 6 days. The only way to execute the system-level EMI testing and meet this schedule challenge was to perform the EMI testing in situ in the Final Assembly & System Test (FAST) Cell in a reverberant mode, not the direct illumination mode originally planned. This required the unplanned construction of a Faraday Cage around the vehicle and FAST Cell structure. The presence of massive steel platforms created many challenges to developing an efficient screen room to contain the RF energy and yield an effective reverberant chamber. An initial effectiveness test showed marginal performance, but improvements implemented afterward resulted in the final test performing surprisingly well! The paper will explain the design, the challenges, and the changes that made the difference in performance!

  11. Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malobabic, Sina; Jupe, Marco; Ristau, Detlev

    Nowadays, Ion Beam Sputter (IBS) processes are very well optimized on an empirical basis. To achieve further progresses, a modification of the IBS process by guiding the coating material using an axial magnetic field and an additional electrical field has been studied. The electro-magnetic (EM) field leads to a significant change in plasma properties and deposition rate distributions, whereas an increase in deposition rate along the centerline of the axial EM field around 150% was observed. These fundamental studies on the prototype are the basis for the development of an applicable and workable design of a separation device.

  12. Experimental Investigation – Magnetic Assisted Electro Discharge Machining

    NASA Astrophysics Data System (ADS)

    Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali

    2018-04-01

    Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.

  13. The challenge to create the space drive

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1996-01-01

    To travel to our neighboring stars as practically as envisioned by science fiction, breakthroughs in science are required. One of these breakthroughs is to discover a self-contained means of propulsion that requires no propellant. To chart a path toward such a discovery, seven hypothetical space drives are presented to illustrate the specific unsolved challenges and associated research objectives toward this ambition. One research objective is to discover a means to asymmetrically interact with the electro-magnetic fluctuations of the vacuum. Another is to develop a physics that describes inertia, gravity, or the properties of spacetime as a function of electro-magnetics that leads to using electro-magnetic technology for inducing propulsive forces. Another is to determine if negative mass exists or if its properties can be synthesized. An alternative approach that covers the possibility that negative mass might not exist is to develop a formalism of Mach's Principle or re-formulate ether concepts to lay a foundation for addressing reaction forces and conservation of momentum with space drives.

  14. Sweeping shunted electro-magnetic tuneable vibration absorber: Design and implementation

    NASA Astrophysics Data System (ADS)

    Turco, E.; Gardonio, P.

    2017-10-01

    This paper presents a study on the design and implementation of a time-varying shunted electro-magnetic Tuneable Vibration Absorber for broad-band vibration control of thin structures. A time-varying RL-shunt is used to harmonically vary the stiffness and damping properties of the Tuneable Vibration Absorber so that its mechanical fundamental natural frequency is continuously swept in a given broad frequency band whereas its mechanical damping is continuously adapted to maximize the vibration absorption from the hosting structure where it is mounted. The paper first recalls the tuning and positioning criteria for the case where a classical Tuneable Vibration Absorber is installed on a thin walled cylindrical structure to reduce the response of a resonating flexural mode. It then discusses the design of the time-varying shunt circuit to produce the desired stiffness and damping variations in the electro-magnetic Tuneable Vibration Absorber. Finally, it presents a numerical study on the flexural vibration and interior sound control effects produced when an array of these shunted electro-magnetic Tuneable Vibration Absorbers are mounted on a thin walled cylinder subject to a rain-on-the-roof stochastic excitation. The study shows that the array of proposed systems effectively controls the cylinder flexural response and interior noise over a broad frequency band without need of tuning and thus system identification of the structure. Therefore, the systems can be successfully used also on structures whose physical properties vary in time because of temperature changes or tensioning effects for example.

  15. Analytical and numerical analyses for a penny-shaped crack embedded in an infinite transversely isotropic multi-ferroic composite medium: semi-permeable electro-magnetic boundary condition

    NASA Astrophysics Data System (ADS)

    Zheng, R.-F.; Wu, T.-H.; Li, X.-Y.; Chen, W.-Q.

    2018-06-01

    The problem of a penny-shaped crack embedded in an infinite space of transversely isotropic multi-ferroic composite medium is investigated. The crack is assumed to be subjected to uniformly distributed mechanical, electric and magnetic loads applied symmetrically on the upper and lower crack surfaces. The semi-permeable (limited-permeable) electro-magnetic boundary condition is adopted. By virtue of the generalized method of potential theory and the general solutions, the boundary integro-differential equations governing the mode I crack problem, which are of nonlinear nature, are established and solved analytically. Exact and complete coupling magneto-electro-elastic field is obtained in terms of elementary functions. Important parameters in fracture mechanics on the crack plane, e.g., the generalized crack surface displacements, the distributions of generalized stresses at the crack tip, the generalized stress intensity factors and the energy release rate, are explicitly presented. To validate the present solutions, a numerical code by virtue of finite element method is established for 3D crack problems in the framework of magneto-electro-elasticity. To evaluate conveniently the effect of the medium inside the crack, several empirical formulae are developed, based on the numerical results.

  16. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecover, J. D.; Chittenden, J. P.

    A critical limitation of magnetically imploded systems such as magnetized liner inertial fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is the magneto-Rayleigh-Taylor (MRT) instability which primarily disrupts the outer surface of the liner. MagLIF-relevant experiments have showed large amplitude multi-mode MRT instability growth growing from surface roughness [McBride et al., Phys. Rev. Lett. 109, 135004 (2012)], which is only reproduced by 3D simulations using our MHD code Gorgon when an artificially azimuthally correlated initialisation is added. We have shown that the missing azimuthal correlation could be provided by a combination of the electro-thermal instability (ETI) and anmore » “electro-choric” instability (ECI); describing, respectively, the tendency of current to correlate azimuthally early in time due to temperature dependent Ohmic heating; and an amplification of the ETI driven by density dependent resistivity around vapourisation. We developed and implemented a material strength model in Gorgon to improve simulation of the solid phase of liner implosions which, when applied to simulations exhibiting the ETI and ECI, gave a significant increase in wavelength and amplitude. Full circumference simulations of the MRT instability provided a significant improvement on previous randomly initialised results and approached agreement with experiment.« less

  17. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  18. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    NASA Astrophysics Data System (ADS)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  19. Special Technology Area Review on Micro-Opto-Electro-Mechanical-Systems (MOEMS)

    DTIC Science & Technology

    1997-12-01

    Optical Interference in Night Vision Systems "* DMD Assisted Intelligent Manufacturing of ................................................... SRI...CONCEPT ......................................... p. 8 FIGURE 3(a): DMD LIGHT SWITCHES...p. 9 FIGURE 3(b): SEM PHOTOMICROGRAPHS OF DMD CHIPS ........................................ p. 9 FIGURE 4: MULTI-USER MEMS PROJECTS (MUMPS

  20. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    NASA Astrophysics Data System (ADS)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  1. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film.

    PubMed

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-14

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  2. Electrode cartridge for pulse welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnen, John Joseph Francis; Golovashchenko, Sergey Fedorovich; Mamutov, Alexander

    A cartridge assembly for a tool includes a cartridge body or casing that contains a conductor. A conductor is connected to a pulse generator or source of stored charge that is discharged to vaporize the conductor and create an electro-hydraulic or electro-magnetic shockwave that is used to impact or pulse weld two parts together.

  3. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading

    DOE PAGES

    Barth, Christian; Seeber, B.; Rack, A.; ...

    2018-04-26

    Understanding the critical current performance variation of Nb 3Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation betweenmore » the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires’ void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Lastly, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.« less

  4. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Christian; Seeber, B.; Rack, A.

    Understanding the critical current performance variation of Nb 3Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation betweenmore » the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires’ void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Lastly, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.« less

  5. Quantitative correlation between the void morphology of niobium-tin wires and their irreversible critical current degradation upon mechanical loading.

    PubMed

    Barth, C; Seeber, B; Rack, A; Calzolaio, C; Zhai, Y; Matera, D; Senatore, C

    2018-04-26

    Understanding the critical current performance variation of Nb 3 Sn superconducting wires under mechanical loading is a crucial issue for the design of next generation accelerator and fusion magnets. In these applications, the mechanical properties of the conductors may become a limiting factor due to the strong electro-magnetic forces resulting from the combination of large magnets and intense magnetic fields. In particular, the presence of voids in the superconducting filament structure, which are formed during the fabrication and the reaction heat treatment, determines localized stress concentrations and possibly the formation of cracks. In this work, we demonstrate a quantitative correlation between the void morphology and the electro-mechanical limits measured on different Bronze route Nb 3 Sn wires. Hot Isostatic Pressing (HIP) prior to the reaction heat treatment is utilized to partially eliminate the voids. The wires' void distributions - with and without HIP treatment - are detected and statistically analyzed using high energy X-ray micro tomography. The stress concentration due to the shape and distribution of the voids as well as their impact on the electro-mechanical properties are determined through finite element method modeling. Finally, the results are quantitatively correlated with the experimentally determined limits of the irreversible critical current degradation upon mechanical loading.

  6. Optical Peaking Enhancement in High-Speed Ring Modulators

    PubMed Central

    Müller, J.; Merget, F.; Azadeh, S. Sharif; Hauck, J.; García, S. Romero; Shen, B.; Witzens, J.

    2014-01-01

    Ring resonator modulators (RRM) combine extreme compactness, low power consumption and wavelength division multiplexing functionality, making them a frontrunner for addressing the scalability requirements of short distance optical links. To extend data rates beyond the classically assumed bandwidth capability, we derive and experimentally verify closed form equations of the electro-optic response and asymmetric side band generation resulting from inherent transient time dynamics and leverage these to significantly improve device performance. An equivalent circuit description with a commonly used peaking amplifier model allows straightforward assessment of the effect on existing communication system architectures. A small signal analytical expression of peaking in the electro-optic response of RRMs is derived and used to extend the electro-optic bandwidth of the device above 40 GHz as well as to open eye diagrams penalized by intersymbol interference at 32, 40 and 44 Gbps. Predicted peaking and asymmetric side band generation are in excellent agreement with experiments. PMID:25209255

  7. Electro-optical logic gates based on graphene-silicon waveguides

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Yang, Longzhi; Wang, Pengjun; Zhang, Yawei; Zhou, Liqiang; Yang, Tianjun; Wang, Yang; Yang, Jianyi

    2016-08-01

    In this paper, designs of electro-optical AND/NAND, OR/ NOR, XOR/XNOR logic gates based on cascaded silicon graphene switches and regular 2×1 multimode interference combiners are presented. Each switch consists of a Mach-Zehnder interferometer in which silicon slot waveguides embedded with graphene flakes are designed for phase shifters. High-speed switching function is achieved by applying an electrical signal to tune the Fermi levels of graphene flakes causing the variation of modal effective index. Calculation results show the crosstalk in the proposed optical switch is lower than -22.9 dB within a bandwidth from 1510 nm to 1600 nm. The designed six electro-optical logic gates with the operation speed of 10 Gbit/s have a minimum extinction ratio of 35.6 dB and a maximum insertion loss of 0.21 dB for transverse electric modes at 1.55 μm.

  8. Satellite-Based EMI Detection, Identification, and Mitigation

    NASA Astrophysics Data System (ADS)

    Stottler, R.; Bowman, C.

    2016-09-01

    Commanding, controlling, and maintaining the health of satellites requires a clear operating spectrum for communications. Electro Magnetic Interference (EMI) from other satellites can interfere with these communications. Determining which satellite is at fault improves space situational awareness and can be used to avoid the problem in the future. The Rfi detection And Prediction Tool, Optimizing Resources (RAPTOR) monitors the satellite communication antenna signals to detect EMI (also called RFI for Radio Frequency Interference) using a neural network trained on past cases of both normal communications and EMI events. RAPTOR maintains a database of satellites that have violated the reserved spectrum in the past. When satellite-based EMI is detected, RAPTOR first checks this list to determine if any are angularly close to the satellite being communicated with. Additionally, RAPTOR checks the Space Catalog to see if any of its active satellites are angularly close. RAPTOR also consults on-line databases to determine if the described operating frequencies of the satellites match the detected EMI and recommends candidates to be added to the known offenders database, accordingly. Based on detected EMI and predicted orbits and frequencies, RAPTOR automatically reschedules satellite communications to avoid current and future satellite-based EMI. It also includes an intuitive display for a global network of satellite communications antennas and their statuses including the status of their EM spectrum. RAPTOR has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication signals and is currently undergoing full-scale development. This paper describes the RAPTOR technologies and results of testing.

  9. Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes

    PubMed Central

    Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-01-01

    The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969

  10. Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011

    DTIC Science & Technology

    2014-12-01

    20  Figure 8.  FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules

  11. Metaphotonics: An emerging field with opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Baev, Alexander; Prasad, Paras N.; Ågren, Hans; Samoć, Marek; Wegener, Martin

    2015-09-01

    Metaphotonics is an emerging multidisciplinary field that deals with manipulation of electro-magnetic fields in nanoengineered (meta)materials using both electric and magnetic interactions and their cross-coupling. It offers unprecedented control of both linear and nonlinear optical functions for applications ranging from optical switching, to negative- and near-zero refractive index metamaterials, to chiral bioimaging, to cloaking. However, realization of such applications requires physics-guided nanoengineering of appropriate artificial media with electro-magnetic properties at visible and infrared wavelengths that are tailored to surpass those of any naturally-occurring material. Here, we review metaphotonics with a broadened vision and scope, introduce potential applications, describe the role of theoretical physics through multiscale modeling, review the materials development and current status, and outline opportunities in this fertile emerging field.

  12. Externally-Modulated Electro-Optically Coupled Detector Architecture for Nuclear Physics Instrumentation

    NASA Astrophysics Data System (ADS)

    Xi, Wenze; McKisson, J. E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl

    2014-06-01

    A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over 29% of the modulator's switching voltage range. Optical spectrum analysis revealed less than -14 dB crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.

  13. Assessment Of The Stirling Power Option for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2000-01-01

    Free-piston Stirling technology efforts in the past typically were intended to address power needs in the multi-kilowatt range. The Stirling power option was attractive primarily because of the high conversion efficiency and potential for long life. In recent years, several technology efforts have focused on the free-piston Stirling power d convertor for space power applications, however the more recent efforts are intended to provide power at levels far below one kilowatt. Through a variety of projects funded by both NASA and DOE, the free-piston Stirling convertor technology has successfully demonstrated high efficiency and long life. Other areas of concern, such as control of multi-convertor systems, and vibration reduction have also been addressed. Efforts are being initiated to address issues such as electro-magnetic interference (EMI), radiation tolerance of organic materials, and the ability to operate through launch loads and survive with integrity. The status of the technology in these areas will be briefly discussed in this paper.

  14. Electro-optic device having a laterally varying region

    NASA Technical Reports Server (NTRS)

    Andrews, James T. (Inventor); Ladany, Ivan (Inventor)

    1989-01-01

    A distributed feedback laser comprising a semiconductor body having a channel which varies in width in the laterial direction and is periodic in the longitudinal direction. When the laser is electrically excited constructive interference of reflected light gives rise to a stable single wavelength output due to the periodic variations in the channel.

  15. Frequency-domain Hong-Ou-Mandel interference with linear optics.

    PubMed

    Imany, Poolad; Odele, Ogaga D; Alshaykh, Mohammed S; Lu, Hsuan-Hao; Leaird, Daniel E; Weiner, Andrew M

    2018-06-15

    The Hong-Ou-Mandel (HOM) interference is one of the most fundamental quantum-mechanical effects that reveal a nonclassical behavior of single photons. Two identical photons that are incident on the input ports of an unbiased beam splitter always exit the beam splitter together from the same output port, an effect referred to as photon bunching. In this Letter, we utilize a single electro-optic phase modulator as a probabilistic frequency beam splitter, which we exploit to observe HOM interference between two photons that are in different spectral modes, yet are identical in other characteristics. Our approach enables linear optical quantum information processing protocols using the frequency degree of freedom in photons such as quantum computing techniques with linear optics.

  16. Micromechanical Prediction of the Effective Behavior of Fully Coupled Electro-Magneto-Thermo-Elastic Multiphase Composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    2000-01-01

    The micromechanical generalized method of cells model is employed for the prediction of the effective moduli of electro-magneto-thermo-elastic composites. These include the effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability, electromagnetic coupling moduli, as well as the effective thermal expansion coefficients and the associated pyroelectric and pyromagnetic constants. Results are given for fibrous and periodically bilaminated composites.

  17. Magnetic fringe field interference between the quadrupole and corrector magnets in the CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Kang, Wen; Deng, Changdong; Sun, Xianjing; Li, Li; Wu, Xi; Gong, Lingling; Cheng, Da; Zhu, Yingshun; Chen, Fusan

    2017-03-01

    The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) employs large aperture quadrupole and corrector magnets with small aspect ratios and relatively short iron to iron separations; so the fringe field interference becomes serious which results in integral field strength reduction and extra field harmonics. We have performed 3D magnetic field simulations to investigate the magnetic field interference in the magnet assemblies and made some adjustments on the magnet arrangement. The Fourier analysis is used to quantify the integral gradient reduction and field harmonic changes of the quadrupole magnets. Some magnetic field measurements are undertaken to verify the simulation results. The simulation details and the major results are presented in this paper.

  18. ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation

    DTIC Science & Technology

    2012-08-01

    threshold T-high higher threshold TMGS Tensor Magnetic Gradiometer System TOI target of interest Tx ALLTEM transmitter USGS U.S. Geological...the Tensor Magnetic Gradiometer System ( TMGS ) and two prototype EMI instruments, the Very Early Time-domain ElectroMagnetic (VETEM) system and the...project one prototype magnetic system, the TMGS , and two prototype EMI instruments, VETEM and the High Frequency Sounder, were evaluated. Subsequent

  19. [Changes of brain pain center and default mode network an electro acupuncture in Weizhong and Dachangshu acupoints: a task-fMRI study].

    PubMed

    Zhou, S; Cao, H X; Yu, L C; Jin, Y J; Jia, R H; Wen, Y R; Chen, X F

    2016-02-23

    To investigate the functional brain pain center and default mode network response to electro acupuncture stimulate in weizhong acupoints(BL40) and dachangshu acupoints(BL25). During January to February 2015, volunteers were enrolled in this study from the staff and student interns of Gansu Province Traditional Chinese Medicine Hospital. A total of 20 healthy, right-handed subjects, male 9, female 11, age (23±3) years, participated in this study. Block design task functional magnetic resonance imaging(fMRI) 3.0 T was performed in all subjects by electro acupuncture stimulating at BL40 and BL25 from the same experienced acupuncturist.The needle connected electric acupuncture apparatus through tow long coaxial-cable. A block design with five 120 s blocks of rest time (OFF block, electric acupuncture turn off ) interspersed between five 60 s blocks of stimulation (ON block, electric acupuncture turn on) fMRI scan. Magnetic resonance data of brain function was collected and FSL(fMRI Software Library) software was used to analyze the data. All subjects' data were analyzed except 2 cases whose head movement were more than 2 mm. Activated brain function regions by electro acupuncture stimulate included temporal lobe lateral sulcus, lobus insularis, thalamus, supramarginal gyrus, prefrontal medial frontal gyrus. Negative activated brain regions included middle frontal gyrus, parahippocampal gyrus, cingulate cortex abdominal segment, parietal cortex.The functional pain central and default mode network were changed when electro acupuncture stimulate in(BL40) and(BL25). There are several brain activation regions and negative activated brain regions when administering electro acupuncture stimulation at BL40 and BL25.

  20. Semi-empirical equation of limiting current for cobalt electrodeposition in the presence of magnetic field and additive electrolyte

    NASA Astrophysics Data System (ADS)

    Sudibyo, Aziz, N.

    2016-02-01

    One of the available methods to solve a roughening in cobalt electrodeposition is magneto electrodeposition (MED) in the presence of additive electrolyte. Semi-empirical equation of limiting current under a magnetic field for cobalt MED in the presence of boric acid as an additive electrolyte was successfully developed. This semi empirical equation shows the effects of the electrode area (A), the concentration of the electro active species (C), the diffusion coefficient of the electro active species (D), the kinematic viscosity of the electrolyte (v), magnetic strength (B) and the number of electrons involved in the redox process (n). The presence of boric acid led to decrease in the limiting current, but the acid was found useful as a buffer to avoid the local pH rise caused by parallel hydrogen evolution reaction (HER).

  1. Spin wave interference in YIG cross junction

    DOE PAGES

    Balinskiy, M.; Gutierrez, D.; Chiang, H.; ...

    2017-01-17

    This work is aimed at studying the interference between backward volume magnetostatic spin waves and magnetostatic surface spin waves in a magnetic cross junction. These two types of magnetostatic waves possess different dispersion with zero frequency overlap in infinite magnetic films. However, the interference may be observed in finite structures due to the effect magnetic shape anisotropy. We report experimental data on spin wave interference in a micrometer size Y 3Fe 2(FeO 4) 3 cross junction. There are four micro antennas fabricated at the edges of the cross arms. Two of these antennas located on the orthogonal arms are usedmore » for spin wave generation, and the other two antennas are used for the inductive voltage detection. The phase difference between the input signals is controlled by the phase shifter. Prominent spin wave interference is observed at the selected combination of operational frequency and bias magnetic field. The maximum On/Off ratio exceeds 30dB at room temperature. The obtained results are important for a variety of magnetic devices based on spin wave interference.« less

  2. Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.

    PubMed

    Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto

    2017-10-20

    A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.

  3. Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis

    PubMed Central

    Herrera-Piad, Luis A.; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M.; Lopez-Dieguez, Yanelis

    2017-01-01

    A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material. PMID:29053570

  4. Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals

    PubMed Central

    Duecker, Daniel-André; Geist, A. René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen

    2017-01-01

    Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles (μAUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μAUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μAUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system. PMID:28445419

  5. Studies for the electro-magnetic calorimeter SplitCal for the SHiP experiment at CERN with shower direction reconstruction capability

    NASA Astrophysics Data System (ADS)

    Bonivento, Walter M.

    2018-02-01

    This paper describes the basic ideas and the first simulation results of a new electro-magnetic calorimeter concept, named SplitCal, aimed at optimising the measurement of photon direction in fixed-target experiment configuration, with high photon detection efficiency. This calorimeter was designed for the invariant mass reconstruction of axion-like particles decaying into two photons in the mass range 200 MeV to 1 GeV for the proposed proton beam dump experiment SHiP at CERN. Preliminary results indicate that angular resolutions better than obtained by past experiments can be achieved with this design. An implementation of this concept with real technologies is under study.

  6. Embedded Spherical Localization for Micro Underwater Vehicles Based on Attenuation of Electro-Magnetic Carrier Signals.

    PubMed

    Duecker, Daniel-André; Geist, A René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen

    2017-04-26

    Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles ( μ AUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μ AUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μ AUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system.

  7. Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

    NASA Technical Reports Server (NTRS)

    Henderson, R. A.; Schrag, R. L.

    1986-01-01

    A summary of modeling the electrical system aspects of a coil and metal target configuration resembling a practical electro-impulse deicing (EIDI) installation, and a simple circuit for providing energy to the coil, was presented. The model was developed in sufficient theoretical detail to allow the generation of computer algorithms for the current in the coil, the magnetic induction on both surfaces of the target, the force between the coil and target, and the impulse delivered to the target. These algorithms were applied to a specific prototype EIDI test system for which the current, magnetic fields near the target surfaces, and impulse were previously measured.

  8. Small Business Innovation Research (SBIR) Program. Program Solicitation 90.2 FY-1990

    DTIC Science & Technology

    1990-07-02

    292 etectro-magnetic pulse ........................................................ 459 electra-magnetic interference ...463 installation ................................................................. 300 interference ...for Communication Shelters A90-348 Reforming Radio Frequency Interference Door Gaskets A90-349 Low Cost liquid Crystal with Touch Pads 38 A90-350 Low

  9. Excellent magnetocaloric properties of melt-extracted Gd-based amorphous microwires

    NASA Astrophysics Data System (ADS)

    Bingham, N. S.; Wang, H.; Qin, F.; Peng, H. X.; Sun, J. F.; Franco, V.; Srikanth, H.; Phan, M. H.

    2012-09-01

    We report upon the excellent magnetocaloric properties of Gd53Al24Co20Zr3 amorphous microwires. In addition to obtaining the large magnetic entropy change (-ΔSM ˜ 10.3 J/kg K at TC ˜ 95 K), an extremely large value of refrigerant capacity (RC ˜ 733.4 J/kg) has been achieved for a field change of 5 T in an array of forty microwires arranged in parallel. This value of RC is about 79% and 103% larger than those of Gd (˜410 J/kg) and Gd5Si2Ge1.9Fe0.1 (˜360 J/kg) regardless of their magnetic ordering temperatures. The design and fabrication of a magnetic bed made of these parallel-arranged microwires would thus be a very promising approach for active magnetic refrigeration for nitrogen liquefaction. Since these microwires can easily be assembled as laminate structures, they have potential applications as a cooling device for micro electro mechanical systems and nano electro mechanical systems.

  10. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.

  11. Automatic Suppression of Intense Monochromatic Light in Electro-Optical Sensors

    PubMed Central

    Ritt, Gunnar; Eberle, Bernd

    2012-01-01

    Electro-optical imaging sensors are widely distributed and used for many different tasks. Due to technical improvements, their pixel size has been steadily decreasing, resulting in a reduced saturation capacity. As a consequence, this progress makes them susceptible to intense point light sources. Developments in laser technology have led to very compact and powerful laser sources of any wavelength in the visible and near infrared spectral region, offered as laser pointers. The manifold of wavelengths makes it difficult to encounter sensor saturation over the complete operating waveband by conventional measures like absorption or interference filters. We present a concept for electro-optical sensors to suppress overexposure in the visible spectral region. The key element of the concept is a spatial light modulator in combination with wavelength multiplexing. This approach allows spectral filtering within a localized area in the field of view of the sensor. The system offers the possibility of automatic reduction of overexposure by monochromatic laser radiation. PMID:23202039

  12. Electric and magnetic polarization saturations for a thermally loaded penny-shaped crack in a magneto-electro-thermo-elastic medium

    NASA Astrophysics Data System (ADS)

    Li, P.-D.; Li, X.-Y.; Kang, G.-Z.; Müller, R.

    2017-09-01

    This paper is devoted to investigating the thermal-induced electric and magnetic polarization saturations (PS) at the tip of a penny-shaped crack embedded in an infinite space of magneto-electro-thermo-elastic medium. In view of the symmetry with respect to the cracked plane, this crack problem is formulated by a mixed boundary value problem. By virtue of the solution to the Abel type integral equation, the governing equations corresponding to the present problem are analytically solved and the generalized crack surface displacement and field intensity factors are obtained in closed-forms. Applying the hypothesis of the electric and magnetic PS model to the analytical results, the sizes of the electric and magnetic yielding zones are determined. Numerical calculations are carried out to reveal the influences of the thermal load and the electric and magnetic yielding strengths on the results, and to show the distributions of the electric and magnetic potentials on the crack surfaces. It is found that the sizes of electric and magnetic yielding zones are mainly dependent on the electric and magnetic yielding strengths, respectively. Since the multi-ferroic media are widely used in various complex thermal environments, the present work could serve as a reference for the designs of various magneto-electric composite structures.

  13. Infrared thermographic diagnostic aid to aircraft maintenance

    NASA Astrophysics Data System (ADS)

    Delo, Michael; Delo, Steve

    2007-04-01

    Thermographic data can be used as a supplement to aircraft maintenance operations in both back shop and flight line situations. Aircraft systems such as electrical, propulsion, environmental, pitot static and hydraulic/pneumatic fluid, can be inspected using a thermal infrared (IR) imager. Aircraft systems utilize electro-hydraulic, electro-mechanical, and electro-pneumatic mechanisms, which, if accessible, can be diagnosed for faults using infrared technology. Since thermographs are images of heat, rather than light, the measurement principle is based on the fact that any physical object (radiating energy at infrared wavelengths within the IR portion of the electro-magnetic spectrum), can be imaged with infrared imaging equipment. All aircraft systems being tested with infrared are required to be energized for troubleshooting, so that valuable baseline data from fully operational aircraft can be collected, archived and referenced for future comparisons.

  14. A facile route to steady redox-modulated nitroxide spin-labeled surfaces based on diazonium chemistry.

    PubMed

    Cougnon, Charles; Boisard, Séverine; Cador, Olivier; Dias, Marylène; Levillain, Eric; Breton, Tony

    2013-05-18

    A TEMPO derivative was covalently grafted onto carbon and gold surfaces via the diazonium chemistry. The acid-dependent redox properties of the nitroxyl group were exploited to elaborate electro-switchable magnetic surfaces. ESR characterization demonstrated the reversible and permanent magnetic character of the material.

  15. Military Applications of Fiber Optics Technology

    DTIC Science & Technology

    1989-05-01

    Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have

  16. Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction

    NASA Astrophysics Data System (ADS)

    Balynskiy, M.; Chiang, H.; Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Balandin, A. A.; Khitun, A.

    2018-05-01

    This article reports results of the investigation of the effect of the external magnetic field variation on the spin wave interference in a magnetic cross junction. The experiments were performed using a micrometer scale Y3Fe5O12 cross structure with a set of micro-antennas fabricated on the edges of the cross arms. Two of the antennas were used for the spin wave excitation while a third antenna was used for detecting the inductive voltage produced by the interfering spin waves. It was found that a small variation of the bias magnetic field may result in a significant change of the output inductive voltage. The effect is most prominent under the destructive interference condition. The maximum response exceeds 30 dB per 0.1 Oe at room temperature. It takes a relatively small bias magnetic field variation of about 1 Oe to drive the system from the destructive to the constructive interference conditions. The switching is accompanied by a significant, up to 50 dB, change in the output voltage. The obtained results demonstrate a feasibility of the efficient spin wave interference control by an external magnetic field, which may be utilized for engineering novel type of magnetometers and magnonic logic devices.

  17. Chondrocytes treated with different shock wave devices.

    PubMed

    Notarnicola, Angela; Iannone, Florenzo; Maccagnano, Giuseppe; Lacarpia, Nuniza; Bizzoca, Dorotea; Moretti, Biagio

    2017-01-01

    Shock wave treatment is used for several orthopedic diseases and there are different devices available. Until now, there have been no experimental studies on the effects of these different generators. We carried out an experimental study to compare the effects of three focused generators (electro-magnetic, piezoelectric and electro-hydraulic) as well as a radial generator on healthy and osteoarthritis chondrocytes. By the analysis of our results, we may exclude significant differences between the different generators, even though there is a greater action specificity for electro-magnetic and piezoelectric generators. The smaller size of the focus of the latter two generators guarantees a greater concentration of energy in the target. The biological effect of the increase of IL-10 and reduction of both N-Cadherin and B-Catenin in chondrocytes in healthy subjects and those affected by osteoarthritis confirms the therapeutic potential of ESWT in cartilage diseases, such as osteoarthritis. In clinical practice it is important to introduce the parameter of total energy. This allows us to standardize the treatment and to manage the variability related to the different types of device and size of the focus. IIb.

  18. Proceedings of the Joint Conference on Magnetism and Magnetic Materials (6th) Held at Albuquerque, New Mexico on 20-23 June 1994. (Journal of Applied Physics. Volume 76, Number 10, Part 2)

    DTIC Science & Technology

    1994-06-23

    4728 Levitation, Propulsion, and Power and Control Magnetics Optimal Design of the Electromagnetic Levitation with Permanent and Electro Magnets-Y-K...Germany M. Richter and H. Eschrig MGP Research Group "Electron Systems," Technical University Dresden, D-01062 Dresden, Germany Magnetic and specific... designed to achieve the desired 6M. G. Abele, Tenth International Workshop on Rare-Earth Magnets and field configuration. The ability to control the

  19. Electro-Optical Modulator Bias Control Using Bipolar Pulses

    NASA Technical Reports Server (NTRS)

    Farr, William; Kovalik, Joseph

    2007-01-01

    An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the difference between the optical-path lengths can drift with changes in temperature and other spurious effects. The effects of both types of drift are suppressed in the present method, in which one takes advantage of the fact that when Vbias is set at the value for maximum extinction, equal-magnitude positive and negative pulses applied to the electro-optical crystal produce equal output light pulses.

  20. An Experimental and Theoretical Investigation of the Magnetization Properties and Basic Electromechanics of Ferrofluids

    DTIC Science & Technology

    1977-09-01

    magnetization properties of ferrofluid samples i - using the Quincke method. 3.2 Height of rise versus external DC magnetic flux 19 * =density. 3.3 Sketch of...determine their electro- mechanical response to magnetic fields have been conducted. Principal among these is the Quincke experiment, in which the...gain confidence in the behavior of ferrofluid, a classical experi- mental technique attributed to Quincke [15] was repeated using a variety of types

  1. A passive optical fibre hydrophone array utilising fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.

    2018-02-01

    Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.

  2. Techniques for the Installation of Internal Fiber Optic Instrumentation on an 11-Inch Hybrid Motor Test Bed

    NASA Technical Reports Server (NTRS)

    Cornelius, Michael; Smartt, Ziba; Henrie, Vaughn; Johnson, Mont

    2003-01-01

    The recent developments in Fabry-Perot fiber optic instruments have resulted in accurate transducers with some of the physical characteristics required for use in obtaining internal data from solid rocket motors. These characteristics include small size, non-electrical excitation, and immunity to electro-magnetic interference. These transducers have not been previously utilized in this environment due to the high temperatures typically encountered. A series of tests were conducted using a 1 1-Inch Hybrid test bed to develop installation techniques that will allow the fiber optic instruments to survive and obtain data for a short period of time following the motor ignition. The installation methods developed during this test series have the potential to allow data to be acquired in the motor chamber, propellant bore, and nozzle during the ignition transient. These measurements would prove to be very useful in the characterization of current motor designs and provide insight into the requirements for further refinements. The process of developing these protective methods and the installation techniques used to apply them is summarized.

  3. Certification of highly complex safety-related systems.

    PubMed

    Reinert, D; Schaefer, M

    1999-01-01

    The BIA has now 15 years of experience with the certification of complex electronic systems for safety-related applications in the machinery sector. Using the example of machining centres this presentation will show the systematic procedure for verifying and validating control systems using Application Specific Integrated Circuits (ASICs) and microcomputers for safety functions. One section will describe the control structure of machining centres with control systems using "integrated safety." A diverse redundant architecture combined with crossmonitoring and forced dynamization is explained. In the main section the steps of the systematic certification procedure are explained showing some results of the certification of drilling machines. Specification reviews, design reviews with test case specification, statistical analysis, and walk-throughs are the analytical measures in the testing process. Systematic tests based on the test case specification, Electro Magnetic Interference (EMI), and environmental testing, and site acceptance tests on the machines are the testing measures for validation. A complex software driven system is always undergoing modification. Most of the changes are not safety-relevant but this has to be proven. A systematic procedure for certifying software modifications is presented in the last section of the paper.

  4. Application of smart optical fiber sensors for structural load monitoring

    NASA Astrophysics Data System (ADS)

    Davies, Heddwyn; Everall, Lorna A.; Gallon, Andrew M.

    2001-06-01

    This paper describes a smart monitoring system, incorporating optical fiber sensing techniques, capable of providing important structural information to designers and users alike. This technology has wide industrial and commercial application in areas including aerospace, civil, maritime and automotive engineering. In order to demonstrate the capability of the sensing system it has been installed in a 35m free-standing carbon fiber yacht mast, where a complete optical network of strain and temperature sensors were embedded into a composite mast and boom during lay-up. The system was able to monitor the behavior of the composite rig through a range of handling conditions. The resulting strain information can be used by engineers to improve the structural design process. Embedded fiber optic sensors have wide ranging application for structural load monitoring. Due to their small size, optical fiber sensors can be readily embedded into composite materials. Other advantages include their immediate multiplexing capability and immunity to electro-magnetic interference. The capability of this system has been demonstrated within the maritime and industrial environment, but can be adapted for any application.

  5. AC Electric Field Communication for Human-Area Networking

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  6. Basic Research of Intrinsic Tamper Indication Markings Defined by Pulsed Laser Irradiation (Quad Chart).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Neville R.

    Objective: We will research how short (ns) and ultrashort (fs) laser pulses interact with the surfaces of various materials to create complex color layers and morphological patterns. Method: We are investigating the site-specific, formation of microcolor features. Also, research includes a fundamental study of the physics underlying periodic ripple formation during femtosecond laser irradiation. Status of effort: Laser induced color markings were demonstrated on an increased number of materials (including metal thin films) and investigated for optical properties and microstructure. Technology that allows for marking curved surfaces (and large areas) has been implemented. We have used electro-magnetic solvers to modelmore » light-solid interactions leading to periodic surface ripple patterns. This includes identifying the roles of surface plasmon polaritons. Goals/Milestones: Research corrosion resistance of oxide color markings (salt spray, fog, polarization tests); Through modeling, investigate effects of multi-source scattering and interference on ripple patterns; Investigate microspectrophotometry for mapping color; and Investigate new methods for laser color marking curved surfaces and large areas.« less

  7. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe

    2016-07-01

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  8. A visualization instrument to investigate the mechanical-electro properties of high temperature superconducting tapes under multi-fields.

    PubMed

    Liu, Wei; Zhang, Xingyi; Liu, Cong; Zhang, Wentao; Zhou, Jun; Zhou, YouHe

    2016-07-01

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strand is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.

  9. Development of a Rotating Magnetized Plasma Device

    NASA Astrophysics Data System (ADS)

    Cooke, David; Patton, James; Reid, Remington; Stiles, Ashley; Morrison, Patrik; Koch, Andrei

    2017-10-01

    Momentum coupling in plasma is a mechanism that is central to a wide range of interesting and important phenomena, magnetosphere-ionosphere coupling, solar eruptions, the interaction of an electro-dynamic tether system in the Earth's ionosphere, and the Critical Ionization Velocity (CIV) mechanism are a few examples. One result of the Space Shuttle Tethered Satellite experiment, TSS-1R, was that the current-voltage response of the experiment in all orbit conditions fell into a narrow range of curves when parameterized as a plasma probe [Thompson, GRL,1998]. Another striking result was the lack of dependence on the Alfvén velocity or other electro-magnetic parameters. This result has led us to revisit the understanding of the speed with which an electric field propagates along the magnetic field using EM-PIC simulation and experiments in our new magnetized plasma chamber. Our initial experiment is a rotating plasma using a solenoidal magnetic field and a radial electric field, with pulsed differential rotation of the plasma column to study the strength of coupling and propagation speed. Characteristics of our `first light' rotating plasma will be presented. Supported by Air Force Office Scientific Research 16RVCOR264.

  10. Probing electronic and vibrational properties at the electrochemical interface using SFG spectroscopy: Methanol electro-oxidation on Pt(1 1 0)

    NASA Astrophysics Data System (ADS)

    Vidal, F.; Busson, B.; Tadjeddine, A.

    2005-02-01

    We report the study of methanol electro-oxidation on Pt(1 1 0) using infrared-visible sum-frequency generation (SFG) vibrational spectroscopy. The use of this technique enables to probe the vibrational and electronic properties of the interface simultaneously in situ. We have investigated the vibrational properties of the interface in the CO ads internal stretch spectral region (1700-2150 cm -1) over a wide range of potentials. The analysis of the evolution of the C-O stretch line shape, which is related to the interference between the vibrational and electronic parts of the non-linear response, with the potential allows us to show that the onset of bulk methanol oxidation corresponds to the transition from a negatively to a positively charged surface.

  11. [Observation on therapeutic effect of acupuncture at Yanglingquan (GB 34) on sprain of external ankle joint].

    PubMed

    He, Xin-fang; Xu, Hai-bin

    2006-08-01

    To observe the increasing effect of Yanglingquan (GB 34) on sprain of external ankle joint. Seventy-nine cases of sprain of external ankle joint were semi-randomly divided into a treatment group (n = 46) and a control group (n = 33). The treatment group were treated with acupuncture at Yanglingquan (GB 34) and electro-magnetic therapy at local acupoints, and the control group with electro-magnetic therapy. The cured rate and the total effective rate were 67.4% and 91.3% in the treatment group, and 36.4% and 69.7% in the control group, respectively, with a significant difference between the two groups (P<0.01, P<0.05). Acupuncture at Yanglingquan (GB 34) has a better therapeutic effect on sprain of the external ankle joint.

  12. A Method for Testing the Dynamic Accuracy of Micro-Electro-Mechanical Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) Sensors for Inertial Navigation Systems (INS) and Human Motion Tracking Applications

    DTIC Science & Technology

    2010-06-01

    32 2. Low-Cost Framework........................................................................33 3. Low Magnetic Field ...that have a significant impact on the magnetic field measured by a MARG, which could potentially add errors that are due entirely to the test...minimize the impact on the local magnetic field , and the apparatus was made as rigidly as possible using 2 x 4s to minimize any out of plane motions that

  13. A fiber-optic interferometer based on non-adiabatic fiber taper and long-period fiber grating for simultaneous measurement of magnetic field and temperature

    NASA Astrophysics Data System (ADS)

    Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping

    2016-01-01

    A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.

  14. Development of the Vertical Electro Magnetic Profiling (VEMP) method

    NASA Astrophysics Data System (ADS)

    Miura, Yasuo; Osato, Kazumi; Takasugi, Shinji; Muraoka, Hirofumi; Yasukawa, Kasumi

    1996-09-01

    As a part of the "Deep-Seated Geothermal Resources Survey (DSGR)" project being undertaken by the New Energy and Industrial Technology Development Organization (NEDO), the "Vertical Electro Magnetic Profiling (VEMP)" method is being developed to accurately obtain deep resistivity structures. The VEMP method takes multi-frequency three-component magnetic field data in an open hole well using controlled source transmitters emitted at the surface (either loop or grounded-wire sources). Numerical simulations using EM3D have demonstrated that phase data of the VEMP method is not only very sensitive to the general resistivity structure, but will also indicate the presence of deeper anomalies. Forward modelling was used to determine the required transmitter moments for various grounded-wire and loop sources for a field test using the WD-1 well in the Kakkonda geothermal area. VEMP logging of the WD-1 well was carried out in May 1994 and the processed field data matches the computer simulations quite well.

  15. Magnetostatics Analysis, Design, and Construction of a Loudspeaker

    ERIC Educational Resources Information Center

    Galeriu, Calin

    2010-01-01

    Making a loudspeaker is a very rewarding hands-on activity that can be used to teach about electro-magnetism and sound waves. Several loudspeaker designs have been described in this magazine. The simplest loudspeaker has only a magnet, a coil, and three plastic cups. The simpler devices require a powerful amplified output, e.g., from a boom box.…

  16. Acoustic holograms of active regions

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi

    2008-10-01

    We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.

  17. Safety of implantable pacemakers and cardioverter defibrillators in the magnetic field of a novel remote magnetic navigation system.

    PubMed

    Jilek, Clemens; Tzeis, Stylianos; Reents, Tilko; Estner, Heidi-Luise; Fichtner, Stephanie; Ammar, Sonia; Wu, Jinjin; Hessling, Gabriele; Deisenhofer, Isabel; Kolb, Christof

    2010-10-01

    Electromagnetic interference with pacemaker and implantable cardioverter defibrillator (ICD) systems may cause temporary or permanent system malfunction of implanted devices. The aim of this study was to evaluate potential interference of a novel magnetic navigation system with implantable rhythm devices. A total of 121 devices (77 pacemakers, 44 ICDs) were exposed to an activated NIOBE II® Magnetic Navigation System (Stereotaxis, St. Louis, MO, USA) at the maximal magnetic field strength of 0.1 Tesla and evaluated in vitro with respect to changes in parameter settings of the device, changes of the battery status/detection of elective replacement indication, or alterations of data stored in the device. A total of 115 out of 121 (95%) devices were free of changes in parameter settings, battery status, and internally stored data after repeated exposition to the electromagnetic field of the remote magnetic navigation system. Interference with the magnetic navigation field was observed in 6 pacemakers, resulting in reprogramming to a power-on-reset mode with or without detection of the elective replacement indication in 5 devices and abnormal variance of battery status in one device. All pacemakers could be reprogrammed to the initial modes and the battery status proved to be normal some minutes after the pacemakers had been removed from the magnetic field. Interference of a remote magnetic navigation system (at maximal field strength) with pacemakers and ICDs not connected to leads with antitachycardic detection and therapies turned off is rare. Occurring functional abnormalities could be reprogrammed in our sample. An in vitro study will give information about interference of devices connected to leads. © 2010 Wiley Periodicals, Inc.

  18. Magnetic switch for reactor control rod. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  19. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A.

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained andmore » agreement between theory and experiment are good.« less

  20. Electro-Thermal-Mechanical Simulation Capability Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D

    This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There aremore » numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R&D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems such as magnetic flux compression generators and railguns. This project compliments ongoing DNT projects that have an experimental emphasis. Our research efforts have been encapsulated in the Diablo and ALE3D simulation codes. This new ETM capability already has both internal and external users, and has spawned additional research in plasma railgun technology. By developing this capability Engineering has become a world-leader in ETM design, analysis, and simulation. This research has positioned LLNL to be able to compete for new business opportunities with the DoD in the area of railgun design. We currently have a three-year $1.5M project with the Office of Naval Research to apply our ETM simulation capability to railgun bore life issues and we expect to be a key player in the railgun community.« less

  1. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology

    PubMed Central

    Chen, Jiawen; Li, Jianhua; Li, Yiyuan; Chen, Yulong

    2018-01-01

    A miniaturized Co-based amorphous wire GMI (Giant magneto-impedance) magnetic sensor was designed and fabricated in this paper. The Co-based amorphous wire was used as the sense element due to its high sensitivity to the magnetic field. A three-dimensional micro coil surrounding the Co-based amorphous wire was fabricated by MEMS (Micro-Electro-Mechanical System) technology, which was used to extract the electrical signal. The three-dimensional micro pick-up coil was designed and simulated with HFSS (High Frequency Structure Simulator) software to determine the key parameters. Surface micro machining MEMS (Micro-Electro-Mechanical System) technology was employed to fabricate the three-dimensional coil. The size of the developed amorphous wire magnetic sensor is 5.6 × 1.5 × 1.1 mm3. Helmholtz coil was used to characterize the performance of the device. The test results of the sensor sample show that the voltage change is 130 mV/Oe and the linearity error is 4.83% in the range of 0~45,000 nT. The results indicate that the developed miniaturized magnetic sensor has high sensitivity. By testing the electrical resistance of the samples, the results also showed high uniformity of each device. PMID:29494477

  2. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.

    PubMed

    Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li

    2014-04-01

    We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field.

  3. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their properties are briefly reviewed in Chapter One, including the concepts of ferro-magnetism, plasmonics, photocatalysis, thermal emission, and Raman spectra of carbon nanotubes. In Chapter Two, we focus on the magnetic properties of ferro-magnetic cobalt nanowires with high crystalline quality synthesized via a low voltage electro-deposition method. The crystal structure of these Co nanowires is characterized by high resolution transmission electron microscopy and X-ray diffraction. The magnetic properties of individual nanowires and nanowire arrays are investigated by magnetic force microscope (MFM) and superconducting quantum interference device (SQUID) measurements. A theoretical model is developed to explain these experimental observations. In Chapter Three, we exploit the strong plasmon resonance of gold nanoparticles. We also demonstrate a new method for patterning SERS (surface enhanced Raman spectroscopy) aggregates of gold nanoparticles by using a focused laser beam to optically trap the nanoparticles in a water suspension. Raman spectroscopy is used to estimate the temperature in the laser spot during the in-situ aggregation, by measuring the Raman peak of the hydroxyl bond of water. In Chapter Four, we demonstrate plasmonic enhancement of photocatalytic water splitting under visible illumination by integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2. Electromagnetic simulations indicate that the near-field optical enhancement increases the electron-hole pair generation rate at the surface of the TiO2, thus increasing the amount of photo-generated charge contributing to catalysis. Our results suggest that enhancement factors many times larger than this are possible if this mechanism can be optimized. In Chapter Five, we study the Raman spectra and thermal emission spectra of individual suspended carbon nanotubes induced by electrical heating. Semiconducting and metallic devices exhibit different spectra, based on their distinctive band structures. Raman spectra and the blackbody emission background are used to fit the device temperature. In addition to the blackbody emission background, polarized peaks along the nanotube direction are observed in different ranges of the thermal emission spectra for metallic and semiconducting devices. These peaks are attributed to the transitions between Van Hove singularities that are thermally driven under these high applied bias voltages. A theoretical model is developed to calculate the thermal emission spectra based on this conclusion. In Chapter Six, we present some data of single crystal zinc oxide (ZnO) nanowires synthesized by the CVD method, including magneto-resistance measurements, optical-resistance measurements, and scanning-gate measurements. In Chapter Seven, we discuss some future work related to photocatalysis and carbon nanotubes.

  4. Malfunction of medical equipment as a result of mains borne interference.

    PubMed

    Railton, R; Currie, G D; Corner, G A; Evans, A L

    1993-08-01

    Medical equipment has become more intelligent as the manufacturers have incorporated the latest microprocessor based technology. Equipment malfunction can be caused at any time by inherent errors in the control program but it is particularly important that this is designed to cope with the effects of electrical interference which, in addition, may cause corruption of the software. We have considered interference found in the mains supply in the hospital environment. Using a test protocol with appropriate interference simulators, a wide range of medical equipment was removed temporarily from use and its immunity to electrical mains borne interference tested. Battery operated mains rechargeable devices were unaffected by mains voltage variations including drop-outs and sags whereas mains powered devices were affected to varying degrees of severity. In particular, repetitive drop-outs caused loss of power due to fuse blowing in some life support equipment. Impulses affected 25% and pulse bursts 50% of the equipment tested with some evidence that the more recent designs coped better. The EEC Directive on electro-medical compatibility compliance may cause the design of equipment to be improved but hospitals will have to cope with the above problems in their existing equipment for many years to come.

  5. Application of physical parameter identification to finite-element models

    NASA Technical Reports Server (NTRS)

    Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.

    1987-01-01

    The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.

  6. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Kusunose, Hiroaki

    2018-03-01

    We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.

  7. Model of inter-cell interference phenomenon in 10 nm magnetic tunnel junction with perpendicular anisotropy array due to oscillatory stray field from neighboring cells

    NASA Astrophysics Data System (ADS)

    Ohuchida, Satoshi; Endoh, Tetsuo

    2018-06-01

    In this paper, we propose a new model of inter-cell interference phenomenon in a 10 nm magnetic tunnel junction with perpendicular anisotropy (p-MTJ) array and investigated the interference effect between a program cell and unselected cells due to the oscillatory stray field from neighboring cells by Landau–Lifshitz–Gilbert micromagnetic simulation. We found that interference brings about a switching delay in a program cell and excitation of magnetization precession in unselected cells even when no programing current passes through. The origin of interference is ferromagnetic resonance between neighboring cells. During the interference period, the precession frequency of the program cell is 20.8 GHz, which synchronizes with that of the theoretical precession frequency f = γH eff in unselected cells. The disturbance strength of unselected cells decreased to be inversely proportional to the cube of the distance from the program cell, which is in good agreement with the dependence of stray field on the distance from the program cell calculated by the dipole approximation method.

  8. Technical Note: Building a combined cyclotron and MRI facility: Implications for interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, Mark B. M.; Kuijer, Joost P. A.; Ridder, Jan Willem de

    2013-01-15

    Purpose: With the introduction of hybrid PET/MRI systems, it has become more likely that the cyclotron and MRI systems will be located close to each other. This study considered the interference between a cyclotron and a superconducting MRI system. Methods: Interactions between cyclotrons and MRIs are theoretically considered. The main interference is expected to be the perturbation of the magnetic field in the MRI due to switching on or off the magnetic field of the cyclotron. MR imaging is distorted by a dynamic spatial gradient of an external inplane magnetic field larger than 0.5-0.04 {mu}T/m, depending on the specific MRmore » application. From the design of a cyclotron, it is expected that the magnetic fringe field at large distances behaves as a magnetic dipolar field. This allows estimation of the full dipolar field and its spatial gradients from a single measurement. Around an 18 MeV cyclotron (Cyclone, IBA), magnetic field measurements were performed on 5 locations and compared with calculations based upon a dipolar field model. Results: At the measurement locations the estimated and measured values of the magnetic field component and its spatial gradients of the inplane component were compared, and found to agree within a factor 1.1 for the magnetic field and within a factor of 1.5 for the spatial gradients of the field. In the specific case of the 18 MeV cyclotron with a vertical magnetic field and a 3T superconducting whole body MR system, a minimum distance of 20 m has to be considered to prevent interference. Conclusions: This study showed that a dipole model is sufficiently accurate to predict the interference of a cyclotron on a MRI scanner, for site planning purposes. The cyclotron and a whole body MRI system considered in this study need to be placed more than 20 m apart, or magnetic shielding should be utilized.« less

  9. Development of High Resolution Eddy Current Imaging Using an Electro-Mechanical Sensor (Preprint)

    DTIC Science & Technology

    2011-11-01

    The Fluxgate Magnetometer ,” J. Phys. E: Sci. Instrum., Vol. 12: 241-253. 13. A. Abedi, J. J. Fellenstein, A. J. Lucas, and J. P. Wikswo, Jr., “A...206 (2006). 11. Ripka, P., 1992, Review of Fluxgate Sensors, Sensors and Actuators, A. 33, Elsevier Sequoia: 129-141. 12. Primdahl, F., 1979...superconducting quantum interference device magnetometer system for quantitative analysis and imaging of hidden corrosion activity in aircraft aluminum

  10. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  11. Magnetic Induction Machines Integrated into Bulk-Micromachined Silicon

    DTIC Science & Technology

    2006-04-01

    Actuator Workshop (Hilton Head 2000), pp. 43–7, Jun. 2000. [5] H. Guckel et al., “A first functional current excited planar rotational magnetic micromotor ...in Proc. IEEE Micro Electro Mechanical Sys- tems (MEMS’93), Feb. 1993, pp. 7–11. [6] , “Planar rotational magnetic micromotors ,” Int. J. Appl... micromotor with fully integrated stator and coils,” J. Micro- electromech. Syst., vol. 2, no. 4, pp. 165–73, Dec. 1993. [8] B. Wagner, M. Kreutzer, and W

  12. Controlling Fringe Sensitivity of Electro-Optic Holography Systems Using Laser Diode Current Modulation

    NASA Technical Reports Server (NTRS)

    Bybee, Shannon J.

    2001-01-01

    Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.

  13. Polymer electro-optic waveguide devices: Low-loss etchless fabrication techniques and passive-to-active integration

    NASA Astrophysics Data System (ADS)

    Geary, Kevin

    The development of high-frequency polymer electro-optic modulators has seen steady and significant progress in recent years, yet applications of these promising materials to more complicated integrated optic structures and arrays of devices have been limited primarily due to high optical waveguide loss characteristics. This is unfortunate since a major advantage of polymers as photonic materials is their compatibility with photolithographic processing of large components. In this Dissertation, etchless waveguide writing techniques are presented in order to improve the overall optical insertion loss of electro-optic polymer waveguide devices. These techniques include poling-induced writing, stress-induced waveguide writing, and photobleaching. Using these waveguide writing mechanisms, we have demonstrated straight waveguides, phase modulators, Mach-Zehnder intensity modulators, variable optical attenuators, and multimode interference (MMI) power splitters, all with improved loss characteristics over their etched rib waveguide counterparts. Ultimately, the insertion loss of an integrated optic device is limited by the actual material loss of the core waveguide material. In this Dissertation, passive-to-active polymer waveguide transitions are proposed to circumvent this problem. These transitions are compact, in-plane, self-aligned, and require no tapering of any physical dimensions of the waveguides. By utilizing both the time-dependent and intensity-dependent photobleaching characteristics of electro-optic polymer materials, adiabatic refractive index tapers can be seamlessly coupled to in-plane butt couple transitions, resulting in losses as low as 0.1 dB per interface. By integrating passive polymer planar lightwave circuits with the high-speed phase shifting capability of electro-optic polymers, active wideband photonic devices of increased size and complexity can be realized. Optical fiber-to-device coupling can also result in significant contributions to the overall insertion loss of an integrated electro-optic polymer device. In this Dissertation, we leverage the photobleached refractive index taper component of our proposed passive-to-active polymer waveguide transitions in order to realize a two-dimensional optical mode transformer for improved overall fiber-to-device coupling of electro-optic polymer waveguide devices.

  14. Post-annealing-free, room temperature processed nanocrystalline indium tin oxide thin films for plastic electronics

    NASA Astrophysics Data System (ADS)

    Nyoung Jang, Jin; Jong Lee, You; Jang, YunSung; Yun, JangWon; Yi, Seungjun; Hong, MunPyo

    2016-06-01

    In this study, we confirm that bombardment by high energy negative oxygen ions (NOIs) is the key origin of electro-optical property degradations in indium tin oxide (ITO) thin films formed by conventional plasma sputtering processes. To minimize the bombardment effect of NOIs, which are generated on the surface of the ITO targets and accelerated by the cathode sheath potential on the magnetron sputter gun (MSG), we introduce a magnetic field shielded sputtering (MFSS) system composed of a permanent magnetic array between the MSG and the substrate holder to block the arrival of energetic NOIs. The MFSS processed ITO thin films reveal a novel nanocrystal imbedded polymorphous structure, and present not only superior electro-optical characteristics but also higher gas diffusion barrier properties. To the best of our knowledge, no gas diffusion barrier composed of a single inorganic thin film formed by conventional plasma sputtering processes achieves such a low moisture permeability.

  15. Electrothermal instability growth in magnetically driven pulsed power liners

    NASA Astrophysics Data System (ADS)

    Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.; Herrmann, Mark C.; Cuneo, Michael E.; Slutz, Stephen A.; Smith, Ian C.; Atherton, Briggs W.; Knudson, Marcus D.; Nakhleh, Charles

    2012-09-01

    This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.

  16. Evaluation of the magnetic properties of cosmetic contact lenses with a superconducting quantum interference device.

    PubMed

    Kuroda, Kagayaki; Shirakawa, Naoki; Yoshida, Yoshiyuki; Tawara, Kazuya; Kobayashi, Akihiro; Nakai, Toshiharu

    2014-01-01

    We evaluated the magnetization of 21 cosmetic contact lens samples that included various coloring materials with a superconducting quantum interference device with regard to magnetic resonance (MR) safety. We found 7 samples were ferromagnetic; two had both ferromagnetic and diamagnetic properties; and the rest were diamagnetic. The saturated magnetization of the most ferromagnetic sample was 15.0 µJ/T, which yielded a magnetically induced displacement force of 90.0 µN when the spatial gradient of the static magnetic field was 6.0 T/m. The force was less than one-third of the gravitational force.

  17. Photodetector based on Vernier-Enhanced Fabry-Perot Interferometers with a Photo-Thermal Coating

    PubMed Central

    Chen, George Y.; Wu, Xuan; Liu, Xiaokong; Lancaster, David G.; Monro, Tanya M.; Xu, Haolan

    2017-01-01

    We present a new type of fiber-coupled photodetector with a thermal-based optical sensor head, which enables it to operate even in the presence of strong electro-magnetic interference and in electrically sensitive environments. The optical sensor head consists of three cascaded Fabry-Perot interferometers. The end-face surface is coated with copper-oxide micro-particles embedded in hydrogel, which is a new photo-thermal coating that can be readily coated on many different surfaces. Under irradiation, photons are absorbed by the photo-thermal coating, and are converted into heat, changing the optical path length of the probing light and induces a resonant wavelength shift. For white-light irradiation, the photodetector exhibits a power sensitivity of 760 pm/mW, a power detection limit of 16.4 μW (i.e. specific detectivity of 2.2 × 105 cm.√Hz/W), and an optical damage threshold of ~100 mW or ~800 mW/cm2. The response and recovery times are 3.0 s (~90% of change within 100 ms) and 16.0 s respectively. PMID:28139745

  18. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Ghadiri, Majid; Safarpour, Hamed

    2016-09-01

    In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

  19. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.

    2002-03-26

    A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.

  20. Microwave monolithic filter and phase shifter using magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Aslam, Shehreen; Khanna, Manoj; Veenugopal, Veerakumar; Kuanr, Bijoy K.

    2018-05-01

    Monolithic Microwave Integrated Circuit (MMIC) have major impact on the development of microwave communication technology. Transition metal based ferromagnetic nano-wired (FMNWs) substrate are of special interest in order to fabricate these MMIC devices. Their saturation magnetization is comparatively higher than ferrites which makes them suitable for high frequency (>10 ˜ 40 GHz) operation at zero or a small applied magnetic field. The CoFeB nanowires in anodic alumina templates were synthesized using three-electrode electro-deposition system. After electro-deposition, 1μm thick Cu layer was sputtered on the top surface of FMNW substrate and lithography was done to design microstrip lines. These microstrip transmission lines were tested for band-stop filters and phase shifters based on ferromagnetic resonance (FMR) over a wide applied magnetic field (H) range. It was observed that attenuation and frequency increase with the increase of magnetic field (upto 5.3 kOe). For phase shifter, the influence of magnetic material was studied for two frequency regions: (i) below FMR and (ii) above FMR. These two frequency regions were suitable for many practical device applications as the insertion loss was very less in these regions in comparison to resonance frequency regions. In the high frequency region (at 35 GHz), the optimal differential phase shift increased significantly to ˜ 250 deg/cm and around low frequency region (at 24 GHz), the optimal differential phase shift is ˜175 deg/cm at the highest field (H) value.

  1. Development of High Resolution Eddy Current Imaging Using an Electro-Mechanical Sensor (Postprint)

    DTIC Science & Technology

    2011-08-01

    Primdahl, F., 1979, “The Fluxgate Magnetometer ,” J. Phys. E: Sci. Instrum., Vol. 12: 241-253. 13. A. Abedi, J. J. Fellenstein, A. J. Lucas, and J. P...Issues 1-2, Pages 203-206 (2006). 11. Ripka, P., 1992, Review of Fluxgate Sensors, Sensors and Actuators, A. 33, Elsevier Sequoia: 129-141. 12...Wikswo, Jr., “A superconducting quantum interference device magnetometer system for quantitative analysis and imaging of hidden corrosion activity in

  2. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  3. Polariton resonances in multilayered piezoelectric superlattices

    NASA Astrophysics Data System (ADS)

    Piliposyan, D.

    2018-04-01

    Coupled electro-elastic SH waves propagating in a periodic piezoelectric finite-length superlattice with identical piezoelectric materials in a unit cell are considered in the framework of the full system of Maxwell’s electrodynamic equations. In the long wavelength region, coupling between electro-magnetic and elastic waves creates frequency band gaps. It is shown that for piezoelectric superlattice at acoustic frequencies, acousto-optic coupling gives rise to polariton behavior at wavelengths much larger than the length of the unit cell. The results of the paper may be useful in design of narrow band filters or multi-channel piezoelectric filters.

  4. Sensitive detection of dopamine via leucodopaminechrome on polyacrylic acid-coated ceria nanorods

    NASA Astrophysics Data System (ADS)

    Sheng, Weiqin; Zheng, Liang; Liu, Yan; Zhao, Xueqin; Weng, Jian; Zhang, Yang

    2017-09-01

    The major hurdle in detection of dopamine (DA) by electro-analysis is the presence of physiological interferents with a similar oxidation potential of DA. The conventional method is to enlarge the difference of their oxidation potentials. Here, we report an unconventional method to detect DA via leucodopaminechrome on CeO2 nanorods. Leucodopaminechrome is produced from the cyclization of dopamine-quinone, a product of two-electron oxidation of DA. Thus, its concentration is proportional to the DA concentration. Determining DA is demonstrated by measuring the reduction current of leucodopaminechrome on CeO2 nanorods. CeO2 nanorods demonstrate high electrocatalytic activity for reduction of leucodopaminechrome with a low potential at -0.27 V. The low detection potential of leucodopaminechrome can avoid the interference from ascorbic acid (AA) and uric acid (UA). Therefore, detecting DA via leucodopaminechrome is an effective method to avoid interference from AA and UA, and the suggested biosensor also displays good reproducibility and stability.

  5. Over-the-air in-band full-duplex system with hybrid RF optical and baseband digital self-interference cancellation

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin

    2017-12-01

    In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.

  6. Alterable Magnetic Gratings for Fiber Optic Switching.

    DTIC Science & Technology

    1982-12-01

    monotonically decreasing function as X moves into the infrared from the visible. The Faraday rotation of bismuth garnet samples including the new large... photodector giving as fast a response as possible while still providing usable signal levels, measure the detector response * using the electro-optic...icity. Normally a stripe domain array is configured as a linear grating. In-plane magnetic fields can rotate the grating as well as alter the periodicity

  7. Optical magnetic resonances induced by the interference of reactive components in the near radiation-field zone of atoms in a glow discharge of a mixture of even neon isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saprykin, E. G., E-mail: Saprykin@gorodok.net

    2016-02-15

    Four types of anomalous optical magnetic resonances shifted with respect to the zero magnetic field and with different shapes are found in radiation of a glow discharge in a mixture of even neon isotopes placed in a swept longitudinal magnetic field. This testifies to the manifestation of collective processes of synchronous light emission by oscillators belonging to isotopically different spatially separated atoms in discharge plasma. The origin of resonances is associated with nonstationary interference of reactive fields in the near radiation-field zones of emission of atoms, averaged over the lifetime of the fields (interference), while different types of resonances aremore » associated with different methods of synchronization of the phases of the fields.« less

  8. EMPHASIS™/Nevada UTDEM User Guide Version 2.1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, C. David; Pasik, Michael F.; Seidel, David B.

    The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell’s equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest.

  9. 21 CFR 874.3305 - Wireless air-conduction hearing aid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-amplifying device, intended to compensate for impaired hearing that incorporates wireless technology in its...: (1) Appropriate analysis/testing should validate electro magnetic compatibility (EMC) and safety of... technology functions; and (3) Labeling should specify appropriate instructions, warnings, and information...

  10. Electron heating in the laser and static electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzeng; Krasheninnikov, S. I.

    2018-01-01

    A 2D slab approximation of the interactions of electrons with intense linearly polarized laser radiation and static electric and magnetic fields is widely used for both numerical simulations and simplified semi-analytical models. It is shown that in this case, electron dynamics can be conveniently described in the framework of the 3/2 dimensional Hamiltonian approach. The electron acceleration beyond a standard ponderomotive scaling, caused by the synergistic effects of the laser and static electro-magnetic fields, is due to an onset of stochastic electron motion.

  11. Serum anti-Müllerian hormone and ovarian morphology assessed by magnetic resonance imaging in response to acupuncture and exercise in women with polycystic ovary syndrome: secondary analyses of a randomized controlled trial.

    PubMed

    Leonhardt, Henrik; Hellström, Mikael; Gull, Berit; Lind, Anna-Karin; Nilsson, Lars; Janson, Per Olof; Stener-Victorin, Elisabet

    2015-03-01

    To investigate whether electro-acupuncture or physical exercise influence serum anti-Müllerian hormone (AMH), antral follicle count (AFC) or ovarian volume in women with polycystic ovary syndrome (PCOS). Secondary analyses of a prospective, randomized controlled clinical trial. University Hospital, Sweden. Seventy-four women with PCOS recruited from the general population. Women with PCOS were randomized to 16 weeks of electro-acupuncture (14 treatments), exercise (at least three times/week), or no intervention. Serum AMH recorded at baseline, after 16 weeks of intervention, and at follow up at 32 weeks. AFC, and ovarian volume assessed by magnetic resonance imaging at baseline and at follow up at 32 weeks. After 16 weeks of intervention, serum levels of AMH were significantly decreased in the electro-acupuncture group by 17.5% (p < 0.001), and differed from the change in the exercise group. AMH remained decreased by 15% (p = 0.004) also at follow up at 32 weeks, but did not differ from the exercise or the no intervention groups. There was a decrease by 8.5% (p = 0.015) in ovarian volume between baseline and follow up in the electro-acupuncture group, and by 11.7% (p = 0.01) in AFC in the physical exercise group. No other variables were affected. This study is the first to demonstrate that acupuncture reduces serum AMH levels and ovarian volume. Physical exercise did not influence circulating AMH or ovarian volume. Despite a within-group decrease in AFC, exercise did not lead to a between-group difference. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  12. Special Technology Area Review on Displays. Report of Department of Defense Advisory Group on Electron Devices Working Group C (Electro-Optics)

    DTIC Science & Technology

    2004-03-01

    mirror device ( DMD ) for C4ISR applications, the IBM 9.2 megapixel 22-in. diagonal active matrix liquid crystal display (AMLCD) monitor for data...FED, VFD, OLED and a variety of microdisplays (uD, comprising uLCD, uOLED, DMD and other MEMs) (see glossary). 3 CDT = cathode display tubes (used in...than SVGA, greater battery life and brightness, decreased weight and thickness, electromagnetic interference (EMI), and development of video

  13. Test techniques: A survey paper on cryogenic tunnels, adaptive wall test sections, and magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.

    1989-01-01

    The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.

  14. The ground state magnetic moment and susceptibility of a two electron Gaussian quantum dot

    NASA Astrophysics Data System (ADS)

    Boda, Aalu; Chatterjee, Ashok

    2018-04-01

    The problem of two interacting electrons moving in a two-dimensional semiconductor quantum dot with Gaussian confinement under the influence of an external magnetic field is studied by using a method of numerical diagonalization of the Hamiltonian matrix with in the effective-mass approximation. The energy spectrum is calculated as a function of the magnetic field. We find the ground state magnetic moment and the magnetic susceptibility show zero temperature diamagnetic peaks due to exchange induced singlet-triplet oscillations. The position and the number of these peaks depend on the size of the quantum dot and also strength of the electro-electron interaction. The theory is applied to a GaAs quantum dot.

  15. Physical Security Against Explosive Threats: Standoff Magnetic and Electro-optical Sensing and Target Characterization

    DTIC Science & Technology

    2012-10-21

    PBIEDS ). Coupled with recent suicide bomb events in unstable regions of Southwest Asia and Africa, long-standing Urgent Operation Need Statements for...explosives and shrapnel (metal screws, bolts, ball bearings). A PBIED detection capability is critically needed not only for operations during open...produce magnetic signals above a certain threshold. We have developed a simple and robust multi- modal sensing system to detect PBIEDs and metal

  16. Analysis of space charge fields using the Lienard-Wiechert potential and the method of images during the photoemission of the electron beam from the cathode

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el

    2017-01-01

    We present a numerical analysis of the space charge effect and the effect of image charge force on the cathode surface for a laser-driven RF-photocathode gun. In this numerical analysis, in the vicinity of the cathode surface, we used an analytical method based on Lienard-Weichert retarded potentials. The analytical method allows us to calculate longitudinal and radial electric fields, and the azimuth magnetic field due to both space charge effect and the effect of the image charge force. We calculate the electro-magnetic fields in the following two conditions for the "ELSA" photoinjector. The first condition is in the progress of photoemission, which corresponds to the inside of the emitted beam, and the second condition is at the end of the photoemission. The electromagnetic fields due to the space charge effect and the effect of the image charge force, and the sum of them, which corresponds to the global electro-magnetic fields, are shown. Based on these numerical results, we discussed the effects of the space charge and the image charge in the immediate vicinity of the cathode.

  17. Note: High turn density magnetic coils with improved low pressure water cooling for use in atom optics.

    PubMed

    McKay Parry, Nicholas; Baker, Mark; Neely, Tyler; Carey, Thomas; Bell, Thomas; Rubinsztein-Dunlop, Halina

    2014-08-01

    We describe a magnetic coil design utilizing concentrically wound electro-magnetic insulating (EMI) foil (25.4 μm Kapton backing and 127 μm thick layers). The magnetic coils are easily configurable for different coil sizes, while providing large surfaces for low-pressure (0.12 bar) water cooling. The coils have turn densities of ~5 mm(-1) and achieve a maximum of 377 G at 2.1 kW driving power, measured at a distance 37.9 mm from the axial center of the coil. The coils achieve a steady-state temperature increase of 36.7°C/kW.

  18. Diazonium-protein adducts for graphite electrode microarrays modification: direct and addressed electrochemical immobilization.

    PubMed

    Corgier, Benjamin P; Marquette, Christophe A; Blum, Loïc J

    2005-12-28

    Diazonium cation electrodeposition was investigated for the direct and electro-addressed immobilization of proteins. For the first time, this reaction was triggered directly onto diazonium-modified proteins. Screen-printed (SP) graphite electrode microarrays were studied as active support for this immobilization. A 10-microelectrode (eight working electrodes, 0.2 mm2 each; one reference; and one auxiliary) setup was used to study the addressing possibilities of the method. These electrode microarrays were shown to be able to covalently graft diazonium cations through electrochemical reduction. Cyclic voltammetry and X-ray photoelectron spectroscopy were used to characterize the electrochemical grafting onto our SP graphite surface and suggested that a diazonium monolayer was deposited. Rabbit and human immunoglobulins (IgGs) were then chemically coupled to an aniline derivative (4-carboxymethylaniline), followed by diazotation to form an aryl diazonium function available for the electrodeposition. These modified proteins were both successfully electro-addressed at the surface of the graphite electrodes without cross-talk or interference. The immuno-biochip obtained using this novel approach enabled the specific detection of anti-rabbit IgG antibodies with a detection limit of 50 fmol of protein. A promising strategy to immobilize markedly different biological entities was then presented, providing an excellent spatial specificity of the electro-addressing.

  19. High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo

    2017-11-01

    In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix A, which in the case of purely elastic solids maps the current configuration to the reference configuration. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohm's law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model from variational principles is presented, together with the transformation of the Euler-Lagrange differential equations associated with the underlying variational problem from Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present paper hence extends the unified first order hyperbolic model of Newtonian continuum mechanics recently proposed in [110,42] to the more general case where the continuum is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 [61] and later in a series of papers by Godunov and Romenski [67,69,119]. An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.

  20. Automated Terrestrial EMI Emitter Detection, Classification, and Localization

    NASA Astrophysics Data System (ADS)

    Stottler, R.; Ong, J.; Gioia, C.; Bowman, C.; Bhopale, A.

    Clear operating spectrum at ground station antenna locations is critically important for communicating with, commanding, controlling, and maintaining the health of satellites. Electro Magnetic Interference (EMI) can interfere with these communications, so it is extremely important to track down and eliminate sources of EMI. The Terrestrial RFI-locating Automation with CasE based Reasoning (TRACER) system is being implemented to automate terrestrial EMI emitter localization and identification to improve space situational awareness, reduce manpower requirements, dramatically shorten EMI response time, enable the system to evolve without programmer involvement, and support adversarial scenarios such as jamming. The operational version of TRACER is being implemented and applied with real data (power versus frequency over time) for both satellite communication antennas and sweeping Direction Finding (DF) antennas located near them. This paper presents the design and initial implementation of TRACER’s investigation data management, automation, and data visualization capabilities. TRACER monitors DF antenna signals and detects and classifies EMI using neural network technology, trained on past cases of both normal communications and EMI events. When EMI events are detected, an Investigation Object is created automatically. The user interface facilitates the management of multiple investigations simultaneously. Using a variant of the Friis transmission equation, emissions data is used to estimate and plot the emitter’s locations over time for comparison with current flights. The data is also displayed on a set of five linked graphs to aid in the perception of patterns spanning power, time, frequency, and bearing. Based on details of the signal (its classification, direction, and strength, etc.), TRACER retrieves one or more cases of EMI investigation methodologies which are represented as graphical behavior transition networks (BTNs). These BTNs can be edited easily, and they naturally represent the flow-chart-like process often followed by experts in time pressured situations.

  1. Adiabatically modeling quantum gates with two-site Heisenberg spins chain: Noise vs interferometry

    NASA Astrophysics Data System (ADS)

    Jipdi, M. N.; Tchoffo, M.; Fai, L. C.

    2018-02-01

    We study the Landau Zener (LZ) dynamics of a two-site Heisenberg spin chain assisted with noise and focus on the implementation of logic gates via the resulting quantum interference. We present the evidence of the quantum interference phenomenon in triplet spin states and confirm that, three-level systems mimic Landau-Zener-Stückelberg (LZS) interferometers with occupancies dependent on the effective phase. It emerges that, the critical parameters tailoring the system are obtained for constructive interferences where the two sets of the chain are found to be maximally entangled. Our findings demonstrate that the enhancement of the magnetic field strength suppresses noise effects; consequently, the noise severely impacts the occurrence of quantum interference for weak magnetic fields while for strong fields, quantum interference subsists and allows the modeling of universal sets of quantum gates.

  2. Novel EO/IR sensor technologies

    NASA Astrophysics Data System (ADS)

    Lewis, Keith

    2011-10-01

    The requirements for advanced EO/IR sensor technologies are discussed in the context of evolving military operations, with significant emphasis on the development of new sensing technologies to meet the challenges posed by asymmetric threats. The Electro-Magnetic Remote Sensing (EMRS DTC) was established in 2003 to provide a centre of excellence in sensor research and development, supporting new capabilities in key military areas such as precision attack, battlespace manoeuvre and information superiority. In the area of advanced electro-optic technology, the DTC has supported work on discriminative imaging, advanced detectors, laser components/technologies, and novel optical techniques. This paper provides a summary of some of the EO/IR technologies explored by the DTC.

  3. [Magnets, pacemaker and defibrillator: fatal attraction?].

    PubMed

    Bergamin, C; Graf, D

    2015-05-27

    This article aims at clarifying the effects of a clinical magnet on pacemakers and Implantable Cardioverter Defibrillators. The effects of electromagnetic interferences on such devices, including interferences linked to electrosurgery and magnetic resonance imaging are also discussed. In general, a magnet provokes a distinctive effect on a pacemaker by converting it into an asynchronous mode of pacing, and on an Implantable Cardioverter Defibrillator by suspending its own antitachyarythmia therapies without affecting the pacing. In the operating room, the magnet has to be used cautiously with precisely defined protocols which respect the type of the device used, the type of intervention planned, the presence or absence of EMI and the pacing-dependency of the patient.

  4. iPad2(R) use in patients with implantable cardioverter defibrillators causes electromagnetic interference: the EMIT Study.

    PubMed

    Kozik, Teri M; Chien, Gianna; Connolly, Therese F; Grewal, Gurinder S; Liang, David; Chien, Walter

    2014-04-10

    Over 140 million iPads(®) have been sold worldwide. The iPad2(®), with magnets embedded in its frame and Smart Cover and 3G cellular data capability, can potentially cause electromagnetic interference in implantable cardioverter defibrillators. This can lead to potentially life-threatening situations in patients. The goal of this study was to determine whether the iPad2(®) can cause electromagnetic interference in patients with implantable cardioverter defibrillators. Twenty-seven patients with implantable cardioverter defibrillators were studied. The iPad2(®) was held at reading distance and placed directly over the device with cellular data capability activated and deactivated. The manufacturers/models of devices and the patients' body mass index were noted. The presence of electromagnetic interference was detected by using a programmer supplied by each manufacturer. Magnet mode with suspension of anti-tachycardia therapy was triggered in 9 (33%) patients. All occurred when the iPad2(®) was placed directly over the device. The cellular data status did not cause interference and no noise or oversensing was noted. There was no significant difference between the mean body mass index of the groups with or without interference. The iPad2(®) can trigger magnet mode in implantable cardioverter defibrillators when laid directly over the device. This is potentially dangerous if patients should develop life-threatening arrhythmias at the same time. As new electronic products that use magnets are produced, the potential risk to patients with implantable defibrillators needs to be addressed.

  5. Gamma-jet physics with the electro-magnetic calorimeter in the ALICE experiment at LHC

    NASA Astrophysics Data System (ADS)

    Bourdaud, G.

    2008-05-01

    The Electro-Magnetic Calorimeter (EMCal) will be fully installed for the first LHC heavy ion beam in order to improve the ALICE experiment performances in detection of high transverse momentum particles and in particular in reconstruction of γ-jet events. These events appear to be very interesting to probe the strongly interacting matter created in ultra-relativistic heavy ion collisions and the eventual Quark Gluon Plasma (QGP) state. Indeed, they may give information on the degree of medium opacity which induces the jet-quenching phenomenon: measuring the energy of the γ and comparing it to that of the associated jet may provide a unique way to quantify the jet energy loss in the dense matter. The interest of γ-jet studies in the framework of the quark gluon plasma physics will be discussed. A particular highlight will be stressed on the EMCal calorimeter. The detection of the γ-jet events will be then presented using this new ALICE detector.

  6. Concrete filled steel pipe inspection using electro magnetic acoustic transducer (EMAT)

    NASA Astrophysics Data System (ADS)

    Na, Won-Bae; Kundu, Tribikram; Ryu, Yeon-Sun; Kim, Jeong-Tae

    2005-05-01

    Concrete-filled steel pipes are usually exposed in hostile environments such as seawater and deicing materials. The outside corrosion of the steel pipe can reduce the wall thickness and the corrosion-induced delamination of internal concrete can increase internal volume or pressure. In addition, the void that can possibly exist in the pipe reduces the bending resistance. To avoid structural failure due to this type of deterioration, appropriate inspection and repair techniques are to be developed. Guided wave techniques have strong potentials for this kind of inspection because of long-distance inspection capability. Among different transducer-coupling mechanism, electro-magnetic acoustic transducers (EMATs) give relatively consistent results in comparison to piezoelectric transducers since they do not need any couplant. In this study EMATs are used for transmitting and receiving cylindrical guided waves through concrete-filled steel pipes. Through time history curves and wavelet transform, it is shown that EMAT-generated cylindrical guided wave techniques have good potential for the interface inspection of concrete-filled steel pipes.

  7. Interaction between Convection and Heat Transfer in Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Crystals are integral components in some of our most sophisticated and rapidly developing industries. Single crystals are solids with the most uniform structures that can be obtained on an atomic scale. Because of their structural uniformity, crystals can transmit acoustic and electromagnetic waves and charged particles with essentially no scattering or interferences. This transparency, which can be selectively modified by controlled additions of impurities known as dopants, is the foundation of modern electronic industry. It has brought about widespread application of crystals in transistors, lasers, microwave devices, infrared detectors, magnetic memory devices, and many other magnets and electro-optic components. The performance of a crystal depends strongly on its compositional homogeneity. For instance, in modern microcircuitry, compositional variations of a few percent (down to a submicron length scale) can seriously jeopardize predicted yields. Since crystals are grown by carefully controlled phase transformations, the compositional adjustment in the solid is often made during growth from the nutrient. Hence, a detailed understanding of mass transfer in the nutrient is essential. Moreover, since mass transfer is often the slowest process during growth, it is usually the rate limiting mechanism. Crystal growth processes are usually classified according to the nature of the parent phase. Nevertheless, whether the growth occurs by solidification from a melt (melt growth), nucleation from a solution (solution growth), condensation from a vapor (physical vapor transport) or chemical reaction of gases (chemical vapor deposition), the parent phase is a fluid. As is with most non-equilibrium processes involving fluids, liquid or vapor, fluid motion plays an important role, affecting both the concentration and temperature gradients at the soli-liquid interface.

  8. Proceedings of the Annual Conference on Magnetism and Magnetic Materials (38th) Held at Minneapolis, Minnesota on 15-18 November 1993. (Journal of Applied Physics. Volume 75, Number 10, Part 28

    DTIC Science & Technology

    1994-05-15

    Nogues superconducting quantum interference device magnetometry and small-angle neutron-scattering techniques 5829 Thermodynamical properties of a...sa’nple magnetometer (VSM) and superconducting Coey et al.1 have been extensively studied during the past quantum interference device (SQUID) were used to...were measured in a superconducting quantum- interference 30 device magnetometer at 273 K. 20 e 10 U1 Y3 U RESULTS - C0 20 40 60 80 100 Phase relations

  9. Interfering lipoproteins in magnetic field-assisted agglutination of superparamagnetic particles immunoassay.

    PubMed

    Cauet, Gilles; Daynès, Aurélien; Temurok, Nevzat

    2016-04-01

    The technology of magnetic field-assisted immuno-agglutination of superparamagnetic particles allows sensitive detection of biomarkers in whole blood. However, we observed non-specific agglutination (NSA), due to interfering plasma proteins, that negatively affects C-reactive protein immunoassay. The objective of the study was to identify the plasma proteins involved and to eliminate these interferences. Plasma was fractionated by size exclusion HPLC and each fraction was tested for non-specific agglutination. In addition, plasma proteins bound to magnetic particles were analyzed by SDS-gel electrophoresis and identified by mass spectrometry. We found that NSA was due to the binding of some lipoproteins to the particles. NSA was observed in the presence of purified LDL and VLDL but not HDL. NSA was mediated by the binding of ApoB100 to magnetic particles through its heparin binding sites. These interferences could be eliminated by addition of heparin or other polyanions like dextran sulfate to the assay buffer. NSA results from the binding of some plasma lipoproteins to magnetic particles. The use of a polyanion to eliminate these interferences allows the formulation of a stable reagent.

  10. Combined Arms in the Electro-Magnetic Spectrum: Integrating Non-kinetic Operations

    DTIC Science & Technology

    2013-05-23

    Greene , Robert. The 33 Strategies of War. New York: Penguin, 2007. Halpern, Jason. IP Telephony Security in Depth. Cisco Systems, 2003...Theory of John Boyd. New York, NY: Routledge, 2007. Paiget, J., & Inhelder, B. Memory and Intelligence. London: Routledge and Kegan Paul, 1973. Qiao

  11. ULFEM time series analysis package

    USGS Publications Warehouse

    Karl, Susan M.; McPhee, Darcy K.; Glen, Jonathan M. G.; Klemperer, Simon L.

    2013-01-01

    This manual describes how to use the Ultra-Low-Frequency ElectroMagnetic (ULFEM) software package. Casual users can read the quick-start guide and will probably not need any more information than this. For users who may wish to modify the code, we provide further description of the routines.

  12. INDEX OF PUBLICATIONS ON BIOLOGICAL EFFECTS OF ELECTROMAGNETIC RADIATION (0-100 GHZ)

    EPA Science Inventory

    Considerable research effort has been made into the biological effects of electro-magnetic radiation over the frequency range of 0-100 GHz. This work intensified since 1966 when occupational exposure guidelines were made by American Standards Institute - C95.9. During this period...

  13. Magnetic Gimbal Proof-of-Concept Hardware performance results

    NASA Technical Reports Server (NTRS)

    Stuart, Keith O.

    1993-01-01

    The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.

  14. Magnetic Gimbal Proof-of-Concept Hardware performance results

    NASA Astrophysics Data System (ADS)

    Stuart, Keith O.

    The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.

  15. Quantum Hall effect in epitaxial graphene with permanent magnets.

    PubMed

    Parmentier, F D; Cazimajou, T; Sekine, Y; Hibino, H; Irie, H; Glattli, D C; Kumada, N; Roulleau, P

    2016-12-06

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  16. Cascade photonic integrated circuit architecture for electro-optic in-phase quadrature/single sideband modulation or frequency conversion.

    PubMed

    Hasan, Mehedi; Hall, Trevor

    2015-11-01

    A photonic integrated circuit architecture for implementing frequency upconversion is proposed. The circuit consists of a 1×2 splitter and 2×1 combiner interconnected by two stages of differentially driven phase modulators having 2×2 multimode interference coupler between the stages. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. The intrinsic conversion efficiency of the proposed design is improved by 6 dB over the alternative functionally equivalent circuit based on dual parallel Mach-Zehnder modulators known in the prior art. A two-tone analysis is presented to study the linearity of the proposed circuit, and a comparison is provided over the alternative. The proposed circuit is suitable for integration in any platform that offers linear electro-optic phase modulation such as LiNbO(3), silicon, III-V, or hybrid technology.

  17. Demonstration of an optical phased array using electro-optic polymer phase shifters

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi

    2018-03-01

    We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.

  18. [A study of magnetic shielding design for a magnetic resonance imaging linac system].

    PubMed

    Zhang, Zheshun; Chen, Wenjing; Qiu, Yang; Zhu, Jianming

    2017-12-01

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

  19. 76 FR 44489 - Medical Devices; Neurological Devices; Classification of Repetitive Transcranial Magnetic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ...; Hazards caused by electromagnetic interference and electrostatic discharge hazards; and Hearing loss. FDA... electromagnetic Electromagnetic compatibility. interference and electrostatic discharge hazards. Labeling. Hearing...

  20. Overview of FAR-TECH's magnetic fusion energy research

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.

    2017-10-01

    FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.

  1. Localized heating/bonding techniques in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Mabesa, J. R., Jr.; Scott, A. J.; Wu, X.; Auner, G. W.

    2005-05-01

    Packaging is used to protect and enable intelligent sensor systems utilized in manned/unmanned ground vehicle systems/subsystems. Because Micro electro mechanical systems (MEMS) are used often in these sensor or actuation products, it must interact with the surrounding environment, which may be in direct conflict with the desire to isolate the electronics for improved reliability/durability performance. For some very simple devices, performance requirements may allow a high degree of isolation from the environment (e.g., stints and accelerometers). Other more complex devices (i.e. chemical and biological analysis systems, particularly in vivo systems) present extremely complex packaging requirements. Power and communications to MEMS device arrays are also extremely problematic. The following describes the research being performed at the U.S. Army Research, Development, and Engineering Command (RDECOM) Tank and Automotive Research, Development, and Engineering Center (TARDEC), in collaboration with Wayne State University, in Detroit, MI. The focus of the packaging research is limited to six main categories: a) provision for feed-through for electrical, optical, thermal, and fluidic interfaces; b) environmental management including atmosphere, hermiticity, and temperature; c) control of stress and mechanical durability; d) management of thermal properties to minimize absorption and/or emission; e) durability and structural integrity; and f) management of RF/magnetic/electrical and optical interference and/or radiation properties and exposure.

  2. A hetero-core fiber optic smart mat sensor for discrimination between a moving human and object on temporal loss peaks

    NASA Astrophysics Data System (ADS)

    Hosoki, Ai; Nishiyama, Michiko; Choi, Yongwoon; Watanabe, Kazuhiro

    2011-05-01

    In this paper, we propose discrimination method between a moving human and object by means of a hetero-core fiber smart mat sensor which induces the optical loss change in time. In addition to several advantages such as flexibility, thin size and resistance to electro-magnetic interference for a fiber optic sensor, a hetero-core fiber optic sensor is sensitive to bending action of the sensor portion and independent of temperature fluctuations. Therefore, the hetero-core fiber thin mat sensor can have a fewer sensing portions than the conventional floor pressure sensors, furthermore, can detect the wide area covering the length of strides. The experimental results for human walking tests showed that the mat sensors were reproducibly working in real-time under limiting locations the foot passed in the mat sensor. Focusing on the temporal peak numbers in the optical loss, human walking and wheeled platform moving action induced the peak numbers in the range of 1 - 3 and 5 - 7, respectively, for the 10 persons including 9 male and 1 female. As a result, we conclude that the hetero-core fiber mat sensor is capable of discriminating between the moving human and object such as a wheeled platform focusing on the peak numbers in the temporal optical loss.

  3. A tactile sensing element based on a hetero-core optical fiber for force measurement and texture detection

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro

    2014-05-01

    Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.

  4. The Optical Harness: a light-weight EMI-immune replacement for legacy electrical wiring harnesses

    NASA Astrophysics Data System (ADS)

    Stark, Jason B.; Jackson, B. Scott; Trethewey, William

    2006-05-01

    Electrical wiring harnesses have been used to interconnect control and communication equipment in mobile platforms for over a century. Although they have served this function successfully, they have three problems that are inherent in their design: they are mechanically heavy and stiff, and they are prone to electrical faults, including arcing and Electro-Magnetic Interference (EMI), and they are difficult to maintain when faults occur. These properties are all aspects of the metallic conductors used to build the harnesses. The Optical Harness TM is a photonic replacement for the legacy electrical wiring harness. The Optical Harness TM uses light-weight optical fiber to replace signal wires in an electrical harness. The original electrical connections to the equipment remain, making the Optical Harness TM a direct replacement for the legacy wiring harness. In the backshell of each connector, the electrical signals are converted to optical, and transported on optical fiber, by a deterministic, redundant and fault-tolerant optical network. The Optical Harness TM: * Provides weight savings of 40-50% and unsurpassed flexibility, relative to legacy signal wiring harnesses; * Carries its signals on optical fiber that is free from arcing, EMI, RFI and susceptibility to HPM weapons; * Is self-monitoring during operation, providing non-intrusive predictive and diagnostic capabilities.

  5. Direct laser interference patterning of magnetic thin films

    NASA Astrophysics Data System (ADS)

    Aktag, Aliekber

    Recently, patterned magnetic thin films have attracted much attention for a variety of applications such as high density magnetic recording, magnetoresistive sensing, and magnetic random access memories. In the case of magnetic recording, one scheme calls for the films to be patterned into single domain "dots", where every dot represents a thermally stable bit. In this thesis, we extended a technique called direct laser interference patterning (DLIP), originally developed by Polushkin and co-workers, to pattern and locally modify the materials properties of magnetic thin films. In this technique, a high-intensity Nd:YAG pulse laser beam was split into two, three, or four beams, which are then recombined to interfere on a sample surface. The interference intensity maxima can modify the local materials properties of the film through local "annealing" or, more drastically, by ablation. We carried out some preliminary investigations of the DLIP process in several films including co-sputtered Co-C, amorphous Dy/Co:SiO2 multilayers, and Co/SiO2 multilayers in order to refine our techniques. We successfully produced regular arrays of lines, dots, or antidots formed by ablation of the thin film. The preliminary studies also showed that, in the regime of more modest pulse energies, it is possible to modify the magnetic properties of the films without noticeably changing the film topography. We then prepared perpendicular magnetic anisotropy Co/Pt multilayers with a SiO x passivation layer and applied DLIP at fairly modest intensities to pattern the film. We then studied the structural and magnetic changes that occurred in some detail. X-ray diffraction scans showed the Co/Pt:SiO x multilayer films to be nanocrystalline before and after patterning. Atomic force microscopy images showed no evidence for topographic changes of the Co/Pt:SiOx during patterning. In contrast, magnetic force microscopy showed regular periodic dot arrays, indicating that the local magnetic properties were significantly affected by the patterning process. Alternating-gradient-force magnetometry and magneto-optic measurements also showed that the magnetic properties were markedly changed by the DLIP process. Our results offer strong evidence that local heating causes the moments to change from perpendicular to in-plane, with the consequent formation of an "anisotropy lattice": dots of in-plane magnetization within a matrix of perpendicular magnetization. We also carried out some optical interference calculations to predict the light intensity distributions for two, three, and four interfering beams of light. We found that the patterns could be controlled by varying the angles of incidence, the polarizations of the beams, and the wavelength and intensity of the beams, and that a wide variety of patterns are possible. The predicted patterns were in quite good agreement with those observed experimentally.

  6. Hadrons registration in emulsion chamber with carbon block

    NASA Technical Reports Server (NTRS)

    Tomaszewski, A.; Wlodarczyk, Z.

    1985-01-01

    Nuclear-electro-magnetic cascade (NEC) in X-ray emulsion chambers with carbon block, which are usually used in the Pamir experiment, was Monte-Carlo simulated. Going over from optical density to Summary E sub gamma is discussed. The hole of NEC in the interpretation of energy spectra is analyzed.

  7. Materials Science and Engineering-1989 Publications (Naval Research Laboratory)

    DTIC Science & Technology

    1991-03-29

    34 D.G. Cory, J.B. Miller, A.N. Garroway "Acousto-Optic and Linear Electro-Optic Journal of Magnetic Resonance, 85, 219 Properties of Organic Polymeric...34Demonstration of Indirect Detection of ൕC Refocused Gradient Imaging of Solids" 14N Overtone NMR Transitions" J.B. Miller, A.N. Garroway A.N. Garroway , J.B...Conductive Polymer Solids" Chemical Vapor Sensors" J.B. Miller, A.N. Garroway J.F. Giuiani, T.M. Keller Journal of Magnetic Resonance, 85, 255 Journal of

  8. The interference of electronic implants in low frequency electromagnetic fields.

    PubMed

    Silny, J

    2003-04-01

    Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is currently in progress. In case of the vertically-oriented electric 50 Hz fields preliminary results show that per 1 kV/m unimpaired electrical field strength (rms) an interference voltage of about 400 microVpp as worst-case could occur at the input of a unipolar ventricularly controlled, left-pectorally implanted cardiac pacemaker. Thus, already a field strength above ca. 5 kV/m could cause an interference with an implanted pacemaker. The magnetic fields induces an electric disturbance voltage at the input of the pacemaker. The body and the pacemaker system compose several induction loops, whose induced voltages rates add or subtract. The effective area of one representing inductive loop ranges from 100 to 221 cm2. For the unfavourable left-pectorally implantated and atrially-controlled pacemaker with a low interference threshold, the interference threshold ranges between 552 and 16 microT (rms) for magnetic fields at frequencies between 10 and 250 Hz. On this basis the occurrence of interferences with implanted pacemakers is possible in everyday-life situations. But experiments demonstrate a low probability of interference of cardiac pacemakers in practical situations. This apparent contradiction can be explained by a very small band of inhibition in most pacemakers and, in comparison with the worst-case, deviating conditions.

  9. Spin flip statistics and spin wave interference patterns in Ising ferromagnetic films: A Monte Carlo study.

    PubMed

    Acharyya, Muktish

    2017-07-01

    The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.

  10. A Robust Real Time Direction-of-Arrival Estimation Method for Sequential Movement Events of Vehicles.

    PubMed

    Liu, Huawei; Li, Baoqing; Yuan, Xiaobing; Zhou, Qianwei; Huang, Jingchang

    2018-03-27

    Parameters estimation of sequential movement events of vehicles is facing the challenges of noise interferences and the demands of portable implementation. In this paper, we propose a robust direction-of-arrival (DOA) estimation method for the sequential movement events of vehicles based on a small Micro-Electro-Mechanical System (MEMS) microphone array system. Inspired by the incoherent signal-subspace method (ISM), the method that is proposed in this work employs multiple sub-bands, which are selected from the wideband signals with high magnitude-squared coherence to track moving vehicles in the presence of wind noise. The field test results demonstrate that the proposed method has a better performance in emulating the DOA of a moving vehicle even in the case of severe wind interference than the narrowband multiple signal classification (MUSIC) method, the sub-band DOA estimation method, and the classical two-sided correlation transformation (TCT) method.

  11. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  12. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L., E-mail: jinliang@nankai.edu.cn

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmissionmore » zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.« less

  13. BMFO-PVDF electrospun fiber based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region

    NASA Astrophysics Data System (ADS)

    Revathi, Venkatachalam; Dinesh Kumar, Sakthivel; Subramanian, Venkatachalam; Chellamuthu, Muthamizhchelvan

    2015-11-01

    Metamaterial structures are artificial structures that are useful in controlling the flow of electromagnetic radiation. In this paper, composite fibers of sub-micron thickness of barium substituted magnesium ferrite (Ba0.2Mg0.8Fe2O4) - polyvinylidene fluoride obtained by electrospinning is used as a substrate to design electromagnetic interference shielding structures. While electrospinning improves the ferroelectric properties of the polyvinylidene fluoride, the presence of barium magnesium ferrite modifies the magnetic property of the composite fiber. The dielectric and magnetic properties at microwave frequency measured using microwave cavity perturbation technique are used to design the reflection as well as absorption based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region. For one of the structures, the simulation indicates that single negative metamaterial structure becomes a double negative metamaterial under the external magnetic field.

  14. Aharanov-Bohm quantum interference in a reconfigurable electron system

    NASA Astrophysics Data System (ADS)

    Irvin, P.; Lu, S.; Annadi, A.; Cheng, G.; Tomczyk, M.; Huang, M.; Levy, J.; Lee, J.-W.; Lee, H.; Eom, C.-B.

    Aharanov-Bohm (AB) interference can arise in transport experiments when magnetic flux threads through two or more transport channels. The existence of this behavior requires long-range ballistic transport and is typically observed only in exceptionally clean materials. We observe AB interference in wide (w 100 nm) channels created at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Interference occurs above a critical field B 4 T and increases in magnitude with increasing magnetic field. The period of oscillation implies a ballistic length that greatly exceeds the micron-scale length of the channel, consistent with Fabry-Perot interference in 1D channels. The conditions under which AB oscillations are observed will be discussed in the context of the electron pairing mechanism in LaAlO3/SrTiO3. We gratefully acknowledge financial support from AFOSR FA9550-12-1-0342 (CBE), NSF DMR-1234096 (CBE), and ONR N00014-15-1-2847 (JL).

  15. Introduction to the Control of Electric Motors.

    ERIC Educational Resources Information Center

    Spencer, Frederick

    The fundamentals of electric circuits and electric machines are presented in the text, with an emphasis on the practical operation rather than on mathematical analyses of theories involved. The material contained in the text includes the fundamentals of both D.C. and A.C. circuits together with the principles of magnetism and electro-magnetic…

  16. Revolving Eddy-Current Probe Detects Cracks Near Rivets

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Wincheski, Buzz; Fulton, James P.; Nath, Shridhar; Simpson, John

    1995-01-01

    Scanning eddy-current probe in circular pattern increases sensitivity with which probe indicates fatigue cracks and other defects in metal surfaces in vicinity of rivets. Technique devised to facilitate inspection of riveted joints in aircraft. Eddy-current probe in question described in "Electro-magnetic Flaw Detector Is Easier To Use" (LAR-15046).

  17. 2011 NRL REVIEW

    DTIC Science & Technology

    2011-01-01

    other mechanism ? What accelerates the solar wind? What are the near- Sun plasma properties (particle density, magnetic field)? Does the solar wind come...microstructure character iza tion, elec tronic ceramics, solid-state physics, fiber optics, electro-optics, microelectronics, fracture mechan ics...computational fluid mechanics , experi mental structural mechanics , solid me chan ics, elastic/plastic fracture mechanics , materials, finite-element

  18. Electrically controlled magnetic circular dichroism and Faraday rotation in graphene

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Alexey; Poumirol, Jean-Marie; Liu, Peter Q. Liu; Slipchenko, Tetiana; Nikitin, Alexey; Martin-Moreno, Luis; Faist, Jerome

    Magnetic circular dichroism (MCD) and Faraday rotation (FR) are the fundamental phenomena of great practical importance arising from the breaking of the time reversal symmetry by a magnetic field. In most materials the strength and the sign of these effects can be only controlled by the field value and its orientation. Using broadband terahertz magneto-electro-optical spectroscopy, we demonstrate that in graphene both the MCD and the FR can be modulated in intensity, tuned in frequency and, importantly, inverted using only electrostatic doping at a fixed magnetic field due to the unique properties of the Dirac fermions. Our results indicate the fundamental possibility of compact, efficient, electrically invertible and wavelength-tunable non-reciprocal passive terahertz elements based on graphene operating at ambient temperature.

  19. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  20. Simultaneous measurement of temperature and magnetic field based on a long period grating concatenated with multimode fiber

    NASA Astrophysics Data System (ADS)

    Miao, Yinping; Zhang, Hao; Lin, Jichao; Song, Binbin; Zhang, Kailiang; Lin, Wei; Liu, Bo; Yao, Jianquan

    2015-03-01

    A dual-parameter measurement scheme based on a long-period fiber grating (LPFG) concatenated with a multimode fiber (MMF) has been proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. Splicing the LPFG with the etched MMF enables the coupling between the core modes and different cladding modes of the LPFG as well as the interferences between higher-order modes in the MMF. Due to different transmission mechanisms of the LPFG and mode interference, the proposed sensor shows transmission dip wavelength sensitivities of 0.02878 nm/Oe and -0.04048 nm/°C for multi-mode interference (MMI) and -0.0024 nm/Oe and 0.03929 nm/°C for the LPFG, respectively. By monitoring the opposite behaviors of resonance wavelength shift corresponding to the LPFG and MMI, the magnetic field and environmental temperature can be simultaneously measured. The spectral characteristics of the proposed sensor that could be tuned through control of both environmental temperature and applied magnetic field, which would provide a promising candidate for dual-channel filtering applications as well as multi-parameter measurement applications.

  1. Position control of an electro-pneumatic system based on PWM technique and FLC.

    PubMed

    Najjari, Behrouz; Barakati, S Masoud; Mohammadi, Ali; Futohi, Muhammad J; Bostanian, Muhammad

    2014-03-01

    In this paper, modeling and PWM based control of an electro-pneumatic system, including the four 2-2 valves and a double acting cylinder are studied. Dynamic nonlinear behavior of the system, containing fast switching solenoid valves and a pneumatic cylinder, as well as electrical, magnetic, mechanical, and fluid subsystems are modeled. A DC-DC power converter is employed to improve solenoid valve performance and suppress system delay. Among different position control methods, a proportional integrator derivative (PID) controller and fuzzy logic controller (FLC) are evaluated. An experimental setup, using an AVR microcontroller is implemented. Simulation and experimental results verify the effectiveness of the proposed control strategies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Linear or Rotary Actuator Using Electromagnetic Driven Hammer as Prime Mover

    NASA Technical Reports Server (NTRS)

    McMahan, Bert K. (Inventor); Sesler, Joshua J. (Inventor); Paine, Matthew T. (Inventor); McMahan, Mark C. (Inventor); Paine, Jeffrey S. N. (Inventor); Smith, Byron F. (Inventor)

    2018-01-01

    We claim a hammer driven actuator that uses the fast-motion, low-force characteristics of an electro-magnetic or similar prime mover to develop kinetic energy that can be transformed via a friction interface to produce a higher-force, lower-speed linear or rotary actuator by using a hammering process to produce a series of individual steps. Such a system can be implemented using a voice-coil, electro-mechanical solenoid or similar prime mover. Where a typical actuator provides limited range of motion or low force, the range of motion of a linear or rotary impact driven motor can be configured to provide large displacements which are not limited by the characteristic dimensions of the prime mover.

  3. Magneto-impedance in Multilayered [Ni80Fe20/Cu]4 with modification of the line-length pattern on Cu printed circuit board

    NASA Astrophysics Data System (ADS)

    Eko Prastyo, Wahyu; Maulana, F.; Nuryani, N.; Purnama, B.

    2017-11-01

    Magneto-impedance of multilayer [Ni80Fe20/Cu]4 on Cu PCB substrate has successfully studied. To enhance the magneto-impedance we modify the geometry the Cu PCB substrate. The multilayer is made by electro-deposition with Pt (Platinum) as elctrodes. Electro-deposition is made at room temperature. Magneto-impedance total is evaluated under the external magnetic field. The results shows that magneto-impedance curve is symmetry. The difference of line-length result in the difference of the magneto-impedance. The samples is with the longest line-length has the largest magneto-impedance ratio. The homogeneity of the samples is on account estimated the increase magneto-impedance ratio.

  4. STEM/EELS Imaging of Magnetic Hybridization in Symmetric and Symmetry-Broken Plasmon Oligomer Dimers and All-Magnetic Fano Interference

    DOE PAGES

    Cherqui, Charles; Wu, Yueying; Li, Guoliang; ...

    2016-09-27

    Negative-index metamaterials composed of magnetic plasmon oligomers are actively being investigated for their potential role in optical cloaking, superlensing, and nanolithography applications. A significant improvement to their practicality lies in the ability to function at multiple distinct wavelengths in the visible part of spectrum. Here we utilize the nanometer spatial-resolving power of electron energy-loss spectroscopy to conclusively demonstrate hybridization of magnetic plasmons in oligomer dimers that can achieve this goal. We also show that breaking the dimer’s symmetry can induce all-magnetic Fano interferences based solely on the interplay of bright and dark magnetic modes, allowing us to further tailor themore » system’s optical responses. These features are engineered through the design of the oligomer’s underlying nanoparticle elements as elongated Ag nanodisks with spectrally isolated long-axis plasmon resonances. The resulting magnetic plasmon oligomers and their hybridized assemblies establish a new design paradigm for optical metamaterials with rich functionality.« less

  5. Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Lianmin; Su, Delong; Wang, Zhaofang

    A kind of magnetic field sensor based on cascaded microfiber coupler with magnetic fluid is proposed and experimentally demonstrated. The magnetic fluid is utilized as the cladding of the fused regions of the cascaded microfiber coupler. As the interference valley wavelength of the sensing structure is sensitive to the ambient variation, considering the magnetic-field-dependent refractive index of magnetic fluid, the proposed structure is employed for magnetic field sensing. The effective coupling length for each coupling region of the as-fabricated cascaded microfiber coupler is 6031 μm. The achieved sensitivity is 125 pm/Oe, which is about three times larger than that of the previouslymore » similar structure based on the single microfiber coupler. Experimental results indicate that the sensing sensitivity can be easily improved by increasing the effective coupling length or cascading more microfiber couplers. The proposed magnetic field sensor is attractive due to its low cost, immunity to electromagnetic interference, as well as high sensitivity, which also has the potentials in other tunable all-fiber photonic devices, such as filter.« less

  6. Sharpness of interference pattern of the 3-pole wiggler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dejus, Roger J., E-mail: dejus@aps.anl.gov; Kim, Kwang-Je

    2016-07-27

    Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.

  7. Sharpness of Interference Pattern of the 3-Pole Wiggler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dejus, Roger J.; Kim, Kwang-Je

    2016-07-02

    Due to the small emittance, radiation from neighboring poles of a strong wiggler in future multi-bend achromat-based storage rings can exhibit sharp interference patterns. The spectral-angular distributions of the 3-pole wiggler for the proposed Advanced Photon Source (APS) upgrade were computed and prominent interference patterns were found. In this paper we provide an understanding of such interference patterns. The equations governing the interference pattern are described and computed spectral-angular distributions of a modeled 3-pole wiggler magnetic field using these equations are presented.

  8. Electromagnetohydrodynamic vortices and corn circles

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    A novel type of large-scale vortex formation has theoretically been found in helical turbulence in terms of hydrodynamic, electric, magnetic, and space charge fields in an external electric (and magnetic) field. It is called 'electro-MHD (EMHD) vortices' and is generated as a result of self-organization processes in nonequilibrium media by the transfer of energy from small- to large-scale sizes. Explanations for 'corn circles', circular symmetric ground patterns found in a corn field in southern England, are provided on the basis of a new theory of the EMHD vortices under consideration.

  9. Experimental investigation of powerful pulse current generators based on capacitive storage and explosive magnetic generators

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.

    2018-01-01

    Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.

  10. General Boundary Relations for a Source-Driven Antenna With Application to a Finite Cylindrical Conductor

    DTIC Science & Technology

    1961-08-22

    current#» D !x and equivalent magnetic fields l\\ and Bj. According *to the principle of superposition, the complete Maxwellian Electro-magnetic Field...of d * Alembert «s equation 0»".’ ’■ ■’- v.2 A - /«’«-gjr A « - /t J, .(Al) . Using reasonable K.K*S. units to calculate, the solution is 4* Ä...COMMERCE WASHINGTON 2$, D . C. i U. S. JOINT PUBLICATIONS RESEARCH SERVICE 1636 CONNECTICUT AVE., N. W. WASHINGTON 25, D . G. Reproduced From

  11. Design of Circular, Square, Single, and Multi-layer Induction Coils for Electromagnetic Priming Using Inductance Estimates

    NASA Astrophysics Data System (ADS)

    Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.

    2018-02-01

    Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.

  12. Intrinsic transmission magnetic circular dichroism spectra of GaMnAs

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    Transmission magnetic circular dichroism (MCD) spectroscopy has been widely used to reveal the spin-dependent band structure of ferromagnetic semiconductors. In these previous studies, some band pictures have been proposed from the spectral shapes observed in transmission MCD; however, extrinsic signals originating from optical interference have not been appropriately considered. In this study, we calculate the MCD spectra taking into account the optical interference of the layered structure of samples and show that the spectral shape of MCD is strongly influenced by optical interference. To correctly understand the transmission MCD, we also calculate the intrinsic MCD spectra of GaMnAs that are not influenced by the optical interference. The spectral shape of the intrinsic MCD can be explained by the characteristic band structure of GaMnAs, that is, the spin-polarized valence band and the impurity band existing above the valence band top.

  13. Calculated and measured fields in superferric wiggler magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, E.B.; Solomon, L.

    1995-02-01

    Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peakmore » on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.« less

  14. Enhanced magnetostriction derived from magnetic single domain structures in cluster-assembled SmCo films

    NASA Astrophysics Data System (ADS)

    Bai, Yulong; Yang, Bo; Guo, Fei; Lu, Qingshan; Zhao, Shifeng

    2017-11-01

    Cluster-assembled SmCo alloy films were prepared by low energy cluster beam deposition. The structure, magnetic domain, magnetization, and magnetostriction of the films were characterized. It is shown that the as-prepared films are assembled in compact and uniformly distributed spherical cluster nanoparticles, most of which, after vacuum in situ annealing at 700 K, aggregated to form cluster islands. These cluster islands result in transformations from superparamagnetic states to magnetic single domain (MSD) states in the films. Such MSD structures contribute to the enhanced magnetostrictive behaviors with a saturation magnetostrictive coefficient of 160 × 10-6 in comparison to 105 × 10-6 for the as-prepared films. This work demonstrates candidate materials that could be applied in nano-electro-mechanical systems, low power information storage, and weak magnetic detecting devices.

  15. Characteristic and magnetic field analysis of a high temperature superconductor axial-flux coreless induction maglev motor.

    PubMed

    Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv

    2012-04-01

    A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device's characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations.

  16. Characteristic and magnetic field analysis of a high temperature superconductor axial-flux coreless induction maglev motor

    PubMed Central

    Wei, Qin; Yu, Fan; Jin, Fang; Shuo, Li; Guoguo, Li; Gang, Lv

    2012-01-01

    A new high temperature superconductor axial-flux coreless maglev motor (HTS AFIM) is proposed, of which the primary windings are made of HTS tapes and the secondary is a non-magnetic conductor. The main works of this paper are the magnetic-field computation and characteristics analysis of HTS AFIM. For the first one, the reduction of magnetic fields near outer and inner radius of the HTS AFIM is solved by introducing the sub-loop electro-magnetic model along the radial position. For the second one, the AC losses of HTS coils are calculated. The relationships between the device’s characteristics and device parameters are presented, and the results indicate that under certain frequency and current levitation device can output enough lift force. The conclusions are verified by finite element calculations. PMID:22393268

  17. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements

    NASA Astrophysics Data System (ADS)

    Taulu, S.; Simola, J.

    2006-04-01

    Limitations of traditional magnetoencephalography (MEG) exclude some important patient groups from MEG examinations, such as epilepsy patients with a vagus nerve stimulator, patients with magnetic particles on the head or having magnetic dental materials that cause severe movement-related artefact signals. Conventional interference rejection methods are not able to remove the artefacts originating this close to the MEG sensor array. For example, the reference array method is unable to suppress interference generated by sources closer to the sensors than the reference array, about 20-40 cm. The spatiotemporal signal space separation method proposed in this paper recognizes and removes both external interference and the artefacts produced by these nearby sources, even on the scalp. First, the basic separation into brain-related and external interference signals is accomplished with signal space separation based on sensor geometry and Maxwell's equations only. After this, the artefacts from nearby sources are extracted by a simple statistical analysis in the time domain, and projected out. Practical examples with artificial current dipoles and interference sources as well as data from real patients demonstrate that the method removes the artefacts without altering the field patterns of the brain signals.

  18. Magnetic field dependent electronic transport of Mn4 single-molecule magnet.

    NASA Astrophysics Data System (ADS)

    Haque, F.; Langhirt, M.; Henderson, J. J.; Del Barco, E.; Taguchi, T.; Christou, G.

    2010-03-01

    We have performed single-electron transport measurements on a Mn4 single-molecule magnet (SMM) in where amino groups were added to electrically protect the magnetic core and to increase the stability of the molecule when deposited on the single-electron transistor (SET) chip. A three-terminal SET with nano-gap electro-migrated gold electrodes and a naturally oxidized Aluminum back gate. Experiments were conducted at temperatures down to 230mK in the presence of high magnetic fields generated by a superconducting vector magnet. Mn4 molecules were deposited from solution to form a mono-layer. The optimum deposition time was determined by AFM analysis on atomically flat gold surfaces. We have observed Coulomb blockade an electronic excitations that curve with the magnetic field and present zero-field splitting, which represents evidence of magnetic anisotropy. Level anticrossings and large excitations slopes are associated with the behavior of molecular states with high spin values (S ˜ 9), as expected from Mn4.

  19. A high-speed tunable beam splitter for feed-forward photonic quantum information processing.

    PubMed

    Ma, Xiao-Song; Zotter, Stefan; Tetik, Nuray; Qarry, Angie; Jennewein, Thomas; Zeilinger, Anton

    2011-11-07

    We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

  20. Approaches to decrease the level of parasitic noise over vibroacoustic channel in terms of configuring information security tools

    NASA Astrophysics Data System (ADS)

    Ivanov, A. V.; Reva, I. L.; Babin, A. A.

    2018-04-01

    The article deals with influence of various ways to place vibration transmitters on efficiency of rooms safety for negotiations. Standing for remote vibration listening of window glass, electro-optical channel, the most typical technical channel of information leakage, was investigated. The modern system “Sonata-AB” of 4B model is used as an active protection tool. Factors influencing on security tools configuration efficiency have been determined. The results allow utilizer to reduce masking interference level as well as parasitic noise with keeping properties of room safety.

  1. Electron Calorimeter Experiment

    NASA Technical Reports Server (NTRS)

    Adams, James H.

    2008-01-01

    Boron loaded scintillators are suitable for measuring secondary neutrons produced by high-energy particles: protons & electrons Neutron flux can be used to discriminate hadron and electro-magnetic particles Combined effectiveness of all e/p discriminators techniques employedTBD Only moderate improvement in detection efficiency for B-10 concentrations >few% in thick moderators Bottom scintillator might serve as cascade penetration counter (TBC)

  2. Thin-Ribbon Tapered Couplers For Dielectric Waveguides

    NASA Technical Reports Server (NTRS)

    Otoshi, Tom Y.; Shimabukuro, Fred I.; Yeh, Cavour

    1996-01-01

    Thin-ribbon tapered couplers proposed for launching electro-magnetic waves into dielectric waveguides, which include optical fibers. Intended for use with ribbon dielectric waveguides designed for operation at millimeter or submillimeter wavelengths, made of high-relative-permittivity, low-loss materials and thicknesses comparable to or less than free-space design wavelengths. Coupling efficiencies exceeds those of older tapered couplers.

  3. Transient coherence of media under strong phase modulation exploiting electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Shwa, David; Katz, Nadav

    2014-08-01

    When quantum systems are shifted faster than their transition and coupling time scales, their susceptibility is dramatically modified. We measure the optical susceptibility of a strongly modulated electromagnetically induced transparency system. Time vs detuning plots for different pump modulation frequencies reveal a transition between an adiabatic regime where a series of smooth pulses are created and a nonadiabatic regime where a strong transient oscillating response is added. Applying a magnetic field lifts the hyperfine level degeneracy, revealing an interference effect between the different magnetic level transients. We explore the dynamics of the magnetic and nonmagnetic cases and discuss their coherent nature. We finally combine the global phase of the transmitted pulses with the transient interference to achieve broadband magnetic sensing without losing the sensitivity of a single electromagnetically induced transparency line.

  4. Magnetic-saturation zone model for two semipermeable cracks in magneto-electro-elastic medium

    NASA Astrophysics Data System (ADS)

    Jangid, Kamlesh

    2018-03-01

    Extension of the PS model (Gao et al. [1]) in piezoelectric materials and the SEMPS model (Fan and Zhao [2]) in MEE materials, is proposed for two semi-permeable cracks in a MEE medium. It is assumed that the magnetic yielding occurs at the continuation of the cracks due to the prescribed loads. We have model these crack continuations as the zones with cohesive saturation limit magnetic induction. Stroh's formalism and complex variable techniques are used to formulate the problem. Closed form analytical expressions are derived for various fracture parameters. A numerical case study is presented for BaTiO3 - CoFe2O4 ceramic cracked plate.

  5. Micromachined silicon cantilevers with integrated high-frequency magnetoimpedance sensors for simultaneous strain and magnetic field detection

    NASA Astrophysics Data System (ADS)

    Buettel, G.; Joppich, J.; Hartmann, U.

    2017-12-01

    Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.

  6. A magnetically suspended linearly driven cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Stolfi, F.; Goldowsky, M.; Ricciardelli, J.; Shapiro, P.

    1983-01-01

    This paper described a novel Stirling cycle cryogenic refrigerator which was designed, fabricated and successfully tested at Philips Laboratories. The prominent features of the machine are an electro-magnetic bearing system, a pair of moving magnet linear motors, and clearance seals with a 25 mu m radial gap. The all-metal and ceramic construction eliminates long-term organic contamination of the helium working fluid. The axial positions of the piston and displacer are electronically controlled, permitting independent adjustment of the amplitude of each and their relative phase relationship during operation. A simple passive counterbalance reduces axial vibrations. The design of the refrigerator system components is discussed and a comparison is made between performance estimates and measured results.

  7. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  8. High-performance magnetic field sensor based on superconducting quantum interference filters

    NASA Astrophysics Data System (ADS)

    Caputo, P.; Oppenländer, J.; Häussler, Ch.; Tomes, J.; Friesch, A.; Träuble, T.; Schopohl, N.

    2004-08-01

    We have developed an absolute magnetic field sensor using a superconducting quantum interference filter (SQIF) made of high-Tc grain-boundary Josephson junctions. The device shows the typical magnetic-field-dependent voltage response V(B ), which is a sharp deltalike dip in the vicinity of zero-magnetic field. When the SQIF is cooled with magnetic shield, and then the shield is removed, the presence of the ambient magnetic field induces a shift of the dip position from B0≈0 to a value B ≈B1, which is about the average value of the Earth's magnetic field, at our latitude. When the SQIF is cooled in the ambient field without shielding, the dip is first found at B ≈B1, and the further shielding of the SQIF results in a shift of the dip towards B0≈0. The low hysteresis observed in the sequence of experiments (less than 5% of B1) makes SQIFs suitable for high precision measurements of the absolute magnetic field. The experimental results are discussed in view of potential applications of high-Tc SQIFs in magnetometry.

  9. Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples

    NASA Astrophysics Data System (ADS)

    Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao

    2018-04-01

    Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.

  10. Optical pressure/density measuring means

    DOEpatents

    Veligdan, James T.

    1995-05-09

    An apparatus and method for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature.

  11. Optical pressure/density measuring means

    DOEpatents

    Veligdan, J.T.

    1995-05-09

    An apparatus and method are disclosed for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature. 4 figs.

  12. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  13. Modelling transport phenomena in a multi-physics context

    NASA Astrophysics Data System (ADS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  14. Modelling transport phenomena in a multi-physics context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, Francesco

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. Inmore » the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.« less

  15. The Progress of Physics

    NASA Astrophysics Data System (ADS)

    Schuster, Arthur

    2015-10-01

    Introduction; 1. Scope of lectures. State of physics in 1875. Science of energy. Theory of gases. Elastic solid theory of light. Maxwell's theory of electricity. Training of students. Maxwell's view. Accurate measurement and discovery of Argon. German methods. Kirchhoff's laboratory. Wilhelm Weber's laboratory. The two laboratories of Berlin. Laboratory instruction at Manchester. Position of physics in mathematical tripos at Cambridge. Todhunter's views. The Cavendish laboratory. Spectrum analysis. The radiometer. Theory of vortex atom; 2. Action at a distance. Elastic solid of theory of light. Maxwell's theory of electrical action. Electro-magnetic theory. Verification of electromagnetic theory by Hertz. Electro-magnetic waves. Wireless telegraphy. First suggestion of molecular structure of electricity. Early experiments in the electric discharge through gases. Kathode rays. Works of Goldstein and Crookes. Hittorf's investigations. Own work on the discharge through gases. Ionization of gases. Magnetic deflexion of kathode rays. J. J. Thomson's experiments. Measurement of atomic charge; 3. Roentgen's discovery. Theories of Roentgen rays. Ionizing power of Roentgen rays. Conduction of electricity through ionized gases. Discovery of radio-activity. Discovery of radium. Magnetic deflexion of rays emitted by radio-active bodies. Discovery of emanations. Theory of radio-active change. Decay of the atom. Connexion between helium and the a ray. Helium produced by radium. Strutt's researches on helium accumulated in rocks. Electric inertia. Constitution of atom. J. J. Thomson's theory of Roentgen radiation. The Michelson-Morley experiment. Principle of relativity. The Zeeman effect. Other consequences of electron theory. Contrast between old and modern school of physics; 4. Observational sciences. Judgment affected by scale. Terrestrial magnetism. Existence of potential. Separation of internal and external causes. Diurnal variation. Magnetic storms. Their causes. Solar influence. Theories of secular variation. Atmospheric electricity. Negative charge of Earth. Ionization of air. Origin of atmospheric electricity. Electric charge of rain. Ebert's theory. Cause of thunderstorms. The age of the Earth. Rigidity of Earth. Displacement of axis. Gravitation. Identity of molecules of the same kind; Index.

  16. Classical and quantum non-linear optical applications using the Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Prescod, Andru

    Mach Zehnder (MZ) modulators are widely employed in a variety of applications, such as optical communications, optical imaging, metrology and encryption. In this dissertation, we explore two non-linear MZ applications; one classified as classical and one as quantum, in which the Mach Zehnder interferometer is used. In the first application, a classical non-linear application, we introduce and study a new electro-optic highly linear (e.g., >130 dB) modulator configuration. This modulator makes use of a phase modulator (PM) in one arm of the MZ interferometer (MZI) and a ring resonator (RR) located on the other arm. The modulator performance is obtained through the control of a combination of internal and external parameters. These parameters include the RR-coupling ratio (internal parameter); the RF power split ratio and the RF phase bias (external parameters). Results show the unique and superior features, such as high linearity (SFDR˜133 dB), modulation bandwidth extension (as much as 70%) over the previously proposed and demonstrated Resonator-Assisted Mach Zehnder (RAMZ) design. Furthermore the proposed electro-optic modulator of this dissertation also provides an inherent SFDR compensation capability, even in cases where a significant waveguide optical loss exists. This design also shows potential for increased flexibility, practicality and ease of use. In the second application, a quantum non-linear application, we experimentally demonstrate quantum optical coherence tomography (QOCT) using a type II non-linear crystal (periodically-poled potassium titanyl phosphate (KTiOPO4) or PPKTP). There have been several publications discussing the merits and disadvantages of QOCT compared to OCT and other imaging techniques. First, we discuss the issues and solutions for increasing the efficiency of the quantum entangled photons. Second, we use a free space QOCT experiment to generate a high flux of these quantum entangled photons in two orthogonal polarizations, by parametric down-conversion. Third, by ensuring that these down-converted photons have the same frequency, spatial-temporal mode, and the same polarization when they interfere at a beam splitter, quantum interference should occur. Quantum interference of these entangled photons enables high resolution probing of dispersive samples.

  17. Electro-dynamic machine, system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Wen; Ramanan, Varagur

    One embodiment is a unique Vernier machine comprising a rotor and a stator. The rotor comprises a back portion and a plurality of permanent magnets. The stator comprises a plurality of ferromagnetic arm structures, a plurality of ferromagnetic pole structures extending from each of the ferromagnetic arm structures in a direction toward the permanent magnets, and a plurality of conductive windings disposed about respective ones of the plurality of ferromagnetic arm structures. The ferromagnetic pole structures are structured to collect magnetic flux from the permanent magnets. The ferromagnetic pole structures of each of said ferromagnetic arm structures are spaced apartmore » from one another according to a non-uniform pattern such that the ferromagnetic pole structures of a given ferromagnetic arm structure have substantially the same angular position relative to the permanent magnets radially opposite from the ferromagnetic pole structures of the given ferromagnetic arm structure.« less

  18. Electromagnetic interference in electrical systems of motor vehicles

    NASA Astrophysics Data System (ADS)

    Dziubiński, M.; Drozd, A.; Adamiec, M.; Siemionek, E.

    2016-09-01

    Electronic ignition system affects the electronic equipment of the vehicle by electric and magnetic fields. The measurement of radio electromagnetic interference originating from the ignition system affecting the audiovisual test bench was carried out with a variable speed of the ignition system. The paper presents measurements of radio electromagnetic interference in automobiles. In order to determine the level of electromagnetic interference, the audiovisual test bench was equipped with a set of meters for power consumption and assessment of the level of electromagnetic interference. Measurements of the electromagnetic interference level within the audiovisual system were performed on an experimental test bench consisting of the ignition system, starting system and charging system with an alternator and regulator.

  19. Automated Terrestrial EMI Emitter Detection, Classification, and Localization

    NASA Astrophysics Data System (ADS)

    Stottler, R.; Bowman, C.; Bhopale, A.

    2016-09-01

    Clear operating spectrum at ground station antenna locations is critically important for communicating with, commanding, controlling, and maintaining the health of satellites. Electro Magnetic Interference (EMI) can interfere with these communications so tracking down the source of EMI is extremely important to prevent it from occurring in the future. The Terrestrial RFI-locating Automation with CasE based Reasoning (TRACER) system is designed to automate terrestrial EMI emitter localization and identification, providing improved space situational awareness, realizing significant manpower savings, dramatically shortening EMI response time, providing capabilities for the system to evolve without programmer involvement, and offering increased support for adversarial scenarios (e.g. jamming). TRACER has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication antennas and sweeping Direction Finding (DF) antennas located near them. TRACER monitors the satellite communication and DF antenna signals to detect and classify EMI using neural network technology trained on past cases of both normal communications and EMI events. Based on details of the signal (its classification, its direction and strength, etc.) one or more cases of EMI investigation methodologies are retrieved, represented as graphical behavior transition networks (BTNs), which very naturally represent the flowchart-like process often followed by experts in time pressured situations, are intuitive to SMEs, and easily edited by them. The appropriate actions, as determined by the BTN are executed and the resulting data processed by Bayesian Networks to update the probabilities of the various possible platforms and source types of the EMI. Bearing sweep of the EMI is used to determine if the EMI's platform is aerial, a ground vehicle or ship, or stationary. If moving, the Friis transmission equation is used to plot the emitter's location and compare it to current flights or moving vehicles. This paper describes the TRACER technologies and results of prototype testing.

  20. Antennas and Electromagnetics Instrumentation for Research and Education

    DTIC Science & Technology

    2016-06-01

    Antennas and Electromagnetics Instrumentation for Research and Education The objective of this proposal is to enhance the instrumentation of FIU’s... ElectroMagnetics Lab (EMLab) directed by Dr. Georgakopoulos and create a state-of-the art lab that will support the following: (a) Dr. Georgakopoulos...funded research on reconfigurable antennas and wireless power transfer, (b) other research on advanced electromagnetic technologies that support

  1. Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation

    DTIC Science & Technology

    2005-07-01

    Progress in Applied Computational Electro- magnetics. ACES, Syracuse, NY, 2004. 91. Mahafza, Bassem R. Radar Systems Analysis and Design Using MATLAB...Figure Page 4.5. RCS chamber coordinate system . . . . . . . . . . . . . . . . . 88 4.6. AFIT’s RCS Chamber...4.11. Frequency domain schematic of RCS data collection . . . . . . 98 4.12. Spherical coordinate system for RCS data calibration . . . . . . 102 4.13

  2. A Proposal of B to B Collaboration Process Model based on a Concept of Service and its Application to Energy Saving Service Business

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Kosaka, Michitaka; Shirahada, Kunio; Yabutani, Takashi

    This paper proposes a new framework for B to B collaboration process based on a concept of service. Service value, which gives users satisfaction for provided services, depends on the situation, user characteristics, and user objectives in seeking the service. Vargo proposed Service Dominant Logic (SDL), which determines service value according to “value in use”. This concept illustrates the importance of the relationship between the service itself and its situation. This relationship is analogous to electro-magnetic field theory in physics. We developed the concept of service fields to create service value based on an analogy of the electro-magnetic field. By applying this concept to B to B collaboration, a model of service value co-creation in the collaboration can be formulated. Then, the collaboration can be described by 4 steps of KIKI model (Knowledge sharing related to service system, Identification of service field, Knowledge creation for new service idea, Implementation of service idea). As its application to B to B collaboration, the energy saving service business is reported to demonstrate the validity of the proposed collaboration model. This concept can be applied to make a collaboration process effective.

  3. Changes in Regional Brain Homogeneity Induced by Electro-Acupuncture Stimulation at the Baihui Acupoint in Healthy Subjects: A Functional Magnetic Resonance Imaging Study.

    PubMed

    Deng, Demao; Duan, Gaoxiong; Liao, Hai; Liu, Yanfei; Wang, Geliang; Liu, Huimei; Tang, Lijun; Pang, Yong; Tao, Jien; He, Xin; Yuan, Wenzhao; Liu, Peng

    2016-10-01

    According to the Traditional Chinese Medicine theory of acupuncture, Baihui (GV20) is applied to treat neurological and psychiatric disorders. However, the relationships between neural responses and GV20 remain unknown. Thus, the main aim of this study was to examine the brain responses induced by electro-acupuncture stimulation (EAS) at GV20. Functional magnetic resonance imaging (fMRI) was performed in 33 healthy subjects. Based on the non-repeated event-related (NRER) paradigm, group differences were examined between GV20 and a sham acupoint using the regional homogeneity (ReHo) method. Compared with the sham acupoint, EAS at GV20 induced increased ReHo in regions including the orbital frontal cortex (OFC), middle cingulate cortex (MCC), precentral cortex, and precuneus (preCUN). Decreased ReHo was found in the anterior cingulate cortex (ACC), supplementary motor area (SMA), thalamus, putamen, and cerebellum. The current findings provide preliminary neuroimaging evidence to indicate that EAS at GV20 could induce a specific pattern of neural responses by analysis of ReHo of brain activity. These findings might improve the understanding of mechanisms of acupuncture stimulation at GV20.

  4. Enhancement of magnetic circular dichroism in bi-layered ZnO-Bi:YIG thin films

    NASA Astrophysics Data System (ADS)

    Mito, Shinichiro; Shiotsu, Yusaku; Sasano, Junji; Takagi, Hiroyuki; Inoue, Mitsuteru

    2017-05-01

    Bi-layered zinc oxide (ZnO) and bismuth substituted yttrium iron garnet (Bi:YIG) was fabricated and magneto-optically investigated. Enhancement of Faraday rotation and magnetic circular dichroism (MCD) was observed. The wavelength of MCD enhancement was in good agreement with exciton wavelength of ZnO. This enhancement was only observed in the bi-layer, and implies that the exciton generated in ZnO interacted with Bi:YIG. Because the exciton wavelength of ZnO can be controlled by electro-optic effect, this result has the potential for realizing voltage control of magneto-optic effect.

  5. Nanoscale Design of Nano-Sized Particles in Shape-Memory Polymer Nanocomposites Driven by Electricity

    PubMed Central

    Lu, Haibao; Huang, Wei Min; Liang, Fei; Yu, Kai

    2013-01-01

    In the last few years, we have witnessed significant progress in developing high performance shape memory polymer (SMP) nanocomposites, in particular, for shape recovery activated by indirect heating in the presence of electricity, magnetism, light, radio frequency, microwave and radiation, etc. In this paper, we critically review recent findings in Joule heating of SMP nanocomposites incorporated with nanosized conductive electromagnetic particles by means of nanoscale control via applying an electro- and/or magnetic field. A few different nanoscale design principles to form one-/two-/three- dimensional conductive networks are discussed. PMID:28788303

  6. Tag gas capsule with magnetic piercing device

    DOEpatents

    Nelson, Ira V.

    1976-06-22

    An apparatus for introducing a tag (i.e., identifying) gas into a tubular nuclear fuel element. A sealed capsule containing the tag gas is placed in the plenum in the fuel tube between the fuel and the end cap. A ferromagnetic punch having a penetrating point is slidably mounted in the plenum. By external electro-magnets, the punch may be caused to penetrate a thin rupturable end wall of the capsule and release the tag gas into the fuel element. Preferably the punch is slidably mounted within the capsule, which is in turn loaded as a sealed unit into the fuel element.

  7. Effects of Current Guides Destruction at Ultra-fast Acceleration of Macrobodies

    NASA Astrophysics Data System (ADS)

    Kataev, V. N.; Boriskin, A. S.; Golosov, S. N.; Demidov, V. A.; Klimashov, M. V.; Korolev, P. V.; Makartsev, G. F.; Pikar, A. S.; Russkov, A. S.; Shapovalov, E. V.; Shibitov, Yu. M.

    2006-08-01

    The paper is devoted to discussion of current guides destruction effects in different accelerators: thermal-electric and electro-magnetic rail accelerator at macrobodies acceleration value of 108-109 m/s2. Experimental results with thermal-electric accelerators powering from megajoule capacitor battery and helical magneto-cumulative generator MCG-100 at currents up to 3.5 MA are analyzed. The process of rails destruction at railgun at pressure magnetic field excess over the limit of metal fluidity is presented. Methods of efficiency coefficient increase of capacitive storage energy transmission to kinetic energy of accelerating body are discussed.

  8. Subsonic and supersonic static aerodynamic characteristics of a family of bulbous base cones measured with a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Vlajinac, M.; Stephens, T.; Gilliam, G.; Pertsas, N.

    1972-01-01

    Results of subsonic and supersonic wind-tunnel tests with a magnetic balance and suspension system on a family of bulbous based cone configurations are presented. At subsonic speeds the base flow and separation characteristics of these configurations is shown to have a pronounced effect on the static data. Results obtained with the presence of a dummy sting are compared with support interference free data. Support interference is shown to have a substantial effect on the measured aerodynamic coefficient.

  9. Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits

    NASA Astrophysics Data System (ADS)

    Sharapova, P. R.; Luo, K. H.; Herrmann, H.; Reichelt, M.; Meier, T.; Silberhorn, C.

    2017-12-01

    We present and discuss perspectives of current developments on advanced quantum optical circuits monolithically integrated in the lithium niobate platform. A set of basic components comprising photon pair sources based on parametric down conversion (PDC), passive routing elements and active electro-optically controllable switches and polarisation converters are building blocks of a toolbox which is the basis for a broad range of diverse quantum circuits. We review the state-of-the-art of these components and provide models that properly describe their performance in quantum circuits. As an example for applications of these models we discuss design issues for a circuit providing on-chip two-photon interference. The circuit comprises a PDC section for photon pair generation followed by an actively controllable modified mach-Zehnder structure for observing Hong-Ou-Mandel interference. The performance of such a chip is simulated theoretically by taking even imperfections of the properties of the individual components into account.

  10. Fabrication of meso- and nano-scale structures on surfaces of chalcogenide semiconductors by surface hydrodynamic interference patterning

    NASA Astrophysics Data System (ADS)

    Bilanych, V.; Komanicky, V.; Lacková, M.; Feher, A.; Kuzma, V.; Rizak, V.

    2015-10-01

    We observe the change of surface relief on amorphous Ge-As-Se thin films after irradiation with an electron beam. The beam softens the glass and induces various topological surface changes in the irradiated area. The film relief change depends on the film thickness, deposited charge, and film composition. Various structures are formed: Gausian-like cones, extremely sharp Taylor cones, deep craters, and craters with large spires grown on the side. Our investigation shows that these effects can be at least partially a result of electro-hydrodynamic material flow, but the observed phenomena are likely more complex. When we irradiated structural patterns formed by the electron beam with a red laser beam, we could not only fully relax the produced patterns, but also form very complex and intricate superstructures. These organized meso- and nano-scale structures are formed by a combination of photo-induced structural relaxation, light interference on structures fabricated by the e-beam, and photo-induced material flow.

  11. Artifact removal from EEG signals using adaptive filters in cascade

    NASA Astrophysics Data System (ADS)

    Garcés Correa, A.; Laciar, E.; Patiño, H. D.; Valentinuzzi, M. E.

    2007-11-01

    Artifacts in EEG (electroencephalogram) records are caused by various factors, like line interference, EOG (electro-oculogram) and ECG (electrocardiogram). These noise sources increase the difficulty in analyzing the EEG and to obtaining clinical information. For this reason, it is necessary to design specific filters to decrease such artifacts in EEG records. In this paper, a cascade of three adaptive filters based on a least mean squares (LMS) algorithm is proposed. The first one eliminates line interference, the second adaptive filter removes the ECG artifacts and the last one cancels EOG spikes. Each stage uses a finite impulse response (FIR) filter, which adjusts its coefficients to produce an output similar to the artifacts present in the EEG. The proposed cascade adaptive filter was tested in five real EEG records acquired in polysomnographic studies. In all cases, line-frequency, ECG and EOG artifacts were attenuated. It is concluded that the proposed filter reduces the common artifacts present in EEG signals without removing significant information embedded in these records.

  12. Additional deployment of ocean bottom gravity meter and ocean bottom electro-magnetic meter for the multidisciplinary cabled observation in Sagami Bay, Japan

    NASA Astrophysics Data System (ADS)

    Mitsuzawa, K.; Goto, T.; Araki, E.; Watanabe, T.; Sugioka, H.; Kasaya, T.; Sayanagi, K.; Mikada, H.; Fujimoto, H.; Nagao, T.; Koizumi, K.; Asakawa, K.

    2005-12-01

    Western part of the Sagami Bay central Pacific side of Japan, is known as one of the high active tectonic areas. In this area, Teishi Knoll, volcanic seamount, erupted in 1989 and the earthquake swarms occurs repeatedly every few years in the eastern coast of the Izu Peninsula. The real-time deep sea floor observatory was deployed about 7 km off Hatsushima Island, Sagami Bay, at a depth of 1174 m in 1993 to monitor seismic activities, underwater pressure, water temperature and deep currents. The video camera and lights were also mounted in the observatory to monitor the relations among biological activities associated with the tectonic activities. The observation system including submarine electro-optical cable with a length of 8 km was completely renewed in 2000. The several underwater-mateable connectors are installed in the new observatory for additional observation instruments. A precise pressure sensor, ocean bottom gravity meter and ocean bottom electro-magnetic meter were installed using ROV Hyper-Dolphin in the cruise of R/V Natsushima from January 9 to 14, 2005. We start to operate them at February 10, 2005 after checking those of data qualities. We also installed an underwater internet interface, which is called Linux Box, as a prototype of underwater network system which was operated by Linux operating system. The Linux Box is a key network system for multidisciplinary observation network. It will be able to connect much kind of observation instruments as using internet connection. We put the precise pressure sensor as a sensor of the Linux Box in this experiment.

  13. Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development

    NASA Astrophysics Data System (ADS)

    Warren, Zachary Aron

    Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).

  14. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    PubMed

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  15. Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard.

    PubMed

    Kang, Bo-Kyeong; Yu, Eun Sil; Lee, Seung Soo; Lee, Youngjoo; Kim, Namkug; Sirlin, Claude B; Cho, Eun Yoon; Yeom, Suk Keu; Byun, Jae Ho; Park, Seong Ho; Lee, Moon-Gyu

    2012-06-01

    The aims of this study were to assess the confounding effects of hepatic iron deposition, inflammation, and fibrosis on hepatic steatosis (HS) evaluation by magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) and to assess the accuracies of MRI and MRS for HS evaluation, using histology as the reference standard. In this institutional review board-approved prospective study, 56 patients gave informed consents and underwent chemical-shift MRI and MRS of the liver on a 1.5-T magnetic resonance scanner. To estimate MRI fat fraction (FF), 4 analysis methods were used (dual-echo, triple-echo, multiecho, and multi-interference), and MRS FF was calculated with T2 correction. Degrees of HS, iron deposition, inflammation, and fibrosis were analyzed in liver resection (n = 37) and biopsy (n = 19) specimens. The confounding effects of histology on fat quantification were assessed by multiple linear regression analysis. Using the histologic degree of HS as the reference standard, the accuracies of each method in estimating HS and diagnosing an HS of 5% or greater were determined by linear regression and receiver operating characteristic analyses. Iron deposition significantly confounded estimations of FF by the dual-echo (P < 0.001) and triple-echo (P = 0.033) methods, whereas no histologic feature confounded the multiecho and multi-interference methods or MRS. The MRS (r = 0.95) showed the strongest correlation with histologic degree of HS, followed by the multiecho (r = 0.92), multi-interference (r = 0.91), triple-echo (r = 0.90), and dual-echo (r = 0.85) methods. For diagnosing HS, the areas under the curve tended to be higher for MRS (0.96) and the multiecho (0.95), multi-interference (0.95), and triple-echo (0.95) methods than for the dual-echo method (0.88) (P ≥ 0.13). The multiecho and multi-interference MRI methods and MRS can accurately quantify hepatic fat, with coexisting histologic abnormalities having no confounding effects.

  16. Low-frequency repetitive transcranial magnetic simulation prevents chronic epileptic seizure

    PubMed Central

    Wang, Yinxu; Wang, Xiaoming; Ke, Sha; Tan, Juan; Hu, Litian; Zhang, Yaodan; Cui, Wenjuan

    2013-01-01

    Although low-frequency repetitive transcranial magnetic simulation can potentially treat epilepsy, its underlying mechanism remains unclear. This study investigated the influence of low-frequency re-petitive transcranial magnetic simulation on changes in several nonlinear dynamic electroence-phalographic parameters in rats with chronic epilepsy and explored the mechanism underlying petitive transcranial magnetic simulation-induced antiepileptic effects. An epilepsy model was es-tablished using lithium-pilocarpine intraperitoneal injection into adult Sprague-Dawley rats, which were then treated with repetitive transcranial magnetic simulation for 7 consecutive days. Nonlinear electroencephalographic parameters were obtained from the rats at 7, 14, and 28 days post-stimulation. Results showed significantly lower mean correlation-dimension and Kolmogo-rov-entropy values for stimulated rats than for non-stimulated rats. At 28 days, the complexity and point-wise correlation dimensional values were lower in stimulated rats. Low-frequency repetitive transcranial magnetic simulation has suppressive effects on electrical activity in epileptic rats, thus explaining its effectiveness in treating epilepsy. PMID:25206567

  17. Effects of repetitive bending on the magnetoresistance of a flexible spin-valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K., E-mail: chobk@gist.ac.kr

    2015-05-07

    A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility ofmore » the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.« less

  18. Apparatus for detecting a magnetic anomaly contiguous to remote location by squid gradiometer and magnetometer systems

    DOEpatents

    Overton, Jr., William C.; Steyert, Jr., William A.

    1984-01-01

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  19. Apparatus and method for detecting a magnetic anomaly contiguous to remote location by SQUID gradiometer and magnetometer systems

    DOEpatents

    Overton, W.C. Jr.; Steyert, W.A. Jr.

    1981-05-22

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  20. LDPC product coding scheme with extrinsic information for bit patterned media recoding

    NASA Astrophysics Data System (ADS)

    Jeong, Seongkwon; Lee, Jaejin

    2017-05-01

    Since the density limit of the current perpendicular magnetic storage system will soon be reached, bit patterned media recording (BPMR) is a promising candidate for the next generation storage system to achieve an areal density beyond 1 Tb/in2. Each recording bit is stored in a fabricated magnetic island and the space between the magnetic islands is nonmagnetic in BPMR. To approach recording densities of 1 Tb/in2, the spacing of the magnetic islands must be less than 25 nm. Consequently, severe inter-symbol interference (ISI) and inter-track interference (ITI) occur. ITI and ISI degrade the performance of BPMR. In this paper, we propose a low-density parity check (LDPC) product coding scheme that exploits extrinsic information for BPMR. This scheme shows an improved bit error rate performance compared to that in which one LDPC code is used.

  1. Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve

    PubMed Central

    2011-01-01

    Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers: PMID:21711779

  2. Equivalent circuit model of converse magnetoelectric effect for the tri-layer magnetoelectric laminates with thermal and stress loadings

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Li, Meng-Han; Liu, Hui; Cui, Xiao-Le

    2015-12-01

    For the converse magnetoelectric coupling effect of the piezoelectric/magnetostrictive/piezoelectric tri-layer symmetric magnetoelectric laminates, based on the nonlinear thermo-magneto-mechanical constitutive equations of the giant magnetostrictive materials and the thermo-electro-mechanical constitutive equations of the piezoelectric materials, according to Newton's second law and the magnetic circuit theorem, an equivalent circuit is established. Then an expression of the converse magnetoelectric coefficient describing nonlinear thermo-magneto-electro-mechanical coupling is established. The curve of the nonlinear converse magnetoelectric coefficient versus the bias magnetic field, is predicted effectively by the expression, and the predictions are in good agreement with the experimental result both qualitatively and quantitatively. Furthermore, the model can predict the complex influences of the bias magnetic field, the stress and the ambient temperature on the converse magnetoelectric coefficient. It can be found from these predictions that the converse magnetoelectric coefficient decreases with the increasing temperature and increases with the increasing tensile stress. Under the common effect of the ambient temperature and the stress, it is also found that the converse magnetoelectric coefficient changes sharply with the ambient temperature when the tensile stress is applied on the laminates, but it has a good stability of temperature when a large compressive stress is applied. Therefore, this work contributes to the researches on the giant converse magnetoelectric coefficient and the designs of magnetoelectric devices based on the converse magnetoelectric coupling.

  3. Electro-optical detector for use in a wide mass range mass spectrometer

    NASA Technical Reports Server (NTRS)

    Giffin, Charles E. (Inventor)

    1976-01-01

    An electro-optical detector is disclosed for use in a wide mass range mass spectrometer (MS), in the latter the focal plane is at or very near the exit end of the magnetic analyzer, so that a strong magnetic field of the order of 1000G or more is present at the focal plane location. The novel detector includes a microchannel electron multiplier array (MCA) which is positioned at the focal plane to convert ion beams which are focused by the MS at the focal plane into corresponding electron beams which are then accelerated to form visual images on a conductive phosphored surface. These visual images are then converted into images on the target of a vidicon camera or the like for electronic processing. Due to the strong magnetic field at the focal plane, in one embodiment of the invention, the MCA with front and back parallel ends is placed so that its front end forms an angle of not less than several degrees, preferably on the order of 10.degree.-20.degree., with respect to the focal plane, with the center line of the front end preferably located in the focal plane. In another embodiment the MCA is wedge-shaped, with its back end at an angle of about 10.degree.-20.degree. with respect to the front end. In this embodiment the MCA is placed so that its front end is located at the focal plane.

  4. Nano-scale mass sensor based on the vibration analysis of a magneto-electro-elastic nanoplate resting on a visco-Pasternak substrate

    NASA Astrophysics Data System (ADS)

    Khanmirza, E.; Jamalpoor, A.; Kiani, A.

    2017-10-01

    In this paper, a magneto-electro-elastic nanoplate resting on a visco-Pasternak medium with added concentrated nanoparticles is presented as a mass nanosensor according to the vibration analysis. The MEE nanoplate is supposed to be subject to external electric voltage and magnetic potential. In order to take into account the size effect on the sensitivity of the sensor, the nonlocal elasticity theory in conjunction with the Kirchhoff plate theory is applied. Partial differential equations are derived by implementing Hamilton's variational principle. Equilibrium equations were solved analytically to determine an explicit closed-form statement for both the damped frequency shift and the relative damped frequency shift using Navier's approach. A genetic algorithm (GA) is employed to achieve the optimal added nanoparticle location to gain the most sensitivity performance of the nanosensor. Numerical studies are performed to illustrate the variation of the sensitivity property corresponding to various values of the number of attached nanoparticles, the mass of each nanoparticle, the nonlocal parameter, external electric voltage and magnetic potential, the aspect ratio, and visco-Pasternak parameters. Some numerical outcomes of this paper show that the minimum value of the damped frequency shift occurs for a certain value of the length-to-thickness ratio. Also, it is shown that the external magnetic and external electric potentials have a different effect on the sensitivity property. It is anticipated that the results reported in this work can be considered as a benchmark in future micro-structures issues.

  5. Transcranial magnetic stimulation (TMS) responses elicited in hindlimb muscles as an assessment of synaptic plasticity in spino-muscular circuitry after chronic spinal cord injury.

    PubMed

    Petrosyan, Hayk A; Alessi, Valentina; Sisto, Sue A; Kaufman, Mark; Arvanian, Victor L

    2017-03-06

    Electromagnetic stimulation applied at the cranial level, i.e. transcranial magnetic stimulation (TMS), is a technique for stimulation and neuromodulation used for diagnostic and therapeutic applications in clinical and research settings. Although recordings of TMS elicited motor-evoked potentials (MEP) are an essential diagnostic tool for spinal cord injured (SCI) patients, they are reliably recorded from arm, and not leg muscles. Mid-thoracic contusion is a common SCI that results in locomotor impairments predominantly in legs. In this study, we used a chronic T10 contusion SCI rat model and examined whether (i) TMS-responses in hindlimb muscles can be used for evaluation of conduction deficits in cortico-spinal circuitry and (ii) if plastic changes at spinal levels will affect these responses. In this study, plastic changes of transmission in damaged spinal cord were achieved by repetitive electro-magnetic stimulation applied over the spinal level (rSEMS). Spinal electro-magnetic stimulation was previously shown to activate spinal nerves and is gaining large acceptance as a non-invasive alternative to direct current and/or epidural electric stimulation. Results demonstrate that TMS fails to induce measurable MEPs in hindlimbs of chronically SCI animals. After facilitation of synaptic transmission in damaged spinal cord was achieved with rSEMS, however, MEPs were recorded from hindlimb muscles in response to single pulse TMS stimulation. These results provide additional evidence demonstrating beneficial effects of TMS as a diagnostic technique for descending motor pathways in uninjured CNS and after SCI. This study confirms the ability of TMS to assess plastic changes of transmission occurring at the spinal level. Published by Elsevier B.V.

  6. Avoidance of tearing mode locking with electro-magnetic torque introduced by feedback-based mode rotation control in DIII-D and RFX-mod

    DOE PAGES

    Okabayashi, M.; Zanca, P.; Strait, E. J.; ...

    2016-11-25

    Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. We have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance ismore » provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. We define β N as β N = β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. Finally, the internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.« less

  7. Avoidance of tearing mode locking with electro-magnetic torque introduced by feedback-based mode rotation control in DIII-D and RFX-mod

    NASA Astrophysics Data System (ADS)

    Okabayashi, M.; Zanca, P.; Strait, E. J.; Garofalo, A. M.; Hanson, J. M.; In, Y.; La Haye, R. J.; Marrelli, L.; Martin, P.; Paccagnella, R.; Paz-Soldan, C.; Piovesan, P.; Piron, C.; Piron, L.; Shiraki, D.; Volpe, F. A.; DIII-D, The; RFX-mod Teams

    2017-01-01

    Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. Here we have demonstrated a promising scheme to avoid mode locking by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque is delivered to the modes by a toroidal phase shift between the externally applied field and the excited TM fields, compensating for the mode momentum loss through the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance is provided by a feedback scheme. We have explored this approach in two widely different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high β N in a non-circular divertor tokamak. Here β N is defined as β N  =  β/(I p /aB t) (%Tm/MA), where β, I p, a, B t are the total stored plasma pressure normalized by the magnetic pressure, plasma current, plasma minor radius and toroidal magnetic field at the plasma center, respectively. The RFX-mod plasma was ohmically-heated with ultra-low safety factor in a circular limiter discharge with active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as the International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. The internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited for this purpose.

  8. Interference between Electric and Magnetic Concepts in Introductory Physics

    ERIC Educational Resources Information Center

    Scaife, Thomas M.; Heckler, Andrew F.

    2011-01-01

    We investigate student confusion of concepts of electric and magnetic force. At various times during a traditional university-level course, we administered a series of simple questions about the direction of force on a charged particle moving through either an electric or a magnetic field. We find that after electric force instruction but before…

  9. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.

    PubMed

    Takeda, Keiji; Mori, Hatsumi; Yamaguchi, Akira; Ishimoto, Hidehiko; Nakamura, Takayoshi; Kuriki, Shinya; Hozumi, Toshiya; Ohkoshi, Shin-ichi

    2008-03-01

    We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa2Cu3O7-delta of 92 nm in thickness with photolithography techniques to have a hole of 4x9 microm2 and 2 microm wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current Ic were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 microm3), [Mn2(H2O)2(CH3COO)][W(CN)8]2H2O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10(-12) J T(-1) (10(-9) emu) with a HTS micro-SQUID magnetometer.

  10. New edge magnetoplasmon interference like photovoltage oscillations and their amplitude enhancement in the presence of an antidot lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisotto, I., E-mail: isabelle.bisotto@lncmi.cnrs.fr; Portal, J.-C.; Institut National des Sciences Appliquées, 31077 Toulouse Cedex 4

    2015-11-15

    We present new photovoltage oscillation in a pure two dimensional electron gas (2DEG) and in the presence of circular or semicircular antidot lattices. Results were interpreted as EMPs-like photovoltage oscillations. We observed and explained the photovoltage oscillation amplitude enhancement in the presence of an antidot lattice with regard to the pure 2DEG. The microwave frequency excitation range is 139 – 350 GHz. The cyclotron and magnetoplasmon resonances take place in the magnetic field range 0.4 – 0.8 T. This original experimental condition allows edge magnetoplasmons EMPs interference like observation at low magnetic field, typically B < B{sub c} where B{submore » c} is the magnetic field at which the cyclotron resonance takes place. The different oscillation periods observed and their microwave frequency dependence were discussed. For 139 and 158 GHz microwave excitation frequencies, a unique EMPs-like interference period was found in the presence of antidots whereas two periods were extracted for 295 or 350 GHz. An explanation of this effect is given taking account of strong electron interaction with antidot at low magnetic field. Indeed, electrons involved in EMPs like phenomenon interact strongly with antidots when electron cyclotron orbits are larger than or comparable to the antidot diameter.« less

  11. Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads.

    PubMed

    Pantchenko, Oxana S; Seidman, Seth J; Guag, Joshua W

    2011-10-21

    Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. The electric current induced by low frequency RFID emitter was not significant to have a noticeable effect on electrical stimulation. We demonstrated a method for analyzing effects of coupled magnetic field interference on implantable neurostimulator system and its electrodes which could be used by device manufacturers during the design and testing phases of the development process.

  12. Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads

    PubMed Central

    2011-01-01

    Background Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. Methods To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. Results The electric current induced by low frequency RFID emitter was not significant to have a noticeable effect on electrical stimulation. Conclusions We demonstrated a method for analyzing effects of coupled magnetic field interference on implantable neurostimulator system and its electrodes which could be used by device manufacturers during the design and testing phases of the development process. PMID:22014169

  13. Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study.

    PubMed

    Castellano, María; Ruiz-García, Rafael; Cano, Joan; Ferrando-Soria, Jesús; Pardo, Emilio; Fortea-Pérez, Francisco R; Stiriba, Salah-Eddine; Julve, Miguel; Lloret, Francesc

    2015-03-17

    Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality nature of these metallosupramolecular complexes. This new class of oxamato-based dicopper(II) metallacyclophanes affords an excellent synthetic and theoretical set of models for both chemical and physical fundamental studies on redox- and photo-triggered, long-distance electron exchange phenomena, which are two major topics in molecular magnetism and molecular electronics. Apart from their use as ground tests for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the electron exchange interaction through extended π-conjugated aromatic ligands in polymetallic complexes, oxamato-based dicopper(II) metallacyclophanes possessing spin-containing electro- and chromophores at the metal and/or the ligand counterparts emerge as potentially active (magnetic and electronic) molecular components to build a metal-based spintronic circuit. They are thus unique examples of multifunctional magnetic complexes to get single-molecule spintronic devices by controlling and allowing the spin communication, when serving as molecular magnetic couplers and wires, or by exhibiting bistable spin behavior, when acting as molecular magnetic rectifiers and switches. Oxamato-based dicopper(II) metallacyclophanes also emerge as potential candidates for the study of coherent electron transport through single molecules, both experimentally and theoretically. The results presented herein, which are a first step in the metallosupramolecular approach to molecular spintronics, intend to attract the attention of physicists and materials scientists with a large expertice in the manipulation and measurement of single-molecule electron transport properties, as well as in the processing and addressing of molecules on different supports.

  14. Eletrochemical reduction of patulin and 5-hydroxymethylfurfural in both neutral and acid non-aqueous media. Their electroanalytical determination in apple juices.

    PubMed

    Damián Chanique, Gerardo; Heraldo Arévalo, Alejandro; Alicia Zon, María; Fernández, Héctor

    2013-07-15

    The electro-reduction of patulin mycotoxin and 5-hydroxymethylfurfural at glassy carbon electrodes in acetonitrile +0.1 mol L(-1) tetrabutylammonium perchlorate, in both the absence and the presence of different aliquots of trifluoroacetic acid is reported. 5-hydroxymethylfurfural is the most common interference in the determination of patulin in products derived from apples. The electrochemical techniques were cyclic and square wave voltammetries, and controlled potential bulk electrolysis. The number of electrons exchanged in the patulin electro-reduction of n=1 could be inferred from controlled potential bulk electrolysis measurements. Ultraviolet-visible and infrared spectroscopies were used to identify patulin electro-reduction product/s. A value of (2.1±0.1)×10(-5) cm(2) s(-1) for the patulin diffusion coefficient was calculated from convoluted cyclic voltammograms. A method based on square wave voltammetry was developed for the quantitative determination of patulin in both fresh, and commercial apple juices in the presence of 5-hydroxymethylfurfural. Calibration curves obtained from solutions of the commercial reagent, and commercial apple juices were linear in the range from 3.0×10(-7) to 2.2×10(-5) mol L(-1). The lowest concentration measured experimentally for a signal to noise ratio of 3:1 was 3×10(-7) mol L(-1) (45 ppb) and a recovery percent of 84% was determined for commercial apple juices. This electroanalytical methodology appears as a good screening method for the determination of patulin in apple juices. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guihéry, Nathalie; Ruamps, Renaud; Maurice, Rémi

    2015-12-31

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimizationmore » of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.« less

  16. Effects of magnets on pigeon homing

    NASA Technical Reports Server (NTRS)

    Keeton, W. T.

    1972-01-01

    The function of magnets in the navigation system of homing pigeons is investigated. Only experienced pigeons with magnets or brass bars were studied. Data show that on sunny days, pigeons with the magnets had some difficulty in orientation while those with brass bars had no problems. The same experiment was repeated on cloudy days. These results show that the magnets did not interfere with orientation. This difference suggests that sun and magnetic cues are used interchangeably, but that both together seldom function.

  17. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas ofmore » further improvements needed to bring the imaging performance to parity with conventional MRI systems.« less

  18. Nonlinear vibration of a coupled high- Tc superconducting levitation system

    NASA Astrophysics Data System (ADS)

    Sugiura, T.; Inoue, T.; Ura, H.

    2004-10-01

    High- Tc superconducting levitation can be applied to electro-mechanical systems, such as flywheel energy storage and linear-drive transportation. Such a system can be modeled as a magnetically coupled system of many permanent magnets and high- Tc superconducting bulks. It is a multi-degree-of-freedom dynamical system coupled by nonlinear interaction between levitated magnets and superconducting bulks. This nonlinearly coupled system, with small damping due to no contact support, can easily show complicated phenomena of nonlinear dynamics. In mechanical design, it is important to evaluate this nonlinear dynamics, though it has not been well studied so far. This research deals with forced vibration of a coupled superconducting levitation system. As a simple modeling of a coupled system, a permanent magnet levitated above a superconducting bulk is placed between two fixed permanent magnets without contact. Frequency response of the levitated magnet under excitation of one of the fixed magnets was examined theoretically. The results show typical nonlinear vibration, such as jump, hysteresis, and parametric resonance, which were confirmed in our numerical analyses and experiments.

  19. Design of a transverse-flux permanent-magnet linear generator and controller for use with a free-piston stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping

    2016-07-01

    Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.

  20. An Online Observer for Minimization of Pulsating Torque in SMPM Motors

    PubMed Central

    Roșca, Lucian

    2016-01-01

    A persistent problem of surface mounted permanent magnet (SMPM) motors is the non-uniformity of the developed torque. Either the motor design or the motor control needs to be improved in order to minimize the periodic disturbances. This paper proposes a new control technique for reducing periodic disturbances in permanent magnet (PM) electro-mechanical actuators, by advancing a new observer/estimator paradigm. A recursive estimation algorithm is implemented for online control. The compensating signal is identified and added as feedback to the control signal of the servo motor. Compensation is evaluated for different values of the input signal, to show robustness of the proposed method. PMID:27089182

  1. Read-out electronics for DC squid magnetic measurements

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.

  2. Fabrication and Evaluation of Superconducting and Semiconducting Materials

    DTIC Science & Technology

    1993-09-01

    Laboratory Material Physics Branch by conducting investigations into the properties of superconducting , magnetic , and other solid state materials. Studies...Physics Branch in conducting research into applied problems such as the design of magnetic shielding and superconducting quantum interference device...SQUID) magnetometry detection of magnetic anomalies. SFA provided research assistance in the areas of bulk ceramic sample preparation. conversion

  3. Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico

    2006-06-01

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minati, Ludovico

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Givenmore » the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.« less

  5. GEOPHYSICAL INVESTIGATIONS OF THE ARCHAEOLOGICAL RESOURCES AT THE POWELL STAGE STATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollie K. Gilbert; Julie B. Braun; Brenda R. Pace

    2009-04-01

    Within the boundaries of the Idaho National Laboratory, an ongoing archaeological investigation of a late 19th century stage station was expanded with the use of Electro-Magnetic and Magnetic geophysical surveying. The station known as the Powell Stage Station was a primary transportation hub on the Snake River Plain, bridging the gap between railroad supply depots in Blackfoot, Idaho and booming mining camps throughout Central Idaho. Initial investigations have shown a strong magnetic signature from a buried road and previously unknown features that were not detected by visual surface surveys. Data gained from this project aids in federally directed cultural resourcemore » and land management and use requirements and has contributed additional information for archeological interpretation and cultural resource preservation.« less

  6. Magnetophoretic bead trapping in a high-flowrate biological detection system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galambos, Paul C.; Hopkins, Matthew Morgan; Rahimian, Kamayar

    2005-03-01

    This report contains the summary of the 'Magnetophoretic Bead Trapping in a High-Flowrate Biological Detection System' LDRD project 74795. The objective of this project is to develop a novel biodetection system for high-throughput sample analysis. The chief application of this system is in detection of very low concentrations of target molecules from a complex liquid solution containing many different constituents--some of which may interfere with identification of the target molecule. The system is also designed to handle air sampling by using an aerosol system (for instance a WESP - Wet Electro-Static Precipitator, or an impact spray system) to get airmore » sample constituents into the liquid volume. The system described herein automatically takes the raw liquid sample, whether air converted or initially liquid matrix, and mixes in magnetic detector beads that capture the targets of interest and then performs the sample cleanup function, allowing increased sensitivity and eliminating most false positives and false negatives at a downstream detector. The surfaces of the beads can be functionalized in a variety of ways in order to maximize the number of targets to be captured and concentrated. Bacteria and viruses are captured using antibodies to surface proteins on bacterial cell walls or viral particle coats. In combination with a cell lysis or PCR (Polymerase Chain Reaction), the beads can be used as a DNA or RNA probe to capture nucleic acid patterns of interest. The sample cleanup capability of this system would allow different raw biological samples, such as blood or saliva to be analyzed for the presence of different infectious agents (e.g. smallpox or SARS). For future studies, we envision functionalizing bead surfaces to bind to chemical weapons agents, radio-isotopes, and explosives. The two main objectives of this project were to explore methods for enhancing the mixing of the capture microspheres in the sample, and to develop a novel high-throughput magnetic microsphere trap. We have developed a novel technique using the magnetic capture microspheres as 'stirrer bars' in a fluid sample to enhance target binding to the microsphere surfaces. We have also made progress in developing a polymer-MEMS electromagnet for trapping magnetic spheres in a high-flowrate fluid format.« less

  7. Appendix to theory of radio-frequency interferometry in geophysical subsurface probing, numerical results

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Tsang, L.

    1974-01-01

    A series of interference and radiation patterns are presented for radio interferometry in subsurface probing. The interference patterns are due both to a vertical magnetic dipole and to a horizontal electric dipole. Mode solutions are also presented for layer thickness equal to 1 wavelength, as well as for thin layers.

  8. Poisson Spot with Magnetic Levitation

    ERIC Educational Resources Information Center

    Hoover, Matthew; Everhart, Michael; D'Arruda, Jose

    2010-01-01

    In this paper we describe a unique method for obtaining the famous Poisson spot without adding obstacles to the light path, which could interfere with the effect. A Poisson spot is the interference effect from parallel rays of light diffracting around a solid spherical object, creating a bright spot in the center of the shadow.

  9. Hunting Sea Mines with UUV-Based Magnetic and Electro-Optic Sensors

    DTIC Science & Technology

    2010-06-01

    assembly of four 3-axis fluxgate magnetometers and (c) magnetometer package for underwater deployment in flooded body section. data are automatically...features the Real-time Tracking Gradiometer (RTG), which is a multi-channel tensor gradiometer using conventional fluxgate technology. Also in this...integrated together into a Bluefin12 AUV [5]. A. RTG Sensor Technology The RTG is a multi-channel tensor gradiometer using conventional fluxgate

  10. Microwave Detection of Chemical Agents: A Review

    DTIC Science & Technology

    1986-06-01

    Health (NIOSH).8’l1 This instrument was designed to detect acetonitrile, acetaldehyde , acetone, carbonyl sulfide, ethanol, ethylene oxide , isopropyl...absolute temperature mij - the dipole matrix element connecting the upper and lower energy states vo = the absorption line center v - transition...from multiple reflections through the cell. The Q of a cavity is defined as the electro - magnetic energy in the cavity divided by the energy lost per

  11. The Chinese People’s Liberation Army and Information Warfare

    DTIC Science & Technology

    2014-03-01

    information confrontation operations across the elec- tromagnetic spectrum. In doing so, as Dr. Wortzel’s monograph explains, the PLA used innovative means...and in- formation confrontation operations across the electro- magnetic spectrum. As this monograph explains, the PLA used innovative means to...depend on information technology. Naviga- tion and positioning is no longer done with compasses or sextants, maps , or charts; it is done with satellite

  12. Direct Fuel Injector Power Drive System Optimization

    DTIC Science & Technology

    2014-04-01

    solenoid coil to create magnetic field in the stator. Then, the stator pulls the pintle to open the injector nozzle . This pintle movement occurs when the...that typically deal with power strategies to the injector solenoid coil. Numerical simulation codes for diesel injection systems were developed by...Laboratory) for providing the JP-8 test fuel. REFERENCES 1. Digesu, P. and Laforgia D., “ Diesel electro- injector : A numerical simulation code”. Journal of

  13. Magneto-therapy of human joint cartilage.

    PubMed

    Wierzcholski, Krzysztof; Miszczak, Andrzej

    2017-01-01

    The topic of the present paper concerns the human joint cartilage therapy performed by the magnetic induction field. There is proved the thesis that the applied magnetic field for concrete cartilage illness should depend on the proper relative and concrete values of applied magnetic induction, intensity as well the time of treatment duration. Additionally, very important are frequencies and amplitudes of magnetic field as well as magnetic permeability of the synovial fluid. The research methods used in this paper include: magnetic induction field produced by a new Polish and German magneto electronic devices for the therapy of human joint cartilage diseases, stationary and movable magnetic applicators, magnetic bandage, ferrofluid injections, author's experience gained in Germany research institutes and practical results after measurements and information from patients. The results of this paper concern concrete parameters of time dependent electro-magnetic field administration during the joint cartilage therapy duration and additionally concern the corollaries which are implied from reading values gained on the magnetic induction devices. The main conclusions obtained in this paper are as follows: Time dependent magnetic induction field increases the dynamic viscosity of movable synovial fluid and decreases symptoms of cartilage illness for concrete intensity of magnetic field and concrete field line architecture. The ferrofluid therapy and phospholipids bilayer simultaneously with the administrated external electromagnetic field, increases the dynamic viscosity of movable synovial fluid.

  14. On the Anticipatory Aspects of the Four Interactions: what the Known Classical and Semi-Classical Solutions Teach us

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusanna, Luca

    2004-08-19

    The four (electro-magnetic, weak, strong and gravitational) interactions are described by singular Lagrangians and by Dirac-Bergmann theory of Hamiltonian constraints. As a consequence a subset of the original configuration variables are gauge variables, not determined by the equations of motion. Only at the Hamiltonian level it is possible to separate the gauge variables from the deterministic physical degrees of freedom, the Dirac observables, and to formulate a well posed Cauchy problem for them both in special and general relativity. Then the requirement of causality dictates the choice of retarded solutions at the classical level. However both the problems of themore » classical theory of the electron, leading to the choice of (1/2) (retarded + advanced) solutions, and the regularization of quantum field theory, leading to the Feynman propagator, introduce anticipatory aspects. The determination of the relativistic Darwin potential as a semi-classical approximation to the Lienard-Wiechert solution for particles with Grassmann-valued electric charges, regularizing the Coulomb self-energies, shows that these anticipatory effects live beyond the semi-classical approximation (tree level) under the form of radiative corrections, at least for the electro-magnetic interaction.Talk and 'best contribution' at The Sixth International Conference on Computing Anticipatory Systems CASYS'03, Liege August 11-16, 2003.« less

  15. EMPHASIS/Nevada UTDEM user guide. Version 2.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, C. David; Seidel, David Bruce; Pasik, Michael Francis

    The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite-element techniques on unstructured meshes. This document provides user-specific information to facilitate the use of the code for applications of interest. UTDEM is a general-purpose code for solving Maxwell's equations on arbitrary, unstructured tetrahedral meshes. The geometries and the meshes thereof are limited only by the patience of the user in meshing and by the available computing resources for the solution. UTDEM solves Maxwell's equations using finite-element method (FEM) techniques on tetrahedral elements using vector, edge-conforming basis functions. EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetic Particle-In-Cell (UTDEM PIC) ismore » a superset of the capabilities found in UTDEM. It adds the capability to simulate systems in which the effects of free charge are important and need to be treated in a self-consistent manner. This is done by integrating the equations of motion for macroparticles (a macroparticle is an object that represents a large number of real physical particles, all with the same position and momentum) being accelerated by the electromagnetic forces upon the particle (Lorentz force). The motion of these particles results in a current, which is a source for the fields in Maxwell's equations.« less

  16. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    PubMed Central

    Stajnko, Denis; Berk, Peter; Lešnik, Mario; Jejčič, Viktor; Lakota, Miran; Štrancar, Andrej; Hočevar, Marko; Rakun, Jurij

    2012-01-01

    This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD) on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits. PMID:23202220

  17. Direct electron-pair production by high energy heavy charged particles

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.

    1989-01-01

    Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen; Banerjee, Debasis; Liu, Jian

    Incorporating, a redox active organometallic molIncorporating, a redox active organometallic molecule within a porous matrix is a useful strategy to form redox active composite materials for emerging applications such as energy storage, electro-catalysis and electro-magnetic separation. Herein we report a new class of stable, redox active metal organic composites for oxygen/air separation with exceptional efficiency. In particular, Ferrocene impregnated in a thermally stable hierarchical porous framework showed a saturation uptake capacity of >51 mg/g for oxygen at a very low relative saturation pressure (P/Po) of 0.06. The material shows excellent O2 selectivity from air as evident from experimental and simulatedmore » breakthrough experiments. In detail structural analysis using 57Fe-Mössbauer, X-ray photoelectron spectroscopy (XPS) and pair distribution function (PDF) analysis show that of O2 adsorption affinity and selectivity originates by the formation Fe3+-O oxide due to the highly reactive nature of the organometallics imbedded in the porous matrix.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhiqi; He, Qing, E-mail: heqing@ise.neu.edu.cn; Xie, Zhi

    For real-time and precise measurement of molten steel level in tundish during continuous casting, slag level and slag thickness are needed. Among which, the problem of slag thickness measurement has been solved in our previous work. In this paper, a systematic solution for slag level measurement based on laser triangulation is proposed. Being different from traditional laser triangulation, several aspects for measuring precision and robustness have been done. First, laser line is adopted for multi-position measurement to overcome the deficiency of single point laser range finder caused by the uneven surface of the slag. Second, the key parameters, such asmore » installing angle and minimum requirement of the laser power, are analyzed and determined based on the gray-body radiation theory to fulfill the rigorous requirement of measurement accuracy. Third, two kinds of severe noises in the acquired images, which are, respectively, caused by heat radiation and Electro-Magnetic Interference (EMI), are cleaned via morphological characteristic of the liquid slag and color difference between EMI and the laser signals, respectively. Fourth, as false target created by stationary slag usually disorders the measurement, valid signals of the slag are distinguished from the false ones to calculate the slag level. Then, molten steel level is obtained by the slag level minus the slag thickness. The measuring error of this solution is verified by the applications in steel plants, which is ±2.5 mm during steady casting and ±3.2 mm at the end of casting.« less

  20. A Search for Meteoroid Lunar Impact Generated Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Kesaraju, Saiveena; Mathews, John D.; Vierinen, Juha; Perillat, Phil; Meisel, David D.

    2016-11-01

    Lunar white light flashes associated with meteoroid impacts are now regularly observed using modest optical instrumentation. In this paper, we hypothesize that the developing, optically-dense hot ejecta cloud associated with these hypervelocity impacts also produce an associated complex plasma component that rapidly evolves resulting in a highly-transient electro magnetic pulse (EMP) in the VHF/UHF spectral region. Discovery of the characteristics and event frequency of impact EMPs would prove interesting to meteoroid flux and complex plasma physics studies especially if EMPs from the same event are detected from at least two locations on the Earth with relative delays appropriate to the propagation paths. We describe a prototype observational search, conducted in May 2014, for meteoroid lunar-impact EMPs that was conducted using simultaneous, overlapping-band, UHF radio observations at the Arecibo (AO; Puerto Rico) and Haystack (HO, Massachusetts, USA) Observatories. Monostatic/bistatic lunar radar imaging observations were also performed with HO transmitting and HO/AO receiving to confirm tracking, the net delay, and the pointing/timing ephemeris at both observatories. Signal analysis was performed using time-frequency signal processing techniques. Although, we did not conclusively identify EMP returns, this search detected possible EMPs and we have confirmed the search paradigm and established the sensitivity of the AO-HO system in detecting the hypothesized events. We have also characterized the difficult radio-frequency interference environment surrounding these UHF observations. We discuss the wide range of terrestrial-origin, Moon-bounce signals that were observed which additionally validate the observational technique. Further observations are contemplated.

  1. Mechanically Robust Magnetic Carbon Nanotube Papers Prepared with CoFe2O4 Nanoparticles for Electromagnetic Interference Shielding and Magnetomechanical Actuation.

    PubMed

    Lim, Guh-Hwan; Woo, Seongwon; Lee, Hoyoung; Moon, Kyoung-Seok; Sohn, Hiesang; Lee, Sang-Eui; Lim, Byungkwon

    2017-11-22

    The introduction of inorganic nanoparticles into carbon nanotube (CNT) papers can provide a versatile route to the fabrication of CNT papers with diverse functionalities, but it may lead to a reduction in their mechanical properties. Here, we describe a simple and effective strategy for the fabrication of mechanically robust magnetic CNT papers for electromagnetic interference (EMI) shielding and magnetomechanical actuation applications. The magnetic CNT papers were produced by vacuum filtration of an aqueous suspension of CNTs, CoFe 2 O 4 nanoparticles, and poly(vinyl alcohol) (PVA). PVA plays a critical role in enhancing the mechanical strength of CNT papers. The magnetic CNT papers containing 73 wt % of CoFe 2 O 4 nanoparticles exhibited high mechanical properties with Young's modulus of 3.2 GPa and tensile strength of 30.0 MPa. This magnetic CNT paper was successfully demonstrated as EMI shielding paper with shielding effectiveness of ∼30 dB (99.9%) in 0.5-1.0 GHz, and also as a magnetomechanical actuator in an audible frequency range from 200 to 20 000 Hz.

  2. Biosensing utilizing magnetic markers and superconducting quantum interference devices

    NASA Astrophysics Data System (ADS)

    Enpuku, Keiji; Tsujita, Yuya; Nakamura, Kota; Sasayama, Teruyoshi; Yoshida, Takashi

    2017-05-01

    Magnetic biosensing techniques that are based on the use of bio-functionalized magnetic nanoparticles (magnetic markers) and superconducting quantum interference devices (SQUIDs) are expected to have various advantages when compared with conventional biosensing methods. In this paper, we review the recent progress made in magnetic biosensing techniques. First, we describe the most important parameters of magnetic markers that are intended for use in biosensing, i.e., the magnetic signal and the relaxation time that are determined by the Brownian and/or Néel relaxation mechanisms. We note that these parameters are significantly dependent on the marker size, and as a result, commercial markers exhibit a wide variety of values for these key parameters. Next, we describe three measurement methods that have been developed based on the magnetic properties of these markers, i.e., AC susceptibility, relaxation and remanence-based measurement methods. The weak (picotesla-range) signals emitted by the markers can be measured precisely with a SQUID system using these methods. Finally, we give examples of biosensing for in vitro and in vivo medical diagnosis applications. For in vitro diagnosis, high-sensitivity detection of various biological targets has been demonstrated without use of any washing process to separate the bound and free markers. For in vivo applications, detection of the quantities and the three-dimensional positions of the markers that have been injected into the test subject are demonstrated. These results confirm the effectiveness of magnetic biosensing techniques.

  3. Scanning tunneling spectroscopic (STS) studies of magnetically doped MBE-grown topological insulators (TIs)

    NASA Astrophysics Data System (ADS)

    Chu, Hao; Teague, Marcus; Chen, Chien-Chang; Woodward, Nicholas; Yeh, Nai-Chang; Kou, Xufeng; He, Liang; Lang, Murong; Wang, Kang; Caltech Collaboration; UCLA Collaboration

    2013-03-01

    We conduct STS studies on MBE-grown heterostructures of non-magnetic TI (Bi2Se3) with a range of thicknesses (d = 1, 3, 5, 7 quintuple layers, QL) on top of 7-QL magnetically doped TI (Cr-doped Bi2Se3) . For d = 1 and 3-QL, a spatially homogeneous magnetism-induced surface gap (as large as about 150 meV for d = 1-QL) is observed at 77 K, whereas gapless Dirac spectra are found for d = 5 and 7-QL, suggesting that the effective magnetic length for Cr-doped Bi2Se3 is approximately 4 ~ 5-QL. These findings are further corroborated by ARPES and bulk electrical transport measurements. The magnetism-induced surface gap differs from those found in pure Bi2Se3 and (Bi0.5Sb0.5)2 Te3 films of thicknesses smaller than 6-QL, because the latter are due to overlaps of wave functions between the surface and interface layers, which lead to Rashba-like spin-orbit splitting and spin-preserving quasiparticle interference wave-vectors. In contrast, STS studies of TIs with magnetism-induced surface gap do not yield any quasiparticle interferences for energies within the bulk Bi2Se3 gap. Finally, comparative STS studies of pure and magnetically doped TIs in high magnetic fields will be discussed. This work was supported by DARPA.

  4. Feasibility of polymer gel-based measurements of radiation isocenter accuracy in magnetic fields

    NASA Astrophysics Data System (ADS)

    Dorsch, S.; Mann, P.; Lang, C.; Haering, P.; Runz, A.; Karger, C. P.

    2018-06-01

    For conventional irradiation devices, the radiation isocenter accuracy is determined by star shot measurements on films. In magnetic resonance (MR)-guided radiotherapy devices, the results of this test may be altered by the magnetic field and the need to align the radiation and imaging isocenter may require a modification of measurement procedures. Polymer dosimetry gels (PG) may offer a way to perform both, the radiation and imaging isocenter test, however, first it has to be shown that PG reveal results comparable to the conventionally applied films. Therefore, star shot measurements were performed at a linear accelerator using PG as well as radiochromic films. PG were evaluated using MR imaging and the isocircle radius and the distance between the isocircle center and the room isocenter were determined. Two different types of experiments were performed: i) a standard star-shot isocenter test and (ii) a star shot, where the detectors were placed between the pole shoes of an experimental electro magnet operated either at 0 T or 1 T. For the standard star shot, PG evaluation was independent of the time delay after irradiation (1 h, 24 h, 48 h and 216 h) and the results were comparable to those of film measurements. Within the electro magnet, the isocircle radius increased from 0.39  ±  0.01 mm to 1.37  ±  0.01 mm for the film and from 0.44  ±  0.02 mm to 0.97  ±  0.02 mm for the PG-measurements, respectively. The isocenter distance was essentially dependent on the alignment of the magnet to the isocenter and was between 0.12  ±  0.02 mm and 0.82  ±  0.02 mm. The study demonstrates that evaluation of the PG directly after irradiation is feasible, if only geometrical parameters are of interest. This allows using PG for star shot measurements to evaluate the radiation isocenter accuracy with comparable accuracy as with radiochromic films.

  5. Soft magnetic memory of silk cocoon membrane

    PubMed Central

    Roy, Manas; Dubey, Amarish; Singh, Sushil Kumar; Bhargava, Kalpana; Sethy, Niroj Kumar; Philip, Deepu; Sarkar, Sabyasachi; Bajpai, Alok; Das, Mainak

    2016-01-01

    Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: ‘is it only electricity?’, or ‘it also posses some kind of magnetic memory?’ This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets. PMID:27374752

  6. Soft magnetic memory of silk cocoon membrane

    NASA Astrophysics Data System (ADS)

    Roy, Manas; Dubey, Amarish; Singh, Sushil Kumar; Bhargava, Kalpana; Sethy, Niroj Kumar; Philip, Deepu; Sarkar, Sabyasachi; Bajpai, Alok; Das, Mainak

    2016-07-01

    Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: ‘is it only electricity?’, or ‘it also posses some kind of magnetic memory?’ This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets.

  7. Soft magnetic memory of silk cocoon membrane.

    PubMed

    Roy, Manas; Dubey, Amarish; Singh, Sushil Kumar; Bhargava, Kalpana; Sethy, Niroj Kumar; Philip, Deepu; Sarkar, Sabyasachi; Bajpai, Alok; Das, Mainak

    2016-07-04

    Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: 'is it only electricity?', or 'it also posses some kind of magnetic memory?' This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets.

  8. Subsonic sting interference on the aerodynamic characteristics of a family of slanted-base ogive-cylinders

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Alcorn, Charles W.; Kilgore, W. Allen

    1990-01-01

    Support interference free drag, lift, and pitching moment measurements on a range of slanted base ogive cylinders were made using the NASA Langley 13 inch magnetic suspension and balance system. Typical test Mach numbers were in the range 0.04 to 0.2. Drag results are shown to be in broad agreement with previous tests with this configuration. Measurements were repeated with a dummy sting support installed in the wind tunnel. Significant support interferences were found at all test conditions and are quantified. Further comparison is made between interference free base pressures, obtained using remote telemetry, and sting cavity pressures.

  9. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  10. A solid-state controllable power supply for a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Tripp, John S.

    1991-01-01

    The NASA Langley 6-inch Magnetic Suspension and Balance System (6-in. MSBS) requires an independently controlled bidirectional dc power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance-coupled thyratron-controlled rectifiers as well as ac to dc motor-generator converters, is obsolete, inefficient, and unreliable. A replacement six-phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full-load efficiency is 80 percent compared with 25 percent for the resistance-coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20-kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  11. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  12. Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.

    PubMed

    Manjappa, Manukumara; Turaga, Shuvan Prashant; Srivastava, Yogesh Kumar; Bettiol, Andrew Anthony; Singh, Ranjan

    2017-06-01

    Dark mode in metamaterials has become a vital component in determining the merit of the Fano type of interference in the system. Its strength dictates the enhancement and suppression in the amplitude and Q-factors of resulting resonance features. In this work, we experimentally probe the effect of strong near-field coupling on the strength of the dark mode in a concentrically aligned bright resonator and a dark split ring resonator (SRR) system exhibiting the classical analog of the electromagnetically induced transparency effect. An enhanced strong magnetic field between the bright-dark resonators destructively interferes with the inherent magnetic field of the dark mode to completely annihilate its effect in the coupled system. Moreover, the observed annihilation effect in the dark mode has a direct consequence on the disappearance of the SRR effect in the proposed system, wherein under the strong magnetic interactions, the LC resonance feature of the split ring resonator becomes invisible to the incident terahertz wave.

  13. A Dual Mode Pulsed Electro-Magnetic Cell Stimulator Produces Acceleration of Myogenic Differentiation

    PubMed Central

    Leon-Salas, Walter D.; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-01-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/−40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models. PMID:23445453

  14. A dual mode pulsed electro-magnetic cell stimulator produces acceleration of myogenic differentiation.

    PubMed

    Leon-Salas, Walter D; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-04-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/- 40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models.

  15. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit

    DOE PAGES

    Gilbert, Dustin A.; Grutter, Alexander J.; Arenholz, Elke; ...

    2016-07-22

    Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlO x/GdO x/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additionalmore » magnetically soft phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdO x transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films.« less

  16. An Adaptive 6-DOF Tracking Method by Hybrid Sensing for Ultrasonic Endoscopes

    PubMed Central

    Du, Chengyang; Chen, Xiaodong; Wang, Yi; Li, Junwei; Yu, Daoyin

    2014-01-01

    In this paper, a novel hybrid sensing method for tracking an ultrasonic endoscope within the gastrointestinal (GI) track is presented, and the prototype of the tracking system is also developed. We implement 6-DOF localization by sensing integration and information fusion. On the hardware level, a tri-axis gyroscope and accelerometer, and a magnetic angular rate and gravity (MARG) sensor array are attached at the end of endoscopes, and three symmetric cylindrical coils are placed around patients' abdomens. On the algorithm level, an adaptive fast quaternion convergence (AFQC) algorithm is introduced to determine the orientation by fusing inertial/magnetic measurements, in which the effects of magnetic disturbance and acceleration are estimated to gain an adaptive convergence output. A simplified electro-magnetic tracking (SEMT) algorithm for dimensional position is also implemented, which can easily integrate the AFQC's results and magnetic measurements. Subsequently, the average position error is under 0.3 cm by reasonable setting, and the average orientation error is 1° without noise. If magnetic disturbance or acceleration exists, the average orientation error can be controlled to less than 3.5°. PMID:24915179

  17. Dispersions of Goethite Nanorods in Aprotic Polar Solvents

    PubMed Central

    Coursault, Delphine; Dozov, Ivan; Nobili, Maurizio; Dupont, Laurent; Chanéac, Corinne

    2017-01-01

    Colloidal suspensions of anisotropic nanoparticles can spontaneously self-organize in liquid-crystalline phases beyond some concentration threshold. These phases often respond to electric and magnetic fields. At lower concentrations, usual isotropic liquids are observed but they can display very strong Kerr and Cotton-Mouton effects (i.e., field-induced particle orientation). For many examples of these colloidal suspensions, the solvent is water, which hinders most electro-optic applications. Here, for goethite (α-FeOOH) nanorod dispersions, we show that water can be replaced by polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethylsulfoxide (DMSO), without loss of colloidal stability. By polarized-light microscopy, small-angle X-ray scattering and electro-optic measurements, we found that the nematic phase, with its field-response properties, is retained. Moreover, a strong Kerr effect was also observed with isotropic goethite suspensions in these polar aprotic solvents. Furthermore, we found no significant difference in the behavior of both the nematic and isotropic phases between the aqueous and non-aqueous dispersions. Our work shows that goethite nanorod suspensions in polar aprotic solvents, suitable for electro-optic applications, can easily be produced and that they keep all their outstanding properties. It also suggests that this solvent replacement method could be extended to the aqueous colloidal suspensions of other kinds of charged anisotropic nanoparticles. PMID:29039797

  18. THESEUS: A wavelength division multiplexed/microwave subcarrier multiplexed optical network, its ATM switch applications and device requirements

    NASA Astrophysics Data System (ADS)

    Xin, Wei

    1997-10-01

    A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.

  19. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties

    PubMed Central

    Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.

    2015-01-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2–12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827

  20. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry.

    PubMed

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  1. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    NASA Astrophysics Data System (ADS)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  2. Safety of Electromagnetic Articulography in Patients with Pacemakers and Implantable Cardioverter-Defibrillators

    ERIC Educational Resources Information Center

    Joglar, Jose A.; Nguyen, Carol; Garst, Diane M.; Katz, William F.

    2009-01-01

    Purpose: "Electromagnetic articulography (EMA)" uses a helmet to create alternating magnetic fields for tracking speech articulator movement. An important safety consideration is whether EMA magnetic fields interfere with the operation of speakers' pacemakers or implantable cardioverter-defibrillators (ICDs). In this investigation,…

  3. Development of Fluidic Guidance for KEW (Kinetic Energy Weapon) Projectiles

    DTIC Science & Technology

    1988-12-30

    commanded to a hit-to-kill on a hostile ICBK booster. A novel application of-the photo-acoustic effect is used for laser detection. An acoustic wave...Hughes High Endo-Atmospheric Interceptor Concept.. 2 3 Conceptual SDI KE projectile ........................ 3 4 Schematic of photo-acoustic effect ...practical, KEWs must be lightweight, able to withstand high "g" forces, and insensitive to nuclear and electro-magnetic effects . Laser command guidance can

  4. Landmine Warfare in Support of Multi-domain Battle: Balancing Discrimination and Military Effectiveness

    DTIC Science & Technology

    2017-05-25

    Combat Team CCW Convention on Certain Conventional Weapons CTC Combat Training Center EMS Electro- Magnetic Spectrum FASCAM Family of...of a person or vehicle .”13 In the immediate aftermath of WWII, the economy of force, counter- mobility, and protection functions of landmines were...threat posed by the Soviet Union and the need for discrimination in the employment of persistent landmines by organizing them into well-marked fields

  5. Experimental Development of Low-emittance Field-emission Electron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lueangaranwong, A.; Buzzard, C.; Divan, R.

    2016-10-10

    Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.

  6. Recent highlights from STAR

    NASA Astrophysics Data System (ADS)

    Zha, Wangmei

    2018-02-01

    The Solenoidal Tracker at RHIC (STAR) experiment takes advantage of its excellent tracking and particle identification capabilities at mid-rapidity to explore the properties of strongly interacting QCD matter created in heavy-ion collisions at RHIC. The STAR collaboration presented 7 parallel and 2 plenary talks at Strangeness in Quark Matter 2017 and covered various topics including heavy flavor measurements, bulk observables, electro-magnetic probes and the upgrade program. This paper highlights some of the selected results.

  7. Description of operation of fast-response solenoid actuator in diesel fuel system model

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Grekhov, L. V.; Fan, L.; Ma, X.; Song, E.

    2018-03-01

    The performance of the fast-response solenoid actuator (FRSA) of engine fuel systems is characterized by the response time of less than 0.1 ms and the necessity to take into consideration the non-stationary peculiarities of mechanical, hydraulic, electrical and magnetic processes. Simple models for magnetization in static and dynamic hysteresis are used for this purpose. The experimental study of the FRSA performance within the electro-hydraulic injector of the Common Rail demonstrated an agreement between the computational and experimental results. The computation of the processes is not only a tool for analysis, but also a tool for design and optimization of the solenoid actuator of new engine fuels systems.

  8. Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals.

    PubMed

    Lin, Tingting; Zhou, Kun; Yu, Sijia; Wang, Pengfei; Wan, Ling; Zhao, Jing

    2018-04-25

    LC resonance magnetic sensors are widely used in low-field nuclear magnetic resonance (LF-NMR) and surface nuclear magnetic resonance (SNMR) due to their high sensitivity, low cost and simple design. In magnetically shielded rooms, LC resonance magnetic sensors can exhibit sensitivities at the fT/√Hz level in the kHz range. However, since the equivalent magnetic field noise of this type of sensor is greatly affected by the environment, weak signals are often submerged in practical applications, resulting in relatively low signal-to-noise ratios (SNRs). To determine why noise increases in unshielded environments, we analysed the noise levels of an LC resonance magnetic sensor ( L ≠ 0) and a Hall sensor ( L ≈ 0) in different environments. The experiments and simulations indicated that the superposed ringing of the LC resonance magnetic sensors led to the observed increase in white noise level caused by environmental interference. Nevertheless, ringing is an inherent characteristic of LC resonance magnetic sensors. It cannot be eliminated when environmental interference exists. In response to this problem, we proposed a method that uses matching resistors with various values to adjust the quality factor Q of the LC resonance magnetic sensor in different measurement environments to obtain the best sensitivity. The LF-NMR experiment in the laboratory showed that the SNR is improved significantly when the LC resonance magnetic sensor with the best sensitivity is selected for signal acquisition in the light of the test environment. (When the matching resistance is 10 kΩ, the SNR is 3.46 times that of 510 Ω). This study improves LC resonance magnetic sensors for nuclear magnetic resonance (NMR) detection in a variety of environments.

  9. Shared and Disorder-Specific Prefrontal Abnormalities in Boys with Pure Attention-Deficit/Hyperactivity Disorder Compared to Boys with Pure CD during Interference Inhibition and Attention Allocation

    ERIC Educational Resources Information Center

    Rubia, Katya; Halari, Rozmin; Smith, Anna B.; Mohammad, Majeed; Scott, Stephen; Brammer, Michael J.

    2009-01-01

    Background: Inhibitory and attention deficits have been suggested to be shared problems of disruptive behaviour disorders. Patients with attention deficit hyperactivity disorder (ADHD) and patients with conduct disorder (CD) show deficits in tasks of attention allocation and interference inhibition. However, functional magnetic resonance imaging…

  10. The Two-Brains Hypothesis: Towards a guide for brain-brain and brain-machine interfaces.

    PubMed

    Goodman, G; Poznanski, R R; Cacha, L; Bercovich, D

    2015-09-01

    Great advances have been made in signaling information on brain activity in individuals, or passing between an individual and a computer or robot. These include recording of natural activity using implants under the scalp or by external means or the reverse feeding of such data into the brain. In one recent example, noninvasive transcranial magnetic stimulation (TMS) allowed feeding of digitalized information into the central nervous system (CNS). Thus, noninvasive electroencephalography (EEG) recordings of motor signals at the scalp, representing specific motor intention of hand moving in individual humans, were fed as repetitive transcranial magnetic stimulation (rTMS) at a maximum intensity of 2.0[Formula: see text]T through a circular magnetic coil placed flush on each of the heads of subjects present at a different location. The TMS was said to induce an electric current influencing axons of the motor cortex causing the intended hand movement: the first example of the transfer of motor intention and its expression, between the brains of two remote humans. However, to date the mechanisms involved, not least that relating to the participation of magnetic induction, remain unclear. In general, in animal biology, magnetic fields are usually the poor relation of neuronal current: generally "unseen" and if apparent, disregarded or just given a nod. Niels Bohr searched for a biological parallel to complementary phenomena of physics. Pertinently, the two-brains hypothesis (TBH) proposed recently that advanced animals, especially man, have two brains i.e., the animal CNS evolved as two fundamentally different though interdependent, complementary organs: one electro-ionic (tangible, known and accessible), and the other, electromagnetic (intangible and difficult to access) - a stable, structured and functional 3D compendium of variously induced interacting electro-magnetic (EM) fields. Research on the CNS in health and disease progresses including that on brain-brain, brain-computer and brain-robot engineering. As they grow even closer, these disciplines involve their own unique complexities, including direction by the laws of inductive physics. So the novel TBH hypothesis has wide fundamental implications, including those related to TMS. These require rethinking and renewed research engaging the fully complementary equivalence of mutual magnetic and electric field induction in the CNS and, within this context, a new mathematics of the brain to decipher higher cognitive operations not possible with current brain-brain and brain-machine interfaces. Bohr may now rest.

  11. Pulsed plasma thruster by applied a high current hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; N. Nogera Team; T. Kamada Team

    2013-09-01

    The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.

  12. Non-invasive and high-sensitivity scanning detection of magnetic nanoparticles in animals using high-Tc scanning superconducting-quantum-interference-device biosusceptometry.

    PubMed

    Chieh, J J; Hong, C Y

    2011-08-01

    Although magnetic nanoparticles (MNPs) have been widely applied to animals in biomedicine, MNPs within animals should be examined in real time, in vivo, and without bio-damaged possibility to evaluate whether the bio-function of MNPs is valid or to further controls the biomedicinal process because of accompanying complex problems such as MNPs distribution and MNPs biodegradation. The non-invasive and high-sensitivity scanning detection of MNPs in animals using ac susceptometry based on a high-T(c) superconducting quantum interference device (SQUID) is presented. The non-invasive results and biopsy results show good agreement, and two gold-standard biomedicine methods, Prussian blue stain and inductively coupled plasma, prove the magnetic results. This confirms that the future clinical diagnosis of bio-functional MNPs could be operated by using scanning SQUID biosusceptometry as conveniently as an ultrasonic probe.

  13. Extend of magnetic field interference in the natural convection of diamagnetic nanofluid

    NASA Astrophysics Data System (ADS)

    Roszko, Aleksandra; Fornalik-Wajs, Elzbieta

    2017-10-01

    Main objective of the paper was to experimentally investigate the thermo-magnetic convection of diamagnetic fluids in the Rayleigh-Benard configuration. For better understanding of the magnetic field influence on the phenomena occurring in cubical enclosure the following parameters were studied: absence or presence of nanoparticles (single and two-phase fluids), thermal conditions (temperature difference range of 5-25 K) and magnetic field strength (magnetic induction range of 0-10 T). A multi-stage approach was undertaken to achieve the aim. The multi-stage approach means that the forces system, flow structure and heat transfer were considered. Without understanding the reasons (forces) and the fluid behaviour it would be impossible to analyse the exchanged heat rates through the Nusselt number distribution. The forces were determined at the starting moment, so the inertia force was not considered. The flow structure was identified due to the FFT analysis and it proved that magnetic field application changed the diamagnetic fluid behaviour, either single or two-phase. Going further, the heat transfer analysis revealed dependence of the Nusselt number on the flow structure and at the same time on the magnetic field. It can be said that imposed magnetic field changed the energy transfer within the system. In the paper, it was shown that each of presented steps were linked together and that only a comprehensive approach could lead to better understanding of magnetic field interference in the convection phenomenon.

  14. Avionics electromagnetic interference immunity and environment

    NASA Technical Reports Server (NTRS)

    Clarke, C. A.

    1986-01-01

    Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.

  15. Influence of writing and reading intertrack interferences in terms of bit aspect ratio in shingled magnetic recording

    NASA Astrophysics Data System (ADS)

    Nobuhara, Hirofumi; Okamoto, Yoshihiro; Yamashita, Masato; Nakamura, Yasuaki; Osawa, Hisashi; Muraoka, Hiroaki

    2014-05-01

    In this paper, we investigate the influence of the writing and reading intertrack interferences (ITIs) in terms of bit aspect ratio (BAR) in shingled magnetic recording by computer simulation using a read/write model which consists of a writing process based on Stoner-Wohlfarth switching asteroid by a one-side shielded isosceles triangular write head and a reading process by an around shielded read head for a discrete Voronoi medium model. The results show that BAR should be 3 to reduce the influence of writing and reading ITIs, media noise, and additive white Gaussian noise in an assumed areal density of 4.61Tbpsi.

  16. All-silicon-based nano-antennas for wavelength and polarization demultiplexing.

    PubMed

    Panmai, Mingcheng; Xiang, Jin; Sun, Zhibo; Peng, Yuanyuan; Liu, Hongfeng; Liu, Haiying; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2018-05-14

    We propose an all-silicon-based nano-antenna that functions as not only a wavelength demultiplexer but also a polarization one. The nano-antenna is composed of two silicon cuboids with the same length and height but with different widths. The asymmetric structure of the nano-antenna with respect to the electric field of the incident light induced an electric dipole component in the propagation direction of the incident light. The interference between this electric dipole and the magnetic dipole induced by the magnetic field parallel to the long side of the cuboids is exploited to manipulate the radiation direction of the nano-antenna. The radiation direction of the nano-antenna at a certain wavelength depends strongly on the phase difference between the electric and magnetic dipoles interacting coherently, offering us the opportunity to realize wavelength demultiplexing. By varying the polarization of the incident light, the interference of the magnetic dipole induced by the asymmetry of the nano-antenna and the electric dipole induced by the electric field parallel to the long side of the cuboids can also be used to realize polarization demultiplexing in a certain wavelength range. More interestingly, the interference between the dipole and quadrupole modes of the nano-antenna can be utilized to shape the radiation directivity of the nano-antenna. We demonstrate numerically that radiation with adjustable direction and high directivity can be realized in such a nano-antenna which is compatible with the current fabrication technology of silicon chips.

  17. Recording epileptic activity with MEG in a light-weight magnetic shield.

    PubMed

    De Tiège, Xavier; Op de Beeck, Marc; Funke, Michael; Legros, Benjamin; Parkkonen, Lauri; Goldman, Serge; Van Bogaert, Patrick

    2008-12-01

    Ten patients with focal epilepsy were studied with magnetoencephalography (MEG) to determine if a new light-weight magnetically shielded room (lMSR) provides sufficient attenuation of magnetic interference to detect and localize the magnetic correlates of epileptic activity. Interictal MEG epileptic events co-localizing with the presumed location of the epileptogenic zone were found in all patients. MEG measurements performed in the lMSR provide an adequate signal-to-noise ratio for non-invasive localization of epileptic foci.

  18. Effect of Selective Co Addition on Magnetic Properties of Nd2(FeCo)14B/alpha-Fe Nanocomposite Magnets

    DTIC Science & Technology

    2012-12-13

    pressure of ∼2.5 GPa. The final bulk magnets having dimensions Ø6 mm × 1.5 mm were characterized for morphology and the crystalline structure using scanning... Magnetic properties were measured with a superconducting quantum interference device (SQUID) magnetometer with a maximum applied field of 70 kOe. To...calculate the true energy product (BH)max of the bulk sample, we determined the demagnetization factor experimentally as described in [9]. Figure 1 shows

  19. Coupled magneto-electro-mechanical lumped parameter model for a novel vibration-based magneto-electro-elastic energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Shirbani, Meisam Moory; Shishesaz, Mohammad; Hajnayeb, Ali; Sedighi, Hamid Mohammad

    2017-06-01

    The objective of this paper is to present a coupled magneto-electro-mechanical (MEM) lumped parameter model for the response of the proposed magneto-electro-elastic (MEE) energy harvesting systems under base excitation. The proposed model can be used to create self-powering systems, which are not limited to a finite battery energy. As a novel approach, the MEE composites are used instead of the conventional piezoelectric materials in order to enhance the harvested electrical power. The considered structure consists of a MEE layer deposited on a layer of non-MEE material, in the framework of unimorph cantilever bars (longitudinal displacement) and beams (transverse displacement). To use the generated electrical potential, two electrodes are connected to the top and bottom surfaces of the MEE layer. Additionally, a stationary external coil is wrapped around the vibrating structure to induce a voltage in the coil by the magnetic field generated in the MEE layer. In order to simplify the design procedure of the proposed energy harvester and obtain closed form solutions, a lumped parameter model is prepared. As a first step in modeling process, the governing constitutive equations, Gauss's and Faraday's laws, are used to derive the coupled MEM differential equations. The derived equations are then solved analytically to obtain the dynamic behavior and the harvested voltages and powers of the proposed energy harvesting systems. Finally, the influences of the parameters that affect the performance of the MEE energy harvesters such as excitation frequency, external resistive loads and number of coil turns are discussed in detail. The results clearly show the benefit of the coil circuit implementation, whereby significant increases in the total useful harvested power as much as 38% and 36% are obtained for the beam and bar systems, respectively.

  20. A de-noising method using the improved wavelet threshold function based on noise variance estimation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Wang, Weida; Xiang, Changle; Han, Lijin; Nie, Haizhao

    2018-01-01

    The precise and efficient noise variance estimation is very important for the processing of all kinds of signals while using the wavelet transform to analyze signals and extract signal features. In view of the problem that the accuracy of traditional noise variance estimation is greatly affected by the fluctuation of noise values, this study puts forward the strategy of using the two-state Gaussian mixture model to classify the high-frequency wavelet coefficients in the minimum scale, which takes both the efficiency and accuracy into account. According to the noise variance estimation, a novel improved wavelet threshold function is proposed by combining the advantages of hard and soft threshold functions, and on the basis of the noise variance estimation algorithm and the improved wavelet threshold function, the research puts forth a novel wavelet threshold de-noising method. The method is tested and validated using random signals and bench test data of an electro-mechanical transmission system. The test results indicate that the wavelet threshold de-noising method based on the noise variance estimation shows preferable performance in processing the testing signals of the electro-mechanical transmission system: it can effectively eliminate the interference of transient signals including voltage, current, and oil pressure and maintain the dynamic characteristics of the signals favorably.

  1. Optical multichannel room temperature magnetic field imaging system for clinical application

    PubMed Central

    Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.

    2014-01-01

    Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

  2. Magnetic forces and localized resonances in electron transfer through quantum rings.

    PubMed

    Poniedziałek, M R; Szafran, B

    2010-11-24

    We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.

  3. Surface-micromachined magnetic undulator with period length between 10μm and 1 mm for advanced light sources

    NASA Astrophysics Data System (ADS)

    Harrison, Jere; Joshi, Abhijeet; Lake, Jonathan; Candler, Rob; Musumeci, Pietro

    2012-07-01

    A technological gap exists between the μm-scale wiggling periods achieved using electromagnetic waves of high intensity laser pulses and the mm scale of permanent-magnet and superconducting undulators. In the sub-mm range, surface-micromachined soft-magnetic micro-electro-mechanical system inductors with integrated solenoidal coils have already experimentally demonstrated 100 to 500 mT field amplitude across air gaps as large as 15μm. Simulations indicate that magnetic fields as large as 1.5 T across 50μm inductor gaps are feasible. A simple rearranging of the yoke and pole geometry allows for fabrication of 10+ cm long undulator structures with period lengths between 12.5μm and 1 mm. Such undulators find application both in high average power spontaneous emission sources and, if used in combination with ultrahigh-brightness electron beams, could lead to the realization of low energy compact free-electron lasers. Challenges include electron energy broadening due to wakefields and Joule heating in the electromagnet.

  4. Nonlinear dynamics of attractive magnetic bearings

    NASA Technical Reports Server (NTRS)

    Hebbale, K. V.; Taylor, D. L.

    1987-01-01

    The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

  5. FIBER BRAGG GRATING SENSORS FOR LOCALIZED STRAIN MEASUREMENTS AT LOW TEMPERATURE AND IN HIGH MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramalingam, Rajinikumar

    2010-04-09

    Study of magnetostrictive effects in the bulk superconductors is very essential and can give more knowledge about the effects like namely, flux pinning induced strain, pincushion distortions in the magnets and so on. Currently used electro mechanical sensors are magnetic field dependent and can only give the global stress/strain information but not the local stress/strains. But the information like radius position dependent strain and characterisation of shape distortion in non cylindrical magnets are interesting. Wavelength encoded multiplexed fiber Bragg Grating sensors inscribed in one fiber gives the possibility to measure magentostrictive effects spatially resolved in low temperature and high magneticmore » field. This paper specifies the design and technology requirements to adapt FBG sensors for such an application. Also reports the experiments demonstrate the properties of glass FBG at low temperature (4.2 K) and the results of strain measurement at 4.2 K/8 T. The sensor exhibits a linear wavelength change for the strain change.« less

  6. Synthesis and characterization of electro-explosive magnetic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bakina, O. V.; Glazkova, E. A.; Svarovskaya, N. V.; Lerner, M. I.; Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nowadays there are new magnetic nanostructures based on bioactive metals with low toxicity and high efficiency for a wide range of biomedical applications including drugs delivery, antimicrobial drugs design, cells' separation and contrasting. For such applications it is necessary to develop highly magnetic particles with less than 100 nm in size. In the present study magnetic nanoparticles Fe, Fe3O4 and bimetallic Cu/Fe with the average size of 60-90 nm have been synthesized by electrical explosion of wire in an oxygen or argon atmosphere. The produced nanoparticles have been characterized with transmission electron microscopy, X-ray phase analysis, and nitrogen thermal desorption. The synthesized particles have shown antibacterial activity to gram-positive (S. aureus, MRSA) and gramnegative (E. coli, P. aeruginosa) bacteria. According to the cytological data Fe, Fe3O4 and Cu/Fe nanoparticles have effectively inhibited viability of cancer cell lines Neuro-2a and J774. The obtained nanoparticles are promising for new antimicrobial drugs and antitumor agents' development.

  7. Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  8. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  9. Active elimination of radio frequency interference for improved signal-to-noise ratio for in-situ NMR experiments in strong magnetic field gradients

    NASA Astrophysics Data System (ADS)

    Ibrahim, M.; Pardi, C. I.; Brown, T. W. C.; McDonald, P. J.

    2018-02-01

    Improvement in the signal-to-noise ratio of Nuclear Magnetic Resonance (NMR) systems may be achieved either by increasing the signal amplitude or by decreasing the noise. The noise has multiple origins - not all of which are strictly "noise": incoherent thermal noise originating in the probe and pre-amplifiers, probe ring down or acoustic noise and coherent externally broadcast radio frequency transmissions. The last cannot always be shielded in open access experiments. In this paper, we show that pulsed, low radio-frequency data communications are a significant source of broadcast interference. We explore two signal processing methods of de-noising short T2∗ NMR experiments corrupted by these communications: Linear Predictive Coding (LPC) and the Discrete Wavelet Transform (DWT). Results are shown for numerical simulations and experiments conducted under controlled conditions with pseudo radio frequency interference. We show that both the LPC and DWT methods have merit.

  10. Electro-Optical Rectifier (EOR) Update Study

    DTIC Science & Technology

    1976-05-01

    Errors and physical imperfections in paper tape, which is generated by a sepa- rate computer system to drive the EOR, have also limited the...of wrong parameters or other such unpredict- able events Since no physical storage medium such as paper tape or magnetic taiU is used to convey...printing. This is useful to determine whether or not EOR physical limits are exceeded without ruining a piece of film. The trial run can be made at a

  11. EMPHASIS(TM)/Nevada UTDEM User Guide Version 2.1.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, C. David; Pasik, Michael F.; Pointon, Timothy D.

    The Unstructured Time - Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves Maxwell's equations using finite - element techniques on unstructured meshes. This document provides user - specific information to facilitate the use of the code for ap plications of interest. Acknowledgement The authors would like to thank all of those individuals who have helped to bring EMPHASIS/Nevada to the point it is today, including Bill Bohnhoff, Rich Drake, and all of the NEVADA code team.

  12. Low Cost Gyrocompass.

    DTIC Science & Technology

    1984-06-01

    consists of a pair of LVDT’s amplifiers and electro- magnetic forcers. The current through the forcers provide a mea- sure of tilt angle since it measures...suspension system which exhibits the astatic property (zero friction and infinite comnliance). There are no ",rey" or questionable areas in the design since...due to relative bCase translation is achieved by uifirga earailelogra:n trip)od K- nife -edgle arrangement of floxure uoonoe in contras:t to a sirn;Ue

  13. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

    DTIC Science & Technology

    2014-09-23

    conduct simulations with a high-latitude data assimilation model. The specific objectives are to study magnetosphere-ionosphere ( M -I) coupling processes...based on three physics-based models, including a magnetosphere-ionosphere ( M -I) electrodynamics model, an ionosphere model, and a magnetic...inversion code. The ionosphere model is a high-resolution version of the Ionosphere Forecast Model ( IFM ), which is a 3-D, multi-ion model of the ionosphere

  14. Geo-electromagnetic research aids geo-hazard mitigation

    NASA Astrophysics Data System (ADS)

    Chiappini, M.; Carmisciano, C.; Faggioni, O.

    Some 100 Earth scientists from nine different nations recently gathered in Lerici, Italy; for the Second International Workshop on Geo-Electro-Magnetism. While this was not a thematic meeting, most of the 40 papers presented focused on applications of electromagnetic methods to natural or man-made hazards such as known faults, seismically active regions, volcanoes, landslides, and environmental or civil engineering problems. Anomaly and main field studies, both field investigations and theoretical techniques, were also well represented.

  15. Variational symmetries, conserved quantities and identities for several equations of mathematical physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donchev, Veliko, E-mail: velikod@ie.bas.bg

    2014-03-15

    We find variational symmetries, conserved quantities and identities for several equations: envelope equation, Böcher equation, the propagation of sound waves with losses, flow of a gas with losses, and the nonlinear Schrödinger equation with losses or gains, and an electro-magnetic interaction. Most of these equations do not have a variational description with the classical variational principle and we find such a description with the generalized variational principle of Herglotz.

  16. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo.

    PubMed

    Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila

    2013-03-01

    Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.

  17. Containerless crystallization of silicon

    NASA Astrophysics Data System (ADS)

    Kuribayashi, K.; Aoyama, T.

    2002-04-01

    Crystallization from undercooled melt of silicon was carried out by means of electro-magnetic levitation method under controlled undercooling. The measured growth rate vs. undercooling was categorized into three regions, I, II and III, respectively, from the point of the interface morphology. Thin plate crystals whose interface consisted of both faceted (1 1 1) plane and wavy edge plane like saw-tooth were observed in the region I where the undercooling is less than 100 K. The growth rate of the wavy edge plane was well described by the dendrite growth model. The morphology of growing crystals was abruptly changed to faceted dendrite in the region II, though there was no abrupt change in the growth rate. Seeding at temperatures in the region I changes the drop to a mono-crystalline sphere, if the growth rate along the normal direction of the thin plate crystal is controlled by step-wise growth on the faceted plane. Actually, the sample of 5 mm in diameter seeded at undercooling of 26 K was a quasi-single crystal with large grain, except for a small area where twinning and cracking are observed. The result suggests that the single crystal could be grown, if a smaller sample, 1 or 2 mm in diameter, that is difficult to be levitated by electro-magnetic force were processed with other methods such as free fall in a drop tube.

  18. Feedback-Driven Mode Rotation Control by Electro-Magnetic Torque

    NASA Astrophysics Data System (ADS)

    Okabayashi, M.; Strait, E. J.; Garofalo, A. M.; La Haye, R. J.; in, Y.; Hanson, J. M.; Shiraki, D.; Volpe, F.

    2013-10-01

    The recent experimental discovery of feedback-driven mode rotation control, supported by modeling, opens new approaches for avoidance of locked tearing modes that otherwise lead to disruptions. This approach is an application of electro-magnetic (EM) torque using 3D fields, routinely maximized through a simple feedback system. In DIII-D, it is observed that a feedback-applied radial field can be synchronized in phase with the poloidal field component of a large amplitude tearing mode, producing the maximum EM torque input. The mode frequency can be maintained in the 10 Hz to 100 Hz range in a well controlled manner, sustaining the discharges. Presently, in the ITER internal coils designed for edge localized mode (ELM) control can only be varied at few Hz, yet, well below the inverse wall time constant. Hence, ELM control system could in principle be used for this feedback-driven mode control in various ways. For instance, the locking of MHD modes can be avoided during the controlled shut down of multi hundreds Mega Joule EM stored energy in case of emergency. Feedback could also be useful to minimize mechanical resonances at the disruption events by forcing the MHD frequency away from dangerous ranges. Work supported by the US DOE under DE-AC02-09CH11466, DE-FC-02-04ER54698, DE-FG02-08ER85195, and DE-FG02-04ER54761.

  19. Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR

    NASA Astrophysics Data System (ADS)

    Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.

    2012-12-01

    The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.

  20. Nanomodified composite magnetic materials and their molding technologies

    NASA Astrophysics Data System (ADS)

    Timoshkov, I.; Gao, Q.; Govor, G.; Sakova, A.; Timoshkov, V.; Vetcher, A.

    2018-05-01

    Advanced electro-magnetic machines and systems require new materials with improved properties. Heterogeneous 3D nanomodified soft magnetic materials could be efficiently applied. Multistage technology of iron particle surface nanomodification by sequential oxidation and Si-organic coatings will be reported. The thickness of layers is 0.5-5 nm. Compaction and annealing are the final steps of magnetic parts and components shaping. The soft magnetic composite material shows the features: resistivity is controlled by insulating coating thickness and equals up to ρ =10-4 Ωṡm for metallic state and ρ =104 Ωṡm for insulator state, maximum magnetic permeability is μm = 2500 and μm = 300 respectively, induction is up to Bm=2.1 T. These properties of composite soft magnetic material allow applying for transformers, throttles, stator-rotor of high-efficient and powerful electric machines in 10 kHz-1MGz frequency range. For microsystems and microcomponents application, good opportunity to improve their reliability is the use of nanocomposite materials. Electroplating technology of nanocomposite magnetic materials into the ultra-thick micromolds will be presented. Co-deposition of the soft magnetic alloys with inert hard nanoparticles allows obtaining materials with magnetic permeability up to μm=104, magnetic induction of Bs=(0.62-1.3) T. Such LIGA-like technology will be applied in MEMS to produce high reliable devices with advanced physical properties.

  1. Toward noninvasive monitoring of ongoing electrical activity of human uterus and fetal heart and brain.

    PubMed

    Lew, S; Hämäläinen, M S; Okada, Y

    2017-12-01

    To evaluate whether a full-coverage fetal-maternal scanner can noninvasively monitor ongoing electrophysiological activity of maternal and fetal organs. A simulation study was carried out for a scanner with an array of magnetic field sensors placed all around the torso from the chest to the hip within a horizontal magnetic shielding enclosure. The magnetic fields from internal organs and an external noise source were computed for a pregnant woman with a 35-week old fetus. Signal processing methods were used to reject the external and internal interferences, to visualize uterine activity, and to detect activity of fetal heart and brain. External interference was reduced by a factor of 1000, sufficient for detecting signals from internal organs when combined with passive and active shielding. The scanner rejects internal interferences better than partial-coverage arrays. It can be used to estimate currents around the uterus. It clearly detects spontaneous activity from the fetal heart and brain without averaging and weaker evoked brain activity at all fetal head positions after averaging. The simulated device will be able to monitor the ongoing activity of the fetal and maternal organs. This type of scanner may become a novel tool in fetal medicine. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Zhang, Xingyi, E-mail: zhangxingyi@lzu.edu.cn; Liu, Cong

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strandmore » is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.« less

  3. Interference in Ballistic Motor Learning: Specificity and Role of Sensory Error Signals

    PubMed Central

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C.; Nielsen, Jens Bo

    2011-01-01

    Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals. PMID:21408054

  4. Dual-Fiberoptic Microcantilever Proximity Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goedeke, S.M.

    2001-08-08

    Microcantilevers are key components of many Micro-Electro-Mechanical Systems (MEMS) and Micro-Optical-Electro-Mechanical Systems (MOEMS) because slight changes to them physically or chemically lead to changes in mechanical characteristics. An inexpensive dual-fiberoptic microcantilever proximity sensor and model to predict its performance are reported here. Motion of a magnetic-material-coated cantilever is the basis of a system under development for measuring magnetic fields. The dual fiber proximity sensor will be used to monitor the motion of the cantilever. The specific goal is to sense induction fields produced by a current carrying conductor. The proximity sensor consists of two fibers side by side with claddingsmore » in contact. The fiber core diameter, 50 microns, and cladding thickness, 10 microns, are as small as routinely available commercially with the exception of single mode fiber. Light is launched into one fiber from a light-emitting diode (LED). It emerges from that fiber and reflects from the cantilever into the adjacent receiving fiber connected to a detector. The sensing end is cast molded with a diameter of 3-mm over the last 20-mm, yielding a low profile sensor. This reflective triangulation approach is probably the oldest and simplest fiber proximity sensing approach, yet the novelty here is in demonstrating high sensitivity at low expense from a triangular microstructure with amorphous magnetic coatings of iron, cobalt, permalloy, etc. The signal intensity versus distance curve yields an approximate gaussian shape. For a typical configuration, the signal grows from 10% to 90% of maximum in traversing from 6 to 50 microns from a coated cantilever. With signal levels exceeding a volt, nanometer resolution should be readily achievable for periodic signals.« less

  5. Modélisation d'un transformateur à shunts magnétiques utilisé dans l'alimentation H.T. d'un générateur micro-ondes à magnétron

    NASA Astrophysics Data System (ADS)

    Chraygane, Mohamed; Teissier, Maurice; Jammal, Ahmad; Masson, Jean-Pierre

    1994-11-01

    The high voltage power supply for magnetron, used for the modular microwave generators in industrial applications, is of a classical design : a single phase leakage flux transformer supplying a cell, composed of a capacitor and a diode, which multiplies the voltage and stabilizes the current. A π model of this transformer is developed, taking the saturation phenomena and the stabilization process of the magnetron current into account. Three inductances are characterized by the non linear relations between flux and magnetizing current. This model was tested by E.M.T.P. software (Electro-Magnetic Transients Program), near the nominal state. The theoretical results were compared to experimental measurements with a good agreement. L'alimentation haute tension des magnétrons, utilisés comme source d'énergie microondes dans l'industrie, est de conception classique : un transformateur monophasé à fuites magnétiques alimentant une cellule doubleuse de tension et stabilisatrice de courant. Un schéma équivalent en π du transformateur est présenté, prenant en compte la saturation des différentes parties du fer et la stabilisation du courant du magnétron. Trois inductances sont caractérisées par les relations non linéaires entre flux et courant magnétisant. Ce modèle a été testé à l'aide du logiciel de calcul E.M.T.P. (Electro-Magnetic Transients Program), au voisinage du régime nominal. Les résultats théoriques, comparés aux mesures expérimentales, se trouvent en bon accord avec elles.

  6. Digital control of wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.

    1987-01-01

    Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.

  7. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id; Riyanto, Agus; Abraha, Kamsul

    2016-04-19

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending onmore » annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.« less

  8. POLARIZED SCATTERING OF LIGHT FOR ARBITRARY MAGNETIC FIELDS WITH LEVEL-CROSSINGS FROM THE COMBINATION OF HYPERFINE AND FINE STRUCTURE SPLITTINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M.

    2015-12-01

    Interference between magnetic substates of the hyperfine structure states belonging to different fine structure states of the same term influences the polarization for some of the diagnostically important lines of the Sun's spectrum, like the sodium and lithium doublets. The polarization signatures of this combined interference contain information on the properties of the solar magnetic fields. Motivated by this, in the present paper, we study the problem of polarized scattering on a two-term atom with hyperfine structure by accounting for the partial redistribution in the photon frequencies arising due to the Doppler motions of the atoms. We consider the scatteringmore » atoms to be under the influence of a magnetic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg approach to calculate the scattering cross section for this process. We explore the rich polarization effects that arise from various level-crossings in the Paschen–Back regime in a single scattering case using the lithium atomic system as a concrete example that is relevant to the Sun.« less

  9. Diethylenetriaminepentaacetic acid-gadolinium (DTPA-Gd)-conjugated polysuccinimide derivatives as magnetic resonance imaging contrast agents.

    PubMed

    Lee, Ha Young; Jee, Hye Won; Seo, Sung Mi; Kwak, Byung Kook; Khang, Gilson; Cho, Sun Hang

    2006-01-01

    Biocompatible polysuccinimide (PSI) derivatives conjugated with diethylenetriaminepentaacetic acid gadolinium (DTPA-Gd) were prepared as magnetic resonance imaging (MRI) contrast agents. In this study, we synthesized PSI derivatives incorporating methoxy-poly(ethylene glycol) (mPEG) as hydrophilic ligand, hexadecylamine as hydrophobic ligand, and DTPA-Gd as contrast agent. PSI was synthesized by the polycondensation polymerization of aspartic acid. All the synthesized materials were characterized by proton nuclear magnetic resonance (1H NMR). Critical micellization concentrations were determined using fluorescent probes (pyrene). Micelle size and shape were measured by electro-photometer light scattering (ELS) and atomic force microscopy (AFM). The formed micelle size ranged from 100 to 300 nm. The T1-weighted MR images of the phantom prepared with PSI-mPEG-C16-(DTPA-Gd) were obtained in a 3.0 T clinical MR imager, and the conjugates showed a great potential as MRI contrast agents.

  10. Safety of high speed guided ground transportation systems. Magnetic and electric field testing of the French Train a Grande Vitesse (TGV) rail systems. Volume 1. Analysis. Final report, September 1992-March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, F.M.; Papas, P.N.; Jacobs, W.L.

    The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). A franchise has been awarded to the Texas high Speed Rail Corporation to operate a 200 mph French Train a Grande Vitesse (TGV) in the Texas Triangle (Dallas-Fort Worth, Houston, San Antonio), with construction to begin in 1995. The report provides the Analysis (Vol. I) of results, and detailed data and statistical summaries (Vol. II, Appendices) of representative electric and magnetic field (EMF) profiles on TGV-A trains between Paris and Tours formore » two electro-technologies (1.5 KV DC near Paris, and 2x25 KV at 50 Hz AC).« less

  11. Safety of high speed guided ground transportation systems. Magnetic and electric field testing of the French Train a Grande Vitesse (TGV) rail systems. Volume 2. Appendices. Final report, September 1992-March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, F.M.; Jacobs, W.E.

    The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). A franchise has been awarded to the Texas High Speed Rail Corporation to operate a 200 mph French Train a Grande Vitesse (TGV) in the Texas Triangle (Dallas-Fort Worth, Houston, San Antonio), with construction to begin in 1995. The report provides the Analysis (Vol. I) of results, and detailed data and statistical summaries (Vol. II, Appendices) of representative electric and magnetic field (EMF) profiles on TGV-A trains between Paris and Tours formore » two electro-technologies (1.5 KV DC near Paris, and 2x25 KV at 50 Hz AC).« less

  12. Non-contact optical sensor for detection of glucose concentration using a magneto-optic effect

    NASA Astrophysics Data System (ADS)

    Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; García, Javier; Zalevsky, Zeev

    2016-03-01

    In this paper we aim to experimentally verify a speckle based technique for non-contact measurement of glucose concentration in blood stream while the vision for the final device aims to contain a single wristwatch-style device containing an AC (alternating) electro-magnet generated by a solenoid, a laser and a camera. The experiments presented in work are performed in-vitro in order to verify the effects that are responsible for the operation principle. When a glucose substance is inserted into a solenoid generating an alternating magnetic field it exhibits Faraday rotation which affects the temporal changes of the secondary speckle patterns distribution. The temporal frequency resulting from the AC magnetic field was found to have a lock-in amplification role which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.

  13. Magnetostatics Analysis, Design, and Construction of a Loudspeaker

    NASA Astrophysics Data System (ADS)

    Galeriu, Calin

    2010-11-01

    Making a loudspeaker is a very rewarding hands-on activity that can be used to teach about electro-magnetism and sound waves. Several loudspeaker designs have been described in this magazine.1-4 The simplest loudspeaker4 has only a magnet, a coil, and three plastic cups. The simpler devices3,4 require a powerful amplified output, e.g., from a boom box. The more complex devices1,2 can operate using the smaller electric current from a CD player earphone output. Unfortunately, the procedure to make a more efficient loudspeaker is lengthy and less recommended to some high school students, involving a hot glue gun, a safety razor, five-minute epoxy, etc. Our loudspeaker, a variation of Heller's,2 is both simple in construction and efficient in operation. An analysis of the magnetic field distribution helped us in the design of this loudspeaker.

  14. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, G.T.; Jackson, J.W.

    1990-03-19

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

  15. Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers

    DOEpatents

    Danby, Gordon T.; Jackson, John W.

    1991-01-01

    A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

  16. DHS S&T First Responders Group and NATO Counter UAS Proposal Interest Response.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salton, Jonathan R.

    The capability, speed, size, and widespread availability of small unmanned aerial systems (sUAS) makes them a serious security concern. The enabling technologies for sUAS are rapidly evolving and so too are the threats they pose to national security. Potential threat vehicles have a small cross-section, and are difficult to reliably detect using purely ground-based systems (e.g. radar or electro-optical) and challenging to target using conventional anti-aircraft defenses. Ground-based sensors are static and suffer from interference with the earth, vegetation and other man-made structures which obscure objects at low altitudes. Because of these challenges, sUAS pose a unique and rapidly evolvingmore » threat to national security.« less

  17. Dispositional study of opioids in mice pretreated with sympathomimetic agents.

    PubMed

    Dambisya, Y M; Chan, K; Wong, C L

    1992-08-01

    Brain and plasma levels of morphine and codeine were determined by an assay method involving solid-phase extraction and ion-pair reversed phase HPLC. Detection was by a variable wavelength UV-detector (for codeine) and an amperometric electro-chemical detector (for morphine) coupled in series. Ephedrine or phenylpropanolamine pretreatment did not interfere with the plasma disposition of morphine, evidenced by overlapping plasma concentration-time profiles. Brain opioid levels were equally unaffected by sympathomimetic pretreatment. The relative ratios of brain to plasma concentrations at the time corresponding to the respective peak anti-nociceptive activity for morphine and codeine revealed no significant differences. It is concluded that single doses of ephedrine and phenylpropanolamine do not affect the disposition of morphine and codeine in mice.

  18. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  19. Nonmagnetic high pressure cell for magnetic remanence measurements up to 1.5 GPa in a superconducting quantum interference device magnetometer.

    PubMed

    Sadykov, Ravil A; Bezaeva, Natalia S; Kharkovskiy, Alexander I; Rochette, Pierre; Gattacceca, Jérome; Trukhin, Vladimir I

    2008-11-01

    We describe here a compact nonmagnetic composite high pressure cell of piston-cylinder type with inner diameter of 6 mm equipped with manganin pressure sensor. This cell was developed for room temperature measurements of magnetic remanence of relatively large rock samples (up to 5.8 mm in diameter and 15 mm long cylinders) under hydrostatic pressure up to 1.5 GPa (the operating pressure limit) in the 2G Enterprises superconducting quantum interference device magnetometer. Its design was focused on minimizing the remanent magnetic moment m(r) of the cell (m(r)=3 x 10(-8) A m(2)) that allowed direct measurements of remanent magnetic moment M(r) under pressure for weakly magnetic materials-rock samples (M(r) epsilon[5 x 10(-7),10(-4)] A m(2)). The inner part of this composite cell is made of hard "Russian alloy" (Ni(57)Cr(40)Al(3)) whereas the envelope of the cell corps is made of less magnetic titanium alloy. This design solution permitted to reduce the total remanent magnetic moment of the whole cell and represents the main device feature. We describe here the choice of materials for pressure cell based on their magnetic and mechanical properties, the choice of the pressure transmitting medium (polyethilsiloxane liquid) providing perfectly hydrostatic conditions for the sample as well as the cell geometry. The cell performance is illustrated by results of pressure demagnetization experiments on rocks and minerals.

  20. Deoxyribonucleic acid (DNA) cladding layers for nonlinear-optic-polymer-based electro-optic devices

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Ogata, Naoya; Diggs, Darnell E.; Hopkins, Frank K.

    2003-07-01

    Nonlinear optic (NLO) polymer based electro-optic devices have been achieving world record low half wave voltages and high frequencies over the last 2-3 years. Part of the advancement is through the use of relatively more conductive polymers for the cladding layers. Based on the current materials available for these cladding materials, however, the desired optical and electromagnetic properites are being balanced for materials processability. One does not want the solvent present in one layer to dissovle the one deposited underneath, or be dissolved by the one being deposited on top. Optimized polymer cladding materials, to further enhance device performance, are continuing to be investigated. Thin films of deoxyribonucleic acid (DNA), derived from salmon sperm, show promise in providing both the desired optical and magnetic properties, as well as the desired resistance to various solvents used for NLO polymer device fabrication. Thin films of DNA were deposited on glass and silicon substrates and the film quality, optical and electromagnetic properties and resistance to various solvents were characterized.

  1. The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S.

    2017-04-01

    Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling.

  2. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites.

    PubMed

    Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan

    2016-02-20

    Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data.

  3. Ultrafine particle and fiber production in microgravity

    NASA Technical Reports Server (NTRS)

    Webb, George W. (Inventor)

    1988-01-01

    In a system and method for producing ultrafine particles and ultrafine fibers of a given source material by evaporating and condensing the material in a gas atmosphere that includes inert gas. A smaller, more narrow size distribution is accomplished by producing the particles and fibers in a microgravity environment in order to reduce particle coalescence caused by convection currents. Particle coalescence also is reduced in an Earth gravity environment by controlling the convection currents. Condensed particles are collected either by providing an electrostatic field or a spatially varying magnetic field or by causing the gas to move through a filter which collects the particles. Nonferromagnetic material fibers are produced and collected by electrodes which produce an electro- static field. Ferromagnetic particles are collected by spatially varying magnetic fields.

  4. Runaway Electrons Modeling and Nanoparticle Plasma Jet Penetration into Tokamak Plasma

    NASA Astrophysics Data System (ADS)

    Galkin, S. A.; Bogatu, I. N.

    2017-10-01

    A novel idea to probe runaway electrons (REs) by superfast injection of high velocity nanoparticle plasma jet (NPPJ) from a plasma accelerator needs to be sustained by both RE dynamics modeling and simulation of NPPJ penetration through increasing tokamak magnetic field. We present our recent progress in both areas. RE simulation is based on the model, including Dreicer and ``avalanche'' mechanisms of RE generation, with emphasis on high Zeff effects. The high-density hyper-velocity C60 and BN NPPJ penetration through transversal B-field is conducted with the Hybrid Electro-Magnetic code (HEM-2D) in cylindrical coordinates, with 1/R B-field dependence for both DIII-D and ITER tokamaks. Work is supported in part by US DOE SBIR Grant.

  5. MRI of hand and wrist with a dedicated low field mini imager: preliminary report.

    PubMed

    Constantinesco, A; Brunot, B; Foucher, G

    1992-01-01

    In this paper we describe the development and the early results of an MRI system designed specifically for imaging of the hand and wrist. The imager takes up little space, uses a small 0.1 Tesla water-cooled electro-magnet with a vertical magnetic field and a 15 cm air gap. The system is based on a PC micro-computer and an integrated image processing board. There is no need for a Faraday cage. The image resolution is less than 1 mm using a 128 x 128 matrix format for a typical slice thickness of 3 mm. It is possible to achieve a 0.2 mm per pixel spatial resolution when imaging the fingers.

  6. Modeling and strain gauging of eddy current repulsion deicing systems

    NASA Technical Reports Server (NTRS)

    Smith, Samuel O.

    1993-01-01

    Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.

  7. Minimization of nanosatellite low frequency magnetic fields.

    PubMed

    Belyayev, S M; Dudkin, F L

    2016-03-01

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones.

  8. The metallofullerene field-induced single-ion magnet HoSc2 N@C80.

    PubMed

    Dreiser, Jan; Westerström, Rasmus; Zhang, Yang; Popov, Alexey A; Dunsch, Lothar; Krämer, Karl; Liu, Shi-Xia; Decurtins, Silvio; Greber, Thomas

    2014-10-13

    The low-temperature magnetic properties of the endohedral metallofullerene HoSc2 N@C80 have been studied by superconducting quantum interference device (SQUID) magnetometry. Alternating current (ac) susceptibility measurements reveal that this molecule exhibits slow relaxation of magnetization in a small applied field with timescales in the order of milliseconds. The equilibrium magnetic properties of HoSc2 N@C80 indicate strong magnetic anisotropy. The large differences in magnetization relaxation times between the present compound and the previously investigated DySc2 N@C80 are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. All-fiber magnetic field sensor based on tapered thin-core fiber and magnetic fluid.

    PubMed

    Zhang, Junying; Qiao, Xueguang; Yang, Hangzhou; Wang, Ruohui; Rong, Qiangzhou; Lim, Kok-Sing; Ahmad, Harith

    2017-01-10

    A method for the measurement of a magnetic field by combining a tapered thin-core fiber (TTCF) and magnetic fluid is proposed and experimentally demonstrated. The modal interference effect is caused by the core mode and excited eigenmodes in the TTCF cladding. The transmission spectra of the proposed sensor are measured and theoretically analyzed at different magnetic field strengths. The results field show that the magnetic sensitivity reaches up to -0.1039  dB/Oe in the range of 40-1600 e. The proposed method possesses high sensitivity and low cost compared with other expensive methods.

  10. Electrodeless Plasma Source: Phase II Update

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth

    2012-10-01

    Eagle Harbor Technologies, in collaboration with the University of Washington, has developed a low-impurity, electrode-less plasma source (EPS) for start-up and source plasma injection for fusion science applications. In order to not interfere with the experiment, a pre-ionizer/plasma source must meet a few critical criteria including low impurity production, low electromagnetic interference (EMI), and minimal disruption to the magnetic geometry of the experiment. This system was designed to be UHV compatible and bakable. Here we present the results of the EPS Phase II upgrade. The output plasma density was increased by two orders of magnitude to >10^17 m-3 in hydrogen with no magnetic field injected. EPS system integration with the HIT-SI experiment has begun.

  11. Wireless multi-channel single unit recording in freely moving and vocalizing primates

    PubMed Central

    Roy, Sabyasachi; Wang, Xiaoqin

    2011-01-01

    The ability to record well-isolated action potentials from individual neurons in naturally behaving animals is crucial for understanding neural mechanisms underlying natural behaviors. Traditional neurophysiology techniques, however, require the animal to be restrained which often restricts natural behavior. An example is the common marmoset (Callithrix jacchus), a highly vocal New World primate species, used in our laboratory to study the neural correlates of vocal production and sensory feedback. When restrained by traditional neurophysiological techniques marmoset vocal behavior is severely inhibited. Tethered recording systems, while proven effective in rodents pose limitations in arboreal animals such as the marmoset that typically roam in a three-dimensional environment. To overcome these obstacles, we have developed a wireless neural recording technique that is capable of collecting single-unit data from chronically implanted multi-electrodes in freely moving marmosets. A lightweight, low power and low noise wireless transmitter (headstage) is attached to a multi-electrode array placed in the premotor cortex of the marmoset. The wireless headstage is capable of transmitting 15 channels of neural data with signal-to-noise ratio (SNR) comparable to a tethered system. To minimize radio-frequency (RF) and electro-magnetic interference (EMI), the experiments were conducted within a custom designed RF/EMI and acoustically shielded chamber. The individual electrodes of the multi-electrode array were periodically advanced to densely sample the cortical layers. We recorded single-unit data over a period of several months from the frontal cortex of two marmosets. These recordings demonstrate the feasibility of using our wireless recording method to study single neuron activity in freely roaming primates. PMID:21933683

  12. Neural mechanisms of proactive interference-resolution.

    PubMed

    Nee, Derek Evan; Jonides, John; Berman, Marc G

    2007-12-01

    The ability to mitigate interference from information that was previously relevant, but is no longer relevant, is central to successful cognition. Several studies have implicated left ventrolateral prefrontal cortex (VLPFC) as a region tied to this ability, but it is unclear whether this result generalizes across different tasks. In addition, it has been suggested that left anterior prefrontal cortex (APFC) also plays a role in proactive interference-resolution although support for this claim has been limited. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate the role of these regions in resolving proactive-interference across two different tasks performed on the same subjects. Results indicate that both left VLPFC and left APFC are involved in the resolution of proactive interference across tasks. However, different functional networks related to each region suggest dissociable roles for the two regions. Additionally, regions of the posterior cingulate gyrus demonstrated unique involvement in facilitation when short- and long-term memory converged. This pattern of results serves to further specify models of proactive interference-resolution.

  13. Japan’s Shift to a Proactive Defense Architecture: Challenges Faced by Industry, Government, and Society

    DTIC Science & Technology

    2017-06-01

    DEW Directed-Energy Weapons DOD Department of Defense DPJ Democratic Party of Japan EM Electro-magnetic FMS Foreign Military Sales GSDF Ground...data.oecd.org/japan.htm. 75 Chris Matthews, “Forget Greece, Japan is the World’s Real Economic Time Bomb ,” Fortune, February 26, 2015, http...fortune.com/2015/02/26/japan-economic-time- bomb /. 25 to fund repair facilities, buy parts, or pay contractors? In terms of operating costs, will the JSDF

  14. EOID Evaluation and Automated Target Recognition

    DTIC Science & Technology

    2002-09-30

    Electro - Optic IDentification (EOID) sensors into shallow water littoral zone minehunting systems on towed, remotely operated, and autonomous platforms. These downlooking laser-based sensors operate at unparalleled standoff ranges in visible wavelengths to image and identify mine-like objects (MLOs) that have been detected through other sensing means such as magnetic induction and various modes of acoustic imaging. Our long term goal is to provide a robust automated target cueing and identification capability for use with these imaging sensors. It is also our goal to assist

  15. EOID Evaluation and Automated Target Recognition

    DTIC Science & Technology

    2001-09-30

    Electro - Optic IDentification (EOID) sensors into shallow water littoral zone minehunting systems on towed, remotely operated, and autonomous platforms. These downlooking laser-based sensors operate at unparalleled standoff ranges in visible wavelengths to image and identify mine-like objects that have been detected through other sensing means such as magnetic induction and various modes of acoustic imaging. Our long term goal is to provide a robust automated target cueing and identification capability for use with these imaging sensors. It is also our goal to assist the

  16. The Big Bang, Superstring Theory and the origin of life on the Earth.

    PubMed

    Trevors, J T

    2006-03-01

    This article examines the origin of life on Earth and its connection to the Superstring Theory, that attempts to explain all phenomena in the universe (Theory of Everything) and unify the four known forces and relativity and quantum theory. The four forces of gravity, electro-magnetism, strong and weak nuclear were all present and necessary for the origin of life on the Earth. It was the separation of the unified force into four singular forces that allowed the origin of life.

  17. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  18. Scanning evanescent electro-magnetic microscope

    DOEpatents

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  19. The Mesosphere and Thermosphere,

    DTIC Science & Technology

    1981-01-01

    lar wind kinetic energy flux ( I erg cm s at 1 AU). The power inputlinto the magnetosphere with an effective radius of 10 R is of the order of 10 W...relative to the interfaces several h urs later thanPthe density. In addition, the higher power of v causes nv to be generally higher in fast streams than...this way c can be interpreted as "that portion of the solar wind electro- magnetic power flux which, at any one time, penetrates the magnetosphere

  20. Electro-Magnetic Actuated Valve for MEMS Fuel Metering System

    DTIC Science & Technology

    2007-09-01

    This model is utilized material properties of Silicon (Si), Copper (Cu), Nickel Iron ( NiFe ), and air. C11 Air NiSe Figure 5. Design of a simplified a... NiFe are defined and shown table 4. It is assumed that the properties of materials are independent of orientation (i.e. isotropic materials). Relative...dry filn resist. This process enables an integrated NiFe armature with a hole-in-the-wall within the main flow channel. UC Berkeley, Pisano - 2007

  1. Programmable and electrically controllable light scattering from surface-polymer stabilized liquid crystals.

    PubMed

    Bédard-Arcand, Jean-Philippe; Galstian, Tigran

    2012-08-01

    We report the creation and study of a polarization independent light scattering material system based on surface-polymer stabilized liquid crystals. Originally isotropic cell substrates with thin nonpolymerized reactive mesogen layers are used for the alignment of pure nonreactive nematic liquid crystals. The partial interdiffusion of the two materials followed by the application of orienting external electric and magnetic fields and the photo polymerization of the reactive mesogen allow us the control of electro-optic scattering properties of obtained cells.

  2. Geophysical investigation at an existing landfill, Badger Army Ammunition Plant, Baraboo, Wisconsin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitten, C.B.; Sjostrom, K.J.

    1991-04-01

    Ground-water contaminants were found in ground-water monitoring wells at the existing landfill. More wells to define the horizontal and vertical extent of the contaminant plume are to be installed. Geophysical techniques (electro-magnetic induction, vertical electrical resistivity, and horizontal resistivity profiling) were used to map the extent of the contaminant plume. Using the geophysical, ground-water elevation, and geologic data, five anomalous areas south and east of the landfill were identified as locations for additional ground-water monitoring wells.

  3. Calculation of longitudinal and transverse wake-field effects in dielectric structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, W.

    1989-01-01

    The electro-magnetic radiation of a charged particle passing through a dielectric structure has many applications to accelerator physics. Recently a new acceleration scheme, called the dielectric wake field accelerator, has been proposed. It also can be used as a pick up system for a storage ring because of its slow wave characteristics. In order to study these effects in detail, in this paper we will calculate the wake field effects produced in a dielectric structure by a charged particle. 8 refs., 2 figs.

  4. Lead-Free Initiator Materials for Small Electro-Explosive Devices for Medium Caliber Munitions: Final Report 04 June 2003

    DTIC Science & Technology

    2004-05-01

    dissolution of copper (II) sulfate pentahydrate (25 g) in 100 ml water) in a 1L jacketed vessel containing a thermometer and magnetic stirrer at a...solution containing copper (II) sulfate pentahydrate (2.37 g) and ethylenediamine (3.98 g) in water (6 ml). The dark purple mixture was stirred until all...ethylenedinitramine (as its sodium salt) with copper sulfate , although no details were available owing to the inaccessibility of the report (see Scheme 1). Scheme 1

  5. High Intensity Electro-Magnetic and Ultrasonic Effects on Inorganic Materials Behavior and Processing Held in Raleigh, North Carolina on 17-18 July 1989

    DTIC Science & Technology

    1990-02-01

    constants (KBar): C11 1800 C12 100 C44 260 <G> 430 405 Figure 2. 0 A SIMULATION OF CRYSTAL GROWTH By studying successively larger crystal fragments...Virginia, Charlottesville, VA 22901 Since before 1981, K. Lal and co-workers have studied effects of electr- ic fields on non-conductor crystals ...ultrasound attenuation studies can be made. Attenuation of the ultrasound is usually caused by crystal imperfections (mainly grain boundaries

  6. The Effects of the Joint Multi-Mission Electro-Optical System on Littoral Maritime Intelligence, Surveillance, and Reconnaissance Operations

    DTIC Science & Technology

    2009-09-01

    though other variants can also deploy and operate from an aircraft carrier as well. While the SH-60B is equipped with a towed Magnetic Anomaly...for the scope of this thesis, the JMMES system utilized was not equipped with a MAD sensor and the operator workstation was onboard the aircraft ...investigates how a JMMES equipped SH-60 variant aircraft affects U.S. ISR capabilities in the littoral regions, specifically in the areas of Anti

  7. Detection of bacteria in suspension using a superconducting Quantum interference device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, H.L.; Myers, W.R.; Vreeland, V.J.

    2003-06-09

    We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magneticmore » flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 {+-} 1.1) x 10{sup 6} L. monocytogenes for a 20 {micro}L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 {+-} 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria.« less

  8. Construction of an Overhauser magnetic gradiometer and the applications in geomagnetic observation and ferromagnetic target localization

    NASA Astrophysics Data System (ADS)

    Liu, H.; Dong, H.; Liu, Z.; Ge, J.; Bai, B.; Zhang, C.

    2017-10-01

    The proton precession magnetometer with single sensor is commonly used in geomagnetic observation and magnetic anomaly detection. Due to technological limitations, the measurement accuracy is restricted by several factors such as the sensor performance, frequency measurement precision, instability of polarization module, etc. Aimed to improve the anti-interference ability, an Overhauser magnetic gradiometer with dual sensor structure was designed. An alternative design of a geomagnetic sensor with differential dual-coil structure was presented. A multi-channel frequency measurement algorithm was proposed to increase the measurement accuracy. A silicon oscillator was adopted to resolve the instability of polarization system. This paper briefly discusses the design and development of the gradiometer and compares the data recorded by this instrument with a commonly used commercially Overhauser magnetometer in the world market. The proposed gradiometer records the earth magnetic field in 24 hours with measurement accuracy of ± 0.3 nT and a sampling rate of 3 seconds per sample. The quality of data recorded is excellent and consistent with the commercial instrument. In addition, experiments of ferromagnetic target localization were conducted. This gradiometer shows a strong ability in magnetic anomaly detection and localization. To sum up, it has the advantages of convenient operation, high precision, strong anti-interference, etc., which proves the effectiveness of the dual sensor structure Overhauser magnetic gradiometer.

  9. Vortex creation during magnetic trap manipulations of spinor Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itin, A. P.; Space Research Institute, RAS, Moscow; Morishita, T.

    2006-06-15

    We investigate several mechanisms of vortex creation during splitting of a spinor Bose-Einstein condensate (BEC) in a magnetic double-well trap controlled by a pair of current carrying wires and bias magnetic fields. Our study is motivated by a recent MIT experiment on splitting BECs with a similar trap [Y. Shin et al., Phys. Rev. A 72, 021604 (2005)], where an unexpected fork-like structure appeared in the interference fringes indicating the presence of a singly quantized vortex in one of the interfering condensates. It is well known that in a spin-1 BEC in a quadrupole trap, a doubly quantized vortex ismore » topologically produced by a 'slow' reversal of bias magnetic field B{sub z}. Since in the experiment a doubly quantized vortex had never been seen, Shin et al. ruled out the topological mechanism and concentrated on the nonadiabatic mechanical mechanism for explanation of the vortex creation. We find, however, that in the magnetic trap considered both mechanisms are possible: singly quantized vortices can be formed in a spin-1 BEC topologically (for example, during the magnetic field switching-off process). We therefore provide a possible alternative explanation for the interference patterns observed in the experiment. We also present a numerical example of creation of singly quantized vortices due to 'fast' splitting; i.e., by a dynamical (nonadiabatic) mechanism.« less

  10. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze.

    PubMed

    Phillips, John B; Youmans, Paul W; Muheim, Rachel; Sloan, Kelly A; Landler, Lukas; Painter, Michael S; Anderson, Christopher R

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(°) so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.

  11. Rapid Learning of Magnetic Compass Direction by C57BL/6 Mice in a 4-Armed ‘Plus’ Water Maze

    PubMed Central

    Phillips, John B.; Youmans, Paul W.; Muheim, Rachel; Sloan, Kelly A.; Landler, Lukas; Painter, Michael S.; Anderson, Christopher R.

    2013-01-01

    Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds. PMID:24023673

  12. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TonThat, D.M.; Clarke, J.

    1996-08-01

    A spectrometer based on a dc superconducting quantum interference device (SQUID) has been developed for the direct detection of nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR) at frequencies up to 5 MHz. The sample is coupled to the input coil of the niobium-based SQUID via a nonresonant superconducting circuit. The flux locked loop involves the direct offset integration technique with additional positive feedback in which the output of the SQUID is coupled directly to a low-noise preamplifier. Precession of the nuclear quadrupole spins is induced by a magnetic field pulse with the feedback circuit disabled; subsequently, flux lockedmore » operation is restored and the SQUID amplifies the signal produced by the nuclear free induction signal. The spectrometer has been used to detect {sup 27}Al NQR signals in ruby (Al{sub 2}O{sub 3}[Cr{sup 3+}]) at 359 and 714 kHz. {copyright} {ital 1996 American Institute of Physics.}« less

  13. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    PubMed Central

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  14. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    PubMed

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-07-09

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  15. Automatic control of positioning along the joint during EBW in conditions of action of magnetic fields

    NASA Astrophysics Data System (ADS)

    Druzhinina, A. A.; Laptenok, V. D.; Murygin, A. V.; Laptenok, P. V.

    2016-11-01

    Positioning along the joint during the electron beam welding is a difficult scientific and technical problem to achieve the high quality of welds. The final solution of this problem is not found. This is caused by weak interference protection of sensors of the joint position directly in the welding process. Frequently during the electron beam welding magnetic fields deflect the electron beam from the optical axis of the electron beam gun. The collimated X-ray sensor is used to monitor the beam deflection caused by the action of magnetic fields. Signal of X-ray sensor is processed by the method of synchronous detection. Analysis of spectral characteristics of the X-ray sensor showed that the displacement of the joint from the optical axis of the gun affects on the output signal of sensor. The authors propose dual-circuit system for automatic positioning of the electron beam on the joint during the electron beam welding in conditions of action of magnetic interference. This system includes a contour of joint tracking and contour of compensation of magnetic fields. The proposed system is stable. Calculation of dynamic error of system showed that error of positioning does not exceed permissible deviation of the electron beam from the joint plane.

  16. Visualization of Surface Flow on a Prolate Spheroid Model Suspended by Magnetic Suspension and Balance System

    NASA Astrophysics Data System (ADS)

    Ambo, Takumi; Nakamura, Yuki; Ochiai, Taku; Nonomura, Taku; Asai, Keisuke

    2017-11-01

    In this study, the surface flow on a 6:1 prolate spheroid model was visualized by oil flow method in the magnetic suspension and balance system (MSBS). The MSBS is a support-free system for wind-tunnel test in that a model is levitated by magnetic force. In this experiment, the 0.3-m MSBS was installed in the low-speed wind tunnel. The Reynolds number was 0.5 million and the angle of attack was set 0 and 5 degrees. In addition to free-levitation tests, a thin rod simulating disturbance of a support system was placed on the model surface and the influence of support interference was evaluated. The obtained results indicate that complicated separation patterns are present even at zero angle of attack. At α = 5°, separation pattern becomes more complicated than that at α = 0° and the streamlines form a highly three-dimensional structure. A characteristic pattern of open separation is observed and a focal point is formed at the end of the separation line. In evaluation of the support interference, the separation is delayed in the downstream of the rod, suggesting that the change of separation pattern is caused by the transition of laminar boundary layer behind the rod. These results indicate that one must take particular care to the support interference in studying three-dimensional separation on a prolate spheroid.

  17. Multilayer MgB{sub 2} superconducting quantum interference filter magnetometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Elias; Melbourne, Thomas; Davidson, Bruce A.

    2016-04-25

    We report two types of all-MgB{sub 2} superconductive quantum interference filter (SQIF) magnetometers that can measure absolute magnetic fields with high sensitivity. In one configuration, the SQIFs were made of 20 multilayer nonplanar all-MgB{sub 2} superconducting quantum interference devices (SQUIDs) connected in parallel with loop areas ranging in size from 0.4 to 3.6 μm{sup 2}. These devices are sensitive to magnetic fields parallel to the substrate and show a single antipeak from 3 to 16 K with a maximum transfer function of ∼16 V/T at 3 K and a field noise of ∼110 pT/Hz{sup 1/2} above 100 Hz at 10 K. In a second configuration, themore » SQIFs were made with 16 planar SQUIDs connected in parallel with loop areas ranging in size from 4 μm{sup 2} to 25 μm{sup 2} and are sensitive to the magnetic fields perpendicular to the substrate. The planar SQIF shows a single antipeak from 10 to 22 K with a maximum transfer function of 7800 V/T at 10 K and a field noise of ∼70 pT/Hz{sup 1/2} above 100 Hz at 20 K.« less

  18. Urography

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  19. Transport properties of a quantum dot and a quantum ring in series

    NASA Astrophysics Data System (ADS)

    Seo, Minky; Chung, Yunchul

    2018-01-01

    The decoherence mechanism of an electron interferometer is studied by using a serial quantum dot and ring device. By coupling a quantum dot to a quantum ring (closed-loop electron interferometer), we were able to observe both Coulomb oscillations and Aharonov-Bohm interference simultaneously. The coupled device behaves like an ordinary double quantum dot at zero magnetic field while the conductance of the Coulomb blockade peak is modulated by the electron interference at finite magnetic fields. By injecting one electron at a time (by exploiting the sequential tunneling of a quantum dot) into the interferometer, we were able to study the visibility of the electron interference at non-zero bias voltage. The visibility was found to decay rapidly as the electron energy was increased, which was consistent with the recently reported result for an electron interferometer. However, the lobe pattern and the sudden phase jump became less prominent. These results imply that the lobe pattern and the phase jump in an electron interferometer may be due to electron interactions inside the interferometer, as is predicted by the theory.

  20. Measurement of Oxygen A Band Line Parameters by Using Modulation Spectroscopy with Higher Harmonic Detection

    NASA Technical Reports Server (NTRS)

    Dharamsi, Amin

    1999-01-01

    Wavelength modulation spectroscopy is used to demonstrate that extremely weak absorption lines can be measured even when these lines suffer from interference from the wings of adjacent stronger lines. It is shown that the use of detection at several harmonics allows such interference to be examined clearly and conveniently. The results of experimental measurements on a weak magnetic dipole driven, spin-forbidden line in the oxygen A band, which experiences interference from the wings of a pair of adjacent lines towards the blue and red regions of line center, are presented. A comparison of the experimental results to theory is given.

  1. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.

    PubMed

    Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  2. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet

    NASA Astrophysics Data System (ADS)

    Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  3. Minimization of nanosatellite low frequency magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyayev, S. M., E-mail: belyayev@isr.lviv.ua; Royal Institute of Technology, Stockholm 11428; Dudkin, F. L.

    2016-03-15

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accuratemore » than the conventional ones.« less

  4. Thermal deposition of intact tetrairon(III) single-molecule magnets in high-vacuum conditions.

    PubMed

    Margheriti, Ludovica; Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Gatteschi, Dante; Caneschi, Andrea; Chiappe, Daniele; Moroni, Riccardo; de Mongeot, Francesco Buatier; Cornia, Andrea; Piras, Federica M; Magnani, Agnese; Sessoli, Roberta

    2009-06-01

    A tetrairon(III) single-molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time-of-flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High-frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising-type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single-molecule magnet behavior.

  5. MR Enterography

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  6. Knee MRI

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  7. Shoulder MRI

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  8. A proto-type design of a real-tissue phantom for the validation of deformation algorithms and 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Szegedi, M.; Rassiah-Szegedi, P.; Fullerton, G.; Wang, B.; Salter, B.

    2010-07-01

    The purpose of this study is to design a real-tissue phantom for use in the validation of deformation algorithms. A phantom motion controller that runs sinusoidal and non-regular patient-based breathing pattern, via a piston, was applied to porcine liver tissue. It was regulated to simulate movement ranges similar to recorded implanted liver markers from patients. 4D CT was applied to analyze deformation. The suitability of various markers in the liver and the position reproducibility of markers and of reference points were studied. The similarity of marker motion pattern in the liver phantom and in real patients was evaluated. The viability of the phantom over time and its use with electro-magnetic tracking devices were also assessed. High contrast markers, such as carbon markers, implanted in the porcine liver produced less image artifacts on CT and were well visualized compared to metallic ones. The repositionability of markers was within a measurement accuracy of ±2 mm. Similar anatomical patient motions were reproducible up to elongations of 3 cm for a time period of at least 90 min. The phantom is compatible with electro-magnetic tracking devices and 4D CT. The phantom motion is reproducible and simulates realistic patient motion and deformation. The ability to carry out voxel-based tracking allows for the evaluation of deformation algorithms in a controlled environment with recorded patient traces. The phantom is compatible with all therapy devices clinically encountered in our department.

  9. Neurophysiology and Neuroanatomy of Reflexive and Volitional Saccades as Revealed by Lesion Studies with Neurological Patients and Transcranial Magnetic Stimulation (TMS)

    ERIC Educational Resources Information Center

    Muri, Rene M.; Nyffeler, Thomas

    2008-01-01

    This review discusses the neurophysiology and neuroanatomy of the cortical control of reflexive and volitional saccades in humans. The main focus is on classical lesion studies and studies using the interference method of transcranial magnetic stimulation (TMS). To understand the behavioural function of a region, it is essential to assess…

  10. A YBCO RF-squid variable temperature susceptometer and its applications

    NASA Technical Reports Server (NTRS)

    Zhou, Luwei; Qiu, Jinwu; Zhang, Xianfeng; Tang, Zhimin; Cai, Yimin; Qian, Yongjia

    1991-01-01

    The Superconducting QUantum Interference Device (SQUID) susceptibility using a high-temperature radio-frequency (rf) SQUID and a normal metal pick-up coil is employed in testing weak magnetization of the sample. The magnetic moment resolution of the device is 1 x 10(exp -6) emu, and that of the susceptibility is 5 x 10(exp -6) emu/cu cm.

  11. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    ERIC Educational Resources Information Center

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  12. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    PubMed

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  13. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  14. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    PubMed

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  15. Ballistic transport in nanowires through non-magnetic or magnetic cavity

    NASA Astrophysics Data System (ADS)

    Nonoyama, Shinji; Honma, Yukari; Ono, Miyuki; Nakamura, Atsunobu

    2015-07-01

    Ballistic transport phenomena through a region containing a cavity in a quasi-one-dimensional quantum nanowire are investigated. Conductance curves calculated as a function of a structural parameter show quantum interference effects on transport clearly. In a special geometry, very narrow periodic dips, which are attributable to the anti-resonance, appear on the conductance curve. The nature of the virtual bound state resulting in the anti-resonance is studied in detail. Electron conductions through a small dilute magnetic semiconductor are also investigated.

  16. Efficiency of cellular growth when creating small pockets of electric current along the walls of cells.

    PubMed

    Kletetschka, Gunther; Zila, Vojtech; Klimova, Lucie

    2014-04-01

    Pulses up to 11 Tesla magnetic fields may generate pockets of currents along the walls of cellular material and may interfere with the overall ability of cell division. We used prokaryotic cells (Escherichia coli) and eukaryotic cells (murine fibroblasts) and exposed them to magnetic pulses of intensities ranging from 1 millitesla (mT) to 11,000 mT. We found prokaryotic cells to be more sensitive to magnetic field pulses than eukaryotic cells.

  17. The observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence

    NASA Astrophysics Data System (ADS)

    Silalahi, Marzuki; Purwanto, Setyo; Mujamilah; Dimyati, Arbi

    2018-03-01

    About the observation of resistivity change on the ultrasonic treated Fe-Cr ODS sinter alloy under magnetic field influence. This paper reported about the observation of the resistivity change in the ultrasonic pre-treated Fe-Cr ODS sinter alloy under the influence of magnetic field at the Center for Science and Technology of Advanced Material, Nuclear Energy Agency of Indonesia. Fe-Cr ODS alloy were sinthesized by vacuum sintering of Fe- and Cr-powder dispersed Y2O3. However, before sintering the powder mixture was subjected to the irradiation process by ultrasonic for 50 hours at 20 kHz and then isostatic pressed up to 50.91 MPa to form a coin of 10 mm in diameter. LCR meassurement revealed the decreasing of resistivity about 3 times by increasing of applied magnetic field from 0 to 70 mT. In addition, VSM meassurement was performed on both as powder material and as sintered sample. The results showed increasing the magnetization with increasing magnetic field and the curve exhibits almost exact symmetry S-form with small hysterese indicating fast changing magnetization and demagnetization capability without energy loss. This opens strong speculations about the existence of magnetoresistant property of the material which is important for many application in field of sensors or electro magnetic valves.

  18. Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument

    NASA Astrophysics Data System (ADS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-02-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  19. A glassy carbon electrode modified with poly(2,4-dinitrophenylhydrazine) for simultaneous detection of dihydroxybenzene isomers.

    PubMed

    Lopa, Nasrin Siraj; Rahman, Md Mahbubur; Jang, Hohyoun; Sutradhar, Sabuj Chandra; Ahmed, Faiz; Ryu, Taewook; Kim, Whangi

    2017-12-06

    2,4-Dinitrophenylhydrazine (DNPH) was electropolymerized on the surface of an anodized glassy carbon electrode by cyclic voltammetry. The anodized electrode has a highly electroactive surface due to the creation of chemically functionalized graphitic nanoparticles, and this facilitates the formation of poly-DNPH via radical polymerization. Poly-DNPH displays excellent redox activity due to the presence of nitro groups on its backbone. These catalyze the electro-oxidation of hydroquinone (HQ) and catechol (CT). The peak-to-peak separation is around 109 mV, while a bare GCE cannot resolve the peaks (located at 165 and 274 mV vs. Ag/AgCl). Sensitivity is also enhanced to ∼1.20 and 1.19 μA·cm -2 ·μM -1 , respectively. The sensor has a linear response that covers the 20-250 μM concentration range for both HQ and CT, with 0.75 and 0.76 μM detection limits, respectively, at simultaneous detection. Commonly present species do not interfere. Graphical abstract A novel conducting poly(2,4-dinitrophenylhydrazine)-modified anodized glassy carbon electrode (pDNPH/AGCE) was developed by electrochemical method. The electro-catalytic activity of pDNPH/AGCE sensor was investigated for the selective and simultaneous electrochemical detection of hydroquinone (HQ) and catechol (CT), which revealed high sensitivities and low detection limits with excellent stability.

  20. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  1. The rectenna design on contact lens for wireless powering of the active intraocular pressure monitoring system.

    PubMed

    Cheng, H W; Jeng, B M; Chen, C Y; Huang, H Y; Chiou, J C; Luo, C H

    2013-01-01

    This paper proposed a wireless power harvesting system with micro-electro-mechanical-systems (MEMS) fabrication for noninvasive intraocular pressure (IOP) measurement on soft contact lens substructure. The power harvesting IC consists of a loop antenna, an impedance matching network and a rectifier. The proposed IC has been designed and fabricated by CMOS 0.18 um process that operates at the ISM band of 5.8 GHz. The antenna and the power harvesting IC would be bonded together by using flip chip bonding technologies without extra wire interference. The circuit utilized an impedance transformation circuit to boost the input RF signal that improves the circuit performance. The proposed design achieves an RF-to-DC conversion efficiency of 35% at 5.8 GHz.

  2. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imany, Poolad; Jaramillo-Villegas, Jose A.; Odele, Ogaga D.

    Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-binmore » encoded quantum computing, as well as dense quantum key distribution.« less

  3. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

    DOE PAGES

    Imany, Poolad; Jaramillo-Villegas, Jose A.; Odele, Ogaga D.; ...

    2018-01-18

    Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-binmore » encoded quantum computing, as well as dense quantum key distribution.« less

  4. Application of SPM interferometry in MEMS vibration measurement

    NASA Astrophysics Data System (ADS)

    Tang, Chaowei; He, Guotian; Xu, Changbiao; Zhao, Lijuan; Hu, Jun

    2007-12-01

    The resonant frequency measurement of cantilever has an important position in MEMS(Micro Electro Mechanical Systems) research. Meanwhile the SPM interferometry is a high-precision optical measurement technique, which can be used in physical quantity measurement of vibration, displacement, surface profile. Hence, in this paper we propose to apply SPM(SPM) interferometry in measuring the vibration of MEMS cantilever and in the experiment the vibration of MEMS cantilever was driven by light source. Then this kind of vibration was measured in nm precision. Finally the relational characteristics of MEMS cantilever vibration under optical excitation can be gotten and the measurement principle is analyzed. This method eliminates the influence on the measuring precision caused by external interference and light intensity change through feedback control loop. Experiment results prove that this measurement method has a good effect.

  5. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites

    PubMed Central

    Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan

    2016-01-01

    Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data. PMID:26907290

  6. Investigating the effect of background magnetic field on the resonance condition between EMIC waves and relativistic electrons

    NASA Astrophysics Data System (ADS)

    Woodger, L. A.; Millan, R. M.

    2017-12-01

    Balloon-borne x-ray detectors observe bremsstrahlung from precipitating electrons, offering a unique opportunity to observe sustained precipitation from a quasi-geosynchronous platform. Recent balloon observations of duskside relativistic electron precipitation (REP) on BARREL confirm that Electro-Magnetic Ion Cyclotron (EMIC) waves cause electron precipitation [e.g. Li et al., 2014]. However, BARREL observations show precipitation does not occur everywhere that waves are observed; precipitation is confined to narrow magnetic local time (MLT) regions in the duskside magnetosphere [Blum et al., 2015]. Furthermore, modulation of relativistic electron precipitation on Ultra Low Frequency (ULF) wave (f < 20 mHz) timescales has been reported in several events from balloon X-ray observations [Foat et al., 1998; Millan et al., 2002]. Wave-particle interaction between relativistic electrons and EMIC waves is a highly debated loss processes contributing to the dynamics of Earth's radiation belts. We present REP from balloon x-ray observations in the context of precipitation driven by EMIC waves. We investigate how background magnetic field strength could drive the localization, distribution, and temporal structure of the precipitating electrons.

  7. Development and application of a generic CFD toolkit covering the heat flows in combined solid-liquid systems with emphasis on the thermal design of HiLumi superconducting magnets

    NASA Astrophysics Data System (ADS)

    Bozza, Gennaro; Malecha, Ziemowit M.; Van Weelderen, Rob

    2016-12-01

    The main objective of this work is to develop a robust multi-region numerical toolkit for the modeling of heat flows in combined solid-liquid systems. Specifically heat transfer in complex cryogenic system geometries involving super-fluid helium. The incentive originates from the need to support the design of superconductive magnets in the framework of the HiLumi-LHC project (Brüning and Rossi, 2015) [1]. The intent is, instead of solving heat flows in restricted domains, to be able to model a full magnet section in one go including all relevant construction details as accurately as possible. The toolkit was applied to the so-called MQXF quadrupole magnet design. Parametrisation studies were used to find a compromise in thermal design and electro-mechanical construction constraints. The cooling performance is evaluated in terms of temperature margin of the magnets under full steady state heat load conditions and in terms of maximal sustainable load. We also present transient response to pulse heat loads of varying duration and power and the system response to time-varying cold source temperatures.

  8. THREE-DIMENSIONAL NON-VACUUM PULSAR OUTER-GAP MODEL: LOCALIZED ACCELERATION ELECTRIC FIELD IN THE HIGHER ALTITUDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi

    2015-01-10

    We investigate the particle accelerator that arises in a rotating neutron-star magnetosphere. Simultaneously solving the Poisson equation for the electro-static potential, the Boltzmann equations for relativistic electrons and positrons, and the radiative transfer equation, we demonstrate that the electric field is substantially screened along the magnetic field lines by pairs that are created and separated within the accelerator. As a result, the magnetic-field-aligned electric field is localized in higher altitudes near the light cylinder and efficiently accelerates the positrons created in the lower altitudes outward but does not accelerate the electrons inward. The resulting photon flux becomes predominantly outward, leadingmore » to typical double-peak light curves, which are commonly observed from many high-energy pulsars.« less

  9. A realistic treatment of geomagnetic Cherenkov radiation from cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Werner, Klaus; de Vries, Krijn D.; Scholten, Olaf

    2012-09-01

    We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from three-dimensional Monte Carlo simulations of air showers in a realistic geo-magnetic field. We discuss the importance of a correct treatment of the index of refraction in air, given by the law of Gladstone and Dale, which affects the pulses enormously for certain configurations, compared to a simplified treatment using a constant index. We predict in particular a geomagnetic Cherenkov radiation, which provides strong signals at high frequencies (GHz), for certain geometries together with "normal radiation" from the shower maximum, leading to a double peak structure in the frequency spectrum. We also provide some information about the numerical procedures referred to as EVA 1.0.

  10. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  11. Vagus Nerve Stimulation

    MedlinePlus

    ... before you have any medical tests, such as magnetic resonance imaging (MRI), which might interfere with your ... org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation ...

  12. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John [Berkeley, CA; McDermott, Robert [Louisville, CO; Pines, Alexander [Berkeley, CA; Trabesinger, Andreas Heinz [CH-8006 Zurich, CH

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  13. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  14. Squid detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John [Berkeley, CA; Pines, Alexander [Berkeley, CA; McDermott, Robert F [Monona, WI; Trabesinger, Andreas H [London, GB

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  15. SQUID detected NMR and MRI at ultralow fields

    DOEpatents

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  16. Core/coil assembly for use in superconducting magnets and method for assembling the same

    DOEpatents

    Kassner, David A.

    1979-01-01

    A core/coil assembly for use in a superconducting magnet of the focusing or bending type used in syncronous particle accelerators comprising a coil assembly contained within an axial bore of the stacked, washer type, carbon steel laminations which comprise the magnet core assembly, and forming an interference fit with said laminations at the operating temperature of said magnet. Also a method for making such core/coil assemblies comprising the steps of cooling the coil assembly to cryogenic temperatures and drawing it rapidly upwards into the bore of said stacked laminations.

  17. The effects of nuclear magnetic resonance on patients with cardiac pacemakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlicek, W.; Geisinger, M.; Castle, L.

    1983-04-01

    The effect of nuclear magnetic resonance (NMR) imaging on six representative cardiac pacemakers was studied. The results indicate that the threshold for initiating the asynchronous mode of a pacemaker is 17 gauss. Radiofrequency levels are present in an NMR unit and may confuse or possibly inhibit demand pacemakers, although sensing circuitry is normally provided with electromagnetic interference discrimination. Time-varying magnetic fields can generate pulse amplitudes and frequencies to mimic cardiac activity. A serious limitation in the possibility of imaging a patient with a pacemaker would be the alteration of normal pulsing parameters due to time-varying magnetic fields.

  18. Electro-magnetic physics studies at RHIC: Neutral pion production, direct photon HBT, photon elliptic flow in gold-gold collisions at sqrt(s_NN) = 200 GeV and the Muon Telescope Detector simulation

    NASA Astrophysics Data System (ADS)

    Lin, Guoji

    Electro-magnetic (E&M) probes such as direct photons and muons (mu) are important tools to study the properties of the extremely hot and dense matter created in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC). In this thesis, several topics of E&M physics will be addressed, including neutral pion (pi0) production, direct photon HBT, and photon elliptic flow (v2) in Au+Au collisions at sNN = 200 GeV. A discussion on the simulation study of the new Muon Telescope Detector (MTD) will also be presented. The pi0 production is a fundamental measurement of hadron production and prerequisite for the background study of direct photons. Neutral pions are reconstructed using the photons detected by the STAR Barrel Electro-magnetic Calorimeter (BEMC) and the Time Projection Chamber (TPC). Spectra of pi 0 are measured at transverse momentum 1 < pT < 12 GeV/c near mid-rapidity (0 < eta < 0.8) in 200 GeV Au+Au collisions. The spectra and nuclear modification factors RCP and RAA are compared to earlier pi+/- and pi0 results. Direct photon Hanbury-Brown and Twiss (HBT) correlations can reveal information of the system size throughout the whole collision. A first attempt of direct photon HBT study at RHIC in 200 GeV Au+Au collisions is done using photons detected by the STAR BEMC and TPC. All unknown correlation at small Qinv is observed, whose magnitude is much larger than the expected HBT signal, and possible causes of the correlation will be discussed. Direct photon elliptic flow (v2) at intermediate to high pT is sensitive to the source of direct photon production. Results of inclusive photon v2 in 200 GeV Au+Au collisions are presented. The v2 of pi0 decay photons is calculated from the previously published pi results. The comparison between inclusive and decay photon v 2 indicates that direct photon v2 is small. A new large-area Muon Telescope Detector at mid-rapidity at RHIC is proposed and under investigation, using the Long-strip Multi-Gap Resistive Plate Chamber (Long-MRPC). Simulations indicate that the MTD can effectively identify mu and reject hadron backgrounds, and it can serve as a mu trigger. A beam test result of the Long-MRPC at Fermi National Accelerator Laboratory (FNAL) is also discussed.

  19. Nano Superconducting Quantum Interference device: A powerful tool for nanoscale investigations

    NASA Astrophysics Data System (ADS)

    Granata, Carmine; Vettoliere, Antonio

    2016-02-01

    The magnetic sensing at nanoscale level is a promising and interesting research topic of nanoscience. Indeed, magnetic imaging is a powerful tool for probing biological, chemical and physical systems. The study of small spin cluster, like magnetic molecules and nanoparticles, single electron, cold atom clouds, is one of the most stimulating challenges of applied and basic research of the next years. In particular, the magnetic nanoparticle investigation plays a fundamental role for the modern material science and its relative technological applications like ferrofluids, magnetic refrigeration and biomedical applications, including drug delivery, hyper-thermia cancer treatment and magnetic resonance imaging contrast-agent. Actually, one of the most ambitious goals of the high sensitivity magnetometry is the detection of elementary magnetic moment or spin. In this framework, several efforts have been devoted to the development of a high sensitivity magnetic nanosensor pushing sensing capability to the individual spin level. Among the different magnetic sensors, Superconducting QUantum Interference Devices (SQUIDs) exhibit an ultra high sensitivity and are widely employed in numerous applications. Basically, a SQUID consists of a superconducting ring (sensitive area) interrupted by two Josephson junctions. In the recent years, it has been proved that the magnetic response of nano-objects can be effectively measured by using a SQUID with a very small sensitive area (nanoSQUID). In fact, the sensor noise, expressed in terms of the elementary magnetic moment (spin or Bohr magneton), is linearly dependent on the SQUID loop side length. For this reason, SQUIDs have been progressively miniaturized in order to improve the sensitivity up to few spin per unit of bandwidth. With respect to other techniques, nanoSQUIDs offer the advantage of direct measurement of magnetization changes in small spin systems. In this review, we focus on nanoSQUIDs and its applications. In particular, we will discuss the motivations, the theoretical aspects, the fabrication techniques, the different nanoSQUIDs and the relative nanoscale applications.

  20. Modules and methods for all photonic computing

    DOEpatents

    Schultz, David R.; Ma, Chao Hung

    2001-01-01

    A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.

  1. [An overview of the history of electro-vectorcardiography. Tribute to the memory of the unforgettable Dr. Gustavo A. Medrano Castro].

    PubMed

    de Micheli Serra, Alfredo; Iturralde Torres, Pedro

    2014-01-01

    The history of the investigations about of the so-called irritability of animal tissues showed by English physician Francis Glisson in the 17th century, is summarized. During the 18th century, reliable studies on the bioelectric properties of these tissues began, due to the Swiss scientist Albrecht von Haller and continuated by the Italian naturalist Felice Fontana. In the second half of this century, multiple controversies of the partisans of the animal electricity against the partisans of the contact electricity took place. The Danish scientist Oersted in 1820 proved the close relation of magnetism to electricity, which led to construction of electrometers. These instruments allowed to register and measure record of the electric current. On this way, at middle 21st century, the true animal electricity was identified as the injury current. Later it was possible to record the electric current, risen in the myocardium, out the thorax first by means of the Lippmann' capillary electrometer and later thanks to the Einthoven's string galvanometer at the beginning of the 20th century. So the modern electro-vectorcardiography took off, due to English Thomas Lewis, the North-American Frank N. Wilson and the Mexican Demetrio Sodi Pallares. The last one allowed to rationalize the electro-vectorcardiographic exploration on experimental bases. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  2. Age-related changes in overcoming proactive interference in associative memory: The role of PFC-mediated executive control processes at retrieval.

    PubMed

    Dulas, Michael R; Duarte, Audrey

    2016-05-15

    Behavioral evidence has shown age-related impairments in overcoming proactive interference in memory, but it is unclear what underlies this deficit. Imaging studies in the young suggest overcoming interference may require several executive control processes supported by the ventrolateral prefrontal cortex (VLPFC) and dorsolateral PFC (DLPFC). The present functional magnetic resonance imaging (fMRI) study investigated whether age-related changes in dissociable executive control processes underlie deficits in overcoming proactive interference in associative memory during retrieval. Participants were tasked with remembering which associate (face or scene) objects were paired with most recently during study, under conditions of high or low proactive interference. Behavioral results demonstrated that, as interference increased, memory performance decreased similarly across groups, with slight associative memory deficits in older adults. Imaging results demonstrated that, across groups, left mid-VLPFC showed increasing activity with increasing interference, though activity did not distinguish correct from incorrect associative memory responses, suggesting this region may not directly serve in successful resolution of proactive interference, per se. Under conditions of high interference, older adults showed reduced associative memory accuracy effects in the DLPFC and anterior PFC. These results suggest that age-related PFC dysfunction may not be ubiquitous. Executive processes supported by ventral regions that detect mnemonic interference may be less affected than processes supported by dorsal and anterior regions that directly resolve interference. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Novel Quantum States with Exotic Spin Properties - Unconventional Generalization of Magnetism

    DTIC Science & Technology

    2011-12-30

    including journal references, in the following categories: PaperReceived Wei-Cheng Lee, D. P. Arovas, Congjun Wu. Quasiparticle interference in the...Zhang. Quasiparticle interference on the surface of the topological insulator Bi2Te3, Physical Review B, (12 2009): . doi: 2010/01/29 14:52:09 7 W... quasiparticle excitations. A successful observation of such mode will be a demonstration of the completion between s± and dx2−y2 pairings. 4.2

  4. Static magnetic Faraday rotation spectroscopy combined with a differential scheme for OH detection

    NASA Astrophysics Data System (ADS)

    Zhao, Weixiong; Deng, Lunhua; Qian, Xiaodong; Fang, Bo; Gai, Yanbo; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    The hydroxyl (OH) radical plays a critical role in atmospheric chemistry due to its high reactivity with volatile organic compounds (VOCs) and other trace gaseous species. Because of its very short life time and very low concentration in the atmosphere, interference-free high sensitivity in-situ OH monitoring by laser spectroscopy represents a real challenge. Faraday rotation spectroscopy (FRS) relies on the particular magneto-optic effect observed for paramagnetic species, which makes it capable of enhancing the detection sensitivity and mitigation of spectral interferences from diamagnetic species in the atmosphere. When an AC magnetic field is used, the Zeeman splitting of the molecular absorption line (and thus the magnetic circular birefringence) is modulated. This provides an 'internal modulation' of the sample, which permits to suppress the external noise like interference fringes. An alternative FRS detection scheme is to use a static magnetic field (DC-field) associated with laser wavelength modulation to effectively modulate the Zeeman splitting of the absorption lines. In the DC field case, wavelength modulation of the laser frequency can provide excellent performance compared to most of the sensing systems based on direct absorption and wavelength modulation spectroscopy. The dimension of the DC solenoid is not limited by the resonant frequency of the RLC circuit, which makes large dimension solenoid coil achievable and the absorption base length could be further increased. By employing a combination of the environmental photochemical reactor or smog chamber with multipass absorption cell, one can lower the minimum detection limit for high accuracy atmospheric chemistry studies. In this paper, we report on the development of a DC field based FRS in conjunction with a balanced detection scheme for OH radical detection at 2.8 μm and the construction of OH chemistry research platform which combined a large dimension superconducting magnetic coil with the multipass cell and photochemical reactor chamber for real time in-situ measurement of OH radical concentration in the chamber.

  5. Spin-dependent quantum transport in nanoscaled geometries

    NASA Astrophysics Data System (ADS)

    Heremans, Jean J.

    2011-10-01

    We discuss experiments where the spin degree of freedom leads to quantum interference phenomena in the solid-state. Under spin-orbit interactions (SOI), spin rotation modifies weak-localization to weak anti-localization (WAL). WAL's sensitivity to spin- and phase coherence leads to its use in determining the spin coherence lengths Ls in materials, of importance moreover in spintronics. Using WAL we measure the dependence of Ls on the wire width w in narrow nanolithographic ballistic InSb wires, ballistic InAs wires, and diffusive Bi wires with surface states with Rashba-like SOI. In all three systems we find that Ls increases with decreasing w. While theory predicts the increase for diffusive wires with linear (Rashba) SOI, we experimentally conclude that the increase in Ls under dimensional confinement may be more universal, with consequences for various applications. Further, in mesoscopic ring geometries on an InAs/AlGaSb 2D electron system (2DES) we observe both Aharonov-Bohm oscillations due to spatial quantum interference, and Altshuler-Aronov-Spivak oscillations due to time-reversed paths. A transport formalism describing quantum coherent networks including ballistic transport and SOI allows a comparison of spin- and phase coherence lengths extracted for such spatial- and temporal-loop quantum interference phenomena. We further applied WAL to study the magnetic interactions between a 2DES at the surface of InAs and local magnetic moments on the surface from rare earth (RE) ions (Gd3+, Ho3+, and Sm3+). The magnetic spin-flip rate carries information about magnetic interactions. Results indicate that the heavy RE ions increase the SOI scattering rate and the spin-flip rate, the latter indicating magnetic interactions. Moreover Ho3+ on InAs yields a spin-flip rate with an unusual power 1/2 temperature dependence, possibly characteristic of a Kondo system. We acknowledge funding from DOE (DE-FG02-08ER46532).

  6. Cooling Stability Test of MgB2 Wire Immersed in Liquid Hydrogen under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Hikawa, Kyosuke; Shiotsu, Masahiro; Tatsumoto, Hideki; Naruo, Yoshihiro; Kobayashi, Hiroaki; Inagaki, Yoshifumi

    2014-05-01

    Liquid hydrogen (LH2), which has large latent heat, low viscosity coefficient, is expected to be a candidate for a cryogen for superconducting wires, not only MgB2 but also other HTC superconductors. LH2 cooled superconducting wires are expected to have excellent electro-magnetic characteristics, which is necessary to be clear for cooling stability design of LH2 cooled superconducting device, however, due to handling difficulties of LH2, there are only few papers on the properties of LH2 cooled superconductors, especially under external magnetic field. We designed and made an experimental setup which can energize superconducting wires immersed in LH2 with the current of up to 500A under the condition of external magnetic field up to 7 T and pressure up to 1.5 MPa. In order to confirm experimental method and safety operation of the setup, over current tests were carried out using MgB2 superconducting wires under various external magnetic field conditions. Critical current of the test wire at the temperature 21, 24, 27, 29 K under external magnetic fields up to 1.2 T was successfully measured. The resistance of the wire also was measured, while the transport current exceeded the critical current of the wire.

  7. MRI of the Breast

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  8. Advanced experimental techniques for transonic wind tunnels - Final lecture

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    A philosophy of experimental techniques is presented, suggesting that in order to be successful, one should like what one does, have the right tools, stick to the job, avoid diversions, work hard, interact with people, be informed, keep it simple, be self sufficient, and strive for perfection. Sources of information, such as bibliographies, newsletters, technical reports, and technical contacts and meetings are recommended. It is pointed out that adaptive-wall test sections eliminate or reduce wall interference effects, and magnetic suspension and balance systems eliminate support-interference effects, while the problem of flow quality remains with all wind tunnels. It is predicted that in the future it will be possible to obtain wind tunnel results at the proper Reynolds number, and the effects of flow unsteadiness, wall interference, and support interference will be eliminated or greatly reduced.

  9. Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhou, Ming-Ti; Jing, Bo; Wang, Xu-Jie; Yang, Sheng-Jun; Jiang, Xiao; Mølmer, Klaus; Bao, Xiao-Hui; Pan, Jian-Wei

    2016-10-01

    We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

  10. Electro-optic and acousto-optic scanning and deflection

    NASA Astrophysics Data System (ADS)

    Gottlieb, M.; Ireland, C. L. M.; Ley, J. M.

    This book attempts to cover sufficient electro- and acousto-optic theory for the reader to understand and appreciate the design and application of solid state optical deflectors. It is also hoped that for the more experienced engineer the book will serve as a useful reference book covering the most important work in this field of engineering. The theory of the electro-optic effect is considered along with the properties and selection of electro-optic materials, the principles of electro-optic deflectors, electro-optic deflector designs, and applications for electro-optic deflectors. Attention is given to EM wave propagation in a crystal, the linear electro-optic effect, the quadratic electro-optic effect in crystals and in liquids, electro-optic ceramics in the (Pb,La)(Zr,Ti)O3 system, and digital and analog light deflectors. Aspects related to acousto-optic deflectors are discussed, taking into account acousto-optic interactions, materials for acousto-optic scanning, acoustic techniques, scanning systems, and acousto-optic light diffraction in thin films.

  11. MRI of the Musculoskeletal System

    MedlinePlus

    ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  12. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  13. Swarm Optimization-Based Magnetometer Calibration for Personal Handheld Devices

    PubMed Central

    Ali, Abdelrahman; Siddharth, Siddharth; Syed, Zainab; El-Sheimy, Naser

    2012-01-01

    Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a processor that generates position and orientation solutions by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are usually corrupted by several errors, including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO)-based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometers. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. Furthermore, the proposed algorithm can help in the development of Pedestrian Navigation Devices (PNDs) when combined with inertial sensors and GPS/Wi-Fi for indoor navigation and Location Based Services (LBS) applications.

  14. Mesoporous silica (MCM-41)-Fe2O3 as a novel magnetic nanosensor for determination of trace amounts of amino acids.

    PubMed

    Hasanzadeh, Mohammad; Shadjou, Nasrin; Omidinia, Eskandar

    2013-08-01

    Magnetic (Fe2O3) mobile crystalline material-41 (MCM-41) was prepared and characterized using transmission electron microscopy (TEM) and nitrogen adsorption-desorption techniques. Due to the large surface area (1213 m(2)g(-1)) and remarkable electrocatalytic properties of MCM-41-Fe2O3, the MCM-41-Fe2O3 modified glassy carbon electrode (MCM-41-Fe2O3/GCE) exhibits potent electrocatalytic activity toward the electro-oxidation of amino acids. MCM-41-Fe2O3/GCE brings new capabilities for electrochemical sensing by combining the advantages of Fe2O3 magnetic nanoparticles and MCM-41 with very large surface area. Cyclic voltammetry, hydrodynamic amperometry and flow injection analysis used to determination of amino acids at higher concentration range. Fast response time, excellent catalytic activity, and ease of preparation are the advantages of the proposed amino acid sensor. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Rostro-caudal and dorso-ventral gradients in medial and lateral prefrontal cortex during cognitive control of affective and cognitive interference.

    PubMed

    Rahm, Christoffer; Liberg, Benny; Wiberg-Kristoffersen, Maria; Aspelin, Peter; Msghina, Mussie

    2013-04-01

    Characterizing the anatomical substrates of major brain functions such as cognition and emotion is of utmost importance to the ongoing efforts of understanding the nature of psychiatric ailments and their potential treatment. The aim of our study was to investigate how the brain handles affective and cognitive interferences on cognitive processes. Functional magnetic resonance imaging investigation was performed on healthy individuals, comparing the brain oxygenation level dependent activation patterns during affective and cognitive counting Stroop tasks. The affective Stroop task activated rostral parts of medial prefrontal cortex (PFC) and rostral and ventral parts of lateral PFC, while cognitive Stroop activated caudal parts of medial PFC and caudal and dorsal parts of lateral PFC. Our findings suggest that the brain may handle affective and cognitive interference on cognitive processes differentially, with affective interference preferentially activating rostral and ventral PFC networks and cognitive interference activating caudal and dorsal PFC networks. © 2013 The Authors. Scandinavian Journal of Psychology © 2013 The Scandinavian Psychological Associations.

  16. Mechanisms of Working Memory Disruption by External Interference

    PubMed Central

    Rubens, Michael T.; Gazzaley, Adam

    2010-01-01

    The negative impact of external interference on working memory (WM) performance is well documented; yet, the mechanisms underlying this disruption are not sufficiently understood. In this study, electroencephalogram and functional magnetic resonance imaging (fMRI) data were recorded in separate experiments that each introduced different types of visual interference during a period of WM maintenance: distraction (irrelevant stimuli) and interruption (stimuli that required attention). The data converged to reveal that regardless of the type of interference, the magnitude of processing interfering stimuli in the visual cortex (as rapidly as 100 ms) predicted subsequent WM recognition accuracy for stored items. fMRI connectivity analyses suggested that in the presence of distraction, encoded items were maintained throughout the delay period via connectivity between the middle frontal gyrus and visual association cortex, whereas memoranda were not maintained when subjects were interrupted but rather reactivated in the postinterruption period. These results elucidate the mechanisms of external interference on WM performance and highlight similarities and differences of distraction and multitasking. PMID:19648173

  17. Optical fiber F-P magnetic field sensor based on magnetostrictive effect of magnetic fluid

    NASA Astrophysics Data System (ADS)

    Shi, Fuquan; Luo, Yan; Che, Jiajia; Ren, Zhijun; peng, Baojin

    2018-07-01

    magnetic field sensor of air-gap Fabry-Perot fiber interferometersis proposed based on magnetostrictive effect. The sensor is consisted of single-model fiber (SMF), air-gap, no-core fiber (NCF) and magnetic fluid. Those are sealed in the capillary, SMF and NCF are connect with air chamber and magnetic fluid column. With the presence of an external magnetic field, air chamber cavity length changes because of the magneto-volume variation of magnetic fluids. This situation causes a change in the optical path difference. Detection of the drift of interference spectrum leads to the detection of the change in magnetic field. When the magnetic field is parallel to the direction in which the capillary is placed, the sensitivity is 0.2347 nm/mT; when the magnetic fluid is perpendicular to the direction in which the capillary is placed, the sensitivity is 0.325 nm/http://mT.%20In.

  18. Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes.

    PubMed

    Rahman, Mohammed M; Gruner, George; Al-Ghamdi, Mohammed Saad; Daous, Muhammed A; Khan, Sher Bahadar; Asiri, Abdullah M

    2013-03-28

    Semiconductor doped nanostructure materials have attained considerable attention owing to their electronic, opto-electronic, para-magnetic, photo-catalysis, electro-chemical, mechanical behaviors and their potential applications in different research areas. Doped nanomaterials might be a promising owing to their high-specific surface-area, low-resistances, high-catalytic activity, attractive electro-chemical and optical properties. Nanomaterials are also scientifically significant transition metal-doped nanostructure materials owing to their extraordinary mechanical, optical, electrical, electronic, thermal, and magnetic characteristics. Recently, it has gained significant interest in manganese oxide doped-semiconductor materials in order to develop their physico-chemical behaviors and extend their efficient applications. It has not only investigated the basic of magnetism, but also has huge potential in scientific features such as magnetic materials, bio- & chemi-sensors, photo-catalysts, and absorbent nanomaterials. The chemical sensor also displays the higher-sensitivity, reproducibility, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2 = 0.977) over the 0.1 nM to 50.0 μM 4-nitrophenol concentration ranges. The sensitivity and detection limit is ~4.6667 μA cm-2 μM-1 and ~0.83 ± 0.2 nM (at a Signal-to-Noise-Ratio, SNR of 3) respectively. To best of our knowledge, this is the first report for detection of 4-nitrophenol chemical with doped Mn2O3-ZnO NPs using easy and reliable I-V technique in short response time. As for the doped nanostructures, NPs are introduced a route to a new generation of toxic chemo-sensors, but a premeditate effort has to be applied for doped Mn2O3-ZnO NPs to be taken comprehensively for large-scale applications, and to achieve higher-potential density with accessible to individual chemo-sensors. In this report, it is also discussed the prospective utilization of Mn2O3-ZnO NPs on the basis of carcinogenic chemical sensing, which could also be applied for the detection of hazardous chemicals in ecological, environmental, and health care fields.

  19. Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes

    PubMed Central

    2013-01-01

    Background Semiconductor doped nanostructure materials have attained considerable attention owing to their electronic, opto-electronic, para-magnetic, photo-catalysis, electro-chemical, mechanical behaviors and their potential applications in different research areas. Doped nanomaterials might be a promising owing to their high-specific surface-area, low-resistances, high-catalytic activity, attractive electro-chemical and optical properties. Nanomaterials are also scientifically significant transition metal-doped nanostructure materials owing to their extraordinary mechanical, optical, electrical, electronic, thermal, and magnetic characteristics. Recently, it has gained significant interest in manganese oxide doped-semiconductor materials in order to develop their physico-chemical behaviors and extend their efficient applications. It has not only investigated the basic of magnetism, but also has huge potential in scientific features such as magnetic materials, bio- & chemi-sensors, photo-catalysts, and absorbent nanomaterials. Results The chemical sensor also displays the higher-sensitivity, reproducibility, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2 = 0.977) over the 0.1 nM to 50.0 μM 4-nitrophenol concentration ranges. The sensitivity and detection limit is ~4.6667 μA cm-2 μM-1 and ~0.83 ± 0.2 nM (at a Signal-to-Noise-Ratio, SNR of 3) respectively. To best of our knowledge, this is the first report for detection of 4-nitrophenol chemical with doped Mn2O3-ZnO NPs using easy and reliable I-V technique in short response time. Conclusions As for the doped nanostructures, NPs are introduced a route to a new generation of toxic chemo-sensors, but a premeditate effort has to be applied for doped Mn2O3-ZnO NPs to be taken comprehensively for large-scale applications, and to achieve higher-potential density with accessible to individual chemo-sensors. In this report, it is also discussed the prospective utilization of Mn2O3-ZnO NPs on the basis of carcinogenic chemical sensing, which could also be applied for the detection of hazardous chemicals in ecological, environmental, and health care fields. PMID:23537000

  20. Full-duplex optical communication system

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

Top