Sample records for electro-optic diffractive lens

  1. Electro-Optic Diffraction Grating Tuned Laser.

    DTIC Science & Technology

    The patent concerns an electro - optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro - optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating. An optional angle multiplier may be used between the electro - optic diffraction grating and the reflective grating.

  2. Polycrystalline PLZT/ITO Ceramic Electro-Optic Phase Gratings: Electro- Optically Reconfigurable Diffractive Devices for Free-Space and In-Wafer Interconnects

    DTIC Science & Technology

    1994-09-01

    free-space and waveguide interconnects is investigated through the fabrication, testing and modeling of polycrystalline PLZT/ITO ceramic electro - optic phase...only gratings. PLZT Diffraction grating, Electro - optic diffraction grating, Optical switching, Optical interconnects, Reconfigurable interconnect

  3. Wafer-level fabrication of arrays of glass lens doublets

    NASA Astrophysics Data System (ADS)

    Passilly, Nicolas; Perrin, Stéphane; Albero, Jorge; Krauter, Johann; Gaiffe, Olivier; Gauthier-Manuel, Ludovic; Froehly, Luc; Lullin, Justine; Bargiel, Sylwester; Osten, Wolfgang; Gorecki, Christophe

    2016-04-01

    Systems for imaging require to employ high quality optical components in order to dispose of optical aberrations and thus reach sufficient resolution. However, well-known methods to get rid of optical aberrations, such as aspherical profiles or diffractive corrections are not easy to apply to micro-optics. In particular, some of these methods rely on polymers which cannot be associated when such lenses are to be used in integrated devices requiring high temperature process for their further assembly and separation. Among the different approaches, the most common is the lens splitting that consists in dividing the focusing power between two or more optical components. In here, we propose to take advantage of a wafer-level technique, devoted to the generation of glass lenses, which involves thermal reflow in silicon cavities to generate lens doublets. After the convex lens sides are generated, grinding and polishing of both stack sides allow, on the first hand, to form the planar lens backside and, on the other hand, to open the silicon cavity. Nevertheless, silicon frames are then kept and thinned down to form well-controlled and auto-aligned spacers between the lenses. Subsequent accurate vertical assembly of the glass lens arrays is performed by anodic bonding. The latter ensures a high level of alignment both laterally and axially since no additional material is required. Thanks to polishing, the generated lens doublets are then as thin as several hundreds of microns and compatible with micro-opto-electro-systems (MOEMS) technologies since they are only made of glass and silicon. The generated optical module is then robust and provide improved optical performances. Indeed, theoretically, two stacked lenses with similar features and spherical profiles can be almost diffraction limited whereas a single lens characterized by the same numerical aperture than the doublet presents five times higher wavefront error. To demonstrate such assumption, we fabricated glass lens doublets and compared them to single lenses of equivalent focusing power. For similar illumination, the optical aberrations are significantly reduced.

  4. Electro-optically actuated liquid-lens zoom

    NASA Astrophysics Data System (ADS)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  5. Electro-Optic Modulator.

    DTIC Science & Technology

    An electro - optic modulator is used to modulate coherent light beams by the application of an electric potential. It combines a Fabry-Perot etalon and...a diffraction grating in a single unit. An etalon is constructed with an electro - optic material between reflecting surfaces. A voltage applied...between alternate, spaced-apart electrodes of a metal grid attached to one reflecting surface induces a diffraction grating in the electro optic material. Light entering the etalon is diffracted, reflected and efficiently coupled out.

  6. ELECTRO-OPTIC PROJECTOR STUDY.

    DTIC Science & Technology

    The report describes research and development tasks undertaken in the development of a Pockels Effect electro - optic light valve. Two reflex...lens electron optics are used in different configurations. The electro - optic crystal utilized was KD2PO4 and when operated in a reflex mode provides

  7. Broadband polarization gratings for efficient liquid crystal display, beam steering, spectropolarimetry, and Fresnel zone plate

    NASA Astrophysics Data System (ADS)

    Oh, Chulwoo

    Efficient control of light polarization is essential in any optical systems where polarized light is used or polarization information is of interest. In addition to intensity and wavelength, polarization of light gives a very useful/powerful tool to control light itself and observe many interesting optical phenomena in nature and applications. Most available light sources, however, produce unpolarized or weakly polarized light except some of fancy lasers. Therefore, efficient polarization control/generation is important to improve/advance existing or emerging technologies utilizing polarized light. It is also true that polarization can be used to control another properties of light (i.e., intensity, direction). We have introduced and demonstrated achromatic polarization gratings (PGs) as broadband polarizing beam splitters performing ˜100% theoretical efficiency over a wide spectral range. The novel design of achromatic PGs and their effective fabrication method will be presented. Experimental demonstration will show that practically 100% efficient diffraction is achieved by achromatic PGs embodied as thin liquid crystal (LC) layers patterned by holographic photoalignment techniques. Non-ideal diffraction behaviors of the PGs also have been investigated beyond the paraxial limitations via numerical analysis based on the finite-difference time-domain method. We, first, study the effect of the grating regime for this special type of anisotropic diffraction gratings with the minimum assumptions. Optical properties of the PGs at oblique incidence angles and in a finite pixel are numerically predicted and confirmed by experiments. Design and fabrication of small-period PGs are discussed to show how to achieve high diffraction efficiency and large diffraction angles at the same time. Three key innovative technologies utilizing the unique diffraction properties of the PGs have been introduced and experimentally demonstrated. The first application for light-efficient LC displays is the polymer-PG display, which allows an immediate brightness improvement (up to a factor of two) of conventional LC displays by replacing absorbing polarizers with achromatic PGs as thin, transmissive polymer films. We demonstrate the first proof-of-concept prototype projector based on the polymer-PG display and we also discuss optical design considerations and challenges toward a viable solution for our ultrabright pico-projector applications of the polymer-PG display. Second, two novel beam steering concepts based on the PG diffraction have been proposed. The polarization-sensitive diffraction of the PGs provides very attractive beam steering operations with ultra-high efficiency over wide steering angles by all-thin-plate electro-optical systems. We developed a non-mechanical, wide-angle beam steering system using stacked PGs and LC waveplates, and we also demonstrated a continuous beam steering using two rotating PGs, named the Risley grating as a thin-plate version of the Risley prism. The third PG application is in imaging and non-imaging spectropolarimetry. We have shown a snapshot, hyperspectral, full-Stokes polarimeter using inline PGs and quarter-waveplates. The use of PGs as a new polarimetric element for astronomical instruments in the mid-wave IR wavelengths also has been proposed to overcome current limitations of existing IR polarimeters. In the last part of this Dissertation, we introduce a polarization-type Fresnel zone plates (P-FZPs), comprising of spatially distributed linear birefringence or concentric PG (CPG) patterns. Effective fabrication methods of P-FZPs have been developed using polarization holography based on the Michelson interferometer and photoalignment of LC materials. We demonstrated high-quality P-FZPs, which exhibit ideal Fresnel-type lens effects, formed as both LC polymer films and electro-optical LC devices. We also discuss the polarization-selective lens properties of the P-FZPs as well as their electro-optical switching. In summary, we have explored the fundamental diffraction behavior of the polarization gratings and their applications in advanced optics and photonics. The achromatic designs of the PGs allow their broadband diffraction operation over a wide range of spectrum, which increases the applicability of the PGs with a great extent. Three novel technologies that directly benefit from the distinct diffraction properties of the PGs have been developed. In addition, a new diffractive lens element operating solely on light polarization has been introduced and experimentally demonstrated. We conclude this Dissertation with our suggestions of a number of potential innovations and advances in technologies that can be enabled by polarization gratings and related technologies.

  8. Design of tracking and detecting lens system by diffractive optical method

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei

    2016-10-01

    Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.

  9. History and development of the apodized diffractive intraocular lens.

    PubMed

    Davison, James A; Simpson, Michael J

    2006-05-01

    The ReSTOR intraocular lens presents a unique apodized diffractive design within a refractive foldable acrylic optic, which makes an unprecedented level of mulifocal optical performance available. We describe the history and principles of diffractive optics used in the development of this refractive-diffractive IOL.

  10. Electro-optic and acousto-optic scanning and deflection

    NASA Astrophysics Data System (ADS)

    Gottlieb, M.; Ireland, C. L. M.; Ley, J. M.

    This book attempts to cover sufficient electro- and acousto-optic theory for the reader to understand and appreciate the design and application of solid state optical deflectors. It is also hoped that for the more experienced engineer the book will serve as a useful reference book covering the most important work in this field of engineering. The theory of the electro-optic effect is considered along with the properties and selection of electro-optic materials, the principles of electro-optic deflectors, electro-optic deflector designs, and applications for electro-optic deflectors. Attention is given to EM wave propagation in a crystal, the linear electro-optic effect, the quadratic electro-optic effect in crystals and in liquids, electro-optic ceramics in the (Pb,La)(Zr,Ti)O3 system, and digital and analog light deflectors. Aspects related to acousto-optic deflectors are discussed, taking into account acousto-optic interactions, materials for acousto-optic scanning, acoustic techniques, scanning systems, and acousto-optic light diffraction in thin films.

  11. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  12. Fine wavelength control in 1.3 μm Nd:YAG lasers by electro-optical crystal lens

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Zhang, Jing; Liu, Huilong; Xia, Jing; Fu, Xihong; Zhang, Anfeng

    2014-02-01

    A diode-pumped tunable and multi-wavelength continuous-wave Nd:YAG laser based on the 4F3/2-4I13/2 transition has been demonstrated for the first time. The combination of the glass plane positioned at the Brewster angle and the electro-optical crystal KH2PO4 (KDP) lens formed a Lyot filter in the cavity and compressed the available gain bandwidth. With an adjustable voltage applied to the KDP crystal lens, the laser wavelength could be tuned from 1333.8 to 1338.2 nm. Moreover, we can also realize cw dual-wavelength and triple-wavelength lasers with smaller wavelength separation by adjusting the free spectral range of the Lyot filter.

  13. Electro-Optic Effect in the PESO Acousto-Optic Modulator

    DTIC Science & Technology

    1994-11-09

    AD-A286 355 NAIC-ID(RS)T-0395-94 NATIONAL AIR INTELLIGENCE CENTER ELECTRO - OPTIC EFFECT IN THE PESO ACOUSTO-OPTIC MODULATOR by Tai Renzhong, Lu Futun...owing to coupling.betw;ee.elecuc grazing" and "acou- tic grating". Linear electro - optic effect in PESO modulator is helpful to the diffraction and...crystaO A-l/Am,ARjAb, anl / ar:.. thtta=30 and theta=900 . Along these two orientations. th;- electro - optic effect is restricted tcŽ the rn :-t m:,n e

  14. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  15. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  16. International Lens Design Conference, Monterey, CA, June 11-14, 1990, Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, G.N.

    1990-01-01

    The present conference on lens design encompasses physical and geometrical optics, diffractive optics, the optimization of optical design, software packages, ray tracing, the use of artificial intelligence, the achromatization of materials, zoom optics, microoptics and GRIN lenses, and IR lens design. Specific issues addressed include diffraction-performance calculations in lens design, the optimization of the optical transfer function, a rank-down method for automatic lens design, applications of quadric surfaces, the correction of aberrations by using HOEs in UV and visible imaging systems, and an all-refractive telescope for intersatellite communications. Also addressed are automation techniques for optics manufacturing, all-reflective phased-array imaging telescopes,more » the thermal aberration analysis of a Nd:YAG laser, the analysis of illumination systems, athermalized FLIR optics, and the design of array systems using shared symmetry.« less

  17. Diffractive optics for quasi-direct space-to-time pulse shaping.

    PubMed

    Mínguez-Vega, Gladys; Mendoza-Yero, Omel; Lancis, Jesús; Gisbert, Rafael; Andrés, Pedro

    2008-10-13

    The strong chromatic behavior associated with a conventional diffractive lens is fully exploited to propose a novel optical device for pulse shaping in the femtosecond regime. This device consists of two optical elements: a spatially patterned circularly symmetric mask and a kinoform diffractive lens, which are facing each other. The system performs a mapping between the spatial position of the masking function expressed in the squared radial coordinate and the temporal position in the output waveform. This space-to-time conversion occurs at the chromatic focus of the diffractive lens, and makes it possible to tailor the output central wavelength along the axial location of the output point. Inspection of the validity of our device is performed by means of computer simulations involving the generation of femtosecond optical packets.

  18. Reducing aberration effect of Fourier transform lens by modifying Fourier spectrum of diffractive optical element in beam shaping optical system.

    PubMed

    Zhang, Fang; Zhu, Jing; Song, Qiang; Yue, Weirui; Liu, Jingdan; Wang, Jian; Situ, Guohai; Huang, Huijie

    2015-10-20

    In general, Fourier transform lenses are considered as ideal in the design algorithms of diffractive optical elements (DOEs). However, the inherent aberrations of a real Fourier transform lens disturb the far field pattern. The difference between the generated pattern and the expected design will impact the system performance. Therefore, a method for modifying the Fourier spectrum of DOEs without introducing other optical elements to reduce the aberration effect of the Fourier transform lens is proposed. By applying this method, beam shaping performance is improved markedly for the optical system with a real Fourier transform lens. The experiments carried out with a commercial Fourier transform lens give evidence for this method. The method is capable of reducing the system complexity as well as improving its performance.

  19. 1-D ELECTRO-OPTIC BEAM STEERING DEVICE

    PubMed Central

    Wang, Wei-Chih; Tsui, Chi Leung

    2011-01-01

    In this paper, we present the design and fabrication of a 1D beam steering device based on planar electro-optic thermal-plastic prisms and a collimator lens array. With the elimination of moving parts, the proposed device is able to overcome the mechanical limitations of present scanning devices, such as fatigue and low operating frequency, while maintaining a small system footprint (~0.5mm×0.5mm). From experimental data, our prototype device is able to achieve a maximum deflection angle of 5.6° for a single stage prism design and 29.2° for a cascaded three prisms stage design. The lens array shows a 4µm collimated beam diameter. PMID:22199458

  20. LWIR hyperspectral imager based on a diffractive optics lens

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2009-05-01

    A diffractive optics lens based longwave infrared hyperspectral imager has been used to collect laboratory and outdoor field test data. The imager uses a specially designed diffractive optics Ge lens with a 320×256 HgCdTe focal plane array (FPA) cooled with a Sterling-cooler. The imager operates in 8-10.5 μm (long wave IR, LWIR) spectral region and an image cube with 50 to 200 bands can be acquired rapidly. Spectral images at different wavelengths are obtained by moving the lens along its optical axis. An f/2.38 diffractive lens is used with a focal length of 70 mm at 8 μm. The IFOV is 0.57 mrad which corresponds to an FOV of 10.48°. The spectral resolution of the imager is 0.034 μm at 9 μm. The pixel size is 40×40 μm2 in the FPA. In post processing of image cube data contributions due to wavelengths other than the focused one are removed and a correction to account for the change in magnification due to the motion of the lens is applied to each spectral image. A brief description of the imager, data collection and analysis to characterize the performance of the imager will be presented in this paper.

  1. Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.

    2017-05-01

    Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  2. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    NASA Astrophysics Data System (ADS)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.

  3. Single-crystal films of a combination of materials (co-crystal) involving DAST and IR-125 for electro-optic applications

    NASA Astrophysics Data System (ADS)

    Narayanan, A.; Titus, J.; Rajagopalan, H.; Vippa, P.; Thakur, M.

    2006-03-01

    Single-crystal film of DAST (4'-dimethylamino-N-methyl-4-stilbazolium tosylate) has been shown [1] to have exceptionally large electro-optic coefficients (r11 ˜ 770 pm/V at 633 nm). In this report, single crystal film of a combination of materials (co-crystal) involving DAST and a dye molecule IR-125 will be discussed. Modified shear method was used to prepare the co-crystal films. The film has been characterized using polarized optical microscopy, optical absorption spectroscopy and x-ray diffraction. The optical absorption spectrum has two major bands: one at about 350--600 nm corresponding to DAST and the other at about 600-900 nm corresponding to IR-125. The x-ray diffraction results show peaks involving the presence of DAST and IR-125 within the co-crystal film. Since the co-crystal has strong absorption at longer wavelengths it is expected to show higher electro-optic coefficients at longer wavelengths. Preliminary measurements at 1.55 μm indicate a high electro-optic coefficient of the co-crystal film. [1] Swamy, Kutty, Titus, Khatavkar, Thakur, Appl. Phys. Lett. 2004, 85, 4025; Kutty, Thakur, Appl. Phys. Lett. 2005, 87, 191111.

  4. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave

    PubMed Central

    Chen, Gang; Wu, Zhi-xiang; Yu, An-ping; Zhang, Zhi-hai; Wen, Zhong-quan; Zhang, Kun; Dai, Lu-ru; Jiang, Sen-lin; Li, Yu-yan; Chen, Li; Wang, Chang-tao; Luo, Xian-gang

    2016-01-01

    The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized light, but without experimental demonstrations, especially for sub-diffraction focusing. Super-oscillation is a promising approach for shaping sub-diffraction optical focusing. In this paper, a planar sub-diffraction diffractive lens is proposed, which has an ultra-long focal length of 600 λ and small numerical aperture of 0.64. A sub-diffraction hollow ring is experimentally created by shaping an azimuthally polarized wave. The full-width-at-half-maximum of the hollow ring is 0.61 λ, which is smaller than the lens diffraction limit 0.78 λ, and the observed largest sidelobe intensity is only 10% of the peak intensity. PMID:27876885

  5. Design and evaluation of a THz time domain imaging system using standard optical design software.

    PubMed

    Brückner, Claudia; Pradarutti, Boris; Müller, Ralf; Riehemann, Stefan; Notni, Gunther; Tünnermann, Andreas

    2008-09-20

    A terahertz (THz) time domain imaging system is analyzed and optimized with standard optical design software (ZEMAX). Special requirements to the illumination optics and imaging optics are presented. In the optimized system, off-axis parabolic mirrors and lenses are combined. The system has a numerical aperture of 0.4 and is diffraction limited for field points up to 4 mm and wavelengths down to 750 microm. ZEONEX is used as the lens material. Higher aspherical coefficients are used for correction of spherical aberration and reduction of lens thickness. The lenses were manufactured by ultraprecision machining. For optimization of the system, ray tracing and wave-optical methods were combined. We show how the ZEMAX Gaussian beam analysis tool can be used to evaluate illumination optics. The resolution of the THz system was tested with a wire and a slit target, line gratings of different period, and a Siemens star. The behavior of the temporal line spread function can be modeled with the polychromatic coherent line spread function feature in ZEMAX. The spectral and temporal resolutions of the line gratings are compared with the respective modulation transfer function of ZEMAX. For maximum resolution, the system has to be diffraction limited down to the smallest wavelength of the spectrum of the THz pulse. Then, the resolution on time domain analysis of the pulse maximum can be estimated with the spectral resolution of the center of gravity wavelength. The system resolution near the optical axis on time domain analysis of the pulse maximum is 1 line pair/mm with an intensity contrast of 0.22. The Siemens star is used for estimation of the resolution of the whole system. An eight channel electro-optic sampling system was used for detection. The resolution on time domain analysis of the pulse maximum of all eight channels could be determined with the Siemens star to be 0.7 line pairs/mm.

  6. Optical Imaging of Nonuniform Ferroelectricity and Strain at the Diffraction Limit

    PubMed Central

    Vlasin, Ondrej; Casals, Blai; Dix, Nico; Gutiérrez, Diego; Sánchez, Florencio; Herranz, Gervasi

    2015-01-01

    We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics –linked to ferroelectricity– as well as strain –arising from converse piezoelectric effects– have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing. PMID:26522345

  7. Airborne Systems Course Textbook. Electro-Optical Systems Test and Evaluation,

    DTIC Science & Technology

    1981-06-01

    by twice the angle between the reflecting faces. The porro - prism shown in Figure 2.2.3.1(c) is used to deflect the beam by 1800. Beam Retro-Reflection...Reflection of Electromagnetic Radiation at the Interface Between Two Media 2.13 2.2 Optics 2.15 2.2.1 The Lens 2.15 2.2.2 The Mirror 2.25 2.2.3 The Prism 2.30...2.5.2 The Optical Resonator 2.77 2.5.3 Laser Implementation 2.79 2.5.4 Laser Radiation Characteristics 2.81 2.6 Electro-Optical Sensors 2.83 2.6.1

  8. Electrowetting on polymer dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Fan, Shih-Kang; Chiu, Cheng-Pu; Lin, Jing-Wei

    2009-04-01

    Polymer dispersed liquid crystal (PDLC) is used as a dielectric layer in electrowetting. By applying voltage between a liquid droplet and the electrode underlying PDLC, electrowetting occurs at the liquid/PDLC interface accompanied with electro-optic responses of the reoriented LC droplets embedded in PDLC. Two basic experiments investigating the electrowetting by sessile water droplets and the electro-optic effects through squeezed water droplets were design and performed. The basic functions of a liquid lens and droplet manipulations, including transporting, splitting, and merging, were demonstrated.

  9. Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems.

    PubMed

    Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik

    2015-08-01

    This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.

  10. Military aviation: a contact lens review.

    PubMed

    Lattimore, M R

    1990-10-01

    The military aviation communities have benefitted from the development of advanced electro-optical avionics systems. One drawback that has emerged is an increasing system incompatibility with traditional spectacle visual corrections. An alternative solution to the refractive error correction problem that some services have been investigating is that of contact lens wear. Since this much-debated topic is currently of command interest, a general overview of contact lens issues is presented as a framework for future discussions.

  11. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications

    PubMed Central

    Li, Guoqiang; Mathine, David L.; Valley, Pouria; Äyräs, Pekka; Haddock, Joshua N.; Giridhar, M. S.; Williby, Gregory; Schwiegerling, Jim; Meredith, Gerald R.; Kippelen, Bernard; Honkanen, Seppo; Peyghambarian, Nasser

    2006-01-01

    Presbyopia is an age-related loss of accommodation of the human eye that manifests itself as inability to shift focus from distant to near objects. Assuming no refractive error, presbyopes have clear vision of distant objects; they require reading glasses for viewing near objects. Area-divided bifocal lenses are one example of a treatment for this problem. However, the field of view is limited in such eyeglasses, requiring the user to gaze down to accomplish near-vision tasks and in some cases causing dizziness and discomfort. Here, we report on previously undescribed switchable, flat, liquid-crystal diffractive lenses that can adaptively change their focusing power. The operation of these spectacle lenses is based on electrical control of the refractive index of a 5-μm-thick layer of nematic liquid crystal using a circular array of photolithographically defined transparent electrodes. It operates with high transmission, low voltage (<2 Vrms), fast response (<1 sec), diffraction efficiency > 90%, small aberrations, and a power-failure-safe configuration. These results represent significant advance in state-of-the-art liquid-crystal diffractive lenses for vision care and other applications. They have the potential of revolutionizing the field of presbyopia correction when combined with automatic adjustable focusing power. PMID:16597675

  12. Development of the multiwavelength monolithic integrated fiber optics terminal

    NASA Technical Reports Server (NTRS)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  13. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  14. Large aperture diffractive space telescope

    DOEpatents

    Hyde, Roderick A.

    2001-01-01

    A large (10's of meters) aperture space telescope including two separate spacecraft--an optical primary objective lens functioning as a magnifying glass and an optical secondary functioning as an eyepiece. The spacecraft are spaced up to several kilometers apart with the eyepiece directly behind the magnifying glass "aiming" at an intended target with their relative orientation determining the optical axis of the telescope and hence the targets being observed. The objective lens includes a very large-aperture, very-thin-membrane, diffractive lens, e.g., a Fresnel lens, which intercepts incoming light over its full aperture and focuses it towards the eyepiece. The eyepiece has a much smaller, meter-scale aperture and is designed to move along the focal surface of the objective lens, gathering up the incoming light and converting it to high quality images. The positions of the two space craft are controlled both to maintain a good optical focus and to point at desired targets which may be either earth bound or celestial.

  15. Electrowetting Lens Employing Hemispherical Cavity Formed by Hydrofluoric Acid, Nitric Acid, and Acetic Acid Etching of Silicon

    NASA Astrophysics Data System (ADS)

    Lee, June Kyoo; Choi, Ju Chan; Jang, Won Ick; Kim, Hak-Rin; Kong, Seong Ho

    2012-06-01

    We demonstrate the design of an electrowetting lens employing a high-aspect-ratio hemispherical lens cavity and its micro-electro-mechanical-system (MEMS) fabrication process in this study. Our preliminary simulation results showed that the physical and electrical durability of the lens can be improved by the mitigation of stresses on the insulator at the hemispherical cavity. High-aspect-ratio hemispherical cavities with various diameters and very smooth sidewall surfaces were uniformly fabricated on a silicon wafer by a sophisticated isotropic wet etching technique. Moreover, we experimentally investigated the optical properties of the MEMS-based electrowetting lens with the proposed cavity. Two immiscible liquids in the proposed lens cavity were electrostatically controlled with negligible optical distortion and low focal-length hysteresis due to the fully axis-symmetrical geometry and smooth sidewall of the cavity.

  16. Techniques for writing and reading data on an optical disk which include formation of holographic optical gratings in plural locations on the optical disk

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi (Inventor); Psaltis, Demetri (Inventor); Mok, Fai H. (Inventor); Zhou, Gan (Inventor)

    2005-01-01

    An optical memory for storing and/or reading data on an optical disk. The optical disk incorporates a material in which holographic gratings can be created, and subsequently detected, at plural locations within the disk by an electro-optical head. Creation and detection of holographic gratings with variable diffraction efficiency is possible with the electro-optical head. Multiple holographic gratings can also be created at each one of the plural locations via a beam of light which has a different wavelength or point of focus. These data elements can be read by the electro-optical head using a beam of light sequentially varied in wavelength or point of focus to correspond to the multiple holographic gratings to be recorded.

  17. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  18. Linearization of an annular image by using a diffractive optic

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1996-01-01

    The goal for this project is to develop the algorithms for fracturing the zones defined by the mapping transformation, and to actually produce the binary optic in an appropriate setup. In 1984 a side-viewing panoramic viewing system was patented, consisting of a single piece of glass with spherical surfaces which produces a 360 degree view of the region surrounding the lens which extends about 25 degrees in front of and 20 degrees behind the lens. The system not only produces images of good quality, it is also afocal, i.e., images stay in focus for objects located right next to the lens as well as those located far from the lens. The lens produced a panoramic view in an annular shaped image, and so the lens was called a PAL (panoramic annular lens). When applying traditional measurements to PAL images, it is found advantageous to linearize the annular image. This can easily be done with a computer and such a linearized image can be produced within about 40 seconds on current microcomputers. However, this process requires a frame-grabber and a computer, and is not real-time. Therefore, it was decided to try to perform this linearization optically by using a diffractive optic.

  19. A Metalens with a Near-Unity Numerical Aperture

    NASA Astrophysics Data System (ADS)

    Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M.; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A.; Kuznetsov, Arseniy I.

    2018-03-01

    The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high NA lenses in an ultra-flat fashion. However, so far, these have been limited to numerical apertures on the same order of traditional optical components, with experimentally reported values of NA <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction limited flat lens with a near-unity numerical aperture (NA>0.99) and sub-wavelength thickness (~{\\lambda}/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in sub-diffractive diamond nanocrystals. This work, based on diffractive elements able to efficiently bend light at angles as large as 82{\\deg}, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated to the standard, phase mapping approach.

  20. Current developments in optical engineering and diffraction phenomena; Proceedings of the Meeting, San Diego, CA, Aug. 21, 22, 1986

    NASA Astrophysics Data System (ADS)

    Fischer, Robert E.; Smith, Warren J.; Harvey, James

    1986-01-01

    Papers dealing with current materials for gradient-index optics, an intelligent data-base system for optical designers; tilted mirror systems; a null-lens design approach for centrally obscured components; the use of the vector aberration theory to optimize an unobscured optical system; multizone bifocal contact lens design; and the concentric meniscus element are presented. Topics discussed include optical manufacturing in the Far East; the optical performance of molded-glass lenses for optical memory applications; through-wafer optical interconnects for multiwafer wafer-scale integrated architecture; optical thin-flim monitoring using optical fibers; aerooptical testing; optical inspection; and a system analysis program for a 32K microcomputer. Consideration is given to various theories, algorithms, and applications of diffraction, a vector formulation of a ray-equivalent method for Gaussian beam propagation; Fourier optical analysis of aberrations in focused laser beams; holography and moire interferometry; and phase-conjugate optical correctors for diffraction-limited applications.

  1. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.

    PubMed

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N; Zawadzki, Robert J; Sarunic, Marinko V

    2015-08-24

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

  2. Diffraction analysis and evaluation of several focus- and track-error detection schemes for magneto-optical disk systems

    NASA Technical Reports Server (NTRS)

    Bernacki, Bruce E.; Mansuripur, M.

    1992-01-01

    A commonly used tracking method on pre-grooved magneto-optical (MO) media is the push-pull technique, and the astigmatic method is a popular focus-error detection approach. These two methods are analyzed using DIFFRACT, a general-purpose scalar diffraction modeling program, to observe the effects on the error signals due to focusing lens misalignment, Seidel aberrations, and optical crosstalk (feedthrough) between the focusing and tracking servos. Using the results of the astigmatic/push-pull system as a basis for comparison, a novel focus/track-error detection technique that utilizes a ring toric lens is evaluated as well as the obscuration method (focus error detection only).

  3. Electro-optic studies of novel organic materials and devices

    NASA Astrophysics Data System (ADS)

    Xu, Jianjun

    1997-11-01

    Specific single crystal organic materials have high potential for use in high speed optical signal processing and various other electro-optic applications. In this project some of the most important organic crystal materials were studied regarding their detailed electro- optic properties and potential device applications. In particular, the electro-optic properties of N-(4- Nitrophenyl)-L-Prolinol (NPP) and 4'-N,N- dimethylamino-4-methylstilbazolium tosylate (DAST) both of which have extremely large second order susceptibilites were studied. The orientation of the thin film crystal with respect to the substrate surface was determined using-X-ray diffraction. The principal axes of the single crystal thin film were determined by polarization transmission microscopy. The elements of the electro-optic coefficient tensor were measured by field induced birefringence measurements. Detailed measurements for NPP thin films with different orientations of the external electric field with respect to the charge transfer axis were carried out at a wavelength of 1064nm. The wavelength dependence of the electro-optic effect for DAST single crystal thin films was measured using a Ti:Sapphire laser. Several device geometries involving organic single crystal thin film materials were studied. A new method for the fabrication of channel waveguides for organic materials was initiated. Channel waveguides for NPP and ABP were obtained using this methods. Optical modulation due to the electro-optic effect based on the organic channel waveguide for NPP single crystal was demonstrated. The electro-optic modulation using NPP single crystals thin film in a Fabry-Perot cavity was measured. A device using a optical fiber half coupler and organic electro-optic thin film material was constructed, and it has potential applications in optical signal processing.

  4. Eyeglass: A Very Large Aperture Diffractive Space Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, R; Dixit, S; Weisberg, A

    2002-07-29

    Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by correctivemore » optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.« less

  5. [Hyperopic Laser-in-situ-Keratomileusis after trifocal intraocular lens implantation : Aberration-free femto-Laser-in-situ-Keratomileusis treatment after implantation of a diffractive, multifocal, toric intraocular lens-case analysis].

    PubMed

    Hemkeppler, E; Böhm, M; Kohnen, T

    2018-05-29

    A 52-year-old highly myopic female patient was implanted with a multifocal, diffractive, toric intraocular lens because of the wish to be independent of eyeglasses. Despite high-quality, extensive preoperative examinations, a hyperopic refractive error remained postoperatively, which led to the patient's dissatisfaction. This error was treated with Laser-in-situ-Keratomileusis (LASIK). After corneal LASIK treatment and implantation of a diffractive toric multifocal intraocular lens the patient showed a good postoperative visual result without optical phenomena.

  6. Optical Manipulation along Optical Axis with Polarization Sensitive Meta-lens.

    PubMed

    Markovich, Hen; Shishkin, Ivan; Hendler, Netta; Ginzburg, Pavel

    2018-06-27

    The ability to manipulate small objects with focused laser beams opens a broad spectrum of opportunities in fundamental and applied studies, where a precise control over mechanical path and stability is required. While conventional optical tweezers are based on bulky diffractive optical elements, developing compact integrable within a fluid cell trapping devices is highly demanded. Here, plasmonic polarization sensitive metasurface-based lens, embedded within a fluid, is demonstrated to provide several stable trapping centers along the optical axis. The position of a particle is controlled with the polarization of the incident light, interacting with plasmonic nanoscale patch antennas, organized within overlapping Fresnel zones of the lens. While standard diffractive optical elements face challenges to trap objects in lateral direction outside the depth of focus, bi-focal Fresnel meta-lens demonstrates the capability to manipulate a bead along 4 micrometers line. Additional fluorescent module, incorporated within the optical trapping setup, was implemented and enabled accurate mapping of optical potential via a particle tracking algorithm. Auxiliary micro- and nano- structures, integrated within fluidic devices, provide numerous opportunities to achieve flexible optomechanical manipulation, including, transport, trapping and sorting, which are highly demanded in lab-on-a-chip applications and many others.

  7. Diffractive optics for precision alignment of Euclid space telescope optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Asfour, Jean-Michel; Weidner, Frank; Bodendorf, Christof; Bode, Andreas; Poleshchuk, Alexander G.; Nasyrov, Ruslan K.; Grupp, Frank; Bender, Ralf

    2017-09-01

    We present a method for precise alignment of lens elements using specific Computer Generated Hologram (CGH) with an integrated Fizeau reference flat surface and a Fizeau interferometer. The method is used for aligning the so called Camera Lens Assembly for ESAs Euclid telescope. Each lens has a corresponding annular area on the diffractive optics, which is used to control the position of each lens. The lenses are subsequently positioned using individual annular rings of the CGH. The overall alignment accuracy is below 1 µm, the alignment sensitivity is in the range of 0.1 µm. The achieved alignment accuracy of the lenses relative to each other is mainly depending on the stability in time of the alignment tower. Error budgets when using computer generated holograms and physical limitations are explained. Calibration measurements of the alignment system and the typically reached alignment accuracies will be shown and discussed.

  8. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  9. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

    PubMed Central

    Bonora, Stefano; Jian, Yifan; Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.; Sarunic, Marinko V.

    2015-01-01

    Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images. PMID:26368169

  10. Fabrication of large diffractive optical elements in thick film on a concave lens surface.

    PubMed

    Xie, Yongjun; Lu, Zhenwu; Li, Fengyou

    2003-05-05

    We demonstrate experimentally the technique of fabricating large diffractive optical elements (DOEs) in thick film on a concave lens surface (mirrors) with precise alignment by using the strategy of double exposure. We adopt the method of double exposure to overcome the difficulty of processing thick photoresist on a large curved substrate. A uniform thick film with arbitrary thickness on a concave lens can be obtained with this technique. We fabricate a large concentric circular grating with a 10-ìm period on a concave lens surface in film with a thickness of 2.0 ìm after development. It is believed that this technique can also be used to fabricate larger DOEs in thicker film on the concave or convex lens surface with precise alignment. There are other potential applications of this technique, such as fabrication of micro-optoelectromechanical systems (MOEMS) or microelectromechanical systems (MEMS) and fabrication of microlens arrays on a large concave lens surface or convex lens surface with precise alignment.

  11. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.

    2015-01-01

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron-and focused-ion-beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits. (C)more » 2015 Optical Society of America« less

  12. Intraocular camera for retinal prostheses: Refractive and diffractive lens systems

    NASA Astrophysics Data System (ADS)

    Hauer, Michelle Christine

    The focus of this thesis is on the design and analysis of refractive, diffractive, and hybrid refractive/diffractive lens systems for a miniaturized camera that can be surgically implanted in the crystalline lens sac and is designed to work in conjunction with current and future generation retinal prostheses. The development of such an intraocular camera (IOC) would eliminate the need for an external head-mounted or eyeglass-mounted camera. Placing the camera inside the eye would allow subjects to use their natural eye movements for foveation (attention) instead of more cumbersome head tracking, would notably aid in personal navigation and mobility, and would also be significantly more psychologically appealing from the standpoint of personal appearances. The capability for accommodation with no moving parts or feedback control is incorporated by employing camera designs that exhibit nearly infinite depth of field. Such an ultracompact optical imaging system requires a unique combination of refractive and diffractive optical elements and relaxed system constraints derived from human psychophysics. This configuration necessitates an extremely compact, short focal-length lens system with an f-number close to unity. Initially, these constraints appear highly aggressive from an optical design perspective. However, after careful analysis of the unique imaging requirements of a camera intended to work in conjunction with the relatively low pixellation levels of a retinal microstimulator array, it becomes clear that such a design is not only feasible, but could possibly be implemented with a single lens system.

  13. An Improved Solution for Integrated Array Optics in Quasi-Optical mm and Submm Receivers: the Hybrid Antenna

    NASA Technical Reports Server (NTRS)

    Buttgenbach, Thomas H.

    1993-01-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  14. Development of solid tunable optics for ultra-miniature imaging systems

    NASA Astrophysics Data System (ADS)

    Yongchao, Zou

    This thesis focuses on the optimal design, fabrication and testing of solid tunable optics and exploring their applications in miniature imaging systems. It starts with the numerical modelling of such lenses, followed by the optimum design method and alignment tolerance analysis. A miniature solid tunable lens driven by a piezo actuator is then developed. To solve the problem of limited maximum optical power and tuning range in conventional lens designs, a novel multi-element solid tunable lens is proposed and developed. Inspired by the Alvarez principle, a novel miniature solid tunable dual-focus lens, which is designed using freeform surfaces and driven by one micro-electro-mechanical-systems (MEMS) rotary actuator, is demonstrated. To explore the applications of these miniature solid tunable lenses, a miniature adjustable-focus endoscope and one compact adjustable-focus camera module are developed. The adjustable-focus capability of these two miniature imaging systems is fully proved by electrically focusing targets placed at different positions.

  15. Preliminary Investigation of an Active PLZT Lens

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Peters, B. R.; Reardon, P. J.; Wong, J. K.

    2001-01-01

    The design, analysis and preliminary testing of a prototype Adjustable Focus Optical Correction Lens (AFOCL) is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro-optic lens. The AFOCL was developed to perform optical re-alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories (ULSSO). The AFOCL has potential application as an active optical component within a larger optical system. As such, information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sensed wavefront to the desired shape and location. While offering variable and rapid focussing capability (controlled wavefront manipulation) similar to liquid crystal based spatial light modulators (SLM), the AFOCL offers some potential advantages because it is a solid-state, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometer wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. The data was analyzed and compared to theoretical data available from computer-based models of the AFOCL.

  16. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    DOE PAGES

    Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.; ...

    2015-08-12

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-couplermore » slits.« less

  17. Fresnel Lens

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Scott, Steve; Lamb, David; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Fresnel lenses span the full range of sizes from lens a few micrometers in diameter to lens several meters in diameter. These lenses are utilized in various fields including optical communication, theatrical lighting, office equipment, video entertainment systems, solar concentrators, and scientific research instruments. These lenses function either as diffractive or refractive optical elements depending on the geometrical feature size of the lens. The basic functions of these lenses is described followed by an overview of fabrication methods. A summary of applications is then provided illustrating the rich variety of applications for which fresnel lenses may be designed to fulfill.

  18. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  19. Teaching lens, optical systems, and opto-mechanical systems design at the Irvine Center for Applied Competitive Technologies (CACT)

    NASA Astrophysics Data System (ADS)

    Doushkina, Valentina V.; Silberman, Donn M.

    2007-09-01

    For well over a decade, the Laser Electro-Optics Technology (LET) program has been teaching introductory laser and optics classes at Irvine Valley College (IVC). At the beginning of the telecom boom, the Irvine CACT was established to teach optics fabrication to support the many optics fabrication businesses in Southern California. In the past few years, these two programs have merged - with some help from the Optics Institute of Southern California (OISC) - and grown under the newly established Advanced Technology and Education Park (ATEP). IVC and ATEP are both operated by the South Orange County Community College District (SOCCCD). This year a new program of three courses was established to teach, in sequence, lens, optical systems and optomechanical systems design. This paper reviews the reasons for establishing these courses and their content, the students' motivations for taking them and their employers' incentives for encouraging the students.

  20. A Metalens with a Near-Unity Numerical Aperture.

    PubMed

    Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A; Kuznetsov, Arseniy I

    2018-03-14

    The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high-NA lenses in an ultraflat fashion. However, so far, these have been limited to numerical apertures on the same order of magnitude as traditional optical components, with experimentally reported NA values of <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction-limited flat lens with a near-unity numerical aperture (NA > 0.99) and subwavelength thickness (∼λ/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in subdiffractive diamond nanocrystals. This work, based on diffractive elements that can efficiently bend light at angles as large as 82°, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated with the standard, phase mapping approach.

  1. Large electro-optic coefficient in single-crystal film of a novel organic salt, DASMS

    NASA Astrophysics Data System (ADS)

    Tan, Shida; Ahyi, Ayayi; Mishra, Alpana; Thakur, Mrinal

    2001-03-01

    We have synthesized a novel electro-optic material 4'-dimethylamino-4-methylstilbazolium methanesulfonate (DASMS). Large-area ( 60 mm^2), single-crystal films of DASMS with excellent optical quality have been grown for the first time by a modified shear method^1. These films have the noncentrosymmetric hydrated phase, which is electro-optically active^2. Polarized optical microscopy, X-ray diffraction and polarized UV-visible spectroscopic studies have been used to characterize the films. The single-crystal films were observed to be highly dichroic. Using field-induced birefringence measurement, the electro-optic coefficient of DASMS at 632.8 nm has been estimated to be r_11 160 pm/V, which is five times larger than the eletro-optic coefficient of LiNbO_3. For a 1.8 μm thick film, 28% intensity modulation was observed for an electric field of 4 V/μm. 1. M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989). 2. E. P. Boden, P. D. Phelps, C. P. Yakymyshyn, and K. R. Stewart, US patent 5,194,584.

  2. Primordial black hole detection through diffractive microlensing

    NASA Astrophysics Data System (ADS)

    Naderi, T.; Mehrabi, A.; Rahvar, S.

    2018-05-01

    Recent observations of gravitational waves motivate investigations for the existence of primordial black holes (PBHs). We propose the observation of gravitational microlensing of distant quasars for the range of infrared to the submillimeter wavelengths by sublunar PBHs as lenses. The advantage of observations in the longer wavelengths, comparable to the Schwarzschild radius of the lens (i.e., Rsch≃λ ) is the detection of the wave optics features of the gravitational microlensing. The observation of diffraction pattern in the microlensing light curve of a quasar can break the degeneracy between the lens parameters and determine directly the lens mass as well as the distance of the lens from the observer. We estimate the wave optics optical-depth, also calculate the rate of ˜0.1 to ˜0.3 event per year per a quasar, assuming that hundred percent of dark matter is made of sublunar PBHs. Also, we propose a long-term survey of quasars with the cadence of almost one hour to few days to resolve the wave optics features of the light curves to discover PBHs and determine the fraction of dark matter made of sublunar PBHs as well as their mass function.

  3. Chromatic confocal microscope using hybrid aspheric diffractive lenses

    NASA Astrophysics Data System (ADS)

    Rayer, Mathieu; Mansfield, Daniel

    2014-05-01

    A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  4. Achromatic triplet and athermalized lens assembly for both midwave and longwave infrared spectra

    NASA Astrophysics Data System (ADS)

    Kuo, Chih-Wei

    2014-02-01

    Analytic solutions for finding the achromatic triplet in the midwave and longwave infrared spectra simultaneously are explored. The relationship between the combination of promising refractive materials and the system's optical power is also formulated. The principles for stabilizing the effective focal length of an air-spaced lens group with respect to temperature are explored, and the thermal properties of the optical component and mechanical elements mutually counterbalanced. An optical design based on these achromatic and athermal theories is demonstrated, and the image quality of the lens assembly seems to approach the diffractive limitation.

  5. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  6. Methods and apparatus for vertical coupling from dielectric waveguides

    DOEpatents

    Yaacobi, Ami; Cordova, Brad Gilbert

    2014-06-17

    A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.

  7. Fabrication of Fiber Optic Grating Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Wang, Ying (Inventor); Sharma, Anup (Inventor); Grant, Joseph (Inventor)

    2005-01-01

    An apparatus and method for forming a Bragg grating on an optical fiber using a phase mask to diffract a beam of coherent energy and a lens combined with a pair of mirrors to produce two symmetrical virtual point sources of coherent energy in the plane of the optical fiber. The two virtual light sources produce an interference pattern along the optical fiber. In a further embodiment, the period of the pattern and therefore the Bragg wavelength grating applied to the fiber is varied with the position of the optical fiber relative the lens.

  8. MANN: A program to transfer designs for diffractive optical elements to a MANN photolithographic mask generator

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1994-01-01

    There are two basic areas of interest for diffractive optics. In the first, the property of wavefront division is exploited for achieving optical fanout, analogous to the more familiar electrical fanout of electronic circuitry. The basic problem here is that when using a simple uniform diffraction grating the energy input is divided unevenly among the output beams. The other area of interest is the use of diffractive elements to replace or supplement standard refractive elements such as lenses. Again, local grating variations can be used to control the amount of bending imparted to optical rays, and the efficiency of the diffractive element will depend on how closely the element can be matched to the design requirements. In general, production restrictions limit how closely the element approaches the design, and for the common case of photolithographic production, a series of binary masks is required to achieve high efficiency. The actual design process is much more involved than in the case of elements for optical fanout, as the desired phase of the optical wavefront over some reference plane must be specified and the phase alteration to be introduced at each point by the diffraction element must be known. This generally requires the utilization of a standard optical design program. Two approaches are possible. In the first approach, the diffractive element is treated as a special type of lens and the ordinary optical design equations are used. Optical design programs tend to follow a second approach, namely, using the equations of optical interference derived from holographic theory and then allowing the introduction of phase front corrections in the form of polynomial equations. By using either of these two methods, diffractive elements can be used not only to compensate for distortions such as chromatic or spherical aberration, but also to perform the work of a variety of other optical elements such as null correctors, beam shapers, etc. The main focus of the project described in this report is how the design information from the lens design program is incorporated into the photolithographic process. It is shown that the MANN program, a photolithographic mask generator, fills the need for a link between lens design programs and mask generation controllers.The generated masks can be used to expose a resist-coated substrate which is etched and then must be re-coated, re-exposed, and re-etched for making copies, just as in the electronics industry.

  9. All-Optical Logic Gates and Wavelength Conversion Via the Injection-Locking of a Fabry-Perot Semiconductor Laser

    DTIC Science & Technology

    2013-03-21

    be modified to create a non -inverting output as well. The probe beam is initially injected at a slightly higher frequency than the slave mode so...input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non -injected Fabry–Perot modes, is induced, yielding a...laser diode), SLD (slave laser diode), EOM (electro-optic modulator), P (polarizer), OI (optical isolator), G (grating), L (lens), BE ( beam expander

  10. Apparatus and method for creating a photonic densely-accumulated ray-point

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    An optical apparatus includes an optical diffraction device configured for diffracting a predetermined wavelength of incident light onto adjacent optical focal points, and a photon detector for detecting a spectral characteristic of the predetermined wavelength. One of the optical focal points is a constructive interference point and the other optical focal point is a destructive interference point. The diffraction device, which may be a micro-zone plate (MZP) of micro-ring gratings or an optical lens, generates a constructive ray point using phase-contrasting of the destructive interference point. The ray point is located between adjacent optical focal points. A method of generating a densely-accumulated ray point includes directing incident light onto the optical diffraction device, diffracting the selected wavelength onto the constructive interference focal point and the destructive interference focal point, and generating the densely-accumulated ray point in a narrow region.

  11. Preliminary investigation of an active PLZT lens

    NASA Astrophysics Data System (ADS)

    Peters, Bruce R.; Reardon, Patrick J.; Wong, K. J.

    2001-05-01

    The design analysis and preliminary testing of a prototype AFOCL is described. The AFOCL is an active optical component composed of solid state lead lanthanum-modified zirconate titanate (PLZT) ferroelectric ceramic with patterned indium tin oxide (ITO) transparent surface electrodes that modulate the refractive index of the PLZT to function as an electro- optic lens. The AFOCL was developed to perform optical re- alignment and wavefront correction to enhance the performance of Ultra-Lightweight Structures and Space Observatories. The AFOCL would be an active optical component within a larger optical system. Information from a wavefront sensor would be processed to provide input to the AFOCL to drive the sense4d wavefront tot he desired shape and location. While offering variable and rapid focusing capability similar to liquid crystal based spatial light modulators, the AFOCL offers some potential advantages because it is a solid-stat, stationary, low-mass, rugged, and thin optical element that can produce wavefront quality comparable to the solid refractive lens it replaces. The AFOCL acts as a positive or negative lens by producing a parabolic phase-shift in the PLZT material through the application of a controlled voltage potential across the ITO electrodes. To demonstrate the technology, a 4 mm diameter lens was fabricated to produce 5-waves of optical power operating at 2.051 micrometers wavelength. Optical metrology was performed on the device to measure focal length, optical quality, and efficiency for a variety of test configurations. Preliminary data was analyzed and compared to idealized performance available from computer-based models of the AFOCL.

  12. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyde, R

    2003-02-10

    A series of studies by the Air Force, the National Reconnaissance Office and NASA have identified the critical role played by large optics in fulfilling many of the space related missions of these agencies. Whether it is the Next Generation Space Telescope for NASA, high resolution imaging systems for NRO, or beam weaponry for the Air Force, the diameter of the primary optic is central to achieving high resolution (imaging) or a small spot size on target (lethality). While the detailed requirements differ for each application (high resolution imaging over the visible and near-infrared for earth observation, high damage thresholdmore » but single-wavelength operation for directed energy), the challenges of a large, lightweight primary optic which is space compatible and operates with high efficiency are the same. The advantage of such large optics to national surveillance applications is that it permits these observations to be carried-out with much greater effectiveness than with smaller optics. For laser weapons, the advantage is that it permits more tightly focused beams which can be leveraged into either greater effective range, reduced laser power, and/or smaller on-target spot-sizes; weapon systems can be made either much more effective or much less expensive. This application requires only single-wavelength capability, but places an emphasis upon robust, rapidly targetable optics. The advantages of large aperture optics to astronomy are that it increases the sensitivity and resolution with which we can view the universe. This can be utilized either for general purpose astronomy, allowing us to examine greater numbers of objects in more detail and at greater range, or it can enable the direct detection and detailed examination of extra-solar planets. This application requires large apertures (for both light-gathering and resolution reasons), with broad-band spectral capability, but does not emphasize either large fields-of-view or pointing agility. Despite differences in their requirements and implementations, the fundamental difficulty in utilizing large aperture optics is the same for all of these applications: It is extremely difficult to design large aperture space optics which are both optically precise and can meet the practical requirements for launch and deployment in space. At LLNL we have developed a new concept (Eyeglass) which uses large diffractive optics to solve both of these difficulties; greatly reducing both the mass and the tolerance requirements for large aperture optics. During previous LDRD-supported research, we developed this concept, built and tested broadband diffractive telescopes, and built 50 cm aperture diffraction-limited diffractive lenses (the largest in the world). This work is fully described in UCRL-ID-136262, Eyeglass: A Large Aperture Space Telescope. However, there is a large gap between optical proof-of-principle with sub-meter apertures, and actual 50 meter space telescopes. This gap is far too large (both in financial resources and in spacecraft expertise) to be filled internally at LLNL; implementation of large aperture diffractive space telescopes must be done externally using non-LLNL resources and expertise. While LLNL will never become the primary contractor and integrator for large space optical systems, our natural role is to enable these devices by developing the capability of producing very large diffractive optics. Accordingly, the purpose of the Large Aperture, Lightweight Space Optics Strategic Initiative was to develop the technology to fabricate large, lightweight diffractive lenses. The additional purpose of this Strategic Initiative was, of course, to demonstrate this lens-fabrication capability in a fashion compellingly enough to attract the external support necessary to continue along the path to full-scale space-based telescopes. During this 3 year effort (FY2000-FY2002) we have developed the capability of optically smoothing and diffractively-patterning thin meter-sized sheets of glass into lens panels. We have also developed alignment and seaming techniques which allow individual lens panels to be assembled together, forming a much larger, segmented, diffractive lens. The capabilities provided by this LDRD-supported developmental effort were then demonstrated by the fabrication and testing of a lightweight, 5 meter aperture, diffractive lens.« less

  13. System Design, Implementation, and Evaluation of the Optical Broadband Correlator

    DTIC Science & Technology

    1994-09-20

    shear-mode TeO2 , Model No. N45075-6-20, manufactured by Newport Electro- Optic Systems with a length of 75 pjs, acoustic direction 1110], optical...optical aperture (or useful length) TOA of our cells are shown in Table 3. The Bragg cells are shear-mode TeO2 , Model No. N45075-6-20, manufactured by...focusing or integrating (Fourier transform) lens is a laser diode glass doublet Model 06LAI013/076, from Melles Griot. Its focal length is 145 nun at 830

  14. Objective Lens Optimized for Wavefront Delivery, Pupil Imaging, and Pupil Ghosting

    NASA Technical Reports Server (NTRS)

    Olzcak, Gene

    2009-01-01

    An interferometer objective lens (or diverger) may be used to transform a collimated beam into a diverging or converging beam. This innovation provides an objective lens that has diffraction-limited optical performance that is optimized at two sets of conjugates: imaging to the objective focus and imaging to the pupil. The lens thus provides for simultaneous delivery of a high-quality beam and excellent pupil resolution properties.

  15. Ring lens focusing and push-pull tracking scheme for optical disk systems

    NASA Technical Reports Server (NTRS)

    Gerber, R.; Zambuto, J.; Erwin, J. K.; Mansuripur, M.

    1993-01-01

    An experimental comparison of the ring lens and the astigmatic techniques of generating focus-error-signal (FES) in optical disk systems reveals that the ring lens generates a FES over two times steeper than that produced by the astigmat. Partly due to this large slope and, in part, because of its diffraction-limited behavior, the ring lens scheme exhibits superior performance characteristics. In particular the undesirable signal known as 'feedthrough' (induced on the FES by track-crossings during the seek operation) is lower by a factor of six compared to that observed with the astigmatic method. The ring lens is easy to align and has reasonable tolerance for positioning errors.

  16. Wideband THz Time Domain Spectroscopy based on Optical Rectification and Electro-Optic Sampling

    PubMed Central

    Tomasino, A.; Parisi, A.; Stivala, S.; Livreri, P.; Cino, A. C.; Busacca, A. C.; Peccianti, M.; Morandotti, R.

    2013-01-01

    We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement. PMID:24173583

  17. The original method for imaging of biological tissues in optical coherence tomography with usage of hyperchromatic lens

    NASA Astrophysics Data System (ADS)

    Egorov, D. I.

    2017-06-01

    Our study focuses on an analysis of the original method of investigation biological tissues in the spectral OCT (optical coherence tomography) with usage hyperchromatic lenses. Using hyperchromatic lens, i.e. the lens with uncorrected longitudinal color allows scanning in the depth of the object by changing the wavelength of the emitter. In this case, the depth of the scan will be determined not by the microlens depth of field, but the value of axial color. In our study, we demonstrated the advantages of this method of research on biological tissues existing. Spectral OCT schemes with the hyperchromatic lens could increase the depth of spectral scanning, eliminate the use of multi-channel systems with a set of microscope objectives, reduce the time of measurement. In our paper, we show the developed method of calculation of hyperchromatic lenses and hybrid hyperchromatic lens consisting of a diffractive and refractive component in spectral OCT systems. We also demonstrate the results of aberration calculation designed microscope lenses. We show examples of developed hyperchromatic lenses with the diffractive element and without it.

  18. Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging

    PubMed Central

    Zhang, Jingjing

    2015-01-01

    The resolution of conventional optical lenses is limited by diffraction. For decades researchers have made various attempts to beat the diffraction limit and realize subwavelength imaging. Here we present the approach to design modified solid immersion lenses that deliver the subwavelength information of objects into the far field, yielding magnified images. The lens is composed of an isotropic dielectric core and anisotropic or isotropic dielectric matching layers. It is designed by combining a transformation optics forward design with an inverse design scheme, where an evolutionary optimization procedure is applied to find the material parameters for the matching layers. Notably, the total radius of the lens is only 2.5 wavelengths and the resolution can reach λ/6. Compared to previous approaches based on the simple discretized approximation of a coordinate transformation design, our method allows for much more precise recovery of the information of objects, especially for those with asymmetric shapes. It allows for the far-field subwavelength imaging at optical frequencies with compact dielectric devices. PMID:26017657

  19. High channel density wavelength division multiplexer with defined diffracting means positioning

    DOEpatents

    Jannson, Tomasz P.; Jannson, Joanna L.; Yeung, Peter C.

    1990-01-01

    A wavelength division multiplexer/demultiplexer having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges.

  20. Beam-splitter switches based on zenithal bistable liquid-crystal gratings.

    PubMed

    Zografopoulos, Dimitrios C; Beccherelli, Romeo; Kriezis, Emmanouil E

    2014-10-01

    The tunable optical diffractive properties of zenithal bistable nematic liquid-crystal gratings are theoretically investigated. The liquid-crystal orientation is rigorously solved via a tensorial formulation of the Landau-de Gennes theory and the optical transmission properties of the gratings are investigated via full-wave finite-element frequency-domain simulations. It is demonstrated that by proper design the two stable states of the grating can provide nondiffracting and diffracting operation, the latter with equal power splitting among different diffraction orders. An electro-optic switching mechanism, based on dual-frequency nematic materials, and its temporal dynamics are further discussed. Such gratings provide a solution towards tunable beam-steering and beam-splitting components with extremely low power consumption.

  1. Quality of image of grating target placed in vitreous of isolated pig eyes photographed through different implanted multifocal intraocular lenses.

    PubMed

    Inoue, Makoto; Noda, Toru; Ohnuma, Kazuhiko; Bissen-Miyajima, Hiroko; Hirakata, Akito

    2011-11-01

    To determine the quality of the image of a grating target placed in the vitreous of isolated pig eyes and photographed through implanted refractive and diffractive multifocal intraocular lenses (IOL). Refractive multifocal (NXG1, PY60MV), diffractive multifocal (ZM900, SA60D3) and monofocal (SA60AT, ZA9003) IOL were implanted in the capsular bag of isolated pig eyes. A grating target was placed in the vitreous and photographed through a flat or a wide-field viewing contact lens. The contrast of the grating targets of different spatial frequencies was measured. With the flat corneal contact lens, the gratings appeared clear and not distorted when viewed through the optics of the NXG1 and PY60MV for far vision but were distorted with reduced contrast when viewed through the optical zone for near vision. The images through the diffractive zone of the ZM900 and SA60D3 were more defocused than with the monofocal IOL (p < 0.005). Ghost images oriented centrifugally of the original image were seen with the ZM900 resulting in lower contrast at higher spatial frequencies than with the SA60D3 with less defocused images only in the central area. With the wide-field viewing contact lens, the images were less defocused and the contrast was comparable to both refractive and diffractive multifocal IOL. Both refractive and diffractive multifocal IOL reduced the contrast of the retinal image when viewed through a flat corneal contact lens but less defocused when viewed through a wide-field viewing contact lens. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  2. [Design and analysis of a novel light visible spectrum imaging spectrograph optical system].

    PubMed

    Shen, Man-de; Li, Fei; Zhou, Li-bing; Li, Cheng; Ren, Huan-huan; Jiang, Qing-xiu

    2015-02-01

    A novel visible spectrum imaging spectrograph optical system was proposed based on the negative dispersion, the arbitrary phase modulation characteristics of diffractive optical element and the aberration correction characteristics of freeform optical element. The double agglutination lens was substituted by a hybrid refractive/diffractive lens based on the negative dispersion of diffractive optical element. Two freeform optical elements were used in order to correct some aberration based on the aberration correction characteristics of freeform optical element. An example and frondose design process were presented. When the design parameters were uniform, compared with the traditional system, the novel visible spectrum imaging spectrograph optical system's weight was reduced by 22.9%, the total length was reduced by 26.6%, the maximal diameter was reduced by 30.6%, and the modulation transfer function (MTF) in 1.0 field-of-view was improved by 0.35 with field-of-view improved maximally. The maximal distortion was reduced by 1.6%, the maximal longitudinal aberration was reduced by 56.4%, and the lateral color aberration was reduced by 59. 3%. From these data, we know that the performance of the novel system was advanced quickly and it could be used to put forward a new idea for modern visible spectrum imaging spectrograph optical system design.

  3. Dynamic metasurface lens based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Roy, Tapashree; Zhang, Shuyan; Jung, Il Woong; Troccoli, Mariano; Capasso, Federico; Lopez, Daniel

    2018-02-01

    In the recent years, metasurfaces, being flat and lightweight, have been designed to replace bulky optical components with various functions. We demonstrate a monolithic Micro-Electro-Mechanical System (MEMS) integrated with a metasurface-based flat lens that focuses light in the mid-infrared spectrum. A two-dimensional scanning MEMS platform controls the angle of the lens along two orthogonal axes by ±9°, thus enabling dynamic beam steering. The device could be used to compensate for off-axis incident light and thus correct for aberrations such as coma. We show that for low angular displacements, the integrated lens-on-MEMS system does not affect the mechanical performance of the MEMS actuators and preserves the focused beam profile as well as the measured full width at half maximum. We envision a new class of flat optical devices with active control provided by the combination of metasurfaces and MEMS for a wide range of applications, such as miniaturized MEMS-based microscope systems, LIDAR scanners, and projection systems.

  4. X-ray diffraction imaging (topography) of electroopticcrystals by synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri

    1988-01-01

    Information of special interest to crystal growers and device physicists now available from monochromatic synchrotron diffraction imaging (topography) is reviewed. Illustrations are taken from a variety of electro-optic crystals. Aspects of the detailed understanding of crystal growth processes obtainable from carefully selected samples are described. Finally, new experimental opportunities now available for exploitation are indicated.

  5. Optical study of a spectrum splitting solar concentrator based on a combination of a diffraction grating and a Fresnel lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, Céline, E-mail: cmichel@ulg.ac.be; Habraken, Serge; Hololab, University of Liège, Allée du 6 Août, 17

    2015-09-28

    This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, andmore » the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results.« less

  6. Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.

    PubMed

    Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin

    2015-08-24

    We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.

  7. The scale of the Fourier transform: a point of view of the fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Jimenez, C. J.; Vilardy, J. M.; Salinas, S.; Mattos, L.; Torres, C. O.

    2017-01-01

    In this paper using the Fourier transform of order fractional, the ray transfer matrix for the symmetrical optical systems type ABCD and the formulae by Collins for the diffraction, we obtain explicitly the expression for scaled Fourier transform conventional; this result is the great importance in optical signal processing because it offers the possibility of scaling the size of output the Fourier distribution of the system, only by manipulating the distance of the diffraction object toward the thin lens, this research also emphasizes on practical limits when a finite spherical converging lens aperture is used. Digital simulation was carried out using the numerical platform of Matlab 7.1.

  8. Diffractive Alvarez lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Ian M.; Dixit, Sham N.; Summers, Leslie J.

    2000-01-01

    A diffractive Alvarez lens is demonstrated that consists of two separate phase plates, each having complementary 16-level surface-relief profiles that contain cubic phase delays. Translation of these two components in the plane of the phase plates is shown to produce a variable astigmatic focus. Both spherical and cylindrical phase profiles are demonstrated with good accuracy, and the discrete surface-relief features are shown to cause less than {lambda}/10 wave-front aberration in the transmitted wave front over a 40 mmx80 mm region. (c) 2000 Optical Society of America.

  9. Optical fiber plasmonic lens for near-field focusing fabricated through focused ion beam

    NASA Astrophysics Data System (ADS)

    Sloyan, Karen; Melkonyan, Henrik; Moreira, Paulo; Dahlem, Marcus S.

    2017-02-01

    We report on numerical simulations and fabrication of an optical fiber plasmonic lens for near-field focusing applications. The plasmonic lens consists of an Archimedean spiral structure etched through a 100 nm-thick Au layer on the tip of a single-mode SM600 optical fiber operating at a wavelength of 632:8 nm. Three-dimensional finite-difference time-domain computations show that the relative electric field intensity of the focused spot increases 2:1 times when the number of turns increases from 2 to 12. Furthermore, a reduction of the intensity is observed when the initial inner radius is increased. The optimized plasmonic lens focuses light into a spot with a full-width at half-maximum of 182 nm, beyond the diffraction limit. The lens was fabricated by focused ion beam milling, with a 200nm slit width.

  10. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic.

    PubMed

    Tanghetti Md, Emil; Jennings, John

    2018-01-01

    This study was performed to better understand the cutaneous effects of using a fractional picosecond laser at 755 nm with a diffractive lens array and a picosecond Nd:YAG laser at 532 mn and 1064 nm with a holographic optic. We characterized the injuries created by these devices on skin clinically and histologically over 24 hours. With this information we modeled the effects of these devices on a cutaneous target. Eight patients, representing Fitzpatrick skin types I-VI, were treated on their backs with a picosecond Alexandrite laser with a diffractive lens array, as well as a picosecond Nd:YAG laser at 532 nm and 1064 nm with a holographic optic. Photographs were taken 15 minutes and 24 hours after treatments. Punch biopsies were obtained at 24 hours and examined histologically. Treatment with the picosecond Nd:YAG laser at both 532 nm and 1064 nm with the holographic optic revealed erythema and small scatted areas of petechial hemorrhage areas immediately and in many cases at 24 hours after treatment. The 755 nm picosecond Alexandrite laser with diffractive lens array produced erythema immediately after treatment, which largely dissipated 24 hours later. Histologies revealed intra-epidermal vacuoles with all three wavelengths. Fractional picosecond Nd:YAG laser at 532 nm and 1064 nm with the holographic optic showed focal areas of dermal and intra-epidermal hemorrhage with areas of vascular damage in some patients. This study demonstrates that both fractional picosecond devices produce vacuoles in the skin, which are most likely due to areas of laser induced optical breakdown (LIOB). In the patients (skin type II-IV) we observed scatter areas of hemorrhage in the skin, due to vascular damage with the 532 nm and 1064 nm, but not with 755 nm wavelengths. Lasers Surg. Med. 50:37-44, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Optical fabrication of large area photonic microstructures by spliced lens

    NASA Astrophysics Data System (ADS)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  12. High channel density wavelength division multiplexer with defined diffracting means positioning

    DOEpatents

    Jannson, T.P.; Jannson, J.L.; Yeung, P.C.

    1990-05-15

    A wavelength division multiplexer/demultiplexer is disclosed having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges. 11 figs.

  13. Fresnel Lenses for Wide-Aperture Optical Receivers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2004-01-01

    Wide-aperture receivers for freespace optical communication systems would utilize Fresnel lenses instead of conventional telescope lenses, according to a proposal. Fresnel lenses weigh and cost much less than conventional lenses having equal aperture widths. Plastic Fresnel lenses are commercially available in diameters up to 5 m large enough to satisfy requirements for aperture widths of the order of meters for collecting sufficient light in typical long-distance free-space optical communication systems. Fresnel lenses are not yet suitable for high-quality diffraction-limited imaging, especially in polychromatic light. However, optical communication systems utilize monochromatic light, and there is no requirement for high-quality imaging; instead, the basic requirement for an optical receiver is to collect the incoming monochromatic light over a wide aperture and concentrate the light onto a photodetector. Because of lens aberrations and diffraction, the light passing through any lens is focused to a blur circle rather than to a point. Calculations for some representative cases of wide-aperture non-diffraction-limited Fresnel lenses have shown that it should be possible to attain blur-circle diameters of less than 2 mm. Preferably, the blur-circle diameter should match the width of the photodetector. For most high-bandwidth communication applications, the required photodetector diameters would be about 1 mm. In a less-preferable case in which the blur circle was wider than a single photodetector, it would be possible to occupy the blur circle with an array of photodetectors. As an alternative to using a single large Fresnel lens, one could use an array of somewhat smaller lenses to synthesize the equivalent aperture area. Such a configuration might be preferable in a case in which a single Fresnel lens of the requisite large size would be impractical to manufacture, and the blur circle could not be made small enough. For example one could construct a square array of four 5-m-diameter Fresnel lenses to obtain the same light-collecting area as that of a single 10-m-diameter lens. In that case (see figure), the light collected by each Fresnel lens could be collimated, the collimated beams from the four Fresnel lenses could be reflected onto a common offaxis paraboloidal reflector, and the paraboloidal reflector would focus the four beams onto a single photodetector. Alternatively, detected signal from each detector behind each lens would be digitized before summing the signals.

  14. Programmable diffractive lens for ophthalmic application

    NASA Astrophysics Data System (ADS)

    Millán, María S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2014-06-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  15. Ophthalmic compensation of visual ametropia based on a programmable diffractive lens

    NASA Astrophysics Data System (ADS)

    Millán, Maria S.; Pérez-Cabré, Elisabet; Romero, Lenny A.; Ramírez, Natalia

    2013-11-01

    Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements (DOEs), particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. In this paper, we explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator (LCoS-SLM) to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of some refractive errors (myopia, hyperopia). The theoretical principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. A series of experiments with artificial eye in optical bench are conducted to analyze the compensation accuracy in terms of optical power and to compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided.

  16. Electrowetting-based optics

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Hendriks, B. H. W.; Hayes, R. A.; Feenstra, B. J.; Baken, J. M. E.

    2005-09-01

    Electrowetting is electrostatic manipulation of liquids. It can be used to displace and deform volumes of polar liquids. A very promising application area is optics. The surface of a volume of liquid can be used as a tunable lens and displacement of the liquid can change the refraction, diffraction or transmission of light when passing through the liquid. In this paper we describe a selection of various tunable optical components that make use of electrowetting, ranging from refractive and diffractive lenses to diaphragms and displays.

  17. An Optically Isotropic Antiferroelectric Liquid Crystal (OI-AFLC) Display Mode Operating over a Wide Temperature Range using Ternary Bent-Core Liquid Crystal Mixtures

    DOE PAGES

    Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.; ...

    2017-02-07

    Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less

  18. An Optically Isotropic Antiferroelectric Liquid Crystal (OI-AFLC) Display Mode Operating over a Wide Temperature Range using Ternary Bent-Core Liquid Crystal Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.

    Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less

  19. Dispersion-compensated fresnel lens

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.

  20. Dispersion-compensated Fresnel lens

    DOEpatents

    Johnson, K.C.

    1992-11-03

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.

  1. Diffraction limited gamma-ray optics using Fresnel lenses for micro-arc second angular resolution

    NASA Astrophysics Data System (ADS)

    Skinner, G.; von Ballmoos, P.; Gehrels, N.; Krzmanic, J.

    2003-03-01

    Refractive indices at gamma-ray wavelengths are such that material thicknesses of the order of millimeters allow the phase of a wavefront to be changed by up to 2π . Thus a phase Fresnel lens can be made from a simple profiled thin disk of, for example, aluminium or plastic. Such a lens can easily have a collecting area of several square meters and an efficiency >90%. Ordinary engineering tolerances allow the manufacture of a lens which can be diffraction limited in the pico-meter wavelength band (up to ˜MeV) and thus provides a simple optical system with angular resolution better than a micro arc second i.e. the resolution necessary to resolve structures on the scale of the event horizon of super-massive black holes in AGN. However the focal length of such a lens is very long - up to a million km. Nevertheless studies have shown that a mission `Fresnel' using a detector and a phase Fresnel lens on two station-keeping spacecraft separated by such a distance is feasible. Results from these studies and work on other proof of concept studies are presented.

  2. Tight focusing properties of the azimuthal discrete phase modulated radially polarized LG11* beam

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Li, Bo; Zhao, Heng; Hu, Yi; Wang, Wenjin; Wang, Youqing

    2013-06-01

    An novel method for generating an annual periodic optical chain by tight focusing the rotational symmetric π/0 phase plate modulated first order radially polarized Laguerre Gaussian (LG11*) beam with a high-NA lens is proposed. The optical chain is composed of either bright spots or dark spots. Vector diffraction numerical calculation method is employed to analyze the tight focus properties. The analyses indicate that the properties of the optical chains are closely related to the number of phase plate sectors, beam width of radially polarized LG11* beam and the numerical aperture of focusing lens. Furthermore, the average Full Width at Half Maximum (FWHM) of hollow dark spots or bright spots in optical chain is breaking the diffraction limit. These kinds of annular optical chains are expected to be applied in trapping or arranging multiple bar-like micro particles whose refractive index are either higher or lower than that of the ambient.

  3. Feasibility study of an integrated optic switching center. [satellite tracking application

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design of a high data rate switching center for a satellite tracking station is discussed. The feasibility of a switching network using an integrated switching matrix is assessed. The preferred integrated optical switching scheme was found to be an electro-optic Bragg diffraction switch. To ascertain the advantages of the integrated optics switching center, its properties are compared to those of opto-electronic and to electronics switching networks.

  4. High spatial resolution with zoomable saw-tooth refractive lenses?

    NASA Astrophysics Data System (ADS)

    Jark, Werner

    2011-09-01

    Refractive x-ray lenses can be assembled from two opposing saw-tooth structures, when they are inclined with respect to each other and almost touch at one end. An incident plane wave will then traverse a varying number of triangular prisms, which direct the beam towards the optical axis and focus it. Optically speaking the plane wave traverses a parabolic lens profile, which is approximated by trapezoidal segments. The parabolic profile will focus ideally, when a lens can be discussed in the "thin lens" approximation. Now the saw-tooth refractive lens is found to be too "thick". The residual aberrations limit the focusing capability to just submicrometer focusing, significantly above the limit in diffraction limited focusing. It is shown that the aberrations can be removed by introducing a variation into the originally constant saw-tooth angle. After this modification the lens can be operated in the diffraction limited regime. Spot sizes even below 0.1 micrometer are then feasible. This performance in terms of spatial resolution is found to be limited to focusing to microspots and is not available, when the saw-tooth refractive lens is used in an imaging setup. In this case the spatial resolution deteriorates rapidly with increasing off axis distance of the object to be imaged.

  5. Electro-optic control of photographic imaging quality through ‘Smart Glass’ windows in optics demonstrations

    NASA Astrophysics Data System (ADS)

    Ozolinsh, Maris; Paulins, Paulis

    2017-09-01

    An experimental setup allowing the modeling of conditions in optical devices and in the eye at various degrees of scattering such as cataract pathology in human eyes is presented. The scattering in cells of polymer-dispersed liquid crystals (PDLCs) and ‘Smart Glass’ windows is used in the modeling experiments. Both applications are used as optical obstacles placed in different positions of the optical information flow pathway either directly on the stimuli demonstration computer screen or mounted directly after the image-formation lens of a digital camera. The degree of scattering is changed continuously by applying an AC voltage of up to 30-80 V to the PDLC cell. The setup uses a camera with 14 bit depth and a 24 mm focal length lens. Light-emitting diodes and diode-pumped solid-state lasers emitting radiation of different wavelengths are used as portable small-divergence light sources in the experiments. Image formation, optical system point spread function, modulation transfer functions, and system resolution limits are determined for such sample optical systems in student optics and optometry experimental exercises.

  6. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  7. Electron diffraction covering a wide angular range from Bragg diffraction to small-angle diffraction.

    PubMed

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Mori, Shigeo

    2018-04-09

    We construct an electron optical system to investigate Bragg diffraction (the crystal lattice plane, 10-2 to 10-3 rad) with the objective lens turned off by adjusting the current in the intermediate lenses. A crossover was located on the selected-area aperture plane. Thus, the dark-field imaging can be performed by using a selected-area aperture to select Bragg diffraction spots. The camera length can be controlled in the range of 0.8-4 m without exciting the objective lens. Furthermore, we can observe the magnetic-field dependence of electron diffraction using the objective lens under weak excitation conditions. The diffraction mode for Bragg diffraction can be easily switched to a small-angle electron diffraction mode having a camera length of more than 100 m. We propose this experimental method to acquire electron diffraction patterns that depict an extensive angular range from 10-2 to 10-7 rad. This method is applied to analyze the magnetic microstructures in three distinct magnetic materials, i.e. a uniaxial magnetic structure of BaFe10.35Sc1.6Mg0.05O19, a martensite of a Ni-Mn-Ga alloy, and a helical magnetic structure of Ba0.5Sr1.5Zn2Fe12O22.

  8. Lightning Mapper Sensor Lens Assembly S.O. 5459: Project Management Plan

    NASA Technical Reports Server (NTRS)

    Zeidler, Janet

    1999-01-01

    Kaiser Electro-Optics, Inc. (KEO) has developed this Project Management Plan for the Lightning Mapper Sensor (LMS) program. KEO has integrated a team of experts in a structured program management organization to meet the needs of the LMS program. The project plan discusses KEO's approach to critical program elements including Program Management, Quality Assurance, Configuration Management, and Schedule.

  9. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  10. Efficient, high power, Q-switched Nd:YLF slab laser end-pumped by diode stack

    NASA Astrophysics Data System (ADS)

    Zhang, Hengli; Li, Daijun; Shi, Peng; Diart, Rober; Shell, Alexander; Haas, Claus R.; Du, Keming

    2005-06-01

    A high power diode stack end-pumped electro-optically Q-switched Nd:YLF slab laser with a stable and off-axis negative-branch confocal unstable hybrid resonator was demonstrated. By using a cylindrical lens in the stable direction the thermal lens effect was compensated. Pulse energy of 25 mJ was obtained with a pulse width of 22.4 ns at repetition rates of 500 Hz and a conversion efficiency of 22%. The stability was better than 0.8% and the beam propagation M2 factor was about 1.2.

  11. Curved crystals for high-resolution focusing of X and gamma rays through a Laue lens

    NASA Astrophysics Data System (ADS)

    Guidi, Vincenzo; Bellucci, Valerio; Camattari, Riccardo; Neri, Ilaria

    2013-08-01

    Crystals with curved diffracting planes have been investigated as high-efficiency optical components for the realization of a Laue lens for satellite-borne experiments in astrophysics. At Sensor and Semiconductor Laboratory (Ferrara, Italy) a research and development plan to implement Si and Ge curved crystals by surface grooving technique has been undertaken. The method of surface grooving allows obtaining Si and Ge curved crystals with self-standing curvature, i.e., with no need for external bending device, which is a mandatory issue in satellite-borne experiments. Si and Ge grooved crystals have been characterized by X-ray diffraction at ESRF and ILL to prove their functionality for a high-reflectivity Laue lens.

  12. Plenoptic Imager for Automated Surface Navigation

    NASA Technical Reports Server (NTRS)

    Zollar, Byron; Milder, Andrew; Milder, Andrew; Mayo, Michael

    2010-01-01

    An electro-optical imaging device is capable of autonomously determining the range to objects in a scene without the use of active emitters or multiple apertures. The novel, automated, low-power imaging system is based on a plenoptic camera design that was constructed as a breadboard system. Nanohmics proved feasibility of the concept by designing an optical system for a prototype plenoptic camera, developing simulated plenoptic images and range-calculation algorithms, constructing a breadboard prototype plenoptic camera, and processing images (including range calculations) from the prototype system. The breadboard demonstration included an optical subsystem comprised of a main aperture lens, a mechanical structure that holds an array of micro lenses at the focal distance from the main lens, and a structure that mates a CMOS imaging sensor the correct distance from the micro lenses. The demonstrator also featured embedded electronics for camera readout, and a post-processor executing image-processing algorithms to provide ranging information.

  13. Development of acousto-optic spatial light modulator unit for effective control of light beam intensity and diffraction angle in 3D holographic display applications

    NASA Astrophysics Data System (ADS)

    Kondalkar, Vijay V.; Ryu, Geonhee; Lee, Yongbeom; Lee, Keekeun

    2018-07-01

    An acousto-optic (AO) based holographic display unit was developed using surface acoustic wave (SAW) with different wavelength to modulate the diffraction angles, intensities, and phases of light. The new configurations were employed to control two beams simultaneously by using a single chirp inter-digital transducer (IDT), and a micro-lens array was integrated at the end of the waveguide layer to focus the diffracted light on to the screen. Two incident light beams were simultaneously modulated by using different refractive grating periods generated from chirp IDT. A diffraction angle of about 5° was obtained by using a SAW with a frequency of 430 MHz. The increase in the SAW input power enhances the diffraction efficiency of the light beam at the exit. The obtained maximum diffraction efficiency is ~70% at a frequency of 430 MHz. The sloped shape of the waveguide entrance and a tall rounded Ni poles help in coupling the incident light to the waveguide layer. The diffracted beam was collected through the lens, which increased the intensity of light in the viewing plane. COMSOL multi-physics and coupling of mode (COM) modeling were performed to predict the device performance and compared with the experimental results.

  14. Application of PLZT electro-optical shutter to diaphragm of visible and mid-infrared cameras

    NASA Astrophysics Data System (ADS)

    Fukuyama, Yoshiyuki; Nishioka, Shunji; Chonan, Takao; Sugii, Masakatsu; Shirahata, Hiromichi

    1997-04-01

    Pb0.9La0.09(Zr0.65,Ti0.35)0.9775O3 9/65/35) commonly used as an electro-optical shutter exhibits large phase retardation with low applied voltage. This shutter features as follows; (1) high shutter speed, (2) wide optical transmittance, and (3) high optical density in 'OFF'-state. If the shutter is applied to a diaphragm of video-camera, it could protect its sensor from intense lights. We have tested the basic characteristics of the PLZT electro-optical shutter and resolved power of imaging. The ratio of optical transmittance at 'ON' and 'OFF'-states was 1.1 X 103. The response time of the PLZT shutter from 'ON'-state to 'OFF'-state was 10 micro second. MTF reduction when putting the PLZT shutter in from of the visible video- camera lens has been observed only with 12 percent at a spatial frequency of 38 cycles/mm which are sensor resolution of the video-camera. Moreover, we took the visible image of the Si-CCD video-camera. The He-Ne laser ghost image was observed at 'ON'-state. On the contrary, the ghost image was totally shut out at 'OFF'-state. From these teste, it has been found that the PLZT shutter is useful for the diaphragm of the visible video-camera. The measured optical transmittance of PLZT wafer with no antireflection coating was 78 percent over the range from 2 to 6 microns.

  15. Method for fabrication of cylindrical microlenses of selected shape

    DOEpatents

    Snyder, J.J.; Baer, T.M.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector. 11 figs.

  16. Method for fabrication of cylindrical microlenses of selected shape

    DOEpatents

    Snyder, James J.; Baer, Thomas M.

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. The present invention has many applications, such as integrated optics, optical detectors and laser diodes. The lens, when connected to a laser diode bar, can provide a high intensity source of laser radiation for pumping a high average power solid state laser. In integrated optics, a lens can be used to couple light into and out of apertures such as waveguides. The lens can also be used to collect light, and focus it on a detector.

  17. Quasi-mosaicity of (311) planes in silicon and its use in a Laue lens with high-focusing power

    NASA Astrophysics Data System (ADS)

    Camattari, Riccardo; Paternò, Gianfranco; Bellucci, Valerio; Guidi, Vincenzo

    2014-12-01

    (311) curved planes can be exploited for efficiently focus hard X-rays. With this purpose, a self-standing bent crystal was manufactured at the Sensor and Semiconductor Laboratory of Ferrara (Italy). The crystal was designed as an optical component for a X-ray concentrator such as a Laue lens. The curvature of (311) planes was obtained through the quasi-mosaic effect. The diffraction efficiency of the sample was tested at the Institut Laue Langevin of Grenoble (France) by using a collimated monochromatic X-ray beam. This was the first prove of the diffraction properties of (311) quasi-mosaic planes. Diffraction efficiency resulted 35 % with a 182 keV X-ray beam, in agreement with the theoretical expectation. It corresponded to a reflectivity of 33 %. While the chosen orientation is not the most performing lying of planes, it can be used, in addition to smaller-index planes, in order to raise the total effective area of a Laue lens. To quantify it, a Laue lens based on quasi-mosaic silicon and germanium crystals, exploiting (111), (422) and (311) diffracting planes, was achieved and simulated with the LaueGen code.

  18. Surface-treated self-standing curved crystals as high-efficiency elements for X- and γ-ray optics: theory and experiment.

    PubMed

    Bonnini, Elisa; Buffagni, Elisa; Zappettini, Andrea; Doyle, Stephen; Ferrari, Claudio

    2015-06-01

    The efficiency of a Laue lens for X- and γ-ray focusing in the energy range 60-600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X-ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDPs) are considered for the realization of a focusing system for γ-rays, owing to their high diffraction efficiency in a predetermined angular range. In this work, a comparison of the efficiency of CDP crystals and Cu and Au mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. In order to increase the efficiency of the lens further, a stack of several CDP crystals is proposed as an optical element. CDP crystals were obtained by a surface-damage method, and a stack of two surface-damaged bent Si crystals was prepared and tested. Rocking curves of the stack were performed with synchrotron radiation at 19 keV to check the lattice alignment: they exhibited only one diffraction peak.

  19. Characteristic of laser diode beam propagation through a collimating lens.

    PubMed

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  20. Wavefront measurement of plastic lenses for mobile-phone applications

    NASA Astrophysics Data System (ADS)

    Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen

    2016-08-01

    In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.

  1. The partial coherence modulation transfer function in testing lithography lens

    NASA Astrophysics Data System (ADS)

    Huang, Jiun-Woei

    2018-03-01

    Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.

  2. Elimination of coherent noise in a coherent light imaging system

    NASA Technical Reports Server (NTRS)

    Grebowsky, G. J.; Hermann, R. L.; Paull, H. B.; Shulman, A. R.

    1970-01-01

    Optical imaging systems using coherent light introduce objectionable noise into the output image plane. Dust and bubbles on and in lenses cause most of the noise in the output image. This noise usually appears as bull's-eye diffraction patterns in the image. By rotating the lens about the optical axis these diffraction patterns can be essentially eliminated. The technique does not destroy the spatial coherence of the light and permits spatial filtering of the input plane.

  3. Design of Multi-Order Diffractive THz Lenses

    DTIC Science & Technology

    2012-09-23

    surface. This makes the fabrication process easier and more accurate, thereby improving optical quality. A CNC lathe can be used to carve the lens out...for low-end THz operation (200-800 GHz). The lens was fabricated in Teflon with a small CNC lathe and can be seen in Fig. 3. With only 4 zones...excellent THz transparency and is readily available. Once the CNC turning was complete, the lens was separated from its substrate with a band-saw and

  4. Light field measurement based on the single-lens coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Shen, Cheng; Tan, Jiubin; Liu, Zhengjun

    2018-01-01

    Plenoptic camera and holography are popular light field measurement techniques. However, the low resolution or the complex apparatus hinders their widespread application. In this paper, we put forward a new light field measurement scheme. The lens is introduced into coherent diffraction imaging to operate an optical transform, extended fractional Fourier transform. Combined with the multi-image phase retrieval algorithm, the scheme is proved to hold several advantages. It gets rid of the support requirement and is much easier to implement while keeping a high resolution by making full use of the detector plane. Also, it is verified that our scheme has a superiority over the direct lens focusing imaging in amplitude measurement accuracy and phase retrieval ability.

  5. Adjustable Focus Optical Correction Lens (AFOCL)

    NASA Technical Reports Server (NTRS)

    Peters, Bruce R.

    2001-01-01

    This report describes the activities and accomplishments along with the status of the characterization of a PLZT-based Adjustable Focus Optical Correction Lens (AFOCL) test device. The activities described in this report were undertaken by members of the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) under NASA Contract NAS8-00188. The effort was led by Dr. Bruce Peters as the Principal Investigator and supported by Dr. Patrick Reardon, Ms. Deborah Bailey, and graduate student Mr. Jeremy Wong. The activities outlined for the first year of the contract were to identify vendors and procure a test device along with performing the initial optical characterization of the test device. This activity has been successfully executed and test results are available and preliminary information was published at the SPIE Photonics West Conference in San Jose, January 2001. The paper, "Preliminary investigation of an active PLZT lens," was well received and generated response with several questions from the audience. A PLZT test device has been commercially procured from an outside vendor: The University of California in San Diego (UCSD) in partnership with New Interconnect Packaging Technologies (NIPT) Inc. The device has been subjected to several tests to characterize the optical performance of the device at wavelengths of interest. The goal was to evaluate the AFOCL similar to a conventional lens and measure any optical aberrations present due to the PLZT material as a deviation in the size of the diffraction limited spot (blur), the presence of diffracted energy into higher orders surrounding the focused spot (a variation in Strehl), and/or a variation or spread in the location of the focused energy away from the optical axis (a bias towards optical wedge, spherical, comma, or other higher order aberrations). While data has been collected indicative of the imaging quality of the AFOCL test device, it was not possible to fully characterize the optical performance of the AFOCL alone because there were significant optical distortions due to fabrication related issues.

  6. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  7. Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses

    DOEpatents

    Sommargren, Gary E.; Campbell, Eugene W.

    2004-03-09

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second, measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  8. Application Of The Phase Shifting Diffraction Interferometer For Measuring Convex Mirrors And Negative Lenses

    DOEpatents

    Sommargren, Gary E.; Campbell, Eugene W.

    2005-06-21

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  9. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    PubMed Central

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611

  10. Micron-scale lens array having diffracting structures

    DOEpatents

    Goldberg, Kenneth A

    2013-10-29

    A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.

  11. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens.

    PubMed

    Brooker, Gary; Siegel, Nisan; Rosen, Joseph; Hashimoto, Nobuyuki; Kurihara, Makoto; Tanabe, Ayano

    2013-12-15

    We report a new optical arrangement that creates high-efficiency, high-quality Fresnel incoherent correlation holography (FINCH) holograms using polarization sensitive transmission liquid crystal gradient index (TLCGRIN) diffractive lenses. In contrast, current universal practice in the field employs a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have >90% transmission efficiency, are not pixilated, and are free of many limitations of reflective SLM devices. For each sample point, two spherical beams created by a glass lens in combination with a polarization sensitive TLCGRIN lens interfere and create a hologram and resultant super resolution image.

  12. Holographic telescope

    NASA Astrophysics Data System (ADS)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  13. Self-addressed diffractive lens schemes for the characterization of LCoS displays

    NASA Astrophysics Data System (ADS)

    Zhang, Haolin; Lizana, Angel; Iemmi, Claudio; Monroy-Ramírez, Freddy A.; Marquez, Andrés.; Moreno, Ignacio; Campos, Juan

    2018-02-01

    We proposed a self-calibration method to calibrate both the phase-voltage look-up table and the screen phase distribution of Liquid Crystal on Silicon (LCoS) displays by implementing different lens configurations on the studied device within a same optical scheme. On the one hand, the phase-voltage relation is determined from interferometric measurements, which are obtained by addressing split-lens phase distributions on the LCoS display. On the other hand, the surface profile is retrieved by self-addressing a diffractive micro-lens array to the LCoS display, in a way that we configure a Shack-Hartmann wavefront sensor that self-determines the screen spatial variations. Moreover, both the phase-voltage response and the surface phase inhomogeneity of the LCoS are measured within the same experimental set-up, without the necessity of further adjustments. Experimental results prove the usefulness of the above-mentioned technique for LCoS displays characterization.

  14. Fabrication of Fresnel micro lens array in borosilicate glass by F2-laser ablation for glass interposer application

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning; Fricke-Begemann, Thomas; Ihlemann, Jürgen

    2014-03-01

    The future need for more bandwidth forces the development of optical transmission solutions for rack-to-rack, boardto- board and chip-to-chip interconnects. The goals are significant reduction of power consumption, highest density and potential for bandwidth scalability to overcome the limitations of the systems today with mostly copper based interconnects. For system integration the enabling of thin glass as a substrate material for electro-optical components with integrated micro-optics for efficient light coupling to integrated optical waveguides or fibers is becoming important. Our glass based packaging approach merges micro-system packaging and glass integrated optics. This kind of packaging consists of a thin glass substrate with integrated micro lenses providing a platform for photonic component assembly and optical fiber or waveguide interconnection. Thin glass is commercially available in panel and wafer size and characterizes excellent optical and high frequency properties. That makes it perfect for microsystem packaging. A suitable micro lens approach has to be comparable with different commercial glasses and withstand post-processing like soldering. A benefit of using laser ablated Fresnel lenses is the planar integration capability in the substrate for highest integration density. In the paper we introduce our glass based packaging concept and the Fresnel lens design for different scenarios like chip-to-fiber, chip-to-optical-printed-circuit-board coupling. Based on the design the Fresnel lenses were fabricated by using a 157 nm fluorine laser ablation system.

  15. Spider Silk: Mother Nature's Bio-Superlens

    NASA Astrophysics Data System (ADS)

    Monks, James N.; Yan, Bing; Hawkins, Nicholas; Vollrath, Fritz; Wang, Zengbo

    2016-09-01

    This paper demonstrates a possible new microfiber bio near field lens that uses minor ampullate spider silk,spun from the Nephila edulis spider, to create a real time image of a surface using near field optical techniques. The microfiber bio lens is the world's first natural superlens created by exploring biological materials. The resolution of the surface image overcomes the diffraction limit, with the ability to resolve patterns at 100 nm under a standard white light source in reflection mode. This resolution offers further developments in superlens technology and paves the way for new bio optics.

  16. Application of the polychromatic defocus transfer function to multifocal lenses.

    PubMed

    Schwiegerling, Jim; Choi, Junoh

    2008-11-01

    To model the performance of multifocal lenses in polychromatic lighting. The defocus transfer function (DTF) is a mathematical technique for illustrating the optical transfer function for all levels of defocus at a given wavelength. A polychromatic version of the DTF is developed that accounts for changes in cutoff frequency, reduction in diffraction efficiency, ocular chromatic aberration, and photoreceptor spectral sensitivity. The differences between the monochromatic and polychromatic DTF are illustrated with a diffractive multifocal intraocular lens. Polychromatic analysis shows an increase in depth of field of diffractive lenses relative to assessment at a single wavelength. The polychromatic DTF is a useful tool for analyzing presbyopia treatments under "white-light" viewing conditions and provides feedback to lens designers on anticipated performance.

  17. Micro spectrometer for parallel light and method of use

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.

  18. Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices.

    PubMed

    Wang, Yu-Jen; Chen, Po-Ju; Liang, Xiao; Lin, Yi-Hsin

    2017-03-27

    Augmented reality (AR), which use computer-aided projected information to augment our sense, has important impact on human life, especially for the elder people. However, there are three major challenges regarding the optical system in the AR system, which are registration, vision correction, and readability under strong ambient light. Here, we solve three challenges simultaneously for the first time using two liquid crystal (LC) lenses and polarizer-free attenuator integrated in optical-see-through AR system. One of the LC lens is used to electrically adjust the position of the projected virtual image which is so-called registration. The other LC lens with larger aperture and polarization independent characteristic is in charge of vision correction, such as myopia and presbyopia. The linearity of lens powers of two LC lenses is also discussed. The readability of virtual images under strong ambient light is solved by electrically switchable transmittance of the LC attenuator originating from light scattering and light absorption. The concept demonstrated in this paper could be further extended to other electro-optical devices as long as the devices exhibit the capability of phase modulations and amplitude modulations.

  19. Design of a Test Bench for Intraocular Lens Optical Characterization

    NASA Astrophysics Data System (ADS)

    Alba-Bueno, Francisco; Vega, Fidel; Millán, María S.

    2011-01-01

    The crystalline lens is the responsible for focusing at different distances (accommodation) in the human eye. This organ grows throughout life increasing in size and rigidity. Moreover, due this growth it loses transparency through life, and becomes gradually opacified causing what is known as cataracts. Cataract is the most common cause of visual loss in the world. At present, this visual loss is recoverable by surgery in which the opacified lens is destroyed (phacoemulsification) and replaced by the implantation of an intraocular lens (IOL). If the IOL implanted is mono-focal the patient loses its natural capacity of accommodation, and as a consequence they would depend on an external optic correction to focus at different distances. In order to avoid this dependency, multifocal IOLs designs have been developed. The multi-focality can be achieved by using either, a refractive surface with different radii of curvature (refractive IOLs) or incorporating a diffractive surface (diffractive IOLs). To analyze the optical quality of IOLs it is necessary to test them in an optical bench that agrees with the ISO119679-2 1999 standard (Ophthalmic implants. Intraocular lenses. Part 2. Optical Properties and Test Methods). In addition to analyze the IOLs according to the ISO standard, we have designed an optical bench that allows us to simulate the conditions of a real human eye. To do that, we will use artificial corneas with different amounts of optical aberrations and several illumination sources with different spectral distributions. Moreover, the design of the test bench includes the possibility of testing the IOLs under off-axis conditions as well as in the presence of decentration and/or tilt. Finally, the optical imaging quality of the IOLs is assessed by using common metrics like the Modulation Transfer Function (MTF), the Point Spread Function (PSF) and/or the Strehl ratio (SR), or via registration of the IOL's wavefront with a Hartmann-Shack sensor and its analysis through expansion in Zernike polynomials.

  20. Ferroelectric Nematic and Ferrielectric Smectic Mesophases in an Achiral Bent-Core Azo Compound.

    PubMed

    Kumar, Jitendra; Prasad, Veena

    2018-03-22

    Here, we report the observation of ferroelectric nematic and ferrielectric smectic mesophases in an achiral bent-core azo compound consisting of nonsymmetrical molecules with a lateral fluoro substitution on one of the wings. These mesophases are enantiotropic in nature with fairly low transition temperatures and wide mesophase ranges. The liquid crystalline properties of this compound are investigated using polarizing optical microscope, differential scanning calorimeter, X-ray diffraction, and electro-optical studies. As revealed by X-ray diffraction measurements, the nematic mesophase is composed of skewed cybotactic clusters and, in the smectic mesophase, the molecules are tilted with respect to the layer normal. The polar order in these mesophases was confirmed by the electro-optical switching and dielectric spectroscopy measurements. The dielectric study in the nematic mesophase shows a single relaxation process at low frequency ( f < 1 kHz) measured in the range 10 Hz to 5 MHz, which is attributed to the collective motion of the molecules within cybotactic clusters. The formation of local polar order in these clusters leads to a ferroelectric-like polar switching in the nematic mesophase. Of particular interest is the fact that the smectic phase exhibits a field induced ferrielectric state, which can be exploited for designing of the potential optical devices due to multistate switching.

  1. Remote focusing in confocal microscopy by means of a modified Alvarez lens.

    PubMed

    Bawart, M; Jesacher, A; Bernet, S; Ritsch-Marte, M

    2018-06-22

    Alvarez lenses are actuated lens-pairs which allow one to tune the optical power by mechanical displacement of subelements. Here, we show that a recently realized modified Alvarez lens design which does not require mechanical actuation can be integrated into a confocal microscope. Instead of mechanically moving them, the sublenses are imaged onto each other in a 4f-configuration, where the lateral image shift leading to a change in optical power is created by a galvo-mirror. The avoidance of mechanical lens shifts leads to a large speed gain for axial (and hence also 3D) image scans compared to classical Alvarez lenses. We demonstrate that the suggested operation principle is compatible with confocal microscopy. In order to optimize the system, we have drawn advantage of the flexibility a liquid-crystal spatial light modulator offers for the implementation. For given specifications, dedicated diffractive optical elements or freeform elements can be used in combination with resonant galvo-scanners or acousto-optic beam deflectors, to achieve even faster z-scans than reported here, reaching video rate. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  2. A lazy way to design infrared lens

    NASA Astrophysics Data System (ADS)

    Qiu, RongSheng; Wu, JianDong; Chen, LongJiang; Yu, Kun; Pang, HaoJun; Hu, BaiZhen

    2017-08-01

    We designed a compact middle-wave infrared (MWIR) lens with a large focal length ratio (about 1.5:1), used in the 3.7 to 4.8 μm range. The lens is consisted of a compact front group and a re-imaging group. Thanks to the compact front group configuration, it is possible to install a filter wheel mechanism in such a tight space. The total track length of the lens is about 50mm, which includes a 2mm thick protective window and a cold shield of 12mm. The full field of view of the lens is about 3.6°, and F number is less than 1.6, the image circle is about 4.6mm in diameter. The design performance of the lens reaches diffraction limitation, and doesn't change a lot during a temperature range of -40°C +60°C. This essay proposed a stepwise design method of infrared optical system guided by the qualitative approach. The method fully utilize the powerful global optimization ability, with a little effort to write code snippet in optical design software, frees optical engineer from tedious calculation of the original structure.

  3. Optical, Physical, and Chemical Properties of Surface Modified Titanium Dioxide Powders

    DTIC Science & Technology

    2011-02-01

    coefficient depends on the optical efficiency factor, QCM , the geometric cross section, G, and the particle mass as indicated by the relationship in eq 2...diffraction sensor with a RODOS powder dispersing unit. The instrument houses a HeNe laser (632.8 nm) and Fourier lens. Upon introduction of the

  4. 10 kHz ps 1342 nm laser generation by an electro-optically cavity-dumped mode-locked Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Liu, Ke; He, Li-jiao; Yang, Jing; Zong, Nan; Yang, Feng; Gao, Hong-wei; Liu, Zhao; Yuan, Lei; Lan, Ying-jie; Bo, Yong; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2017-01-01

    We have demonstrated an electro-optically cavity-dumped mode-locked (CDML) picosecond Nd:YVO4 laser at 1342 nm with 880 nm diode-laser direct pumping. At a repetition rate of 10 kHz, an average output power of 0.119 W was achieved, corresponding to a pulse energy of 11.9 μJ. Compared with the continuous wave mode-locking pulse energy of 17.5 nJ, the CDML pulse energy was 680 times higher. The pulse width was measured to be 33.4 ps, resulting in the peak power of 356 kW. Meanwhile, the beam quality was nearly diffraction limited with an average beam quality factor M2 of 1.29.

  5. Night Vision and Electro-Optics Technology Transfer, 1972-1981

    DTIC Science & Technology

    1981-09-15

    Lixiscope offers potential applications as: a handheld instrument for dental radiography giving real-time ,1servation in orthodontic procedures; a portable...laboratory are described below. There are however, no hard and fast rules. The laboratory’s experimentation with different films, brackets , cameras and...good single lens reflex camera; an exvosure meter; a tripod; and a custom-built bracket to mate the camera and intensifier (Figure 2-1). Figure 2-1

  6. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, James J.; Reichert, Patrick

    1992-01-01

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing.

  7. Lens-based wavefront sensorless adaptive optics swept source OCT

    NASA Astrophysics Data System (ADS)

    Jian, Yifan; Lee, Sujin; Ju, Myeong Jin; Heisler, Morgan; Ding, Weiguang; Zawadzki, Robert J.; Bonora, Stefano; Sarunic, Marinko V.

    2016-06-01

    Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

  8. Probing the electrical switching of a memristive optical antenna by STEM EELS

    PubMed Central

    Schoen, David T.; Holsteen, Aaron L.; Brongersma, Mark L.

    2016-01-01

    The scaling of active photonic devices to deep-submicron length scales has been hampered by the fundamental diffraction limit and the absence of materials with sufficiently strong electro-optic effects. Plasmonics is providing new opportunities to circumvent this challenge. Here we provide evidence for a solid-state electro-optical switching mechanism that can operate in the visible spectral range with an active volume of less than (5 nm)3 or ∼10−6 λ3, comparable to the size of the smallest electronic components. The switching mechanism relies on electrochemically displacing metal atoms inside the nanometre-scale gap to electrically connect two crossed metallic wires forming a cross-point junction. These junctions afford extreme light concentration and display singular optical behaviour upon formation of a conductive channel. The active tuning of plasmonic antennas attached to such junctions is analysed using a combination of electrical and optical measurements as well as electron energy loss spectroscopy in a scanning transmission electron microscope. PMID:27412052

  9. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy.

    PubMed

    Wang, Chen; Ji, Na

    2012-06-01

    The intrinsic aberrations of high-NA gradient refractive index (GRIN) lenses limit their image quality as well as field of view. Here we used a pupil-segmentation-based adaptive optical approach to correct the inherent aberrations in a two-photon fluorescence endoscope utilizing a 0.8 NA GRIN lens. By correcting the field-dependent aberrations, we recovered diffraction-limited performance across a large imaging field. The consequent improvements in imaging signal and resolution allowed us to detect fine structures that were otherwise invisible inside mouse brain slices.

  10. Features of optical surfaces of multifocal diffractive-refractive eye lenses

    NASA Astrophysics Data System (ADS)

    Lenkova, G. A.

    2017-09-01

    This paper considers shape features of the surface structures of multifocal intraocular lenses (IOLs), which, unlike bifocal IOLs, generate additional foci or extends the depth of focus, which not only corrects near and far vision but also provides good vision at intermediate distances. Expansion of the field of clear vision is achieved due to the effects of diffraction, interference, and refraction (change in the radius of curvature of the lens surface). The optical characteristics of the most famous multifocal IOLs (trifocal and quadrafocal lenses and lenses with extended focal area) are given.

  11. High numerical aperture multilayer Laue lenses

    DOE PAGES

    Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; ...

    2015-06-01

    The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along themore » lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.« less

  12. Readout signals calculated for near-field optical pickups with land and groove recording.

    PubMed

    Saito, K; Kishima, K; Ichimura, I

    2000-08-10

    Optical disk readout signals with a solid immersion lens (SIL) and the land-groove recording technique are calculated by use of a simplified vector-diffraction theory. In this method the full vector-diffraction theory is applied to calculate the diffracted light from the initial state of the disk, and the light scattered from the recorded marks is regarded as a perturbation. Using this method, we confirmed that the land-groove recording technique is effective as a means of cross-talk reduction even when the numerical aperture is more than 1. However, the top surface of the disk under the SIL must be flat, or the readout signal from marks recorded on a groove decays when the optical depth of the groove is greater than lambda/8.

  13. High convergence efficiency design of flat Fresnel lens with large aperture

    NASA Astrophysics Data System (ADS)

    Ke, Jieyao; Zhao, Changming; Guan, Zhe

    2018-01-01

    This paper designed a circle-shaped Fresnel lens with large aperture as part of the solar pumped laser design project. The Fresnel lens designed in this paper simulate in size 1000mm×1000mm, focus length 1200mm and polymethyl methacrylate (PMMA) material in order to conduct high convergence efficiency. In the light of design requirement of concentric ring with same width of 0.3mm, this paper proposed an optimized Fresnel lens design based on previous sphere design and conduct light tracing simulation in Matlab. This paper also analyzed the effect of light spot size, light intensity distribution, optical efficiency under four conditions, monochromatic parallel light, parallel spectrum light, divergent monochromatic light and sunlight. Design by 550nm wavelength and under the condition of Fresnel reflection, the results indicated that the designed lens could convergent sunlight in diffraction limit of 11.8mm with a 78.7% optical efficiency, better than the sphere cutting design results of 30.4%.

  14. The investigation of large field of view eyepiece with multilayer diffractive optical element

    NASA Astrophysics Data System (ADS)

    Fan, Changjiang

    2014-11-01

    In this paper, a light-small hybrid refractive/diffractive eyepiece for HMD is designed, which introduces a multilayer Diffractive Optical Element for the first time. This eyepiece optical system has a 22mm eye relief and 8mm exit pupil with 60° FOV. The multilayer DOE overcomes the difficulties of single-layer DOE and double-layer DOE using in the optical system, and improve the image contrast and the performance significantly due to the diffraction efficiency of the multilayer DOE is lager than 90% in wide waveband and large FOV range. The material of multilayer DOE are FCD1 for first layer, FD6 for second layer, PS for the filler layer. Moreover, the weight of the eyepiece system is only 8g, and the diameter of lens is 16mm. The MTF performance can satisfy the requirement of display with VGA resolution. Besides, the lateral color and distortion are 4.8% and 10μm, respectively. The properties of the helmet eyepiece system are excellent.

  15. Electro-optic control of a PPLN-unpoled LiNbO3 boundary for low-voltage Q switching of an intracavity frequency-doubled Nd3+:YVO4 laser.

    PubMed

    Torregrosa, A J; Maestre, H; Fernández-Pousa, C R; Pereda, J A; Capmany, J

    2009-08-01

    We present a simple technique to integrate an electro-optic Q switch in a periodically poled bulk lithium niobate crystal bounded by two unpoled (monodomain) regions. The technique exploits the high sensitivity to low applied electric fields of the total internal reflection condition in the periodic poled-unpoled boundary for the small grazing incidence angles associated with the diffraction of a focused Gaussian beam that propagates in the periodically poled region with its axis parallel to the boundary. When the arrangement is placed intracavity to a 1064 nm diode-pumped Nd(3+):YVO(4) laser, it performs simultaneously as a Q switch and as a second-harmonic generator, with Q switching starting at applied voltages as low as 1 V over a 500 microm thickness and with no additional optical elements.

  16. Varifocal MOEMS fiber scanner for confocal endomicroscopy.

    PubMed

    Meinert, Tobias; Weber, Niklas; Zappe, Hans; Seifert, Andreas

    2014-12-15

    Based on an advanced silicon optical bench technology with integrated MOEMS (Micro-Opto-Electro-Mechanical-System) components, a piezo-driven fiber scanner for confocal microscopy has been developed. This highly-miniaturized technology allows integration into an endoscope with a total outer probe diameter of 2.5 mm. The system features a hydraulically-driven varifocal lens providing axial confocal scanning without any translational movement of components. The demonstrated resolutions are 1.7 μm laterally and 19 μm axially.

  17. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles

    PubMed Central

    Wang, Xuan; Liu, Jinghong; Zhou, Qianfei

    2016-01-01

    In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions. PMID:28029145

  18. Real-Time Multi-Target Localization from Unmanned Aerial Vehicles.

    PubMed

    Wang, Xuan; Liu, Jinghong; Zhou, Qianfei

    2016-12-25

    In order to improve the reconnaissance efficiency of unmanned aerial vehicle (UAV) electro-optical stabilized imaging systems, a real-time multi-target localization scheme based on an UAV electro-optical stabilized imaging system is proposed. First, a target location model is studied. Then, the geodetic coordinates of multi-targets are calculated using the homogeneous coordinate transformation. On the basis of this, two methods which can improve the accuracy of the multi-target localization are proposed: (1) the real-time zoom lens distortion correction method; (2) a recursive least squares (RLS) filtering method based on UAV dead reckoning. The multi-target localization error model is established using Monte Carlo theory. In an actual flight, the UAV flight altitude is 1140 m. The multi-target localization results are within the range of allowable error. After we use a lens distortion correction method in a single image, the circular error probability (CEP) of the multi-target localization is reduced by 7%, and 50 targets can be located at the same time. The RLS algorithm can adaptively estimate the location data based on multiple images. Compared with multi-target localization based on a single image, CEP of the multi-target localization using RLS is reduced by 25%. The proposed method can be implemented on a small circuit board to operate in real time. This research is expected to significantly benefit small UAVs which need multi-target geo-location functions.

  19. Challenges in mold manufacturing for high precision molded diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Schweizer, Klaus; Bergs, Thomas

    2016-09-01

    Isothermal precision glass molding of imaging optics is the key technology for mass production of precise optical elements. Especially for numerous consumer applications (e.g. digital cameras, smart phones, …), high precision glass molding is applied for the manufacturing of aspherical lenses. The usage of diffractive optical elements (DOEs) can help to further reduce the number of lenses in the optical systems which will lead to a reduced weight of hand-held optical devices. But today the application of molded glass DOEs is limited due to the technological challenges in structuring the mold surfaces. Depending on the application submicrometer structures are required on the mold surface. Furthermore these structures have to be replicated very precisely to the glass lens surface. Especially the micro structuring of hard and brittle mold materials such as Tungsten Carbide is very difficult and not established. Thus a multitude of innovative approaches using diffractive optical elements cannot be realized. Aixtooling has investigated in different mold materials and different suitable machining technologies for the micro- and sub-micrometer structuring of mold surfaces. The focus of the work lays on ultra-precision grinding to generate the diffractive pattern on the mold surfaces. This paper presents the latest achievements in diffractive structuring of Tungsten Carbide mold surfaces by ultra-precision grinding.

  20. Laser diode assembly including a cylindrical lens

    DOEpatents

    Snyder, J.J.; Reichert, P.

    1992-01-14

    The present invention provides a diffraction limited, high numerical aperture (fast) cylindrical microlens. The method for making the microlens is adaptable to produce a cylindrical lens that has almost any shape on its optical surfaces. The cylindrical lens may have a shape, such as elliptical or hyperbolic, designed to transform some particular given input light distribution into some desired output light distribution. In the method, the desired shape is first formed in a glass preform. Then, the preform is heated to the minimum drawing temperature and a fiber is drawn from it. The cross-sectional shape of the fiber bears a direct relation to the shape of the preform from which it was drawn. During the drawing process, the surfaces become optically smooth due to fire polishing. 11 figs.

  1. Quality of image of grating target placed in model of human eye with corneal aberrations as observed through multifocal intraocular lenses.

    PubMed

    Inoue, Makoto; Noda, Toru; Mihashi, Toshifumi; Ohnuma, Kazuhiko; Bissen-Miyajima, Hiroko; Hirakata, Akito

    2011-04-01

    To evaluate the quality of the image of a grating target placed in a model eye viewed through multifocal intraocular lenses (IOLs). Laboratory investigation. Refractive (NXG1 or PY60MV) or diffractive (ZM900 or SA60D3) multifocal IOLs were placed in a fluid-filled model eye with human corneal aberrations. A United States Air Force resolution target was placed on the posterior surface of the model eye. A flat contact lens or a wide-field contact lens was placed on the cornea. The contrasts of the gratings were evaluated under endoillumination and compared to those obtained through a monofocal IOL. The grating images were clear when viewed through the flat contact lens and through the central far-vision zone of the NXG1 and PY60MV, although those through the near-vision zone were blurred and doubled. The images observed through the central area of the ZM900 with flat contact lens were slightly defocused but the images in the periphery were very blurred. The contrast decreased significantly in low frequencies (P<.001). The images observed through the central diffractive zone of the SA60D3 were slightly blurred, although the images in the periphery were clearer than that of the ZM900. The images were less blurred in all of the refractive and diffractive IOLs with the wide-field contact lens. Refractive and diffractive multifocal IOLs blur the grating target but less with the wide-angle viewing system. The peripheral multifocal optical zone may be more influential on the quality of the images with contact lens system. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Stray light characteristics of the diffractive telescope system

    NASA Astrophysics Data System (ADS)

    Liu, Dun; Wang, Lihua; Yang, Wei; Wu, Shibin; Fan, Bin; Wu, Fan

    2018-02-01

    Diffractive telescope technology is an innovation solution in construction of large light-weight space telescope. However, the nondesign orders of diffractive optical elements (DOEs) may affect the imaging performance as stray light. To study the stray light characteristics of a diffractive telescope, a prototype was developed and its stray light analysis model was established. The stray light characteristics including ghost, point source transmittance, and veiling glare index (VGI) were analyzed. During the star imaging test of the prototype, the ghost images appeared around the star image as the exposure time of the charge-coupled device improving, consistent with the simulation results. The test result of VGI was 67.11%, slightly higher than the calculated value 57.88%. The study shows that the same order diffraction of the diffractive primary lens and correcting DOE is the main factor that causes ghost images. The stray light sources outside the field of view can illuminate the image plane through nondesign orders diffraction of the primary lens and contributes to more than 90% of the stray light flux on the image plane. In summary, it is expected that these works will provide some guidance for optimizing the imaging performance of diffractive telescopes.

  3. Modules and methods for all photonic computing

    DOEpatents

    Schultz, David R.; Ma, Chao Hung

    2001-01-01

    A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.

  4. An optical processor for object recognition and tracking

    NASA Technical Reports Server (NTRS)

    Sloan, J.; Udomkesmalee, S.

    1987-01-01

    The design and development of a miniaturized optical processor that performs real time image correlation are described. The optical correlator utilizes the Vander Lugt matched spatial filter technique. The correlation output, a focused beam of light, is imaged onto a CMOS photodetector array. In addition to performing target recognition, the device also tracks the target. The hardware, composed of optical and electro-optical components, occupies only 590 cu cm of volume. A complete correlator system would also include an input imaging lens. This optical processing system is compact, rugged, requires only 3.5 watts of operating power, and weighs less than 3 kg. It represents a major achievement in miniaturizing optical processors. When considered as a special-purpose processing unit, it is an attractive alternative to conventional digital image recognition processing. It is conceivable that the combined technology of both optical and ditital processing could result in a very advanced robot vision system.

  5. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    PubMed Central

    Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu

    2016-01-01

    Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146

  6. Optical design of laser zoom projective lens with variable total track

    NASA Astrophysics Data System (ADS)

    He, Yulan; Xiao, Xiangguo; Lu, Feng; Li, Yuan; Han, Kunye; Wang, Nanxi; Qiang, Hua

    2017-02-01

    In order to project the laser command information to the proper distance , so a laser zoom projective lens with variable total track optical system is designed in the carrier-based aircraft landing system. By choosing the zoom structure, designing of initial structure with PW solution, correcting and balancing the aberration, a large variable total track with 35 × zoom is carried out. The size of image is invariable that is φ25m, the distance of projective image is variable from 100m to 3500m. Optical reverse design, the spot is less than 8μm, the MTF is near the diffraction limitation, the value of MTF is bigger than 0.4 at 50lp/mm.

  7. Integration of nanostructured planar diffractive lenses dedicated to near infrared detection for CMOS image sensors.

    PubMed

    Lopez, Thomas; Massenot, Sébastien; Estribeau, Magali; Magnan, Pierre; Pardo, Fabrice; Pelouard, Jean-Luc

    2016-04-18

    This paper deals with the integration of metallic and dielectric nanostructured planar lenses into a pixel from a silicon based CMOS image sensor, for a monochromatic application at 1.064 μm. The first is a Plasmonic Lens, based on the phase delay through nanoslits, which has been found to be hardly compatible with current CMOS technology and exhibits a notable metallic absorption. The second is a dielectric Phase-Fresnel Lens integrated at the top of a pixel, it exhibits an Optical Efficiency (OE) improved by a few percent and an angle of view of 50°. The third one is a metallic diffractive lens integrated inside a pixel, which shows a better OE and an angle of view of 24°. The last two lenses exhibit a compatibility with a spectral band close to 1.064 μm.

  8. Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens

    NASA Astrophysics Data System (ADS)

    Hwang, Taeseon; Kwon, Hyeok-Yong; Oh, Joon-Suk; Hong, Jung-Pyo; Hong, Seung-Chul; Lee, Youngkwan; Ryeol Choi, Hyouk; Jin Kim, Kwang; Hossain Bhuiya, Mainul; Nam, Jae-Do

    2013-07-01

    A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed in N-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes. The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in variable focus lens and various opto-electro-mechanical devices.

  9. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    PubMed Central

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision. PMID:27892454

  10. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-11-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.

  11. Camera System MTF: combining optic with detector

    NASA Astrophysics Data System (ADS)

    Andersen, Torben B.; Granger, Zachary A.

    2017-08-01

    MTF is one of the most common metrics used to quantify the resolving power of an optical component. Extensive literature is dedicated to describing methods to calculate the Modulation Transfer Function (MTF) for stand-alone optical components such as a camera lens or telescope, and some literature addresses approaches to determine an MTF for combination of an optic with a detector. The formulations pertaining to a combined electro-optical system MTF are mostly based on theory, and assumptions that detector MTF is described only by the pixel pitch which does not account for wavelength dependencies. When working with real hardware, detectors are often characterized by testing MTF at discrete wavelengths. This paper presents a method to simplify the calculation of a polychromatic system MTF when it is permissible to consider the detector MTF to be independent of wavelength.

  12. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    NASA Astrophysics Data System (ADS)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  13. Role of coherence in microsphere-assisted nanoscopy

    NASA Astrophysics Data System (ADS)

    Perrin, Stephane; Lecler, Sylvain; Leong-Hoi, Audrey; Montgomery, Paul C.

    2017-06-01

    The loss of the information, due to the diffraction and the evanescent waves, limits the resolving power of classical optical microscopy. In air, the lateral resolution of an optical microscope can approximated at half of the wavelength using a low-coherence illumination. Recently, several methods have been developed in order to overcome this limitation and, in 2011, a new far-field and full-field imaging technique was proposed where a sub-diffraction-limit resolution has been achieved using a transparent microsphere. In this article, the phenomenon of super-resolution using microsphere-assisted microscopy is analysed through rigorous electro-magnetic simulations. The performances of the imaging technique are estimated as function of optical and geometrical parameters. Furthermore, the role of coherence is introduced through the temporal coherence of the light source and the phase response of the object.

  14. Activation and control of microlens liquid arrays on functionalized polar electric crystal substrates by electro-wetting effect and temperature

    NASA Astrophysics Data System (ADS)

    Ferraro, Pietro; Grilli, Simonetta; Miccio, Lisa; Vespini, Veronica; Finizio, Sergio DeNicola Andrea

    2008-11-01

    In recent years a variety of liquid bases optical elements have been conceived, designed and fabricated even for commercial products like digital cameras o cellular phone cameras. The impressive development of microfluidic systems in conjunction with optics has led to the creation of a completely new Science field of investigation named optofludics. Optofludics, among others topics, deals with investigation and methods for realizing liquid micro-lenses. A variety of liquid micro-lenses have been designed and realized by using different configurations. We demonstrate that a lensing effect can be obtained in an open microfluidic system by using a thin layer of liquid on a polar electric crystal such as Lithium Niobate (LiNbO3). Electrowetting patterning on LiNbO3 surface is obtained by pyroelectric effect consisting in a simple but reliable electrodes-less and circuit-less configuration. The electrodes are intrinsically embedded into the substrate. The material is functionalised by means of a micro-engineering electric filed poling process. Lens array with variable focus has been demonstrated with a large number of lens elements (10x10) on micrometric scale (aperture of single lens 100 microns).

  15. A Low-Cost Quantitative Absorption Spectrophotometer

    ERIC Educational Resources Information Center

    Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd

    2012-01-01

    In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…

  16. Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

    PubMed Central

    Kašalynas, Irmantas; Venckevičius, Rimvydas; Minkevičius, Linas; Sešek, Aleksander; Wahaia, Faustino; Tamošiūnas, Vincas; Voisiat, Bogdan; Seliuta, Dalius; Valušis, Gintaras; Švigelj, Andrej; Trontelj, Janez

    2016-01-01

    A terahertz (THz) imaging system based on narrow band microbolometer sensors (NBMS) and a novel diffractive lens was developed for spectroscopic microscopy applications. The frequency response characteristics of the THz antenna-coupled NBMS were determined employing Fourier transform spectroscopy. The NBMS was found to be a very sensitive frequency selective sensor which was used to develop a compact all-electronic system for multispectral THz measurements. This system was successfully applied for principal components analysis of optically opaque packed samples. A thin diffractive lens with a numerical aperture of 0.62 was proposed for the reduction of system dimensions. The THz imaging system enhanced with novel optics was used to image for the first time non-neoplastic and neoplastic human colon tissues with close to wavelength-limited spatial resolution at 584 GHz frequency. The results demonstrated the new potential of compact RT THz imaging systems in the fields of spectroscopic analysis of materials and medical diagnostics. PMID:27023551

  17. Numerical comparison of grid pattern diffraction effects through measurement and modeling with OptiScan software

    NASA Astrophysics Data System (ADS)

    Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.

    2011-06-01

    Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.

  18. Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation.

    PubMed

    Aieta, Francesco; Kats, Mikhail A; Genevet, Patrice; Capasso, Federico

    2015-03-20

    The replacement of bulk refractive optical elements with diffractive planar components enables the miniaturization of optical systems. However, diffractive optics suffers from large chromatic aberrations due to the dispersion of the phase accumulated by light during propagation. We show that this limitation can be overcome with an engineered wavelength-dependent phase shift imparted by a metasurface, and we demonstrate a design that deflects three wavelengths by the same angle. A planar lens without chromatic aberrations at three wavelengths is also presented. Our designs are based on low-loss dielectric resonators, which introduce a dense spectrum of optical modes to enable dispersive phase compensation. The suppression of chromatic aberrations in metasurface-based planar photonics will find applications in lightweight collimators for displays, as well as chromatically corrected imaging systems. Copyright © 2015, American Association for the Advancement of Science.

  19. Near-field microscopy with a microfabricated solid immersion lens

    NASA Astrophysics Data System (ADS)

    Fletcher, Daniel Alden

    2001-07-01

    Diffraction of focused light prevents optical microscopes from resolving features in air smaller than half the wavelength, λ Spatial resolution can be improved by passing light through a sub-wavelength metal aperture scanned close to a sample, but aperture-based probes suffer from low optical throughput, typically below 10-4. An alternate and more efficient technique is solid immersion microscopy in which light is focused through a high refractive index Solid Immersion Lens (SIL). This work describes the fabrication, modeling, and use of a microfabricated SIL to obtain spatial resolution better than the diffraction limit in air with high optical throughput for infrared applications. SILs on the order of 10 μm in diameter are fabricated from single-crystal silicon and integrated onto silicon cantilevers with tips for scanning. We measure a focused spot size of λ/5 with optical throughput better than 10-1 at a wavelength of λ = 9.3 μm. Spatial resolution is improved to λ/10 with metal apertures fabricated directly on the tip of the silicon SIL. Microlenses have reduced spherical aberration and better transparency than large lenses but cannot be made arbitrarily small and still focus. We model the advantages and limitations of focusing in lenses close to the wavelength in diameter using an extension of Mie theory. We also investigate a new contrast mechanism unique to microlenses resulting from the decrease in field-of-view with lens diameter. This technique is shown to achieve λ/4 spatial resolution. We explore applications of the microfabricated silicon SIL for high spatial resolution thermal microscopy and biological spectroscopy. Thermal radiation is collected through the SIL from a heated surface with spatial resolution four times better than that of a diffraction- limited infrared microscope. Using a Fourier-transform infrared spectrometer, we observe absorption peaks in bacteria cells positioned at the focus of the silicon SIL.

  20. Modified surface testing method for large convex aspheric surfaces based on diffraction optics.

    PubMed

    Zhang, Haidong; Wang, Xiaokun; Xue, Donglin; Zhang, Xuejun

    2017-12-01

    Large convex aspheric optical elements have been widely applied in advanced optical systems, which have presented a challenging metrology problem. Conventional testing methods cannot satisfy the demand gradually with the change of definition of "large." A modified method is proposed in this paper, which utilizes a relatively small computer-generated hologram and an illumination lens with certain feasibility to measure the large convex aspherics. Two example systems are designed to demonstrate the applicability, and also, the sensitivity of this configuration is analyzed, which proves the accuracy of the configuration can be better than 6 nm with careful alignment and calibration of the illumination lens in advance. Design examples and analysis show that this configuration is applicable to measure the large convex aspheric surfaces.

  1. Holographic optical element for laser soldering

    NASA Astrophysics Data System (ADS)

    Nakahara, Sumio; Hayashi, Tatsuya; Sudou, Noriyuki; Hisada, Shigeyoshi; Fujita, Takeyoshi

    2002-02-01

    Experimental studies on the characteristics of holographic lens were carried out, aiming at the simultaneous soldering of multi-spots in electronic assembly by the use of YAG laser. Holograms were recorded on the commercial available photographic plates, and converted into transparent phase type holographic lens by chemical processing. The dependencies of the diffraction efficiency on the recording conditions and two chemical treatment methods of silver halide sensitized gelatin and rehalogenating bleaching were examined in CW YAG laser system ((lambda) equals 1.06 micrometers ).

  2. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    PubMed

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  3. An optical system with aberrations on diffraction integrals written in terms of a generalized ABCD matrix

    NASA Astrophysics Data System (ADS)

    Zhao, Chaoying; Tan, Weihan

    2008-12-01

    : In this paper, we consider the transformation of a ray beam as it passes through an optical system containing a glass plate with parallel surfaces inclined to the optical axis at the Brewster’s angle, by investigating the effects of the optical system on amplitude and phase distributions. By applying generalized matrix optics and diffraction integrals and considering the influence of a quarter of a wavelength of aberration on the transmitted amplitude and phase distributions at the focus of a de-collimating lens, we find that the central peak amplitude descends from 1.0 to 0.8 and the phase distortion is less than π/2. The general feature of the amplitude distribution shows an elongation along the y-axis perpendicular to the optical axis in the direction of tilt of the inclined plate, and conforms to the inclination direction of the glass plate.

  4. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask

    NASA Astrophysics Data System (ADS)

    Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.

    2014-07-01

    The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.

  5. Birefringent coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  6. Phase-Shifting Liquid Crystal Point-Diffraction Interferometry

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.; Marshall, Kenneth L.; Mercer, Carolyn R.

    2000-01-01

    Microgravity fluid physics experiments frequently measure concentration and temperature. Interferometers such as the Twyman Green illustrated have performed full-field measurement of these quantities. As with most such devices, this interferometer uses a reference path that is not common with the path through the test section. Recombination of the test and reference wavefronts produces interference fringes. Unfortunately, in order to obtain stable fringes, the alignment of both the test and reference paths must be maintained to within a fraction of the wavelength of the light being used for the measurement. Otherwise, the fringes will shift and may disappear. Because these interferometers are extremely sensitive to bumping, jarring and transmitted vibration, they are typically mounted on optical isolation tables. Schlieren deflectometers or the more recent Shack-Hartmann wavefront sensors also measure concentration and temperature in laboratory fluid flows. Ray optics describe the operation of both devices. In a schlieren system, an expanded, collimated beam passes through a test section where refractive index gradients deflect rays. A lens focuses the beam to a filter placed in the rear focal plane of the decollimating lens. In a quantitative color schlieren system, gradients in the index of refraction appear as colors in the field of view due to the action of the color filter. Since sensitivity is a function of the focal length of the decollimating lens, these systems are rather long and filter fabrication and calibration is rather difficult. A Shack-Hartmann wavefront sensor is an array of small lenslets. Typical diameters are on the order of a few hundred microns. Since these lenslets divide the test section into resolution elements, the spatial resolution can be no smaller than an individual lenslet. Such a device was recently used to perform high-speed tomography of heated air exiting a 1.27 cm diameter nozzle. While these wavefront sensors are very compact, the limited spatial resolution and the methods required for data reduction suggest that a more useful instrument needs to be developed. The category of interferometers known as common path interferometers can eliminate much of the vibration sensitivity associated with traditional interferometry as described above. In these devices, division of the amplitude of the wavefront following the test section produces the reference beam. Examples of these instruments include shearing and point diffraction interferometers. In the latter case, shown schematically, a lens focuses light passing through the test section onto a small diffracting object. Such objects are typically either a circle of material on a high quality glass plate or a small sphere in a glass cell. The size of the focused spot is several times larger than the object so that the light not intercepted by the diffracting object forms the test beam while the diffracted light generates a spherical reference beam. While this configuration is mechanically stable, phase shifting one beam with respect to the other is difficult due to the common path. Phase shifting enables extremely accurate measurements of the phase of the interferogram using only gray scale intensity measurements and is the de facto standard of industry. Mercer and Creath 2 demonstrated phase shifting in a point diffraction interferometer using a spherical spacer in a liquid crystal cell as the diffracting object. By changing the voltage across the cell, they were able to shift the phase of the undiffracted beam relative to the reference beam generated by diffraction from the sphere. While they applied this technology to fluid measurements, the device shifted phase so slowly that it was not useful for studying transient phenomena. We have identified several technical problems that precluded operation of the device at video frame rates and intend to solve them to produce a phase-shifting liquid crystal point-diffraction interferometer operating at video frame rates. The first task is to produce high contrast fringes. Since the diffracted beam is much weaker than the transmitted beam, interferograms have poor contrast unless a dye is added to the liquid crystal to reduce the intensity of the undiffracted light. Dyes previously used were not rigorously characterized and suffered from hysteresis in both the initial alignment state of the device and the electro-optic switching characteristics. Hence, our initial effort will identify and characterize dyes that do not suffer from these difficulties and are readily soluble in the liquid crystal host. Since the ultimate goal of this research is to produce interferometers capable of phase shifting at video frame rates, we will quantify the difference in switching times between ferroelectric and nematic liquid crystals. While we have more experience with nematic crystals, they typically switch more slowly than ferroelectric cells. As part of that effort, we will investigate the difference in the modulation of the interferograms as a function of the type of liquid crystal in the cell. Because the temporal switching response of a liquid crystal cell is directly related its thickness, we intend to explore techniques required to produce cells that are as thin as possible. However, the cells must still produce a total phase shift of two pi radians.

  7. Color waveguide transparent screen using lens array holographic optical element

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  8. Generation of dark hollow beam by focusing a sine-Gaussian beam using a cylindrical lens and a focusing lens

    NASA Astrophysics Data System (ADS)

    Tang, Huiqin; Zhu, Kaicheng

    2013-12-01

    Based on the generalized Huygens-Fresnel diffraction integral, a closed-form propagation equation related to sine-Gaussian beams through a cylindrical lens and a focusing lens is derived and illustrated with numerical methods. It is found that a sine-Gaussian beam through such a system may be converted into a dark hollow beam (DHB) with topological charge index one and its bright enclosure is approximately an elongated ellipse with very high ellipticity. Moreover, the parameter values at which the DHBs have perfect intensity patterns are designed. The optimal relative orientation between the dislocation line of the input sine-Gaussian beam and the axial orientation of the cylindrical lens is specified. And the ellipticity of the elliptical DHBs is mainly defined by the focal length of the cylindrical lens and the Fresnel number of the optical system.

  9. Electro-Optic Computing Architectures. Volume I

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit (OW

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° ×more » 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.« less

  11. Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, N. J.

    2002-03-05

    A number of electron column techniques have been developed over the last forty years to permit visualization of magnetic fields in specimens. These include: Fresnel imaging, Differential Phase Contrast, Electron Holography and Lorentz STEM. In this work we have extended the LSTEM methodology using Position Resolved Diffraction (PRD) to quantitatively measure the in-plane electromagnetic fields of thin film materials. The experimental work reported herein has been carried out using the ANL AAEM HB603Z 300 kV FEG instrument 5. In this instrument, the electron optical column was operated in a zero field mode, at the specimen, where the objective lens ismore » turned off and the probe forming lens functions were reallocated to the C1, C2, and C3 lenses. Post specimen lenses (P1, P2, P3, P4) were used to magnify the transmitted electrons to a YAG screen, which was then optically transferred to a Hamamatsu ORCA ER CCD array. This CCD was interfaced to an EmiSpec Data Acquisition System and the data was subsequently transferred to an external computer system for detailed quantitative analysis. In Position Resolved Diffraction mode, we digitally step a focused electron probe across the region of interest of the specimen while at the same time recording the complete diffraction pattern at each point in the scan.« less

  12. Diffractive Optics: Design, Fabrication, and Applications, Technical Digest Series, Volume 9, 1992

    DTIC Science & Technology

    1992-01-01

    integration of optoelec- lens are presented and discussed. (p. 8) tronic chips with the passive glass optics. (p. 26) 10:00 am-10:30 am Coffee Break 2...optical pickup, Wai-Hon Lee, HOETRON, Inc. This paper discusses the recent pro- 3:30 pm-4:00 pm COFFEE BREAK gress in miniaturization of optical pickup...compared to 0th-order EMT and to 10:00 am-10:30 am COFFEE BREAK a rigorous coupled wave approach. (p. 44) 5:10 pm CABILDO ROOM MD4 Filter properties of

  13. Phase behavior and characterization of heptamethyltrisiloxane-based de Vries smectic liquid crystal by electro-optics, x rays, and dielectric spectroscopy.

    PubMed

    Sreenilayam, S P; Agra-Kooijman, D M; Panov, V P; Swaminathan, V; Vij, J K; Panarin, Yu P; Kocot, A; Panov, A; Rodriguez-Lojo, D; Stevenson, P J; Fisch, Michael R; Kumar, Satyendra

    2017-03-01

    A heptamethyltrisiloxane liquid crystal (LC) exhibiting I-SmA^{*}-SmC^{*} phases has been characterized by calorimetry, polarizing microscopy, x-ray diffraction, electro-optics, and dielectric spectroscopy. Observations of a large electroclinic effect, a large increase in the birefringence (Δn) with electric field, a low shrinkage in the layer thickness (∼1.75%) at 20 °C below the SmA^{*}-SmC^{*} transition, and low values of the reduction factor (∼0.40) suggest that the SmA^{*} phase in this material is of the de Vries type. The reduction factor is a measure of the layer shrinkage in the SmC^{*} phase and it should be zero for an ideal de Vries. Moreover, a decrease in the magnitude of Δn with decreasing temperature indicates the presence of the temperature-dependent tilt angle in the SmA^{*} phase. The electro-optic behavior is explained by the generalized Langevin-Debye model as given by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013)10.1103/PhysRevE.88.062504]. The soft-mode dielectric relaxation strength shows a critical behavior when the system goes from the SmA^{*} to the SmC^{*} phase.

  14. Phase behavior and characterization of heptamethyltrisiloxane-based de Vries smectic liquid crystal by electro-optics, x rays, and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Sreenilayam, S. P.; Agra-Kooijman, D. M.; Panov, V. P.; Swaminathan, V.; Vij, J. K.; Panarin, Yu. P.; Kocot, A.; Panov, A.; Rodriguez-Lojo, D.; Stevenson, P. J.; Fisch, Michael R.; Kumar, Satyendra

    2017-03-01

    A heptamethyltrisiloxane liquid crystal (LC) exhibiting I -Sm A*-Sm C* phases has been characterized by calorimetry, polarizing microscopy, x-ray diffraction, electro-optics, and dielectric spectroscopy. Observations of a large electroclinic effect, a large increase in the birefringence (Δ n ) with electric field, a low shrinkage in the layer thickness (˜1.75%) at 20 °C below the Sm A*-Sm C* transition, and low values of the reduction factor (˜0.40) suggest that the Sm A* phase in this material is of the de Vries type. The reduction factor is a measure of the layer shrinkage in the Sm C* phase and it should be zero for an ideal de Vries. Moreover, a decrease in the magnitude of Δ n with decreasing temperature indicates the presence of the temperature-dependent tilt angle in the Sm A* phase. The electro-optic behavior is explained by the generalized Langevin-Debye model as given by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013), 10.1103/PhysRevE.88.062504]. The soft-mode dielectric relaxation strength shows a critical behavior when the system goes from the Sm A* to the Sm C* phase.

  15. Structures having enhanced biaxial texture

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1999-01-01

    A biaxially textured alloy article includes a rolled and annealed biaxially textured base metal substrate characterized by an x-ray diffraction phi scan peak of no more than 20.degree. FWHM; and a biaxially textured layer of an alloy or another material on a surface thereof. The article further includes at least one of an electromagnetic device or an electro-optical device epitaxially joined to the alloy.

  16. Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Moon, K. R.; Bae, S. Y.; Kim, B. K.

    2015-04-01

    Relative diffraction efficiency (RDE), operating voltage, and response times are most important performance characteristics of holographic polymer dispersed liquid crystals (HPDLC). Two types of triallyl isocyanurate (TI) having different structures were incorporated into the conventional transmission grating of HPDLC. Premix viscosity decreased by 13-18% with up to 3% TI, beyond which it increased. TI eliminated induction period and augmented initial grating formation rate at all contents. Saturation RDE increased over 200% while threshold voltage and rise time decreased to about half and 2/3, respectively up to 3% TI, beyond which the tendencies were reversed. Among the two TIs, low viscosity monomer (TA) showed high RDE, while high miscibility monomer (TE) low characteristic voltages and short response times. It is concluded that grating formation is largely favored by low viscosity, while interface tensions and electro-optical performances by miscibility at similar viscosities.

  17. Experimental method for testing diffraction properties of reflection waveguide holograms.

    PubMed

    Xie, Yi; Kang, Ming-Wu; Wang, Bao-Ping

    2014-07-01

    Waveguide holograms' diffraction properties include peak wavelength and diffraction efficiency, which play an important role in determining their display performance. Based on the record and reconstruction theory of reflection waveguide holograms, a novel experimental method for testing diffraction properties is introduced and analyzed in this paper, which uses a plano-convex lens optically contacted to the surface of the substrate plate of the waveguide hologram, so that the diffracted light beam can be easily detected. Then an experiment is implemented. The designed reconstruction wavelength of the test sample is 530 nm, and its diffraction efficiency is 100%. The experimental results are a peak wavelength of 527.7 nm and a diffraction efficiency of 94.1%. It is shown that the tested value corresponds well with the designed value.

  18. Virtual optical interfaces for the transportation industry

    NASA Astrophysics Data System (ADS)

    Hejmadi, Vic; Kress, Bernard

    2010-04-01

    We present a novel implementation of virtual optical interfaces for the transportation industry (automotive and avionics). This new implementation includes two functionalities in a single device; projection of a virtual interface and sensing of the position of the fingers on top of the virtual interface. Both functionalities are produced by diffraction of laser light. The device we are developing include both functionalities in a compact package which has no optical elements to align since all of them are pre-aligned on a single glass wafer through optical lithography. The package contains a CMOS sensor which diffractive objective lens is optimized for the projected interface color as well as for the IR finger position sensor based on structured illumination. Two versions are proposed: a version which senses the 2d position of the hand and a version which senses the hand position in 3d.

  19. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, K.; Okuda, S.; Hatayama, A.

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  20. Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit

  1. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  2. Polydimethylsiloxane as dielectric and hydrophobic material in electro-wetting liquid lens

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Duan, Junping; Zhang, Binzhen; Wang, Wanjun

    2016-10-01

    An electro-wetting-based variable-focus liquid lens with a spin coated polydimethylsiloxane (PDMS) layer is presented. The PDMS layer acts as both insulation and hydrophobic material of the liquid lens. By changing the applied voltage between the two electrodes, the radius of the water-oil contact curved surface is adjusted to realize the zoom function. In preparation process, at first, the liquid lens is divided into two parts, the PDMS substrate and the cavity, and then two parts of liquid lens are bonding together after surface treatment. After liquid injection and sealing cavity, the whole process was accomplished. The zooming performance of lens is tested, and COMSOL is used to analyze the shape of the water-oil contact curved surface at different voltages, the results shows that with the applied voltage changing from 0V to 120V, the height of meniscus vertex reduced from 2.41mm to 1.67mm, and the focal length changes from -14.3mm to infinity first, and then to 27.1mm.

  3. Electro-Optical Design for Efficient Visual Communication

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.; Jobson, Daniel J.; Rahman, Zia-Ur

    1995-01-01

    Visual communication, in the form of telephotography and television, for example, can be regarded as efficient only if the amount of information that it conveys about the scene to the observer approaches the maximum possible and the associated cost approaches the minimum possible. Elsewhere we have addressed the problem of assessing the end to end performance of visual communication systems in terms of their efficiency in this sense by integrating the critical limiting factors that constrain image gathering into classical communications theory. We use this approach to assess the electro-optical design of image gathering devices as a function of the f number and apodization of the objective lens and the aperture size and sampling geometry of the phot-detection mechanism. Results show that an image gathering device that is designed to optimize information capacity performs similarly to the human eye. For both, the performance approaches the maximum possible, in terms of the efficiency with which the acquired information can be transmitted as decorrelated data, and the fidelity, sharpness, and clearity with which fine detail can be restored.

  4. Electro-optical design for efficient visual communication

    NASA Astrophysics Data System (ADS)

    Huck, Friedrich O.; Fales, Carl L.; Jobson, Daniel J.; Rahman, Zia-ur

    1995-03-01

    Visual communication, in the form of telephotography and television, for example, can be regarded as efficient only if the amount of information that it conveys about the scene to the observer approaches the maximum possible and the associated cost approaches the minimum possible. Elsewhere we have addressed the problem of assessing the end-to-end performance of visual communication systems in terms of their efficiency in this sense by integrating the critical limiting factors that constrain image gathering into classical communication theory. We use this approach to assess the electro-optical design of image-gathering devices as a function of the f number and apodization of the objective lens and the aperture size and sampling geometry of the photodetection mechanism. Results show that an image-gathering device that is designed to optimize information capacity performs similarly to the human eye. For both, the performance approaches the maximum possible, in terms of the efficiency with which the acquired information can be transmitted as decorrelated data, and the fidelity, sharpness, and clarity with which fine detail can be restored.

  5. Multi-mJ energy extraction using Yb-fiber based coherent pulse stacking amplification of fs pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruppe, John M.; Pei, Hanzhang; Chen, Siyun; Sheikhsofla, Morteza; Wilcox, Russell B.; Nees, John A.; Galvanauskas, Almantas

    2017-03-01

    We report multi-mJ energy (>5mJ) extraction from femtosecond-pulse Yb-doped fiber CPA using coherent pulse stacking amplification (CPSA) technique. This high energy extraction has been enabled by amplifying 10's of nanosecond long pulse sequence, and by using 85-µm core Yb-doped CCC fiber based power amplification stage. The CPSA system consists of 1-GHz repetition rate mode-locked fiber oscillator, followed by a pair of fast phase and amplitude electro-optic modulators, a diffraction-grating based pulse stretcher, a fiber amplifier chain, a GTI-cavity based pulse stacker, and a diffraction grating pulse compressor. Electro-optic modulators are used to carve out from the 1-GHz mode-locked pulse train an amplitude and phase modulated pulse burst, which after stretching and amplification, becomes equal-amplitude pulse burst consisting of 27 stretched pulses, each approximately 1-ns long. Initial pulse-burst shaping accounts for the strong amplifier saturation effects, so that it is compensated at the power amplifier output. This 27-pulse burst is then coherently stacked into a single pulse using a multiplexed sequence of 5 GTI cavities. The compact-footprint 4+1 multiplexed pulse stacker consists of 4 cavities having rountrip of 1 ns, and one Herriott-cell folded cavity - with 9ns roundtrip. After stacking, stretched pulses are compressed down to the bandwidth-limited 300 fs duration using a standard diffraction-grating pulse compressor.

  6. Diode end pumped laser and harmonic generator using same

    NASA Technical Reports Server (NTRS)

    Byer, Robert L. (Inventor); Dixon, George J. (Inventor); Kane, Thomas J. (Inventor)

    1988-01-01

    A second harmonic, optical generator is disclosed in which a laser diode produces an output pumping beam which is focused by means of a graded, refractive index rod lens into a rod of lasant material, such as Nd:YAG, disposed within an optical resonator to pump the lasant material and to excite the optical resonator at a fundamental wavelength. A non-linear electro-optic material such as MgO:LiNbO.sub.3 is coupled to the excited, fundamental mode of the optical resonator to produce a non-linear interaction with the fundamental wavelength producing a harmonic. In one embodiment, the gain medium and the non-linear material are disposed within an optical resonator defined by a pair of reflectors, one of which is formed on a face of the gain medium and the second of which is formed on a face of the non-linear medium. In another embodiment, the non-linear, electro-optic material is doped with the lasant ion such that the gain medium and the non-linear doubling material are co-extensive in volume. In another embodiment, a non-linear, doubling material is disposed in an optical resonator external of the laser gai medium for improved stability of the second harmonic generation process. In another embodiment, the laser gain medium andthe non-linear material are bonded together by means of an optically transparent cement to form a mechanically stable, monolithic structure. In another embodiment, the non-linear material has reflective faces formed thereon to define a ring resonator to decouple reflections from the non-linear medium back to the gain medium for improved stability.

  7. Efficiency of a multilayer-Laue-lens with a 102 μm aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert T., E-mail: atm@anl.gov; Wojcik, Michael; Maser, Jorg

    2015-08-24

    A multilayer-Laue-lens (MLL) comprised of WSi{sub 2}/Al layers stacked to a full thickness of 102 μm was characterized for its diffraction efficiency and dynamical diffraction properties by x-ray measurements made in the far field. The achieved aperture roughly doubles the previous maximum reported aperture for an MLL, thereby doubling the working distance. Negative and positive first orders were found to have 14.2% and 13.0% efficiencies, respectively. A section thickness of 9.6 μm was determined from Laue-case thickness fringes in the diffraction data. A background gas consisting of 90% Ar and 10% N{sub 2} was used for sputtering. This material system wasmore » chosen to reduce grown-in stress as the multilayer is deposited. Although some regions of the full MLL exhibited defects, the presently reported results were obtained for a region devoid of defects. The data compare well to dynamical diffraction calculations with Coupled Wave Theory (CWT) which provided confirmation of the optical constants and densities assumed for the CWT calculations.« less

  8. Efficiency of a multilayer-Laue-lens with a 102 μm aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macrander, Albert T.; Kubec, Adam; Conley, Raymond

    2015-08-25

    A multilayer-Laue-lens (MLL) comprised of WSi 2/Al layers stacked to a full thickness of 102 microns was characterized for its diffraction efficiency and dynamical diffraction properties by x-ray measurements made in the far field. The achieved aperture roughly doubles the previous maximum reported aperture for an MLL, thereby doubling the working distance. Negative and positive first orders were found to have 14.2 % and 13.0 % efficiencies, respectively. A section thickness of 9.6 μm was determined from Laue-case thickness fringes in the diffraction data. A background gas consisting of 90 % Ar and 10 % N 2 was used formore » sputtering. This material system was chosen to reduce grown-in stress as the multilayer is deposited. Although some regions of the full MLL exhibited defects, the presently reported results were obtained for a region devoid of defects. The data compare well to dynamical diffraction calculations with Coupled Wave Theory (CWT) which provided confirmation of the optical constants and densities assumed for the CWT calculations.« less

  9. Direct Laser Writing of Nanophotonic Structures on Contact Lenses.

    PubMed

    AlQattan, Bader; Yetisen, Ali K; Butt, Haider

    2018-04-24

    Contact lenses are ubiquitous biomedical devices used for vision correction and cosmetic purposes. Their application as quantitative analytical devices is highly promising for point-of-care diagnostics. However, it is a challenge to integrate nanoscale features into commercial contact lenses for application in low-cost biosensors. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm, 3 ns pulse, 240 mJ) in holographic interference patterning mode was utilized to produce optical nanostructures over the surface of a hydrogel contact lens. One-dimensional (925 nm) and two-dimensional (925 nm × 925 nm) nanostructures were produced on contact lenses and analyzed by spectroscopy and angle-resolve measurements. The holographic properties of these nanostructures were tested in ambient moisture, fully hydrated, and artificial tear conditions. The measurements showed a rapid tuning of optical diffraction from these nanostructures from 41 to 48°. The nanostructures were patterned near the edges of the contact lens to avoid any interference and obstruction to the human vision. The formation of 2D nanostructures on lenses increased the diffraction efficiency by more than 10%. The versatility of the holographic laser ablation method was demonstrated by producing four different 2D nanopattern geometries on contact lenses. Hydrophobicity of the contact lens was characterized by contact angle measurements, which increased from 59.0° at pristine condition to 62.5° at post-nanofabrication. The holographic nanostructures on the contact lens were used to sense the concentration of Na + ions. Artificial tear solution was used to simulate the conditions in dry eye syndrome, and nanostructures on the contact lenses were used to detect the electrolyte concentration changes (±47 mmol L -1 ). Nanopatterns on a contact lens may be used to sense other ocular diseases in early stages at point-of-care settings.

  10. Crystal growth, structural, optical, mechanical and thermal properties of a new nonlinear optical single crystal: L-Ornithine monohydrochloride.

    PubMed

    Balakrishnan, T; Ramamurthi, K

    2009-03-01

    Amino acid family crystals exhibit excellent nonlinear optical and electro optical properties. l-Ornithine monohydrochloride single crystal, belongs to the amino acid group, was grown by the slow evaporation solution growth technique at room temperature. The grown crystals were characterized by single crystal and powder X-ray diffraction analysis, Fourier transform infrared (FTIR) spectroscopy, TGA, DTA and DSC analyses. UV-vis-NIR spectrum shows excellent transmission in the UV, visible and NIR region (300-1600nm). The mechanical properties of grown crystals were studied using Vickers microhardness tester. Its second harmonic generation efficiency was tested using Nd:YAG laser and is 1.25 times that of KDP.

  11. Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications.

    PubMed

    Huang, Kun; Qin, Fei; Liu, Hong; Ye, Huapeng; Qiu, Cheng-Wei; Hong, Minghui; Luk'yanchuk, Boris; Teng, Jinghua

    2018-06-01

    Traditional objective lenses in modern microscopy, based on the refraction of light, are restricted by the Rayleigh diffraction limit. The existing methods to overcome this limit can be categorized into near-field (e.g., scanning near-field optical microscopy, superlens, microsphere lens) and far-field (e.g., stimulated emission depletion microscopy, photoactivated localization microscopy, stochastic optical reconstruction microscopy) approaches. However, they either operate in the challenging near-field mode or there is the need to label samples in biology. Recently, through manipulation of the diffraction of light with binary masks or gradient metasurfaces, some miniaturized and planar lenses have been reported with intriguing functionalities such as ultrahigh numerical aperture, large depth of focus, and subdiffraction-limit focusing in far-field, which provides a viable solution for the label-free superresolution imaging. Here, the recent advances in planar diffractive lenses (PDLs) are reviewed from a united theoretical account on diffraction-based focusing optics, and the underlying physics of nanofocusing via constructive or destructive interference is revealed. Various approaches of realizing PDLs are introduced in terms of their unique performances and interpreted by using optical aberration theory. Furthermore, a detailed tutorial about applying these planar lenses in nanoimaging is provided, followed by an outlook regarding future development toward practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    DOE PAGES

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; ...

    2016-11-28

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° ×more » 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.« less

  13. Method of determining effects of heat-induced irregular refractive index on an optical system.

    PubMed

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.

  14. Electro-Optic Surface Field Imaging System

    DTIC Science & Technology

    1989-06-01

    ELECTRO - OPTIC SURFACE FIELD IMAGING SYSTEM L. E. Kingsley and W. R. Donaldson LABORATORY FOR LASER ENERGETICS University of Rochester 250 East...surface electric fields present during switch operation. The electro - optic , or Pockel’s effect, provides an extremely useful probe of surface electric...fields. Using the electro - optic effect, surface fields can be measured with an optical probe. This paper describes an electro - optic probe which is

  15. Comparison of visual outcomes after bilateral implantation of a diffractive trifocal intraocular lens and blended implantation of an extended depth of focus intraocular lens with a diffractive bifocal intraocular lens

    PubMed Central

    de Medeiros, André Lins; de Araújo Rolim, André Gustavo; Motta, Antonio Francisco Pimenta; Ventura, Bruna Vieira; Vilar, César; Chaves, Mário Augusto Pereira Dias; Carricondo, Pedro Carlos; Hida, Wilson Takashi

    2017-01-01

    Purpose The purpose of this study was to compare the visual outcomes and subjective visual quality between bilateral implantation of a diffractive trifocal intraocular lens, Alcon Acrysof IQ® PanOptix® TNFT00 (group A), and blended implantation of an extended depth of focus lens, J&J Tecnis Symfony® ZXR00 with a diffractive bifocal intraocular lens, J&J Vision Tecnis® ZMB00 (group B). Methods This prospective, nonrandomized, consecutive, comparative study included the assessment of 40 eyes in 20 patients implanted with multifocal intraocular lens. Exclusion criteria were existence of any corneal, retina, or optic nerve disease, previous eye surgery, illiteracy, previous refractive surgery, high axial myopia, expected postoperative corneal astigmatism of >1.00 cylindrical diopter (D), and intraoperative or postoperative complications. Binocular visual acuity was tested in all cases. Ophthalmological evaluation included the measurement of uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), uncorrected near visual acuity (UNVA), and uncorrected intermediate visual acuity (UIVA), with the analysis of contrast sensitivity (CS), and visual defocus curve. Results Postoperative UDVA was 0.01 and −0.096 logMAR (p<0.01) in groups A and B, respectively; postoperative CDVA was −0.07 and −0.16 logMAR (p<0.01) in groups A and B, respectively; UIVA was 0.14 and 0.20 logMAR (p<0.01) in groups A and B, respectively; UNVA was −0.03 and 0.11 logMAR (p<0.01) in groups A and B, respectively. Under photopic conditions group B had better CS at low frequencies with and without glare. Conclusion Both groups promoted good quality of vision for long, intermediate, and short distances. Group B exhibited a better performance for very short distances and for intermediate and long distances ≥−1.50 D of vergence. Group A exhibited a better performance for UIVA at 60 cm and for UNVA at 40 cm. PMID:29138533

  16. Demonstration of glass-based photonic interposer for mid-board-optical engines and electrical-optical circuit board (EOCB) integration strategy

    NASA Astrophysics Data System (ADS)

    Schröder, H.; Neitz, M.; Schneider-Ramelow, M.

    2018-02-01

    Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.

  17. Liquid lens based on electrowetting: actual developments on larger aperture and multiple electrodes design for image stabilization or beam steering

    NASA Astrophysics Data System (ADS)

    Berge, Bruno; Broutin, Jérôme; Gaton, Hilario; Malet, Géraldine; Simon, Eric; Thieblemont, Florent

    2013-03-01

    This paper presents experimental results on several liquid lenses based on Electrowetting which are commercially available. It will be shown that larger aperture lenses are basically of the same optical quality than smaller lenses, sometimes reaching the diffraction limit, then opening new kind of applications areas for variable lenses in laser science. Regarding response time, actual performances of liquids lenses based on Electrowetting are presented and compared to a model simulating the internal fluid reorganization, seen as the main source of delay between electrical actuation and optical evolution of the lens. This simplified analytical model is supporting experimental results in various situations (focus and tilt variations), in static and dynamic regimes.

  18. Spatial modulation of the Fermi level by coherent illumination of undoped GaAs

    NASA Astrophysics Data System (ADS)

    Nolte, D. D.; Olson, D. H.; Glass, A. M.

    1989-11-01

    The Fermi level in undoped GaAs has been modulated spatially by optically quenching EL2 defects. The spatial gradient of the Fermi level produces internal electric fields that are much larger than fields generated by thermal diffusion alone. The resulting band structure is equivalent to a periodic modulation-doped p-i-p structure of alternating insulating and p-type layers. The internal fields are detected via the electro-optic effect by the diffraction of a probe laser in a four-wave mixing geometry. The direct control of the Fermi level distinguishes this phenomenon from normal photorefractive behavior and introduces a novel nonlinear optical process.

  19. Atmospheric dispersion corrector for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Su, Ding-Qiang; Jia, Peng; Liu, Genrong

    2012-02-01

    The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) is the largest, wide field-of-view (FOV) telescope (with an aperture of 4 m), and it is equipped with the highest number (4000) of optical fibres in the world. For the LAMOST North and the LAMOST South, the FOVs are 5° and 3.5°, respectively, and the linear diameters are 1.75 m and 1.22 m, respectively. A new type of atmospheric dispersion corrector (ADC) is put forward and designed for LAMOST. It is a segmented lens, which consists of many lens-prism strips. Although it is very large, its thickness is only 12 mm. Thus, the difficulty of obtaining a large optical glass is avoided, and the aberration caused by the ADC is small. By moving this segmented lens along the optical axis, different dispersions can be obtained. We discuss the effects of ADC's slits on the diffraction energy distribution and on the obstruction of light. We calculate and discuss the aberration caused by the ADC. All these results are acceptable. Such an ADC could also be used for other optical fibre spectroscopic telescopes, especially those which a have very large FOV.

  20. Development of New Electro-Optic and Acousto-Optic Materials.

    DTIC Science & Technology

    1983-11-01

    Improved materials are required for active optical devices, including electro - optic and acousto-optic modulators, switches and tunable filters, as...many microwave applications. In addition, electro - optic and acousto-optic devices are materials limited because the materials currently available are...these materials for applications involving the electro - optic effect, degenerate four-wave mixing and surface acoustic wave technology.

  1. Sub-cell turning to accomplish micron-level alignment of precision assemblies

    NASA Astrophysics Data System (ADS)

    Kumler, James J.; Buss, Christian

    2017-08-01

    Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.

  2. Diffraction-Limited Plenoptic Imaging with Correlated Light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-01

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  3. Diffraction-Limited Plenoptic Imaging with Correlated Light.

    PubMed

    Pepe, Francesco V; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-15

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  4. Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro-Optic Devices

    DTIC Science & Technology

    1992-01-07

    COVERED 4. TITLE AND SUBTITLE Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro - Optic Devices 5a. CONTRACT NUMBER 5b. GRANT...generators, computational devices and the like. 15. SUBJECT TERMS optical devices, electro - optical devices, optical signal processing...THEREOF IN OPTICAL AND ELECTRO - OPTIC DEVICES [75] Inventors: Le*lie H. Sperling, Bethlehem; Clarence J. Murphy, Stroudsburg; Warren A. Rosen

  5. Liquid Crystal Spatial Light Modulators for Simulating Zonal Multifocal Lenses.

    PubMed

    Li, Yiyu; Bradley, Arthur; Xu, Renfeng; Kollbaum, Pete S

    2017-09-01

    To maximize efficiency of the normally lengthy and costly multizone lens design and testing process, it is advantageous to evaluate the potential efficacy of a design as thoroughly as possible prior to lens fabrication and on-eye testing. The current work describes an ex vivo approach of optical design testing. The aim of this study was to describe a system capable of examining the optical characteristics of multizone bifocal and multifocal optics by subaperture stitching using liquid crystal technologies. A liquid crystal spatial light modulator (SLM) was incorporated in each of two channels to generate complementary subapertures by amplitude modulation. Additional trial lenses and phase plates were placed in pupil conjugate planes of either channel to integrate the desired bifocal and multifocal optics once the two optical paths were recombined. A high-resolution Shack-Hartmann aberrometer was integrated to measure the optics of the dual-channel system. Power and wavefront error maps as well as point spread functions were measured and computed for each of three multizone multifocal designs. High transmission modulation was achieved by introducing half-wavelength optical path differences to create two- and five-zone bifocal apertures. Dual-channel stitching revealed classic annular rings in the point spread functions generated from two-zone designs when the outer annular optic was defocused. However, low efficiency of the SLM prevented us from simultaneously measuring the eye + simulator aberrations, and the higher-order diffraction patterns generated by the cellular structure of the liquid crystal arrays limited the visual field to ±0.45 degrees. The system successfully simulated bifocal and multifocal simultaneous lenses allowing for future evaluation of both objective and subjective evaluation of complex optical designs. However, low efficiency and diffraction phenomena of the SLM limit the utility of this technology for simulating multizone and multifocal optics.

  6. Investigation of Analog Photonic Link Technology for Timing and Metrological Applications

    DTIC Science & Technology

    2015-05-18

    same model bias tee in each case. Fig. 1.8: Measured residual single-sideband (SSB) phase noise for two amplifiers with various RF pads at...deflection at the AO output. The deflected signal is reflected onto a tilted diffraction grating and passed backed through the device to the output...Other TTD modulation mechanisms have been considered including fiber stretches (mechanical and piezoelectric ), electro-optic modulators (i.e

  7. Polymeric Materials for Electro-Optic Testing.

    DTIC Science & Technology

    1987-07-01

    what Langmuir Blodgett films are, how they are grown and deposited on a material, and the electro - optic effects in Langmuir/Blodgett films. Stephen...Kowel has experimented with several different types of organic dyes mixed in the films to increase the electro - optic effect in the films. The bulk of his...test integrated circuits. Keywords: Langmuir Blodgett films, Electro - optic testing, Integrated circuits, Linear electro - optic effect.

  8. Development and application of a ray-based model of light propagation through a spherical acousto-optic lens

    PubMed Central

    Evans, Geoffrey J.; Kirkby, Paul A.; Nadella, K. M. Naga Srinivas; Marin, Bóris; Silver, R. Angus

    2016-01-01

    A spherical acousto-optic lens (AOL) consists of four acousto-optic deflectors (AODs) that can rapidly and precisely control the focal position of an optical beam in 3D space. Development and application of AOLs has increased the speed at which 3D random access point measurements can be performed with a two-photon microscope. This has been particularly useful for measuring brain activity with fluorescent reporter dyes because neuronal signalling is rapid and sparsely distributed in 3D space. However, a theoretical description of light propagation through AOLs has lagged behind their development, resulting in only a handful of simplified principles to guide AOL design and optimization. To address this we have developed a ray-based computer model of an AOL incorporating acousto-optic diffraction and refraction by anisotropic media. We extended an existing model of a single AOD with constant drive frequency to model a spherical AOL: four AODs in series driven with linear chirps. AOL model predictions of the relationship between optical transmission efficiency and acoustic drive frequency including second order diffraction effects closely matched experimental measurements from a 3D two-photon AOL microscope. Moreover, exploration of different AOL drive configurations identified a new simple rule for maximizing the field of view of our compact AOL design. By providing a theoretical basis for understanding optical transmission through spherical AOLs, our open source model is likely to be useful for comparing and improving different AOL designs, as well as identifying the acoustic drive configurations that provide the best transmission performance over the 3D focal region. PMID:26368449

  9. Development and application of a ray-based model of light propagation through a spherical acousto-optic lens.

    PubMed

    Evans, Geoffrey J; Kirkby, Paul A; Naga Srinivas Nadella, K M; Marin, Bóris; Angus Silver, R

    2015-09-07

    A spherical acousto-optic lens (AOL) consists of four acousto-optic deflectors (AODs) that can rapidly and precisely control the focal position of an optical beam in 3D space. Development and application of AOLs has increased the speed at which 3D random access point measurements can be performed with a two-photon microscope. This has been particularly useful for measuring brain activity with fluorescent reporter dyes because neuronal signalling is rapid and sparsely distributed in 3D space. However, a theoretical description of light propagation through AOLs has lagged behind their development, resulting in only a handful of simplified principles to guide AOL design and optimization. To address this we have developed a ray-based computer model of an AOL incorporating acousto-optic diffraction and refraction by anisotropic media. We extended an existing model of a single AOD with constant drive frequency to model a spherical AOL: four AODs in series driven with linear chirps. AOL model predictions of the relationship between optical transmission efficiency and acoustic drive frequency including second order diffraction effects closely matched experimental measurements from a 3D two-photon AOL microscope. Moreover, exploration of different AOL drive configurations identified a new simple rule for maximizing the field of view of our compact AOL design. By providing a theoretical basis for understanding optical transmission through spherical AOLs, our open source model is likely to be useful for comparing and improving different AOL designs, as well as identifying the acoustic drive configurations that provide the best transmission performance over the 3D focal region.

  10. Low cost and high performance GPON, GEPON and RFoG optical network pentaplexer module design using diffractive grating approach

    NASA Astrophysics Data System (ADS)

    Chen, I.-Ju; Chi, Chang-Chia; Tarn, Chen-Wen

    2016-01-01

    A new architecture of a pentaplexer transceiver module which can be used in GPON/GEPON and RFoG triple play optical networks with supporting of the multiple optical wavelengths of 1310 nm, 1490 nm, 1550 nm, 1610 nm, and 1650 nm, is proposed. By using diffractive grating elements combing with market readily available GRIN (Gradient-Index) lens, grating, mirrors, beamsplitter, LDs (Laser Diodes), and PDs (Photodetectors), the proposed design have the advantages of low cost, high efficiency/performance, easy design and manufacturing, over the contemporary triplex transceivers which are made of multilayer filters or waveguides that increase the complexity of manufacturing and reduce the performance efficiency. With the proposed design, a pentaplexer system can accommodate GPON/GEPON, RFoG, and monitoring integration services, total five optical wavelength channels into a hybrid-integrated TO-CAN package platform with sufficient efficiency.

  11. Measurement of Nonlinear Optical Properties of Single-Crystal Thin-Films of 3-Methyl-4-Methoxy-4'-Nitrostilbene (MMONS)

    NASA Astrophysics Data System (ADS)

    Tan, Shida; Bhowmik, Achintya; Thakur, Mrinal

    2000-03-01

    Excellent optical quality large area ( ~1 cm^2) single-crystal thin-films of MMONS were prepared by modified shear method.(M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989).) This material belongs to mm2 point group.(D. Bierlein, L. K. Cheng, Y. Wang, and W. Tam, Appl. Phys. Lett. 56, 423 (1990).) Polarized optical microscopic and X-ray diffraction studies were performed to characterize the single-crystal films. The surface orientation of the films was (100). Polarized optical absorption measurements showed a large dichroism in the film as the molecules are oriented almost parallel to the film-plane. Using a mode-locked Nd:YAG laser ( ~100 ps, 82 MHz), the significant d-coefficients were determined by polarization selective SHG measurements, and the electro-optic coefficients were determined by field-induced birefringence measurements. The measured magnitudes of d- and r-coefficients are d_33=198±10 pm/V, d_32=78±5 pm/V, r_33=52±5 pm/V, and r_23=21±2 pm/V at 1064 nm. The results indicate that these films are promising for applications in guided-wave SHG and electro-optics.

  12. Diffraction analysis of sidelobe characteristics of optical elements with ripple error

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Luo, Yupeng; Bai, Jian; Zhou, Xiangdong; Du, Juan; Liu, Qun; Luo, Yujie

    2018-03-01

    The ripple errors of the lens lead to optical damage in high energy laser system. The analysis of sidelobe on the focal plane, caused by ripple error, provides a reference to evaluate the error and the imaging quality. In this paper, we analyze the diffraction characteristics of sidelobe of optical elements with ripple errors. First, we analyze the characteristics of ripple error and build relationship between ripple error and sidelobe. The sidelobe results from the diffraction of ripple errors. The ripple error tends to be periodic due to fabrication method on the optical surface. The simulated experiments are carried out based on angular spectrum method by characterizing ripple error as rotationally symmetric periodic structures. The influence of two major parameter of ripple including spatial frequency and peak-to-valley value to sidelobe is discussed. The results indicate that spatial frequency and peak-to-valley value both impact sidelobe at the image plane. The peak-tovalley value is the major factor to affect the energy proportion of the sidelobe. The spatial frequency is the major factor to affect the distribution of the sidelobe at the image plane.

  13. Adaptive slit beam shaping for direct laser written waveguides.

    PubMed

    Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J

    2012-02-15

    We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.

  14. Electro-Optic Beam Steering Using Non-Linear Organic Materials

    DTIC Science & Technology

    1993-08-01

    York (SUNY), Buffalo, for potential application to the Hughes electro - optic beam deflector device. Evaluations include electro - optic coefficient...response time, transmission, and resistivity. Electro - optic coefficient measurements were made at 633 nm using a simple reflection technique. The

  15. Finite Element Analysis of the LOLA Receiver Telescope Lens

    NASA Technical Reports Server (NTRS)

    Matzinger, Elizabeth

    2007-01-01

    This paper presents the finite element stress and distortion analysis completed on the Receiver Telescope lens of the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. The Receiver Telescope captures the laser pulses transmitted through a diffractive optical element (DOE) and reflected off the lunar surface. The largest lens of the Receiver Telescope, Lens 1, is a 150 mm diameter aspheric lens originally designed to be made of BK7 glass. The finite element model of the Receiver Telescope Lens 1 is comprised of solid elements and constrained in a manner consistent with the behavior of the mounting configuration of the Receiver Telescope tube. Twenty-one temperature load cases were mapped to the nodes based on thermal analysis completed by LOLA's lead thermal analyst, and loads were applied to simulate the preload applied from the ring flexure. The thermal environment of the baseline design (uncoated BK7 lens with no baffle) produces large radial and axial gradients in the lens. These large gradients create internal stresses that may lead to part failure, as well as significant bending that degrades optical performance. The high stresses and large distortions shown in the analysis precipitated a design change from BK7 glass to sapphire.

  16. Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics

    NASA Astrophysics Data System (ADS)

    Romero, Lenny A.; Millán, María. S.; Jaroszewicz, Zbigniew; Kołodziejczyk, Andrzej

    2015-01-01

    The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a traditional optical system, this is commonly known as extended DOF (EDOF). In this paper we explore Programmable Diffractive Optical Elements (PDOEs), with EDOF, as an alternative solution to visual impairments, especially presbyopia. These DOEs were written onto a reflective liquid cystal on silicon (LCoS) spatial light modulator (SLM). Several designs of the elements are analyzed: the Forward Logarithmic Axicon (FLAX), the Axilens (AXL), the Light sword Optical Element (LSOE), the Peacock Eye Optical Element (PE) and Double Peacock Eye Optical Element (DPE). These elements focus an incident plane wave into a segment of the optical axis. The performances of the PDOEs are compared with those of multifocal lenses. In all cases, we obtained the point spread function and the image of an extended object. The results are presented and discussed.

  17. Wavelength-addressed intra-board optical interconnection by plug-in alignment with a micro hole array

    NASA Astrophysics Data System (ADS)

    Nakama, Kenichi; Tokiwa, Yuu; Mikami, Osamu

    2010-09-01

    Intra-board interconnection between optical waveguide channels is suitable for assembling high-speed optoelectronic printed wiring boards (OE-PWB). Here, we propose a novel optical interconnection method combining techniques for both wavelength-based optical waveguide addressing and plug-in optical waveguide alignment with a micro-hole array (MHA). This array was fabricated by the mask transfer method. For waveguide addressing, we used a micro passive wavelength selector (MPWS) module, which is a type of Littrow mount monochromator consisting of an optical diffraction grating, a focusing lens, and the MHA. From the experimental results, we found that the wavelength addressing operation of the MPWS module was effective for intra-board optical interconnection.

  18. Structure and Refinement of Ordered Aromatic Heterocyclic Polymers by Diffraction Methods: Application of Results to Electro-Optic Phenomena.

    DTIC Science & Technology

    1988-02-01

    0 396 3.93 2248 2528 C25 0.111 -0.18 0495 1 1 6 3.42 341 496 356 C26 -0.011 0.107 0.624 2 I 3 3.09 3.10 1075 563 C2’ -0083 -0.104 0.630 0 2 0 298 298...crystalline material. The diffuseness of diffraction maxima, especially along the meridian, and the streaking visible along the hkl and hk2 layer lines are...3 . The measured density obtained by flotation in a cyclohexane/carbon tetrachloride mixture is 1.46 g cm-3 . The systematic absences ( hkl , h+k odd

  19. Zoned near-zero refractive index fishnet lens antenna: Steering millimeter waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco-Peña, V., E-mail: victor.pacheco@unavarra.es; Orazbayev, B., E-mail: b.orazbayev@unavarra.es; Beaskoetxea, U., E-mail: unai.beaskoetxea@unavarra.es

    2014-03-28

    A zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presentedmore » and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.« less

  20. Feasibility study of the application of radially polarized illumination to solid immersion lens-based near-field optics.

    PubMed

    Yoon, Yong-Joong; Kim, Wan-Chin; Park, No-Cheol; Park, Kyoung-Su; Park, Young-Pil

    2009-07-01

    We analyzed the behavior of the electric field in a focal plane consisting of a solid immersion lens (SIL), an air gap, and a measurement sample for radially polarized illumination in SIL-based near-field optics with an annular aperture. The analysis was based on the Debye diffraction integral and multiple beam interference. For SIL-based near-field optics whose NA is higher than unity, radially polarized light generates a smaller beam spot on the bottom surface of a SIL than circularly polarized light; however, the beam spot on the measurement sample is broadened with a more dominant transverse electric field. By introducing an annular aperture technique, it is possible to decrease the effects of the transverse electric field, and therefore the size of the beam spot on the measurement sample can be small. This analysis could have various applications in near-field optical storage, near-field microscopy, lithography at ultrahigh resolution, and other applications that use SILs for high resolution.

  1. Multiconjugate adaptive optics applied to an anatomically accurate human eye model.

    PubMed

    Bedggood, P A; Ashman, R; Smith, G; Metha, A B

    2006-09-04

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  2. Design and characteristic analysis of shaping optics for optical trepanning

    NASA Astrophysics Data System (ADS)

    Zeng, D.; Latham, W. P.; Kar, A.

    2005-08-01

    Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. The refractive axicon system has been designed to generating a collimated annular beam. In this article, calculations of intensity distributions produced by this refractive system are made by evaluating the Kirchhoff-Fresnel diffraction. It is shown that the refractive system is able to transform a Gaussian beam into a full Gaussian annular beam. The base angle of the axicon lens, input laser beam diameter and intensity profiles are found to be important factors for the axcion refractive system. Their effects on the annular beam profiles are analyzed based on the numerical solutions of the diffraction patterns.

  3. Optical Simulation and Fabrication of Pancharatnam (Geometric) Phase Devices from Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Gao, Kun

    Pancharatnam made clear the concept of a phase-only device based on changes in the polarization state of light. A device of this type is sometimes called a circular polarization grating because of the polarization states of interfering light beams used to fabricate it by polarization holography. Here, we will call it a Pancharatnam (geometric) phase device to emphasize the fact that the phase of diffracted light does not have a discontinuous periodic profile but changes continuously. In this dissertation, using simulations and experiments, we have successfully demonstrated a 90% diffraction efficiency based on the Pancharatnam phase deflector (PPD) with the dual-twist structure. Unlike the conventional Pancharatnam phase deflector (c-PPD) limited to small diffraction angles, our work demonstrates that a device with a structural periodicity near the wavelength of light is highly efficient at deflecting light to large angles. Also, from a similar fabrication procedure, we have made an ultra-compact non-mechanical zoom lens system based on the Pancharatnam phase lens (PPL) with a low f-number and high efficiency. The wavelength dependence on the image quality is evaluated and shown to be satisfactory from red light to near-infrared machine vision systems. A demonstration device is shown with a 4x zoom ratio at a 633 nm wavelength. The unique characteristic of these devices is made possible through the use of azo-dye photoalignment materials to align a liquid crystal polymer (reactive mesogens). Furthermore, the proposed dual-twist design and fabrication opens the possibility for making a high-efficiency beam-steering device, a lens with an f-number less than 1.0, as well as a wide range of other potential applications in the optical and display industry. The details of simulation, fabrication, and characterization of these devices are shown in this dissertation.

  4. Polarizing aperture stereoscopic cinema camera

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny

    2012-03-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor (the size of the standard 35mm frame) with the means to select left and right image information. Even with the added stereoscopic capability the appearance of existing camera bodies will be unaltered.

  5. Polarizing aperture stereoscopic cinema camera

    NASA Astrophysics Data System (ADS)

    Lipton, Lenny

    2012-07-01

    The art of stereoscopic cinematography has been held back because of the lack of a convenient way to reduce the stereo camera lenses' interaxial to less than the distance between the eyes. This article describes a unified stereoscopic camera and lens design that allows for varying the interaxial separation to small values using a unique electro-optical polarizing aperture design for imaging left and right perspective views onto a large single digital sensor, the size of the standard 35 mm frame, with the means to select left and right image information. Even with the added stereoscopic capability, the appearance of existing camera bodies will be unaltered.

  6. Application and System Design of Elastomer Based Optofluidic Lenses

    NASA Astrophysics Data System (ADS)

    Savidis, Nickolaos

    Adaptive optic technology has revolutionized real time correction of wavefront aberrations. Optofluidic based applied optic devices have offered an opportunity to produce flexible refractive lenses in the correction of wavefronts. Fluidic lenses have superiority relative to their solid lens counterparts in their capabilities of producing tunable optical systems, that when synchronized, can produce real time variable systems with no moving parts. We have developed optofluidic fluidic lenses for applications of applied optical devices, as well as ophthalmic optic devices. The first half of this dissertation discusses the production of fluidic lenses as optical devices. In addition, the design and testing of various fluidic systems made with these components are evaluated. We begin with the creation of spherical or defocus singlet fluidic lenses. We then produced zoom optical systems with no moving parts by synchronizing combinations of these fluidic spherical lenses. The variable power zoom system incorporates two singlet fluidic lenses that are synchronized. The coupled device has no moving parts and has produced a magnification range of 0.1 x to 10 x or a 20 x magnification range. The chapter after fluidic zoom technology focuses on producing achromatic lens designs. We offer an analysis of a hybrid diffractive and refractive achromat that offers discrete achromatized variable focal lengths. In addition, we offer a design of a fully optofluidic based achromatic lens. By synchronizing the two membrane surfaces of the fluidic achromat we develop a design for a fluidic achromatic lens. The second half of this dissertation discusses the production of optofluidic technology in ophthalmic applications. We begin with an introduction to an optofluidic phoropter system. A fluidic phoropter is designed through the combination of a defocus lens with two cylindrical fluidic lenses that are orientated 45° relative to each other. Here we discuss the designs of the fluidic cylindrical lens coupled with a previously discussed defocus singlet lens. We then couple this optofluidic phoropter with relay optics and Shack-Hartmann wavefront sensing technology to produce an auto-phoropter device. The auto-phoropter system combines a refractometer designed Shack-Hartmann wavefront sensor with the compact refractive fluidic lens phoropter. This combination allows for the identification and control of ophthalmic cylinder, cylinder axis, as well as refractive error. The closed loop system of the fluidic phoropter with refractometer enables for the creation of our see-through auto-phoropter system. The design and testing of several generations of transmissive see-through auto-phoropter devices are presented in this section.

  7. Limit characteristics of digital optoelectronic processor

    NASA Astrophysics Data System (ADS)

    Kolobrodov, V. G.; Tymchik, G. S.; Kolobrodov, M. S.

    2018-01-01

    In this article, the limiting characteristics of a digital optoelectronic processor are explored. The limits are defined by diffraction effects and a matrix structure of the devices for input and output of optical signals. The purpose of a present research is to optimize the parameters of the processor's components. The developed physical and mathematical model of DOEP allowed to establish the limit characteristics of the processor, restricted by diffraction effects and an array structure of the equipment for input and output of optical signals, as well as to optimize the parameters of the processor's components. The diameter of the entrance pupil of the Fourier lens is determined by the size of SLM and the pixel size of the modulator. To determine the spectral resolution, it is offered to use a concept of an optimum phase when the resolved diffraction maxima coincide with the pixel centers of the radiation detector.

  8. Defocusing effects of lensless ghost imaging and ghost diffraction with partially coherent sources

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang-Xi; Sheng, Wei; Bi, Yu-Bo; Luo, Chun-Ling

    2018-04-01

    The defocusing effect is inevitable and degrades the image quality in the conventional optical imaging process significantly due to the close confinement of the imaging lens. Based on classical optical coherent theory and linear algebra, we develop a unified formula to describe the defocusing effects of both lensless ghost imaging (LGI) and lensless ghost diffraction (LGD) systems with a partially coherent source. Numerical examples are given to illustrate the influence of defocusing length on the quality of LGI and LGD. We find that the defocusing effects of the test and reference paths in the LGI or LGD systems are entirely different, while the LGD system is more robust against defocusing than the LGI system. Specifically, we find that the imaging process for LGD systems can be viewed as pinhole imaging, which may find applications in ultra-short-wave band imaging without imaging lenses, e.g. x-ray diffraction and γ-ray imaging.

  9. Measuring the spatial resolution of an optical system in an undergraduate optics laboratory

    NASA Astrophysics Data System (ADS)

    Leung, Calvin; Donnelly, T. D.

    2017-06-01

    Two methods of quantifying the spatial resolution of a camera are described, performed, and compared, with the objective of designing an imaging-system experiment for students in an undergraduate optics laboratory. With the goal of characterizing the resolution of a typical digital single-lens reflex (DSLR) camera, we motivate, introduce, and show agreement between traditional test-target contrast measurements and the technique of using Fourier analysis to obtain the modulation transfer function (MTF). The advantages and drawbacks of each method are compared. Finally, we explore the rich optical physics at work in the camera system by calculating the MTF as a function of wavelength and f-number. For example, we find that the Canon 40D demonstrates better spatial resolution at short wavelengths, in accordance with scalar diffraction theory, but is not diffraction-limited, being significantly affected by spherical aberration. The experiment and data analysis routines described here can be built and written in an undergraduate optics lab setting.

  10. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, Timothy J.; Taylor, Antoinette J.; Stewart, Kevin R.

    1996-01-01

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification.

  11. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, T.J.; Taylor, A.J.; Stewart, K.R.

    1996-08-06

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification. 5 figs.

  12. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.

  13. Effects of higher order aberrations on beam shape in an optical recording system

    NASA Technical Reports Server (NTRS)

    Wang, Mark S.; Milster, Tom D.

    1992-01-01

    An unexpected irradiance pattern in the detector plane of an optical data storage system was observed. Through wavefront measurement and scalar diffraction modeling, it was discovered that the energy redistribution is due to residual third-order and fifth-order spherical aberration of the objective lens and cover-plate assembly. The amount of residual aberration is small, and the beam focused on the disk would be considered diffraction limited by several criteria. Since the detector is not in the focal plane, even this small amount of aberration has a significant effect on the energy distribution. We show that the energy redistribution can adversely affect focus error signals, which are responsible for maintaining sub-micron spot diameters on the spinning disk.

  14. Improved Electro-Optical Switches

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N.; Cooper, Ronald F.

    1994-01-01

    Improved single-pole, double-throw electro-optical switches operate in switching times less than microsecond developed for applications as optical communication systems and networks of optical sensors. Contain no moving parts. In comparison with some prior electro-optical switches, these are simpler and operate with smaller optical losses. Beam of light switched from one output path to other by applying, to electro-optical crystal, voltage causing polarization of beam of light to change from vertical to horizontal.

  15. Stoichiometric Lithium Niobate (SLN) Based Linearized Electro-Optic (EO) Modulator

    DTIC Science & Technology

    2006-01-01

    AFRL-SN-RS-TR-2006-15 Final Technical Report January 2006 STOICHIOMETRIC LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO...LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO) MODULATOR 6. AUTHOR(S) Dr Stuart Kingsley, Dr Sri Sriram 5. FUNDING NUMBERS C...SUBJECT TERMS electro - optic modulator, linearization, directional coupler, variable coupling, optical waveguide, Mach-Zehnder, photonic link, lithium

  16. High signal-to-noise-ratio electro-optical terahertz imaging system based on an optical demodulating detector array.

    PubMed

    Spickermann, Gunnar; Friederich, Fabian; Roskos, Hartmut G; Bolívar, Peter Haring

    2009-11-01

    We present a 64x48 pixel 2D electro-optical terahertz (THz) imaging system using a photonic mixing device time-of-flight camera as an optical demodulating detector array. The combination of electro-optic detection with a time-of-flight camera increases sensitivity drastically, enabling the use of a nonamplified laser source for high-resolution real-time THz electro-optic imaging.

  17. Electro-optic device with gap-coupled electrode

    DOEpatents

    Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.

    2013-08-20

    An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.

  18. Electro-Optic Modulator and Method

    DTIC Science & Technology

    An optical intensity modulator which uses a Sagnac interferometer having an electro - optic phase modulator therein. An electric modulation signal is...modulating the optical signals by the electrical signal, the electro - optic effect in the modulator phase shifts the optical signals with respect to one another

  19. Fast switchable ferroelectric liquid crystal gratings with two electro-optical modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ying; Srivastava, A. K., E-mail: abhishek-srivastava-lu@yahoo.co.in; Chigrinov, V. G.

    In this article, we reveal a theoretical and experimental illustration of the Ferroelectric liquid crystal (FLC) grating fabricated by mean of patterned alignment based on photo-alignment. The complexity related to the mismatching of the predefined alignment domains on the top and bottom substrate has been avoided by incorporating only one side photo aligned substrate while the other substrate does not have any alignment layer. Depending on the easy axis in the said alignment domains and the azimuth plane of the impinging polarized light, the diffracting element can be tuned in two modes i.e. DIFF/OFF switchable and DIFF/TRANS switchable modes, whichmore » can be applied to different applications. The diffraction profile has been illustrated theoretically that fits well with the experimental finding and thus the proposed diffraction elements with fast response time and high diffraction efficiency could find application in many modern devices.« less

  20. Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam.

    PubMed

    Philip, Geo M; Viswanathan, Nirmal K

    2010-11-01

    We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.

  1. Electro-Optic Generation and Detection of Femtosecond Electromagnetic Pulses

    DTIC Science & Technology

    1991-11-20

    electromagnetic pulses from an electro - optic crystal following their generation by electro - optic Cherenkov radiation, and their subsequent propagation and detection...in free space; (4) The measurement of subpicosecond electrical response of a new organic electrooptic material (polymer); (5) The observation of terahertz transition radiation from the surfaces of electro - optic crystals.

  2. Acousto-Optic and Linear Electro-Optic Properties of Organic Polymeric Materials

    DTIC Science & Technology

    1989-04-27

    Naval Research Laboratory Washington, DC 20375-5000 NRL Memorandum Report 6454 od I3 Acousto - Optic and Linear Electro-Optic Properties of Organic...PROGRAM P1RC;EC7 ASK Arlington, VA 22217-5000 ELEMENT NO NO1 I1I TITLE (Include Security Classification) Acousto - Optic and Linear Electro-Optic...briefly discussing the important molecular properties for enhanced acousto ~ optic and electro-Ooptic ef fects and then relating these to "current

  3. High-speed, Low Voltage, Miniature Electro-optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol-Gel Technology

    DTIC Science & Technology

    2012-02-01

    code) 01/02/2012 FINAL 15/11/2008 - 15/11/2011 High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer... optic modulator, silicon photonics, integrated optics, electro - optic polymer, avionics, optical communications, sol-gel, nanotechnology U U U UU 25...2011 Program Manager: Dr. Charles Y-C Lee High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol

  4. Electro-optical design for efficient visual communication

    NASA Astrophysics Data System (ADS)

    Huck, Friedrich O.; Fales, Carl L.; Jobson, Daniel J.; Rahman, Zia-ur

    1994-06-01

    Visual communication can be regarded as efficient only if the amount of information that it conveys from the scene to the observer approaches the maximum possible and the associated cost approaches the minimum possible. To deal with this problem, Fales and Huck have integrated the critical limiting factors that constrain image gathering into classical concepts of communication theory. This paper uses this approach to assess the electro-optical design of the image gathering device. Design variables include the f-number and apodization of the objective lens, the aperture size and sampling geometry of the photodetection mechanism, and lateral inhibition and nonlinear radiance-to-signal conversion akin to the retinal processing in the human eye. It is an agreeable consequence of this approach that the image gathering device that is designed along the guidelines developed from communication theory behaves very much like the human eye. The performance approaches the maximum possible in terms of the information content of the acquired data, and thereby, the fidelity, sharpness and clarity with which fine detail can be restored, the efficiency with which the visual information can be transmitted in the form of decorrelated data, and the robustness of these two attributes to the temporal and spatial variations in scene illumination.

  5. Dynamic Response of an Optomechanical System to a Stationary Random Excitation in the Time Domain

    DOE PAGES

    Palmer, Jeremy A.; Paez, Thomas L.

    2011-01-01

    Modern electro-optical instruments are typically designed with assemblies of optomechanical members that support optics such that alignment is maintained in service environments that include random vibration loads. This paper presents a nonlinear numerical analysis that calculates statistics for the peak lateral response of optics in an optomechanical sub-assembly subject to random excitation of the housing. The work is unique in that the prior art does not address peak response probability distribution for stationary random vibration in the time domain for a common lens-retainer-housing system with Coulomb damping. Analytical results are validated by using displacement response data from random vibration testingmore » of representative prototype sub-assemblies. A comparison of predictions to experimental results yields reasonable agreement. The Type I Asymptotic form provides the cumulative distribution function for peak response probabilities. Probabilities are calculated for actual lens centration tolerances. The probability that peak response will not exceed the centration tolerance is greater than 80% for prototype configurations where the tolerance is high (on the order of 30 micrometers). Conversely, the probability is low for those where the tolerance is less than 20 micrometers. The analysis suggests a design paradigm based on the influence of lateral stiffness on the magnitude of the response.« less

  6. Real time optimization algorithm for wavefront sensorless adaptive optics OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Verstraete, Hans R. G. W.; Heisler, Morgan; Ju, Myeong Jin; Wahl, Daniel J.; Bliek, Laurens; Kalkman, Jeroen; Bonora, Stefano; Sarunic, Marinko V.; Verhaegen, Michel; Jian, Yifan

    2017-02-01

    Optical Coherence Tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. A limitation of the performance and utilization of the OCT systems has been the lateral resolution. Through the combination of wavefront sensorless adaptive optics with dual variable optical elements, we present a compact lens based OCT system that is capable of imaging the photoreceptor mosaic. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient eyes, and a multi-actuator adaptive lens after linearization of the hysteresis in the piezoelectric actuators for aberration correction to obtain near diffraction limited imaging at the retina. A parallel processing computational platform permitted real-time image acquisition and display. The Data-based Online Nonlinear Extremum seeker (DONE) algorithm was used for real time optimization of the wavefront sensorless adaptive optics OCT, and the performance was compared with a coordinate search algorithm. Cross sectional images of the retinal layers and en face images of the cone photoreceptor mosaic acquired in vivo from research volunteers before and after WSAO optimization are presented. Applying the DONE algorithm in vivo for wavefront sensorless AO-OCT demonstrates that the DONE algorithm succeeds in drastically improving the signal while achieving a computational time of 1 ms per iteration, making it applicable for high speed real time applications.

  7. Assessment of a liquid lens enabled in vivo optical coherence microscope.

    PubMed

    Murali, Supraja; Meemon, Panomsak; Lee, Kye-Sung; Kuhn, William P; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    The optical aberrations induced by imaging through skin can be predicted using formulas for Seidel aberrations of a plane-parallel plate. Knowledge of these aberrations helps to guide the choice of numerical aperture (NA) of the optics we can use in an implementation of Gabor domain optical coherence microscopy (GD-OCM), where the focus is the only aberration adjustment made through depth. On this basis, a custom-designed, liquid-lens enabled dynamic focusing optical coherence microscope operating at 0.2 NA is analyzed and validated experimentally. As part of the analysis, we show that the full width at half-maximum metric, as a characteristic descriptor for the point spread function, while commonly used, is not a useful metric for quantifying resolution in non-diffraction-limited systems. Modulation transfer function (MTF) measurements quantify that the liquid lens performance is as predicted by design, even when accounting for the effect of gravity. MTF measurements in a skinlike scattering medium also quantify the performance of the microscope in its potential applications. To guide the fusion of images across the various focus positions of the microscope, as required in GD-OCM, we present depth of focus measurements that can be used to determine the effective number of focusing zones required for a given goal resolution. Subcellular resolution in an onion sample, and high-definition in vivo imaging in human skin are demonstrated with the custom-designed and built microscope.

  8. A strong electro-optically active lead-free ferroelectric integrated on silicon

    NASA Astrophysics Data System (ADS)

    Abel, Stefan; Stöferle, Thilo; Marchiori, Chiara; Rossel, Christophe; Rossell, Marta D.; Erni, Rolf; Caimi, Daniele; Sousa, Marilyne; Chelnokov, Alexei; Offrein, Bert J.; Fompeyrine, Jean

    2013-04-01

    The development of silicon photonics could greatly benefit from the linear electro-optical properties, absent in bulk silicon, of ferroelectric oxides, as a novel way to seamlessly connect the electrical and optical domain. Of all oxides, barium titanate exhibits one of the largest linear electro-optical coefficients, which has however not yet been explored for thin films on silicon. Here we report on the electro-optical properties of thin barium titanate films epitaxially grown on silicon substrates. We extract a large effective Pockels coefficient of reff=148 pm V-1, which is five times larger than in the current standard material for electro-optical devices, lithium niobate. We also reveal the tensor nature of the electro-optical properties, as necessary for properly designing future devices, and furthermore unambiguously demonstrate the presence of ferroelectricity. The integration of electro-optical active films on silicon could pave the way towards power-efficient, ultra-compact integrated devices, such as modulators, tuning elements and bistable switches.

  9. Direct electro-optic effect in langasites and α-quartz

    NASA Astrophysics Data System (ADS)

    Ivanov, Vadim

    2018-05-01

    Strain-constant (clamped) electro-optic coefficients r11S of langasite La3Ga5SiO14 (LGS), langatate La3Ga5.5Ta0.5O14 (LGT), catangasite Ca3TaGa3Si2O14 (CTGS) and α-quartz are measured at 1540 nm in the frequency range of 3-25 MHz. Experimental ratio of clamped and unclamped electro-optic coefficients r11S/r11T is 0.97 for LGS, 0.91 for LGT, 0.31 for CTGS, and 0.49 for quartz. Most of direct electro-optic effect in LGS and LGT is associated with lanthanum ions: clamped electro-optic coefficient r11S in lanthanum-free CTGS is 14 times less than in LGS. Low piezoelectric contribution to unclamped electro-optic coefficient r11T makes LGS and LGT promising materials for electro-optic devices, whose performance can be deteriorated by piezoelectric effect, especially, for high-voltage optical voltage sensors.

  10. x-y curvature wavefront sensor.

    PubMed

    Cagigal, Manuel P; Valle, Pedro J

    2015-04-15

    In this Letter, we propose a new curvature wavefront sensor based on the principles of optical differentiation. The theoretically modeled setup consists of a diffractive optical mask placed at the intermediate plane of a classical two-lens coherent optical processor. The resulting image is composed of a number of local derivatives of the entrance pupil function whose proper combination provides the wavefront curvature. In contrast to the common radial curvature sensors, this one is able to provide the x and y wavefront curvature maps simultaneously. The sensor offers other additional advantages like having high spatial resolution, adjustable dynamic range, and not being sensitive to misalignment.

  11. Embedded Electro-Optic Sensor Network for the On-Site Calibration and Real-Time Performance Monitoring of Large-Scale Phased Arrays

    DTIC Science & Technology

    2005-07-09

    This final report summarizes the progress during the Phase I SBIR project entitled Embedded Electro - Optic Sensor Network for the On-Site Calibration...network based on an electro - optic field-detection technique (the Electro - optic Sensor Network, or ESN) for the performance evaluation of phased

  12. Electro-Optic Propagation

    DTIC Science & Technology

    2002-09-30

    Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...OBJECTIVES The electro - optical propagation objectives are: 1) The acquisition and analysis of mid-wave and long-wave infrared transmission and...elements to the electro - optical propagation model development. The first element is the design and execution of field experiments to generate useful

  13. Optical displacement sensor

    DOEpatents

    Carr, Dustin W [Albuquerque, NM

    2008-04-08

    An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

  14. Compact self-aligning assemblies with refractive microlens arrays made by contactless embossing

    NASA Astrophysics Data System (ADS)

    Schulze, Jens; Ehrfeld, Wolfgang; Mueller, Holger; Picard, Antoni

    1998-04-01

    The hybrid integration of microlenses and arrays of microlenses in micro-optical systems is simplified using contactless embossing of microlenses (CEM) in combination with LIGA microfabrication. CEM is anew fabrication technique for the production of precise refractive microlens arrays. A high precision matrix of holes made by LIGA technique is used as a compression molding tool to form the microlenses. The tool is pressed onto a thermoplastic sample which is heated close to the glass transformation temperature of the material. The material bulges into the openings of the molding tool due to the applied pressure and forms lens-like spherical structures. The name refers to the fact that the surface of the microlens does not get in contact with the compression molding tool during the shaping process and optical quality of the surface is maintained. Microlenses and arrays of microlenses with lens diameters from 30 micrometers up to 700 micrometers and numerical aperture values of up to 0.25 have been fabricated in different materials. Cost-effectiveness in the production process, excellent optical performance and the feature of easy replication are the main advantages of this technique. The most promising feature of this method is the possibility to obtain self- aligned assemblies then can be further integrated into a micro-optical bench setup. The CEM fabrication method in combination with LIGA microfabrication considerably enhances the hybrid integration in micro-optical devices which results in a more cost-effective production of compact micro-opto-electro-mechanical systems.

  15. Diffraction-Based Optical Switching with MEMS

    DOE PAGES

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin; ...

    2017-04-19

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  16. Diffraction-Based Optical Switching with MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  17. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  18. Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities

    PubMed Central

    Ackerman, Paul J.; Qi, Zhiyuan; Lin, Yiheng; Twombly, Christopher W.; Laviada, Mauricio J.; Lansac, Yves; Smalyukh, Ivan I.

    2012-01-01

    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable “optical drawing” of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators. PMID:22679553

  19. Laser-Directed Hierarchical Assembly of Liquid Crystal Defects and Control of Optical Phase Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, P. J.; Qi, Z. Y.; Lin, Y. H.

    2012-06-07

    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable 'optical drawing' of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies ofmore » defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators.« less

  20. Single optical fiber probe for optogenetics

    NASA Astrophysics Data System (ADS)

    Falk, Ryan; Habibi, Mohammad; Pashaie, Ramin

    2012-03-01

    With the advent of optogenetics, all optical control and visualization of the activity of specific cell types is possible. We have developed a fiber optic based probe to control/visualize neuronal activity deep in the brain of awake behaving animals. In this design a thin multimode optical fiber serves as the head of the probe to be inserted into the brain. This fiber is used to deliver excitation/stimulation optical pulses and guide a sample of the emission signal back to a detector. The major trade off in the design of such a system is to decrease the size of the fiber and intensity of input light to minimize physical damage and to avoid photobleaching/phototoxicity but to keep the S/N reasonably high. Here the excitation light, and the associated emission signal, are frequency modulated. Then the output of the detector is passed through a time-lens which compresses the distributed energy of the emission signal and maximizes the instantaneous S/N. By measuring the statistics of the noise, the structure of the time lens can be designed to achieve the global optimum of S/N. Theoretically, the temporal resolution of the system is only limited by the time lens diffraction limit. By adding a second detector, we eliminated the effect of input light fluctuations, imperfection of the optical filters, and back-reflection of the excitation light. We have also designed fibers and micro mechanical assemblies for distributed delivery and detection of light.

  1. A second-generation liquid crystal phase-shifting point-diffraction interferometer employing structured substrates

    NASA Astrophysics Data System (ADS)

    Marshall, Kenneth L.; Adlesberger, Kathleen; Kolodzie, Benjamin; Myhre, Graham; Griffin, DeVon W.

    2005-08-01

    By design, point-diffraction interferometers are much less sensitive to environmental disturbances than dual-path interferometers, but, until very recently, have not been capable of phase shifting. The liquid crystal point-diffraction interferometer (LCPDI) utilizes a dye-doped, liquid crystal (LC) electro-optical device that functions as both the point-diffraction source and the phase-shifting element, yielding a phase-shifting diagnostic device that is significantly more compact and robust while using fewer optical elements than conventional dual-path interferometers. These attributes make the LCPDI of special interest for diagnostic applications in the scientific, commercial, military, and industrial sectors, where vibration insensitivity, power requirements, size, weight, and cost are critical issues. Until very recently, LCPDI devices have used a plastic microsphere embedded in the LC fluid layer as the point-diffraction source. The process for fabricating microsphere-based LCPDI devices is low-yield, labor-intensive, and very "hands-on" great care and skill are required to produce devices with adequate interference fringe contrast for diagnostic measurements. With the goal of evolving the LCPDI beyond the level of a laboratory prototype in mind, we have developed "second-generation" LCPDI devices in which the reference-diffracting elements are an integral part of the substrates by depositing a suitable optical material (vapor-deposited thin films or photoresist) directly onto the substrate surface. These "structured" substrates eliminate many of the assembly difficulties and performance limitations of current LCPDI devices as well as open the possibility of mass-producing LCPDI devices at low cost by the same processes used to manufacture commercial LC displays.

  2. Laterally azo-bridged h-shaped ferroelectric dimesogens for second-order nonlinear optics: ferroelectricity and second harmonic generation.

    PubMed

    Zhang, Yongqiang; Martinez-Perdiguero, Josu; Baumeister, Ute; Walker, Christopher; Etxebarria, Jesus; Prehm, Marko; Ortega, Josu; Tschierske, Carsten; O'Callaghan, Michael J; Harant, Adam; Handschy, Mark

    2009-12-30

    Two classes of laterally azo-bridged H-shaped ferroelectric liquid crystals (FLCs), incorporating azobenzene and disperse red 1 (DR-1) chromophores along the FLC polar axes, were synthesized and characterized by polarized light microscopy, differential scanning calorimetry, 2D X-ray diffraction analysis, and electro-optical investigations. They represent the first H-shaped FLC materials exhibiting the ground-state, thermodynamically stable enantiotropic SmC* phase, i.e., ground-state ferroelectricity. Second harmonic generation measurements of one compound incorporating a DR-1 chromophore at the incident wavelength of 1064 nm give a nonlinear coefficient of d(22) = 17 pm/V, the largest nonlinear optics coefficient reported to date for calamitic FLCs. This value enables viable applications of FLCs in nonlinear optics.

  3. Electro-Optic Propagation

    DTIC Science & Technology

    2003-09-30

    Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...scenarios to extend the capabilities of TAWS to surface and low altitude situations. OBJECTIVES The electro - optical propagation objectives are: 1...development of a new propagation assessment tool called EOSTAR ( Electro - Optical Signal Transmission and Ranging). The goal of the EOSTAR project is to

  4. Multidimensional System Analysis of Electro-Optic Sensors with Sampled Deterministic Output.

    DTIC Science & Technology

    1987-12-18

    System descriptions of scanning and staring electro - optic sensors with sampled output are developed as follows. Functions representing image...to complete the system descriptions. The results should be useful for designing electro - optic sensor systems and correcting data for instrumental...effects and other experimental conditions. Keywords include: Electro - optic system analysis, Scanning sensors, Staring sensors, Spatial sampling, and Temporal sampling.

  5. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha

    2015-03-15

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown thatmore » natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.« less

  6. Waveguide electro-optic modulators based on intrinsically polar self-assembled superlattices (SASs)

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Ho, Seng Tiong; Chang, Seongsik; Zhao, Yiguang; Marks, Tobin J.; Kang, Hu; van der Boom, Milko E.; Zhu, Peiwang

    2002-12-01

    In this paper we describe methods of fabricating and characterizing organic electro-optic modulators based on intrinsically polar self-assembled superlattices. These structures are intrinsically acentric, and exhibit large second harmonic generation and electro-optic responses without the requirement of poling by an external electric field. A novel wet chemical protection-deprotection approach for the growth of self-assembled superlattices have been developed, and the refractive indices of self-assembled organic electro-optic superlattices may be tuned during the self-assembly process. Prototype electro-optic modulators based on chromophoric self-assembled superlattices have been designed and fabricated. The effective electro-optic coefficient of the self-assembled superlattice film in a phase modulator is estimated as about 20 pm/V at a wavelength of 1064 nm.

  7. External electro-optic sampling utilizing a poled polymer asymmetric Fabry Perot cavity as an electro-optical probe tip

    NASA Astrophysics Data System (ADS)

    Chen, Kaixin; Zhang, Hongbo; Zhang, Daming; Yang, Han; Yi, Maobin

    2002-09-01

    External electro-optic sampling utilizing a poled polymer asymmetry Fabry-Perot cavity as electro-optic probe tip has been demonstrated. Electro-optical polymer spin coated on the high-reflectivity mirror (HRM) was corona poled. Thus, an asymmetric F-P cavity was formed based on the different reflectivity of the polymer and HRM and it converted the phase modulation that originates from electro-optic effect of the poled polymer to amplitude modulation, so only one laser beam is needed in this system. The principle of the sampling was analyzed by multiple reflection and index ellipsoid methods. A 1.2 GHz microwave signal propagating on coplanar waveguide transmission line was sampled, and the voltage sensitivity about 0.5 mV/ Hz was obtained.

  8. New Light Sources and Concepts for Electro-Optic Sampling

    DTIC Science & Technology

    1994-03-01

    Research to improve electro - optic sampling led to the development of several high performance optical phase modulators. These phase modulators serve...method of optical pulse shape measurement was demonstrated with 3 ps time resolution, excellent power sensitivity and relative system simplicity. These experiments have opened up the field of temporal optics. Electro - optic sampling.

  9. Laboratory demonstration of image reconstruction for coherent optical system of modular imaging collectors (COSMIC)

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1984-01-01

    The first physical demonstration of the principle of image reconstruction using a set of images from a diffraction-blurred elongated aperture is reported. This is an optical validation of previous theoretical and numerical simulations of the COSMIC telescope array (coherent optical system of modular imaging collectors). The present experiment utilizes 17 diffraction blurred exposures of a laboratory light source, as imaged by a lens covered by a narrow-slit aperture; the aperture is rotated 10 degrees between each exposure. The images are recorded in digitized form by a CCD camera, Fourier transformed, numerically filtered, and added; the sum is then filtered and inverse Fourier transformed to form the final image. The image reconstruction process is found to be stable with respect to uncertainties in values of all physical parameters such as effective wavelength, rotation angle, pointing jitter, and aperture shape. Future experiments will explore the effects of low counting rates, autoguiding on the image, various aperture configurations, and separated optics.

  10. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, William C.

    2001-01-01

    The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system comprises a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media.

  11. Electro-optic component mounting device

    DOEpatents

    Gruchalla, M.E.

    1994-09-13

    A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.

  12. Achrotech: achromat cost versus performance for conventional, diffractive, and GRIN components

    NASA Astrophysics Data System (ADS)

    Morris, Jeffrey; Wolf, Greg; Vandendriessche, Stefaan; Sparrold, Scott

    2016-09-01

    An achromatic component shares a common focus at two wavelengths and is a commonly used device in optical assemblies. This work explores the cost versus performance tradeoff for several types of achromatic lenses: conventional doublets with homogenous glass elements, hybrid doublets with a diffractive surface, axial GRadient INdex (GRIN) lenses (where the index of refraction changes along the length of the lens), and radial GRIN lenses (where the index of refraction changes depending on radial position). First order achromatic principles will be reviewed and applied to each system as a starting point and refined through the use of ray trace software. Optical performance will be assessed in terms of focusing efficiency and imaging. Cost will then be evaluated by accounting for current manufacturing costs and retail price through several distributors.

  13. From Airy to Abbe: quantifying the effects of wide-angle focusing for scalar spherical waves

    NASA Astrophysics Data System (ADS)

    Calm, Yitzi M.; Merlo, Juan M.; Burns, Michael J.; Naughton, Michael J.

    2017-10-01

    Recent advances in optical microscopy have enabled imaging with spatial resolution beyond the diffraction limit. This limit is sometimes taken as one of several different criteria according to different conventions, including Rayleigh’s 0.61λ /NA, Abbe’s 0.5λ /NA, and Sparrow’s 0.47λ /NA. In this paper, we perform a parametric study, numerically integrating the scalar Kirchhoff diffraction integrals, and we propose new functional forms for the resolution limits derived from scalar focusing. The new expressions remain accurate under wide angle focusing, up to 90^\\circ . Our results could materially impact the design of high intensity focused ultrasound systems, and can be used as a qualitative guideline for the design of a particular type of planar optical element: the flat lens metasurface.

  14. Advanced Organic Electro-Optic Materials for Integrated Device Applications

    DTIC Science & Technology

    2001-06-01

    Electro - optic chromophores (FTC and CLD) were synthesized in bulk (kilogram) quantities and were distributed to the participants of this program...to stabilize electro - optic activity for operation at elevated temperatures and photon flux levels. Over 100 variants of these chromophores were...1.5-2.0 improvement over FTC and CLD chromophores in terms of electro - optic activity at telecommunication wavelengths. They also have proven more

  15. Processing and Fusion of Electro-Optic Information

    DTIC Science & Technology

    2001-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010886 TITLE: Processing and Fusion of Electro - Optic Information...component part numbers comprise the compilation report: ADP010865 thru ADP010894 UNCLASSIFIED 21-1 Processing and Fusion of Electro - Optic Information I...additional electro - optic (EO) sensor model within OOPSDG. It describes TM IT TT T T T performance estimates found prior to producing the New Ne- New

  16. Electro-Optic Properties of Holographically Patterned, Polymer Stabilized Cholesteric Liquid Crystals (Preprint)

    DTIC Science & Technology

    2007-01-01

    Electro - optic properties of cholesteric liquid crystals with holographically patterned polymer stabilization were examined. It is hypothesized that...enhanced electro - optic properties of the final device. Prior to holographic patterning, polymer stabilization with large elastic memory was generated by way... electro - optic properties appear to stem from a single dimension domain size increase, which allows for a reduction in the LC/polymer interaction.

  17. To construct a stable and tunable optical trap in the focal region of a high numerical aperture lens

    NASA Astrophysics Data System (ADS)

    Kandasamy, Gokulakrishnan; Ponnan, Suresh; Sivasubramonia Pillai, T. V.; Balasundaram, Rajesh K.

    2014-05-01

    Based on the diffraction theory, the focusing properties of a radially polarized quadratic Bessel-Gaussian beam (QBG) with on-axis radial phase variance wavefront are investigated theoretically in the focal region of a high numerical aperture (NA) objective lens. The phase wavefront C and pupil beam parameter μ of QBG are the functions of the radial coordinate. The detailed numerical calculation of the focusing property of a QBG beam is presented. The numerical calculation shows that the beam parameter μ and phase parameter C have greater effect on the total electric field intensity distribution. It is observed that under the condition of different μ, evolution principle of focal pattern differs very remarkably on increasing C. Also, some different focal shapes may appear, including rhombic shape, quadrangular shape, two-spherical crust focus shape, two-peak shape, one dark hollow focus, two dark hollow focuses pattern, and triangle dark hollow focus, which find wide optical applications such as optical trapping and nanopatterning.

  18. Comparison of holographic lens and filter systems for lateral spectrum splitting

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby; Chrysler, Benjamin; Kostuk, Raymond K.

    2016-09-01

    Spectrum splitting is an approach to increasing the conversion efficiency of a photovoltaic (PV) system. Several methods can be used to perform this function which requires efficient spatial separation of different spectral bands of the incident solar radiation. In this paper several of holographic methods for implementing spectrum splitting are reviewed along with the benefits and disadvantages associated with each approach. The review indicates that a volume holographic lens has many advantages for spectrum splitting in terms of both power conversion efficiency and energy yield. A specific design for a volume holographic spectrum splitting lens is discussed for use with high bandgap InGaP and low bandgap silicon PV cells. The holographic lenses are modeled using rigorous coupled wave analysis, and the optical efficiency is evaluated using non-sequential raytracing. A proof-of-concept off-axis holographic lens is also recorded in dichromated gelatin film and the spectral diffraction efficiency of the hologram is measured with multiple laser sources across the diffracted spectral band. The experimental volume holographic lens (VHL) characteristics are compared to an ideal spectrum splitting filter in terms of power conversion efficiency and energy yield in environments with high direct normal incidence (DNI) illumination and high levels of diffuse illumination. The results show that the experimental VHL can achieve 62.5% of the ideal filter power conversion efficiency, 64.8% of the ideal filter DNI environment energy yield, and 57.7% of the ideal diffuse environment energy yield performance.

  19. A novel method to produce nonlinear empirical physical formulas for experimental nonlinear electro-optical responses of doped nematic liquid crystals: Feedforward neural network approach

    NASA Astrophysics Data System (ADS)

    Yildiz, Nihat; San, Sait Eren; Okutan, Mustafa; Kaya, Hüseyin

    2010-04-01

    Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.

  20. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  1. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  2. Polarization analysis of holographic gratings recorded in organic conductive material

    NASA Astrophysics Data System (ADS)

    Fontanilla-Urdaneta, R.; Hernández-Garay, M. P.; Olivares-Pérez, A.; Páez-Trujillo, G.; Fuentes-Tapia, I.

    2007-09-01

    This work presents experimental results of intensity changes by polarization conditions at the resultant diffraction patters. The substrate used as retarder plate was a commercial transparency film for use with plain paper copier (3M-PP2900 TM). The conductive material composition was introduce to dichromated poly(vinyl alcohol) by adding a metallic salt as nickel(II) chloride hexahydrate. Some electro-optical characteristics of organic conductive material that are used in the holographic gratings storage specifically when applied voltage.

  3. Design of intelligent mesoscale periodic array structures utilizing smart hydrogel

    NASA Technical Reports Server (NTRS)

    Sunkara, H. B.; Penn, B. G.; Frazier, D. O.; Weissman, J. M.; Asher, S. A.

    1996-01-01

    Mesoscale Periodic Array Structures (MPAS, also known as crystalline colloidal arrays), composed of aqueous or nonaqueous dispersions of self-assembled submicron colloidal spheres are emerging toward the development of advanced optical devices for technological applications. This is because of their unique optical diffraction properties and the ease with which these intriguing properties can be modulated experimentally. Moreover our recent advancements in this area which include 'locking' the liquid MPAS into solid or semisolid polymer matrices for greater stability with longer life span, and incorporation of CdS quantum dots and laser dyes into colloidal spheres to obtain nonlinear optical (NLO) responses further corroborate the use of MPAS in optical technology. Our long term goal is fabrication of all-optical and electro-optical devices such as spatial light modulators for optical signal processing and flat panel display devices by utilizing intelligent nonlinear periodic array structural materials. Here we show further progress in the design of novel linear MPAS which have the ability to sense and respond to an external source such as temperature. This is achieved by combining the self-assembly properties of polymer colloidal spheres and thermoshrinking properties of smart polymer gels. At selected temperatures the periodic array efficiently Bragg diffracts light and transmits most of the light at other temperatures. Hence these intelligent systems are of potential use as fixed notch filters optical switches or limiters to protect delicate optical sensors from high intensity laser radiation.

  4. Fast-response variable focusing micromirror array lens

    NASA Astrophysics Data System (ADS)

    Boyd, James G., IV; Cho, Gyoungil

    2003-07-01

    A reflective type Fresnel lens using an array of micromirrors is designed and fabricated using the MUMPs® surface micromachining process. The focal length of the lens can be rapidly changed by controlling both the rotation and translation of electrostatically actuated micromirrors. The rotation converges rays and the translation adjusts the optical path length difference of the rays to be integer multiples of the wavelength. The suspension spring, pedestal and electrodes are located under the mirror to maximize the optical efficiency. Relations are provided for the fill-factor and the numerical aperture as functions of the lens diameter, the mirror size, and the tolerances specified by the MUMPs® design rules. The fabricated lens is 1.8mm in diameter, and each micromirror is approximately 100mm x 100mm. The lens fill-factor is 83.7%, the numerical aperture is 0.018 for a wavelength of 632.8nm, and the resolution is approximately 22mm, whereas the resolution of a perfect aberration-free lens is 21.4μm for a NA of 0.018. The focal length ranges from 11.3mm to infinity. The simulated Strehl ratio, which is the ratio of the point spread function maximum intensity to the theoretical diffraction-limited PSF maximum intensity, is 31.2%. A mechanical analysis was performed using the finite element code IDEAS. The combined maximum rotation and translation produces a maximum stress of 301MPa, below the yield strength of polysilicon, 1.21 to 1.65GPa. Potential applications include adaptive microscope lenses for scanning particle imaging velocimetry and a visually aided micro-assembly.

  5. Conception of a cheap infrared camera using a Fresnel lens

    NASA Astrophysics Data System (ADS)

    Grulois, Tatiana; Druart, Guillaume; Guérineau, Nicolas; Crastes, Arnaud; Sauer, Hervé; Chavel, Pierre

    2014-09-01

    Today huge efforts are made in the research and industrial areas to design compact and cheap uncooled infrared optical systems for low-cost imagery applications. Indeed, infrared cameras are currently too expensive to be widespread. If we manage to cut their cost, we expect to open new types of markets. In this paper, we will present the cheap broadband microimager we have designed. It operates in the long-wavelength infrared range and uses only one silicon lens at a minimal cost for the manufacturing process. Our concept is based on the use of a thin optics. Therefore inexpensive unconventional materials can be used because some absorption can be tolerated. Our imager uses a thin Fresnel lens. Up to now, Fresnel lenses have not been used for broadband imagery applications because of their disastrous chromatic properties. However, we show that working in a high diffraction order can significantly reduce chromatism. A prototype has been made and the performance of our camera will be discussed. Its characterization has been carried out in terms of modulation transfer function (MTF) and noise equivalent temperature difference (NETD). Finally, experimental images will be presented.

  6. Hydrogel nanocomposites: a potential UV/blue light filtering material for ophthalmic lenses.

    PubMed

    Bozukova, Dimitriya; Pagnoulle, Christophe; De Pauw-Gillet, Marie-Claire; Vertruyen, Bénédicte; Jérôme, Robert; Jérôme, Christine

    2011-01-01

    Poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (poly(HEMA-co-MMA)) and ZnS hydrogel nanocomposites were prepared and characterized. The chemical composition of the inorganic nanoparticles was confirmed by X-ray diffraction, and the homogeneity of their distribution within the hydrogel was assessed by transmission electron microscopy. The influence of the content of ZnS nanoparticles on the optical performances of the nanocomposites was investigated by UV-Vis spectroscopy. The ability of the hydrogel nanocomposites to filter the hazardous UV light and part of the blue light was reported, which makes them valuable candidates for ophthalmic lens application. In contrast to the optical properties, the thermo-mechanical properties of neat poly(HEMA-co-MMA) hydrogels were found to be largely independent of filling by ZnS nanoparticles (≤2 mg/ml co-monomer mixture). Finally, in vitro cell adhesion test with lens epithelial cells (LECs), extracted from porcine lens crystalline capsule, showed that ZnS had no deleterious effect on the biocompatibility of neat hydrogels, at least at low content. © Koninklijke Brill NV, Leiden, 2011

  7. Effect of birefringence of lens material on polarization status and optical imaging characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Wan-Chin; Park, No-Cheol

    2018-04-01

    In most cases of molding with glass or optical polymers, it is expected that there will be birefringence caused by the internal mechanical stresses remaining in the molding material. The distribution of the residual stress can be annealed by slow cooling, but this approach is disadvantageous with respect to the shape accuracy and manufacturing time. In this study, we propose an analytical model to calculate the diffracted field near the focal plane by considering two primary parameters, the orientation angle of the fast axis and the path difference. In order to verify the reliability of the analytical model, we compared the measured beam spot of the F-theta lens of the laser scanning unit (LSU) with the analytical result. In addition, we analyzed the calculated result from the perspective of the polarization status in the exit pupil. The proposed analysis method can be applied to enhance the image quality for cases in which birefringence occurs in a lens material by suitably modeling the amplitude and phase of the incident light flux.

  8. Electro-Optics In Two Years

    NASA Astrophysics Data System (ADS)

    Simcik, John C.

    1989-04-01

    Texas State Technical Institute-Waco (TSTI-WACO) was the first school in the United States to offer an Associate of Applied Science degree in Laser Electro-Optics Technology. The program began in September 1969 and has produced 1,827 graduates since inception. These graduates are readily adaptable to any area of the laser electro-optics industry. Areas of study include Optics, Electronics, Vacuum, Physics, Mathematics, and English with emphasis on Electro-Optics. Graduate placement is centered around research and development, life sciences and manufacturing in technical and engineering areas.

  9. The Advanced Human Eye Model (AHEM): a personal binocular eye modeling system inclusive of refraction, diffraction, and scatter.

    PubMed

    Donnelly, William

    2008-11-01

    To present a commercially available software tool for creating eye models to assist the development of ophthalmic optics and instrumentation, simulate ailments or surgery-induced changes, explore vision research questions, and provide assistance to clinicians in planning treatment or analyzing clinical outcomes. A commercially available eye modeling system was developed, the Advanced Human Eye Model (AHEM). Two mainstream optical software engines, ZEMAX (ZEMAX Development Corp) and ASAP (Breault Research Organization), were used to construct a similar software eye model and compared. The method of using the AHEM is described and various eye modeling scenarios are created. These scenarios consist of retinal imaging of targets and sources; optimization capability; spectacles, contact lens, and intraocular lens insertion and correction; Zernike surface deformation on the cornea; cataract simulation and scattering; a gradient index lens; a binocular mode; a retinal implant; system import/export; and ray path exploration. Similarity of the two different optical software engines showed validity to the mechanism of the AHEM. Metrics and graphical data are generated from the various modeling scenarios particular to their input specifications. The AHEM is a user-friendly commercially available software tool from Breault Research Organization, which can assist the design of ophthalmic optics and instrumentation, simulate ailments or refractive surgery-induced changes, answer vision research questions, or assist clinicians in planning treatment or analyzing clinical outcomes.

  10. An easy packaging hybrid optical element in grating based WDM application

    NASA Astrophysics Data System (ADS)

    Lan, Hsiao-Chin; Cheng, Chao-Chia; Wang, Chih-Ming; Chang, Jenq-Yang

    2005-08-01

    We developed a new optical element which integrates an off-axis diffractive grating and an on-axis refractive lens surface in a prism. With this optical element, the alignment tolerance can be improved by manufacturing technology of the grating based WDM device and is practicable for mass production. An 100-GHz 16-channel DWDM device which includes this optical element has been designed. Ray tracing and beam propagation method (BPM) simulations showed good performance on the insertion loss of 2.91+/-0.53dB and the adjacent cross talk of 58.02dB. The tolerance discussion for this DWDM device shows that this optical element could be practically achieved by either injection molding or the hot embossing method.

  11. Perfect X-ray focusing via fitting corrective glasses to aberrated optics.

    PubMed

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  12. Optical track width measurements below 100 nm using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; See, C. W.; Somekh, M. G.; Yacoot, A.; Choi, E.

    2005-12-01

    This paper discusses the feasibility of using artificial neural networks (ANNs), together with a high precision scanning optical profiler, to measure very fine track widths that are considerably below the conventional diffraction limit of a conventional optical microscope. The ANN is trained using optical profiles obtained from tracks of known widths, the network is then assessed by applying it to test profiles. The optical profiler is an ultra-stable common path scanning interferometer, which provides extremely precise surface measurements. Preliminary results, obtained with a 0.3 NA objective lens and a laser wavelength of 633 nm, show that the system is capable of measuring a 50 nm track width, with a standard deviation less than 4 nm.

  13. Fabricating binary optics: An overview of binary optics process technology

    NASA Technical Reports Server (NTRS)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  14. All-optical optoacoustic microscopy system based on probe beam deflection technique

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  15. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  16. Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.

    PubMed

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2010-04-20

    Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics.

  17. Electro-Optic Identification Research Program

    DTIC Science & Technology

    2002-04-01

    Electro - optic identification (EOID) sensors provide photographic quality images that can be used to identify mine-like contacts provided by long...tasks such as validating existing electro - optic models, development of performance metrics, and development of computer aided identification and

  18. Wave-Coupled Millimeter-Wave Electro-Optic Techniques

    DTIC Science & Technology

    2001-03-01

    This report details results on two antenna-coupled millimeter-wave electro - optic modulators, the slot-vee antenna-coupled modulator and a 94 GHz...study of the effects of velocity mismatch on linearized electro - optic modulators was made and the results published. A key result was that directional...drift in electro - optic modulators was made and protons were determined to be the cause. Several inventions were made to reduce or eliminate proton-caused bias drift.

  19. Electro-optic component mounting device

    DOEpatents

    Gruchalla, Michael E.

    1994-01-01

    A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.

  20. Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging

    PubMed Central

    Lan, Gongpu; Mauger, Thomas F.; Li, Guoqiang

    2015-01-01

    We report on the theory and design of adaptive objective lens for ultra broadband near infrared light imaging with large dynamic optical depth scanning range by using an embedded tunable lens, which can find wide applications in deep tissue biomedical imaging systems, such as confocal microscope, optical coherence tomography (OCT), two-photon microscopy, etc., both in vivo and ex vivo. This design is based on, but not limited to, a home-made prototype of liquid-filled membrane lens with a clear aperture of 8mm and the thickness of 2.55mm ~3.18mm. It is beneficial to have an adaptive objective lens which allows an extended depth scanning range larger than the focal length zoom range, since this will keep the magnification of the whole system, numerical aperture (NA), field of view (FOV), and resolution more consistent. To achieve this goal, a systematic theory is presented, for the first time to our acknowledgment, by inserting the varifocal lens in between a front and a back solid lens group. The designed objective has a compact size (10mm-diameter and 15mm-length), ultrabroad working bandwidth (760nm - 920nm), a large depth scanning range (7.36mm in air) — 1.533 times of focal length zoom range (4.8mm in air), and a FOV around 1mm × 1mm. Diffraction-limited performance can be achieved within this ultrabroad bandwidth through all the scanning depth (the resolution is 2.22 μm - 2.81 μm, calculated at the wavelength of 800nm with the NA of 0.214 - 0.171). The chromatic focal shift value is within the depth of focus (field). The chromatic difference in distortion is nearly zero and the maximum distortion is less than 0.05%. PMID:26417508

  1. Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time.

    PubMed

    Martín-Mateos, Pedro; Jerez, Borja; Largo-Izquierdo, Pedro; Acedo, Pablo

    2018-04-16

    Electro-optic dual-comb spectrometers have proved to be a promising technology for sensitive, high-resolution and rapid spectral measurements. Electro-optic combs possess very attractive features like simplicity, reliability, bright optical teeth, and typically moderate but quickly tunable optical spans. Furthermore, in a dual-comb arrangement, narrowband electro-optic combs are generated with a level of mutual coherence that is sufficiently high to enable optical multiheterodyning without inter-comb stabilization or signal processing systems. However, this valuable tool still presents several limitations; for instance, on most systems, absolute frequency accuracy and long-term stability cannot be guaranteed; likewise, interferometer-induced phase noise restricts coherence time and limits the attainable signal-to-noise ratio. In this paper, we address these drawbacks and demonstrate a cost-efficient absolute electro-optic dual-comb instrument based on a frequency stabilization mechanism and a novel adaptive interferogram acquisition approach devised for electro-optic dual-combs capable of operating in real-time. The spectrometer, completely built from commercial components, provides sub-ppm frequency uncertainties and enables a signal-to-noise ratio of 10000 (intensity noise) in 30 seconds of integration time.

  2. A LATTICE THEORY OF THE ELECTRO-OPTIC EFFECTS IN SEMICONDUCTORS.

    DTIC Science & Technology

    A unified lattice theory of the electro - optic effect in semiconductor crystals, which encompasses the piezo-electric and elasto-optic effects, is...presented. Expressions are derived for the constant stress and constant strain electro - optic coefficients and the results are specialized to crystals of the zincblende structure. (Author)

  3. Development and analysis of new type microresonator with electro-optic feedback

    NASA Astrophysics Data System (ADS)

    Janusas, Giedrius; Palevicius, Arvydas; Cekas, Elingas; Brunius, Alfredas; Bauce, Jokubas

    2016-04-01

    Micro-resonators are fundamental components integrated in a hosts of MEMS applications: safety and stability systems, biometric sensors, switches, mechanical filters, micro-mirror devices, material characterization, gyroscopes, etc. A constituent part of the micro-resonator is a diffractive optical element (DOE). Different methods and materials are used to produce diffraction gratings for DOEs. Two-dimensional or three-dimensional periodic structures of micrometer-scale period are widely used in microsystems or their components. They can be used as elements for micro-scale synthesis, processing, and analysis of chemical and biological samples. On the other hand micro-resonator was designed using composite piezoelectric material. In case when microscopes, vibrometers or other direct measurement methods are destructive and hardly can be employed for in-situ analysis, indirect measurement of electrical signal generated by composite piezoelectric layer allows to measure natural frequency changes. Also piezoelectric layer allows to create a novel micro-resonator with controllable parameters, which could assure much higher functionality of micro-electromechanical systems. The novel micro-resonator for pollution detection is proposed. Mathematical model of the micro-resonator and its dynamical, electrical and optical characteristics are presented.

  4. Refraction limit of miniaturized optical systems: a ball-lens example.

    PubMed

    Kim, Myun-Sik; Scharf, Toralf; Mühlig, Stefan; Fruhnert, Martin; Rockstuhl, Carsten; Bitterli, Roland; Noell, Wilfried; Voelkel, Reinhard; Herzig, Hans Peter

    2016-04-04

    We study experimentally and theoretically the electromagnetic field in amplitude and phase behind ball-lenses across a wide range of diameters, ranging from a millimeter scale down to a micrometer. Based on the observation, we study the transition between the refraction and diffraction regime. The former regime is dominated by observables for which it is sufficient to use a ray-optical picture for an explanation, e.g., a cusp catastrophe and caustics. A wave-optical picture, i.e. Mie theory, is required to explain the features, e.g., photonic nanojets, in the latter regime. The vanishing of the cusp catastrophe and the emergence of the photonic nanojet is here understood as the refraction limit. Three different criteria are used to identify the limit: focal length, spot size, and amount of cross-polarization generated in the scattering process. We identify at a wavelength of 642 nm and while considering ordinary glass as the ball-lens material, a diameter of approximately 10 µm as the refraction limit. With our study, we shed new light on the means necessary to describe micro-optical system. This is useful when designing optical devices for imaging or illumination.

  5. Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector

    NASA Astrophysics Data System (ADS)

    Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha

    2018-02-01

    A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.

  6. Method and apparatus for eliminating coherent noise in a coherent energy imaging system without destroying spatial coherence

    NASA Technical Reports Server (NTRS)

    Shulman, A. R. (Inventor)

    1971-01-01

    A method and apparatus for substantially eliminating noise in a coherent energy imaging system, and specifically in a light imaging system of the type having a coherent light source and at least one image lens disposed between an input signal plane and an output image plane are, discussed. The input signal plane is illuminated with the light source by rotating the lens about its optical axis. In this manner, the energy density of coherent noise diffraction patterns as produced by imperfections such as dust and/or bubbles on and/or in the lens is distributed over a ring-shaped area of the output image plane and reduced to a point wherein it can be ignored. The spatial filtering capability of the coherent imaging system is not affected by this noise elimination technique.

  7. Generation of a focused hollow beam by an 2π-phase plate and its application in atom or molecule optics

    NASA Astrophysics Data System (ADS)

    Xia, Yong; Yin, Jianping

    2005-03-01

    We propose a new scheme to generate a focusing hollow beam (FHB) by use of an azimuthally distributed 2π-phase plate and a convergent thin lens. From the Fresnel diffraction theory, we calculate the intensity distributions of the FHB in free propagation space and study the relationship between the waist w0 of the incident Gaussian beam (or the focal length f of the lens) and the dark spot size (or the beam radius) at the focal point and the relationship between the maximum radial intensity of the FHB and the dark spot size (or the beam radius) at the focal point, respectively. Our study shows that the FHB can be used to cool and trap neutral atoms by intensity-gradient-induced Sisyphus cooling due to an extremely high intensity gradient of the FHB itself near the focal point, or to guide and focus a cold molecular beam. We also calculate the optical potential of the blue-detuned FHB for 85Rb atoms and find that in the focal plane, the smaller the dark spot size of the FHB is, the higher the optical potential is, and the greater the corresponding optimal detuning δ is; these qualities are beneficial to an atomic lens not only because it is profitable to obtain an atomic lens with a higher resolution, but also because it is helpful to reduce the spontaneous photon-scattering effect of atoms in the FHB.

  8. Design of off-axis four-mirror optical system without obscuration based on free-form surface

    NASA Astrophysics Data System (ADS)

    Huang, Chenxu; Liu, Xin

    2015-11-01

    With the development of modern military technology, the requirements of airborne electro-optical search and tracking system are increasing on target detection and recognition. However, traditional off-axis three-mirror system couldn't meet the requirements for reducing weight and compacting size in some circumstances. Based on Seidel aberration theory, by restricting the aberration functions, the optical system could achieve initial construction parameters. During the designing process, decenters and tilts of mirrors were adjusted continuously to eliminate the obscurations. To balance off-axis aberration and increase angle of view, the free-form mirror was introduced into the optical system. Then an unobstructed optical system with effective focal length of 100 mm, FOV of 16°×16°, and relative aperture as F/7 is designed. The results show that the system structure is compact, with imaging qualities approaching diffraction limit.

  9. Studies of the Electro-Optic Effect.

    DTIC Science & Technology

    1983-01-01

    electro - optic effect in crystalline solids has been pursued by employing a tight-binding theory for dielectric susceptibilities. The electronic and lattice contributions to the second-order electro - optic susceptibility have been treated separately and the lattice response of a crystal to an external dc electric field has been investigated in a general formalism. The theory has been specifically applied to the compound, tellurium dioxide. In addition, an experimental determination of the electro - optic coefficient, re, in thallium

  10. TRANSVERSE MODE ELECTRO-OPTIC MATERIALS.

    DTIC Science & Technology

    electro - optic modulators presently used are crystals such as KDP which exhibit a longitudinal electro - optic effect. It has been demonstrated that a more efficient modulator can be produced when a crystal having a transverse electro - optic effect is employed. Generally these crystals are produced either from the melt or from fluxes. Since melt grown crystals must be cooled through several hundred degrees and often must undergo phase transitions, these crystals are generally highly strained. Flux grown crystals are also

  11. A magneto-electro-optical effect in a plasmonic nanowire material

    PubMed Central

    Valente, João; Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.

    2015-01-01

    Electro- and magneto-optical phenomena play key roles in photonic technology enabling light modulators, optical data storage, sensors and numerous spectroscopic techniques. Optical effects, linear and quadratic in external electric and magnetic field are widely known and comprehensively studied. However, optical phenomena that depend on the simultaneous application of external electric and magnetic fields in conventional media are barely detectable and technologically insignificant. Here we report that a large reciprocal magneto-electro-optical effect can be observed in metamaterials. In an artificial chevron nanowire structure fabricated on an elastic nano-membrane, the Lorentz force drives reversible transmission changes on application of a fraction of a volt when the structure is placed in a fraction-of-tesla magnetic field. We show that magneto-electro-optical modulation can be driven to hundreds of thousands of cycles per second promising applications in magneto-electro-optical modulators and field sensors at nano-tesla levels. PMID:25906761

  12. Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL.

    PubMed

    Alió, Jorge L; Plaza-Puche, Ana B; Javaloy, Jaime; Ayala, María José

    2012-02-01

    To compare the visual outcomes and intraocular optical quality observed postoperatively in patients implanted with a rotationally asymmetric multifocal intraocular lens (IOL) and an apodized diffractive multifocal IOL. Seventy-four consecutive eyes of 40 cataract patients (age range: 36 to 79 years) were divided into two groups: zonal refractive group, 39 eyes implanted with a rotationally asymmetric multifocal IOL (Lentis Mplus LS-312 IOL, Oculentis GmbH); and diffractive group, 35 eyes implanted with an apodized diffractive multifocal IOL (ReSTOR SN6AD3, Alcon Laboratories Inc). Distance and near visual acuity outcomes, contrast sensitivity, intraocular optical quality, and defocus curves were evaluated during 3-month follow-up. Calculation of the intraocular aberrations was performed by subtracting corneal aberrations from total ocular aberrations. Uncorrected near visual acuity and distance-corrected near visual acuity were better in the diffractive group than in the zonal refractive group (P=.01), whereas intermediate visual acuity (defocus +1.00 and +1.50 diopters) was better in the zonal refractive group. Photopic contrast sensitivity was significantly better in the zonal refractive group (P=.04). Wavefront aberrations (total, higher order, tilt, primary coma) were significantly higher in the zonal refractive group than in the diffractive group (P=.02). Both multifocal IOLs are able to successfully restore visual function after cataract surgery. The zonal refractive multifocal IOL provides better results in contrast sensitivity and intermediate vision, whereas the diffractive multifocal IOL provides better near vision at a closer distance. Copyright 2012, SLACK Incorporated.

  13. White-light optical vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Kanburapa, Prachyathit

    An optical vortex is characterized by a dark core of destructive interference in a light beam. One of the methods commonly employed to create an optical vortex is by using a computer-generated hologram. A vortex hologram pattern is computed from the interference pattern between a reference plane wave and a vortex wave, resulting in a forked grating pattern. In astronomy, an optical vortex coronagraph is one of the most promising high contrast imaging techniques for the direct imaging of extra-solar planets. Direct imaging of extra-solar planets is a challenging task since the brightness of the parent star is extremely high compared to its orbiting planets. The on-axis light from the parent star gets diffracted in the coronagraph, forming a "ring of fire" pattern, whereas the slightly off-axis light from the planet remains intact. Lyot stop can then be used to block the ring of fire pattern, thus allowing only the planetary light to get through to the imaging camera. Contrast enhancements of 106 or more are possible, provided the vortex lens (spiral phase plate) has exceptional optical quality. By using a vortex hologram with a 4 microm pitch, and an f/300 focusing lens, we were able to demonstrate the creation of a "ring of fire" using a white light emitting diode as a source. A dispersion compensating linear diffraction grating of 4 microm pitch was used to bring the rings together to form a single white light ring of fire. To our knowledge, this is the first time a vortex hologram based OVC has been demonstrated, resulting in a well-formed white light ring of fire. Experimental results show measured power contrast of 1/515 when HeNe laser source was used as a light source and 1/77 when using a white light emitting diode.

  14. ELECTRO-OPTIC PROJECTION STUDY.

    DTIC Science & Technology

    light modulation. The light valve tubes used in the study employ an electron beam to develop discrete electric fields through an electro - optic material...Characteristics of two electro - optic materials, potassium dihydrogen phosphate and potassium dideuterium phosphate, were measured in order to optimize the

  15. Time-domain separation of optical properties from structural transitions in resonantly bonded materials.

    PubMed

    Waldecker, Lutz; Miller, Timothy A; Rudé, Miquel; Bertoni, Roman; Osmond, Johann; Pruneri, Valerio; Simpson, Robert E; Ernstorfer, Ralph; Wall, Simon

    2015-10-01

    The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.

  16. Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot

    PubMed Central

    2014-01-01

    Quadratic electro-optic effects (QEOEs) and electro-absorption (EA) process in a GaN/AlGaN spherical quantum dot are theoretically investigated. It is found that the magnitude and resonant position of third-order nonlinear optical susceptibility depend on the nanostructure size and aluminum mole fraction. With increase of the well width and barrier potential, quadratic electro-optic effect and electro-absorption process nonlinear susceptibilities are decreased and blueshifted. The results show that the DC Kerr effect in this case is much larger than that in the bulk case. Finally, it is observed that QEOEs and EA susceptibilities decrease and broaden with the decrease of relaxation time. PMID:24646318

  17. Polymerization speed and diffractive experiments in polymer network LC test cells

    NASA Astrophysics Data System (ADS)

    Braun, Larissa; Gong, Zhen; Habibpourmoghadam, Atefeh; Schafforz, Samuel L.; Wolfram, Lukas; Lorenz, Alexander

    2018-02-01

    Polymer-network liquid crystals (LCs), where the response properties of a LC can be enhanced by the presence of a porous polymer network, are investigated. In the reported experiments, liquid crystals were doped with a small amount (< 10%) of photo-curable acrylate monomers. Samples with surface grafted photoinitiators, dissolvable photoinitiators, and samples with both kinds of photoinitiators were prepared. Both conventional (planar electrodes) and diffractive (interdigitated electrodes) test cells were used. These samples were exposed with a UV light source and changes of their capacitance were investigated with an LCR meter during exposure. Due to the presence of the in-situ generated polymer network, the electro-optic response properties of photo cured samples were enhanced. For example, their continuous phase modulation properties led to more localized responses in samples with interdigitated electrodes, which caused suppression of selected diffraction orders in the diffraction patterns recorded in polymer network LC samples. Moreover, capacitance changes were investigated during photopolymerization of a blue phase LC.

  18. Laser bandwidth interlock capable of single pulse detection and rejection

    DOEpatents

    Armstrong, James P; Telford, Steven James; Lanning, Rodney Kay; Bayramian, Andrew James

    2012-10-09

    A pulse of laser light is switched out of a pulse train and spatially dispersed into its constituent wavelengths. The pulse is collimated to a suitable size and then diffracted by high groove density multilayer dielectric gratings. This imparts a different angle to each individual wavelength so that, when brought to the far field with a lens, the colors have spread out in a linear arrangement. The distance between wavelengths (resolution) can be tailored for the specific laser and application by altering the number of times the beam strikes the diffraction gratings, the groove density of the gratings and the focal length of the lens. End portions of the linear arrangement are each directed to a respective detector, which converts the signal to a 1 if the level meets a set-point, and a 0 if the level does not. If both detectors produces a 1, then the pulse train is allowed to propagate into an optical system.

  19. [Design of a Component and Transmission Imaging Spectrometer].

    PubMed

    Sun, Bao-peng; Zhang, Yi; Yue, Jiang; Han, Jing; Bai, Lian-fa

    2015-05-01

    In the reflection-based imaging spectrometer, multiple reflection(diffraction) produces stray light and it is difficult to assemble. To address that, a high performance transmission spectral imaging system based on general optical components was developed. On the basis of simple structure, the system is easy to assemble. And it has wide application and low cost compared to traditional imaging spectrometers. All components in the design can be replaced according to different application situations, having high degree of freedom. In order to reduce the influence of stray light, a method based on transmission was introduced. Two sets of optical systems with different objective lenses were simulated; the parameters such as distortion, MTF and aberration.were analyzed and optimized in the ZEMAX software. By comparing the performance of system with different objective len 25 and 50 mm, it can be concluded that the replacement of telescope lens has little effect on imaging quality of whole system. An imaging spectrometer is developed successfully according design parameters. The telescope lens uses double Gauss structures, which is beneficial to reduce field curvature and distortion. As the craftsmanship of transmission-type plane diffraction grating is mature, it can be used without modification and it is easy to assemble, so it is used as beam-split. component of the imaging spectrometer. In addition, the real imaging spectrometer was tested for spectral resolution and distortion. The result demonstrates that the system has good ability in distortion control, and spectral resolution is 2 nm. These data satisfy the design requirement, and obtained spectrum of deuterium lamp through calibrated system are ideal results.

  20. Extended depth of focus intraocular lens: Chromatic performance

    PubMed Central

    Millán, Maria S.; Vega, Fidel

    2017-01-01

    We describe a first-and-second-diffractive-order intraocular lens ((1st,2nd)DIOL) within the class of hybrid refractive-diffractive designs for intraocular lenses (IOLs) and analyse its properties of focus extension and compensation of longitudinal chromatic aberration (LCA), particularly for lenses with low addition. Power, energy efficiency and their wavelength dependence are extended from monofocal IOL and conventional bifocal zeroth-and-first-diffractive-order IOL ((0th,1st)DIOL) to (1st,2nd)DIOL of low addition. Compensation of LCA is experimentally assessed in optical bench through the through-focus energy efficiency of three Tecnis IOLs with red, green and blue illuminations: ZA9003 (monofocal), ZKB00 (bifocal (0th,1st)DIOL with + 2.75 D add) and Symfony ZXR00. We prove Tecnis Symfony ZXR00 IOL can be considered an example of (1st,2nd)DIOL design of low addition, with LCA compensation in both the distance and intermediate foci, whereas the bifocal (0th,1st)DIOL does not compensate in the distance focus. However, the energy efficiency of (1st,2nd)DIOL for wavelengths other than the design wavelength is markedly more asymmetric. PMID:28966865

  1. Barium Titanate Photonic Crystal Electro-Optic Modulators for Telecommunication and Data Network Applications

    NASA Astrophysics Data System (ADS)

    Girouard, Peter D.

    The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.

  2. Optical and electro-optic anisotropy of epitaxial PZT thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  3. Astronomy (communication arising): black holes, fleas and microlithography.

    PubMed

    Skinner, Gerry; Gorenstein, Paul

    2003-11-20

    Fresnel lenses allow almost perfect imaging in widely different circumstances, but their focus is perfect only for a single wavelength. Wang et al. have shown how the effective bandpass may be widened for X-ray microscopy by using a compound diffractive/refractive lens near to an absorption edge. A compound lens has also been proposed for high-energy astronomy, working well above all absorption edges. Although the scale is very different, we point out here that the principle is the same. Ever since Galileo constructed an astronomical telescope that he was able to reconfigure to study fleas and gnats, astronomy and microscopy have relied on optics that are closely related, but different in detail.

  4. Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy.

    PubMed

    Wang, Shuai; Fan, Xinyu; Xu, Bingxin; He, Zuyuan

    2017-10-01

    An electro-optic frequency comb enables frequency-agile comb-based spectroscopy without using sophisticated phase-locking electronics. Nevertheless, dense electro-optic frequency combs over broad spans have yet to be developed. In this Letter, we propose a straightforward and efficient method for electro-optic frequency comb generation with a small line spacing and a large span. This method is based on two-stage modulation: generating an 18 GHz line-spacing comb at the first stage and a 250 MHz line-spacing comb at the second stage. After generating an electro-optic frequency comb covering 1500 lines, we set up an easily established mutually coherent hybrid dual-comb interferometer, which combines the generated electro-optic frequency comb and a free-running mode-locked laser. As a proof of concept, this hybrid dual-comb interferometer is used to measure the absorption and dispersion profiles of the molecular transition of H 13 CN with a spectral resolution of 250 MHz.

  5. Curved focusing crystals for hard X-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, C., E-mail: ferrari@imem.cnr.it; Buffagni, E.; Bonnini, E.

    A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.

  6. A novel design for maskless direct laser writing nanolithography: Combination of diffractive optical element and nonlinear absorption inorganic resists

    NASA Astrophysics Data System (ADS)

    Zha, Yikun; Wei, Jingsong; Gan, Fuxi

    2013-09-01

    Maskless laser direct writing lithography has been applied in the fabrication of optical elements and electric-optical devices. With the development of technology, the feature size of the elements and devices is required to reduce down to nanoscale. Increasing the numerical aperture of converging lens and shortening the laser wavelength are good methods to obtain the small spot and reduce the feature size to nanoscale, while this will cause the reduction of the depth of focus. The reduction of depth of focus will lead to some difficulties in the focusing and tracking servo controlling during the high speed laser direct writing lithography. In this work, the combination of the diffractive optical elements and the nonlinear absorption inorganic resist thin films cannot only extend the depth of focus, but also reduce the feature size of the lithographic marks down to nanoscale. By using the five-zone annular phase-only binary pupil filter as the diffractive optical elements and AgInSbTe as the nonlinear absorption inorganic resist thin film, the depth of focus cannot only extend to 7.39 times that of the focused spot, but also reduce the lithographic feature size down to 54.6 nm. The ill-effect of sidelobe on the lithography is also eliminated by the nonlinear reverse saturable absorption and the phase change threshold lithographic characteristics.

  7. High performance electro-optical modulator based on photonic crystal and graphene

    NASA Astrophysics Data System (ADS)

    Malekmohammad, M.; Asadi, R.

    2017-07-01

    An electro-optical modulator is demonstrated based on Fano-resonance effect in an out-of-plane illumination of one-dimensional slab photonic crystal composed of two graphene layers. It has been shown that high sensitivity of the Fano-resonance and electro-refractive tuning of graphene layers provides a suitable condition to obtain an electro-optical modulator with low energy consumption (8 pJ) with contrast of 0.4.

  8. Applications of telecommunication technology for optical instrumentation with an emphasis on space-time duality

    NASA Astrophysics Data System (ADS)

    van Howe, James William

    Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high-speed operation, and electronic control of signals. Finally, we devote much attention to the paradigm of space-time duality and temporal imaging which allows the electro-optic phase modulators used in our instrumentation to be framed as temporal analogs of diffractive optical elements such as lenses and prisms. We show how the concepts of "time-lenses" and "time-prisms" give an intuitive understanding of our work as well as insight for the general development of optical instrumentation.

  9. Electro-Optic Identification (EOID) Research Program

    DTIC Science & Technology

    2001-09-30

    1 Electro - Optic Identification (EOID) Research Program Gene M. Cumm Northrop Grumman Oceanic and Naval Systems P.O. Box 1488 Annapolis...control number. 1. REPORT DATE 30 SEP 2001 2. REPORT TYPE 3. DATES COVERED 00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE Electro - Optic Identification

  10. Holographic data storage crystals for LDEF (A0044)

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Gaylord, T. K.

    1984-01-01

    Electro-optic holographic recording systems were developed. The spaceworthiness of electro-optic crystals for use in ultrahigh capacity space data storage and retrieval systems are examined. The crystals for this experiment are included with the various electro-optical components of LDEF experiment. The effects of long-duration exposure on active optical system components is investigated. The concept of data storage in an optical-phase holographic memory is illustrated.

  11. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today’s technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. As a result, this scheme can be applied tomore » any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.« less

  12. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

    PubMed Central

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C.; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G.

    2017-01-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers. PMID:28248317

  13. Image reproduction with interactive graphics

    NASA Technical Reports Server (NTRS)

    Buckner, J. D.; Council, H. W.; Edwards, T. R.

    1974-01-01

    Software application or development in optical image digital data processing requires a fast, good quality, yet inexpensive hard copy of processed images. To achieve this, a Cambo camera with an f 2.8/150-mm Xenotar lens in a Copal shutter having a Graflok back for 4 x 5 Polaroid type 57 pack-film has been interfaced to an existing Adage, AGT-30/Electro-Mechanical Research, EMR 6050 graphic computer system. Time-lapse photography in conjunction with a log to linear voltage transformation has resulted in an interactive system capable of producing a hard copy in 54 sec. The interactive aspect of the system lies in a Tektronix 4002 graphic computer terminal and its associated hard copy unit.

  14. What is the diffraction limit? From Airy to Abbe using direct numerical integration

    NASA Astrophysics Data System (ADS)

    Calm, Y. M.; Merlo, J. M.; Burns, M. J.; Kempa, K.; Naughton, M. J.

    The resolution of a conventional optical microscope is sometimes taken from Airy's point spread function (PSF), 0 . 61 λ / NA , and sometimes from Abbe, λ / 2 NA , where NA is the numerical aperture, however modern fluorescence and near-field optical microscopies achieve spatial resolution far better than either of these limits. There is a new category of 2D metamaterials called planar optical elements (POEs), which have a microscopic thickness (< λ), macroscopic transverse dimensions (> 100 λ), and are composed of an array of nanostructured light scatterers. POEs are found in a range of micro- and nano-photonic technologies, and will influence the future optical nanoscopy. With this pretext, we shed some light on the 'diffraction limit' by numerically evaluating Kirchhoff's scalar formulae (in their exact form) and identifying the features of highly non-paraxial, 3D PSFs. We show that the Airy and Abbe criteria are connected, and we comment on the design rules for a particular type of POE: the flat lens. This work is supported by the W. M. Keck Foundation.

  15. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    PubMed Central

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available. PMID:23112602

  16. Multi-sensor fusion of infrared and electro-optic signals for high resolution night images.

    PubMed

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  17. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  18. Micro-optics for simultaneous multi-spectral imaging applied to chemical/biological and IED detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2012-06-01

    Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.

  19. Generalized Oseen transformation for and enhancement of Bragg characteristics of electro-optic structurally chiral materials

    NASA Astrophysics Data System (ADS)

    Lakhtakia, Akhlesh

    2006-05-01

    The Oseen transformation is generalized to define a non-electro-optic structurally chiral material, wherein propagation along the axis of chirality is equivalent to that in an electro-optic SCM with local 4¯2m point group symmetry. This generalization shows that the exploitation of the Pockels effect amounts to an enhancement of the effective local birefringence, which in turn can enhance the characteristics of the circular Bragg phenomenon. Electro-optic SCMs can therefore serve as efficient and electrically controllable circular- and elliptical-polarization rejection filters.

  20. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  1. Analysis of Electro-Optic Materials Properties on Guided Wave Devices

    DTIC Science & Technology

    1992-12-16

    AD-A262 787 APPLIED RESEARCH, INC, ANALYSIS OF ELECTRO - OPTIC MATERIALS PROPERTIES ON GUIDED WAVE DEVICES FINAL REPORT DTI 6700 ODYSSEY DR HUNTSVILLE...ALABAMA 35814-1220 s IMAR1893 APPROVED FOR PUKIC RE’.EASE DISTRIBUTION UNLIMlITED Applied Research Inc. ARI/92iR-048Z ANALYSIS OF ELECTRO - OPTIC MATERIALS...uNiT ATTN: Dr. 2aul Ashley-AMSMI-RD-~WS--CM ELEMENT NO 4 NO IAr SSiON No t1I TI TLE iciup SeawIfy 0Mft*G’I Analysis of Electro - optic Materials

  2. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, M.; Diemeer, M. B. J.; Driessen, A.; Faccini, M.; Verboom, W.; Reinhoudt, D. N.; Leinse, A.

    2006-02-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (T g) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability 1 has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficient (r33) compared to the unmodified TCVDPA was shown. A microring resonator design was made based on the PS-TCVDPA system. SU8 (passive) and TCVDPA (active) channel waveguides were fabricated by the photodefinition technique and the passive waveguide losses were measured to be 5 dB/cm at 1550 nm.

  3. Field lens multiplexing in holographic 3D displays by using Bragg diffraction based volume gratings

    NASA Astrophysics Data System (ADS)

    Fütterer, G.

    2016-11-01

    Applications, which can profit from holographic 3D displays, are the visualization of 3D data, computer-integrated manufacturing, 3D teleconferencing and mobile infotainment. However, one problem of holographic 3D displays, which are e.g. based on space bandwidth limited reconstruction of wave segments, is to realize a small form factor. Another problem is to provide a reasonable large volume for the user placement, which means to provide an acceptable freedom of movement. Both problems should be solved without decreasing the image quality of virtual and real object points, which are generated within the 3D display volume. A diffractive optical design using thick hologram gratings, which can be referred to as Bragg diffraction based volume gratings, can provide a small form factor and high definition natural viewing experience of 3D objects. A large collimated wave can be provided by an anamorphic backlight unit. The complex valued spatial light modulator add local curvatures to the wave field he is illuminated with. The modulated wave field is focused onto to the user plane by using a volume grating based field lens. Active type liquid crystal gratings provide 1D fine tracking of approximately +/- 8° deg. Diffractive multiplex has to be implemented for each color and for a set of focus functions providing coarse tracking. Boundary conditions of the diffractive multiplexing are explained. This is done in regards to the display layout and by using the coupled wave theory (CWT). Aspects of diffractive cross talk and its suppression will be discussed including longitudinal apodized volume gratings.

  4. CW 50W/M2 = 10.9 diode laser source by spectral beam combining based on a transmission grating.

    PubMed

    Zhang, Jun; Peng, Hangyu; Fu, Xihong; Liu, Yun; Qin, Li; Miao, Guoqing; Wang, Lijun

    2013-02-11

    An external cavity structure based on the -1st transmission grating is introduced to spectral beam combining a 970 nm diode laser bar. A CW output power of 50.8 W, an electro-optical conversion efficiency of 45%, a spectral beam combining efficiency of 90.2% and a holistic M(2) value of 10.9 are achieved. This shows a way for a diode laser source with several KW power and diffraction-limited beam quality at the same time.

  5. Influence of the set-up on the recording of diffractive optical elements into photopolymers

    NASA Astrophysics Data System (ADS)

    Gallego, S.; Fernández, R.; Márquez, A.; Neipp, C.; Beléndez, A.; Pascual, I.

    2014-05-01

    Photopolymers are often used as a base of holographic memories displays. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been demonstrated. To fabricate diffractive optical elements we use a hybrid setup that is composed by three different parts: LCD, optical system and the recording material. The DOE pattern is introduced by a liquid crystal display (LCD) working in the amplitude only mode to work as a master to project optically the DOE onto the recording material. The main advantage of this display is that permit us modify the DOE automatically, we use the electronics of the video projector to send the voltage to the pixels of the LCD. The LCD is used in the amplitude-mostly modulation regime by proper orientation of the external polarizers (P); then the pattern is imaged onto the material with an increased spatial frequency (a demagnifying factor of 2) by the optical system. The use of the LCD allows us to change DOE recorded in the photopolymer without moving any mechanical part of the set-up. A diaphragm is placed in the focal plane of the relay lens so as to eliminate the diffraction orders produced by the pixelation of the LCD. It can be expected that the final pattern imaged onto the recording material will be low filtered due to the finite aperture of the imaging system and especially due to the filtering process produced by the diaphragm. In this work we analyze the effect of the visibility achieved with the LCD and the high frequency cut-off due to the diaphragm in the final DOE recorded into the photopolymer. To simulate the recording we have used the fitted values parameters obtained for PVA/AA based photopolymers and the 3 dimensional models presented in previous works.

  6. Telephoto axicon

    NASA Astrophysics Data System (ADS)

    Burvall, Anna; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    The axicon is an optical element which creates a narrow focal line along the optical axis, unlike the single focal point produced by a lens. The long and precisely defined axicon focal line is used e.g. in alignment, or to extend the depth of focus of existing methods such as optical coherence tomography or light sectioning. Axicons are generally manufactured as refractive cones or diffractive circular gratings. They are also made as lens systems or doublet lenses, which are easier to produce. We present a design in the form of a reflective-refractive single-element device with annular aperture. This very compact system has only two surfaces, which can be spherical or aspheric depending on the quality required of the focal line. Both surfaces have reflective coatings at specific zones, providing an annular beam suitable for generating extended focal lines. One draw-back of a normal axicon is its sensitivity to the angle of illumination. Even for relatively small angles, astigmatism will broaden the focus and give it an asteroid shape. For our design, with spherical surfaces concentric about the center of the entrance pupil, the focal line remains unchanged in off-axis illumination.

  7. Comparative assessment of astigmatism-corrected Czerny-Turner imaging spectrometer using off-the-shelf optics

    NASA Astrophysics Data System (ADS)

    Yuan, Qun; Zhu, Dan; Chen, Yueyang; Guo, Zhenyan; Zuo, Chao; Gao, Zhishan

    2017-04-01

    We present the optical design of a Czerny-Turner imaging spectrometer for which astigmatism is corrected using off-the-shelf optics resulting in spectral resolution of 0.1 nm. The classic Czerny-Turner imaging spectrometer, consisting of a plane grating, two spherical mirrors, and a sensor with 10-μm pixels, was used as the benchmark. We comparatively assessed three configurations of the spectrometer that corrected astigmatism with divergent illumination of the grating, by adding a cylindrical lens, or by adding a cylindrical mirror. When configured with the added cylindrical lens, the imaging spectrometer with a point field of view (FOV) and a linear sensor achieved diffraction-limited performance over a broadband width of 400 nm centered at 800 nm, while the maximum allowable bandwidth was only 200 nm for the other two configurations. When configured with the added cylindrical mirror, the imaging spectrometer with a one-dimensional field of view (1D FOV) and an area sensor showed its superiority on imaging quality, spectral nonlinearity, as well as keystone over 100 nm bandwidth and 10 mm spatial extent along the entrance slit.

  8. Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations

    PubMed Central

    Akondi, Vyas; Dorronsoro, Carlos; Gambra, Enrique; Marcos, Susana

    2017-01-01

    Fast tunable lenses allow an effective design of a portable simultaneous vision simulator (SimVis) of multifocal corrections. A novel method of evaluating the temporal profile of a tunable lens in simulating different multifocal intraocular lenses (M-IOLs) is presented. The proposed method involves the characteristic fitting of the through-focus (TF) optical quality of the multifocal component of a given M-IOL to a linear combination of TF optical quality of monofocal lenses viable with a tunable lens. Three different types of M-IOL designs are tested, namely: segmented refractive, diffractive and refractive extended depth of focus. The metric used for the optical evaluation of the temporal profile is the visual Strehl (VS) ratio. It is shown that the time profiles generated with the VS ratio as a metric in SimVis resulted in TF VS ratio and TF simulated images that closely matched the TF VS ratio and TF simulated images predicted with the M-IOL. The effects of temporal sampling, varying pupil size, monochromatic aberrations, longitudinal chromatic aberrations and temporal dynamics on SimVis are discussed. PMID:28717577

  9. Transverse correlations in triphoton entanglement: Geometrical and physical optics

    NASA Astrophysics Data System (ADS)

    Wen, Jianming; Xu, P.; Rubin, Morton H.; Shih, Yanhua

    2007-08-01

    The transverse correlation of triphoton entanglement generated within a single crystal is analyzed. Among many interesting features of the transverse correlation, they arise from the spectral function F of the triphoton state produced in the parametric processes. One consequence of transverse effects of entangled states is quantum imaging, which is theoretically studied in photon counting measurements. Klyshko’s two-photon advanced-wave picture is found to be applicable to the multiphoton entanglement with some modifications. We found that in the two-photon coincidence counting measurement by using triphoton entanglement, although the Gaussian thin lens equation (GTLE) holds, the imaging shown in coincidences is obscure and has a poor quality. This is because of tracing the remaining transverse modes in the untouched beam. In the triphoton imaging experiments, two kinds of cases have been examined. For the case that only one object with one thin lens is placed in the system, we found that the GTLE holds as expected in the triphoton coincidences and the effective distance between the lens and imaging plane is the parallel combination of two distances between the lens and two detectors weighted by wavelengths, which behaves as the parallel combination of resistors in the electromagnetism theory. Only in this case, a point-point correspondence for forming an image is well-accomplished. However, when two objects or two lenses are inserted in the system, though the GTLEs are well-satisfied, in general a point-point correspondence for imaging cannot be established. Under certain conditions, two blurred images may be observed in the coincidence counts. We have also studied the ghost interference-diffraction experiments by using double slits as apertures in triphoton entanglement. It was found that when two double slits are used in two optical beams, the interference-diffraction patterns show unusual features compared with the two-photon case. This unusual behavior is a destructive interference between two amplitudes for two photons crossing two double slits.

  10. Paraxial light distribution in the focal region of a lens: a comparison of several analytical solutions and a numerical result.

    PubMed

    Wu, Yang; Kelly, Damien P

    2014-12-12

    The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of [Formula: see text] and [Formula: see text] type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of [Formula: see text] and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by [Formula: see text], where [Formula: see text] is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.

  11. Paraxial light distribution in the focal region of a lens: a comparison of several analytical solutions and a numerical result

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Kelly, Damien P.

    2014-12-01

    The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of ? and ? type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of ? and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by ?, where ? is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.

  12. Processes for manufacturing multifocal diffractive-refractive intraocular lenses

    NASA Astrophysics Data System (ADS)

    Iskakov, I. A.

    2017-09-01

    Manufacturing methods and design features of modern diffractive-refractive intraocular lenses are discussed. The implantation of multifocal intraocular lenses is the most optimal method of restoring the accommodative ability of the eye after removal of the natural lens. Diffractive-refractive intraocular lenses are the most widely used implantable multifocal lenses worldwide. Existing methods for manufacturing such lenses implement various design solutions to provide the best vision function after surgery. The wide variety of available diffractive-refractive intraocular lens designs reflects the demand for this method of vision correction in clinical practice and the importance of further applied research and development of new technologies for designing improved lens models.

  13. Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes

    NASA Astrophysics Data System (ADS)

    Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.

    2016-05-01

    Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene (;A-dye;: hydrogen bond donor) and dimethyl-aminoazobenzene (;B-dye;) dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.

  14. Simulation of light propagation in the thin-film waveguide lens

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  15. Two-Photon Ghost Image and Interference-Diffraction

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a convex lens. Surprisingly, an image of this aperture is observed in the idler beam, by scanning the idler photon detector in the transverse plane of the idler beam, if we are sure that the idler photon detector 'catches' the 'twin brother' of the signal, which can be easily performed by a coincidence measurement. This effect is even more striking when we found that the object-lens-image relationship satisfies the Gaussian thin lens equation. The second experiment demonstrates two-photon 'ghost' interference-diffraction. The experimental set up is similar to the image experiment, except that rather than a lens and an aperture it is a Young's double-slit (or a single-slit) inserted into the path of the signal beam. We could not find any interference (or diffraction) pattern behind the slit. Surprisingly, an interference (or diffraction) pattern is observed when scanning the detector in the idler beam, if we are sure that the idler photon detector 'catches' the 'twin brother' of the signal.

  16. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.

    1987-01-01

    A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  17. Ferroelectric Tungsten Bronze Bulk Crystals and Epitaxial Thin Films for Electro-Optic Device Applications

    DTIC Science & Technology

    1984-07-01

    improved, they show a considerable enhancement in electro - optic and photorefractive properties, specifically for Ce(3+)-doped SBN:60 crystals. The...concentration of impurity ions increased. Undoped SBN:60 single crystals have also been grown and they are almost striation-free and exhibit excellent electro - optic properties.

  18. Ferroelectric Tungsten Bronze Bulk Crystals and Epitaxial Thin Films for Electro-Optic Device Applications

    DTIC Science & Technology

    1984-02-01

    110) film orientations. Electro - optic measurements on SBN:60 single crystals have shown a high value for r51 of 80 x 10 to the minus 12th power m/v...showing morphotropic boundary conditions with enhanced dielectric properties. Both systems look promising for future electro - optic development.

  19. Electro-optical Probing Of Terahertz Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Romanofsky, R.; Whitaker, J. F.; Valdmanis, J. A.; Mourou, G.; Jackson, T. A.

    1990-01-01

    Electro-optical probe developed to perform noncontact, nondestructive, and relatively noninvasive measurements of electric fields over broad spectrum at millimeter and shorter wavelengths in integrated circuits. Manipulated with conventional intregrated-circuit-wafer-probing equipment and operated without any special preparation of integrated circuits. Tip of probe small electro-optical crystal serving as proximity electric-field sensor.

  20. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    ERIC Educational Resources Information Center

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  1. Walter Thompson Welford 31 August 1916 - 18 September 1990.

    PubMed

    Barnett, Michael; Smith, Robin

    2004-01-01

    Walter Thompson Welford (Walter Weinstein until 1957), born in London, left Hackney Technical Institute at the age of 16 years to become a technician at the London Hospital and later at Oxford University Biochemistry Department. In 1942, after obtaining a first-class honours external degree in mathematics from London University by private study, he returned to London to work at Adam Hilger Ltd. He moved to Imperial College, London, as a research assistant in 1947, became a lecturer in 1951, a senior lecturer in 1959, Reader in 1964 and Professor of Physics in 1973. He was elected a Fellow of The Royal Society in 1980. After formal retirement in 1983 he continued to be research active at Imperial College and the University of Chicago until his death from throat cancer in 1990.Walter's scientific work was in the craft of optical instrumentation, in which he became an internationally recognized master. His contributions ranged from basic aberration theory to the design, construction and testing of a vast ranger of optical instrumentation. His research fields were principally lens aberrations, optical microscopy, bubble chamber optics, laser speckle, non-imaging optics, diffraction gratings and diffraction lenses. Many will also remember him as a kindly and inspiring educator.

  2. Compact optical processor for Hough and frequency domain features

    NASA Astrophysics Data System (ADS)

    Ott, Peter

    1996-11-01

    Shape recognition is necessary in a broad band of applications such as traffic sign or work piece recognition. It requires not only neighborhood processing of the input image pixels but global interconnection of them. The Hough transform (HT) performs such a global operation and it is well suited in the preprocessing stage of a shape recognition system. Translation invariant features can be easily calculated form the Hough domain. We have implemented on the computer a neural network shape recognition system which contains a HT, a feature extraction, and a classification layer. The advantage of this approach is that the total system can be optimized with well-known learning techniques and that it can explore the parallelism of the algorithms. However, the HT is a time consuming operation. Parallel, optical processing is therefore advantageous. Several systems have been proposed, based on space multiplexing with arrays of holograms and CGH's or time multiplexing with acousto-optic processors or by image rotation with incoherent and coherent astigmatic optical processors. We took up the last mentioned approach because 2D array detectors are read out line by line, so a 2D detector can achieve the same speed and is easier to implement. Coherent processing can allow the implementation of tilers in the frequency domain. Features based on wedge/ring, Gabor, or wavelet filters have been proven to show good discrimination capabilities for texture and shape recognition. The astigmatic lens system which is derived form the mathematical formulation of the HT is long and contains a non-standard, astigmatic element. By methods of lens transformation s for coherent applications we map the original design to a shorter lens with a smaller number of well separated standard elements and with the same coherent system response. The final lens design still contains the frequency plane for filtering and ray-tracing shows diffraction limited performance. Image rotation can be done optically by a rotating prism. We realize it on a fast FLC- SLM of our lab as input device. The filters can be implemented on the same type of SLM with 128 by 128 square pixels of size, resulting in a total length of the lens of less than 50cm.

  3. Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources.

    PubMed

    Huang, K; Esirkepov, T; Koga, J K; Kotaki, H; Mori, M; Hayashi, Y; Nakanii, N; Bulanov, S V; Kando, M

    2018-02-13

    Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.

  4. Miniature low voltage beam systems producable by combined lithographies

    NASA Astrophysics Data System (ADS)

    Koops, Hans W. P.; Munro, Eric; Rouse, John; Kretz, Johannes; Rudolph, Michael; Weber, Markus; Dahm, Gerold

    The project of a miniaturized vacuum microelectronic 100 GHz switch is described. It implies the development of a field emission electron gun as well as the investigation of miniaturized lenses and deflectors. Electrostatic elements are designed and developed for this application. Connector pads and wiring pattern are created by conventional electron beam lithography and a lift-off or etching process. Wire and other 3-dimensional structures are grown using electron beam induced deposition. This additive lithography allows to form electrodes and resistors of a preset conductivity. The scanning electron microscope features positioning the structures with nm precision. An unconventional lithography system is used that is capable of controlling the pixel dwell time within a shape with different time functions. With this special function 3-dimensional structures can be generated like free standing square shaped electrodes. The switch is built by computer controlled additive lithography avoiding assembly from parts. Lenses of micrometer dimensions were investigated with numerical electron optics programs computing the 3-dimensional potential and field distribution. From the extracted axial field distribution the electron optic characteristic parameters, like focal length, chromatic and spherical aberration, were calculated for various lens excitations. The analysis reveals that miniaturized optics for low energy electrons, as low as 30 eV, are diffraction limited. For a lens with 2 μm focal length, a chromatic aberration disc of 1 nm contributes to 12 nm diffraction disc. The spherical aberration blurs the probe by 0.02 nm, assuming an aperture of 0.01 rad. Employing hydrogen ions at 100 V, a probe diameter of 0.3 nm generated by chromatic aberration is possible. Miniaturized electron optical probe forming systems and imaging systems can be constructed with those lenses. Its application as lithography systems with massive parallel beams can be forseen.

  5. Quasi-optic millimeter-wave device application of liquid crystal material by using porous PMMA matrix

    NASA Astrophysics Data System (ADS)

    Nose, T.; Watanabe, Y.; Kon, A.; Ito, R.; Honma, M.

    2018-02-01

    Recently, millimeter-waves (MMWs) have become indispensable for application in next-generation high-speed wireless communication i.e., 5G, in addition to conventional applications such as in automobile collision avoidance radars and airport security inspection systems. Some manageable devices to control MMW propagation will be necessary with the development of this new technology field. We believe that liquid crystal (LC) devices are one of the major candidates for such applications because it is known that LC materials are excellent electro-optic materials. However, as the wavelength of MMWs is extremely longer than the optics region, extremely thick LC layers are necessary if we choose the quasioptic approach to attain LC MMW control devices. Therefore, we adopt a PDLC structure to attain the extremely thick LC layers by using porous (polymethyl methacrylate) PMMA materials, which can be easily obtained using a solvent consisting of a mixture of ethanol/water and a little heating. In this work, we focus on Fresnel lens, which is an important quasi-optic device for MMW application, to introduce a tunable property by using LC materials. Here, we adopt the thin film deposition method to obtain a porous PMMA matrix with the aim of obtaining final composite structure based on the Fresnel substrate. First, the fundamental material properties of porous PMMA are investigated to control the microscopic porous structure. Then, the LC-MMW Fresnel lens substrate is prepared using a 3D printer, and the fundamental MMW focusing properties of the prototype composite Fresnel structure are investigated.

  6. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    PubMed Central

    Wei, Hsiang-Chun; Su, Guo-Dung John

    2012-01-01

    Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM) provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC) is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young's modulus and Poisson's ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens. PMID:23112648

  7. Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos.

    PubMed

    Ai, Jianzhou; Wang, Lulu; Wang, Jian

    2017-09-15

    Chaos-based secure communication can provide a high level of privacy in data transmission. Here, we experimentally demonstrate secure signal transmission over two kinds of multimode fiber (MMF) based on electro-optic intensity chaos. High-quality synchronization is achieved in an electro-optic feedback configuration. Both 5  Gbit/s carrier-less amplitude/phase (CAP-4) modulation and 10  Gbit/s on-off key (OOK) signals are recovered efficiently in electro-optic chaos-based communication systems. Degradations of chaos synchronization and communication system due to mismatch of various hardware keys are also discussed.

  8. An active interference projector for the electro-optical test facility

    NASA Astrophysics Data System (ADS)

    Crowe, D. G.; Nowak, T. M.

    1980-09-01

    A projection system is described which can simulate emissions from flares, muzzle-flashes, shellbursts, and other emissive agents which may degrade the performance of electro-optical systems in the 0.5-15 micron spectral range. The simulation capability obtained will allow the apparent radiance and temporal characteristics of muzzleflashes and shellbursts to be mimicked at simulated ranges as close as 23 m within the Electro-Optical Test Facility. This demonstrates that tests of electro-optical system performance in the presence of interferers can be performed under laboratory conditions with higher repeatability and lower cost than field tests.

  9. Teaching Fraunhofer diffraction via experimental and simulated images in the laboratory

    NASA Astrophysics Data System (ADS)

    Peinado, Alba; Vidal, Josep; Escalera, Juan Carlos; Lizana, Angel; Campos, Juan; Yzuel, Maria

    2012-10-01

    Diffraction is an important phenomenon introduced to Physics university students in a subject of Fundamentals of Optics. In addition, in the Physics Degree syllabus of the Universitat Autònoma de Barcelona, there is an elective subject in Applied Optics. In this subject, diverse diffraction concepts are discussed in-depth from different points of view: theory, experiments in the laboratory and computing exercises. In this work, we have focused on the process of teaching Fraunhofer diffraction through laboratory training. Our approach involves students working in small groups. They visualize and acquire some important diffraction patterns with a CCD camera, such as those produced by a slit, a circular aperture or a grating. First, each group calibrates the CCD camera, that is to say, they obtain the relation between the distances in the diffraction plane in millimeters and in the computer screen in pixels. Afterwards, they measure the significant distances in the diffraction patterns and using the appropriate diffraction formalism, they calculate the size of the analyzed apertures. Concomitantly, students grasp the convolution theorem in the Fourier domain by analyzing the diffraction of 2-D gratings of elemental apertures. Finally, the learners use a specific software to simulate diffraction patterns of different apertures. They can control several parameters: shape, size and number of apertures, 1-D or 2-D gratings, wavelength, focal lens or pixel size.Therefore, the program allows them to reproduce the images obtained experimentally, and generate others by changingcertain parameters. This software has been created in our research group, and it is freely distributed to the students in order to help their learning of diffraction. We have observed that these hands on experiments help students to consolidate their theoretical knowledge of diffraction in a pedagogical and stimulating learning process.

  10. Structural deformation measurement via efficient tensor polynomial calibrated electro-active glass targets

    NASA Astrophysics Data System (ADS)

    Gugg, Christoph; Harker, Matthew; O'Leary, Paul

    2013-03-01

    This paper describes the physical setup and mathematical modelling of a device for the measurement of structural deformations over large scales, e.g., a mining shaft. Image processing techniques are used to determine the deformation by measuring the position of a target relative to a reference laser beam. A particular novelty is the incorporation of electro-active glass; the polymer dispersion liquid crystal shutters enable the simultaneous calibration of any number of consecutive measurement units without manual intervention, i.e., the process is fully automatic. It is necessary to compensate for optical distortion if high accuracy is to be achieved in a compact hardware design where lenses with short focal lengths are used. Wide-angle lenses exhibit significant distortion, which are typically characterized using Zernike polynomials. Radial distortion models assume that the lens is rotationally symmetric; such models are insufficient in the application at hand. This paper presents a new coordinate mapping procedure based on a tensor product of discrete orthogonal polynomials. Both lens distortion and the projection are compensated by a single linear transformation. Once calibrated, to acquire the measurement data, it is necessary to localize a single laser spot in the image. For this purpose, complete interpolation and rectification of the image is not required; hence, we have developed a new hierarchical approach based on a quad-tree subdivision. Cross-validation tests verify the validity, demonstrating that the proposed method accurately models both the optical distortion as well as the projection. The achievable accuracy is e <= +/-0.01 [mm] in a field of view of 150 [mm] x 150 [mm] at a distance of the laser source of 120 [m]. Finally, a Kolmogorov Smirnov test shows that the error distribution in localizing a laser spot is Gaussian. Consequently, due to the linearity of the proposed method, this also applies for the algorithm's output. Therefore, first-order covariance propagation provides an accurate estimate of the measurement uncertainty, which is essential for any measurement device.

  11. SPIDER: Next Generation Chip Scale Imaging Sensor Update

    NASA Astrophysics Data System (ADS)

    Duncan, A.; Kendrick, R.; Ogden, C.; Wuchenich, D.; Thurman, S.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; Yoo, S. J. B.

    2016-09-01

    The Lockheed Martin Advanced Technology Center (LM ATC) and the University of California at Davis (UC Davis) are developing an electro-optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that seeks to provide a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal-plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger-aperture imager in a constrained volume. Our SPIDER imager replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies that samples the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then reconstructs an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., complementary metal-oxide-semiconductor (CMOS) fabrication). The standard EO payload integration and test process that involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication, which substantially reduces associated schedule and cost. This paper provides an overview of performance data on the second-generation PIC for SPIDER developed under the Defense Advanced Research Projects Agency (DARPA)'s SPIDER Zoom research funding. We also update the design description of the SPIDER Zoom imaging sensor and the second-generation PIC (high- and low resolution versions).

  12. Testbed Experiment for SPIDER: A Photonic Integrated Circuit-based Interferometric imaging system

    NASA Astrophysics Data System (ADS)

    Badham, K.; Duncan, A.; Kendrick, R. L.; Wuchenich, D.; Ogden, C.; Chriqui, G.; Thurman, S. T.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; Yoo, S. J. B.

    The Lockheed Martin Advanced Technology Center (LM ATC) and the University of California at Davis (UC Davis) are developing an electro-optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that seeks to provide a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal-plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger-aperture imager in a constrained volume. Our SPIDER imager replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies that samples the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then reconstructs an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., complementary metal-oxide-semiconductor (CMOS) fabrication). The standard EO payload integration and test process that involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication, which substantially reduces associated schedule and cost. In this paper we describe the photonic integrated circuit design and the testbed used to create the first images of extended scenes. We summarize the image reconstruction steps and present the final images. We also describe our next generation PIC design for a larger (16x area, 4x field of view) image.

  13. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    NASA Astrophysics Data System (ADS)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  14. Terahertz wave electro-optic measurements with optical spectral filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyakov, I. E., E-mail: igor-ilyakov@mail.ru; Shishkin, B. V.; Kitaeva, G. Kh.

    We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.

  15. Realization of New and Enhanced Materials Properties Through Nanostructural Control

    DTIC Science & Technology

    2007-06-11

    methods have been used to guide the design of novel new organic electroactive materials (e.g., electro - optic binary chromophore organic glasses...These new materials have yielded electro - optic coefficients as high as 450 pm/V (15 times lithium niobate) with auxiliary properties of modest optical... electro - optic activity has been achieved for the first time and theoretical conclusions have been verified by a number of new measurement techniques

  16. Nonlinear optical and light emission studies of special organic molecules and crystals

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya K.

    The nonlinear optical properties and light emission characteristics of some special organic molecules and crystals have been studied in detail. The second-order nonlinear optical effects were measured in the single- crystal films of the materials. The crystallographic orientations of the films were determined using x-ray diffraction measurements. The second-order susceptibility tensor elements of 4-aminobenzophenone (ABP) and 8- (4'-acetylphenyl)-1,4-dioxa-8- azaspiro[4.5]decane (APDA) films were measured using polarization selective second-harmonic generation experiments. The d-coefficients of ABP are: d 23 = 7.3 +/- 0.4 pm/V and d22 = 0.73 +/- 0.04 pm/V, while those of APDA are: d33 = 54 +/- 6 pm/V and d15 = 18 +/- 3 pm/V at 1064 nm. Phase-matched propagation directions were identified on the films. The application of these films in measuring ultra-short laser pulse-width was demonstrated. Polarized optical absorption and photo- luminescence were measured in 4'- dimethylamino-N-methyl-4-stilbazolium tosylate (DAST). The electro-optic properties of single- crystal films of DAST and styryl pyridinium cyanine dye (SPCD) were studied over a broad range of wavelengths. The measured r-coefficients are the largest reported in any material. Thin-film electro-optic modulators were demonstrated using these films which have insignificant insertion and propagation losses compared to the traditional waveguide based devices. The response was observed to be flat over the measured frequency range (2 kHz-100 MHz), which indicates the origin of the electro-optic effect to be predominantly electronic. Thus these materials have significant potential for applications in high-speed optical signal processing. Spectral broadening of femtosecond laser pulses in poly- [2,4 hexadiyne-1,6 diol-bis-(p-toluene sulfonate)] (PTS) single-crystals due to self-phase modulation was studied. The magnitudes of the nonlinear refractive index were determined over the wavelength range of 720-1064 nm. The two-photon absorption spectrum, determined from nonlinear transmission measurements, was observed to have no discernible influence on the dispersion of the nonlinear index at these wavelengths. Highly efficient spectrally narrowed emission has been observed for the first time in strongly dipolar organic salts based on the stilbazolium chromophore. An unusually high conversion efficiency (40%) with a low excitation threshold (<1 μJ) has been observed despite a very low photoluminescence efficiency (~0.3%). The results are explained in terms of cooperative emission upon short-pulse optical excitation. These materials have a wide range of potential applications in photonics, including frequency conversion, high-speed electro-optic modulation, sensors, and novel laser-like light sources.

  17. Theoretical and Experimental Studies of the Electro-Optic Effect: Toward a Microscopic Understanding.

    DTIC Science & Technology

    1981-08-01

    electro - optic effect is investigated both theoretically and experimentally. The theoretical approach is based upon W.A. Harrison’s ’Bond-Orbital Model’. The separate electronic and lattice contributions to the second-order, electro - optic susceptibility are examined within the context of this model and formulae which can accommodate any crystal structure are presented. In addition, a method for estimating the lattice response to a low frequency (dc) electric field is outlined. Finally, experimental measurements of the electro -

  18. Electro-Optic Time-to-Space Converter for Optical Detector Jitter Mitigation

    NASA Technical Reports Server (NTRS)

    Birnbaum, Kevin; Farr, William

    2013-01-01

    A common problem in optical detection is determining the arrival time of a weak optical pulse that may comprise only one to a few photons. Currently, this problem is solved by using a photodetector to convert the optical signal to an electronic signal. The timing of the electrical signal is used to infer the timing of the optical pulse, but error is introduced by random delay between the absorption of the optical pulse and the creation of the electrical one. To eliminate this error, a time-to-space converter separates a sequence of optical pulses and sends them to different photodetectors, depending on their arrival time. The random delay, called jitter, is at least 20 picoseconds for the best detectors capable of detecting the weakest optical pulses, a single photon, and can be as great as 500 picoseconds. This limits the resolution with which the timing of the optical pulse can be measured. The time-to-space converter overcomes this limitation. Generally, the time-to-space converter imparts a time-dependent momentum shift to the incoming optical pulses, followed by an optical system that separates photons of different momenta. As an example, an electro-optic phase modulator can be used to apply longitudinal momentum changes (frequency changes) that vary in time, followed by an optical spectrometer (such as a diffraction grating), which separates photons with different momenta into different paths and directs them to impinge upon an array of photodetectors. The pulse arrival time is then inferred by measuring which photodetector receives the pulse. The use of a time-to-space converter mitigates detector jitter and improves the resolution with which the timing of an optical pulse is determined. Also, the application of the converter enables the demodulation of a pulse position modulated signal (PPM) at higher bandwidths than using previous photodetector technology. This allows the creation of a receiver for a communication system with high bandwidth and high bits/photon efficiency.

  19. Multi-scale theory-assisted nano-engineering of plasmonic-organic hybrid electro-optic device performance

    NASA Astrophysics Data System (ADS)

    Elder, Delwin L.; Johnson, Lewis E.; Tillack, Andreas F.; Robinson, Bruce H.; Haffner, Christian; Heni, Wolfgang; Hoessbacher, Claudia; Fedoryshyn, Yuriy; Salamin, Yannick; Baeuerle, Benedikt; Josten, Arne; Ayata, Masafumi; Koch, Ueli; Leuthold, Juerg; Dalton, Larry R.

    2018-02-01

    Multi-scale (correlated quantum and statistical mechanics) modeling methods have been advanced and employed to guide the improvement of organic electro-optic (OEO) materials, including by analyzing electric field poling induced electro-optic activity in nanoscopic plasmonic-organic hybrid (POH) waveguide devices. The analysis of in-device electro-optic activity emphasizes the importance of considering both the details of intermolecular interactions within organic electro-optic materials and interactions at interfaces between OEO materials and device architectures. Dramatic improvement in electro-optic device performance-including voltage-length performance, bandwidth, energy efficiency, and lower optical losses have been realized. These improvements are critical to applications in telecommunications, computing, sensor technology, and metrology. Multi-scale modeling methods illustrate the complexity of improving the electro-optic activity of organic materials, including the necessity of considering the trade-off between improving poling-induced acentric order through chromophore modification and the reduction of chromophore number density associated with such modification. Computational simulations also emphasize the importance of developing chromophore modifications that serve multiple purposes including matrix hardening for enhanced thermal and photochemical stability, control of matrix dimensionality, influence on material viscoelasticity, improvement of chromophore molecular hyperpolarizability, control of material dielectric permittivity and index of refraction properties, and control of material conductance. Consideration of new device architectures is critical to the implementation of chipscale integration of electronics and photonics and achieving the high bandwidths for applications such as next generation (e.g., 5G) telecommunications.

  20. Panoramic thermal imaging: challenges and tradeoffs

    NASA Astrophysics Data System (ADS)

    Aburmad, Shimon

    2014-06-01

    Over the past decade, we have witnessed a growing demand for electro-optical systems that can provide continuous 3600 coverage. Applications such as perimeter security, autonomous vehicles, and military warning systems are a few of the most common applications for panoramic imaging. There are several different technological approaches for achieving panoramic imaging. Solutions based on rotating elements do not provide continuous coverage as there is a time lag between updates. Continuous panoramic solutions either use "stitched" images from multiple adjacent sensors, or sophisticated optical designs which warp a panoramic view onto a single sensor. When dealing with panoramic imaging in the visible spectrum, high volume production and advancement of semiconductor technology has enabled the use of CMOS/CCD image sensors with a huge number of pixels, small pixel dimensions, and low cost devices. However, in the infrared spectrum, the growth of detector pixel counts, pixel size reduction, and cost reduction is taking place at a slower rate due to the complexity of the technology and limitations caused by the laws of physics. In this work, we will explore the challenges involved in achieving 3600 panoramic thermal imaging, and will analyze aspects such as spatial resolution, FOV, data complexity, FPA utilization, system complexity, coverage and cost of the different solutions. We will provide illustrations, calculations, and tradeoffs between three solutions evaluated by Opgal: A unique 3600 lens design using an LWIR XGA detector, stitching of three adjacent LWIR sensors equipped with a low distortion 1200 lens, and a fisheye lens with a HFOV of 180º and an XGA sensor.

  1. Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie

    2018-07-01

    A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.

  2. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    DOE PAGES

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-12

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm,more » respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Lastly, our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.« less

  3. The design of visible system for improving the measurement accuracy of imaging points

    NASA Astrophysics Data System (ADS)

    Shan, Qiu-sha; Li, Gang; Zeng, Luan; Liu, Kai; Yan, Pei-pei; Duan, Jing; Jiang, Kai

    2018-02-01

    It has a widely applications in robot vision and 3D measurement for binocular stereoscopic measurement technology. And the measure precision is an very important factor, especially in 3D coordination measurement, high measurement accuracy is more stringent to the distortion of the optical system. In order to improving the measurement accuracy of imaging points, to reducing the distortion of the imaging points, the optical system must be satisfied the requirement of extra low distortion value less than 0.1#65285;, a transmission visible optical lens was design, which has characteristic of telecentric beam path in image space, adopted the imaging model of binocular stereo vision, and imaged the drone at the finity distance. The optical system was adopted complex double Gauss structure, and put the pupil stop on the focal plane of the latter groups, maked the system exit pupil on the infinity distance, and realized telecentric beam path in image space. The system mainly optical parameter as follows: the system spectrum rangement is visible light wave band, the optical effective length is f '=30mm, the relative aperture is 1/3, and the fields of view is 21°. The final design results show that the RMS value of the spread spots of the optical lens in the maximum fields of view is 2.3μm, which is less than one pixel(3.45μm) the distortion value is less than 0.1%, the system has the advantage of extra low distortion value and avoids the latter image distortion correction; the proposed modulation transfer function of the optical lens is 0.58(@145 lp/mm), the imaging quality of the system is closed to the diffraction limited; the system has simply structure, and can satisfies the requirements of the optical indexes. Ultimately, based on the imaging model of binocular stereo vision was achieved to measuring the drone at the finity distance.

  4. Imaging spectrometer wide field catadioptric design

    DOEpatents

    Chrisp,; Michael, P [Danville, CA

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  5. Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu

    2015-05-01

    A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.

  6. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality

    PubMed Central

    Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry

    2014-01-01

    Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of pupil size independence, and thus will provide more consistent performance as pupil size varies with light level and convergence amplitude. PMID:24588552

  7. Analytical description of optical vortices generated by discretized vortex-producing lenses

    NASA Astrophysics Data System (ADS)

    Rumi, Gonzalo; Actis, Daniel; Amaya, Dafne; Gómez, Jorge A.; Rueda, Edgar; Lencina, Alberto

    2018-06-01

    In this article, a general analytical treatment (any topological charge—any number of discretization levels) for the diffraction of a Gaussian beam through a discretized vortex-producing lens is presented. In the proposal, the field is expressed as a sum of Kummer beams with different amplitudes and topological charges, which are focalized at different planes on the propagation axis. Likewise, it is demonstrated that characteristics of diffracted light can be modified by tuning the parameters of the setup. Vortex lines are analyzed to understand the internal mechanism of measurable topological charges that appear in specific planes, apparently violating topological charge conservation. Conservation of the topological charge is verified and theoretical predictions are supported by experiments.

  8. High-speed transport-of-intensity phase microscopy with an electrically tunable lens.

    PubMed

    Zuo, Chao; Chen, Qian; Qu, Weijuan; Asundi, Anand

    2013-10-07

    We present a high-speed transport-of-intensity equation (TIE) quantitative phase microscopy technique, named TL-TIE, by combining an electrically tunable lens with a conventional transmission microscope. This permits the specimen at different focus position to be imaged in rapid succession, with constant magnification and no physically moving parts. The simplified image stack collection significantly reduces the acquisition time, allows for the diffraction-limited through-focus intensity stack collection at 15 frames per second, making dynamic TIE phase imaging possible. The technique is demonstrated by profiling of microlens array using optimal frequency selection scheme, and time-lapse imaging of live breast cancer cells by inversion the defocused phase optical transfer function to correct the phase blurring in traditional TIE. Experimental results illustrate its outstanding capability of the technique for quantitative phase imaging, through a simple, non-interferometric, high-speed, high-resolution, and unwrapping-free approach with prosperous applications in micro-optics, life sciences and bio-photonics.

  9. Low-cost space-varying FIR filter architecture for computational imaging systems

    NASA Astrophysics Data System (ADS)

    Feng, Guotong; Shoaib, Mohammed; Schwartz, Edward L.; Dirk Robinson, M.

    2010-01-01

    Recent research demonstrates the advantage of designing electro-optical imaging systems by jointly optimizing the optical and digital subsystems. The optical systems designed using this joint approach intentionally introduce large and often space-varying optical aberrations that produce blurry optical images. Digital sharpening restores reduced contrast due to these intentional optical aberrations. Computational imaging systems designed in this fashion have several advantages including extended depth-of-field, lower system costs, and improved low-light performance. Currently, most consumer imaging systems lack the necessary computational resources to compensate for these optical systems with large aberrations in the digital processor. Hence, the exploitation of the advantages of the jointly designed computational imaging system requires low-complexity algorithms enabling space-varying sharpening. In this paper, we describe a low-cost algorithmic framework and associated hardware enabling the space-varying finite impulse response (FIR) sharpening required to restore largely aberrated optical images. Our framework leverages the space-varying properties of optical images formed using rotationally-symmetric optical lens elements. First, we describe an approach to leverage the rotational symmetry of the point spread function (PSF) about the optical axis allowing computational savings. Second, we employ a specially designed bank of sharpening filters tuned to the specific radial variation common to optical aberrations. We evaluate the computational efficiency and image quality achieved by using this low-cost space-varying FIR filter architecture.

  10. Electro-optic Mach-Zehnder Interferometer based Optical Digital Magnitude Comparator and 1's Complement Calculator

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Raghuwanshi, Sanjeev Kumar

    2016-06-01

    The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.

  11. A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.

  12. Design of a panoramic long-wave infrared athermal system

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Geng, Anbing; Bai, Jian; Wang, Haitao; Guo, Jie; Xiong, Tao; Luo, Yujie; Huang, Zhi; Hou, Xiyun

    2016-12-01

    A panoramic long-wave infrared athermal system is introduced in this paper. The proposed system includes a panoramic annular lens (PAL) block providing a stereo field of view of (30 deg - 100 deg) × 360 deg without the need to move its components. Moreover, to ensure the imaging quality at different temperatures, a refractive/diffractive hybrid lens is introduced to achieve optical passive athermalization. The system operates in a spectral band between 8 and 12 μm, with a total length of 175 mm and a focal length of 3.4 mm. To get a bright and clear image, the aperture of the system was set to f/1.15. The introduction of aspherical surface and even-order diffractive surface not only eliminates the differential thermal but also makes the structure simple and lightweight and improves the image quality. The results show that the modulation transfer function below 20 lp/mm of the system is above 0.2 at each temperature ranging from -20°C to +60°C, which is close to the diffraction limit. The system is suitable to be applied in an uncooled infrared focal plane array detector and will serve as a static alert system. It has a number of pixels of 640×480, and the pixel size is 25 μm.

  13. Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones.

    PubMed

    Elsherif, Mohamed; Hassan, Mohammed Umair; Yetisen, Ali K; Butt, Haider

    2018-05-17

    Low-cost, robust, and reusable continuous glucose monitoring systems that can provide quantitative measurements at point-of-care settings is an unmet medical need. Optical glucose sensors require complex and time-consuming fabrication processes, and their readouts are not practical for quantitative analyses. Here, a wearable contact lens optical sensor was created for the continuous quantification of glucose at physiological conditions, simplifying the fabrication process and facilitating smartphone readouts. A photonic microstructure having a periodicity of 1.6 μm was printed on a glucose-selective hydrogel film functionalized with phenylboronic acid. Upon binding with glucose, the microstructure volume swelled, which modulated the periodicity constant. The resulting change in the Bragg diffraction modulated the space between zero- and first-order spots. A correlation was established between the periodicity constant and glucose concentration within 0-50 mM. The sensitivity of the sensor was 12 nm mM -1 , and the saturation response time was less than 30 min. The sensor was integrated with commercial contact lenses and utilized for continuous glucose monitoring using smartphone camera readouts. The reflected power of the first-order diffraction was measured via a smartphone application and correlated to the glucose concentrations. A short response time of 3 s and a saturation time of 4 min was achieved in the continuous monitoring mode. Glucose-sensitive photonic microstructures may have applications in point-of-care continuous monitoring devices and diagnostics at home settings.

  14. FPscope: a field-portable high-resolution microscope using a cellphone lens.

    PubMed

    Dong, Siyuan; Guo, Kaikai; Nanda, Pariksheet; Shiradkar, Radhika; Zheng, Guoan

    2014-10-01

    The large consumer market has made cellphone lens modules available at low-cost and in high-quality. In a conventional cellphone camera, the lens module is used to demagnify the scene onto the image plane of the camera, where image sensor is located. In this work, we report a 3D-printed high-resolution Fourier ptychographic microscope, termed FPscope, which uses a cellphone lens in a reverse manner. In our platform, we replace the image sensor with sample specimens, and use the cellphone lens to project the magnified image to the detector. To supersede the diffraction limit of the lens module, we use an LED array to illuminate the sample from different incident angles and synthesize the acquired images using the Fourier ptychographic algorithm. As a demonstration, we use the reported platform to acquire high-resolution images of resolution target and biological specimens, with a maximum synthetic numerical aperture (NA) of 0.5. We also show that, the depth-of-focus of the reported platform is about 0.1 mm, orders of magnitude longer than that of a conventional microscope objective with a similar NA. The reported platform may enable healthcare accesses in low-resource settings. It can also be used to demonstrate the concept of computational optics for educational purposes.

  15. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, W.C.

    1999-07-06

    The present invention relates an apparatus and method for creating a bright, uniform source of partially coherent radiation for illuminating a pattern, in order to replicate an image of said pattern with a high degree of acuity. The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system includes a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media. 7 figs.

  16. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, William C.

    1999-01-01

    The present invention relates an apparatus and method for creating a bright, uniform source of partially coherent radiation for illuminating a pattern, in order to replicate an image of said pattern with a high degree of acuity. The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system includes a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media.

  17. Electro-optic Q-switch

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)

    2006-01-01

    An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.

  18. Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique.

    PubMed

    Ghrairi, Najla; Bouaicha, Mongi

    2012-07-01

    In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet-visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current-voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2.

  19. Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique

    PubMed Central

    2012-01-01

    In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet–visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current–voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2. PMID:22747886

  20. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  1. Creating unconventional geometric beams with large depth of field using double freeform-surface optics.

    PubMed

    Feng, Zexin; Froese, Brittany D; Huang, Chih-Yu; Ma, Donglin; Liang, Rongguang

    2015-07-10

    We consider here creation of an unconventional flattop beam with a large depth of field by employing double freeform optical surfaces. The output beam is designed with continuous variations from the flattop to almost zero near the edges to resist the influence of diffraction on its propagation. We solve this challenging problem by naturally incorporating an optimal transport map computation scheme for unconventional boundary conditions with a simultaneous point-by-point double surface construction procedure. We demonstrate experimentally the generation of a long-range propagated triangular beam through a plano-freeform lens pair fabricated by a diamond-tuning machine.

  2. Development and thermal management of 10 kW CW, direct diode laser source

    NASA Astrophysics Data System (ADS)

    Zhu, Hongbo; Hao, Mingming; Zhang, Jianwei; Ji, Wenyu; Lin, Xingchen; Zhang, Jinsheng; Ning, Yongqiang

    2016-01-01

    We report on the development of direct diode laser source with high-power and high reliability. The laser source was realized by the polarization and wavelength combination of four diode laser stacks. When at the operating current of 122 A, the source was capable of producing 10,120 W output while maintaining 46% electro-optical conversion efficiency. The maximum temperature on the lens was decreased from 442.2 K to 320 K by utilizing an efficient thermal dissipation structure, and the corresponding maximum von Mises stress was reduced from 75.4 MPa to 14 MPa. In addition, a reliability test demonstrated that our laser source was reliable and potential in the applications of laser cladding and heat treatment.

  3. Optical Fluorescence Microscopy for Spatially Characterizing Electron Transfer across a Solid-Liquid Interface on Heterogeneous Electrodes.

    PubMed

    Choudhary, Eric; Velmurugan, Jeyavel; Marr, James M; Liddle, James A; Szalai, Veronika

    2016-01-01

    Heterogeneous catalytic materials and electrodes are used for (electro)chemical transformations, including those important for energy storage and utilization. 1, 2 Due to the heterogeneous nature of these materials, activity measurements with sufficient spatial resolution are needed to obtain structure/activity correlations across the different surface features (exposed facets, step edges, lattice defects, grain boundaries, etc.). These measurements will help lead to an understanding of the underlying reaction mechanisms and enable engineering of more active materials. Because (electro)catalytic surfaces restructure with changing environments, 1 it is important to perform measurements in operando . Sub-diffraction fluorescence microscopy is well suited for these requirements because it can operate in solution with resolution down to a few nm. We have applied sub-diffraction fluorescence microscopy to a thin cell containing an electrocatalyst and a solution containing the redox sensitive dye p-aminophenyl fluorescein to characterize reaction at the solid-liquid interface. Our chosen dye switches between a nonfluorescent reduced state and a one-electron oxidized bright state, a process that occurs at the electrode surface. This scheme is used to investigate the activity differences on the surface of polycrystalline Pt, in particular to differentiate reactivity at grain faces and grain boundaries. Ultimately, this method will be extended to study other dye systems and electrode materials.

  4. Spatially Modulated Gain Waveguide Electro-Optic Laser

    DTIC Science & Technology

    2013-08-09

    1997, pp 1223-1226. 5. Y. Li, S. M. Goldwasser, P. Herczfeld, L.M. Narducci, "Dynamics of an electro-optically tunable microchip laser ", IEEE...TYPE Final 3. DATES COVERED (From 7/2/2010-5-10-2013 To) 4. TITLE AND SUBTITLE Spatially modulated gain waveguide electro-optic laser 5a...optical waveguides laser on LiNb03 substrate. The main goal of this work is to implement an active LiNb03 waveguide with the desired spatially modulated

  5. Research on properties of an infrared imaging diffractive element

    NASA Astrophysics Data System (ADS)

    Rachoń, M.; Wegrzyńska, K.; Doch, M.; Kołodziejczyk, A.; Siemion, A.; Suszek, J.; Kakarenko, K.; Sypek, M.

    2014-09-01

    Novel thermovision imaging systems having high efficiency require very sophisticated optical components. This paper describes the diffractive optical elements which are designed for the wavelengths between 8 and 14 μm for the application in the FLIR cameras. In the current paper the authors present phase only diffractive elements manufactured in the etched gallium arsenide. Due to the simplicity of the manufacturing process only binary phase elements were designed and manufactured. Such solution exhibits huge chromatic aberration. Moreover, the performance of such elements is rather poor, which is caused by two factors. The first one is the limited diffraction efficiency (c.a. 40%) of binary phase structures. The second problem lies in the Fresnel losses coming from the reflection from the two surfaces (around 50%). Performance of this structures is limited and the imaging contrast is poor. However, such structures can be used for relatively cheap practical testing of the new ideas. For example this solution is sufficient for point spread function (PSF) measurements. Different diffractive elements were compared. The first one was the equivalent of the lens designed on the basis of the paraxial approximation. For the second designing process, the non-paraxial approach was used. It was due to the fact that f/# was equal to 1. For the non-paraxial designing the focal spot is smaller and better focused. Moreover, binary phase structures suffer from huge chromatic aberrations. Finally, it is presented that non-paraxially designed optical element imaging with extended depth of focus (light-sword) can suppress chromatic aberration and therefore it creates the image not only in the image plane.

  6. Active holographic interconnects for interfacing volume storage

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Schwartz, Jay R.; Nelson, Arthur R.; Levin, Philip S.

    1992-04-01

    In order to achieve the promise of terabit/cm3 data storage capacity for volume holographic optical memory, two technological challenges must be met. Satisfactory storage materials must be developed and the input/output architectures able to match their capacity with corresponding data access rates must also be designed. To date the materials problem has received more attention than devices and architectures for access and addressing. Two philosophies of parallel data access to 3-D storage have been discussed. The bit-oriented approach, represented by recent work on two-photon memories, attempts to store bits at local sites within a volume without affecting neighboring bits. High speed acousto-optic or electro- optic scanners together with dynamically focused lenses not presently available would be required. The second philosophy is that volume optical storage is essentially holographic in nature, and that each data write or read is to be distributed throughout the material volume on the basis of angle multiplexing or other schemes consistent with the principles of holography. The requirements for free space optical interconnects for digital computers and fiber optic network switching interfaces are also closely related to this class of devices. Interconnects, beamlet generators, angle multiplexers, scanners, fiber optic switches, and dynamic lenses are all devices which may be implemented by holographic or microdiffractive devices of various kinds, which we shall refer to collectively as holographic interconnect devices. At present, holographic interconnect devices are either fixed holograms or spatial light modulators. Optically or computer generated holograms (submicron resolution, 2-D or 3-D, encoding 1013 bits, nearly 100 diffraction efficiency) can implement sophisticated mathematical design principles, but of course once fabricated they cannot be changed. Spatial light modulators offer high speed programmability but have limited resolution (512 X 512 pixels, encoding about 106 bits of data) and limited diffraction efficiency. For any application, one must choose between high diffractive performance and programmability.

  7. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    NASA Astrophysics Data System (ADS)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  8. X-ray nanofocusing by kinoform lenses: A comparative study using different modeling approaches

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei

    2010-02-01

    We conduct a comparative study on various kinoform lenses (KLs) for x-ray nanofocusing by using the geometrical theory, the dynamical diffraction theory, and the beam propagation method. This study shows that the geometrical theory becomes invalid to describe the performance of a KL for nanofocusing. The strong edge diffraction effect from individual lens element, which distorts the desired wave field, leads to a reduction in the effective numerical aperture and imposes a limit on how small a focus a KL can achieve. Because this effect is associated with a finite thickness of a lens, larger lens thickness depicts a stronger distortion. We find that a short KL where all lens elements are folded back to a single plane shows an illumination preference: if the illuminating geometry is in favor of the Bragg diffraction for a focusing order, its performance is enhanced and vice versa. We also find that a short KL usually outperforms its long version where all lens elements do not lie in a single plane because the short one suffers less the wave field distortion due to the edge diffraction. Simulation results suggest that for a long KL, an adaptive lens design is needed to correct the wave field distortion in order to achieve a better performance.

  9. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    PubMed Central

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-01-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices. PMID:28406177

  10. MTF measurements of a type-II superlattice infrared focal plane array sealed in a cryocooler.

    PubMed

    Nghiem, Jean; Jaeck, Julien; Primot, Jerome; Coudrain, Christophe; Derelle, Sophie; Huard, Edouard; Caes, Marcel; Bernhardt, Sylvie; Haidar, Riad; Christol, Philippe; Ribet-Mohamed, Isabelle

    2018-04-16

    In operational electro-optical systems, infrared focal plane arrays (IR FPA) are integrated in cryocoolers which induce vibrations that may strongly affect their modulation transfer function (MTF). In this paper, we present the MTF measurement of an IR FPA sealed in its cryocooler. The method we use to measure the MTF decorrelates operational constraints and the technological limitations of the IR FPA. The bench is based on the diffraction properties of a continuously self imaging grating (CSIG). The 26 µm pixel size extracted from the MTF measurement is in good agreement with the expected value.

  11. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. The PNLC response time is ˜300x faster than that of a pure LC mixture. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.

  12. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  13. Performance improvements of MOEMS-based diffractive arrays: address isolation and optical switching

    NASA Astrophysics Data System (ADS)

    Panaman, Ganesh; Madison, Seth; Sano, Michael; Castracane, James

    2005-01-01

    Micro-Opto-Electro-Mechanical Systems (MOEMS) have found a variety of applications in fields such as telecommunications, spectroscopy and display technology. MOEMS-based optical switching is currently under investigation for the increased flexibility that such devices provide for reconfiguration of the I/O network for inter-chip communication applications. This potential not only adds an additional degree of freedom for adjustment of transmitter/receiver links but also allows for fine alignment of individual channels in the network link. Further, this use of diffractive arrays for specific applications combines beam steering/adjustment capabilities with the inherent wavelength dependence of the diffractive approach for channel separation and de-multiplexing. Research and development has been concentrated on the progression from single MOEMS components to parallel arrays integrated with optical source arrays for a successful feasibility demonstration. Successful development of such an approach will have a major impact of the next generation communication protocols. This paper will focus on the current status of the MOEMS research program for Free Space Optical inter-chip communication at the College of NanoScale Science and Engineering, University at Albany-SUNY (CNSE). New versions of diffractive arrays stemming from the basic MEMS Compound Grating (MCG; patent #5,999,319) have been produced through various fabrication methods including the MUMPs process1. Most MEMS components relying on electrostatic actuation tend to require high actuation voltages (>20V) compared to the typical 5V levels prevalent in conventional integrated circuits. The specific goal is to yield improved performance while minimizing the power consumption of the components. Structural modifications through the variation in the ruling/electrode spacing distance and array wiring layout through individually addressable gratings have been studied to understand effects on the actuation voltage and cross talk, respectively. A detailed overview of the optical and mechanical properties will be included. Modeling results along with the mechanical and optical testing results have been detailed and compared with previously obtained results. Future work focuses on alternate material sets for a reduction in operational voltage, improvements in optical efficiency and technology demonstrators for verification of massively parallel I/O performance.

  14. Preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens and their use for bacterial detection.

    PubMed

    Dykman, Lev A; Staroverov, Sergei A; Guliy, Olga I; Ignatov, Oleg V; Fomin, Alexander S; Vidyasheva, Irina V; Karavaeva, Olga A; Bunin, Viktor D; Burygin, Gennady L

    2012-01-01

    This article reports the first preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens by using a combinatorial phage library of sheep antibodies. The prepared phage antibodies were used for the first time for lipopolysaccharide and flagellin detection by dot assay, electro-optical analysis of cell suspensions, and transmission electron microscopy. Interaction of A. brasilense Sp245 with antilipopolysaccharide and antiflagellin phage-displayed miniantibodies caused the magnitude of the electro-optical signal to change considerably. The electro-optical results were in good agreement with the electron microscopic data. This is the first reported possibility of employing phage-displayed miniantibodies in bacterial detection aided by electro-optical analysis of cell suspensions.

  15. Hybrid electro-optics and chipscale integration of electronics and photonics

    NASA Astrophysics Data System (ADS)

    Dalton, L. R.; Robinson, B. H.; Elder, D. L.; Tillack, A. F.; Johnson, L. E.

    2017-08-01

    Taken together, theory-guided nano-engineering of organic electro-optic materials and hybrid device architectures have permitted dramatic improvement of the performance of electro-optic devices. For example, the voltage-length product has been improved by nearly a factor of 104 , bandwidths have been extended to nearly 200 GHz, device footprints reduced to less than 200 μm2 , and femtojoule energy efficiency achieved. This presentation discusses the utilization of new coarse-grained theoretical methods and advanced quantum mechanical methods to quantitatively simulate the physical properties of new classes of organic electro-optic materials and to evaluate their performance in nanoscopic device architectures, accounting for the effect on chromophore ordering at interfaces in nanoscopic waveguides.

  16. Comparison of a new refractive multifocal intraocular lens with an inferior segmental near add and a diffractive multifocal intraocular lens.

    PubMed

    Alio, Jorge L; Plaza-Puche, Ana B; Javaloy, Jaime; Ayala, María José; Moreno, Luis J; Piñero, David P

    2012-03-01

    To compare the visual acuity outcomes and ocular optical performance of eyes implanted with a multifocal refractive intraocular lens (IOL) with an inferior segmental near add or a diffractive multifocal IOL. Prospective, comparative, nonrandomized, consecutive case series. Eighty-three consecutive eyes of 45 patients (age range, 36-82 years) with cataract were divided into 2 groups: group A, 45 eyes implanted with Lentis Mplus LS-312 (Oculentis GmbH, Berlin, Germany); group B, 38 eyes implanted with diffractive IOL Acri.Lisa 366D (Zeiss, Oberkochen, Germany). All patients underwent phacoemulsification followed by IOL implantation in the capsular bag. Distance corrected, intermediate, and near with the distance correction visual acuity outcomes and contrast sensitivity, intraocular aberrations, and defocus curve were evaluated postoperatively during a 3-month follow-up. Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), uncorrected near visual acuity (UNVA), corrected distance near and intermediate visual acuity (CDNVA), contrast sensitivity, intraocular aberrations, and defocus curve. A significant improvement in UDVA, CDVA, and UNVA was observed in both groups after surgery (P ≤ 0.04). Significantly better values of UNVA (P<0.01) and CDNVA (P<0.04) were found in group B. In the defocus curve, significantly better visual acuities were present in eyes in group A for intermediate vision levels of defocus (P ≤ 0.04). Significantly higher amounts of postoperative intraocular primary coma and spherical aberrations were found in group A (P<0.01). In addition, significantly better values were observed in photopic contrast sensitivity for high spatial frequencies in group A (P ≤ 0.04). The Lentis Mplus LS-312 and Acri.Lisa 366D IOLs are able to successfully restore visual function after cataract surgery. The Lentis Mplus LS-312 provided better intermediate vision and contrast sensitivity outcomes than the Acri.Lisa 366D. However, the Acri.Lisa design provided better distance and near visual outcomes and intraocular optical performance parameters. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  17. Near-field optical recording based on solid immersion lens system

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng

    2002-09-01

    Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.

  18. Quadratic Electro-optic Effect in a Novel Nonconjugated Conductive Polymer, iodine-doped Polynorbornene

    NASA Astrophysics Data System (ADS)

    Narayanan, Ananthakrishnan; Thakur, Mrinal

    2009-03-01

    Quadratic electro-optic effect in a novel nonconjugated conductive polymer, iodine-doped polynorbornene has been measured using field-induced birefringence at 633 nm. The electrical conductivity^1 of polynorbornene increases by twelve orders of magnitude to about 0.01 S/cm upon doping with iodine. The electro-optic measurement has been made in a film doped at the medium doping-level. The electro-optic modulation signal was recorded using a lock-in amplifier for various applied ac voltages (4 kHz) and the quadratic dependence of the modulation on the applied voltage was observed. A modulation of about 0.01% was observed for an applied electric field of 3 V/micron for a 100 nm thick film The Kerr coefficient as determined is about 1.77x10-11m/V^2. This exceptionally large quadratic electro-optic effect has been attributed to the confinement of this charge-transfer system within a sub-nanometer dimension. 1. A. Narayanan, A. Palthi and M. Thakur, J. Macromol. Sci. -- PAC, accepted.

  19. Reduction of electro-optic half-wave voltage of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 single crystal through large piezoelectric strain

    PubMed Central

    Sun, Enwei; Wang, Zhu; Zhang, Rui; Cao, Wenwu

    2011-01-01

    The influence of converse piezoelectric effect on the electro-optic coefficient of single domain relaxor-based 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 (PZN-0.07PT) has been quantified under ambient conditions. It was found that the large piezoelectric constants d31 and d33 have significant influence to the half-wave voltage of electro-optic modulators. For single domain PZN-0.07PT crystal, Vπ13T is reduced by a factor of 8 and Vπ13L can be decreased by more than an order of magnitude due to the large piezoelectric effect. Compared to commonly used electro-optic crystal LiNbO3 and BaTiO3, PZN-xPT single crystal is much superior for optic phase modulation applications because they have much higher linear electro-optic coefficients and much lower half-wave voltage when piezoelectric strain influence is considered. PMID:21308004

  20. Operation Desert Storm: Evaluation of the Air Campaign.

    DTIC Science & Technology

    1997-06-12

    210Weight of Effort and TOE Platform Comparisons 217 Type of Effort Analysis Appendix IX 22RTreSesrRadar 221 Target Sensor Electro- optical 221 Technologies...DSMAC Digital Scene Matching Area Correlator ELE electrical facilities EO electro- optical EW electronic warfare FLIR forward-looking infrared FOV...the exposure of aircraft to clouds, haze, smoke, and high humidity, thereby impeding IR and electro- optical (EO) sensors and laser designators for

  1. Hybrid Electro-Optic Processor

    DTIC Science & Technology

    1991-07-01

    This report describes the design of a hybrid electro - optic processor to perform adaptive interference cancellation in radar systems. The processor is...modulator is reported. Included is this report is a discussion of the design, partial fabrication in the laboratory, and partial testing of the hybrid electro ... optic processor. A follow on effort is planned to complete the construction and testing of the processor. The work described in this report is the

  2. Electro-Optic Identification (EOID) Research Program

    DTIC Science & Technology

    2002-09-30

    The goal of this research is to provide computer-assisted identification of underwater mines in electro - optic imagery. Identification algorithms will...greatly reduce the time and risk to reacquire mine-like-objects for positive classification and identification. The objectives are to collect electro ... optic data under a wide range of operating and environmental conditions and develop precise algorithms that can provide accurate target recognition on this data for all possible conditions.

  3. Development of a second generation SiLC-based Laue lens

    NASA Astrophysics Data System (ADS)

    Girou, David; Wade, Colin; Barrière, Nicolas; Collon, Maximilien; Günther, Ramses; Hanlon, Lorraine; Tomsick, John; Uliyanov, Alexey; Vacanti, Giuseppe; Zoglauer, Andreas

    2017-09-01

    For more than a decade, cosine has been developing silicon pore optics (SPO), lightweight modular X-ray optics made of stacks of bent and directly bonded silicon mirror plates. This technology, which has been selected by ESA to realize the optics of ATHENA, can also be used to fabricate soft gamma-ray Laue lenses where Bragg diffraction through the bulk silicon is exploited, rather than grazing incidence reflection. Silicon Laue Components (SiLCs) are made of stacks of curved, polished, wedged silicon plates, allowing the concentration of radiation in both radial and azimuthal directions. This greatly increases the focusing properties of a Laue lens since the size of the focal spot is no longer determined by the size of the individual single crystals, but by the accuracy of the applied curvature. After a successful proof of concept in 2013, establishing the huge potential of this technology, a new project has been launched in Spring 2017 at cosine to further develop and test this technique. Here we present the latest advances of the second generation of SiLCs made from even thinner silicon plates stacked by a robot with dedicated tools in a class-100 clean room environment.

  4. Nd:YLF laser for airborne/spaceborne laser ranging

    NASA Technical Reports Server (NTRS)

    Dallas, Joseph L.; Selker, Mark D.

    1993-01-01

    In order to meet the need for light weight, long lifetime, efficient, short pulse lasers, a diode-pumped, Nd:YLF oscillator and regenerative amplifier is being developed. The anticipated output is 20 mJ per 10 picosecond pulse, running at a repetition rate of 40 Hz. The fundamental wavelength is at 1047 nm. The oscillator is pumped by a single laser diode bar and mode locked using an electro-optic, intra-cavity phase modulator. The output from the oscillator is injected as a seed into the regenerative amplifier. The regenerative amplifier laser crystal is optically pumped by two 60W quasi-cw laser diode bars. Each diode is collimated using a custom designed micro-lens bar. The injected 10 ps pulse from the oscillator is kept circulating within the regenerative amplifier until this nanojoule level seed pulse is amplified to 2-3 millijoules. At this point the pulse is ejected and sent on to a more standard single pass amplifier where the energy is boosted to 20 mJ. The footprint of the entire laser (oscillator-regenerative amplifier-amplifier) will fit on a 3 by 4 ft. optical pallet.

  5. MEMS-tunable dielectric metasurface lens.

    PubMed

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraji-Dana, MohammadSadegh; Faraon, Andrei

    2018-02-23

    Varifocal lenses, conventionally implemented by changing the axial distance between multiple optical elements, have a wide range of applications in imaging and optical beam scanning. The use of conventional bulky refractive elements makes these varifocal lenses large, slow, and limits their tunability. Metasurfaces, a new category of lithographically defined diffractive devices, enable thin and lightweight optical elements with precisely engineered phase profiles. Here we demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-μm movement of one metasurface, and a scanning frequency that can potentially reach a few kHz. They can also be integrated with a third metasurface to make compact microscopes (~1 mm thick) with a large corrected field of view (~500 μm or 40 degrees) and fast axial scanning for 3D imaging. This paves the way towards MEMS-integrated metasurfaces as a platform for tunable and reconfigurable optics.

  6. Polymer electro-optic waveguide devices: Low-loss etchless fabrication techniques and passive-to-active integration

    NASA Astrophysics Data System (ADS)

    Geary, Kevin

    The development of high-frequency polymer electro-optic modulators has seen steady and significant progress in recent years, yet applications of these promising materials to more complicated integrated optic structures and arrays of devices have been limited primarily due to high optical waveguide loss characteristics. This is unfortunate since a major advantage of polymers as photonic materials is their compatibility with photolithographic processing of large components. In this Dissertation, etchless waveguide writing techniques are presented in order to improve the overall optical insertion loss of electro-optic polymer waveguide devices. These techniques include poling-induced writing, stress-induced waveguide writing, and photobleaching. Using these waveguide writing mechanisms, we have demonstrated straight waveguides, phase modulators, Mach-Zehnder intensity modulators, variable optical attenuators, and multimode interference (MMI) power splitters, all with improved loss characteristics over their etched rib waveguide counterparts. Ultimately, the insertion loss of an integrated optic device is limited by the actual material loss of the core waveguide material. In this Dissertation, passive-to-active polymer waveguide transitions are proposed to circumvent this problem. These transitions are compact, in-plane, self-aligned, and require no tapering of any physical dimensions of the waveguides. By utilizing both the time-dependent and intensity-dependent photobleaching characteristics of electro-optic polymer materials, adiabatic refractive index tapers can be seamlessly coupled to in-plane butt couple transitions, resulting in losses as low as 0.1 dB per interface. By integrating passive polymer planar lightwave circuits with the high-speed phase shifting capability of electro-optic polymers, active wideband photonic devices of increased size and complexity can be realized. Optical fiber-to-device coupling can also result in significant contributions to the overall insertion loss of an integrated electro-optic polymer device. In this Dissertation, we leverage the photobleached refractive index taper component of our proposed passive-to-active polymer waveguide transitions in order to realize a two-dimensional optical mode transformer for improved overall fiber-to-device coupling of electro-optic polymer waveguide devices.

  7. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  8. Space Qualification Issues in Acousto-optic and Electro-optic Devices

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta

    2007-01-01

    Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.

  9. Infrared telephoto lenses design for joint transform correlator

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Huo, Furong; Zheng, Liqin

    2014-11-01

    Joint transform correlator (JTC) is quite useful for pattern recognition in many fields, which can realize automatic real-time recognition of target in cluttered background with high precision. For military application, JTC can also be applied for thermo target recognition especially at night. To make JTC recognize thermo targets, an infrared telephoto lens is designed in this paper. Long focal length and short tube length are required for this usage. So the structure of a positive lens group and a negative lens group are adopted. Besides, the effective focal length and relative aperture should be large enough to ensure the distant targets can be detected with adequate illumination. In this paper, the working waveband of adopted infrared CCD detector is 8-12μm. According to Nyquist law, the characteristic frequency of the system is 14lp/mm. The optional materials are very few for infrared optical systems, in which only several kinds of materials such as Germanium, ZnSe, ZnS are commonly used. Various aberrations are not easy to be corrected. So it is very difficult to design a good infrared optical system. Besides, doublet or triplet should be avoided to be used in infrared optical system considering possible cracking for different thermal expansion coefficients of different infrared materials. The original configuration is composed of three lenses. After optimization, the image quality can get limit diffraction. The root mean square (RMS) radii of three fields are 6.754μm, 7.301μm and 12.158μm respectively. They are all less than the Airy spot diameter 48.8μm. Wavefront aberration at 0.707 field of view (FOV) is only 0.1wavelength. After adjusting the radius to surface templates, setting tolerances and giving element drawings, this system has been fabricated successfully. Optical experimental results of infrared target recognition using JTC are given in this paper. The correlation peaks can be detected and located easily, which confirms the good image quality of the designed infrared telephoto lens.

  10. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  11. An approach to control tuning range and speed in 1D ternary photonic band gap material nano-layered optical filter structures electro-optically

    NASA Astrophysics Data System (ADS)

    Zia, Shahneel; Banerjee, Anirudh

    2016-05-01

    This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.

  12. An approach to control tuning range and speed in 1D ternary photonic band gap material nano-layered optical filter structures electro-optically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zia, Shahneel, E-mail: shahneelzia@gmail.com; Banerjee, Anirudh, E-mail: abanerjee@amity.edu

    2016-05-06

    This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.

  13. Ferroic Crystals for Electro-Optic and Acousto-Optic Applications.

    DTIC Science & Technology

    properties for potential application in acousto - optic devices; and, (2) A systematic examination of the role of domain structures in modifying the...macroscopic properties of all types of ferroic crystals and the manner in which these property modifications could be exploited in acousto - optic , electro

  14. Ultrasonic superlensing jets and acoustic-fork sheets

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2017-05-01

    Focusing acoustical (and optical) beams beyond the diffraction limit has remained a major challenge in imaging instruments and systems, until recent advances on ;hyper; or ;super; lensing and higher-resolution imaging techniques have shown the counterintuitive violation of this rule under certain circumstances. Nonetheless, the proposed technologies of super-resolution acoustical focusing beyond the diffraction barrier require complex tools such as artificially engineered metamaterials, and other hardware equipment that may not be easily synthesized or manufactured. The present contribution therefore suggests a simple and reliable method of using a sound-penetrable circular cylinder lens illuminated by a nonparaxial Gaussian acoustical sheet (i.e. finite beam in 2D) to produce non-evanescent ultrasonic superlensing jets (or bullets) and acoustical 'snail-fork' shaped wavefronts with limited diffraction. The generalized (near-field) scattering theory for acoustical sheets of arbitrary wavefronts and incidence is utilized to synthesize the incident beam based upon the angular spectrum decomposition method and the multipole expansion method in cylindrical wave functions to compute the scattered pressure around the cylinder with particular emphasis on its physical properties. The results show that depending on the beam and lens parameters, a tight focusing (with dimensions much smaller than the beam waist) can be achieved. Subwavelength resolution can be also achieved by selecting a lens material with a speed of sound exceeding that of the host fluid medium. The ultrasonic superlensing jets provide the impetus to develop improved subwavelength microscopy and acoustical image-slicing systems, cell lysis and surgery, and photoacoustic imaging to name a few examples. Moreover, an acoustical fork-sheet generation may open innovative avenues in reconfigurable on-chip micro/nanoparticle tweezers and surface acoustic waves devices.

  15. Optical and biometric relationships of the isolated pig crystalline lens.

    PubMed

    Vilupuru, A S; Glasser, A

    2001-07-01

    To investigate the interrelationships between optical and biometric properties of the porcine crystalline lens, to compare these findings with similar relationships found for the human lens and to attempt to fit this data to a geometric model of the optical and biometric properties of the pig lens. Weight, focal length, spherical aberration, surface curvatures, thickness and diameters of 20 isolated pig lenses were measured and equivalent refractive index was calculated. These parameters were compared and used to geometrically model the pig lens. Linear relationships were identified between many of the lens biometric and optical properties. The existence of these relationships allowed a simple geometrical model of the pig lens to be calculated which offers predictions of the optical properties. The linear relationships found and the agreement observed between measured and modeled results suggest that the pig lens confirms to a predictable, preset developmental pattern and that the optical and biometric properties are predictably interrelated.

  16. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  17. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device.

    PubMed

    Yih, Jenq-Nan; Hu, Yvonne Yuling; Sie, Yong Da; Cheng, Li-Chung; Lien, Chi-Hsiang; Chen, Shean-Jen

    2014-06-01

    This Letter presents an enhanced temporal focusing-based multiphoton excitation (MPE) microscope in which the conventional diffraction grating is replaced by a digital micromirror device (DMD). Experimental results from imaging a thin fluorescence film show that the 4.0 μm axial resolution of the microscope is comparable with that of a setup incorporating a 600  lines/mm grating; hence, the optical sectioning ability of the proposed setup is demonstrated. Similar to a grating, the DMD diffracts illuminating light frequencies for temporal focusing; additionally, it generates arbitrary patterns. Since the DMD is placed on the image-conjugate plane of the objective lens' focal plane, the MPE pattern can be projected on the focal plane precisely.

  18. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  19. Multistage Polymeric Lens Structures Integrated into Silica Waveguides

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2006-08-01

    A waveguide lens, composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and a low-loss structure has been designed. A waveguide lens in a silica slab waveguide has been fabricated using reactive ion etching (RIE) and formed by filling with polymer. Both an imagding optical system and a Fourier-transform optical system can be configured in a PLC using a waveguide lens. It renders the PLC functional and its design flexible. To obtain a shorter focal length with a low insertion loss, it is more effective to use a multistage lens structure. An imaging optical system and a Fourier-transform optical system with a focal length of less than 1000 μm were fabricated in silica waveguides using a multistage lens structure. The lens imaging waveguides incorporate a 16-24-stage lens, with insertion losses of 4-7 dB. A 4 × 4 optical coupler, using a Fourier-transform optical system, utilizes a 6-stage lens with losses of 2-4 dB.

  20. Spatial and Temporal Resolutions Pixel Level Performance Analysis of the Onboard Remote Sensing Electro-Optical Systems

    NASA Astrophysics Data System (ADS)

    El-Sheikh, H. M.; Yakushenkov, Y. G.

    2014-08-01

    Formulas for determination of the interconnection between the spatial resolution from perspective distortions and the temporal resolution of the onboard electro-optical system for remote sensing application for a variety of scene viewing modes is offered. These dependences can be compared with the user's requirements, upon the permission values of the design parameters of the modern main units of the electro-optical system is discussed.

  1. A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.

    PubMed

    Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching

    2010-05-01

    A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.

  2. Direct Absorption Spectroscopy with Electro-Optic Frequency Combs

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Plusquellic, David F.; Hodges, Joseph T.

    2017-06-01

    The application of electro-optic frequency combs to direct absorption spectroscopy has increased research interest in high-agility, modulator-based comb generation. This talk will review common architectures for electro-optic frequency comb generators as well as describe common self-heterodyne and multi-heterodyne (i.e., dual-comb) detection approaches. In order to achieve a sufficient signal-to-noise ratio on the recorded interferogram while allowing for manageable data volumes, broadband electro-optic frequency combs require deep coherent averaging, preferably in real-time. Applications such as cavity-enhanced spectroscopy, precision atomic and molecular spectroscopy, as well as time-resolved spectroscopy will be introduced. D.A. Long et al., Opt. Lett. 39, 2688 (2014) A.J. Fleisher et al., Opt. Express 24, 10424 (2016)

  3. Electro-optical effects in porous PET films filled with liquid crystal: new possibilities for fiber optics and THZ applications.

    PubMed

    Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V

    2014-03-15

    The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (ffc) electric field induces an overall change in the light intensity, which is typical for an electro-optical response of a liquid crystal (LC) layer in a conventional "sandwich"-like cell. The dependences of critical frequency fc, threshold voltages, and characteristic times on a pore diameter d were established. The peculiarities of electro-optical effects can be explained in the framework of the approach which connects the variations of light intensity with the corresponding changes of the effective refractive index n(eff) of a composite LC media. The unusual behavior of the electro-optical response at low frequencies is assigned to the orienting action of the specific shear flow typical for electrokinetic phenomena in polar liquids.

  4. Heterostructure of ferromagnetic and ferroelectric materials with magneto-optic and electro-optic effects

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin Kevin (Inventor); Jiang, Hua (Inventor); Li, Kewen Kevin (Inventor); Guo, Xiaomei (Inventor)

    2012-01-01

    A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.

  5. Interferometric phase locking of two electronic oscillators with a cascade electro-optic modulator

    NASA Astrophysics Data System (ADS)

    Chao, C. H.; Chien, P. Y.; Chang, L. W.; Juang, F. Y.; Hsia, C. H.; Chang, C. C.

    1993-01-01

    An optical-type electrical phase-locked-loop system based on a cascade electro-optic modulator has been demonstrated. By using this technique, a set of optical-type phase detectors, operating at any harmonic frequencies of two applied phase-modulation signals, has been implemented.

  6. An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator

    NASA Astrophysics Data System (ADS)

    Asano, Motoki; Ohta, Ryuichi; Yamamoto, Takashi; Okamoto, Hajime; Yamaguchi, Hiroshi

    2018-05-01

    Evanescent coupling between a high-Q silica optical microbottle and a GaAs electromechanical resonator is demonstrated. This coupling offers an opto-electro-mechanical system which possesses both cavity-enhanced optical sensitivity and electrical controllability of the mechanical motion. Cooling and heating of the mechanical mode are demonstrated based on optomechanical detection via the radiation pressure and electromechanical feedback via the piezoelectric effect. This evanescent approach allows for individual design of optical, mechanical, and electrical systems, which could lead to highly sensitive and functionalized opto-electro-mechanical systems.

  7. One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry.

    PubMed

    Yu, Yeh-Wei; Xiao, Shuai; Cheng, Chih-Yuan; Sun, Ching-Cherng

    2016-05-16

    A simple method to decode the stored phase signal of volume holographic data storage with adequate wave aberration tolerance is highly demanded. We proposed and demonstrated a one-shot scheme to decode a binary-phase encoding signal through double-frequency-grating based shearing interferometry (DFGSI). The lateral shearing amount is dependent on the focal length of the collimated lens and the frequency difference between the gratings. Diffracted waves with phase encoding were successfully decoded through experimentation. An optical model for the DFGSI was built to analyze phase-error induction and phase-difference control by shifting the double-frequency grating longitudinally and laterally, respectively. The optical model was demonstrated experimentally. Finally, a high aberration tolerance of the DFGSI was demonstrated using the optical model.

  8. Correlation optique en lumiere coherente (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontanel, A.; Grau, G.

    1971-03-01

    This paper describes a general bidimensional two-step method of correlation (or convolution) making use of the theory of holography. In the first step the light diffracted by one of the two plane transparent objects to be correlated interferes with the light diffracted by the other one. The hologram thus generated is photographed in the focal image plane of a convergent lens. Owing to the quadratic detection property of the photographic emulsion, the square of the modulus of the product of the spectra of the two objects considered is recorded on the photographic plate. In the second step the convolution productmore » of the two objects appears when the hologram is illuminated with a beam of coherent light. In its geophysical application this optical method of convolution makes it easy for us to obtain the autocorrelogram of a seismic cross-section. This method also makes it possible to correlate each of the seismic traces by special precalculated optically-recorded filters.« less

  9. 100W high-brightness multi-emitter laser pump

    NASA Astrophysics Data System (ADS)

    Duesterberg, Richard; Xu, Lei; Skidmore, Jay A.; Guo, James; Cheng, Jane; Du, Jihua; Johnson, Brad; Vecht, David L.; Guerin, Nicolas; Huang, Benlih; Yin, Dongliang; Cheng, Peter; Raju, Reddy; Lee, Kong Weng; Cai, Jason; Rossin, Victor; Zucker, Erik P.

    2011-03-01

    We report results of a spatially-multiplexed broad area laser diode platform designed for efficient pumping of fiber lasers or direct-diode systems. Optical output power in excess of 100W from a 105μm core, 0.15NA fiber is demonstrated with high coupling efficiency. The compact form factor and low thermal resistance enable tight packing densities needed for kW-class fiber laser systems. Broad area laser diodes have been optimized to reduce near- and far-field performance and prevent blooming without sacrificing other electro-optic parameters. With proper lens optimization this produces ~5% increase in coupling / wall plug efficiency for our design. In addition to performance characteristics, an update on long term reliability testing of 9XX nm broad area laser diode is provided that continues to show no wear out under high acceleration. Under nominal operating conditions of 12W ex-facet power at 25C, the diode mean time to failure (MTTF) is forecast to be ~ 480 kh.

  10. Compact diode laser module at 1116 nm with an integrated optical isolation and a PM-SMF output

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, Daniel; Hofmann, Julian; Werner, Nils; Sahm, Alexander; Paschke, Katrin

    2017-02-01

    In this work, a fiber-coupled diode laser module emitting around 1116 nm with an output power P < 60 mW is realized. As a laser light source a distributed Bragg reflector (DBR) ridge waveguide diode laser is applied. The module comprises temperature stabilizing components, a micro-lens system as well as an optical micro-isolator. At the output, a polarization-maintaining single-mode fiber (PM-SMF) with a core diameter of 5.5 μm and a standard FC/APC connector are utilized. The generated diffraction limited beam is characterized by a narrow linewidth ( δν < 10 MHz) and a high polarization extinction ratio (PER > 25 dB).

  11. Proposal for a multilayer read-only-memory optical disk structure.

    PubMed

    Ichimura, Isao; Saito, Kimihiro; Yamasaki, Takeshi; Osato, Kiyoshi

    2006-03-10

    Coherent interlayer cross talk and stray-light intensity of multilayer read-only-memory (ROM) optical disks are investigated. From results of scalar diffraction analyses, we conclude that layer separations above 10 microm are preferred in a system using a 0.85 numerical aperture objective lens in terms of signal quality and stability in focusing control. Disk structures are optimized to prevent signal deterioration resulting from multiple reflections, and appropriate detectors are determined to maintain acceptable stray-light intensity. In the experiment, quadrilayer and octalayer high-density ROM disks are prepared by stacking UV-curable films onto polycarbonate substrates. Data-to-clock jitters of < or = 7% demonstrate the feasibility of multilayer disk storage up to 200 Gbytes.

  12. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  13. Optical probing of electric fields with an electro-acoustic effect toward integrated circuit diagnosis.

    PubMed

    Jin, Ru-Long; Yang, Han; Zhao, Di; Chen, Qi-Dai; Yan, Zhao-Xu; Yi, Mao-Bin; Sun, Hong-Bo

    2010-02-15

    Electro-optic probing of electric fields has been considered as a promising approach for integrated circuit diagnosis. However, the method is subject to relatively weak voltage sensitivity. In this Letter, we solve the problems with electro-acoustic effect. In contrast to the general electro-optic effect, the light phase modulation induced by the acoustic effect is 2 orders of magnitude stronger at its resonant frequency, as we observed in a GaAs thin film probe. Furthermore, this what we believe to be a novel method shows a highly reproducible linearity between the detected signals and the input voltages, which facilitates the voltage calibration.

  14. Linear electro-optic properties of relaxor-based ferroelectric 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals

    PubMed Central

    Wu, Fengmin; Yang, Bin; Sun, Enwei; Liu, Gang; Tian, Hao; Cao, Wenwu

    2013-01-01

    Linear electro-optic properties of 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, with compositions in the rhombohedral, morphotropic phase boundary (MPB) and tetragonal phases, have been investigated. Very large effective electro-optic coefficient γc (204 pm/V) was observed in a crystal with the MPB composition when it is poled along [001]. The rhombohedral phase (x = 0.27 and 0.30) single crystals poled along [111] direction and tetragonal phase (x = 0.39) single crystal poled along [001] direction are in single domain, and their electro-optic coefficients (γc = 76, 94, and 43 pm/V for the crystals with x = 0.27, 0.30, and 0.39, respectively) were found to be much higher than that of traditional electro-optic single crystal LiNbO3 (γc = 19.9 pm/V). The electro-optic coefficients of the single crystal in the rhombohedral phase have excellent temperature stability in the experimental temperature range of 10–40 °C. The half-wave voltage Vπ was calculated to be much lower (less than 1000 V) than that of LiNbO3 single crystal (2800 V). These superior properties make the ternary relaxor-PT single crystals very promising for electro-optic modulation applications. PMID:23922449

  15. Traveling wave electro-optic phase modulators based on intrinsically polar self-assembled chromophoric superlattices

    NASA Astrophysics Data System (ADS)

    Zhao, Y.-G.; Wu, A.; Lu, H.-L.; Chang, S.; Lu, W.-K.; Ho, S. T.; van der Boom, M. E.; Marks, T. J.

    2001-07-01

    Traveling-wave electro-optic modulators based on chromophoric self-assembled superlattices (SASs) possessing intrinsically polar microstructures have been designed and fabricated. Although the thickness of the SAS layer is only ˜150 nm, a π-phase shift is clearly observed. From the measured Vπ value, the effective electro-optic coefficient of the SAS film is determined to be ˜21.8 pm/V at an input wavelength of 1064 nm.

  16. Electro-optical Synergy Technique

    PubMed Central

    El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, My G.

    2010-01-01

    Objectives: Electro-optical synergy technology is one of the most recently described methods for nonablative skin rejuvenation. The aim of this study is to evaluate the effects of electro-optical synergy on connective tissue composition by histological and immunohistochemical techniques coupled with computerized morphometric analysis. Design: A prospective clinical study. Participants: Six volunteers with Fitzpatrick skin types 3 to 4 and Glogau class I to II wrinkles were subjected to three months (6 sessions at 2-week intervals) of electro-optical synergy treatment. Measurements: Standard photographs and skin biopsies were obtained at baseline as well as three and six months after the start of treatment. The authors performed quantitative evaluation of total elastin, tropoelastin, collagen types I, III, and VII, and newly synthesized collagen. Results: Noticeable clinical and histological improvement was observed after electro-optical synergy treatment. A statistically significant increase in the means of collagen types I, III, and VII, as well as newly synthesized collagen, together with increased levels of tropoelastin, were detected, while the mean level of total elastin was significantly decreased at the end of treatment and three months post-treatment. Conclusion: Electro-optical synergy is an effective treatment for contouring facial skin laxity. This modality stimulates the repair processes and reverses the clinical, as well as the histopathological, signs of aging with the advantage of being a relatively risk-free procedure with minimal patient recovery time. PMID:21203352

  17. Electro-optic guided-mode resonance tuning suppressible by optically induced screening in a vertically coupled hybrid GaN/Si microring resonator

    NASA Astrophysics Data System (ADS)

    Thubthimthong, B.; Sasaki, T.; Hane, K.

    2018-02-01

    GaN as a nanophotonic material has gained much attention in recent years. Using the hybrid GaN/Si platform, we report the electro-optic tuning of guided-mode resonance in a vertically coupled hybrid GaN/Si microring resonator operating in the 1.5 μm window with up to a 6 dB extinction ratio and a 1.5 MHz modulation frequency (test equipment limit). The electro-optic tuning could be optically suppressed by electron-hole-originated screening induced by an ultraviolet excitation at 325 nm. Our work may benefit in externally intervenable optical interconnects for uninterrupted secure photonic networks.

  18. Femtosecond fibre laser stabilisation to an optical frequency standard using a KTP electro-optic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyushkov, B N; Pivtsov, V S; Koliada, N A

    2015-05-31

    A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extrememore » light fields and their applications)« less

  19. Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    2002-01-01

    The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.

  20. Electro-optic modulation at 1.4 GHz using single-crystal film of DAST

    NASA Astrophysics Data System (ADS)

    Ahyi, Ayayi; Titus, Jitto; Thakur, Mrinal

    2002-03-01

    Electro-optic modulation at 4 kHz using single-crystal film of DAST has been recently reported.^1 The measurement was made in the transverse configuration with the light beam propagating perpendicular to the film while electric field was applied in the plane of the film - along the dipole axis. In this presentation, we will discuss results of electro-optic modulation in DAST single-crystal films at significantly higher speed (0.1 - 1.4 GHz). Single-crystal films of DAST with excellent optical quality were prepared by modified shear method. The electro-optic modulation was measured using the technique of field-induced birefringence and the signal was recorded by a spectrum analyzer. Light (λ = 750 nm) propagated perpendicular to the film (thickness ~ 3 μm). We have observed excellent signal-to-noise ratio at these high frequencies, along with a low insertion loss. The voltage we applied is only ~ 1 volt across a gap of 15 μm and the observed signal-to-noise ratio is comparable to that of guided-wave electro-optic modulators. 1. M. Thakur, J. Xu, A. Bhowmik and M. Thakur, Appl. Phys. Lett., 74 635

  1. Design of liquid temperature sensor based on bending loss phenomenon of plastic optic fiber and electro-optic effect of Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Swaminathan, S.

    2016-04-01

    The efficient application of electro-optic effect in lithium niobate based Mach-Zehnder interferometer (MZI) to construct the temperature sensor is used. An experimental set up for liquid temperature sensor is proposed. Temperature dependence of the bending loss light energy in multimode micro-plastic optical fiber (m-POF) and electro-optic effect of MZI are used. The performance of sensor at different temperatures is measured. It is seen that the light output of MZI switches from one port to the other port as temperature of liquid changes from 0°C to 100°C.

  2. 160mJ and 9ns electro-optics Q-switched conductively cooled 1047nm Nd:YLF laser

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Ma, Jian; Lu, Tingting; Ma, Xiuhua; Zhu, Xiaolei

    2015-02-01

    A compact diode side-pumped conductively cooled 1047 nm Nd:YLF slab laser with high energy and short pulse width is developed. Through ray tracing method, we design a home-made pump module to homogenize the pump intensity. Based on the Possion equation, a thermal conduct model of side-pump laser is established. The temperature distribution in laser crystal is obtained, and the thermal lens is caculated. With the absorbed pump energy of 818 mJ, the maximum output energy of 228 mJ is achieved in free-running mode. At a repetition rate of 50 Hz, 160 mJ, 9 ns 1047 nm infrared light is obtained under the maximum absorbed pump energy, and the slope efficiency is 27.8%.

  3. Fast optical switch having reduced light loss

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Cooper, Ronald F. (Inventor)

    1992-01-01

    An electrically controlled optical switch uses an electro-optic crystal of the type having at least one set of fast and slow optical axes. The crystal exhibits electric field induced birefringence such that a plane of polarization oriented along a first direction of a light beam passing through the crystal may be switched to a plane of polarization oriented along a second direction. A beam splitting polarizer means is disposed at one end of the crystal and directs a light beam passing through the crystal whose plane of polarization is oriented along the first direction differently from a light beam having a plane of polarization oriented along the second direction. The electro-optic crystal may be chosen from the crystal classes 43m, 42m, and 23. In a preferred embodiment, the electro-optic crystal is a bismuth germanium oxide crystal or a bismuth silicon oxide crystal. In another embodiment of the invention, polarization control optics are provided which transmit substantially all of the incident light to the electro-optic crystal, substantially reducing the insertion loss of the switch.

  4. Physical properties of new binary antiferroelectric liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Fitas, Jakub; Jaworska-Gołąb, Teresa; Deptuch, Aleksandra; Tykarska, Marzena; Kurp, Katarzyna; Żurowska, Magdalena; Marzec, Monika

    2018-02-01

    Three newly prepared binary mixtures exhibiting chiral tilted smectic phases have been studied using differential scanning calorimetry, dielectric spectroscopy and electro-optic method, as well as X-ray diffraction. Broad temperature range of ferroelectric and antiferroelectric phases was detected in these mixtures and temperature dependence of spontaneous polarization, tilt angle and switching time were measured for all of them. It's occurred that all of the studied mixtures are orthoconic antiferroelectric liquid crystals. Based on the X-ray diffraction results, the temperature dependence of layer thickness in the paraelectric, ferroelectric and antiferroelectric phases was found. By using dielectric spectroscopy, Goldstone mode was identified in the ferroelectric phase, while antiphase fluctuations of azimuthal angle have been found in the antiferroelectric phase. Based on the results of the complementary methods, the transition temperatures were found as well as the order of the para-ferroelectric phase transition was determined as non-continuous one with critical parameter β equal to ca. 0.25.

  5. Electro-optic Waveguide Beam Deflector.

    DTIC Science & Technology

    beam deflection by variation in the electro - optic effect produced within the waveguide region in response to known or determinable magnitude variations in the electrical potential of an applied signal source.

  6. Slot-grating flat lens for telecom wavelengths.

    PubMed

    Pugh, Jonathan R; Stokes, Jamie L; Lopez-Garcia, Martin; Gan, Choon-How; Nash, Geoff R; Rarity, John G; Cryan, Martin J

    2014-07-01

    We present a stand-alone beam-focusing flat lens for use in the telecommunications wavelength range. Light incident on the back surface of the lens propagates through a subwavelength aperture and is heavily diffracted on exit and partially couples into a surface plasmon polariton and a surface wave propagating along the surface of the lens. Interference between the diffracted wave and re-emission from a grating patterned on the surface produces a highly collimated beam. We show for the first time a geometry at which a lens of this type can be used at telecommunication wavelengths (λ=1.55 μm) and identify the light coupling and re-emission mechanisms involved. Measured beam profile results at varying incident wavelengths show excellent agreement with Lumerical FDTD simulation results.

  7. Embodiment of Learning in Electro-Optical Signal Processors

    NASA Astrophysics Data System (ADS)

    Hermans, Michiel; Antonik, Piotr; Haelterman, Marc; Massar, Serge

    2016-09-01

    Delay-coupled electro-optical systems have received much attention for their dynamical properties and their potential use in signal processing. In particular, it has recently been demonstrated, using the artificial intelligence algorithm known as reservoir computing, that photonic implementations of such systems solve complex tasks such as speech recognition. Here, we show how the backpropagation algorithm can be physically implemented on the same electro-optical delay-coupled architecture used for computation with only minor changes to the original design. We find that, compared to when the backpropagation algorithm is not used, the error rate of the resulting computing device, evaluated on three benchmark tasks, decreases considerably. This demonstrates that electro-optical analog computers can embody a large part of their own training process, allowing them to be applied to new, more difficult tasks.

  8. Embodiment of Learning in Electro-Optical Signal Processors.

    PubMed

    Hermans, Michiel; Antonik, Piotr; Haelterman, Marc; Massar, Serge

    2016-09-16

    Delay-coupled electro-optical systems have received much attention for their dynamical properties and their potential use in signal processing. In particular, it has recently been demonstrated, using the artificial intelligence algorithm known as reservoir computing, that photonic implementations of such systems solve complex tasks such as speech recognition. Here, we show how the backpropagation algorithm can be physically implemented on the same electro-optical delay-coupled architecture used for computation with only minor changes to the original design. We find that, compared to when the backpropagation algorithm is not used, the error rate of the resulting computing device, evaluated on three benchmark tasks, decreases considerably. This demonstrates that electro-optical analog computers can embody a large part of their own training process, allowing them to be applied to new, more difficult tasks.

  9. Optically Immersed Bolometer IR Detectors Based on V2O5 Thin Films with Polyimide Thermal Impedance Control Layer for Space Applications

    NASA Astrophysics Data System (ADS)

    Sumesh, M. A.; Thomas, Beno; Vijesh, T. V.; Mohan Rao, G.; Viswanathan, M.; Karanth, S. P.

    2018-01-01

    Optically immersed bolometer IR detectors were fabricated using electron beam evaporated vanadium oxide as the sensing material. Spin-coated polyimide was used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices were packaged in suitable electro-optical packages and the detector parameters were studied in detail. Thermal time constant varies from 0.57 to 6.0 ms and responsivity from 75 to 757 V W-1 corresponding to polyimide thickness in the range 2 to 70 μm for a detector bias of 9 V in the wavelength region of 14-16 μm. Highest D* obtained was 1.2×108 cmHz1/2 W-1. Noise equivalent temperature difference (NETD) of 20 mK was achieved for devices with polyimide thickness more than 32 μm. The figure of merit, NETD × τ product which describes trade-off between thermal time constant and sensitivity is also extensively studied for devices having different thickness of thermal impedance layers.

  10. Laue lens for radiotherapy applications through a focused hard x-ray beam: a feasibility study on requirements and tolerances

    NASA Astrophysics Data System (ADS)

    Camattari, Riccardo

    2017-09-01

    Focusing a hard x-ray beam would represent an innovative technique for tumour treatment, since such a beam may deliver a dose to a tumour located at a given depth under the skin, sparing the surrounding healthy cells. A detailed study of a focusing system for hard x-ray aimed at radiotherapy is presented here. Such a focusing system, named Laue lens, exploits x-ray diffraction and consists of a series of crystals disposed as concentric rings capable of concentrating a flux of x-rays towards a focusing point. A feasibility study regarding the positioning tolerances of the crystalline optical elements has been carried out. It is shown that a Laue lens can effectively be used in the context of radiotherapy for tumour treatments provided that the mounting errors are below certain values, which are reachable in the modern micromechanics. An extended survey based on an analytical approach and on simulations is presented for precisely estimating all the contributions of each mounting error, analysing their effect on the focal spot of the Laue lens. Finally, a simulation for evaluating the released dose in a water phantom is shown.

  11. Experimental study on acoustic subwavelength imaging of holey-structured metamaterials by resonant tunneling.

    PubMed

    Su, Haijing; Zhou, Xiaoming; Xu, Xianchen; Hu, Gengkai

    2014-04-01

    A holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves. The condition is derived for the resonant tunneling, by which evanescent waves can completely transmit through the structured lens without decaying. As an advantage of the proposed lens, the imaging frequency can be modified by the diameter modulation of internal holes without the change of the lens thickness in contrast to the lens due to the Fabry-Pérot resonant mechanism. In this experiment, the lens is assembled by aluminum plates drilled with cylindrical holes. The imaging experiment demonstrates that the designed lens can clearly distinguish two sources separated in the distance below the diffraction limit at the tunneling frequency.

  12. Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao

    In the optical system, most elements such as lens, prism, and optical fiber are made of silica glass. Therefore, integrating Pancharatnam-Berry phase elements into silica glass has potential applications in the optical system. In this paper, we take a lens, for example, which integrates a Pancharatnam-Berry phase lens into a conventional plano-convex lens. The spin states and positions of focal points can be modulated by controlling the polarization states of the incident beam. The proposed lens has a high transmission efficiency, and thereby acts as a simple and powerful tool to manipulate spin photons. Furthermore, the method can be convenientlymore » extended to the optical fiber and laser cavity, and may provide a route to the design of the spin-photonic devices.« less

  13. In-situ spectrophotometric probe

    DOEpatents

    Prather, William S.

    1992-01-01

    A spectrophotometric probe for in situ absorption spectra measurements comprising a first optical fiber carrying light from a remote light source, a second optical fiber carrying light to a remote spectrophotometer, the proximal ends of the first and second optical fibers parallel and coterminal, a planoconvex lens to collimate light from the first optical fiber, a reflecting grid positioned a short distance from the lens to reflect the collimated light back to the lens for focussing on the second optical fiber. The lens is positioned with the convex side toward the optical fibers. A substrate for absorbing analyte or an analyte and reagent mixture may be positioned between the lens and the reflecting grid.

  14. Study of Linearization of Optical Polymer Modulators

    DTIC Science & Technology

    2004-02-01

    To improve the Spur Free Dynamic Range of analog electro - optic modulators in the 10 GHz regime, techniques for improving the linearity of these...devices must be developed. This report discusses an investigation into electro - optic directional couplers that use variable coupling in polymer-based

  15. Electro-optic KTN Devices

    NASA Astrophysics Data System (ADS)

    Yagi, Shogo; Fujiura, Kazuo

    We have grown KTN crystals with optical quality, and developed high-speed beam deflectors and variable focal length lenses based on KTN's large electro-optic effect. Furthermore, by using the KTN beam deflectors, we have developed a swept light source for OCT operable at 200 kHz.

  16. Thermal Relaxation Processes and Stability in Poled Electro-Optic Polymers

    DTIC Science & Technology

    1994-06-30

    34, Gordon Research Conference on Dielectric Phenomena, Holderness School, NH July 31-August 5, 1994. 2. K.D. Singer, R. Dureiko, J. Khaydarov , and R...Fuerst, "Relaxation in Poled Electro- optic Polymers", 4th Iketani Conference, Hawaii, May 17-20, 1994. 3. J.H. Andrews, J.D.V. Khaydarov , and K.D. Singer...Dureiko, J. Khaydarov , and R. Fuerst, "Relaxation Phenomena in Poled Electro-Optic Polymers", Proc. Mat. Res. Soc. 328, 499 (1994). 5. R.A. Fuerst, "Thermal

  17. CoBOP: Electro-Optic Identification Laser Line Sean Sensors

    DTIC Science & Technology

    1998-01-01

    Electro - Optic Identification Sensors Project[1] is to develop and demonstrate high resolution underwater electro - optic (EO) imaging sensors, and associated image processing/analysis methods, for rapid visual identification of mines and mine-like contacts (MLCs). Identification of MLCs is a pressing Fleet need. During MCM operations, sonar contacts are classified as mine-like if they are sufficiently similar to signatures of mines. Each contact classified as mine-like must be identified as a mine or not a mine. During MCM operations in littoral areas,

  18. An Electro-Optic Spatial Light Modulator for Thermoelastic Generation of Programmably Focused Ultrasound.

    DTIC Science & Technology

    1984-12-01

    The concept proposed is an electro - optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro - optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test. (Author)

  19. The Hunter-Killer Model, Version 2.0. User’s Manual.

    DTIC Science & Technology

    1986-12-01

    Contract No. DAAK21-85-C-0058 Prepared for The Center for Night Vision and Electro - Optics DELNV-V Fort Belvoir, Virginia 22060 This document has been...INQUIRIES Inquiries concerning the Hunter-Killer Model or the Hunter-Killer Database System should be addressed to: 1-1 I The Night Vision and Electro - Optics Center...is designed and constructed to study the performance of electro - optic sensor systems in a combat scenario. The model simulates a two-sided battle

  20. An electro-optic spatial light modulator for thermoelastic generation of programmably focused ultrasound

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.

Top