Science.gov

Sample records for electro-optic imaging fourier

  1. Electro-optic imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  2. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  3. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  4. Electro-Optical Imaging Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  5. Remote sensing of stress using electro-optics imaging technique

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Yuen, Peter; Hong, Kan; Tsitiridis, Aristeidis; Kam, Firmin; Jackman, James; James, David; Richardson, Mark; Oxford, William; Piper, Jonathan; Thomas, Francis; Lightman, Stafford

    2009-09-01

    Emotional or physical stresses induce a surge of adrenaline in the blood stream under the command of the sympathetic nerve system, which, cannot be suppressed by training. The onset of this alleviated level of adrenaline triggers a number of physiological chain reactions in the body, such as dilation of pupil and an increased feed of blood to muscles etc. This paper reports for the first time how Electro-Optics (EO) technologies such as hyperspectral [1,2] and thermal imaging[3] methods can be used for the detection of stress remotely. Preliminary result using hyperspectral imaging technique has shown a positive identification of stress through an elevation of haemoglobin oxygenation saturation level in the facial region, and the effect is seen more prominently for the physical stressor than the emotional one. However, all results presented so far in this work have been interpreted together with the base line information as the reference point, and that really has limited the overall usefulness of the developing technology. The present result has highlighted this drawback and it prompts for the need of a quantitative assessment of the oxygenation saturation and to correlate it directly with the stress level as the top priority of the next stage of research.

  6. Electro-Optical Imaging Microscopy of Dye-Doped Artificial Lipidic Membranes

    PubMed Central

    Hajj, Bassam; De Reguardati, Sophie; Hugonin, Loïc; Le Pioufle, Bruno; Osaki, Toshihisa; Suzuki, Hiroaki; Takeuchi, Shoji; Mojzisova, Halina; Chauvat, Dominique; Zyss, Joseph

    2009-01-01

    Artificial lipidic bilayers are widely used as a model for the lipid matrix in biological cell membranes. We use the Pockels electro-optical effect to investigate the properties of an artificial lipidic membrane doped with nonlinear molecules in the outer layer. We report here what is believed to be the first electro-optical Pockels signal and image from such a membrane. The electro-optical dephasing distribution within the membrane is imaged and the signal is shown to be linear as a function of the applied voltage. A theoretical analysis taking into account the statistical orientation distribution of the inserted dye molecules allows us to estimate the doped membrane nonlinearity. Ongoing extensions of this work to living cell membranes are discussed. PMID:19948120

  7. Real-time digital signal processing for live electro-optic imaging.

    PubMed

    Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro

    2009-08-31

    We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.

  8. Common aperture techniques for imaging electro-optical sensors

    NASA Astrophysics Data System (ADS)

    1980-02-01

    A multispectral optical imaging system was designed and fabricated to demonstrate the feasibility of utilizing a pointable common optical aperture in conjunction with interchangeable day or night TV sensors and a thermal imaging sensor. Limited processing capability was incorporated to permit mixing of both visible and infrared video of common scenes for more effective all weather electrooptical capability. An optical configuration was established which will accommodate image sensors as well as illuminating and designating/ranging lasers. In the early phases of the program various techniques were evaluated for optimizing spectral separation, gating image intensifiers and minimizing degradation of sensor performance due to insertion of .723 and 1.06 micron laser radiation through the common aperture. Preliminary testing indicates that combining sensors achieves synergistic performance in targeting and identification. Edited monthly R D Status Reports detail the design, fabrication and integration aspects of the program.

  9. Q selection for an electro-optical earth imaging system: theoretical and experimental results.

    PubMed

    Cochrane, Andy; Schulz, Kevin; Kendrick, Rick; Bell, Ray

    2013-09-23

    This paper explores practical design considerations for selecting Q for an electro-optical earth imaging system, where Q is defined as (λ FN) / pixel pitch. Analytical methods are used to show that, under imaging conditions with high SNR, increasing Q with fixed aperture cannot lead to degradation of image quality regardless of the angular smear rate of the system. The potential for degradation of image quality under low SNR is bounded by an increase of the detector noise scaling as Q. An imaging test bed is used to collect representative imagery for various Q configurations. The test bed includes real world errors such as image smear and haze. The value of Q is varied by changing the focal length of the imaging system. Imagery is presented over a broad range of parameters.

  10. Improved fusing infrared and electro-optic signals for high-resolution night images

    NASA Astrophysics Data System (ADS)

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-06-01

    Electro-optic (EO) images exhibit the properties of high resolution and low noise level, while it is a challenge to distinguish objects with infrared (IR), especially for objects with similar temperatures. In earlier work, we proposed a novel framework for IR image enhancement based on the information (e.g., edge) from EO images. Our framework superimposed the detected edges of the EO image with the corresponding transformed IR image. Obviously, this framework resulted in better resolution IR images that help distinguish objects at night. For our IR image system, we used the theoretical point spread function (PSF) proposed by Russell C. Hardie et al., which is composed of the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we designed an inverse filter based on the proposed PSF to transform the IR image. In this paper, blending the detected edge of the EO image with the corresponding transformed IR image and the original IR image is the principal idea for improving the previous framework. This improved framework requires four main steps: (1) inverse filter-based IR image transformation, (2) image edge detection, (3) images registration, and (4) blending of the corresponding images. Simulation results show that blended IR images have better quality over the superimposed images that were generated under the previous framework. Based on the same steps, the simulation result shows a blended IR image of better quality when only the original IR image is available.

  11. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    PubMed Central

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available. PMID:23112602

  12. Multi-sensor fusion of infrared and electro-optic signals for high resolution night images.

    PubMed

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-01-01

    Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  13. Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling

    NASA Astrophysics Data System (ADS)

    Ravaro, M.; Jagtap, V.; Santarelli, G.; Sirtori, C.; Li, L. H.; Khanna, S. P.; Linfield, E. H.; Barbieri, S.

    2013-03-01

    We demonstrate a coherent imaging system based on a terahertz (THz) frequency quantum cascade laser (QCL) phase-locked to a near-infrared fs-laser comb. The phase locking enables coherent electro-optic sampling of the continuous-wave radiation emitted by the QCL through the generation of a heterodyne beat-note signal. We use this beat-note signal to demonstrate raster scan coherent imaging using a QCL emitting at 2.5 THz. At this frequency the detection noise floor of our system is of 3 pW/Hz and the long-term phase stability is <3°/h, limited by the mechanical stability of the apparatus.

  14. Fusing electro-optic and infrared signals for high resolution night images

    NASA Astrophysics Data System (ADS)

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2012-03-01

    Electro-optic (EO) images exhibit the properties of high resolution and low noise level, while it is a challenge to distinguish objects at night through infrared (IR) images, especially for objects with a similar temperature. Therefore, we will propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which will result in high resolution IR images and help us distinguish objects at night. Superimposing the detected edge of the EO image onto the corresponding transformed IR image is our principal idea for the proposed framework. In this framework, we will adopt the theoretical point spread function (PSF) proposed by Russell C. Hardie et al. for our IR image system, which is contributed by the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we will design an inverse filter in terms of the proposed PSF to conduct the IR image transformation. The framework requires four main steps, which are inverse filter-based IR image transformation, EO image edge detection, registration and superimposing of the obtained image pair. Simulation results will show the superimposed IR images.

  15. Damage analysis of CMOS electro-optical imaging system by a continuous wave laser

    NASA Astrophysics Data System (ADS)

    Yoon, Sunghee; Jhang, Kyung-Young; Shin, Wan-Soon

    2016-08-01

    EOIS (electro-optical imaging system) is vulnerable to laser beam because EOIS focuses the incident laser beam onto the image sensor via lens module. Accordingly, the laser-induced damage of EOIS is necessary to be identified for the counter-measure against the laser attack. In this study, the damage of CMOS EOIS and image sensor induced by CW (continuous wave) NIR (near infrared) laser was experimentally investigated. When the laser was emitted to CMOS EOIS, a temporary damage was occurred first such as flickering or dazzling and then a permanent damage was followed as the increase of laser irradiance and irradiation time. If the EIOS is composed of the optical equipment made of heatresistant material, laser beam can penetrate the lens module of EOIS without melting the lens and lens guide. Thus, it is necessary to investigate the damage of CMOS image sensor by the CW laser and we performed experimentally investigation of damage on the CMOS image sensor similar with case of CMOS EOIS. And we analyzed the experiment results by using OM (optical microscopy) and check the image quality through tomography. As the increase of laser irradiance and irradiation time, the permanent damage such as discoloration and breakdown were sequentially appeared.

  16. Single-shot time-resolved THz spectroscopy using non-collinear electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyou; Su, Fuhai; Hegmann, Frank A.

    2010-03-01

    We demonstrate a technique for rapid substance identification via single-shot, coherent THz imaging using non-collinear electro-optic sampling. A THz probe pulse generated in ZnTe is transmitted through the sample then focused on a (110) ZnTe detection crystal. An 800nm, 100fs optical pulse employed as a sampling beam passes through the ZnTe detection crystal at an angle of 7^o relative to the THz beam.footnotetextT. Yasuda et al., Opt. Commun. 267, 128 (2006) The THz field induced birefringence is resolved as a variation of the intensity of the sampling pulse transmitted through a crossed polarizer. The modified sampling beam spot is imaged using a CCD camera. Because of the non-collinear geometry, the spatial overlap between the THz field and the optical pulse depends on the temporal position within the THz waveform. Consequently, we obtain high-resolution 2D images of the THz waveform without scanning the relative path length. The resolution of the absorption spectra extracted from wet paper and lactose using the single-shot imaging approach is comparable to the resolution obtained through conventional scanning lock-in measurements. Possible applications for substance detection are discussed.

  17. Canopy induced aberration correction in airborne electro-optical imaging systems

    NASA Astrophysics Data System (ADS)

    Harder, James A.; Sprague, Michaelene W.

    2011-11-01

    An increasing number of electro-optical systems are being used by pilots in tactical aircraft. This means that the afore mentioned systems must operate through the aircrafts canopy, unfortunately the canopy functions as a less than ideal lens element in the electro-optical sensor optical path. The canopy serves first and foremost as an aircraft structural component, considerations like minimizing the drag co-efficient and the ability to survive bird strikes take precedence over achieving optimal optical characteristics. This paper describes how the authors characterized the optical characteristics of an aircraft canopy. Families of modulation transfer functions were generated, for various viewing geometries through the canopy and for various electro-optical system entrance pupil diameters. These functions provided us with the means to significantly reduce the effect of the canopy "lens" on the performance of a representative electro-optical system, using an Astigmatic Corrector Lens. A comparison of the electro-optical system performance with and without correction is also presented.

  18. Multi-sensor fusion of electro-optic and infrared signals for high resolution visible images: part I

    NASA Astrophysics Data System (ADS)

    Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor

    2013-06-01

    Electro-Optic (EO) image sensors exhibit the properties of high resolution and low noise level, but they cannot reflect information about the temperature of objects and do not work in dark environments. On the other hand, infrared (IR) image sensors exhibit the properties of low resolution and high noise level, but IR images can reflect information about the temperature of objects all the time. Therefore, in this paper, we propose a novel framework to enhance the resolution of EO images using the information (e.g., temperature) from IR images, which helps distinguish temperature variation of objects in the daytime via high-resolution EO images. The proposed novel framework involves four main steps: (1) select target objects with temperature variation in original IR images; (2) fuse original RGB color (EO) images and IR images based on image fusion algorithms; (3) blend the fused images of target objects in proportion with original gray-scale EO images; (4) superimpose the target objects' temperature information, onto original EO images via the modified NTSC color space transformation. Therein, the image fusion step will be conducted by qualitative (frame pipeline) approach. Revealing temperature information in EO images for the first time is the most significant contribution of this paper. Simulation results will show the transformed EO images with the targets' temperature information.

  19. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront

  20. Imaging Fourier transform spectrometer

    SciTech Connect

    Bennett, C.L.

    1993-09-13

    This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

  1. Fourier plane imaging microscopy

    SciTech Connect

    Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  2. Electro-optical BLM chips enabling dynamic imaging of ordered lipid domains.

    PubMed

    Shao, Chenren; Kendall, Eric L; DeVoe, Don L

    2012-09-01

    Studies of lipid rafts, ordered microdomains of sphingolipids and cholesterol within cell membranes, are essential in probing the relationships between membrane organization and cellular function. While in vitro studies of lipid phase separation are commonly performed using spherical vesicles as model membranes, the utility of these models is limited by a number of factors. Here we present a microfluidic device that supports simultaneous electrical measurements and confocal imaging of on-chip bilayer lipid membranes (BLMs), enabling real-time multi-domain imaging of membrane organization. The chips further support closed microfluidic access to both sides of the membrane, allowing the membrane boundary conditions to be rapidly changed and providing a mechanism for dynamically adjusting membrane curvature through application of a transmembrane pressure gradient. Here we demonstrate the platform through the study of dynamic generation and dissolution of ordered lipid domains as membrane components are transported to and from the supporting annulus containing solvated lipids and cholesterol.

  3. Electro-Optical BLM Chips Enabling Dynamic Imaging of Ordered Lipid Domains

    PubMed Central

    Shao, Chenren; Kendall, Eric; DeVoe, Don L.

    2012-01-01

    Studies of lipid rafts, ordered microdomains of sphingolipids and cholesterol within cell membranes, are essential in probing the relationships between membrane organization and cellular function. While in vitro studies of lipid phase separation are commonly performed using spherical vesicles as model membranes, the utility of these models is limited by a number of factors. Here we present a microfluidic device that supports simultaneous electrical measurements and confocal imaging of on-chip bilayer lipid membranes (BLMs), enabling real-time multi-domain imaging of membrane organization. The chips further support closed microfluidic access to both sides of the membrane, allowing the membrane boundary conditions to be rapidly changed and providing a mechanism for dynamically adjusting membrane curvature through application of a transmembrane pressure gradient. Here we demonstrate the platform through the study of dynamic generation and dissolution of ordered lipid domains as membrane components are transported to and from the supporting annulus containing solvated lipids and cholesterol. PMID:22728885

  4. Design and electro-optical characterization of a 1024 x 1024 imager

    NASA Astrophysics Data System (ADS)

    Kamasz, Stacy R.; Washkurak, William D.; Weale, Gareth P.; Ma, Shing-Fat F.; Smith, Charles R.; Chamberlain, Savvas G.

    1993-07-01

    Large format charge coupled device area arrays (1 million pixels or more) have proven to be useful in scientific, medical and industrial imaging applications. DALSA has developed a 1024 X 1024 pixel single output, full-frame area array incorporating 3-poly 3-phase buried channel NMOS CCD shift registers and a 10 micrometers X 10 micrometers pixel pitch. The device was fabricated with an additional buried channel implant (notch) in the pixel columns to increase charge storage capacity. In this paper the authors discuss the design and initial performance evaluation of the device. Preliminary measurements of the pixel charge storage capacity indicate 70,000 e- without notch and 140,000 e- with notch. The results indicate that the sensor should be suitable for a variety of applications such as high resolution machine vision, still photography, and scientific imaging.

  5. Electro-Optical Characterization

    SciTech Connect

    Not Available

    2006-06-01

    In the Electro-Optical Characterization group, within the National Center for Photovoltaic's Measurements and Characterization Division, we use various electrical and optical experimental techniques to relate photovoltaic device performance to the methods and materials used to produce them. The types of information obtained by these techniques range from small-scale atomic-bonding information to large-scale macroscopic quantities such as optical constants and electron-transport properties. Accurate and timely measurement of the electro-optical properties as a function of device processing provides researchers and manufacturers with the knowledge needed to troubleshoot problems and develop the knowledge base necessary for reducing cost, maximizing efficiency, improving reliability, and enhancing manufacturability. We work collaboratively with you to solve materials- and device-related R&D problems. This sheet summarizes our primary techniques and capabilities.

  6. An electro-optical imaging approach to the prompt signal processing problem of mega-channel SSC detector arrays

    SciTech Connect

    Lowry, M.; Ables, E.; Bionta, R.; Haigh, R.; Hugenberg, K.; Kalibjian, R.; McConaghy, C.; Milton, D.; Rotter, M.; Schulte, H.

    1990-12-01

    The physics demands of high luminosity at the SSC and the sometimes subtle measurements required to elucidate new physics will undoubtedly tax existing instrumentation. As is the case with most experimental fields, new physics follows from better measurement concepts and technologies. We expect this to be the case with the SSC as well. In what follows, we offer a glimpse of what may be possible using some of the recent results from the emerging technologies in the field of electro-optics. 12 refs., 4 figs.

  7. Fourier plane image amplifier

    DOEpatents

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  8. Fourier plane image amplifier

    DOEpatents

    Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.

    1995-01-01

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  9. Imaging Fourier Transform Spectrometer

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.; Hernandez, J.

    1993-04-14

    The operating principles of an Imaging Fourier Transform Spectrometer (IFTS) are discussed. The advantages and disadvantages of such instruments with respect to alternative imaging spectrometers are discussed. The primary advantages of the IFTS are the capacity to acquire more than an order of magnitude more spectral channels than alternative systems with more than an order of magnitude greater etendue than for alternative systems. The primary disadvantage of IFTS, or FTS in general, is the sensitivity to temporal fluctuations, either random or periodic. Data from the IRIFTS (ir IFTS) prototype instrument, sensitive in the infrared, are presented having a spectral sensitivity of 0.01 absorbance units, a spectral resolution of 6 cm{sup {minus}1} over the range 0 to 7899 cm{sup {minus}1}, and a spatial resolution of 2.5 mr.

  10. Electro-Optic Field Sensor

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solakiewiez, R. J.

    1997-01-01

    Electrostatic field measurements are fundamental to the study of thunderstorm electrification, thundercloud charge structure, and the determination of the locations and magnitudes of charges deposited by lightning. Such measurements can also be used to warn of impending electrical hazards. In this work effort, we offer an alternate way of detecting atmospheric electric fields. Our approach involves the use of anisotropic electro-optic crystals.

  11. Electro-optic imagery of high-voltage GaAs photoconductive switches

    SciTech Connect

    Falk, R.A.; Adams, J.C.; Capps, C.D.; Ferrier, S.G.; Krinsky, J.A. )

    1995-01-01

    The authors present electro-optic images of GaAs high-voltage photoconductive switches utilizing the electro-optic effect of the semi-insulating GaAs substrate. Experimental methodology for obtaining the images is described along with a self-calibrating data reduction algorithm. Use of the technique for observing fabrication defects is shown.

  12. Shuttle sortie electro-optical instruments study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A study to determine the feasibility of adapting existing electro-optical instruments (designed and sucessfully used for ground operations) for use on a shuttle sortie flight and to perform satisfactorily in the space environment is considered. The suitability of these two instruments (a custom made image intensifier camera system and an off-the-shelf secondary electron conduction television camera) to support a barium ion cloud experiment was studied for two different modes of spacelab operation - within the pressurized module and on the pallet.

  13. Advanced electro-optical imaging techniques. [conference papers on sensor technology applicable to Large Space Telescope program

    NASA Technical Reports Server (NTRS)

    Sobieski, S. (Editor); Wampler, E. J. (Editor)

    1973-01-01

    The papers presented at the symposium are given which deal with the present state of sensors, as may be applicable to the Large Space Telescope (LST) program. Several aspects of sensors are covered including a discussion of the properties of photocathodes and the operational imaging camera tubes.

  14. Electro-optical imaging of F-actin and endoplasmic reticulum in living and fixed plant cells.

    PubMed

    Allen, N S; Bennett, M N

    1996-01-01

    Confocal and video micrographs of living and fixed alfalfa roots, onion epithelial and pear pollen cells illustrate the architecture of the cytoskeleton and endoplasmic reticulum in plant cells. Fixation of plant tissues to preserve cytoplasmic structure poses special problems. When possible, emphasis should be placed on the imaging of structures in stained living cells over time. The early events that occur when Nod factors or bacteria elicit nodule formation in alfalfa roots will illustrate several approaches to plant cell fixation, staining and imaging. The first observable events after Nod factor stimulation occur in root hairs and are changes in rates of cytoplasmic streaming, nuclear movements, and changes in the shape of the vacuole. Within ten minutes, the endoplasmic reticulum shifts position towards the tip of the root hair. For comparison, the endoplasmic reticulum localization in pollen tubes and onion epithelial cells will be illustrated. The actin cytoskeleton undergoes a series of changes over a twelve hour period. These changes in the cytoskeleton are spatially and temporally correlated with the observed growth changes of the root hairs. This dynamic change of the actin filament and endoplasmic reticulum and associated secretory vesicles in these root hairs suggests a mechanism for the observed root hair growth changes. PMID:9601538

  15. Advanced Electro-Optic Surety Devices

    SciTech Connect

    Watterson, C.E.

    1997-05-01

    The Advanced Electro-Optic Surety Devices project was initiated in march 1991 to support design laboratory guidance on electro-optic device packaging and evaluation. Sandia National Laboratory requested AlliedSignal Inc., Kansas City Division (KCD), to prepare for future packaging efforts in electro-optic integrated circuits. Los Alamos National Laboratory requested the evaluation of electro-optic waveguide devices for nuclear surety applications. New packaging techniques involving multiple fiber optic alignment and attachment, binary lens array development, silicon V-groove etching, and flip chip bonding were requested. Hermetic sealing of the electro-optic hybrid and submicron alignment of optical components present new challenges to be resolved. A 10-channel electro-optic modulator and laser amplifier were evaluated for potential surety applications.

  16. Airborne Electro-Optical Sensor Simulation System. Final Report.

    ERIC Educational Resources Information Center

    Hayworth, Don

    The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…

  17. Electro-optical time marker for high-speed cameras

    NASA Technical Reports Server (NTRS)

    Copeland, J. T., Jr.

    1970-01-01

    Electro-optical device converts high-frequency electrical pulses into permanent optical records on film. Accurate, well defined images are formed of electronic pulses having repetition rates greater than 10,000 pulses/sec and pulse widths of 20 microseconds or less. Small electronic switch drives a silicon carbide electroluminescent diode.

  18. Dedicated optoelectronic stochastic parallel processor for real-time image processing: motion-detection demonstration and design of a hybrid complementary-metal-oxide semiconductor- self-electro-optic-device-based prototype.

    PubMed

    Cassinelli, A; Chavel, P; Desmulliez, M P

    2001-12-10

    We report experimental results and performance analysis of a dedicated optoelectronic processor that implements stochastic optimization-based image-processing tasks in real time. We first show experimental results using a proof-of-principle-prototype demonstrator based on standard silicon-complementary-metal-oxide-semiconductor (CMOS) technology and liquid-crystal spatial light modulators. We then elaborate on the advantages of using a hybrid CMOS-self-electro-optic-device-based smart-pixel array to monolithically integrate photodetectors and modulators on the same chip, providing compact, high-bandwidth intrachip optoelectronic interconnects. We have modeled the operation of the monolithic processor, clearly showing system-performance improvement.

  19. Nanophotonic silicon electro-optic switch

    NASA Astrophysics Data System (ADS)

    Simili, Deepak V.; Cada, Michael

    2013-10-01

    The combination of silicon and nanotechnology offers the possibility to design ultrafast silicon electro-optic switches with speeds of the order of 100 GHz. The design procedure for an ultrafast silicon electro-optic switch with the addition of photonic crystals is presented. The material medium selected for propagation of the optical signal through the switch is silicon nanocrystals in silica. A patterned slot waveguide with one-dimensional photonic crystals is proposed as the preferred slow light waveguide to be used in the design of the electro-optic switch. The ultrafast quadratic electro-optic effect or Kerr effect is the physical effect utilized, and its analysis for slot waveguides is discussed. The optical structure analysis of the electro-optic switch using a ring resonator is presented and it is shown theoretically that the use of a slow light waveguide in the ring resonator can reduce the required externally applied electric field or the radius of the ring resonator.

  20. Electro-optic modulator material

    DOEpatents

    Adams, John J.; Ebbers, Chris A.

    2005-02-22

    An electro-optic device for use with a laser beam. A crystal has a first face and a second face. Means are provided for applying a voltage across the crystal to obtain a net phase retardation on the polarization of the laser beam when the laser beam is passed through the crystal. In one embodiment the crystal is composed of a compound having the chemical formula ReAe40(BO3)3 where: RE consists of one or more of the following elements La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and two other elements Y and Sc; and where Ae is from the list of Ca, Sr, or Ba.

  1. Electro-optic lightning detector.

    PubMed

    Koshak, W J; Solakiewicz, R J

    1999-07-20

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate electro-optic crystal that is attached in series to a flat-plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center in northern Alabama. PMID:18323949

  2. Electro-optic Lightning Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewicz, Richard J.

    1996-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in northern Alabama.

  3. Electro-Optic Lighting Detector

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Solakiewicz, Richard J.

    1999-01-01

    The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate electro-optic crystal that is attached in series to a flat-plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center in northern Alabama.

  4. Electro-optical field sensor using single total internal reflection in electro-optical crystals

    NASA Astrophysics Data System (ADS)

    Kijima, K.; Abe, O.; Shimizu, A.; Nakamura, T.; Kono, H.; Hagihara, S.; Torikai, E.; Hori, H.

    2015-08-01

    A novel electro-optical radio frequency field sensor with simple structure and high sensitivity is realized using single total internal reflection in electro-optical crystals. Without employing any waveguide structures, the minimum detectable electric field strength of the total internal reflection electro-optical-sensor is estimated to 86.52 dB μV/m (21.18 mV/m) at a resolution band width of 100 Hz for a short interaction length.

  5. Electro-optic Q-switch

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)

    2006-01-01

    An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.

  6. Electro-optic component mounting device

    DOEpatents

    Gruchalla, M.E.

    1994-09-13

    A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.

  7. Electro-optic component mounting device

    DOEpatents

    Gruchalla, Michael E.

    1994-01-01

    A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.

  8. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  9. Electro-optics display research, test, and evaluation laboratory program

    NASA Astrophysics Data System (ADS)

    Karim, Mohammad A.; Moon, Donald L.

    1993-06-01

    The goal of the research effort is to analyze and develop a model to characterize overall electro-optical display systems of particular interest to U.S. Army Center for Night Vision and Electro-Optics at Ft. Belvoir, Virginia. The main thrust of the research reported herein is to implement accepted standards for evaluating displays, take an active role in forming new measurement standards, and provide unbiased evaluation of displays in use or contemplated for military missions. Measurement parameters include display brightness, contrast, resolution, chromatic range, frequency response, angular field-of-view, reliability, and sensitivity to environment. Another important facet of this research is to determine image dynamics involving the response time between sensor input and the reaction of the observer for influencing what display improvements, such as variable acuity displays, color, contrast, or brightness lead to significant improvement in performance.

  10. Advanced electro-optical tracker/ranger

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Defoe, D. N.

    1980-06-01

    The preliminary engineering design study of an Advanced Electro-Optical Tracker/Ranger (AEOTR) to provide passive target tracking and rangefinding for air to air gun fire control is described. Area correlation processing is used in the comparison of stereo image pairs for stereometric ranging and in the comparison of successive images for tracking. The application of these techniques to the AEOTR, the limitations imposed by packaging, environmental and state-of-the-art sensor and processing hardware constraints, and the projected performance are evaluated. Principal emphasis is given to the use of AEOTR in the gun director engagement mode in which target track and range data is provided to a gun fire control computer. The feasibility of use of the AEOTR to provide target video as an aid to visual target identification, and to provide automatic airborne target detection, is also evaluated. The necessary functions and subsystems are defined and integrated into a preliminary design, whose performance is estimated and compared with the program goals. In addition, a preliminary mounting location study for the F-15, F-16 and F-18 advanced fighters is included. CAI-built hardware was used to successfully demonstrate the feasibility of the ranging and tracking concepts employed in the AEOTR.

  11. Laboratory for testing electro-optical surveillance systems

    NASA Astrophysics Data System (ADS)

    Chrzanowski, K.

    2011-05-01

    A modern laboratory capable to carry out expanded tests of all types of electro-optical surveillance systems (thermal imagers, TV/LLLTV cameras, night vision devices, laser range finders/designators/illuminators, multi-sensor surveillance systems) and basic modules of such surveillance systems (IR FPA/CCD/CMOS/EBAPS sensors, image intensifier tubes, optical objectives) was developed and is presented in this paper. The laboratory can be treated as a both scientific and technical achievement due to its several features. First, all important parameters of modern electro-optical surveillance systems or parameters of basic modules of such systems can be measured. Second, the laboratory is built using a set of semi-independent modular test stations. This modular concept enables easy creations of many versions optimized for different applications. Third, interpretation of the measurement data is supported by a set of specialized computer simulation programs. Fourth, all tests stations in the laboratory were developed by the same design team and are based on similar test concepts.. Because of these features the laboratory of electro-optical surveillance technology presented in this paper can be an optimal solutions for scientific centers or industrial companies who plan to enter and make quick progress in all main areas of surveillance technology.

  12. Electro-Optical Characterization at NREL

    SciTech Connect

    Keyes, B. M.; Dippo, P.; Gedvilas, L.; Johnston, S.; Levi, D.; Metzger, W.; Sopori, B.

    2005-11-01

    One of the core issues in all of the photovoltaics technologies is relating PV device performance to the methods and materials used to produce them. Due to the nature of PV devices, the electronic and optical properties of the materials are key to device performance. The relationship between materials growth and processing, the resulting electro-optical properties, and device performance can be extremely complex and difficult to determine without direct measurement of these properties. Accurate and timely measurement of the electro-optical properties as a function of device processing provides researchers and manufacturers with the knowledge they need to troubleshoot problems and develop the knowledge base necessary for reducing cost, maximizing efficiency, improving reliability, and enhancing manufacturability. The Electro-optical Characterization Team at NREL provides this support for all internal and external projects funded by the PV Program.

  13. Polarization Independent Electro-Optic Modulator

    NASA Technical Reports Server (NTRS)

    Yao, Xiao-Tian Steve (Inventor)

    1997-01-01

    A polarization insensitive electro-optic modulator is constructed by providing a polarization beamsplitter to separate an incoming light beam into two orthogonally plane polarized beams. Each of the polarized beams passes through a separate electro-optic modulator where each beam is modulated by the same data signal. After modulation the beams are combined to yield a modulated beam having modulated components that are orthogonally polarized. Not only is this device insensitive to changes in polarization of the input beam, the final modulated beam can be detected by optical receivers without regard to polarization alignment of the modulated beam and the receiver.

  14. Electro-optic voltage sensor head

    DOEpatents

    Crawford, T.M.; Davidson, J.R.; Woods, G.K.

    1999-08-17

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

  15. Electro-optic voltage sensor head

    DOEpatents

    Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.

    1999-01-01

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

  16. Adaptive wiener image restoration kernel

    DOEpatents

    Yuan, Ding

    2007-06-05

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  17. Representing the observer in electro-optical target acquisition models.

    PubMed

    Vollmerhausen, Richard H

    2009-09-28

    Electro-optical target acquisition models predict the probability that a human observer recognizes or identifies a target. To accurately model targeting performance, the impact of imager blur and noise on human vision must be quantified. In the most widely used target acquisition models, human vision is treated as a "black box" that is characterized by its signal transfer response and detection thresholds. This paper describes an engineering model of observer vision. Characteristics of the observer model are compared to psychophysical data. This paper also describes how to integrate the observer model into both reflected light and thermal sensor models. PMID:19907512

  18. Electro-optical rendezvous and docking sensors

    NASA Technical Reports Server (NTRS)

    Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.

    1991-01-01

    Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.

  19. Electro-Optical High-Voltage Sensors

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan; Johnston, Alan R.

    1992-01-01

    Electro-optical sensors for measuring high voltages developed for use in automatically controlled power-distribution systems. Sensors connected to optoelectronic interrogating equipment by optical fibers. Because sensitive material and optical fibers are all dielectric, no problem in electrically isolating interrogating circuitry from high voltage, and no need for voltage dividers. Sensor signals transmitted along fibers immune to electromagnetic noise at radio and lower frequencies.

  20. Crosslinked polyimide electro-optic materials

    SciTech Connect

    Kowalczyk, T.C.; Kosc, T.Z.; Singer, K.D.; Beuhler, A.J.; Wargowski, D.A.; Cahill, P.A.; Seager, C.H.; Meinhardt, M.B.; Ermer, S.

    1995-11-15

    We report studies of the optical and electro-optic properties of guest--host polymeric nonlinear optical materials based on aromatic, fluorinated, fully imidized, organic soluble, thermally, and photochemically crosslinkable, guest--host polyimides. We have introduced temperature stable nonlinear optical chromophores into these polyimides and studied optical losses, electric field poling, electro-optic properties, and orientational stability. We measured electro-optic coefficients of 5.5 and 12.0 pm/V for ((2,6-Bis(2-(3-(9-(ethyl)carbazolyl))ethenyl)4H-pyran-4-ylidene)propanedinitrile) (4-(Dicyanomethylene)-2-methyl-6-(p -dimethylaminostyryl)-4H-pyran) DCM-doped guest--host systems at 800 nm using a poling field of 1.3 MV/cm. Poling induced nonlinearities in single-layer films were in agreement with the oriented gas model, but were lower in three-layer films due to voltage division across the layers. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  1. Electro-optical voltage sensor head

    DOEpatents

    Woods, G.K.

    1998-03-24

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 6 figs.

  2. Electro-optical voltage sensor head

    DOEpatents

    Woods, Gregory K.

    1998-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  3. Fourier transform infrared imaging of bone.

    PubMed

    Paschalis, Eleftherios P

    2012-01-01

    Fourier transform infrared imaging (FTIRI) is a technique that can be used to analyze the material properties of bone using tissue sections. In this chapter I describe the basic principles of FTIR and the methods for capturing and analyzing FTIR images in bone sections.

  4. Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS)

    SciTech Connect

    Carter, M.R.; Bennett, C.L.; Fields, D.J.; Lee, F.D.

    1995-05-10

    Lawrence Livermore National Laboratory is currently operating a hyperspectral imager, the Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS). This instrument is capable of operating throughout the infrared spectrum from 3 to 12.5 {mu}m with controllable spectral resolution. In this presentation we report on it`s operating characteristics, current capabilities, data throughput and calibration issues.

  5. Fourier Transform and Reflective Imaging Pyrometry

    SciTech Connect

    Stevens, G. D.

    2011-07-01

    A stationary Fourier transform pyrometer was used to record mid-wavelength IR spectra in dynamic shock experiments. The gated-IR camera used with this system was also used to record images of light produced and light reflected from shocked metals in order to constrain the dynamic emissivity and provide temperature estimates. This technique will be referred to as reflective imaging pyrometry.

  6. Single-shot electro-optic sampling of coherent transition radiation at the A0 Photoinjector

    SciTech Connect

    Maxwell, T.J.; Ruan, J.; Piot, P.; Thurman-Keup, R.; /Fermilab

    2011-08-01

    Future collider applications and present high-gradient laser plasma wakefield accelerators operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. Potential applications in shot-to-shot, non-interceptive diagnostics continue to be pursued for live beam monitoring of collider and pump-probe experiments. Related to our developing work with electro-optic imaging, we present results on single-shot electro-optic sampling of the coherent transition radiation from bunches generated at the A0 photoinjector.

  7. Image processing and the Arithmetic Fourier Transform

    SciTech Connect

    Tufts, D.W.; Fan, Z.; Cao, Z.

    1989-01-01

    A new Fourier technique, the Arithmetic Fourier Transform (AFT) was recently developed for signal processing. This approach is based on the number-theoretic method of Mobius inversion. The AFT needs only additions except for a small amount of multiplications by prescribed scale factors. This new algorithm is also well suited to parallel processing. And there is no accumulation of rounding errors in the AFT algorithm. In this reprint, the AFT is used to compute the discrete cosine transform and is also extended to 2-D cases for image processing. A 2-D Mobius inversion formula is proved. It is then applied to the computation of Fourier coefficients of a periodic 2-D function. It is shown that the output of an array of delay-line (or transversal) filters is the Mobius transform of the input harmonic terms. The 2-D Fourier coefficients can therefore be obtained through Mobius inversion of the output of the filter array.

  8. Advances in automatic electro-optical tracking systems

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew D.; Moy, Anthony J. E.

    1992-11-01

    British Aerospace (Systems & Equipment) Ltd (BASE) has been working in the field of automatic electro-optical tracking (Autotrack) systems for more than 12 years. BASE Autotrack systems carry out the automatic detection, tracking and classification of missiles and targets using image processing techniques operating on data received from electro-optical sensors. Typical systems also produce control data to move the sensor platform, enabling moving targets to be tracked accurately over a wide range of conditions. BASE Autotrack systems have been well proven in land, sea and air applications. This paper discusses the relevance of Autotrack systems to modern high-technology warfare and charts the progress of their development with BASE, both with respect to current products and active research programs. Two third generation BASE Autotrack systems are described, one of which provided a sophisticated air-to-ground tracking capability in the recent Gulf War. The latest Autotrack product is also described; this uses ASIC and Transputer technology to provide a high-performance, compact, missile and target tracker. Reference is also made to BASE's research work. Topics include an ASIC correlator, point target detection and, in particular, the use of neural networks for real-time target classification.

  9. Advances in automatic electro-optical tracking systems

    NASA Astrophysics Data System (ADS)

    Moy, Anthony J. E.; Hughes, Andrew D.

    1992-11-01

    British Aerospace (Systems & Equipment) Ltd (BASE) has been working in the field of automatic electro-optical tracking (Autotrack) systems for more than 12 years. BASE Autotrack systems carry out the automatic detection, tracking and classification of missiles and targets using image processing techniques operating on data received from electro-optical sensors. Typical systems also produce control data to move the sensor platform, enabling moving targets to be tracked accurately over a wide range of conditions. BASE Autotrack systems have been well proven in land, sea and air applications. This paper discusses the relevance of Autotrack systems to modern high-technology warfare and charts the progress of their development within BASE, both with respect to current products and active research programs. Two third generation BASE Autotrack systems are described, one of which provided a sophisticated air-to-ground tracking capability in the recent Gulf War. The latest Autotrack product is also described; this uses ASIC and Transputer technology to provide a high-performance, compact, missile and target tracker. Reference is also made to BASE's research work. Topics include an ASIC correlator, point target detection and, in particular, the use of neural networks for real-time target classification.

  10. Nonlinear optical polymers for electro-optic signal processing

    NASA Technical Reports Server (NTRS)

    Lindsay, Geoffrey A.

    1991-01-01

    Photonics is an emerging technology, slated for rapid growth in communications systems, sensors, imagers, and computers. Its growth is driven by the need for speed, reliability, and low cost. New nonlinear polymeric materials will be a key technology in the new wave of photonics devices. Electron-conjubated polymeric materials offer large electro-optic figures of merit, ease of processing into films and fibers, ruggedness, low cost, and a plethora of design options. Several new broad classes of second-order nonlinear optical polymers were developed at the Navy's Michelson Laboratory at China Lake, California. Polar alignment in thin film waveguides was achieved by electric-field poling and Langmuir-Blodgett processing. Our polymers have high softening temperatures and good aging properties. While most of the films can be photobleached with ultraviolet (UV) light, some have excellent stability in the 500-1600 nm range, and UV stability in the 290-310 nm range. The optical nonlinear response of these polymers is subpicosecond. Electro-optic switches, frequency doublers, light modulators, and optical data storage media are some of the device applications anticipated for these polymers.

  11. Lead silicate microstructured optical fibres for electro-optical applications.

    PubMed

    Zhang, Wen Qi; Manning, Sean; Ebendorff-Heidepriem, Heike; Monro, Tanya M

    2013-12-16

    We report progress towards the realization of optical modulators based on electro-optic effects in soft glass fibres. A hybrid fabrication procedure was developed for producing microstructured lead silicate glass fibres with internal electrodes. Electro-optical characterization confirms experimentally that the enhanced nonlinear properties and superior isolation between the optical field and the electrodes make these fibres an ideal candidate platform for efficient electro-optical devices.

  12. Electro-optical properties of Rydberg excitons

    NASA Astrophysics Data System (ADS)

    Zielińska-Raczyńska, Sylwia; Ziemkiewicz, David; Czajkowski, Gerard

    2016-07-01

    We show how to compute the electro-optical functions (absorption, reflection, and transmission) when Rydberg exciton-polaritons appear, including the effect of the coherence between the electron-hole pair and the electromagnetic field. With the use of the real density matrix approach, numerical calculations applied for the Cu2O crystal are performed. We also examine in detail and explain the dependence of the resonance displacement on the state number and applied electric field strength. We report a fairly good agreement with recently published experimental data.

  13. Fourier analysis: from cloaking to imaging

    NASA Astrophysics Data System (ADS)

    Wu, Kedi; Cheng, Qiluan; Wang, Guo Ping

    2016-04-01

    Regarding invisibility cloaks as an optical imaging system, we present a Fourier approach to analytically unify both Pendry cloaks and complementary media-based invisibility cloaks into one kind of cloak. By synthesizing different transfer functions, we can construct different devices to realize a series of interesting functions such as hiding objects (events), creating illusions, and performing perfect imaging. In this article, we give a brief review on recent works of applying Fourier approach to analysis invisibility cloaks and optical imaging through scattering layers. We show that, to construct devices to conceal an object, no constructive materials with extreme properties are required, making most, if not all, of the above functions realizable by using naturally occurring materials. As instances, we experimentally verify a method of directionally hiding distant objects and create illusions by using all-dielectric materials, and further demonstrate a non-invasive method of imaging objects completely hidden by scattering layers.

  14. Electro-optic resonant phase modulator

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung (Inventor); Hemmati, Hamid (Inventor); Robinson, Deborah L. (Inventor)

    1992-01-01

    An electro-optic resonant cavity is used to achieve phase modulation with lower driving voltages. Laser damage thresholds are inherently higher than with previously used integrated optics due to the utilization of bulk optics. Phase modulation is achieved at higher speeds with lower driving voltages than previously obtained with non-resonant electro-optic phase modulators. The instant scheme uses a data locking dither approach as opposed to the conventional sinusoidal locking schemes. In accordance with a disclosed embodiment, a resonant cavity modulator has been designed to operate at a data rate in excess of 100 megabits per sec. By carefully choosing the cavity finesse and its dimension, it is possible to control the pulse switching time to within 4 nano-sec. and to limit the required switching voltage to within 10 V. This cavity locking scheme can be applied by using only the random data sequence, and without the need of dithering of the cavity. Compared to waveguide modulators, the resonant cavity has a comparable modulating voltage requirement. Because of its bulk geometry, the resonant cavity modulator has the potential of accommodating higher throughput power. Mode matching into the bulk device is easier and typically can be achieved with higher efficiency. An additional control loop is incorporated into the modulator to maintain the cavity on resonance.

  15. Electro-optic Phase Grating Streak Spectrometer

    SciTech Connect

    Goldin, F. J.

    2012-08-02

    The electro-optic phase grating streak spectrometer (EOPGSS) generates a time-resolved spectra equivalent to that obtained with a conventional spectrometer/streak camera combination, but without using a streak camera (by far the more expensive and problematic component of the conventional system). The EOPGSS is based on a phase, rather than an amplitude grating. Further, this grating is fabricated of electro-optic material such as, for example, KD*P, by either etching grooves into an E-O slab, or by depositing lines of the E-O material onto an optical flat. An electric field normal to the grating alters the material’s index of refraction and thus affects a shift (in angle) of the output spectrum. Ramping the voltage streaks the spectrum correspondingly. The streak and dispersion directions are the same, so a second (static, conventional) grating disperses the spectrum in the orthogonal direction to prevent different wavelengths from “overwriting” each other. Because the streaking is done by the grating, the streaked output spectrum is recorded with a time-integrating device, such as a CCD. System model, typical design, and performance expectations will be presented.

  16. Electro-optic Charon polymeric microring modulators.

    PubMed

    Rezzonico, Daniele; Jazbinsek, Mojca; Guarino, Andrea; Kwon, O-Pil; Günter, Peter

    2008-01-21

    We propose and demonstrate a new type of electro-optic polymeric microring resonators, where the shape of the transmission spectrum is controlled by losses and phase shifts induced at the asymmetric directional coupler between the cavity and the bus waveguide. The theoretical analysis of such Charon microresonators shows, depending on the coupler design, three different transmission characteristics: normal Lorentzian dips, asymmetric Fano resonances, and Lorentzian peaks. The combination of the active azo-stilbene based polyimide SANDM2 surrounded by the hybrid polymer Ormocomp allowed the first experimental demonstration of electro-optic modulation in Charon microresonators. The low-loss modulators (down to 0.6 dB per round trip), with a radius of 50 microm, were produced by micro-embossing and exhibit either highly asymmetric and steep Fano resonances with large 43-GHz modulation bandwidth or strong resonances with 11-dB extinction ratio. We show that Charon microresonators can lead to 1-V half wave voltage all-polymer micrometer-scale devices with larger tolerances to coupler fabrication limitations and wider modulation bandwidths than classical ring resonators.

  17. Poling of Microwave Electro-Optic Devices

    NASA Technical Reports Server (NTRS)

    Singer, Kenneth D.

    1997-01-01

    The desire to transmit high frequency, microwave RF signals over fiber optic cables has necessitated the need for electro-optic modulation devices. However, in order to reap these potential benefits, it is necessary to develop the devices and their associated fabrication processes, particularly those processes associated with the poling of the devices. To this end, we entered into a cooperative research agreement with Richard Kunath of NASA LeRC. A graduate student in my group, Tony Kowalczyk, worked closely with the group at NASA to develop processes for construction of a microwave frequency electro-optic modulator. Materials were commercially obtained from Amoco Chemical and in collaboration with Lockheed-Martin. The photolithography processes were developed at NASA LeRC and the electric-field poling process was carried out in our laboratory at CWRU. During the grant period, the poling process conditions were investigated for these multilayer devices. Samples were poled and the resulting nonlinear optical properties were evaluated in our laboratory. Following the grant period, Kowalczyk went to NASA under a NRC fellowship, and I continued to collaborate as a consultant. Publications listed at the end of this report came out of this work. Another manuscript is in preparation and will be submitted shortly.

  18. Electro-optical Probing Of Terahertz Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Romanofsky, R.; Whitaker, J. F.; Valdmanis, J. A.; Mourou, G.; Jackson, T. A.

    1990-01-01

    Electro-optical probe developed to perform noncontact, nondestructive, and relatively noninvasive measurements of electric fields over broad spectrum at millimeter and shorter wavelengths in integrated circuits. Manipulated with conventional intregrated-circuit-wafer-probing equipment and operated without any special preparation of integrated circuits. Tip of probe small electro-optical crystal serving as proximity electric-field sensor.

  19. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    ERIC Educational Resources Information Center

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  20. Electro-optic device with gap-coupled electrode

    SciTech Connect

    Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.

    2013-08-20

    An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.

  1. TOD characterization of the Gatekeeper electro-optical security system

    NASA Astrophysics Data System (ADS)

    Gosselink, Guido; Anbeek, Hugo; Bijl, Piet; Hogervorst, Maarten A.

    2013-06-01

    The Triangle Orientation Discrimination (TOD) test method was applied to characterize thermal and visual range performance of the Gatekeeper Electro Optical Security System. Gatekeeper developed by Thales Nederland BV, is currently in use with the Royal Netherlands Navy. The system houses uncooled infrared and colour TV cameras providing up to 360° view in azimuth. The images displayed to the operator are automatically optimized based on the scene intensity distribution. Because of this built-in scene-based optimization, proper measurement of the system requires careful surround illumination of the TOD setup over a large part of the camera Field Of View. The tests provided very accurate threshold estimates with relatively small observer differences. The resulting TOD curves that characterize the sensor system in terms of acuity and contrast sensitivity can be used as input to a Target Acquisition model to predict range performance for operational scenarios.

  2. Color image projection based on Fourier holograms.

    PubMed

    Makowski, Michal; Ducin, Izabela; Sypek, Maciej; Siemion, Agnieszka; Siemion, Andrzej; Suszek, Jaroslaw; Kolodziejczyk, Andrzej

    2010-04-15

    A method of color image projection is experimentally validated. It assumes a simultaneous illumination of a spatial light modulator (SLM) with three laser beams converging in a common point on a projection screen. The beams are masked with amplitude filters so that each one illuminates one third of the area of the SLM. A Fourier hologram of a chosen color component of an input image is calculated, and its phase pattern is addressed on a corresponding part of the SLM area. A full-color flat image is formed on the screen as a result of color mixing. Additional techniques of image optimization are applied: time-integral speckle averaging and an off-axis shift of a zero-order peak. Static and animated experimental results of such a color holographic projection with a good image quality are presented.

  3. Electro-optical techniques for signal conditioning

    NASA Astrophysics Data System (ADS)

    Helfrich, R. W.

    1981-01-01

    Electro-optical (EO) processing is discussed as a potential alternative to the all-digital approach to signal processing. Nonuniformity compensation can be done by normalizing all the single element detectors outputs in a staring array for both gain and level. Distortion correction can be accomplished with blackbodies, scene statistics or defocused optics. An algorithm used in digital signal conditioning that can be closely approximated by EO techniques is Local Area Brightness Control (LABC). In a digital processor, LABC is performed on a pixel-by-pixel basis, resulting in an enormous amount of calculation. A partially defocused optical system can be used in an EO analog to the digital system. For both nonuniformity compensation and LABC, the EO technique can result in great simplification.

  4. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  5. Efficiently poled electro-optic polymer modulators.

    PubMed

    Qiu, Feng; Yokoyama, Shiyoshi

    2016-08-22

    A titanium dioxide (TiO2) / electro-optic (EO) polymer hybrid waveguide modulator was designed and fabricated. This modulator possessed a significant advantage for realizing high poling efficiency regardless of the EO polymer resistivity. The in-device EO coefficient was measured to be 100 pm/V, which was 32% higher than that of the thin polymer film. As a result, the phase modulator displayed a VπL figure of merit of 3.5 V∙cm at 1550 nm, which can be reduced further in a push-pull Mach-Zehnder interferometer structure. Temporal stability test of the modulator at 85°C indicated only 8% change of Vπ over 500 hours. The propagation loss in the waveguide was measured as ~3 dB/cm. PMID:27557181

  6. Electro-optical tunable birefringent filter

    DOEpatents

    Levinton, Fred M.

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  7. Trends in electro-optical electronic warfare

    NASA Astrophysics Data System (ADS)

    Smith, Carl R.; Grasso, Robert; Pledger, Jack; Murarka, Naveen

    2012-09-01

    Protection of military aircraft from hostile threats is paramount to ensure the survivability of aircrews, platforms, and mission success. While the threat environment continues to become more complex, shrinking defense budgets places new challenges on the development of electronic warfare (EW) systems. This paper presents the trends in electro-optical EW system development including 1) features, 2) affordability, 3) open architecture, 4) multi-functionality, 5) integrated avionics survivability equipment, and 6) enabling technologies for sensors, and optical sources. While these system attributes are not new, they have grown in importance in the design of EW systems. And, if treated correctly can have a beneficial symbiotic relationship to each other and to the airframe they support.

  8. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  9. Electro-optical hybrid slip ring

    NASA Astrophysics Data System (ADS)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  10. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    SciTech Connect

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha; Kityk, Iwan; Mastai, Yitzhak

    2015-03-15

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.

  11. Efficient single pixel imaging in Fourier space

    NASA Astrophysics Data System (ADS)

    Bian, Liheng; Suo, Jinli; Hu, Xuemei; Chen, Feng; Dai, Qionghai

    2016-08-01

    Single pixel imaging (SPI) is a novel technique capturing 2D images using a bucket detector with a high signal-to-noise ratio, wide spectrum range and low cost. Conventional SPI projects random illumination patterns to randomly and uniformly sample the entire scene’s information. Determined by Nyquist sampling theory, SPI needs either numerous projections or high computation cost to reconstruct the target scene, especially for high-resolution cases. To address this issue, we propose an efficient single pixel imaging technique (eSPI), which instead projects sinusoidal patterns for importance sampling of the target scene’s spatial spectrum in Fourier space. Specifically, utilizing the centrosymmetric conjugation and sparsity priors of natural images’ spatial spectra, eSPI sequentially projects two \\tfrac{π }{2}-phase-shifted sinusoidal patterns to obtain each Fourier coefficient in the most informative spatial frequency bands. eSPI can reduce requisite patterns by two orders of magnitude compared to conventional SPI, which helps a lot for fast and high-resolution SPI.

  12. A new electro-optic waveguide architecture and the unprecedented devices it enables

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Rommel, Scott D.; Farca, George; Anderson, Michael H.

    2008-04-01

    A new electro-optic waveguide platform, which provides unprecedented electro-optical phase delays (> 1mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), is presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing historic limitations of liquid crystals. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: a 1-D non-mechanical, analog beamsteerer with an 80° field of regard, a chip-scale widely tunable laser, a chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay (up to 10 ns), and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, laser illumination, phased array radar, optical communications, etc. Performance attributes of several example devices are presented.

  13. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    NASA Astrophysics Data System (ADS)

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha; Kityk, Iwan; Mastai, Yitzhak

    2015-03-01

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica.

  14. Terahertz wave electro-optic measurements with optical spectral filtering

    SciTech Connect

    Ilyakov, I. E. Shishkin, B. V.; Kitaeva, G. Kh.; Akhmedzhanov, R. A.

    2015-03-23

    We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.

  15. Development of electro-optical instrumentation for reactor safety studies

    SciTech Connect

    Turko, B.T.; Kolbe, W.F.; Leskovar, B.; Sun, R.K.

    1980-11-01

    The development of new electro-optical instrumentation for reactor safety studies is described. The system measures the thickness of the water film and droplet size and velocity distributions which would be encountered in the annular two-phase flow in a reactor cooling system. The water film thickness is measured by a specially designed capacitance system with a short time constant. Water droplet size and velocity are measured by a subsystem consisting of a continuously pulsed laser light source, a vidicon camera, a video recorder, and an automatic image analyzer. An endoscope system attached to the video camera is used to image the droplets. Each frame is strobed with two accurately spaced uv light pulses, from two sequentially fired nitrogen lasers. The images are stored in the video disk recorder. The modified automatic image analyzer is programmed to digitize the droplet size and velocity distributions. Many special optical, mechanical and electronic system components were designed and fabricated. They are described in detail, together with calibration charts and experimental results.

  16. Identification of handheld objects for electro-optic/FLIR applications

    NASA Astrophysics Data System (ADS)

    Moyer, Steve K.; Flug, Eric; Edwards, Timothy C.; Krapels, Keith A.; Scarbrough, John

    2004-08-01

    This paper describes research on the determination of the fifty-percent probability of identification cycle criterion (N50) for two sets of handheld objects. The first set consists of 12 objects which are commonly held in a single hand. The second set consists of 10 objects commonly held in both hands. These sets consist of not only typical civilian handheld objects but also objects that are potentially lethal. A pistol, a cell phone, a rocket propelled grenade (RPG) launcher, and a broom are examples of the objects in these sets. The discrimination of these objects is an inherent part of homeland security, force protection, and also general population security. Objects were imaged from each set in the visible and mid-wave infrared (MWIR) spectrum. Various levels of blur are then applied to these images. These blurred images were then used in a forced choice perception experiment. Results were analyzed as a function of blur level and target size to give identification probability as a function of resolvable cycles on target. These results are applicable to handheld object target acquisition estimates for visible imaging systems and MWIR systems. This research provides guidance in the design and analysis of electro-optical systems and forward-looking infrared (FLIR) systems for use in homeland security, force protection, and also general population security.

  17. Environmental standards for electro-optical systems

    NASA Astrophysics Data System (ADS)

    Humphrey, R. G.; Pepper, W. H.

    1983-04-01

    The Harry Diamond Laboratories of the U.S. Army electronics Research and Development Command was tasked to help develop standard environmental conditions pertaining to limited visibility operations, for training, research, development, and analysis. This task was part of an effort to ensure use of realistic battlefield environmental conditions throughout the Army. To support this effort, this report provides background information, definitions, criteria for setting standards, and data for selected environmental conditions. The definitions of standards are based on an extension to system operability of the definitions given for physical survivability in Army Regulation AR 70-38, Research, Development, Test, and Evaluation of Material for Extreme Climatic Conditions. The objective is to have a procedure for determining the probability of successful performance of signal links of weapon systems that can be affected by environment. Data presented here include those environmental parameters that affect the performance of electro-optical links of military systems. These parameters include transmission and reflectance data. Transmission data are provided for visibility, ceiling, rain and snow rates, and humidity. These data are provided in terms of risk that a given level will be exceeded, based on the definitions of AR 70-38.

  18. Applications of lasers and electro-optics

    NASA Astrophysics Data System (ADS)

    Tan, B. C.; Low, K. S.; Chen, Y. H.; Ahmad, Harith; Tou, T. Y.

    Supported by the IRPA Programme on Laser Technology and Applications, many types of lasers have been designed, constructed and applied in various areas of science, medicine and industries. Amongst these lasers constructed were high power carbon dioxide lasers, rare gas halide excimer lasers, solid state Neodymium-YAG lasers, nitrogen lasers, flashlamp pumped dye lasers and nitrogen and excimer laser pumped dye lasers. These lasers and the associated electro-optics system, some with computer controlled, are designed and developed for the following areas of applications: (1) industrial applications of high power carbon dioxide lasers for making of i.c. components and other materials processing purposes -- prototype operational systems have been developed; (2) Medical applications of lasers for cancer treatment using the technique of photodynamic therapy -- a new and more effective treatment protocol has been proposed; (3) agricultural applications of lasers in palm oil and palm fruit-fluorescence diagnostic studies -- fruit ripeness signature has been developed and palm oil oxidation level were investigated; (4) development of atmospheric pollution monitoring systems using laser lidar techniques -- laboratory scale systems were developed; and (5) other applications of lasers including laser holographic and interferometric methods for the non destructive testing of materials.

  19. Highly Sensitive Electro-Optic Modulators

    SciTech Connect

    DeVore, Peter S

    2015-10-26

    There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestation of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.

  20. Underwater electro-optical system for mine identification

    NASA Astrophysics Data System (ADS)

    Strand, Michael P.

    1995-06-01

    The Electro-Optic Identification (EOID) Sensors project is developing a Laser Visual Iidentification Sensor (LVIS) for identification of proud, partially buried, and moored mines in shallow water/very shallow water. LVIS will be deployed in small diameter underwater vehicles, including unmanned underwater vehicles (UUVs). Since the mission is mine identification, LVIS must: a) deliver high quality images in turbid coastal waters, while b) being compatible with the size and power constraints imposed by the intended deployment platforms. This project is sponsored by the Office of Naval Research, as a part of the AOA Mine Reconnaissance/Hunter program. High quality images which retain target detail and contrast are required for mine identification. LVIS will be designed to produce images of minelike contacts (MLC) of sufficient quality to allow identification while operating in turbid coastal waters from a small diameter UUV. Technology goals for the first generation LVIS are a) identification range up to 40 feet for proud, partially buried, and moored MLCs under coastal water conditions; b) day/night operation from a UUV operating at speeds up to 4 knots; c) power consumption less than 500 watts, with 275 watts being typical; and d) packaged within a 32-inch long portion of a 21-inch diameter vehicle section.

  1. Electro-Optical Design for Efficient Visual Communication

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.; Jobson, Daniel J.; Rahman, Zia-Ur

    1995-01-01

    Visual communication, in the form of telephotography and television, for example, can be regarded as efficient only if the amount of information that it conveys about the scene to the observer approaches the maximum possible and the associated cost approaches the minimum possible. Elsewhere we have addressed the problem of assessing the end to end performance of visual communication systems in terms of their efficiency in this sense by integrating the critical limiting factors that constrain image gathering into classical communications theory. We use this approach to assess the electro-optical design of image gathering devices as a function of the f number and apodization of the objective lens and the aperture size and sampling geometry of the phot-detection mechanism. Results show that an image gathering device that is designed to optimize information capacity performs similarly to the human eye. For both, the performance approaches the maximum possible, in terms of the efficiency with which the acquired information can be transmitted as decorrelated data, and the fidelity, sharpness, and clearity with which fine detail can be restored.

  2. Tunable Electro-optic modulators for lidar systems and atmospheric applications

    NASA Technical Reports Server (NTRS)

    Eng, R. S.; Harris, N. W.; Summers, C. L.; Lax, B.

    1992-01-01

    In global sensing applications using different types of lidars, the spectral range and fine frequency coverages are often limited because of the finite tunabilities of molecular lasers and the number of molecular species that are available. To overcome the above obstacle, we have proposed new broadband frequency tunable electro-optic (EO) modulators that can cover a wide range from the mid-infrared to the visible as lidar sources in atmospheric sensing applications such as high resolution atmospheric molecular spectroscopy, Differential Absorption Lidar (DIAL), and laser radar imaging. The configuration of the proposed new tunable EO modulators includes an electro-optic active crystal element surrounded by a ferrite tuning element which is placed inside a microwave waveguide. The tuning is provided by an external magnetic field, which is either longitudinal or transverse, and the modulator can be either single sideband type or a double sideband type depending on the application required for the spectral purity of the modulator output.

  3. Electro-optic polymers: Materials and devices

    NASA Astrophysics Data System (ADS)

    Derose, Christopher Todd

    Electro-optic (EO) polymers are an attractive alternative to inorganic nonlinear materials. EO polymers with a Pockel's coefficient, r33, greater than 320 pm/V have been recently demonstrated. In addition to their high EO activity, EO polymers have the additional benefit that their dielectric constants at optical and millimeter wave frequencies are closely matched which allow for bandwidths which are limited only by the resistive losses of traveling wave electrodes. The amorphous nature of the host polymer makes heterogeneous integration of the materials on any substrate possible. The devices which will have the most immediate impact based on these recent materials developments are EO waveguide modulators. Performance benchmarks of less than 6 dB insertion loss, sub-volt Vpi and greater than 100 GHz bandwidth have been achieved separately however, the challenge of achieving all of these benchmarks in a single device has not yet been met. The aim of this dissertation is to optimize passive materials to achieve efficient in device poling of EO polymers, optimize the chromophore loading of the active polymers and to optimize waveguide modulators for device performance within a particular system, analog RF photonic links. These optimizations were done by defining figures of merit for the materials and modulators. This research strategy has led to significant improvements in poling efficiency as well as modulators with record low insertion losses which maintain a low Vpi on the order of 1--2 Volts. Using this optimization strategy and state of the art EO polymers, devices which meet or surpass the benchmark performance values in all categories are expected in the near future.

  4. Electro-optic properties of organic nanotubes.

    PubMed

    Stoylov, Stoyl P; Stoilova-McPhie, Svetla

    2011-08-10

    In this review article the theoretical and experimental possibilities of applying EO-methods for estimation of the physico-chemical properties of the organic nanotubes (ONTs) are studied. The ONTs are highly organized nanostructures of strongly elongated, anysometric, and hollow cylinders with a size range of 1 nm to 10,000 nm, e.g. in aqueous solutions they could behave as colloid (disperse) particles. They have high interaction ability due to their extremely large curved, rolled-up external surfaces (bilayers of membrane walls) and unique properties because of their specific electric charge distribution and dynamics that make possible the functionalization of their surfaces. Thus they could template guestsubstances such as membrane proteins and protein complexes on the exterior surfaces and in the membrane. We performed our investigations for the case of ONT aqueous colloid suspension. Following our earlier proposition of the general expression for the electro-optic (EO) effect we derived equations for the evaluation of the electric properties of ONT particles such as mechanism of electric polarization and identification of their most important electric Dipole Moments (DM), permanent (pDM) and induced (iDMs). Further we recommend ways for the calculation of their magnitude and direction. Also we evaluated some geometrical properties such as length of the ONT particles and their polydispersity. The knowledge that we provided about the ONT properties may enable us to elucidate and predict their biological activity. Templating biological active ligands (such as membrane proteins and protein complexes) on the inner and outer surfaces as well as in the surface membrane creates their potential usefulness as carrier and deliverer of biopharmaceuticals in bio-nanodevices. The theoretical equations were compared with the experimental data for ONTs such as (lipid) LNT, Tobacco Mosaic Virus (TMV) and microtubules (MT). Comparison of EO methods with other methods used till

  5. Electro-optic properties of organic nanotubes.

    PubMed

    Stoylov, Stoyl P; Stoilova-McPhie, Svetla

    2011-08-10

    In this review article the theoretical and experimental possibilities of applying EO-methods for estimation of the physico-chemical properties of the organic nanotubes (ONTs) are studied. The ONTs are highly organized nanostructures of strongly elongated, anysometric, and hollow cylinders with a size range of 1 nm to 10,000 nm, e.g. in aqueous solutions they could behave as colloid (disperse) particles. They have high interaction ability due to their extremely large curved, rolled-up external surfaces (bilayers of membrane walls) and unique properties because of their specific electric charge distribution and dynamics that make possible the functionalization of their surfaces. Thus they could template guestsubstances such as membrane proteins and protein complexes on the exterior surfaces and in the membrane. We performed our investigations for the case of ONT aqueous colloid suspension. Following our earlier proposition of the general expression for the electro-optic (EO) effect we derived equations for the evaluation of the electric properties of ONT particles such as mechanism of electric polarization and identification of their most important electric Dipole Moments (DM), permanent (pDM) and induced (iDMs). Further we recommend ways for the calculation of their magnitude and direction. Also we evaluated some geometrical properties such as length of the ONT particles and their polydispersity. The knowledge that we provided about the ONT properties may enable us to elucidate and predict their biological activity. Templating biological active ligands (such as membrane proteins and protein complexes) on the inner and outer surfaces as well as in the surface membrane creates their potential usefulness as carrier and deliverer of biopharmaceuticals in bio-nanodevices. The theoretical equations were compared with the experimental data for ONTs such as (lipid) LNT, Tobacco Mosaic Virus (TMV) and microtubules (MT). Comparison of EO methods with other methods used till

  6. Imaging Fourier transform spectrometry of chemical plumes

    NASA Astrophysics Data System (ADS)

    Bradley, Kenneth C.; Gross, Kevin C.; Perram, Glen P.

    2009-05-01

    A midwave infrared (MWIR) imaging Fourier transform spectrometer (FTS), the Telops FIRST-MWE (Field-portable Imaging Radiometric Spectrometer Technology - Midwave Extended) has been utilized for the standoff detection and characterization of chemical plumes. Successful collection and analysis of MWIR hyperspectral imagery of jet engine exhaust has allowed us to produce spatial profiles of both temperature and chemical constituent concentrations of exhaust plumes. Successful characterization of this high temperature combustion event has led to the collection and analysis of hyperspectral imagery of lower temperature emissions from industrial smokestacks. This paper presents MWIR data from remote collection of hyperspectral imagery of methyl salicilate (MeS), a chemical warfare agent simulant, during the Chemical Biological Distributed Early Warning System (CBDEWS) test at Dugway Proving Grounds, UT in 2008. The data did not contain spectral lines associated with emission of MeS. However, a few broad spectral features were present in the background-subtracted plume spectra. Further analysis will be required to assign these features, and determine the utility of MWIR hyperspectral imagery for analysis of chemical warfare agent plumes.

  7. Color image registration based on quaternion Fourier transformation

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wang, Zhengzhi

    2012-05-01

    The traditional Fourier Mellin transform is applied to quaternion algebra in order to investigate quaternion Fourier transformation properties useful for color image registration in frequency domain. Combining with the quaternion phase correlation, we propose a method for color image registration based on the quaternion Fourier transform. The registration method, which processes color image in a holistic manner, is convenient to realign color images differing in translation, rotation, and scaling. Experimental results on different types of color images indicate that the proposed method not only obtains high accuracy in similarity transform in the image plane but also is computationally efficient.

  8. Configuration of electro-optic fire source detection system

    NASA Astrophysics Data System (ADS)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  9. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    PubMed

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  10. Embodiment of Learning in Electro-Optical Signal Processors

    NASA Astrophysics Data System (ADS)

    Hermans, Michiel; Antonik, Piotr; Haelterman, Marc; Massar, Serge

    2016-09-01

    Delay-coupled electro-optical systems have received much attention for their dynamical properties and their potential use in signal processing. In particular it has recently been demonstrated, using the artificial intelligence algorithm known as reservoir computing, that photonic implementations of such systems solve complex tasks such as speech recognition. Here we show how the backpropagation algorithm can be physically implemented on the same electro-optical delay-coupled architecture used for computation with only minor changes to the original design. We find that, compared when the backpropagation algorithm is not used, the error rate of the resulting computing device, evaluated on three benchmark tasks, decreases considerably. This demonstrates that electro-optical analog computers can embody a large part of their own training process, allowing them to be applied to new, more difficult tasks.

  11. Electro-optic switching in metamaterial by liquid crystal

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Ui; Kim, Junghee; Wu, Jeong Weon

    2015-12-01

    Electro-optic switching of reflection and refraction is experimentally demonstrated in metasurface liquid crystal cell. Negative metasurface is fabricated by focused-ion-beam milling, and twisted nematic cells are constructed with complementary double-split ring resonator and V-shape slot antenna metasurface. By application of an external voltage, electro-optic switchings are achieved in reflection and refraction. It has a strong implication for applications in spatial light modulation and wavelength division multiplexer/demultiplexer in a near-IR spectral range.

  12. Electro-optically spectrum tailorable intracavity optical parametric oscillator.

    PubMed

    Chung, H P; Chang, W K; Tseng, C H; Geiss, R; Pertsch, T; Chen, Y H

    2015-11-15

    We report a unique, pulsed intracavity optical parametric oscillator (IOPO) whose output spectrum is electro-optically (EO) tailorable based on an aperiodically poled lithium niobate (APPLN) working simultaneously as an optical parametric gain medium and an active gain spectrum filter in the system. We have successfully obtained from the IOPO the emission of single to multiple narrow-line signal spectral peaks in a near-infrared (1531 nm) band simply by electro-optic control. The power spectral density of the EO tailored signal can be enhanced by up to 10 times over the original (nontailored) signal. PMID:26565817

  13. An electro-optic polymer modulator for radio photonics

    NASA Astrophysics Data System (ADS)

    Denisyuk, I. Yu.; Burunkova, Yu. E.; Pozdnyakova, S. A.; Balya, V. K.; Zhuk, D. I.; Fokina, M. I.

    2015-10-01

    A method for developing an electro-optic polymer Mach‒Zehnder modulator based on polymethylmethacrylate- disperse red copolymer has been investigated. The inverse scheme is chosen as the basis for preparing a microstrip structure. This scheme entails the formation of microgrooves in the lower cladding layer by combining photolithography and reactive-ion etching (RIE), with subsequent deposition of an active electro-optic layer by centrifugation. The processes of forming layers and electrodes, the interaction between layers, the light transmission through the microstrip structure, and the modulator characteristics are considered.

  14. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  15. Systematic optimization of polymeric electro-optic materials

    NASA Astrophysics Data System (ADS)

    Dalton, Larry R.; Robinson, Bruce H.; Steier, William H.; Zhang, Cheng H.; Todorova, Galina

    2000-11-01

    Chromophore-containing polymeric electro-optic materials must satisfy many requirements before they can be considered for use in applications at telecommunication wavelengths (1.3 and 1.55 microns). These include large macroscopic electro-optic activity, low optical loss, and stability (thermal, chemical, and photochemical). Such materials must be capable of being integrated with silica fiber optics and semiconductor electronics. We discuss design of chromophores not only for large hyperpolarizability but also for low optical loss and for thermal and photochemical stability. The processing of these materials to maximize electro-optic activity while minimizing processing- associated optical loss is discussed. Device structures appropriate for minimizing insertion loss are discussed, as is the fabrication of such dvices and three-dimensional active/passive optical circuits. The identification of new structure/function relationships provide design criteria for future improvements as well as permitting better definition of the performance limitations that can be expected for polymeric electro-optic materials prepared by electric field poling methods.

  16. Laser Electro-Optic Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary considerations in the organization, operation, and evaluation of a laser electro-optic technology program. An occupational description and program content are presented. A curriculum framework specifies the exact course title, course number, levels of instruction, major course content, laboratory activities,…

  17. Laser Electro-Optic Engineering Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies particular considerations in the organization, operation, and evaluation of laser electro-optic engineering technology programs. Contents include an occupational description and information on the following: program content, including a curriculum framework that details major concepts and intended outcomes and a list…

  18. Solid state electro-optic color filter and iris

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Test results obtained have confirmed the practicality of the solid state electro-optic filters as an optical control element in a television system. Neutral-density control range in excess of 1000:1 has been obtained on sample filters. Test results, measurements in a complete camera system, discussions of problem areas, analytical comparisons, and recommendations for future investigations are included.

  19. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    PubMed

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  20. Diazo dye attached electro-optical polymer and its applications to waveguide devices and electro-optical sampling

    NASA Astrophysics Data System (ADS)

    Amano, Michiyuki; Hikita, Makoto; Shuto, Yoshito; Watanabe, Toshio; Tomaru, Satoru; Yaita, Makoto; Nagatsuma, Tadao

    1994-05-01

    An electro-optical polymer was synthesized where a diazo dye with a dicyanovinyl group as an electron acceptor and a diethylamino group as a donor is attached to the polymer chain. The electro-optical coefficient (r) reached 30 pm/V. It was found that the edge absorption of the chromophore caused a loss increase in the near infrared region, which indicates that the increase in the r value leads to a propagation loss increase in the material. The loss is around 1.0 dB/cm in a single-mode waveguide fabricated by using oxygen reactive ion etching. The polymer waveguide is applied to two types of devices, a Mach-Zehnder optical modulator and a vertically stacked directional coupler, which both achieve electro-optical modulation. As another application, electro-optical measurement of an electric field in a high-speed circuit device is demonstrated, where the polymer is processed into a chip film probe and patched to an integrated circuit, thus enabling the electric signal to be detected.

  1. Dual electro-optical modulator polarimeter based on adaptive optics scanning laser ophthalmoscope.

    PubMed

    Song, Hongxin; Qi, Xiaofeng; Zou, Weiyao; Zhong, Zhangyi; Burns, Stephen A

    2010-10-11

    We constructed a high speed and high-resolution Stokes vector retinal imaging polarimeter with dual electro-optical modulators based on adaptive optics scanning laser ophthalmoscope. By varying the voltages on the EO crystals line by line, we were able to measure over 500,000 Stokes vectors per second. We used this system in three human subjects demonstrating the capability of the system to be employed in vivo. The high speed effectively decreases the adverse impact of eye motion induced errors in polarization calculations, improving the contrast of retinal structures based on their polarization properties. PMID:20941089

  2. Speckle-noise suppression using electro-optical cell with helix- free ferroelectric LC

    NASA Astrophysics Data System (ADS)

    Andreev, A. L.; Andreeva, T. B.; Kompanets, I. N.; Zalyapin, N. V.; Starikov, R. S.

    2016-08-01

    The authors develop an original and promising method of suppressing the speckle- noise in images generated by a laser beam by means of a compact despeckler based on an electro-optical cell with the smectic ferroelectric liquid crystal (FLC), realizing spatially inhomogeneous phase modulation of light. The mechanisms of destruction of the phase relations in the laser beam passing through a cell with helix-free FLC are discussed. The electric field induces the light scattering and small-scale randomly distributed gradients of the refractive index in FLC layer. The features and benefits of a despeckler using helix-free FLC compared to helix FLC are indicated.

  3. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI.

    PubMed

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S

    2015-05-01

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain. PMID:25856511

  4. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI

    NASA Astrophysics Data System (ADS)

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.

    2015-05-01

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  5. Fourier domain OCT imaging of American cockroach nervous system

    NASA Astrophysics Data System (ADS)

    Wyszkowska, Joanna; Gorczynska, Iwona; Ruminski, Daniel; Karnowski, Karol; Kowalczyk, Andrzej; Stankiewicz, Maria; Wojtkowski, Maciej

    2012-01-01

    In this pilot study we demonstrate results of structural Fourier domain OCT imaging of the nervous system of Periplaneta americana L. (American cockroach). The purpose of this research is to develop an OCT apparatus enabling structural imaging of insect neural system. Secondary purpose of the presented research is to develop methods of the sample preparation and handling during the OCT imaging experiments. We have performed imaging in the abdominal nerve cord excised from the American cockroach. For this purpose we have developed a Fourier domain / spectral OCT system operating at 820 nm wavelength range.

  6. A new generation of previously unrealizable photonic devices as enabled by a unique electro-optic waveguide architecture

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Rommel, Scott D.; Farca, George; Anderson, Michael H.

    2008-08-01

    A new electro-optic waveguide platform, which provides unprecedented electro-optical phase delays (> 1mm), with very low loss (< 0.5 dB/cm) and rapid response time (sub millisecond), is presented. This technology, developed by Vescent Photonics, is based upon a unique liquid-crystal waveguide geometry, which exploits the tremendous electro-optic response of liquid crystals while circumventing historic limitations of liquid crystals. The exceedingly large optical phase delays accessible with this technology enable the design and construction of a new class of previously unrealizable photonic devices. Examples include: a 1-D non-mechanical, analog beamsteerer with an 80° field of regard, a chip-scale widely tunable laser, a chip-scale Fourier transform spectrometer (< 5 nm resolution demonstrated), widely tunable micro-ring resonators, tunable lenses, ultra-low power (< 5 microWatts) optical switches, true optical time delay (up to 10 ns), and many more. All of these devices may benefit from established manufacturing technologies and ultimately may be as inexpensive as a calculator display. Furthermore, this new integrated photonic architecture has applications in a wide array of commercial and defense markets including: remote sensing, micro-LADAR, OCT, laser illumination, phased array radar, optical communications, etc. Performance attributes of several example devices are presented.

  7. Image recovery from double amplitudes in fractional Fourier domain

    NASA Astrophysics Data System (ADS)

    Liao, Tian-He; Gao, Qiong

    2006-02-01

    The classical Gerchberg-Saxton algorithm is introduced into the image recovery in fractional Fourier domain after adaptation. When this algorithm is applied directly, its performance is good for smoothed image, but bad for unsmoothed image. Based on the diversity of fractional Fourier transform on its orders, this paper suggests a novel iterative algorithm, which extracts the information of the original image from amplitudes of its fractional Fourier transform at two orders. This new algorithm consists of two independent Gerchberg-Saxton procedures and an averaging operation in each circle. Numerical simulations are carried out to show its validity for both smoothed and unsmoothed images with most pairs of orders in the interval [0, 1].

  8. Tunable ultracompact electro-optical photonic crystal ring resonator

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang

    2013-09-01

    A tunable ultracompact electro-optical photonic crystal ring resonator with high transmission is reported. The photonic crystal ring resonator is obtained by removing a ring shape of cylinders from a square lattice of dielectric cylinders in air. The transmission spectra of this ring resonator have been investigated by using the finite-difference time-domain technique. The general characteristics of the ring elements to achieve resonant tunneling are determined. By modulating the conductibility of the inner cylinders in the ring resonator, the electrical tunability of the resonant modes is observed in the transmission spectrum. The research results should open opportunities for this ring resonator as ultracompact filters, optical add-drop multiplexers, electro-optical N × N switches, and modulators.

  9. Electroluminescent devices with function of electro-optic shutter.

    PubMed

    Song, Seongkyu; Jeong, Jaewook; Chung, Seok Hwan; Jeong, Soon Moon; Choi, Byeongdae

    2012-09-10

    The polymer-dispersed liquid crystal (PDLC) was used as a dielectric layer of electroluminescent (EL) device to provide multi-function of electroluminescence and electro-optic shutter. A 50 μm-thick PDLC layer was formed between a transparent electrode and a ZnS:Cu phosphor layer. The electro-optic properties of the EL device were not distorted by the introduction of the PDLC layer. The extraction efficiency of luminescence was improved by more than 14% by PDLC layer. The transmittance of the PDLC was also founded not to be degraded significantly by excitation frequency. Therefore, the electroluminescence of the device was ignited by excitation frequency at a given voltage for full transparency of the PDLC. This device has great potential for applications in transparent displays with the function of a privacy window. PMID:23037230

  10. Electro-optic techniques in electron beam diagnostics

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  11. Electro-optical characterization of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Addis, F. W.; Huber, Dan; Daling, Dave

    1987-01-01

    The electro-optical characterization of gallium arsenide p/n solar cells is discussed. The objective is to identify and understand basic mechanisms which limit the performance of high efficiency gallium arsenide solar cells. The approach involves conducting photoresponse and temperature dependent current-voltage measurements, and interpretation of the data in terms of theory to determine key device parameters. Depth concentration profiles are also utilized in formulating a model to explain device performance.

  12. Visualizing Sound with an Electro-Optical Eardrum

    NASA Astrophysics Data System (ADS)

    Truncale, Nicholas P.; Graham, Michelle T.

    2014-02-01

    As science educators, one of our important responsibilities is ensuring students possess the proper tools and accommodations to examine phenomena in a laboratory setting. It is our job to innovate methods enabling students with disabilities to participate in all aspects of investigations. This article describes an experimental accommodation allowing a deaf student to determine and plot the sensitivity of an electro-optical eardrum in the sound range of 10-150 Hz.

  13. A final look at LDEF electro-optic systems components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1995-01-01

    Postrecovery characteristics of LDEF electro-optic components from the GTRI tray are compared with their prelaunch characteristics and with the characteristics of similar components from related experiments. Components considered here include lasers, light-emitting diodes, semiconducting radiation detectors and arrays, optical substrates, filters, and mirrors, and specialized coatings. Our understanding of the physical effects resulting from low earth orbit are described, and guidelines and recommendations for component and materials choices are presented.

  14. Acentric lattice electro-optic materials by rational design

    NASA Astrophysics Data System (ADS)

    Dalton, Larry; Robinson, Bruce; Jen, Alex; Ried, Philip; Eichinger, Bruce; Sullivan, Philip; Akelaitis, Andrew; Bale, Denise; Haller, Marnie; Luo, Jingdong; Liu, Sen; Liao, Yi; Firestone, Kimberly; Bhatambrekar, Nishant; Bhattacharjee, Sanchali; Sinness, Jessica; Hammond, Scott; Buker, Nicholas; Snoeberger, Robert; Lingwood, Mark; Rommel, Harry; Amend, Joe; Jang, Sei-Hum; Chen, Antao; Steier, William

    2005-08-01

    Quantum and statistical mechanical calculations have been used to guide the improvement of the macroscopic electro-optic activity of organic thin film materials to values greater than 300 pm/V at telecommunication wavelengths. Various quantum mechanical methods (Hartree-Fock, INDO, and density functional theory) have been benchmarked and shown to be reliable for estimating trends in molecular first hyperpolarizability, β, for simple variation of donor, bridge, and acceptor structures of charge-transfer (dipolar) chromophores. β values have been increased significantly over the past five years and quantum mechanical calculations suggest that they can be further significantly improved. Statistical mechanical calculations, including pseudo-atomistic Monte Carlo calculations, have guided the design of the super/supramolecular structures of chromophores so that they assemble, under the influence of electric field poling, into macroscopic lattices with high degrees of acentric order. Indeed, during the past year, chromophores doped into single- and multi-chromophore-containing dendrimer materials to form binary glasses have yielded thin films that exhibit electro-optic activities at telecommunication wavelengths of greater than 300 pm/V. Such materials may be viewed as intermediate between chromophore/polymer composites and crystalline organic chromophore materials. Theory suggests that further improvements of electro-optic activity are possible. Auxiliary properties of these materials, including optical loss, thermal and photochemical stability, and processability are discussed. Such organic electro-optic materials have been incorporated into silicon photonic circuitry for active wavelength division multiplexing, reconfigurable optical add/drop multiplexing, and high bandwidth optical rectification. A variety of all-organic devices, including stripline, cascaded prism, Fabry-Perot etalon, and ring microresonator devices, have been fabricated and evaluated.

  15. Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS): Imaging and Tracking Capability

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Reisse, R. A.; Smith, W. L.; Revercomb, H. E.; Bingham, G. E.; Zollinger, L. J.; Tansock, J. J.; Huppi, Ronald J.

    2007-01-01

    The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 128 detector arrays with a spectral resolution of 0.57/cm with a scan duration of approx. 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.

  16. Electro-optic voltage sensor with beam splitting

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.; Davidson, James R.; Crawford, Thomas M.

    2002-01-01

    The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  17. Electro-optic voltage sensor with Multiple Beam Splitting

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.; Crawford, Thomas M.; Davidson, James R.

    2000-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  18. TOPICAL REVIEW: Rational design of organic electro-optic materials

    NASA Astrophysics Data System (ADS)

    Dalton, L. R.

    2003-05-01

    Quantum mechanical calculations are used to optimize the molecular first hyperpolarizability of organic chromophores and statistical mechanical calculations are used to optimize the translation of molecular hyperpolarizability to macroscopic electro-optic activity (to values of greater than 100 pm V-1 at telecommunications wavelengths). Macroscopic material architectures are implemented exploiting new concepts in nanoscale architectural engineering. Multi-chromophore-containing dendrimers and dendronized polymers not only permit optimization of electro-optic activity but also of auxiliary properties including optical loss (both absorption and scattering), thermal and photochemical stability and processability. New reactive ion etching and photolithographic techniques permit the fabrication of three-dimensional optical circuitry and the integration of that circuitry with semiconductor very-large-scale integration electronics and silica fibre optics. Electro-optic devices have been fabricated exploiting stripline, cascaded prism and microresonator device structures. Sub-1 V drive voltages and operational bandwidths of greater than 100 GHz have been demonstrated. Both single-and double-ring microresonators have been fabricated for applications such as active wavelength division multiplexing. Free spectral range values of 1 THz and per channel modulation bandwidths of 15 GHz have been realized permitting single-chip data rates of 500 Gb s-1. Other demonstrated devices include phased array radar, optical gyroscopes, acoustic spectrum analysers, ultrafast analog/digital converters and ultrahigh bandwidth signal generators.

  19. Fractional Fourier transform in temporal ghost imaging with classical light

    SciTech Connect

    Setaelae, Tero; Shirai, Tomohiro; Friberg, Ari T.

    2010-10-15

    We investigate temporal, second-order classical ghost imaging with long, incoherent, scalar plane-wave pulses. We prove that in rather general conditions, the intensity correlation function at the output of the setup is given by the fractional Fourier transform of the temporal object. In special cases, the correlation function is shown to reduce to the ordinary Fourier transform and the temporal image of the object. Effects influencing the visibility and the resolution are considered. This work extends certain known results on spatial ghost imaging into the time domain and could find applications in temporal tomography of pulses.

  20. Theoretical study of Fourier-transform acousto-optic imaging.

    PubMed

    Barjean, Kinia; Ramaz, François; Tualle, Jean-Michel

    2016-05-01

    We propose a full theoretical study of Fourier-transform acousto-optic imaging, which we recently introduced and experimentally assessed in [Opt. Lett.40, 705-708 (2015)OPLEDP0146-959210.1364/OL.40.000705] as an alternative to achieve axial resolution in acousto-optic imaging with a higher signal-to-noise ratio. PMID:27140883

  1. PREFACE: Colloidal and molecular electro-optics Colloidal and molecular electro-optics

    NASA Astrophysics Data System (ADS)

    Palberg, Thomas; Löwen, Hartmut

    2010-12-01

    The Kerr effect, also known as the quadratic electro-optic effect, was discovered more than a hundred years ago by John Kerr, a Scottish physicist [1]. It describes the change in the refractive index of a material in response to an applied electric field. Around 1950 its application swayed from simple to complex fluids. A strong contribution was made through a number of seminal papers by the French polymer scientist H Benoit [2-4]. These and others initiated wide interest from researchers working on macromolecular solutions or colloidal dispersions. Experimental activities were further boosted by the advent of the laser and theoretical approaches strongly drew from growing computer power. Use of AC or pulsed field techniques, as well as of inhomogeneous fields, including laser tweezers, studies of electrophoretic, dielectrophoretic, electro-osmotic and other types of motion by advanced optical methods and combinations with other external fields have had the greatest impact on our understanding of the electric field induced optical properties of soft matter systems. Today the field has matured and its techniques are broadly employed as versatile tools with applications ranging from biological systems to electronic ink. Fundamental interest still continues but more and more side branches have evolved fruitfully. This collection of papers was, therefore, brought together to take a fresh look at this traditional field. Further, we are to celebrate 35 years of a successful conference series, ELOPTO, with the last one held at Waldthausen Castle hosted by the Johannes Gutenberg University, MainzNote1 and the DFG Collaborative Research Centre TR6 'Physics of colloidal dispersions in external fields'Note2. In this issue we have collected the articles of some of the leading experts in the area, well garnished with novel approaches and clever ideas by younger colleagues. With our selection we hope to cover a representative spectrum of the ongoing research, catch the most

  2. Stereo Electro-optical Tracking System (SETS)

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1984-01-01

    The SETS is a remote, non-contacting, high-accuracy tracking system for the measurement of deflection of models in the National Transonic Facility at Langley Research Center. The system consists of four electronically scanned image dissector trackers which locate the position of Light Emitting Diodes embedded in the wing or body of aircraft models. Target location data is recorded on magnetic tape for later 3-D processing. Up to 63 targets per model may be tracked at typical rates of 1280 targets per second and to precision of 0.02mm at the target under the cold (-193 C) environment of the NTF tunnel.

  3. LLNL electro-optical mine detection program

    SciTech Connect

    Anderson, C.; Aimonetti, W.; Barth, M.; Buhl, M.; Bull, N.; Carter, M.; Clark, G.; Fields, D.; Fulkerson, S.; Kane, R.

    1994-09-30

    Under funding from the Advanced Research Projects Agency (ARPA) and the US Marine Corps (USMC), Lawrence Livermore National Laboratory (LLNL) has directed a program aimed at improving detection capabilities against buried mines and munitions. The program has provided a national test facility for buried mines in arid environments, compiled and distributed an extensive data base of infrared (IR), ground penetrating radar (GPR), and other measurements made at that site, served as a host for other organizations wishing to make measurements, made considerable progress in the use of ground penetrating radar for mine detection, and worked on the difficult problem of sensor fusion as applied to buried mine detection. While the majority of our effort has been concentrated on the buried mine problem, LLNL has worked with the U.S.M.C. on surface mine problems as well, providing data and analysis to support the COBRA (Coastal Battlefield Reconnaissance and Analysis) program. The original aim of the experimental aspect of the program was the utilization of multiband infrared approaches for the detection of buried mines. Later the work was extended to a multisensor investigation, including sensors other than infrared imagers. After an early series of measurements, it was determined that further progress would require a larger test facility in a natural environment, so the Buried Object Test Facility (BOTF) was constructed at the Nevada Test Site. After extensive testing, with sensors spanning the electromagnetic spectrum from the near ultraviolet to radio frequencies, possible paths for improvement were: improved spatial resolution providing better ground texture discrimination; analysis which involves more complicated spatial queueing and filtering; additional IR bands using imaging spectroscopy; the use of additional sensors other than IR and the use of data fusion techniques with multi-sensor data; and utilizing time dependent observables like temperature.

  4. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, T.J.; Taylor, A.J.; Stewart, K.R.

    1996-08-06

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification. 5 figs.

  5. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, Timothy J.; Taylor, Antoinette J.; Stewart, Kevin R.

    1996-01-01

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification.

  6. 2D hexagonal quaternion Fourier transform in color image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2016-05-01

    In this paper, we present a novel concept of the quaternion discrete Fourier transform on the two-dimensional hexagonal lattice, which we call the two-dimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). The concept of the right-side 2D HQDFT is described and the left-side 2-D HQDFT is similarly considered. To calculate the transform, the image on the hexagonal lattice is described in the tensor representation when the image is presented by a set of 1-D signals, or splitting-signals which can be separately processed in the frequency domain. The 2-D HQDFT can be calculated by a set of 1-D quaternion discrete Fourier transforms (QDFT) of the splitting-signals.

  7. Fourier-ring descriptor to characterize rare circulating cells from images generated using immunofluorescence microscopy.

    PubMed

    Emerson, Tegan; Kirby, Michael; Bethel, Kelly; Kolatkar, Anand; Luttgen, Madelyn; O'Hara, Stephen; Newton, Paul; Kuhn, Peter

    2015-03-01

    We address the problem of subclassification of rare circulating cells using data driven feature selection from images of candidate circulating tumor cells from patients diagnosed with breast, prostate, or lung cancer. We determine a set of low level features which can differentiate among candidate cell types. We have implemented an image representation based on concentric Fourier rings (FRDs) which allow us to exploit size variations and morphological differences among cells while being rotationally invariant. We discuss potential clinical use in the context of treatment monitoring for cancer patients with metastatic disease.

  8. Grid-Independent Compressive Imaging and Fourier Phase Retrieval

    ERIC Educational Resources Information Center

    Liao, Wenjing

    2013-01-01

    This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…

  9. Electro-optic analyzer of angular momentum hyperentanglement.

    PubMed

    Wu, Ziwen; Chen, Lixiang

    2016-01-01

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement. PMID:26911530

  10. Introduction into service of mature pushbroom electro-optic sensors

    NASA Astrophysics Data System (ADS)

    Brownie, Ralph S.

    2000-11-01

    Pushbroom Electro-Optic sensors have been developed and brought into full production, entering service in year 2000 on RAF Jaguar and Belgian Air Force F-16. The use of fiber- optic gyroscopes, closely coupled to the focal plane electronics, permits correction of all motion effects and provides practical high quality, stereo imagery at high V/H ratios. This paper describes technical features and samples of imagery from a scalable range of sensors incorporating focal lengths from 38mm to 900mm and operating throughout the full flight envelope of modern fighter aircraft.

  11. Track Initiation for Electro-Optical Tracking of Space Objects

    NASA Astrophysics Data System (ADS)

    Xu, Z. W.; Wang, X.

    2016-03-01

    Aimed at the track initiation for the electro-optical tracking of space objects, and based on modified Hough transformation, a track initiation algorithm without prior information is proposed to realize the fully robotic identification and tracking of moving objects. The method is valid for the tracking of multi-target as well as with a non-continuous sequence. Simulation shows that the method is effective and applicable for operational usage, and is especially good for the search and discovery of new objects.

  12. Electro-optic analyzer of angular momentum hyperentanglement.

    PubMed

    Wu, Ziwen; Chen, Lixiang

    2016-02-25

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement.

  13. Electro optical tuning of Tamm-plasmon exciton-polaritons

    SciTech Connect

    Gessler, J.; Baumann, V.; Emmerling, M.; Amthor, M.; Winkler, K.; Schneider, C.; Kamp, M.; Höfling, S.

    2014-11-03

    We report on electro optical tuning of the emission from GaAs quantum wells resonantly coupled to a Tamm-plasmon mode in a hybrid metal/dielectric structure. The structures were studied via momentum resolved photoluminescence and photoreflectance spectroscopy, and the surface metal layer was used as a top gate, which allowed for a precise tuning of the quantum well emission via the quantum confined Stark effect. By tuning the resonance, we were able to observe the characteristic anticrossing behavior of a polaritonic emission in the strong light-matter coupling regime, yielding a Rabi splitting of (9.2 ± 0.2) meV.

  14. Electro-Optical Modulator Bias Control Using Bipolar Pulses

    NASA Technical Reports Server (NTRS)

    Farr, William; Kovalik, Joseph

    2007-01-01

    An improved method has been devised for controlling the DC bias applied to an electro-optical crystal that is part of a Mach-Zehnder modulator that generates low-duty-cycle optical pulses for a pulse-position modulation (PPM) optical data-communication system. In such a system, it is desirable to minimize the transmission of light during the intervals between pulses, and for this purpose, it is necessary to maximize the extinction ratio of the modulator (the ratio between the power transmitted during an "on" period and the power transmitted during an "off" period). The present method is related to prior dither error feedback methods, but unlike in those methods, there is no need for an auxiliary modulation subsystem to generate a dithering signal. Instead, as described below, dither is effected through alternation of the polarity of the modulation signal. The upper part of Figure 1 schematically depicts a Mach-Zehnder modulator. The signal applied to the electro-optical crystal consists of a radio-frequency modulating pulse signal, VRF, superimposed on a DC bias Vbias. Maximum extinction occurs during the off (VRF = 0) period if Vbias is set at a value that makes the two optical paths differ by an odd integer multiple of a half wavelength so that the beams traveling along the two paths interfere destructively at the output beam splitter. Assuming that the modulating pulse signal VRF has a rectangular waveform, maximum transmission occurs during the "on" period if the amplitude of VRF is set to a value, V , that shifts the length of the affected optical path by a half wavelength so that now the two beams interfere constructively at the output beam splitter. The modulating pulse signal is AC-coupled from an amplifier to the electro-optical crystal. Sometimes, two successive pulses occur so close in time that the operating point of the amplifier drifts, one result being that there is not enough time for the signal level to return to ground between pulses. Also, the

  15. Electro-optic analyzer of angular momentum hyperentanglement

    PubMed Central

    Wu, Ziwen; Chen, Lixiang

    2016-01-01

    Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement. PMID:26911530

  16. Infrared electro-optical detector to rescue humans

    NASA Astrophysics Data System (ADS)

    Ysi-Zarco, Paulo; Castro Ramos, Jorge; Gordiano-Alvarado, Gabriel

    2004-10-01

    We designed and built an electro-optical sensor to detect human bodies. The aim of this paper is to describe a device to make easier the localization of lost people in natural disasters or in dangerous environments. The detection is realized in base of the infrared radiation emitted by the human body. We employ point commercial pyloric quantum sensors, the electronic assembly integrates the captured infrared energy by using low noise chip. The optical device include a Cassegrain antenna, a diffraction grating which besides to choose in automatic way the correct wavelength emitted by the human body, it is useful as optical filter.

  17. Radiation resistance of electro-optic polymer-based modulators

    SciTech Connect

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio D.; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, Brian M.; Cook, Paul R.; McEwen, Tom A.; McKeon, Brian F.; Payson, Paul M.; Brost, George A.; Pirich, Andrew R.; Castaneda, Carlos; Tsap, Boris; Fetterman, Harold R.

    2005-05-16

    Mach-Zehnder interferometric electro-optic polymer modulators composed of highly nonlinear phenyltetraene bridge-type chromophores within an amorphous polycarbonate host matrix were investigated for their resistance to gamma rays and 25.6 MeV protons. No device failures were observed and the majority of irradiated modulators exhibited decreases in half-wave voltage and optical insertion losses compared to nonirradiated control samples undergoing aging processes. Irradiated device responses were attributed to scission, cross-linking, and free volume processes. The data suggests that strongly poled devices are less likely to de-pole under the influence of ionizing radiation.

  18. Visible Imaging Fourier Transform Spectrometer: Design and Calibration

    SciTech Connect

    Wishnow, E H; Wurtz, R; Blais-Ouellette, S; Cook, K H; Carr, D; Lewis, I; Grandmont, F; Stubbs, C W

    2002-09-19

    We present details of the design, operation and calibration of an astronomical visible-band imaging Fourier transform spectrometer (IFTS). This type of instrument produces a spectrum for every pixel in the field of view where the spectral resolution is flexible. The instrument is a dual-input/dual-output Michelson interferometer coupled to the 3.5 meter telescope at the Apache Point Observatory. Imaging performance and interferograms and spectra from calibration sources and standard stars are discussed.

  19. TOD: a new method to characterize electro-optical system performance

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; Valeton, J. M.

    1998-08-01

    The current standard to characterize Electro-Optical system performance is the MRTD (Minimum Resolvable Temperature Difference) for thermal imagers and the MRC (Minimum Resolvable Contrast) for visual devices. This standard has at least three serious disadvantages: (1) the standard 4-bar test pattern is theoretically and practically unsuitable for 1D or 2D spatially sampled systems such as pixel-array camera's, (2) spatial phase is not taken into account, and (3) the results depend on the observer's subjective decision criterion. We propose an adequate and easily applicable alternative: TOD (Triangle Orientation Discrimination threshold). The TOD is based on an improved test pattern, a better defined observer task, and a solid psychophysical measurement procedure. The new method has theoretical and practical advantages: it is suitable for pixel-array camera's, scanning systems and other (Electro-) Optical imaging systems in both the thermal and vision domain, it has a close relationship to real target acquisition, and the observer task is easy. The results are free from observer bias and allow statistical significance tests. The method lends itself very well for automatic measurement, and can be extended for future sensor systems that include advanced image processing. The TOD curve can be implemented easily in a TA model such as ACQUIRE. An observer performance study with real targets shows that the TOD curve predicts TA performance better than the MRC does. The method has been implemented successfully in a thermal imager field test apparatus called TIPI, and may be implemented in current MRTD and MRC test equipment with little effort.

  20. Hybrid silicon-vanadium dioxide electro-optic modulators

    NASA Astrophysics Data System (ADS)

    Miller, Kevin J.; Markov, Petr; Marvel, Robert E.; Haglund, Richard F.; Weiss, Sharon M.

    2016-03-01

    Small-footprint, low-power devices that can modulate optical signals at THz speeds would transform next-generation onchip photonics. We describe a hybrid silicon-vanadium dioxide (Si-VO2) electro-optic ring resonator modulator as a candidate platform for achieving this performance benchmark. Vanadium dioxide (VO2) is a strongly correlated material exhibiting a semiconductor-to-metal transition (SMT) accompanied by large changes in electrical and optical properties. While VO2 can be switched optically on a sub-picosecond time scale, the ultimate electrical switching speed remains to be determined. In a 5 μm radius Si-VO2 ring resonator, we achieve 1.5 dB modulation in response to a 10 ns square voltage pulse of 2.5 V. In the steady state regime, we report a modulation depth of 10 dB. The larger modulation depth at longer timescales is attributed to a Joule heating contribution. Experimental results, corroborated by FDTD simulations, reveal the relationship between the portion of a VO2 patch undergoing the SMT and the resulting effects on the Si-VO2 device performance. This work indicates that with further reduction of VO2 patch sizes and increase in resonator Q factor, there is promise for the Si-VO2 ring resonator electro-optic modulator as a competitive option for on-chip photonics technology.

  1. Electro-optic sensors dedicated to noninvasive electric field characterization

    NASA Astrophysics Data System (ADS)

    Warzecha, A.; Bernier, M.; Gaborit, G.; Duvillaret, L.; Lasserre, J.-L.

    2009-06-01

    This paper describes non-invasive electro-optic sensors devoted to simultaneous electric field and temperature measurements. Based on Poeckel's effect, these sensors consist in non-centrosymmetric crystals for which an electricfield induces a modification of their refractive indices [1]. Such modification can also be induced by a drift of the crystal temperature [2]. After explanation of the principle, we will illustrate some applications (high power microwave characterization, bioelectromagnetism, electric field mapping of high voltage devices) for which electro-optic sensors give excellent performances. These sensors perform vectorial E-field measurement (modulus and phase of each E-field components) with both high spatial and temporal resolutions. As they are pigtailed, long distance remote sensing is then allowed. They are also non-invasive due to their fully dielectric design. However, their sensitivity remains quite low for electromagnetic compatibility and their size remains too important for bioelectromagnetism studies in Petry dishes for example. So, two ways of improvement are pursued. The first one consists in using Fabry-Perot microcavities based on LiNbO3 optical waveguide to dramatically reduce sensors size. The second one consists in an optical processing (optical carrier rejection) of the laser probe beam to increase the sensor sensitivity for high frequency measurements. We will present first results concerning these improvements and also results that have been performed in free space with a fully automated setup in both frequency and time domains.

  2. Electro-optical effects in hybrid aligned flexoelectric nematic layers

    NASA Astrophysics Data System (ADS)

    Derfel, G.; Buczkowska, M.

    2013-11-01

    Liquid crystal cells with hybrid boundary anchoring, filled with nematic possessing flexoelectric properties, and subjected to external electric field, were studied numerically in order to find the influence of flexoelectricity on their behavior. Such layers may adopt three kinds of director structures: uniform planar, uniform homeotropic, and non-uniform which is intermediate between the former two. Stability of these structures depends on flexoelectric coefficients, anchoring strengths, thickness of the layer, dielectric anisotropy, and elastic constants. Changes of bias voltage cause transitions between them, which lead to electro-optical effects if the layers are placed between crossed polarizers. Three cases of transitions were considered: (i) transition between bright planar and dark non-uniform states, (ii) between dark planar and bright non-uniform states, and (iii) between dark homeotropic and bright non-uniform states. The director distributions in various states corresponding to various grey levels were calculated, and the electro-optic characteristics were obtained. The dynamics of the transitions between dark, bright, and intermediate states was determined taking into account the backflow effect. It was found that the transitions are faster when the nematic is devoid of flexoelectric properties.

  3. Electron Bunch Shape Measurements Using Electro-optical Spectral Decoding

    NASA Astrophysics Data System (ADS)

    Borysenko, A.; Hiller, N.; Müller, A.-S.; Steffen, B.; Peier, P.; Ivanisenko, Y.; Ischebeck, R.; Schlott, V.

    Longitudinal diagnostics of the electron bunch shapes play a crucial role in the operation of linac-based light sources. Electro-optical techniques allow us to measure the longitudinal electron bunch profiles non-destructively on a shot-by-shot basis. Here we present results from measurements of electron bunches with a length of 200-900 fs rms at the Swiss FEL Injector Test Facility. All the measurements were done using an Yb-doped fibre laser system (with a central wavelength of a 1050 nm) and a GaP crystal. The technique of electro-optical spectral decoding (EOSD) was applied and showed great capabilities to measure bunch shapes down to around 370 fs rms. Measurements were performed for different electron energies to study the expected distortions of the measured bunch profile due to the energy-dependent widening of the electric field, which plays a role for low beam energies below and around 40 MeV. The studies provide valuable input for the design of the EOSD monitors for the compact linear accelerator FLUTE that is currently under commissioning at the Karslruhe Institute of Technology (KIT).

  4. Birefringent Fourier transform imaging spectrometer with a rotating retroreflector.

    PubMed

    Bai, Caixun; Li, Jianxin; Shen, Yan; Zhou, Jianqiang

    2016-08-01

    A birefringent Fourier transform imaging spectrometer with a new lateral shearing interferometer is presented. The interferometer includes a Wollaston prism and a retroreflector. It splits an incident light beam into two shearing parallel parts to obtain interference fringe patterns of an imaging target, which is well established as an aid in reducing problems associated with optical alignment and manufacturing precision. Continuously rotating the retroreflector enables the spectrometer to acquire two-dimensional spectral images without spatial scanning. This technology, with a high work efficiency and low complexity, is inherently compact and robust. The effectiveness of the proposed method is demonstrated by the experimental results. PMID:27472640

  5. Birefringent Fourier transform imaging spectrometer with a rotating retroreflector.

    PubMed

    Bai, Caixun; Li, Jianxin; Shen, Yan; Zhou, Jianqiang

    2016-08-01

    A birefringent Fourier transform imaging spectrometer with a new lateral shearing interferometer is presented. The interferometer includes a Wollaston prism and a retroreflector. It splits an incident light beam into two shearing parallel parts to obtain interference fringe patterns of an imaging target, which is well established as an aid in reducing problems associated with optical alignment and manufacturing precision. Continuously rotating the retroreflector enables the spectrometer to acquire two-dimensional spectral images without spatial scanning. This technology, with a high work efficiency and low complexity, is inherently compact and robust. The effectiveness of the proposed method is demonstrated by the experimental results.

  6. A novel electro-optical pump-probe system for bioelectromagnetic investigations

    NASA Astrophysics Data System (ADS)

    De Angelis, Annalisa; Couderc, Vincent; Leproux, Philippe; Labruyère, Alexis; Tonello, Alessandro; El Amari, Saad; Arnaud-Cormos, Delia; Leveque, Philippe

    2012-10-01

    In the area of bioelectromagnetic studies there is a growing interest to understand the mechanisms leading to nanosecond electric fields induced electroporation. Real-time imaging techniques at molecular level could probably bring further advances on how electric fields interact with living cells. However the investigations are limited by the present-day lack of these kinds of advanced instrumentations. In this context, we present an innovative electro-optical pump-probe system. The aim of our project is to provide a performing and compact device for electrical stimulation and multiplex Coherent anti-Stokes Raman Scattering (M-CARS) imaging of biological cells at once. The system consists of a 1064 nm sub-nanosecond laser source providing both a monochromatic pump and a polychromatic Stokes optical beam used in a CARS process, as well as the trigger beam for the optoelectronic switching-based electrical pulse generator. The polychromatic Stokes beam (from 600 to 1700 nm) results from a supercontinuum generation in a photonic crystal fiber (PCF). A detailed spectro-temporal characterization of such a broadband spectrum shows the impact of the nonlinear propagation in the fiber on the Stokes wave. Despite the temporal distortions observable on Stokes pulse profiles, their spectral synchronization with the pump pulse remains possible and efficient in the interesting region between 1100 nm and 1700 nm. The electrical stimulation device consists of a customized generator combining microstrip-line technology and laser-triggered photoconductive semiconductor switches. Our experimental characterization highlights the capability for such a generator to control the main pulse parameters (profile, amplitude and duration) and to be easily synchronized with the imaging system. We finally test and calibrate the system by means of a KDP crystal. The preliminary results suggest that this electro-optical system provides a suitable tool for real-time investigation of

  7. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    NASA Astrophysics Data System (ADS)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  8. Optimal color image restoration: Wiener filter and quaternion Fourier transform

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, we consider the model of quaternion signal degradation when the signal is convoluted and an additive noise is added. The classical model of such a model leads to the solution of the optimal Wiener filter, where the optimality with respect to the mean square error. The characteristic of this filter can be found in the frequency domain by using the Fourier transform. For quaternion signals, the inverse problem is complicated by the fact that the quaternion arithmetic is not commutative. The quaternion Fourier transform does not map the convolution to the operation of multiplication. In this paper, we analyze the linear model of the signal and image degradation with an additive independent noise and the optimal filtration of the signal and images in the frequency domain and in the quaternion space.

  9. Optical image encryption by random shifting in fractional Fourier domains.

    PubMed

    Hennelly, B; Sheridan, J T

    2003-02-15

    A number of methods have recently been proposed in the literature for the encryption of two-dimensional information by use of optical systems based on the fractional Fourier transform. Typically, these methods require random phase screen keys for decrypting the data, which must be stored at the receiver and must be carefully aligned with the received encrypted data. A new technique based on a random shifting, or jigsaw, algorithm is proposed. This method does not require the use of phase keys. The image is encrypted by juxtaposition of sections of the image in fractional Fourier domains. The new method has been compared with existing methods and shows comparable or superior robustness to blind decryption. Optical implementation is discussed, and the sensitivity of the various encryption keys to blind decryption is examined.

  10. Fourier transform digital holographic adaptive optics imaging system

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  11. Optical stress sensor based on electro-optic compensation for photoelastic birefringence in a single crystal

    SciTech Connect

    Li Changsheng

    2011-09-20

    An optical stress sensor is proposed by using a single crystal with both electro-optic and photoelastic effects. Different from previous crystal-based stress sensors, the proposed sensor is based on electro-optic compensation for stress-induced birefringence and does not need an additional quarter-wave plate or modulator, because the stress-sensing element is simultaneously used as an electro-optic compensator. Candidate sensing materials include electro-optic crystals of the 3 m symmetry group and all glass with large Kerr coefficients. A primary experiment has demonstrated that the stress-induced birefringence in lithium niobate crystal can be compensated by its electro-optic birefringence. The proposed stress sensor is compact and low cost, and it is possible to achieve closed-loop stress measurement.

  12. An innovative procedure for calibration of strapdown electro-optical sensors onboard unmanned air vehicles.

    PubMed

    Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-01-01

    This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms).

  13. An innovative procedure for calibration of strapdown electro-optical sensors onboard unmanned air vehicles.

    PubMed

    Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-01-01

    This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms). PMID:22315559

  14. Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy

    SciTech Connect

    Himmelhuber, R. Mehravar, S. S.; Herrera, O. D.; Demir, V.; Kieu, K.; Norwood, R. A.; Peyghambarian, N.; Luo, J.; Jen, A. K.-Y.

    2014-04-21

    We imaged coplanar poled electro optic (EO) polymer films on transparent substrates with a multiple-photon microscope in reflection and correlated the second-harmonic light intensity with the results of Pockels coefficient (r{sub 33}) measurements. This allowed us to make quantitative measurements of poled polymer films on non-transparent substrates like silicon, which are not accessible with traditional Pockels coefficient measurement techniques. Phase modulators consisting of silicon waveguide devices with EO polymer claddings with a known Pockels coefficient (from V{sub π} measurements) were used to validate the correlation between the second-harmonic signal and r{sub 33}. This also allowed us to locally map the r{sub 33} coefficient in the poled area.

  15. An Innovative Procedure for Calibration of Strapdown Electro-Optical Sensors Onboard Unmanned Air Vehicles

    PubMed Central

    Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-01-01

    This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms). PMID:22315559

  16. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  17. Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging

    SciTech Connect

    Soloviev, Vadim Y.

    2006-11-15

    A novel adaptive mesh technique in the Fourier domain is introduced for problems in fluorescence lifetime imaging. A dynamical adaptation of the three-dimensional scheme based on the finite volume formulation reduces computational time and balances the ill-posed nature of the inverse problem. Light propagation in the medium is modeled by the telegraph equation, while the lifetime reconstruction algorithm is derived from the Fredholm integral equation of the first kind. Stability and computational efficiency of the method are demonstrated by image reconstruction of two spherical fluorescent objects embedded in a tissue phantom.

  18. Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays.

    PubMed

    McCormick, F B; Cloonan, T J; Lentine, A L; Sasian, J M; Morrison, R L; Beckman, M G; Walker, S L; Wojcik, M J; Hinterlong, S J; Crisci, R J; Novotny, R A; Hinton, H S

    1994-03-10

    The design, construction, and operational testing of a five-stage, fully interconnected 32 × 16 switching fabric by the use of smart-pixel (2, 1, 1) switching nodes are described. The arrays of switching nodes use monolithically integrated GaAs field-effect transistors, multiple-quantum-well p-i-n detectors, and self-electro-optic-device modulators. Each switching node incorporates 25 field-effect transistors and 17 p-i-n diodes to realize two differential optical receivers, the 2 × 1 node switching logic, a single-bit node control memory, and one differential optical transmitter. The five stages of node arrays are interconnected to form a two-dimensional banyan network by the use of Fourier-plane computer-generated holograms. System input and output are made by two-dimensional fiber-bundle matrices, and the system optical hardware design incorporates frequency-stabilized lasers, pupil-division beam combination, and a hybrid micro-macro lens for fiber-bundle imaging. Optomechanical packaging of the system ut lizes modular kinematic component positioning and active thermal control to enable simple rapid assembly. Two preliminary operational experiments are completed. In the first experiment, five stages are operated at 50 Mbits/s with 15 active inputs and outputs. The second experiment attempts to operate two stages of second-generation node arrays at 155 Mbits/s, with eight of the 15 active nodes functioning correctly along the straight switch-routing paths. PMID:20862186

  19. Solid state electro-optic color filter and iris

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A pair of solid state electro-optic filters (SSEF) in a binocular holder were designed and fabricated for evaluation of field sequential stereo TV applications. The electronic circuitry for use with the stereo goggles was designed and fabricated, requiring only an external video input. A polarizing screen suitable for attachment to various size TV monitors for use in conjunction with the stereo goggles was designed and fabricated. An improved engineering model 2 filter was fabricated using the bonded holder technique developed previously and integrated to a GCTA color TV camera. An engineering model color filter was fabricated and assembled using PLZT control elements. In addition, a ruggedized holder assembly was designed, fabricated and tested. This assembly provides electrical contacts, high voltage protection, and support for the fragile PLZT disk, and also permits mounting and optical alignment of the associated polarizers.

  20. High Bandwidth Electro-optic Scanner for Optical Data Storage

    NASA Astrophysics Data System (ADS)

    Zhai, Jinhui; Huang, Yuhong; Schroeck, Steve; Messner, W.; Stancil, Daniel D.; Schlesinger, T. E.

    2000-02-01

    Beam deflectors can be used as fine tracking actuators to improve track access time and data rate in future high performance optical disk drives. In this paper we report on the use of an electro-optic (EO) scanner for optical data storage. Track following has been accomplished using this EO actuator with a servo bandwidth of 200 kHz, and single-stage high-speed track switching/following has been demonstrated in a new optical head tracking system with reduced offset. A fine tracking experiment has also been demonstrated using an EO actuator with a voice coil motor (VCM) actuator to extend the fine tracking range. A new compensator design method, the PQ method, has been used for this scanner/VCM compound actuator system. Significant improvements in track switching/following speed are demonstrated with the scanner/VCM compound actuator as compared to tracking with the VCM actuator alone.

  1. Electro-optic effect and photoelastic effect of feroelectric relaxors

    NASA Astrophysics Data System (ADS)

    Takeda, Kotaro; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki

    2016-10-01

    To understand the origin of the electro-optic effect (EO-effect) of ferroelectric relaxors, the relationships among the quadratic EO-coefficient, photoelastic coefficient, and electron density were elucidated. The quadratic EO-coefficient is given by the product of the photoelastic and electrostrictive coefficients. Materials consisting of heavy elements normally exhibit high refractive indices and large photoelastic effects, indicating that the photoelastic coefficient increases with electron density of materials. The photoelastic coefficient was calculated as a function of the electron density of materials. The equations derived in this study were experimentally confirmed using lanthanum-added lead-zirconate-titanate (PLZT) transparent ceramics. It was found that the origin of the EO-effect in ferroelectric relaxors was the photoelastic effect coupled with electric-field-induced strain via the piezoelectric and electrostrictive effects.

  2. Electro-optical seasonal weather and gender data collection

    NASA Astrophysics Data System (ADS)

    McCoppin, Ryan; Koester, Nathan; Rude, Howard N.; Rizki, Mateen; Tamburino, Louis; Freeman, Andrew; Mendoza-Schrock, Olga

    2013-05-01

    This paper describes the process used to collect the Seasonal Weather And Gender (SWAG) dataset; an electro-optical dataset of human subjects that can be used to develop advanced gender classification algorithms. Several novel features characterize this ongoing effort (1) the human subjects self-label their gender by performing a specific action during the data collection and (2) the data collection will span months and even years resulting in a dataset containing realistic levels and types of clothing corresponding to the various seasons and weather conditions. It is envisioned that this type of data will support the development and evaluation of more robust gender classification systems that are capable of accurate gender recognition under extended operating conditions.

  3. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  4. Electro-optic Laser-Sampled Neutron Detector

    SciTech Connect

    J. Kenneth Shultis; Douglas McGregor

    2009-11-30

    A new method of detecting radiation which can allow for long distance measurements is being investigated. The device is primarily for neutrons detection althought it could, in principle, be used for gamma ray detection. The neutron detection medium is a solid, transparent, electro-optical material, such as lithium niobate, lithium tantalite, or barium borate. Crystals of these materials act as optical gates to laser light, allowing light to pass through only when a neutron interaction occurs in the crystal. Typical light detection devices, such as CCD cameras or photomultiplier tubes, can be used to signal when light passes through the crystal. The overall goal of the project is to investigate the feasibility of such devices for the detection of neutron radiation and to quantify their capabilities and limitations.

  5. Solid state electro-optic color filter and iris

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The electro-optic properties of lanthanum-modified lead zirconate titanate (PLZT) ferroelectric ceramic material are evaluated when utilized as a variable density and/or spectral filter in conjunction with a television scanning system. Emphasis was placed on the development of techniques and procedures for processing the PLZT disks and for applying efficient electrode structures. A number of samples were processed using different combinations of cleaning, electrode material, and deposition process. Best overall performance resulted from the direct evaporation of gold over chrome electrodes. A ruggedized mounting holder assembly was designed, fabricated, and tested. The assembly provides electrical contacts, high voltage protection, and support for the fragile PLZT disk, and permits mounting and optical alignment of the associated polarizers. Operational measurements of a PLZT sample mounted in the holder assembly were performed in conjunction with a television camera and the associated drive circuits. The data verified achievement of the elimination of the observed white-line effect.

  6. Degradation of electro-optic components aboard LDEF

    NASA Astrophysics Data System (ADS)

    Blue, M. D.

    1993-04-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  7. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.

    1983-12-29

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  8. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.

    1986-01-01

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  9. Voigt waves in electro-optic homogenized composite materials

    NASA Astrophysics Data System (ADS)

    Mackay, Tom G.

    2014-08-01

    A study was undertaken into Voigt wave propagation in a homogenized composite material (HCM). The HCM investigated arose from a porous electro-optic host material infiltrated by a fluid of refractive index na, considered in the long-wavelength regime. The extended Bruggeman homogenization formalism was employed to estimate the constitutive parameters of the HCM. In principle, the directions which support Voigt wave propagation in the HCM may be controlled by means of an applied dc electric field; and the degree of control may be sensitive to the porosity of the host material, the shapes, sizes and orientations of the pores, as well as the refractive index na. Here the theoretical methodology is presented; numerical results are presented elsewhere.

  10. Design principles and realization of electro-optical circuit boards

    NASA Astrophysics Data System (ADS)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  11. Microwave Processing for Advance Electro-Optic Materials

    SciTech Connect

    Boatner, L.A.

    2000-06-01

    This project addressed the technical and scientific goals of developing new methods for the formation of striation-free single crystals of potassium tantalate niobate. This solid-solution system has the potential for serving as a general electro-optic material with a wide range of optical applications. The performance of the material is, however, severely limited by the effects of compositional inhomogeneity that is generally induced during the single crystal growth process due to the nature of the binary phase diagram of the mixed tantalatehiobate system. Single-crystal boules of potassium tantalate niobate (KTa{sub 1-x}Nb{sub x}O{sub 3} or KTN) with varying tantalum-to-niobium ratios (or values of x) were grown under a variety of experimental conditions. The resulting single crystals were characterized in terms of their compositional homogeneity and optical quality. Single crystals were grown using both the most-favorable established set of growth parameters as well as in the presence of programmed oscillatory temperature variations. The purpose of these deliberately induced variations was to introduce controlled compositional variations and associated optical striations in the solid-solution single crystals. The overall objective of the effort was to utilize microwave heating and processing methods to treat the inhomogeneous single crystals for the purpose of eliminating the compositional variations that lead to striations and the associated varying changes in the refractive index of the material. In order to realize the ultimate goal of the effort, it was necessary to develop methods that would lead to the effective coupling of the microwave field to the KTN single crystals. Achieving the technical and commercial goals of this effort would have made it possible to introduce an important new electro-optic product into the market place, to improve our fundamental understanding of solid-state diffusion processes in general (and of microwave-assisted thermal

  12. Imaging Fourier Transform Spectroscopy from a Space Based Platform -- The Herschel/SPIRE Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Spencer, Locke Dean

    The Herschel Space Observatory (Herschel), a flagship mission of the European Space Agency (ESA), is comprised of three cryogenically cooled instruments commissioned to explore the far-infrared/submillimetre universe. Herschel's remote orbit at the second Lagrangian point (L2) of the Sun-Earth system, and its cryogenic payload, impose a need for thorough instrument characterization and rigorous testing as there will be no possibility for any servicing after launch. The Spectral and Photometric Imaging Receiver (SPIRE) is one of the instrument payloads aboard Herschel and consists of a three band imaging photometer and a two band imaging spectrometer. The imaging spectrometer on SPIRE consists of a Mach-Zehnder (MZ)-Fourier transform spectrometer (FTS) coupled with bolometric detector arrays to form an imaging FTS (IFTS). This thesis presents experiments conducted to verify the performance of an IFTS system from a space based platform, Le. the use of the SPIRE IFTS within the Herschel space observatory. Prior to launch, the SPIRE instrument has undergone a series of performance verification tests conducted at the Rutherford Appleton Laboratory (RAL) near Oxford, UK. Canada is involved in the SPIRE project through provision of instrument development hardware and software, mission flight software, and support personnel. Through this thesis project I have been stationed at RAL for a period spanning fifteen months to participate in the development, performance verification, and characterization of both the SPIRE FTS and photometer instruments. This thesis discusses Fourier transform spectroscopy and related FTS data processing (Chapter 2). Detailed discussions are included on the spectral phase related to the FTS beamsplitter (Chapter 3), the imaging aspects of the SPIRE IFTS instrument (Chapter 4), and the noise characteristics of the SPIRE bolometer detector arrays as measured using the SPIRE IFTS (Chapter 5). This thesis presents results from experiments performed

  13. Quantification of helicopter rotor downwash effects on electro-optical defensive aids suites

    NASA Astrophysics Data System (ADS)

    Seiffer, Dirk P.; Eisele, Christian; Henriksson, Markus; Sjöqvist, Lars; Möller, Sebastian; Togna, Fabio; Velluet, Marie-Thérèse

    2015-10-01

    The performance of electro-optical platform protection systems can be degraded significantly by the propagation environment around the platform. This includes aero-optical effects and zones of severe turbulence generated by engine exhausts. For helicopters rotor tip vortices and engine exhaust gases that are pressed down by the rotor airflow form the so called downwash phenomena. The downwash is a source for perturbations. A wide range of spatial and temporal fluctuations in the refractive index of air can occur. The perturbations from the turbulent flow cause detrimental effects on energy delivery, angle of arrival fluctuations, jam-code transmission, tracking accuracy and imaging performance in general. Therefore the effects may especially have a severe impact on the performance of laser-based protection systems like directed infrared countermeasures (DIRCM). The chain from passive missile detection and warning to obtaining an optical break-lock by the use of an active laser system will be influenced. To anticipate the installed performance of an electro-optical defensive aids suite (DAS) for helicopter platforms it is necessary to develop models for the prediction of the perturbations. Modelled results have to be validated against experimental findings. However, the data available in open literature on the effects of rotor downwash from helicopters on optical propagation is very limited. To collect necessary data and to obtain a first impression about the magnitude of occurring effects the European defence agency group (EDA) on "airborne platform effects on lasers and warning sensors (ALWS)" decided to design and perform a field trial on the premises of the Italian Air Force Flight Test Center in Pratica di Mare, Italy. ALWS is a technical arrangement under the Europa MoU among France, Germany, Italy, Sweden and the United Kingdom.

  14. Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques

    NASA Astrophysics Data System (ADS)

    Swann, D.; Klem, B.; McCoy, B.

    2010-09-01

    The current class of small satellite systems presents an analyst responsible for monitoring spacecraft operational status and early detection of detrimental anomalies with a broad variety of sensing and identification issues and challenges. Simple, small, cube-shaped satellites, without protruding solar panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors. This paper will describe spacecraft optical signature modeling and simulation techniques to develop sensing and identification algorithms for observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along with related observable features derived from multicolor and multiviewing aspect scenarios. This model and simulation analysis capability is used to support programs to monitor spacecraft performance status and identify anomalies associated with spacecraft damage/deterioration due to space debris or micrometeorite impact, thruster exhaust deposition or material aging. The development of state-of-the-art optical signature modeling tools to perform high-fidelity satellite models (such as the Air Force Academy FalconSat-5 or AFRL TacSat-3) simulations to characterize spectral radiant intensities apparent to passive, remote, nonresolved imaging sensors are described in detail. Simulations are performed for a comprehensive scenario range of natural (solar and earth) illumination and viewing conditions. Results are generated for comparing baseline, streamlined geometry models with the actual higher fidelity models that capture vehicle small-size hardware components and modifications. Output consisting of radiant intensity history apparent to ground-based sensor locations for vehicle trajectories that capture a comprehensive range of illumination conditions from the sun and underlying earth scene are presented for extensive spectral band

  15. Integrated optics in an electrically scanned imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, James B. (Inventor); Ocallaghan, Fred G. (Inventor)

    1982-01-01

    An efficient, lightweight and stable, Fourier transform spectrometer was developed. The mechanical slide mechanism needed to create a path difference was eliminated by the use of retro-reflecting mirrors in a monolithic interferometer assembly in which the mirrors are not at 90 degrees to the propagation vector of the radiation, but rather at a small angle. The resulting plane wave fronts create a double-sided inteferogram of the source irradiance distribution which is detected by a charge-coupled device image sensor array. The position of each CCD pixel in the array is an indication of the path difference between the two retro-reflecting mirrors in the monolithic optical structure. The Fourier transform of the signals generated by the image sensor provide the spectral irradiance distribution of the source. For imaging, the interferometer assembly scans the source of irradiation by moving the entire instrument, such as would occur if it was fixedly mounted to a moving platform, i.e., a spacecraft. During scanning, the entrace slot to the monolithic optical structure sends different pixels to corresponding interferograms detected by adjacent columns of pixels of the image sensor.

  16. Electro-optical system for scanning microscopy of extreme ultraviolet masks with a high harmonic generation source.

    PubMed

    Naulleau, Patrick P; Anderson, Christopher N; Anderson, Erik H; Andreson, Nord; Chao, Weilun; Choi, Changhoon; Goldberg, Kenneth A; Gullikson, Eric M; Kim, Seong-Sue; Lee, Donggun; Miyakawa, Ryan; Park, Jongju; Rekawa, Seno; Salmassi, Farhad

    2014-08-25

    A self-contained electro-optical module for scanning extreme ultraviolet (EUV) reflection microscopy at 13.5 nm wavelength has been developed. The system has been designed to work with stand-alone commercially available EUV high harmonic generation (HHG) sources through the implementation of narrowband harmonic selecting multilayers and off-axis elliptical short focal length zoneplates. The module has been successfully integrated into an EUV mask scanning microscope achieving diffraction limited imaging performance (84 nm point spread function). PMID:25321224

  17. Multifunctional metasurface lens for imaging and Fourier transform

    NASA Astrophysics Data System (ADS)

    Wen, Dandan; Yue, Fuyong; Ardron, Marcus; Chen, Xianzhong

    2016-06-01

    A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape structures, nanorods and nanoslits. A single device that can integrate two different types of lenses and polarities is desirable for system integration and device miniaturization. We experimentally demonstrate such an ultrathin metasurface lens that can function either as a spherical lens or a cylindrical lens, depending on the helicity of the incident light. Helicity-controllable focal line and focal point in the real focal plane, as well as imaging and 1D/2D Fourier transforms, are observed on the same lens. Our work provides a unique tool for polarization imaging, image processing and particle trapping.

  18. Multifunctional metasurface lens for imaging and Fourier transform.

    PubMed

    Wen, Dandan; Yue, Fuyong; Ardron, Marcus; Chen, Xianzhong

    2016-01-01

    A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape structures, nanorods and nanoslits. A single device that can integrate two different types of lenses and polarities is desirable for system integration and device miniaturization. We experimentally demonstrate such an ultrathin metasurface lens that can function either as a spherical lens or a cylindrical lens, depending on the helicity of the incident light. Helicity-controllable focal line and focal point in the real focal plane, as well as imaging and 1D/2D Fourier transforms, are observed on the same lens. Our work provides a unique tool for polarization imaging, image processing and particle trapping. PMID:27272601

  19. Multifunctional metasurface lens for imaging and Fourier transform

    PubMed Central

    Wen, Dandan; Yue, Fuyong; Ardron, Marcus; Chen, Xianzhong

    2016-01-01

    A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape structures, nanorods and nanoslits. A single device that can integrate two different types of lenses and polarities is desirable for system integration and device miniaturization. We experimentally demonstrate such an ultrathin metasurface lens that can function either as a spherical lens or a cylindrical lens, depending on the helicity of the incident light. Helicity-controllable focal line and focal point in the real focal plane, as well as imaging and 1D/2D Fourier transforms, are observed on the same lens. Our work provides a unique tool for polarization imaging, image processing and particle trapping. PMID:27272601

  20. Fourier-Transform Ghost Imaging with Hard X Rays.

    PubMed

    Yu, Hong; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-09-01

    Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available.

  1. Fourier-Transform Ghost Imaging with Hard X Rays

    NASA Astrophysics Data System (ADS)

    Yu, Hong; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-09-01

    Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available.

  2. Fourier-Transform Ghost Imaging with Hard X Rays.

    PubMed

    Yu, Hong; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-09-01

    Knowledge gained through x-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. However, it is only applied to crystalline structures and cannot resolve noncrystalline materials. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudothermal hard x rays that extends x-ray crystallography to noncrystalline samples. By measuring the second-order intensity correlation function of the light, Fourier-transform diffraction pattern of a complex amplitude sample is achieved at the Fresnel region in our experiment and the amplitude and phase distributions of the sample in the spatial domain are retrieved successfully. For the first time, ghost imaging is experimentally realized with x rays. Since a highly coherent x-ray source is not required, the method can be implemented with laboratory x-ray sources and it also provides a potential solution for lensless diffraction imaging with fermions, such as neutrons and electrons where intensive coherent sources usually are not available. PMID:27661686

  3. Grid-Based Fourier Transform Phase Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad

    Low contrast in x-ray attenuation imaging between different materials of low electron density is a limitation of traditional x-ray radiography. Phase contrast imaging offers the potential to improve the contrast between such materials, but due to the requirements on the spatial coherence of the x-ray beam, practical implementation of such systems with tabletop (i.e. non-synchrotron) sources has been limited. One recently developed phase imaging technique employs multiple fine-pitched gratings. However, the strict manufacturing tolerances and precise alignment requirements have limited the widespread adoption of grating-based techniques. In this work, we have investigated a technique recently demonstrated by Bennett et al. that utilizes a single grid of much coarser pitch. Our system consisted of a low power 100 microm spot Mo source, a CCD with 22 microm pixel pitch, and either a focused mammography linear grid or a stainless steel woven mesh. Phase is extracted from a single image by windowing and comparing data localized about harmonics of the grid in the Fourier domain. A Matlab code was written to perform the image processing. For the first time, the effects on the diffraction phase contrast and scattering amplitude images of varying grid types and periods, and of varying the window function type used to separate the harmonics, and the window widths, were investigated. Using the wire mesh, derivatives of the phase along two orthogonal directions were obtained and new methods investigated to form improved phase contrast images.

  4. Electro-optic bandwidth manipulation of quantum light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Karpinski, Michal; Jachura, Michal; Wright, Laura J.; Smith, Brian J.

    2016-04-01

    Spectral-temporal manipulation of optical pulses has enabled numerous developments within a broad range of research topics, ranging from fundamental science to practical applications. Within quantum optics spectral-temporal degree of freedom of light offers a promising platform for integrated photonic quantum information processing. An important challenge in experimentally realizing spectral-temporal manipulation of quantum states of light is the need for highly efficient manipulation tools. In this context the intrinsically deterministic electro-optic methods show great promise for quantum applications. We experimentally demonstrate application of electro-optic platform for spectral-temporal manipulation of ultrashort pulsed quantum light. Using techniques analogous to serrodyne frequency shifting we show active spectral translation of few-picosecond single photon pulses by up to 0.5 THz. By employing an approach based on an electro-optic time lens we demonstrate up to 6-fold spectral compression of heralded single photon pulses with efficiency that enables us to significantly increase single photon flux through a narrow bandpass filter. We realize the required temporal phase manipulation by driving a lithium niobate waveguided electrooptic modulator with 33 dBm sinusoidal RF field at the frequency of either 10 GHz or 40 GHz. We use a phase lock loop to temporally lock the RF field to the 80 MHz repetition rate of approximately 1 ps long optical pulses. Heralded single photon wavepackets are generated by means of spontaneous parametric down-conversion in potassium dihydrogen phosphate (KDP) crystal, which enables preparation of spectrally pure single photon wavepackets without the need for spectral filtering. Spectral shifting is achieved by locking single-photon pulses to the linear slope of sinusoidal 40 GHz RF phase modulation. We verify the spectral shift by performing spectrally resolved heralded single photon counting, using frequency-to-time conversion by

  5. Future electro-optical sensors and processing in urban operations

    NASA Astrophysics Data System (ADS)

    Grönwall, Christina; Schwering, Piet B.; Rantakokko, Jouni; Benoist, Koen W.; Kemp, Rob A. W.; Steinvall, Ove; Letalick, Dietmar; Björkert, Stefan

    2013-10-01

    In the electro-optical sensors and processing in urban operations (ESUO) study we pave the way for the European Defence Agency (EDA) group of Electro-Optics experts (IAP03) for a common understanding of the optimal distribution of processing functions between the different platforms. Combinations of local, distributed and centralized processing are proposed. In this way one can match processing functionality to the required power, and available communication systems data rates, to obtain the desired reaction times. In the study, three priority scenarios were defined. For these scenarios, present-day and future sensors and signal processing technologies were studied. The priority scenarios were camp protection, patrol and house search. A method for analyzing information quality in single and multi-sensor systems has been applied. A method for estimating reaction times for transmission of data through the chain of command has been proposed and used. These methods are documented and can be used to modify scenarios, or be applied to other scenarios. Present day data processing is organized mainly locally. Very limited exchange of information with other platforms is present; this is performed mainly at a high information level. Main issues that arose from the analysis of present-day systems and methodology are the slow reaction time due to the limited field of view of present-day sensors and the lack of robust automated processing. Efficient handover schemes between wide and narrow field of view sensors may however reduce the delay times. The main effort in the study was in forecasting the signal processing of EO-sensors in the next ten to twenty years. Distributed processing is proposed between hand-held and vehicle based sensors. This can be accompanied by cloud processing on board several vehicles. Additionally, to perform sensor fusion on sensor data originating from different platforms, and making full use of UAV imagery, a combination of distributed and

  6. Resonant Doppler imaging with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Leitgeb, Rainer A.; Szklumowska, Anna; Pircher, Michael; Gotzinger, Erich; Fercher, Adolf F.

    2005-04-01

    Fourier Domain Optical Coherene Tomography (FD OCT) is a high speed imaging modality with increased sensitivity as compared to standard time domain (TD) OCT. The higher sensitivity is especially important, if strongly scattering tissue such as blood is investigated. Recently it could be shown that retinal blood flow can be assessed in-vivo by high speed FD OCT. However the detection bandwidth of color Doppler (CD) FDOCT is strongly limited due to blurring of the detected interference fringes during exposure. This leads to a loss of sensitivity for detection of fast changes in tissue. Using a moving mirror as a reference one can effectively increase the detection bandwidth for CD FDOCT and perform perfusion sectioning. The modality is called resonant CD FDOCT imaging. The principle of the method is presented and experimentally verified.

  7. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  8. High frequency electro-optic measurement of strained silicon racetrack resonators

    NASA Astrophysics Data System (ADS)

    Borghi, Massimo; Mancinelli, Mattia; Merget, Florian; Witzens, Jeremy; Bernard, Martino; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2016-05-01

    In this paper, we report on time resolved electro-optic measurements in strained silicon resonators. Strain is induced by applying a mechanical deformation to the device. It is demonstrated that the linear electro-optic effect vanishes when the applied voltage modulation varies much faster than the free carrier lifetime, and that this occurs independently on the level of the applied stress. This demonstrates that, at frequencies which lie below the free carrier recombination rate, the electro-optic modulation is caused by plasma carrier dispersion. After normalizing out free carrier effects, it is found an upper limit of (8 +/- 3) pm/V to the value of the strain induced χ(2)eff, zzz tensor component. This is an order of magnitude lower than the previously reported values for static electro-optic measurements.

  9. Anisotropy of the electro-optic Kerr effect in polymer-stabilized blue phases

    NASA Astrophysics Data System (ADS)

    Kawata, Yuto; Yoshida, Hiroyuki; Tanaka, Shu; Konkanok, Anucha; Ozaki, Masanori; Kikuchi, Hirotsugu

    2015-02-01

    Liquid crystalline polymer stabilized blue phases (PSBPs) are candidate materials for next generation electro-optic switching devices because they form a self-organized three-dimensional periodic structure and exhibit a fast response time of submillisecond order. Considering the crystallographic structures of PSBPs, it is intuitive to believe that the electro-optic effect would depend on the direction of the applied electric field; however, this relationship has not yet been investigated. In this study, we prepared two kinds of samples in which the (110) and (200) planes were oriented parallel to the substrates, and investigated the electro-optic Kerr effect as a field was applied between the two substrates. The two samples exhibited differing behaviors, with the Kerr coefficient of the (110)-oriented sample being larger by 20% than that of the (200)-oriented sample. These results imply that the electro-optic Kerr effect of PSBPs is not isotropic but anisotropic, just like cubic optical crystals.

  10. Design and simulation of planar electro-optic switches in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, Mahesh; Tian, Lili; Gopalan, Venkatraman

    2008-08-01

    Conceptual design and numerical simulation of two polarization dependent planar optical switches based on the electro-optic effect in ferroelectrics operating at 1.55 μm wavelength are presented. The first design is a 3×3 optical switch based entirely on electro-optic beam steering (prism) elements and ion-exchanged lenses for collimation. The second design is a 1×N optical switch based on a combination of electro-optic beam steering and electro-optic focusing (lens) elements. The scalability of this device has been improved by compensating the in-plane divergence of the laser. Analytical expressions for the dependence of scalability are presented.

  11. Acousto-optic, electro-optic, and magneto-optic devices and applications

    SciTech Connect

    Lucero, J.

    1987-01-01

    These proceedings contain 30 papers grouped under the headings of: Acousto-optic devices; Signal processing architectures; Acousto-optic and electro-optic applications; Magneto-optic and guided wave optic devices.

  12. Enhanced electro-optic response in domain-engineered LiNbO3 channel waveguides

    NASA Astrophysics Data System (ADS)

    Zisis, G.; Ying, C. Y. J.; Ganguly, P.; Sones, C. L.; Soergel, E.; Eason, R. W.; Mailis, S.

    2016-07-01

    Substantial enhancement (36.7%) of the intrinsic electro-optic coefficient ( r33) has been observed in lithium niobate channel waveguides, which are made to overlap with a pole-inhibited ferroelectric domain. The waveguide and the overlapping ferroelectric domain are both produced by a single UV irradiation process and are thus self-aligning. The enhancement of the electro-optic coefficient effect is attributed to strain, which is associated with the ferroelectric domain boundaries that contain the channel waveguide.

  13. Evaluation of the electro-optic direction sensor

    NASA Technical Reports Server (NTRS)

    Johnson, A. R.; Salomon, P. M.

    1973-01-01

    Evaluation of a no-moving-parts single-axis star tracker called an electro-optic direction sensor (EODS) concept is described and the results are given in detail. The work involved experimental evaluation of a breadboard sensor yielding results which would permit design of a prototype sensor for a specific application. The laboratory work included evaluation of the noise equivalent input angle of the sensor, demonstration of a technique for producing an acquisition signal, constraints on the useful field-of-view, and a qualitative evaluation of the effects of stray light. In addition, the potential of the silicon avalanche-type photodiode for this application was investigated. No benefit in noise figure was found, but the easily adjustable gain of the avalanche device was useful. The use of mechanical tuning of the modulating element to reduce voltage requirements was also explored. The predicted performance of EODS in both photomultiplier and solid state detector configurations was compared to an existing state-of-the-art star tracker.

  14. Electro-optical parameters of bond polarizability model for aluminosilicates.

    PubMed

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-01

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  15. Photorefractive damage mechanisms in electro-optic materials

    NASA Astrophysics Data System (ADS)

    Halliburton, Larry E.

    1990-01-01

    Point defects in lithium niobate and related electro-optic materials were characterized using electron paramagnetic resonance (EPR), optical absorption, thermally stimulated luminescence (TSL), and diffusion techniques. In LiNbO3, EPR was used to investigate a radiation-induced trapped-hole center. This new S = 1/2 defect is stable at 77 K but thermally decays near 150 K. Its EPR spectrum exhibits a complex hyperfine equally with three 93 Nb nuclei. It was suggested that the hole is equally shared by a set of three equivalent oxygen ions adjacent to a cation vacancy. The photo-induced redistribution of charge was characterized in Bi12GeO20 and Bi12SiO20 crystals. Optical excitation at 77 K converts Fe (3+) ions to Fe(2+) ions. The source of electrons (i.e., the hole traps) may be other impurities or intrinsic defects such as vacancies or anti-site cations. The intrinsic defects such as vacancies or anti-site cations. The Fe(3+) recovery during warming correlates with thermoluminescence peaks at 145, 165, and 245 K. Results suggest that Fe(3+) ions may play an important role in the photorefractive effect in these materials. In LiTaO3, the EPR spectrum of Ta(4+) ions were investigated. The diffusion coefficients of deuterium in single crystals of LiTaO3 were measured by monitoring the growth of OD (-) infrared absorption bands.

  16. Electro-optic sampling of near-infrared waveforms

    NASA Astrophysics Data System (ADS)

    Keiber, Sabine; Sederberg, Shawn; Schwarz, Alexander; Trubetskov, Michael; Pervak, Volodymyr; Krausz, Ferenc; Karpowicz, Nicholas

    2016-03-01

    Access to the complete electric field evolution of a laser pulse is essential for attosecond science in general, and for the scrutiny and control of electron phenomena in solid-state physics specifically. Time-resolved field measurements are routine in the terahertz spectral range, using electro-optic sampling (EOS), photoconductive switches and field-induced second harmonic generation. EOS in particular features outstanding sensitivity and ease of use, making it the basis of time-resolved spectroscopic measurements for studying charge carrier dynamics and active optical devices. In this Letter, we show that careful optical filtering allows the bandwidth of this technique to be extended to wavelengths as short as 1.2 μm (230 THz) with half-cycle durations 2.3 times shorter than the sampling pulse. In a proof-of-principle application, we measure the influence of optical parametric amplification (OPA) on the electric field dynamics of a few-cycle near-infrared (NIR) pulse.

  17. Electro-optic and acousto-optic laser beam scanners

    NASA Astrophysics Data System (ADS)

    Heberle, Johannes; Bechtold, Peter; Strauß, Johannes; Schmidt, Michael

    2016-03-01

    Electro-optical deflectors (EOD) and acousto-optical deflectors (AOD) are based on deflection of laser light within a solid state medium. As they do not contain any moving parts, they yield advantages compared to mechanical scanners which are conventionally used for laser beam deflection. Even for arbitrary scan paths high feed rates can be achieved. In this work the principles of operation and characteristic properties of EOD and AOD are presented. Additionally, a comparison to mirror based mechanical deflectors regarding deflection angles, speed and accuracy is made in terms of resolvable spots and the rate of resolvable spots. Especially, the latter one is up to one order of magnitude higher for EOD and AOD systems compared to conventional systems. Further characteristic properties such as response time, damage threshold, efficiency and beam distortions are discussed. Solid state laser beam deflectors are usually characterized by small deflection angles but high angular deflection velocities. As mechanical deflectors exhibit opposite properties an arrangement of a mechanical scanner combined with a solid state deflector provides a solution with the benefits of both systems. As ultrashort pulsed lasers with average power above 100 W and repetition rates in the MHz range have been available for several years this approach can be applied to fully exploit their capabilities. Thereby, pulse overlap can be reduced and by this means heat affected zones are prevented to provide proper processing results.

  18. Material optimization for electro-optic modulation and cascading

    NASA Astrophysics Data System (ADS)

    Reyes, Jorge; Darracq, Bruno; Canva, Michael; Blanchard-Desce, Mireille H.; Chaput, Frederic; Lahlil, Khalid; Boilot, Jean-Pierre; Brun, Alain; Levy, Yves

    2000-11-01

    A large effort has been devoted to the preparation of organic polymeric materials for electro-optic modulation and more recently for cascading based processes. These materials contain push-pull chromophores either incorporated as guest in a high Tg polymeric matrix (doped polymers) or grafted onto the polymeric matrix. These systems present several advantages but require significant improvement at the molecular level- by designing optimized chromophores with very large molecular figure of merit specific to each application targeted. The sol-gel route was used to prepare hybrid organic-inorganic materials, for the fabrication of amorphous solids of various shapes (bulk, think films...). The results obtained on optimized chromophore-doped poled thin films emphasize that intermolecular interactions have to be taken into account, as already pointed out by Dalton and coworkers. By combining a molecular engineering strategy for getting large molecular figure of merit and by controlling the intermolecular dipole-dipole interactions via both tuning the push-pull chromophore concentration and the incorporation screening carbazole moieties in high concentration. This strategy allows us to obtain a r33 of about 50 pm/V at 831 nm for a new optimized chromophore structure. In parallel, these thin films are being processed to be used as passive components for integrated optics.

  19. Quadratic electro-optic effect in the nonconjugated conductive polymer iodine-doped trans-polyisoprene, an organic nanometallic system

    NASA Astrophysics Data System (ADS)

    Shrivastava, S.; Thakur, M.

    2011-05-01

    Thin films of 1,4-trans-polyisoprene have been prepared on various substrates from toluene solution and characterized using Fourier transform infrared (FTIR) spectroscopy, optical absorption spectroscopy and X-ray diffraction before and after doping with iodine. The optical absorption spectrum at low doping shows two peaks: one at 4.2 eV and the other at 3.2 eV. X-ray diffraction indicates an increase of (111) and (122) peak intensities upon doping. Quadratic electro-optic measurements have been made using field-induced birefringence. The Kerr coefficients as measured (3.5×10 -10 m/V 2 at 633 nm and 2.5×10 -10 m/V 2 at 1.55 μm) are exceptionally large, and they have been attributed to the subnanometer-size metallic domains formed upon doping and charge transfer.

  20. Bandwidth enhancement of electro-optic field sensing using photonic down-mixing with harmonic sidebands.

    PubMed

    Lee, Dong-Joon; Whitaker, John F

    2008-09-15

    We demonstrate that harmonic sidebands of an electro-optic modulator's driving frequency can be used as the local oscillator in a photonic down-mixing process in order to significantly enhance the bandwidth of near-field, electro-optic, microwave measurements. The creation of second- and third-order-harmonic modulation sidebands on a laser-diode output are described, with heterodyne down-conversion of microwave signals taking place within an electro-optic sensor crystal. The measurement bandwidth of an electro-optic microwave probe can thus be enhanced by as much as a factor of three with respect to the use of conventional, fundamental-harmonic sidebands. Carrier-sideband analysis from the measured optical spectrum indicates that millimeter-wave-frequency local-oscillator sidebands can be created using a Ku-band electro-optic modulator and that the electro-optic-signal-modulation depth can be enhanced by suppressing the light-beam carrier component. Transverse near-field distributions from high frequency patch antennas are extracted using both second- and third-order-harmonic sidebands.

  1. Internal model control of a fast steering mirror for electro-optical fine tracking

    NASA Astrophysics Data System (ADS)

    Xia, Yun-xia; Bao, Qi-liang; Wu, Qiong-yan

    2010-11-01

    The objective of this research is to develop advanced control methods to improve the bandwidth and tracking precision of the electro-optical fine tracking system using a fast steering mirror (FSM). FSM is the most important part in this control system. The model of FSM is established at the beginning of this paper. Compared with the electro-optical fine tracking system with ground based platform, the electro-optical fine tracking system with movement based platform must be a wide bandwidth and a robustness system. An advanced control method based on internal model control law is developed for electro-optical fine tracking system. The IMC is an advanced algorithm. Theoretically, it can eliminate disturbance completely and make sure output equals to input even there is model error. Moreover, it separates process to the system dynamic characteristic and the object perturbation. Compared with the PID controller, the controller is simpler and the parameter regulation is more convenient and the system is more robust. In addition, we design an improved structure based on classic IMC. The tracking error of the two-port control system is much better than which of the classic IMC. The simulation results indicate that the electro-optical control system based on the internal model control algorithm is very effective. It shows a better performance at the tracing precision and the disturbance suppresses. Thus a new method is provided for the high-performance electro-optical fine tracking system.

  2. Continued Development of a Planetary Imaging Fourier Transform Spectrometer (PIFTS)

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.

    2002-01-01

    This report describes continued efforts to evaluate a breadboard of a Planetary Imaging Fourier Transform Spectrometer (PIFTS). The PIFTS breadboard was developed under prior PIDDP funding. That effort is described in the final report for NASA Grant NAG5-6248 and in two conference papers (Sromovsky et al. 2000; Revercomb et al. 2000). The PIFTS breadboard was designed for near-IR (1-5.2 micrometer imaging of planetary targets with spectral resolving powers of several hundred to several thousand, using an InSb detector array providing at least 64x64 pixels imaging detail. The major focus of the development effort was to combine existing technologies to produce a small and low power design compatible with a very low mass flyable instrument. The objective of this grant (NAG5-10729) was further characterization of the breadboard performance, including intercomparisons with the highly accurate non-imaging Advanced Emitted Radiance Interferometer (AERI) (Revercomb et al. 1994; Best et al. 1997).

  3. Optical Fourier techniques for medical image processing and phase contrast imaging.

    PubMed

    Yelleswarapu, Chandra S; Kothapalli, Sri-Rajasekhar; Rao, D V G L N

    2008-04-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy.

  4. Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Technical Reports Server (NTRS)

    Best, F. A.; Revercomb, H. E.; Bingham, G. E.; Knuteson, R. O.; Tobin, D. C.; LaPorte, D. D.; Smith, W. L.

    2001-01-01

    The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has been developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.

  5. Survey of two-dimensional electro-optical X-ray detectors

    NASA Astrophysics Data System (ADS)

    Gruner, Sol M.; Milch, James R.; Reynolds, Geo T.

    Electro-optical devices offer a flexible and modular approach to quantitative imaging X-ray detection. Such a detector typically consists of an energy converter coupled to a gain element which is followed by a readout device. This may, for example, be configured by coupling a scintillating screen to an image intensifier which is read by a TV camera. The large variety of commercially available energy converters, gain elements, and readout devices serve to limit the design problem to one of selecting the components, coupling them together and designing the appropriate electronics and software. The design criteria follow most directly from the nature of the particular X-ray detection problem being considered which, in turn, dictates which of two general modes the detector shall be operated in. In the photon counting mode, the gain element is of sufficient magnitude that each absorbed X-ray transmits a large and clearly recognizable signal to the readout device. This signal is real-time detected and allocated to memory. This has the advantages of high spatial resolution and high noise immunity; it has the disadvantage of a low maximum count rate. In another mode, termed the analog mode, the gain element is adjusted so that an individual x-ray makes a contribution comparable with the per-picture element readout noise on a readout device capable of integrating the signal from many X-rays. The magnitude of the integrated signal corresponds to the number of quanta incident. Since X-rays are not individually processed extremely high count rates can be accommodated. The primary disadvantages here is that the readout time lowers the device duty cycle. Hybrid modes are possible. The survey will emphasize the characteristics and principal limitations of the available components as applied toward synchrotron X-ray detection. Methods of coupling the components and modes of reading the final signal will be discussed. The literature pertaining to electro-optical devices that have

  6. Electro-Optical Payloads and CubeSat Missions for Earth and Space Science

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Marchant, A.

    2015-12-01

    Small, low-power electro-optical scientific payloads are required if small satellites and CubeSats are to become significant enablers of new science. Although these are just one class of scientific instrumentation they have often played a key role in many scientific discoveries. The most significant advances in Earth and space science, over the next decade are most likely to derive from new observational techniques. The connection between advances in scientific understanding and technology has historically been demonstrated across many disciplines and time. In this paper we present a review of three such sensors and the associated CubeSat missions and scientific investigation enabled. Each mission involves a relatively recently developed small electro-optical sensor which is tightly integrated with the small satellite bus in to a "Science Craft". The first is the NSF funded OPAL mission which makes use of a high-sensitivity, hyper-spectral limb imager to observe the daytime O2 A-band (near 762nm) emission. These observations allow the temperature of the lower thermosphere to be determined and address questions on the energy budget and response of the thermosphere to geomagnetic storms. The second is the MeNISCuS mission Methane Nadir Imaging Spatial-heterodyne CubeSat Spectrometer which is a demonstration of the volume holographic grating (VHG) spatial heterodyne spectrometer developed under a NASA-sponsored STTR contract. Methane (CH4) is the second most important greenhouse gas and although burning methane produces less CO2 than oil or coal, methane's global warming potential is about ~30 times higher. As a result, if methane leak rates are greater than 3-5%, the warming potential will outweigh the benefit of reduced CO2. The sources of such leaks can be discovered using missions like MeNISCuS. The third instrument and mission is SEDI a CubeSat scaled Fabry-Perot spectrometer focused on a narrow band around the OI(630) red line for observing winds in the

  7. Electro-optic microdisk RF-wireless receiver

    NASA Astrophysics Data System (ADS)

    Hossein-Zadeh, Mani

    A self-homodyne photonic receiver for transmitted carrier wireless links is demonstrated. The key innovations in this photonic RF-receiver are the design and implementation of a resonant LiNbO3 microdisk electro-optic modulator and novel RF down-conversion techniques that exploit the sensitivity of the microdisk for efficient RF down-conversion in the optical domain. By careful RF and optical design, simultaneous photonic and RF resonance is achieved in a LiNbO3 microdisk modulator resulting in a sensitivity of -80 dBm at 14.6 GHz. Two photonic RF down-conversion techniques are proposed to extract the baseband information from a RF signal that has a transmitted carrier modulation format. In the first approach we use an optical filter to modify the optical output spectrum of the microdisk modulator. Photodetection of the subsequent optical signal generates the baseband photocurrent. In the second technique the RF carrier and sidebands are mixed through nonlinear optical modulation in the microdisk and the down-converted signal is detected using a photodetector. In both cases the bandwidth of the photodetector and electronic circuitry are limited to that of the baseband signal. Receiver operation is demonstrated by demodulating up to 100 Mb/s digital data from a 14.6 GHz RF carrier frequency. Power efficiency, small volume, light weight and elimination of high-speed electronic components are the main specifications of the photonic RF-receiver that make it useful for applications like wireless LANs, fiber-feed backbone networks or video distribution systems.

  8. Recent progress of electro-optic polymers for device applications

    SciTech Connect

    Jen, A.K.Y.; Yang, Q.; Marder, S.R.; Dalton, L.R.; Shu, C.F.

    1998-07-01

    Electro-optic (E-O) polymers have drawn great interest in recent years because of their potential applications in photonics devices such as high speed modulators and switches, optical data storage and information processing. In order to have suitable materials for device fabrication, it is essential to design and develop polymeric material systems (active and passive polymers) with matched refractive indices, large E-O coefficients, good temporal and photochemical stability. The E-O response of an active polymer commonly arises from the electric field induced alignment of its second-order nonlinear optical (NLO) chromophore, either doped as a guest/host system or covalently bonded as a side-chain. Because of the strong interaction among the electric dipoles, the poled structure is in a meta-stable state; the poled NLO chromophores which possess large dipole moment will tend to relax back to the randomly oriented state. As a result, the stability of the poled structure strongly depends on the rigidity of the overall material system. As it might be expected, the continuous increases of the rigidity and T{sub g} of poled polymers imposes constraints on the selection of suitable chromophores that can survive the high-temperature poling and processing conditions. To circumvent this problem, the authors have developed a series of chromophores that possess conformation-locked geometry and perfluoro-dicyanovinyl-substituted electron-accepting group which demonstrate both good thermal stability and nonlinearity. This paper provides a brief review of these highly efficient and thermally stable chromophores and polymers for device applications.

  9. Diagnostic ultrasound tooth imaging using fractional Fourier transform.

    PubMed

    Harput, Sevan; Evans, Tony; Bubb, Nigel; Freear, Steven

    2011-10-01

    An ultrasound contact imaging method is proposed to measure the enamel thickness in the human tooth. A delay-line transducer with a working frequency of 15 MHz is chosen to achieve a minimum resolvable distance of 400 μm in human enamel. To confirm the contact between the tooth and the transducer, a verification technique based on the phase shift upon reflection is used. Because of the high attenuation in human teeth, linear frequency-modulated chirp excitation and pulse compression are exploited to increase the penetration depth and improve the SNR. Preliminary measurements show that the enamel-dentin boundary creates numerous internal reflections, which cause the applied chirp signals to interfere arbitrarily. In this work, the fractional Fourier transform (FrFT) is employed for the first time in dental imaging to separate chirp signals overlapping in both time and frequency domains. The overlapped chirps are compressed using the FrFT and matched filter techniques. Micro-computed tomography is used for validation of the ultrasound measurements for both techniques. For a human molar, the thickness of the enamel layer is measured with an average error of 5.5% after compressing with the FrFT and 13.4% after compressing with the matched filter based on the average speed of sound in human teeth.

  10. Fourier-based interpolation bias prediction in digital image correlation.

    PubMed

    Su, Yong; Zhang, Qingchuan; Gao, Zeren; Xu, Xiaohai; Wu, Xiaoping

    2015-07-27

    Based on the Fourier method, this paper deduces analytic formulae for interpolation bias in digital image correlation, explains the well-known sinusoidal-shaped curves of interpolation bias, and introduces the concept of interpolation bias kernel, which characterizes the frequency response of the interpolation bias and thus provides a measure of the subset matching quality of the interpolation algorithm. The interpolation bias kernel attributes the interpolation bias to aliasing effect of interpolation and indicates that high-frequency components are the major source of interpolation bias. Based on our theoretical results, a simple and effective interpolation bias prediction approach, which exploits the speckle spectrum and the interpolation transfer function, is proposed. Significant acceleration is attained, the effect of subset size is analyzed, and both numerical simulations and experimental results are found to agree with theoretical predictions. During the experiment, a novel experimental translation technique was developed that implements subpixel translation of a captured image through integer pixel translation on a computer screen. Owing to this remarkable technique, the influences of mechanical error and out-of-plane motion are eliminated, and complete interpolation bias curves as accurate as 0.01 pixel are attained by subpixel translation experiments.

  11. Imaging Fourier Transform Spectro-polarimetry in the Infrared

    NASA Astrophysics Data System (ADS)

    Jurgenson, C. A.; Stencel, R. E.; Stout, J.

    2004-12-01

    Imaging spectro-polarimetry has the capability to trace polarization changes in dust grains throughout an extended region of interest. An instrument that has the capability to achieve moderately high resolution (R = 2000 at 10 microns) via a stepping Fourier transform spectrometer, while preserving imaging polarimetry capabilities (TNTCAM2, Jurgenson et al. 2003), is set to achieve first light during early 2005. Motion control of the interferometer, as well as array control/readout is accomplished via an FPGA card programmed in LabVIEW(c). Mid-IR polarization studies are useful in approximating grain shapes and sizes in dusty environments. Correlation studies between mid and near-IR features can be used to test the core-mantle arrangement of grain growth. Polarization analysis is currently only possible between 8-13 microns, but the interferometer, as well as TNTCAM2, can operate at selected bandpasses in the near-IR region. A wire grid and waveplate would need to be purchased for work in the near-IR. Laboratory calibration results, both spectral and polarization, are reported. We are seeking collaborators in shared-risk science with this instrument, so please contact the authors if interested. Sigma Xi Grants In Aid of Research as well as the estate of William Herschel Womble provided funding for this endeavor.

  12. Electric field induced biaxiality and the electro-optic effect in a bent-core nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Nagaraj, Mamatha; Panarin, Y. P.; Manna, U.; Vij, J. K.; Keith, C.; Tschierske, C.

    2010-01-01

    We report the observation of a biaxial nematic phase in a bent-core molecular system using polarizing microscopy, electro-optics, and dielectric spectroscopy, where we find that the biaxiality exists on a microscopic scale. An application of electric field induces a macroscopic biaxiality and in consequence gives rise to electro-optic switching. This electro-optic effect shows significant potential in applications for displays due to its fast high-contrast response. The observed electro-optic switching is explained in terms of the interaction of the ferroelectric clusters with the electric field.

  13. Organic-based electro-optic modulators for microwave photonic applications

    NASA Astrophysics Data System (ADS)

    Eng, David

    As cutting-edge microwave photonic systems with higher complexity and stringent device requirement are being developed, the demand higher performance modulators with lower drive voltages and higher bandwidth is beginning to overtake the physical limitations of existing modulators based in LiNbO3. To address this growing demand, groundbreaking work in the field of organic electro-optic materials has been achieved over the past 10--15 years that has resulted in materials with electro-optic coefficients up to 10 times that of LiNbO3 and with demonstrated response times into the THz regime. This dissertation details work towards developing low drive-voltage, high bandwidth organic-based electro-optic modulators to support next generation microwave photonic systems. Initial efforts were focused on designing an organic electro-optic material based low frequency phase modulator and developing a fabrication procedure that successfully integrates the material without compromising its electro optic activity. Additionally a procedure for inducing the high electro-optic activity in the waveguide core through a process known as 'poling' was developed. The phase modulators were then characterized to confirm the expected high electro-optic activity and correspondingly low drive voltages. To transition from low frequency modulation to broadband operation it was necessary to gather some dielectric information of the waveguide materials for RF design. Because traditional RF dielectric constant measurements assume thick substrates on the order of 100s of microns, a modified microstrip ring resonator technique was developed to measure the dielectric constant of thin, polymer waveguide films on the order of 10 mum out to 110 GHz. A high frequency traveling wave microstrip modulator was then designed and optimized for operation up to 50 GHz, and efforts were turned towards RF packaging of the microstrip modulators for practical utilization and integration. To feed the RF signals a

  14. Numerical Modeling and Analysis of Optical Response of Electro-optic Modulators

    SciTech Connect

    Hussein, Y

    2004-04-14

    This paper presents an analysis of a LiNbO{sub 3} electro-optic modulator using the Finite Difference Time Domain (FDTD) technique, and also a new and efficient multiresolution time-domain technique for fast and accurate modeling of photonic devices. The electromagnetic fields computed by FDTD are coupled to standard electro-optic relations that characterize electro-optic interactions. This novel approach to LiNbO{sub 3} electro-optic modulators using a coupled FDTD technique allows for previously unattainable investigations into device operating bandwidth and data transmission speed. On the other hand, the proposed multiresolution approach presented in this paper solves Maxwell's Equations on nonuniform self-adaptive grids, obtained by applying wavelet transforms followed by hard thresholding. The developed technique is employed to simulate a coplanar waveguide CPW, which represents an electro-optic modulator. Different numerical examples are presented showing more than 75% CPU-time reduction, while maintaining the same degree of accuracy of standard FDTD techniques.

  15. Structural and metric correlation of electro-optical and radar generated tracks

    NASA Astrophysics Data System (ADS)

    Kovalerchuk, Boris

    2007-04-01

    Integration of electro-optical and radar generated tracks is critical for identifying accurate time and space position information in target tracking and providing a single integrated picture (SIP) of the dynamic situation. This paper proposes a new, robust, real-time algorithm to (i) correctly correlate data from several sensors and the existing system track, (ii) improve target tracking accuracy and (iii) identify when the data represent new tracks. The proposed algorithm uses metric data, linear, and area features extracted from optical and radar images. The major novelty of the algorithm is in use of robust and affine invariant structural relations built on the features for accurate correlation. These features are combined with intelligent adaptation of Kalman filter using Neural Networks. A proposed measure of confidence with the correlation decision is based on both structural and metric similarities of tracks to estimate both bias and random errors. The similarities are based on concepts from the abstract algebraic systems, generalized Gauss-Markov stochastic processes, and Kalman filters for n-dimensional time series that explicitly model measurement dependence on k previous measurements, M(t/t-1,t-2,...,t-k). These techniques are naturally combined with the hierarchical matching approach to increase the overall track accuracy. The proposed approach and algorithm for track correlation/matching is suitable for both centralized and distributed computing architecture.

  16. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device

    PubMed Central

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  17. Pigtailed electro-optic probes for vectorial electric field mapping

    NASA Astrophysics Data System (ADS)

    Warzecha, Adriana; Gaborit, Gwenaël; Ruaro, Mickael; Duvillaret, Lionel; Lassere, Jean-Louis

    2010-04-01

    Electro-optic measurement (EO) constitutes an efficient technique to characterize electrical (E) fields : indeed, the Pockel's effect properties (linear modification of refractive indices of some non-centrosymetric crystals induced by the E-field)1 leads to a vectorial measurement. Thus, it allows to map the E-field vector and its transient evolution, either in free space or inside guiding structures. Pigtailed EO sensors are naturally becoming a reliable and consistent mean of characterization for many applications, e.g. high power microwaves (HPM), electromagnetic interference (EMI), on chip diagnostic, bio-electromagnetism (e.g. influence of mobile phones on the human body). Even if these non-invasive sensors provide a greater temporal and spatial resolution (femtosecond and sub-millimeter, respectively) than commonly used sensors (antennas, bolometers), it remains temperature dependant and quite low sensitive. EO probes are based on the modification of a laser beam (either its polarization, phase or amplitude) crossing an EO crystal. We demonstrate here the last developments and improvements for EO probes as well as for whole EO setups, exploiting polarization state or amplitude modulation. The sensor is constituted by a polarization maintaining (PM) fiber carrying the beam to the crystal and taking it back once modulated, gradient index lense(s) managing the shape of the beam, half or quarter wave plate controlling the input and output polarizations and a crystal (either anisotropic: LiTaO3, LiNb03, DAST, KTP or isotropic : ZnTe, InP) converting the E-field into a modulation. Our probes are fully dielectric and cylindrically shaped (length ~ 1 cm and diameter ~ 2-3 mm). The setup is made of a 1.5 μm DFB laser, some photodiodes (low and high speed) added with a polarization state analyser arrangement in case of EO probes based on polarization state modulation scheme. The measurement bench is fully automated and compensate/measure the temperature deviation

  18. Linear electro-optic properties of YCa4O(BO3)3

    NASA Astrophysics Data System (ADS)

    Adams, J. J.; Ebbers, C. A.

    2003-08-01

    We have characterized the effective linear electro-optic coefficients of YCa4O(BO3)3 (YCOB) relative to KH2PO4 and KD2PO4 at 632.8 nm. We measured a maximum reff value of 10.8 +/- 1.4 pm/V for YCOB in a transverse electric field configuration for propagation along the X or the α dielectric axis, with the electric field applied along the Z or the γ dielectric axis. We also found effective coefficients of 10.7 +/- 1.0 and 3.4 +/- 0.4 pm/V for YCOB in longitudinal configurations. The remaining values of reff for various transverse applied voltages were found to be less than 3 pm/V. The excellent thermomechanical properties of this crystal, coupled with moderate electro-optic coefficients, make YCOB and its isomorphs potential candidates for use as high-average-power electro-optic switches.

  19. Electro-optic dual-comb interferometry over 40  nm bandwidth.

    PubMed

    Durán, Vicente; Andrekson, Peter A; Torres-Company, Víctor

    2016-09-15

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ∼40  nm, measured within 10 μs at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  20. Electro-optic dual-comb interferometry over 40  nm bandwidth.

    PubMed

    Durán, Vicente; Andrekson, Peter A; Torres-Company, Víctor

    2016-09-15

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ∼40  nm, measured within 10 μs at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy. PMID:27628354

  1. Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance

    SciTech Connect

    Pitchappa, Prakash; Pei Ho, Chong; Lin, Yu-Sheng; Lee, Chengkuo; Kropelnicki, Piotr; Singh, Navab; Huang, Chia-Yi

    2014-04-14

    We experimentally demonstrate a micro-electro-mechanically tunable metamaterial with enhanced electro-optical performance by increasing the number of movable cantilevers in the symmetrical split ring resonator metamaterial unit cell. Simulations were carried out to understand the interaction of the incident terahertz radiation with out-of-plane deforming metamaterial resonator. In order to improve the overall device performance, the number of released cantilever in a unit cell was increased from one to two, and it was seen that the tunable range was doubled and the switching contrast improved by a factor of around five at 0.7 THz. This simple design approach can be adopted for a wide range of high performance electro-optical devices such as continuously tunable filters, modulators, and electro-optic switches to enable future photonic circuit applications.

  2. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    SciTech Connect

    Maxwell, Timothy John

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  3. Diffraction from tunable periodic structures: application for the determination of electro-optic coefficients.

    PubMed

    Yang, X; Wood, L T; Miller, J H

    2001-11-01

    We discuss a method for measuring electro-optic coefficients by measuring diffraction from a tunable grating. The method involves measuring the changes in the diffraction pattern of a reflection grating, where applied electric fields of alternating direction induce changes in the index of refraction through the electro-optic effect. For certain geometries, these applied fields cause period-doubling effects that produce new peaks in the diffraction pattern. Numerically calculated diffraction patterns are presented for the assumptions of both homogeneous and inhomogeneous fields. Peak splitting, as a function of both the number of slits illuminated and the induced change in the index of refraction, is observed and discussed. Finally, the usefulness of our method for the measurement of electro-optic coefficients is discussed. PMID:18364844

  4. Non-linear electro-optical effects in the study of the helical smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Nowicka, K.; Kuczyński, W.

    2016-04-01

    Measurements of the non-linear electro-optical effects for the well-known prototype liquid crystal material (MHPOBC) are presented. The method to identify liquid crystalline phases and to determine temperatures of phase transitions based on the analysis of the second harmonic component of electro-optical response spectra is used. Applying that method, the values of the frequency (?) at which the second harmonic electro-optic response (EOR) possesses an extremum are determined for each smectic phase. We suggest that this characteristic frequency correspond to the phase-type mode processes. Furthermore, we show that the usually neglected results on heating can be useful in discussions of dynamical behaviour of second harmonic EOR in case of smectic phases.

  5. Space Qualification Issues in Acousto-optic and Electro-optic Devices

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta

    2007-01-01

    Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.

  6. Electro-optic dual-comb interferometry over 40 nm bandwidth

    NASA Astrophysics Data System (ADS)

    Durán, Vicente; Andrekson, Peter A.; Torres-Company, Víctor

    2016-09-01

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  7. A Community Format for Electro-Optical Space Situational Awareness (EOSSA) Data Products

    NASA Astrophysics Data System (ADS)

    Payne, T.; Mutschler, S.; Meiser, D.; Crespo, R.; Shine, N.

    2014-09-01

    In this paper, we present a flexible format for compiling radiometry/photometry data with pertinent information about the collections into a file for use by the Space Situational Awareness (SSA) community. With the increase in the number of Electro-Optical (EO) sensors collecting photometric, radiometric, and spectroscopic data on man-made Resident Space Objects (RSOs) for SSA purposes, the EO SSA community of interest and stakeholders in SSA require a file format protocol for reporting the extracted information used for SSA from these datasets. This EOSSA file format provides a foundation to enable data providers to format their processed data. The objective of this format is to handle a variety of photometric measurements from multiple sensors and provide fields for specific parameters containing crucial data about the object, the sensor, the collection, and the processing. The chosen formatting type for EOSSA is the Flexible Image Transport System (FITS). It is maintained by the International Astronomical Union and NASA/GSFC. FITS is the standard data format used in astronomy and has extensions and features that make it easy to transport and archive large scientific data sets. There are types of FITS files for multi-dimensional arrays, such as images, or hyperspectral image cubes, and headers and tables for data extracted from the images, and descriptive information about the data and sensor. The FITS binary table extension is the most efficient data structure to use for the purposes of SSA with respect to ease of programming, computational speed, and storage space. A hierarchical data format (HDF5) has many of these features; however, its biggest drawback to our purpose is that the files are large and require a lot of storage space. Secondly, no standardized HDF5 file structure has been developed and there is no high level application programming interface (API).

  8. Optical Fourier techniques for medical image processing and phase contrast imaging

    PubMed Central

    Yelleswarapu, Chandra S.; Kothapalli, Sri-Rajasekhar; Rao, D.V.G.L.N.

    2008-01-01

    This paper briefly reviews the basics of optical Fourier techniques (OFT) and applications for medical image processing as well as phase contrast imaging of live biological specimens. Enhancement of microcalcifications in a mammogram for early diagnosis of breast cancer is the main focus. Various spatial filtering techniques such as conventional 4f filtering using a spatial mask, photoinduced polarization rotation in photosensitive materials, Fourier holography, and nonlinear transmission characteristics of optical materials are discussed for processing mammograms. We also reviewed how the intensity dependent refractive index can be exploited as a phase filter for phase contrast imaging with a coherent source. This novel approach represents a significant advance in phase contrast microscopy. PMID:18458764

  9. Optical imaging process based on two-dimensional Fourier transform for synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei

    2013-09-01

    The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.

  10. Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO₂ multilayer slot waveguide modulators.

    PubMed

    Jouane, Y; Chang, Y-C; Zhang, D; Luo, J; Jen, A K-Y; Enami, Y

    2014-11-01

    We investigated the electrical properties and optical quality of two layers a titanium dioxide (TiO₂) selective layer and a sol-gel silica cladding layer for use as coating layers for nonlinear optic (NLO) polymers in electro-optic (EO) polymer/TiO₂ multilayer slot waveguide modulators. We used a simple ellipsometric reflective technique developed by Teng and Man to measure the electro-optic (EO) coefficients of poled thin films of an EO polymer in an EO multilayer device. The Pockels coefficient was enhanced up to 226 and 198 pm/V at wavelengths of 1.31 and 1.55 μm, respectively, when optimally poled with TiO₂ and a sol-gel silica cladding. PMID:25401916

  11. Silicon-integrated thin-film structure for electro-optic applications

    DOEpatents

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  12. Characterization of electro-optic polymers using a Teng-Man setup

    NASA Astrophysics Data System (ADS)

    Yang, Naixin

    Electro-optic characterization of polymer matrix perfluorocyclobutyl (PFCB) blend system with chromophore C4 tricyanovinylidenediphenylaminobenzene (TCVDPA), and enchained system with chromophore C2 (propanedinitrile) are shown in this thesis. The poling procedures of these materials are developed. The Teng-Man instrument is used to do the material electro-optical coefficient r33 measurement. The Teng-Man setup has been calibrated with a z-cut LiNbO3 sample and has been done a blind test with an well studied polymer material sample that is proprietary to Intel. The calibration results agree well with the literature value.

  13. Electro-optic architecture for servicing sensors and actuators in advanced aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.

    1989-01-01

    A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.

  14. A study of nonlinear optical polymers for use in ultrafast electro-optic sampling measurements

    NASA Astrophysics Data System (ADS)

    Deibel, Jason Allen

    Recently, electro-optic sampling (EOS), which utilizes a combination of ultrafast laser technology and the Pockels effect, has been refined into a fiber-based system that benefits from an enhanced positioning ability and measurement flexibility. EOS would still be improved further with an increase in field sensitivity and a decrease in capacitive loading (invasiveness) for near-field and integrated circuit measurements of ultrahigh bandwidth devices. Electro-optic polymers, with higher electro-optic coefficients and lower dielectric permittivities would address these two issues. This dissertation focuses on a theoretical and experimental study of the potential viability of electro-optic polymers as Electro-Optic Sampling probe materials. Finite element method simulations of EOS probe materials were performed to study the effect of the material's dielectric permittivity on performance. These simulations found that the sensitivity of an EOS probe material increases while its invasiveness decreases as its dielectric permittivity is decreased. Simulations of polymer EOS probes suggest that they would be ideal. Numerical analysis of the polymer's index ellipsoid was completed in order to study a polymer probe's potential for cross-polarization suppression capability. These results showed that an electro-optic polymer could be capable of isolating tangential electric field components, but not normal field components. A variety of electro-optic polymers were poled and tested as EOS field sensors. Poly(gamma-benzyl-L-glutamate) (PBLG) was poled using the Solution Evaporation Electric-field Poling method, producing a film with an electro-optic coefficient (r33) of 1.62 pm/V. This is believed to be the highest reported value for a poled PBLG film to date greater than that for PBLG poled by thermal poling techniques by a factor of over 30. A fiber-mounted polymer EOS electric field sensor was constructed and tested using a contact electric-field poled film of copoly

  15. Dual frequency liquid crystal devices for infrared electro-optical applications

    NASA Astrophysics Data System (ADS)

    Gu, Dong-Feng; Winker, Bruce K.; Taber, Donald B.; Cheung, Jeffrey T.; Lu, Yiwei; Kobrin, Paul H.; Zhuang, Zhiming

    2002-12-01

    A dual frequency liquid crystal (DFLC) can be field-driven towards its unperturbed state, which dramatically reduces the overall electro-optical response time. DFLC materials with sub-millisecond switching speed are being used in infrared electro-optical devices at wavelengths up to 3 microns. The performance of devices such as tunable half-wave plates and optical phased arrays in agile beam steering devices, and wavefront controllers for adaptive optics are described. Device issues discussed include drive schemes, field of view, reflective direct drive backplane, infrared-transparent conductors, and antireflection coatings.

  16. Design of Mach-Zehnder interference modulators composed of enhanced electro-optic active polymers

    NASA Astrophysics Data System (ADS)

    Xu, Guangming; Liu, Jialei; Ren, Haohui; Fan, Guofang; Zhen, Zhen; Liu, Xinhou

    2014-03-01

    Organic electro-optic polymer has low dielectric constant and high electro-optic coefficient, which is one of the perfect materials for making modulators with low loss and high bandwidth. In this paper, we synthesized a novel chromophore based on the 4-(diethylamino) salicylaldehyde electron donor and the rigid isolated benzyl group. Based on the innovative chormophore, we designed low loss Mach-Zehnder interference modulators with 3dB bandwidth 50GHz using tapered waveguides and coplanar waveguide electrodes as well as micro-strip electrodes. Performance parameters of the modulators were detailed analyzed and two microwave driven electrodes were compared.

  17. Concept of electro-optical sensor module for sniper detection system

    NASA Astrophysics Data System (ADS)

    Trzaskawka, Piotr; Dulski, Rafal; Kastek, Mariusz

    2010-10-01

    The paper presents an initial concept of the electro-optical sensor unit for sniper detection purposes. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. Being a part of a larger system it should contribute to greater overall system efficiency and lower false alarm rate thanks to data and sensor fusion techniques. Additionally, it is expected to provide some pre-shot detection capabilities. Generally acoustic (or radar) systems used for shot detection offer only "after-the-shot" information and they cannot prevent enemy attack, which in case of a skilled sniper opponent usually means trouble. The passive imaging sensors presented in this paper, together with active systems detecting pointed optics, are capable of detecting specific shooter signatures or at least the presence of suspected objects in the vicinity. The proposed sensor unit use thermal camera as a primary sniper and shot detection tool. The basic camera parameters such as focal plane array size and type, focal length and aperture were chosen on the basis of assumed tactical characteristics of the system (mainly detection range) and current technology level. In order to provide costeffective solution the commercially available daylight camera modules and infrared focal plane arrays were tested, including fast cooled infrared array modules capable of 1000 fps image acquisition rate. The daylight camera operates as a support, providing corresponding visual image, easier to comprehend for a human operator. The initial assumptions concerning sensor operation were verified during laboratory and field test and some example shot recording sequences are presented.

  18. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.

    1987-01-01

    A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  19. Imaging the sun in hard x rays using Fourier telescopes

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1993-01-01

    For several years, solar flares have been observed with a variety of instruments confirming that tremendous amounts of energy are locally stored in the solar magnetic field and then rapidly released during the life of the flare. In concert with observations, theorists have attempted to describe the means by which these energetic events occur and evolve. Two competing theories have emerged and have stood the test of time. One theory describes the flare in terms of nonthermal, electron beam injection into a thick target while the other uses a thermal approach. Both theories provide results which are reasonably consistent with current observations; but to date, none have been able to provide conclusive evidence as to the validity of either model. Imaging on short time scales (1 s) and/or small size scales (1 arc s) should give definitive answers to these questions. In order to test whether a realistic telescope can indeed discriminate between models, we construct model sources based upon the thermal and the nonthermal models and calculate the emission as a function of time and energy in the range from 10 to 100 keV. In addition, we construct model telescopes representing both the spatial modulation collimator (SMC) and the rotating modulation collimator (RMC) techniques of observation using random photon counting statistics. With these two types of telescopes we numerically simulate the instrument response to the above two model flares to see if there are distinct x-ray signatures which may be discernable. We find that theoretical descriptions of the primary models of solar flares do indeed predict different hard x-ray signatures for 1 sec time scales and at 1-5 arc sec spatial resolution. However, these distinguishing signatures can best be observed early in the impulsive phase and from a position perpendicular to the plane of the loop. Furthermore, we find that Fourier telescopes with reasonable and currently attainable design characteristics can image these

  20. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-05-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (~30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response.

  1. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    PubMed Central

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-01-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (∼30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response. PMID:27156514

  2. Fourier transform spectrometer optimal design considerations

    NASA Astrophysics Data System (ADS)

    Macoy, Norman H.

    1999-10-01

    The systems engineering aspects of evolving and developing the optimal design for Fourier transform interferometers are presented in this paper. A Fourier transform spectrometer (FTS) is a versatile electro-optical sensor for remote sensing, hyperspectral imaging, and laboratory chemical kinetics. Principal features include broad spectral coverage and high spectral resolution (Fellgate advantage) and high throughput (Jacquinot advantage). Due to its versatility, across various requirements, e.g. (resolution, bandwidth and aperture) sensor architecture contains an N-dimensional parametric trade matrix that needs to be readily assessed. Specifically considered are the logical steps utilized to flow down primary (customer) requirements and specifications to secondary (derived) requirements. Configurational aspects, generic trades, and parametric selections are emphasized for non-imagers as well as for imaging FTS. With an appropriately designed robust sensor, the noise equivalent spectral radiance or NE(Delta) N performance will be largely dictated by the scene and the instrument background flux. The performance will not be dictated by noise terms associated with interferogram encoding and signal handling. The mathematical formalism of interferometric error source types and photon limited design expressions are presented. The composition of these expressions are examined from the points of view of optical band limiting and some useful trade rules parametrically relating scan time and S/N to spectral resolution. For a well designed and executed interferometer, typical performance data are presented in terms of modulation index, calibrated radiometric atmospheric spectral signatures, and atmospheric spectral signatures for two spectral resolutions.

  3. Experimental characterization, evaluation, and diagnosis of advanced hybrid infrared focal plane array electro-optical performance

    NASA Astrophysics Data System (ADS)

    Lomheim, Terrence S.; Schumann, Lee W.; Kohn, Stanley E.

    1998-07-01

    High performance scanning time-delay-and-integration and staring hybrid focal plane devices with very large formats, small pixel sizes, formidable frame and line rates, on-chip digital programmability, and high dynamic ranges, are being developed for a myriad of defense, civil, and commercial applications that span the spectral range from shortwave infrared (SWIR) to longwave infrared (LWIR). An essential part in the development of such new advanced hybrid infrared focal planes is empirical validation of their electro-optical (EO) performance. Many high-reliability, high-performance applications demand stringent and near flawless EO performance over a wide variety of operating conditions and environments. Verification of focal plane performance compliance over this wide range of parametric conditions requires the development and use of accurate, flexible, and statistically complete test methods and associated equipment. In this paper we review typical focal plane requirements, the ensuing measurement requirements (quantity, accuracy, repeatability, etc.), test methodologies, test equipment requirements, electronics and computer-based data acquisition requirements, statistical data analysis and display requirements, and associated issues. We also discuss special test requirements for verifying the performance of panchromatic thermal and multispectral imaging focal planes where characterization of dynamic modulation transfer function (MTF), and point-image response and optical overload is generally required. We briefly overview focal plane radiation testing. We conclude with a discussion of the technical challenges of characterizing future advanced hybrid focal plane testing where it is anticipated that analog-to- digital conversion will be included directly on focal plane devices, thus creating the scenario of 'photons-in-to-bits- out' within the focal plane itself.

  4. Adaptive chirp-Fourier transform for chirp estimation with applications in ISAR imaging of maneuvering targets

    NASA Astrophysics Data System (ADS)

    Xia, Xiang-Gen; Wang, Genyuan; Chen, Victor C.

    2001-03-01

    This paper first reviews some basic properties of the discrete chirp-Fourier transform and then present an adaptive chirp- Fourier transform, a generalization of the amplitude and phase estimation of sinusoids (APES) algorithm proposed by Li and Stoica for sinusoidal signals. We finally applied it to the ISAR imaging of maneuvering targets.

  5. Poling and characterization of a novel organic/polymer electro-optic material

    NASA Astrophysics Data System (ADS)

    Liao, Jinkun; Tang, Xianzhong; Lu, Rongguo; Tang, Xionggui; Li, Heping; Zhang, Xiaoxia; Liu, Yongzhi

    2010-10-01

    Electro-optic organic/polymer material is important for the fabrication of polymer integrated optic-electronic devices and organic sensors. Recently, a novel organic high μβ value chromophore FFC have been synthesized by molecular design. The absorption spectrum in 400-4000 cm-1 is measured for the material, and the measurement result shows that the absorption loss is negligibly small. An organic/polymer high electro-optic activity material FFC/PSU is obtained by dissolving guest FFC (wt. 20%) and a host polysulfone (PSU) in a solvent. The resolvability of cyclohexanone for the material is satisfactory by comparison with other solvents experimentally, and the preparation of FFC/PSU thin film is ease relatively. The materiel is poled by electric field-assisted contact poling, and the near optimum poling condition is determined by adjusting poling parameters as pre-curing duration, poling temperature and poling voltage etc. The electro-optic coefficient of the material is measured as high as 130pm/V by using the widely accepted simple reflection technique. The investigation indicates that the FFC/PSU has excellent characteristics, such as high electro-optic coefficient, low absorption loss, good thermal stability and capability for withstanding the subsequent process techniques, suitable for the fabrication of high-performance integrated optic-electronic devices and sensors.

  6. Heterostructure of ferromagnetic and ferroelectric materials with magneto-optic and electro-optic effects

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin Kevin (Inventor); Jiang, Hua (Inventor); Li, Kewen Kevin (Inventor); Guo, Xiaomei (Inventor)

    2012-01-01

    A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.

  7. High-power electro-optic switch technology based on novel transparent ceramic

    NASA Astrophysics Data System (ADS)

    Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai

    2016-03-01

    A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).

  8. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in laser/electro-optics technology. Existing programs were reviewed and private sector input was sought in developing the curriculum and identifying…

  9. Development of Generalizable Educational Programs in Laser/Electro-Optics Technology: Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    The purpose of the Laser/Electro-Optics Technology (LEOT) Project was to establish a pilot educational program, develop a flexible curriculum, prepare and test instructional materials, transport the curriculum and instructional materials into other educational institutions by establishing relevant LEOT programs wherever they are needed, and to…

  10. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    The project described in this report was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in conjunction with area vocational-technical schools, the second year of a competency-based curriculum in laser/electro-optics technology. During the project, a task force of teachers from the area schools and the college…

  11. Poling study of electro-optic polymers in silicon slot waveguides

    NASA Astrophysics Data System (ADS)

    Szep, Attila; Chen, Antao; Shi, Shouyuan; Lin, Zhou; Abeysinghe, Don

    2011-03-01

    Silicon slot waveguide based Mach Zender interferometric modulators were built with electro-optic (EO) polymers in the slot as the modulated media. In order to enhance the macroscopic electro-optic effect in the polymers the molecules that provide the large polarizability need to be aligned prior to operation to match the direction of the applied modulating field. This aligning process, also called as poling process, is difficult in the slot waveguide modulators due to the unique structure and small dimensionality of the slots in the waveguides. While hybrid silicon-EO polymer modulators have been demonstrated with ultra low drive voltage, the polymer EO activity was low compared to thin film performances. We compared alternatives to enhance the poling field over the electro optic polymer and concluded that the well known surface states in silicon affect the conductivity of silicon significantly when thin silicon is used as poling electrode. A solution to this negative effect was attempted by passivating the surface with a 5 nm thin TiO2 conforming atomic layer deposition over the silicon prior to spin casting and poling the EO polymers. We achieved a factor of 2 enhancement in the polymer's electro optic activity after poling as a result and achieved a low 0.52 V*cm voltage length product in the MZ modulator we built with this technique.

  12. Giant quadratic electro-optical effect during polarization switching in ultrathin ferroelectric polymer films

    NASA Astrophysics Data System (ADS)

    Blinov, L. M.; Lazarev, V. V.; Palto, S. P.; Yudin, S. G.

    2012-04-01

    The low-frequency quadratic electro-optical effect with a maximum electro-optical coefficient of g = 8 × 10-19 m2/V2 (i.e., four orders of magnitude greater than the standard high-frequency value) has been studied in thin films of ferroelectric polymer PVDF(70%)-TrFE(30%). The observed effect is related to the process of spontaneous polarization switching, during which the electron oscillators of C-F and C-H dipole groups rotate to become parallel to the applied field. As a result, the ellipsoid of the refractive index exhibits narrowing in the direction perpendicular to the field. The field dependence of the electro-optical coefficient g correlates with that of the apparent dielectric permittivity, which can be introduced under the condition of ferroelectric polarization switching. The observed electro-optical effect strongly decreases when the frequency increases up to several hundred hertz. The temperature dependence of the effect exhibits clearly pronounced hysteresis in the region of the ferroelectric phase transition.

  13. Giant quadratic electro-optical effect during polarization switching in ultrathin ferroelectric polymer films

    SciTech Connect

    Blinov, L. M. Lazarev, V. V.; Palto, S. P.; Yudin, S. G.

    2012-04-15

    The low-frequency quadratic electro-optical effect with a maximum electro-optical coefficient of g = 8 Multiplication-Sign 10{sup -19} m{sup 2}/V{sup 2} (i.e., four orders of magnitude greater than the standard high-frequency value) has been studied in thin films of ferroelectric polymer PVDF(70%)-TrFE(30%). The observed effect is related to the process of spontaneous polarization switching, during which the electron oscillators of C-F and C-H dipole groups rotate to become parallel to the applied field. As a result, the ellipsoid of the refractive index exhibits narrowing in the direction perpendicular to the field. The field dependence of the electro-optical coefficient g correlates with that of the apparent dielectric permittivity, which can be introduced under the condition of ferroelectric polarization switching. The observed electro-optical effect strongly decreases when the frequency increases up to several hundred hertz. The temperature dependence of the effect exhibits clearly pronounced hysteresis in the region of the ferroelectric phase transition.

  14. Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    2002-01-01

    The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.

  15. Broadband hitless silicon electro-optic switch for on-chip optical networks.

    PubMed

    Lira, Hugo L R; Manipatruni, Sasikanth; Lipson, Michal

    2009-12-01

    We report on the demonstration of a broadband (60 GHz), spectrally hitless, compact (20 microm x 40 microm), fast (7 ns) electro-optical switch. The device is composed of two coupled resonant cavities, each with an independently addressable PIN diode. This topology enables operation of the switch without perturbing adjacent channels in a wavelength division multiplexing (WDM) system. PMID:20052150

  16. Bandwidth-length trade-off figures of merit for electro-optic traveling wave modulators.

    PubMed

    Ibarra Fuste, Jose A; Santos Blanco, Maria C

    2013-05-01

    Closed-form expressions explicitly relating modulation bandwidth and active length in electro-optic traveling wave modulators are presented which fully account for skin-effect electrode loss and optical-electrical wave velocities mismatch. Four operative margins have been identified where the bandwidth-length trade-off figure of merit takes simple forms.

  17. Midwave infrared imaging Fourier transform spectrometry of combustion plumes

    NASA Astrophysics Data System (ADS)

    Bradley, Kenneth C.

    A midwave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) was used to successfully capture and analyze hyperspectral imagery of combustion plumes. Jet engine exhaust data from a small turbojet engine burning diesel fuel at a low rate of 300 cm3/min was collected at 1 cm -1 resolution from a side-plume vantage point on a 200x64 pixel window at a range of 11.2 meters. Spectral features of H2O, CO, and CO2 were present, and showed spatial variability within the plume structure. An array of thermocouple probes was positioned within the plume to aid in temperature analysis. A single-temperature plume model was implemented to obtain spatially-varying temperatures and plume concentrations. Model-fitted temperatures of 811 +/- 1.5 K and 543 +/- 1.6 K were obtained from plume regions in close proximity to thermocouple probes measuring temperatures of 719 K and 522 K, respectively. Industrial smokestack plume data from a coal-burning stack collected at 0.25 cm-1 resolution at a range of 600 meters featured strong emission from NO, CO, CO2, SO 2, and HCl in the spectral region 1800-3000 cm-1. A simplified radiative transfer model was employed to derive temperature and concentrations for clustered regions of the 128x64 pixel scene, with corresponding statistical error bounds. The hottest region (closest to stack centerline) was 401 +/- 0.36 K, compared to an in-stack measurement of 406 K, and model-derived concentration values of NO, CO2, and SO2 were 140 +/- 1 ppmV, 110,400 +/- 950 ppmV, and 382 +/- 4 ppmV compared to in-stack measurements of 120 ppmV (NOx), 94,000 ppmV, and 382 ppmV, respectively. In-stack measurements of CO and HCl were not provided by the stack operator, but model-derived values of 19 +/- 0.2 ppmV and 111 +/- 1 ppmV are reported near stack centerline. A deployment to Dugway Proving Grounds, UT to collect hyperspectral imagery of chemical and biological threat agent simulants resulted in weak spectral signatures from several species. Plume

  18. Fast Fourier transformation resampling algorithm and its application in satellite image processing

    NASA Astrophysics Data System (ADS)

    Li, Zhenping

    2014-01-01

    The image resampling algorithm, fast Fourier transformation resampling (FFTR), is introduced. The FFTR uses a global function in the Fourier expansion form to represent an image, and the image resampling is achieved by the introduction of a phase shift in the Fourier expansion. The comparison with the cubic spline interpolation approach in the image resampling is presented, which shows that FFTR is more accurate in the satellite image resampling. The FFTR algorithm is also generally reversible, because both the resampled and its original images share the same Fourier spectrum. The resampling for the images with hot spots is discussed. The hot spots in an image are the pixels with the second-order derivatives that are order of magnitude larger than the average value. The images with the hot spots are resampled with the introduction of a local Gaussian function to model the hot spot data, so that the remaining data for the Fourier expansion are continuous. Its application to the infrared channel image of Geostationary Operational Environmental Satellite Imager, to mitigate a diurnally changing band co-registration, is presented.

  19. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    NASA Astrophysics Data System (ADS)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions

  20. Fourier Analysis and Structure Determination. Part II: Pulse NMR and NMR Imaging.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Uses simple pulse NMR experiments to discuss Fourier transforms. Studies the generation of spin echoes used in the imaging procedure. Shows that pulse NMR experiments give signals that are additions of sinusoids of differing amplitudes, frequencies, and phases. (MVL)

  1. Single-Grid-Pair Fourier Telescope for Imaging in Hard-X Rays and gamma Rays

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan

    2008-01-01

    This instrument, a proposed Fourier telescope for imaging in hard-x rays and gamma rays, would contain only one pair of grids made of an appropriate radiation-absorpting/ scattering material, in contradistinction to multiple pairs of such as grids in prior Fourier x- and gamma-ray telescopes. This instrument would also include a relatively coarse gridlike image detector appropriate to the radiant flux to be imaged. Notwithstanding the smaller number of grids and the relative coarseness of the imaging detector, the images produced by the proposed instrument would be of higher quality.

  2. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application. PMID:27475583

  3. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal.

    PubMed

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  4. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  5. A generalized Fourier penalty in prior-image-based reconstruction for cross-platform imaging

    NASA Astrophysics Data System (ADS)

    Pourmorteza, A.; Siewerdsen, J. H.; Stayman, J. W.

    2016-03-01

    Sequential CT studies present an excellent opportunity to apply prior-image-based reconstruction (PIBR) methods that leverage high-fidelity prior imaging studies to improve image quality and/or reduce x-ray exposure in subsequent studies. One major obstacle in using PIBR is that the initial and subsequent studies are often performed on different scanners (e.g. diagnostic CT followed by CBCT for interventional guidance); this results in mismatch in attenuation values due to hardware and software differences. While improved artifact correction techniques can potentially mitigate such differences, the correction is often incomplete. Here, we present an alternate strategy where the PIBR itself is used to mitigate these differences. We define a new penalty for the previously introduced PIBR called Reconstruction of Difference (RoD). RoD differs from many other PIBRs in that it reconstructs only changes in the anatomy (vs. reconstructing the current anatomy). Direct regularization of the difference image in RoD provides an opportunity to selectively penalize spatial frequencies of the difference image (e.g. low frequency differences associated with attenuation offsets and shading artifacts) without interfering with the variations in unchanged background image. We leverage this flexibility and introduce a novel regularization strategy using a generalized Fourier penalty within the RoD framework and develop the modified reconstruction algorithm. We evaluate the performance of the new approach in both simulation studies and in physical CBCT test-bench data. We find that generalized Fourier penalty can be highly effective in reducing low-frequency x-ray artifacts through selective suppression of spatial frequencies in the reconstructed difference image.

  6. Image watermarking extraction using Fourier domain Wiener filter

    NASA Astrophysics Data System (ADS)

    Birch, Philip; Pavlidis, Marios; Panwar, Ankit; Nnamadim, Ozoemena; Kypraios, Ioannis; Mitra, Bhargav; Young, Rupert; Chatwin, Chris

    2008-03-01

    Digital watermarking is a vital process for protecting the copyright of images. This paper presents a method of embedding a private robust watermark into a digital image. The full complex form the Wiener filter is used to extract the signal from the watermarked image. This is shown to outperform the more conventional approximate notation. The results are shown to be extremely noise insensitive.

  7. Imaging Organ of Corti Vibration Using Fourier-Domain OCT

    NASA Astrophysics Data System (ADS)

    Choudhury, Niloy; Chen, Fangyi; Fridberger, Anders; Zha, Dingjun; Jacques, Steven L.; Wang, Ruikang K.; Nuttall, Alfred L.

    2011-11-01

    Measuring the sound stimulated vibration from various structures in the organ of Corti is important in understanding how the small vibrations are amplified and detected. In this study we examine the feasibility of using phase-sensitive Fourier domain optical coherence tomography (PSFD-OCT) to measure vibration of the cellular structures of the organ of Corti. PSFD-OCT is a low coherence interferrometry system where the interferrogram is detected as a function of wavelength. The phase of the Fourier transformation of the detected spectra contains path deference (between the sample arm and the reference arm) information of the interferometer. In PSFD-OCT this phase is measured as a function of time and thus any time dependent change in the path difference between the sample arm and the reference arm can be detected. In the experiment, we used an in vitro preparation of the guinea pig cochlea and made a surgical opening at the apical end to access the organ of Corti. By applying tones with different frequencies via the intact middle ear, we recorded the structural vibration inside the organ of Corti. Vibration amplitude and phase of different substructures were mapped on a cross-section view of the organ of Corti. Although the measurements were made at the apical turn of the cochlea, it will be possible to make vibration measurement from various turns of the cochlea. The noise floor of the system was 0.3 nm, calibrated using a piezo stack as a calibrator.

  8. High electro-optic side-chain polymer by vapor deposition polymerization

    NASA Astrophysics Data System (ADS)

    Roberts, C. C.; Yang, G.-R.; Cocoziello, A.; Zhao, Y.-P.; Wnek, G.; Lu, T.-M.

    1996-04-01

    In this letter, we report high electro-optic methylene di(phenylene isocyanate) (MDI)/DR19 side-chain polymer film polymerization by vapor deposition polymerization. For samples deposited at substrate temperatures from 10 to 30 °C, the electro-optic (EO) coefficient, r33, was measured to be 5 pm/V after poling. A lifetime of about one week was obtained. The highest EO effect observed were films deposited at -40 °C and polymerized after poling. The EO coefficient of these samples is about 24 pm/V while the lifetime is only about 30 min. The effect of substrate temperature, the ratio of monomers, and the poling temperature on the nonlinearity of the films are studied.

  9. Adjustable mount for electro-optic transducers in an evacuated cryogenic system

    NASA Technical Reports Server (NTRS)

    Crossley, Edward A., Jr. (Inventor); Haynes, David P. (Inventor); Jones, Howard C. (Inventor); Jones, Irby W. (Inventor)

    1987-01-01

    The invention is an adjustable mount for positioning an electro-optic transducer in an evacuated cryogenic environment. Electro-optic transducers are used in this manner as high sensitivity detectors of gas emission lines of spectroscopic analysis. The mount is made up of an adjusting mechanism and a transducer mount. The adjusting mechanism provided five degrees of freedom, linear adjustments and angular adjustments. The mount allows the use of an internal lens to focus energy on the transducer element thereby improving the efficiency of the detection device. Further, the transducer mount, although attached to the adjusting mechanism, is isolated thermally such that a cryogenic environment can be maintained at the transducer while the adjusting mechanism remains at room temperature. Radiation shields also are incorporated to further reduce heat flow to the transducer location.

  10. Recent Advances in the Design of Electro-Optic Sensors for Minimally Destructive Microwave Field Probing

    PubMed Central

    Lee, Dong-Joon; Kang, No-Weon; Choi, Jun-Ho; Kim, Junyeon; Whitaker, John F.

    2011-01-01

    In this paper we review recent design methodologies for fully dielectric electro-optic sensors that have applications in non-destructive evaluation (NDE) of devices and materials that radiate, guide, or otherwise may be impacted by microwave fields. In many practical NDE situations, fiber-coupled-sensor configurations are preferred due to their advantages over free-space bulk sensors in terms of optical alignment, spatial resolution, and especially, a low degree of field invasiveness. We propose and review five distinct types of fiber-coupled electro-optic sensor probes. The design guidelines for each probe type and their performances in absolute electric-field measurements are compared and summarized. PMID:22346604

  11. Electro-optic modulation for high-speed characterization of entangled photon pairs

    SciTech Connect

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; Weiner, Andrew M.

    2015-11-10

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currently available.

  12. Electro-optic modulation for high-speed characterization of entangled photon pairs

    DOE PAGESBeta

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; Weiner, Andrew M.

    2015-11-10

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less

  13. Single-shot electro-optic experiments for electron bunch diagnostics at Tsinghua Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Du, Yingchao; Yan, Lixin; Hua, Jianfei; Zhang, Zhen; Zhou, Zheng; Huang, Wenhui; Tang, Chuanxiang; Li, Ming

    2016-10-01

    The electro-optic (EO) technique detects the Coulomb electric field distribution of relativistic electron bunches to obtain the associated longitudinal profile. This diagnostic method allows the direct time-resolved single-shot measurement and thus the real-time monitoring of the bunch profile and beam arrival time in a non-destructive way with sub-picosecond temporal resolution. In this paper, we report the measurement of the longitudinal profile of an electron bunch through electro-optic spectral decoding detection, in which the bunch profile is encoded into the spectra of the linearly chirped laser pulse. The experimental setup and measurement results of a 40 MeV electron bunch are presented, with a temporal profile length of 527 fs rms (~1.24 ps FWHM) and a beam arrival time jitter of 471 fs rms. Temporal resolution and future experimental improvement are also discussed.

  14. Electro-Optical Switching of Gradient 2D-PDLC Films

    SciTech Connect

    Hadjichristov, Georgi B.; Marinov, Yordan G.; Petrov, Alexander G.

    2010-01-21

    A tunable electro-optical switching is reported for single-layered polymer-dispersed liquid crystal (PDLC) films, controlled by the film thickness. Thin planar film of two-dimensional layer of thickness continuously varying from a few micrometers to several tens of micrometers is examined. The wedge-confined PDLC single layer contains E7 liquid-crystal microdroplets dispersed in a transparent polymer matrix of NOA65. The diameters of the droplets with a linear-gradient size distribution along the wedge slope reach several tens of micrometers, defined by the wedge geometry of the film. The electro-optical switching of the single-layered PDLC film is linked to its microstructure and droplet organization.

  15. Strong free-carrier electro-optic response of sputtered ZnO films

    SciTech Connect

    Dominici, Lorenzo; Michelotti, Francesco; Auf der Maur, Matthias

    2012-09-01

    We report on the anisotropic electro-optic response of sputtered ZnO films and its dispersion towards both the frequency of the modulating voltage and the wavelength of the probing beam. The observed dispersion put in evidence two mechanisms. A fast and weak electrorefraction response, due to the nonlinear polarization of bound electrons, and a strong and slow carrier refraction term, ascribed to the modulation of free carriers. The former corresponds to an electro-optical coefficient of approximately -0.5 pm/V, while the latter may reach a magnitude up to 20 times stronger. This term relaxes at about 12 kHz and is largely wavelength dependent, due to a combination of effects. Also bias voltages lead to its quenching, likely extending the depletion regions at grain boundaries.

  16. Paraxial Theory of Direct Electro-optic Sampling of the Quantum Vacuum

    NASA Astrophysics Data System (ADS)

    Moskalenko, A. S.; Riek, C.; Seletskiy, D. V.; Burkard, G.; Leitenstorfer, A.

    2015-12-01

    Direct detection of vacuum fluctuations and analysis of subcycle quantum properties of the electric field are explored by a paraxial quantum theory of ultrafast electro-optic sampling. The feasibility of such experiments is demonstrated by realistic calculations adopting a thin ZnTe electro-optic crystal and stable few-femtosecond laser pulses. We show that nonlinear mixing of a short near-infrared probe pulse with the multiterahertz vacuum field leads to an increase of the signal variance with respect to the shot noise level. The vacuum contribution increases significantly for appropriate length of the nonlinear crystal, short pulse duration, tight focusing, and a sufficiently large number of photons per probe pulse. If the vacuum input is squeezed, the signal variance depends on the probe delay. Temporal positions with a noise level below the pure vacuum may be traced with subcycle resolution.

  17. Lithium niobate nanoparticle-coated Y-coupler optical fiber for enhanced electro-optic sensitivity.

    PubMed

    Rao, Ch N; Sagar, S B; Harshitha, N G; Aepuru, Radhamanohar; Premkumar, S; Panda, H S; Choubey, R K; Kale, S N

    2015-02-15

    Single crystals of lithium niobate (LiNbO3), possessing high birefringence and anisotropic properties have been explored, for a long time, to harness their excellent electro-optic properties. However, their nanoforms are comparatively less explored. In this context, dielectric constant and polarization (P) versus electric-field (E) characteristics of LiNbO3 nanomaterials have been studied. A nonideal P-E loop and a dielectric constant of 20 at the onset of 1 kHz were seen. The electro-optic sensitivity was found to be 4 times as compared to the bulk LiNbO3 crystals. The results are attributed to oxygen vacancies, antisite defects, and grain boundary effects in an already congruent structural matrix of LiNbO3. PMID:25680132

  18. Paraxial Theory of Direct Electro-optic Sampling of the Quantum Vacuum.

    PubMed

    Moskalenko, A S; Riek, C; Seletskiy, D V; Burkard, G; Leitenstorfer, A

    2015-12-31

    Direct detection of vacuum fluctuations and analysis of subcycle quantum properties of the electric field are explored by a paraxial quantum theory of ultrafast electro-optic sampling. The feasibility of such experiments is demonstrated by realistic calculations adopting a thin ZnTe electro-optic crystal and stable few-femtosecond laser pulses. We show that nonlinear mixing of a short near-infrared probe pulse with the multiterahertz vacuum field leads to an increase of the signal variance with respect to the shot noise level. The vacuum contribution increases significantly for appropriate length of the nonlinear crystal, short pulse duration, tight focusing, and a sufficiently large number of photons per probe pulse. If the vacuum input is squeezed, the signal variance depends on the probe delay. Temporal positions with a noise level below the pure vacuum may be traced with subcycle resolution.

  19. Effect of solvents on the electro-optical switching of graphene oxide dispersions

    NASA Astrophysics Data System (ADS)

    Ahmad, Rana Tariq Mehmood; Hong, Seung-Ho; Shen, Tian-Zi; Masud, Aurangzeb Rashid; Song, Jang-Kun

    2016-06-01

    The electrical manipulation of graphene oxide (GO) alignment in aqueous dispersions is a useful technique with various applications. In particular, the electrical switching of GO particles can be used to devise optical birefringent liquid crystal displays. However, the electric switching of aqueous GO dispersions with a high ionic concentration requires driving voltages with high frequencies (˜10 kHz), which is a challenging limitation. We demonstrate that stable electro-optical switching can be achieved at low frequencies (100 Hz) using GO dispersions in organic solvents instead of water. The hydrodynamic flow of the solvent and the electrophoretic drift of the GO particles are hindered in the GO dispersions in organic solvents with lower dielectric constants. Moreover, the electro-optical performance of these GO dispersions is similar to the aqueous GO dispersions, despite the lower magnitude of the ionization ratio for the GO particle functional groups. These results are crucial for developing a liquid crystal display device using GO dispersions.

  20. Plasmon electro-optic effect in a subwavelength metallic nanograting with a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Kasyanova, I. V.; Geivandov, A. R.; Shtykov, N. M.; Artemov, V. V.; Gorkunov, M. V.

    2016-01-01

    The electro-optic effect in hybrid structures based on subwavelength metallic nanogratings in contact with a layer of a nematic liquid crystal has been experimentally studied. Metallic gratings are fabricated in the form of interdigitated electrodes, which makes it possible to use them not only as optical elements but also for the production of an electric field in a thin surface region of the layer of the liquid crystal. It has been shown that, owing to the electric-field-induced reorientation of molecules of the liquid crystal near the surface of the grating, it is possible to significantly control the spectral features of the transmission of light, which are caused by the excitation of surface plasmons. The electro-optic effect is superfast for liquid crystal devices because a change in the optical properties of the system requires the reorientation of molecules only in a very thin surface layer of the liquid crystal.

  1. SiPM electro-optical detection system noise suppression method

    NASA Astrophysics Data System (ADS)

    Bi, Xiangli; Yang, Suhui; Hu, Tao; Song, Yiheng

    2014-11-01

    In this paper, the single photon detection principle of Silicon Photomultipliers (SiPM) device is introduced. The main noise factors that infect the sensitivity of the electro-optical detection system are analyzed, including background light noise, detector dark noise, preamplifier noise and signal light noise etc. The Optical, electrical and thermodynamic methods are used to suppress the SiPM electro-optical detection system noise, which improved the response sensitivity of the detector. Using SiPM optoelectronic detector with a even high sensitivity, together with small field large aperture optical system, high cutoff narrow bandwidth filters, low-noise operational amplifier circuit, the modular design of functional circuit, semiconductor refrigeration technology, greatly improved the sensitivity of optical detection system, reduced system noise and achieved long-range detection of weak laser radiation signal. Theoretical analysis and experimental results show that the proposed methods are reasonable and efficient.

  2. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  3. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1985-08-16

    A method of synthesizing a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  4. Proposed measurement of spin currents in a GaAs crystal using the electro-optical Pockels effect

    SciTech Connect

    Zhang, Xingchu; Zheng, Yongjun; She, Weilong

    2014-07-14

    A new method for measuring spin currents is proposed, based on the linear electro-optic (Pockels) effect caused by the additional second-order nonlinear electric susceptibility (electro-optic tensor) generated by the spin currents. The non-zero elements of electro-optic tensor induced by spin currents in GaAs crystal are calculated, and the wave coupling theory of linear electro-optic effect is used to analyze the polarization change of a probe beam. The numerical results show that, for a linearly polarized probe beam with a frequency close to the band gap of GaAs crystal, its polarization rotation can be as large as 14 μrad under an applied electric field of about 350 V/mm. This effect should offer an alternative detection method for spintronics.

  5. Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes

    NASA Technical Reports Server (NTRS)

    Abramovici, Alex

    2012-01-01

    A document discusses an electro-optic sensor that consists of a collimator, attached to one segment, and a quad diode, attached to an adjacent segment. Relative segment-segment motion causes the beam from the collimator to move across the quad diode, thus generating a measureable electric signal. This sensor type, which is relatively inexpensive, can be configured as an edge sensor, or as a remote segment-segment motion sensor.

  6. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell.

    PubMed

    Buchnev, O; Ou, J Y; Kaczmarek, M; Zheludev, N I; Fedotov, V A

    2013-01-28

    We experimentally demonstrate efficient electro-optical control in an active nano-structured plasmonic metamaterial hybridised with a liquid-crystal cell. The hybridisation was achieved by simultaneously replacing the polarizer, transparent electrode and molecular alignment layer of the liquid-crystal cell with the metamaterial nano-structure. With the control signal of only 7 V we have achieved a fivefold hysteresis-free modulation of metamaterial transmission at the wavelength of 1.55 µm.

  7. Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide.

    PubMed

    Mhaouech, I; Coda, V; Montemezzani, G; Chauvet, M; Guilbert, L

    2016-09-15

    An electro-optic Bragg light deflector is demonstrated in a thinned, periodically poled lithium niobate planar waveguide confined between two silica layers on a silicon substrate. More than 97% of diffraction efficiency is obtained with an operating wavelength of 633 nm for the two orthogonal light polarizations with a drive voltage of about 5 V. The temporal electric drift and the response time of the component are also studied.

  8. Optical logic gates based on electro-optic modulation with Sagnac interferometer.

    PubMed

    Li, Qiliang; Zhu, Mengyun; Li, Dongqiang; Zhang, Zhen; Wei, Yizhen; Hu, Miao; Zhou, Xuefang; Tang, Xianghong

    2014-07-20

    In this work, we present a new structure to realize optical logic operation in a Sagnac interferometer with electro-optical modulation. In the scheme, we divide two counterpropagation signals in a Sagnac loop to two different arms with the electro-optical crystal by using two circulators. Lithium niobate materials whose electro-optical coefficient can be as large as 32.2×10(-12)  m/V make up the arms of the waveguides. Using the transfer matrix of the fiber coupler, we analyze the propagation of signals in this system and obtain the transmission characteristic curves and the extinction ratio. The results indicate that this optical switching has a high extinction ratio of about 60 dB and an ultrafast response time of 2.036 ns. In addition, the results reveal that the change of the dephasing between the two input signals and the modification of the modulation voltage added to the electro-optical crystal leads to the change of the extinction ratio. We also conclude that, in cases of the dephasing of two initial input signals Δφ=0, we can obtain the various logical operations, such as the logical operations D=A¯·B, D=A·B¯, C=A+B, and D=A⊕B in ports C and D of the system by adjusting the modulation voltage. When Δφ≠0, we obtain the arithmetic operations D=A+B, C=A⊕B, D=A·B¯, and C=A¯·B in ports C and D. This study is significant for the design of all optical networks by adjusting the modulation voltage.

  9. Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide.

    PubMed

    Mhaouech, I; Coda, V; Montemezzani, G; Chauvet, M; Guilbert, L

    2016-09-15

    An electro-optic Bragg light deflector is demonstrated in a thinned, periodically poled lithium niobate planar waveguide confined between two silica layers on a silicon substrate. More than 97% of diffraction efficiency is obtained with an operating wavelength of 633 nm for the two orthogonal light polarizations with a drive voltage of about 5 V. The temporal electric drift and the response time of the component are also studied. PMID:27628350

  10. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell.

    PubMed

    Buchnev, O; Ou, J Y; Kaczmarek, M; Zheludev, N I; Fedotov, V A

    2013-01-28

    We experimentally demonstrate efficient electro-optical control in an active nano-structured plasmonic metamaterial hybridised with a liquid-crystal cell. The hybridisation was achieved by simultaneously replacing the polarizer, transparent electrode and molecular alignment layer of the liquid-crystal cell with the metamaterial nano-structure. With the control signal of only 7 V we have achieved a fivefold hysteresis-free modulation of metamaterial transmission at the wavelength of 1.55 µm. PMID:23389148

  11. Electro-optical probe for studying local fields in organic heterostructures

    NASA Astrophysics Data System (ADS)

    Blinov, L. M.; Lazarev, V. V.; Semeikin, A. S.; Usol'tseva, N. V.; Yudin, S. G.

    2013-03-01

    Dielectric, optical, and electro-optical properties of thin Langmuir films (40-130 nm thick) of meso-substituted palladium tetraphenylporphyrin have been investigated. The key parameter of the characteristic electro-absorption band of this material—the difference in the polarizability for the excited and ground states of its molecules—has been determined. The example of determining the local field in the polymer ferroelectric in the composition of two-layer heterostructure is shown.

  12. Influence of piezoelectric effect on photorefractive gratings in electro-optic crystals

    NASA Astrophysics Data System (ADS)

    Shandarov, S.

    1992-07-01

    The general equations applicable to the description of different photorefractive effects in electro-optic crystals, taking into account their piezoelectric properties, have been considered in this paper. The photorefractive gratings formed by plane light waves slowly changing in time in boundless piezoelectric media have been analyzed in detail. The influence of piezoelectric properties of the crytals on the effective static dielectric constant at different orientations of the photorefractive grating vector has also been considered.

  13. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, Alan D.; Haigh, Ronald E.; Hugenberg, Keith F.

    1995-01-01

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.

  14. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.

    1995-09-26

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.

  15. Electro-optic and holographic measurement techniques for the atmospheric sciences. [considering spacecraft simulation applications

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Lemons, J. F.; Kurtz, R. L.; Liu, H.-K.

    1977-01-01

    A comprehensive examination is made of recent advanced research directions in the applications of electro-optical and holographic instrumentations and methods to atmospheric sciences problems. In addition, an overview is given of the in-house research program for environmental and atmospheric measurements with emphasis on particulates systems. Special treatment is made of the instrument methods and applications work in the areas of laser scattering spectrometers and pulsed holography sizing systems. Selected engineering tests data on space simulation chamber programs are discussed.

  16. Photoluminescence and electro-optic properties of small (25-35 nm diameter) quantum boxes

    NASA Astrophysics Data System (ADS)

    Davis, L.; Ko, K. K.; Li, W.-Q.; Sun, H. C.; Lam, Y.; Brock, T.; Pang, S. W.; Bhattacharya, P. K.; Rooks, M. J.

    1993-05-01

    The luminescence and electro-optic properties of buried 25-35 nm quantum boxes have been measured. The quantum boxes were defined by a combination of molecular beam epitaxial growth and regrowth, electron beam lithography, and dry etching. The photoluminescence from 35 nm boxes shows a blue shift of about 15 meV compared to the bulk luminescence and an enhancement, taking into account the fill factor. An enhanced effective linear electrooptic coefficient is observed for the quantum boxes.

  17. Optical color image hiding scheme by using Gerchberg-Saxton algorithm in fractional Fourier domain

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Du, Xiaoping; Liu, Zhengjun; Yang, Chengwei

    2015-03-01

    We proposed an optical color image hiding algorithm based on Gerchberg-Saxton retrieval algorithm in fractional Fourier domain. The RGB components of the color image are converted into a scrambled image by using 3D Arnold transform before the hiding operation simultaneously and these changed images are regarded as the amplitude of fractional Fourier spectrum. Subsequently the unknown phase functions in fractional Fourier domain are calculated by the retrieval algorithm, in which the host RBG components are the part of amplitude of the input functions. The 3D Arnold transform is performed with different parameters to enhance the security of the hiding and extracting algorithm. Some numerical simulations are made to test the validity and capability of the proposed color hiding encryption algorithm.

  18. Electro-optical polarimeters for ground-based and space-based observations of the solar K-corona

    NASA Astrophysics Data System (ADS)

    Capobianco, G.; Fineschi, S.; Massone, G.; Balboni, E.; Malvezzi, A. M.; Crescenzio, G.; Zangrilli, L.; Calcidese, P.; Antonucci, E.; Patrini, M.

    2012-09-01

    Polarimeters based on electro-optically tunable liquid crystals (LC) represent a new technology in the field of observational astrophysics. LC-based polarimeters are good candidates for replacing mechanically rotating polarimeters in most ground-based and space-based applications. During the 2006 total solar eclipse, we measured the visible-light polarized brightness (pB) of the solar K-corona with a LC-based polarimeter and imager (E-KPol). In this presentation, we describe the results obtained with the E-KPol, and we evaluate its performances in view of using a similar device for the pB imaging of the K-corona from space-based coronagraphs. Specifically, a broad-band LC polarimeter is planned for the METIS (Multi Element Telescope for Imaging and Spectroscopy) coronagraph for the Solar Orbiter mission to be launched in 2017. The METIS science driver of deriving the coronal electron density from pB images requires an accuracy of better than 1% in the measurement of linear polarization. We present the implications of this requirement on the METIS design to minimize the instrumental polarization of the broad-band visible-light (590-650 nm) polarimeter and of the other optics in the METIS visible-light path. Finally, we report preliminary ellipsometric measurements of the optical components of the METIS visible-light path.

  19. ASE suppression of XeCl excimer laser MOPA system using UV electro-optical switch

    NASA Astrophysics Data System (ADS)

    Hu, Yun; Zhao, Xue-qing; Xue, Quan-xi; Wang, Da-hui; Zheng, Guo-xin; Hua, Heng-qi; Zhang, Yongsheng; Zhu, Yong-xiang; Xiao, Wei-wei; Wang, Li

    2013-05-01

    In high power eximer laser system, amplified spontaneous emission (ASE) decreases the signal contrast ratio severely, leads to waveform broadening and distortion, and impacts on accurate physical experiments. In this article, based on principle of short pulse generation by electro-optical (E-O) switch, a method for ASE suppression of laser amplifiers chain was established. A series of studies on UV electro-optical switches were carried out, and electro-optical (E-O) switches with high extinction ratio were developed. In the waveform clipping experiments of the first pre-amplifier, the extinction ratio of the single and cascaded dual E-O switch reaches 103 and 104 order of magnitude, the laser pulse signal contrast ratio was promoted to 105 and 106 level, respectively. In the experiments of single channel MOPA (Master Oscillator Power Amplifier system), the cascaded dual E-O switch was adopted to suppress ASE of the whole system, and a fine narrow pulse was obtained on the target surface, which gives out one effective solution to the problem of waveform amplification of the high power eximer laser system.

  20. Linear electro-optic properties of YCa4O(BO3)3.

    PubMed

    Adams, J J; Ebbers, C A

    2003-08-15

    We have characterized the effective linear electro-optic coefficients of YCa4O(BO3)3 (YCOB) relative to KH2PO4 and KD2PO4 at 632.8 nm. We measured a maximum r(eff) value of 10.8 +/- 1.4 pm/V for YCOB in a transverse electric field configuration for propagation along the X or the alpha dielectric axis, with the electric field applied along the Z or the gamma dielectric axis. We also found effective coefficients of 10.7 +/- 1.0 and 3.4 +/- 0.4 pm/V for YCOB in longitudinal configurations. The remaining values of r(eff) for various transverse applied voltages were found to be less than 3 pm/V. The excellent thermomechanical properties of this crystal, coupled with moderate electro-optic coefficients, make YCOB and its isomorphs potential candidates for use as high-average-power electro-optic switches.

  1. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    NASA Astrophysics Data System (ADS)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  2. New electro-optic laser scanners for small-sat to ground laser communication links

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Johnson, Seth T.; Rommel, Scott D.; Anderson, Michael H.; Chen, Jimmy; Chao, Tien-Hsin

    2013-05-01

    In this paper we present new electro-optic beam steering technology and propose to combine it with optical telecommunication technology, thereby enabling low cost, compact, and rugged free space optical (FSO) communication modules for small-sat applications. Small satellite applications, particularly those characterized as "micro-sats" are often highly constrained by their ability to provide high bandwidth science data to the ground. This will often limit the relevance of even highly capable payloads due to the lack of data availability. FSO modules with unprecedented cost and size, weight, and power (SWaP) advantages will enable multi-access FSO networks to spread across previously inaccessible platforms. An example system would fit within a few cubic inch volume, require less than 1 watt of power and be able to provide ground station tracking (including orbital motion over wide angles and jitter correction) with a 50 to 100 Mbps downlink and no moving parts. This is possible, for the first time, because of emergent and unprecedented electro-optic (EO) laser scanners which will replace expensive, heavy, and power-consuming gimbal mechanisms. In this paper we will describe the design, construction, and performance of these new scanners. Specific examples to be discussed include an all electro-optic beamsteer with a 60 degree by 40 degree field of view. We will also present designs for a cube-sat to ground flight demonstration. This development would provide a significant enhancement in capabilities for future NASA and other Government and industry space projects.

  3. Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip.

    PubMed

    Soltani, Mohammad; Ilchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Schlafer, John; Ryan, Colm; Maleki, Lute

    2016-09-15

    Crystalline whispering gallery mode (WGM) electro-optic resonators made of LiNbO3 and LiTaO3 are critical for a wide range of applications in nonlinear and quantum optics, as well as RF photonics, due to their remarkably ultrahigh Q(>108) and large electro-optic coefficient. Achieving efficient coupling of these resonators to planar on-chip optical waveguides is essential for any high-yield and robust practical applications. However, it has been very challenging to demonstrate such coupling while preserving the ultrahigh Q properties of the resonators. Here, we show how the silicon photonic platform can overcome this long-standing challenge. Silicon waveguides with appropriate designs enable efficient and strong coupling to these WGM electro-optic resonators. We discuss various integration architectures of these resonators onto a silicon chip and experimentally demonstrate critical coupling of a planar Si waveguide and an ultrahigh QLiTaO3 resonator (Q∼108). Our results show a promising path for widespread and practical applications of these resonators on a silicon photonic platform. PMID:27628401

  4. Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Glomb, W. L., Jr.

    1989-01-01

    Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.

  5. Electro-optical microwave signal processor for high-frequency wideband frequency channelization

    NASA Astrophysics Data System (ADS)

    Dawber, William N.; Webster, Ken

    1998-08-01

    An electro-optic microwave signal processor for activity monitoring in an electronic warfare receiver, offering wideband operation, parallel output in real time and 100 percent probability of intercept is presented, along with results from a prototype system. Requirements on electronic warfare receiver system are demanding, because they have to defect and identify potential threats across a large frequency bandwidth and in the high pulse density expected of the battlefield environment. A technique of processing signals across a wide bandwidth is to use a channelizer in the receiver front-end, in order to produce a number of narrow band outputs that can be individually processed. In the presented signal processor, received microwave signals ar unconverted onto an optical carrier using an electro- optic modulator and then spatially separated into a series of spots. The position and intensity of the spots is determined by the received signal(s) frequency and strength. Finally a photodiode array can be used for fast parallel data readout. Thus the signal processor output is fully channelized according to frequency. A prototype signal processor has been constructed, which can process microwave frequencies from 500MHz to 8GHz. A standard telecommunications electro-optic intensity modulator with a 3dB bandwidth of approximately 2.5GHz provides frequency upconversion. Readout is achieved using either a near IR camera or a 16 element linear photodiode array.

  6. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.

    1999-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  7. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Woods, G.K.; Renak, T.W.

    1999-04-06

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 18 figs.

  8. Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip.

    PubMed

    Soltani, Mohammad; Ilchenko, Vladimir; Matsko, Andrey; Savchenkov, Anatoliy; Schlafer, John; Ryan, Colm; Maleki, Lute

    2016-09-15

    Crystalline whispering gallery mode (WGM) electro-optic resonators made of LiNbO3 and LiTaO3 are critical for a wide range of applications in nonlinear and quantum optics, as well as RF photonics, due to their remarkably ultrahigh Q(>108) and large electro-optic coefficient. Achieving efficient coupling of these resonators to planar on-chip optical waveguides is essential for any high-yield and robust practical applications. However, it has been very challenging to demonstrate such coupling while preserving the ultrahigh Q properties of the resonators. Here, we show how the silicon photonic platform can overcome this long-standing challenge. Silicon waveguides with appropriate designs enable efficient and strong coupling to these WGM electro-optic resonators. We discuss various integration architectures of these resonators onto a silicon chip and experimentally demonstrate critical coupling of a planar Si waveguide and an ultrahigh QLiTaO3 resonator (Q∼108). Our results show a promising path for widespread and practical applications of these resonators on a silicon photonic platform.

  9. Electro-optical signature analysis for personnel detection in urban environments

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael; Harrell, J. Timothy; West, Tracy

    2007-04-01

    Georgia Tech has initiated a research program into the detection of covert personnel. This program focuses on the detection problem in scenarios focused on urban operations, tunnels, or convoys. These nontraditional operational scenarios present multiple opportunities for personnel to hide as well as a variety to clutter levels. The research program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables - initially in the context of urban environments. For this current effort, several electro-optical sensing modalities have been evaluated for use as a component in an unattended sensor suite designed to detect personnel. These modalities include active sensors (e.g., vibrometry) and passive sensors (e.g., multispectral, thermal). Particular emphasis has been given to the investigation of short wave infrared signatures and the comparison of this band to the other electro-optical wavebands. This paper will discuss the design of a multi-spectral signature model which forms a component of the evaluation process. Example results will be presented as well as a discussion of the issues to be addressed as part of the electro-optical sensor evaluation.

  10. High-frequency electro-optic measurement of strained silicon racetrack resonators.

    PubMed

    Borghi, M; Mancinelli, M; Merget, F; Witzens, J; Bernard, M; Ghulinyan, M; Pucker, G; Pavesi, L

    2015-11-15

    The observation of the electro-optic effect in strained silicon waveguides has been considered a direct manifestation of an induced χ(2) nonlinearity in the material. In this work, we perform high-frequency measurements on strained silicon racetrack resonators. Strain is controlled by a mechanical deformation of the waveguide. It is shown that any optical modulation vanishes, independent of the applied strain, when the applied voltage varies much faster than the carrier effective lifetime and that the DC modulation is also largely independent of the applied strain. This demonstrates that plasma carrier dispersion is responsible for the observed electro-optic effect. After normalizing out free-carrier effects, our results set an upper limit of (8±3) pm/V to the induced high-speed effective χeff,zzz(2) tensor element at an applied stress of -0.5 GPa. This upper limit is about 1 order of magnitude lower than previously reported values for static electro-optic measurements. PMID:26565856

  11. Externally-Modulated Electro-Optically Coupled Detector Architecture for Nuclear Physics Instrumentation

    SciTech Connect

    Xi, Wenze; McKisson, John E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl J.

    2014-06-01

    A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over $ sim {hbox {29}}% $ of the modulator’s switching voltage range. Optical spectrum analysis revealed less than $-{hbox {14}}~hbox{dB}$ crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.

  12. Fourier Power Spectrum Characteristics of Face Photographs: Attractiveness Perception Depends on Low-Level Image Properties

    PubMed Central

    Langner, Oliver; Wiese, Holger; Redies, Christoph

    2015-01-01

    We investigated whether low-level processed image properties that are shared by natural scenes and artworks – but not veridical face photographs – affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess – compared to face images – a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope – in contrast to the other tested image properties – did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis. PMID:25835539

  13. Alpha-rooting method of color image enhancement by discrete quaternion Fourier transform

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2014-02-01

    This paper presents a novel method for color image enhancement based on the discrete quaternion Fourier transform. We choose the quaternion Fourier transform, because it well-suited for color image processing applications, it processes all 3 color components (R,G,B) simultaneously, it capture the inherent correlation between the components, it does not generate color artifacts or blending , finally it does not need an additional color restoration process. Also we introduce a new CEME measure to evaluate the quality of the enhanced color images. Preliminary results show that the α-rooting based on the quaternion Fourier transform enhancement method out-performs other enhancement methods such as the Fourier transform based α-rooting algorithm and the Multi scale Retinex. On top, the new method not only provides true color fidelity for poor quality images but also averages the color components to gray value for balancing colors. It can be used to enhance edge information and sharp features in images, as well as for enhancing even low contrast images. The proposed algorithms are simple to apply and design, which makes them very practical in image enhancement.

  14. Application of Fourier descriptors and neural network to classification underground images

    NASA Astrophysics Data System (ADS)

    Tolstoy, Leonid; Parsiani, Hamed; Ortiz, Jorge

    2003-03-01

    This paper presents an application of Fourier Descriptors and Neural Network for the recognition of archeological artifacts in Ground Penetrating Radar (GPR) images of a surveyed site. Multiple 2-D GPR images of a site are made available by NASA-SSC center. The buried artifacts in these images appear in the form of parabolas which are the results of radar backscatter from the artifacts. The Fourier Descriptors of an image are applied as inputs to a feed-forward backpropagation Neural Network Classifier (NNC). The NNC algorithm was trained to recognize parabola-like shapes from non-parabola shapes in the sub-surface images. The procedure consisted of removing background noise using a suitable threshold filter, locating the separate shapes in the image using N8(p) connectivity algorithm, calculating a short sequence of Fourier Descriptors (FD) of each isolated shape, and finally classifying parabola/no-parabola using Neural Network applied to the FDs. The results are images with recognized parabolas which indicate the presence of buried artifacts. As a useful feature to archeologists, a 3-D Visualization of the complete survey area is produced using C++ and Visualization Tool Kit. The Algorithms for removing the background noise, thresholding, calculating the Fourier Descriptors, and obtaining a classification using a Neural Network were developed using Matlab.

  15. Electro-optical phenomena based on ionic liquids in an optofluidic waveguide.

    PubMed

    He, Xiaodong; Shao, Qunfeng; Cao, Pengfei; Kong, Weijie; Sun, Jiqian; Zhang, Xiaoping; Deng, Youquan

    2015-03-01

    An optofluidic waveguide with a simple two-terminal electrode geometry, when filled with an ionic liquid (IL), forms a lateral electric double-layer capacitor under a direct current (DC) electric field, which allows the realization of an extremely high carrier density in the vicinity of the electrode surface and terminals to modulate optical transmission at room temperature under low voltage operation (0 to 4 V). The unique electro-optical phenomenon of ILs was investigated at three wavelengths (663, 1330 and 1530 nm) using two waveguide geometries. Strong electro-optical modulations with different efficiencies were observed at the two near-infrared (NIR) wavelengths, while no detectable modulation was observed at 663 nm. The first waveguide geometry was used to investigate the position-dependent modulation along the waveguide; the strongest modulation was observed in the vicinity of the electrode terminal. The modulation phase is associated with the applied voltage polarity, which increases in the vicinity of the negative electrode and decreases at the positive electrode. The second waveguide geometry was used to improve the modulation efficiency. Meanwhile, the electro-optical modulations of seven ILs were compared at an applied voltage ranging from ±2 V to ±3.5 V. The results reveal that the modulation amplitude and response speed increase with increasing applied voltage, as well as the electrical conductivity of ILs. Despite the fact that the response speed isn't fast due to the high ionic density of ILs, the modulation amplitude can reach up to 6.0 dB when a higher voltage (U = ±3.5 V) is applied for the IL [Emim][BF4]. Finally, the physical explanation of the phenomenon was discussed. The effect of the change in IL structure on the electro-optical phenomena was investigated in another new experiment. The results reveal that the electro-optical phenomenon is probably caused mainly by the change in carrier concentration (ion redistribution near charged

  16. Microwave and Electro-optical Transmission Experiments in the air-sea Boundary Layer

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.

    2002-12-01

    Microwave and electro-optical signal propagation over a wind-roughened sea is strongly dependent on signal interaction with the sea surface, the mean profiles of pressure (P), humidity (Q), temperature (T), wind (U) and their turbulent fluctuations (p, q, t, u). Yet, within the marine surface layer, these mechanisms are not sufficiently understood nor has satisfactory data been taken to validate propagation models, especially under conditions of high seas, high winds, and large surface gradients of Q and T. To address this deficiency, the Rough Evaporation Duct (RED) experiment was designed to provide first data for validation of meteorological, microwave, and electro-optical models in the marine surface layer for rough surface conditions including the effects of surface waves. The RED experiment was conducted offshore of the Hawaiian Island of Oahu in late summer, mid-August to mid-September, of 2001. R/P FLIP, moored about 10 km off of the NE coast of Oahu, hosted the primary meteorological sensor suites and served as a terminus for the propagation links. There were eleven scientists and engineers aboard R/P FLIP who installed instruments measuring mean and turbulent meteorological quantities, sea wave heights, directions, and kinematics, upward and downward radiance, near surface bubble generation, atmospheric particle size distributions, laser probing of the atmosphere, and sources for both microwave and electro-optic signals. In addition to R/P FLIP, two land sites were instrumented with microwave and electro-optic receivers and meteorological sensors, two buoys were deployed, a small boat was instrumented, and two aircraft flew various tracks to sense both sea and atmospheric conditions. In all, more than 25 people from four countries, six universities, and four government agencies were directly involved with the RED experiment. While the overall outcome of the RED experiment is positive, we had a number of major and minor problems with the outfitting

  17. Remote ballistic emplacement of an electro-optical and acoustic target detection and localization system

    NASA Astrophysics Data System (ADS)

    West, Aaron; Mellini, Mark

    2015-05-01

    Near real time situational awareness in uncontrolled non line of sight (NLOS) and beyond line of sight (BLOS) environments is critical in the asymmetric battlefield of future conflicts. The ability to detect and accurately locate hostile forces in difficult terrain or urban environments can dramatically increase the survivability and effectiveness of dismounted soldiers, especially when they are limited to the resources available only to the small unit. The Sensor Mortar Network (SMortarNet) is a 60mm Intelligence, Surveillance, and Reconnaissance (ISR) mortar designed to give the Squad near real time situational awareness in uncontrolled NLOS environments. SMortarNet is designed to track targets both acoustically and electro optically and can fuse tracks between, the acoustic, EO, and magnetic modalities on board. The system is linked to other mortar nodes and the user via a masterless frequency hopping spread spectrum ad-hoc mesh radio network. This paper will discuss SMortarNet in the context of a squad level dismounted soldier, its technical capabilities, and its benefit to the small unit Warfighter. The challenges with ballistic remote emplacement of sensitive components and the on board signal processing capabilities of the system will also be covered. The paper will also address how the sensor network can be integrated with existing soldier infrastructure, such as the NettWarrior platform, for rapid transition to soldier systems. Networks of low power sensors can have many forms, but the more practical networks for warfighters are ad hoc radio-based systems that can be rapidly deployed and can leverage a range of assets available at a given time. The low power long life networks typically have limited bandwidth and may have unreliable communication depending on the network health, which makes autonomous sensors a critical component of the network. SMortarNet reduces data to key information features at the sensor itself. The smart sensing approach enables

  18. Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Lang, Jun

    2012-05-01

    In recent years, a number of methods have been proposed in the literature for the encryption of two-dimensional information by using the fractional Fourier transform, but most of their encryptions are complex values and need digital hologram technique to record information, which is inconvenient for digital transmission. In this paper, we propose a new approach for image encryption based on the real-valuedness and decorrelation property of the reality-preserving multiple-parameter fractional Fourier transform in order to meet the requirements of the secure image transmission. In the proposed scheme, the original and encrypted images are respectively in the spatial domain and the reality-preserving multiple-parameter fractional Fourier transformed domain determined by the encryption keys. Numerical simulations are performed to demonstrate that the proposed method is reliable and more robust to blind decryption than several existing methods.

  19. Emerging electro-optical technologies for defense applications

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, Ronda; Ser, W.; Er, Meng H.; Chan, Philip

    1999-11-01

    Technological breakthroughs in the field of imaging and non- imaging sensor sand the related signal processors helped the military users to achieve 'force multiplication'. Present day 'smart-weapon systems' are being converted to 'brilliant-weapon systems' to bridge the gap until the most potent new 'fourth generation systems' come on line based on nanotechnology. The recent military tactics have evolved to take advantage of ever improving technologies to improve the quality and performance over time. The drive behind these technologies is to get a first-pass-mission-success against the target with negligible collateral damage, protecting property and the lives of non-combatants. These technologies revolve around getting target information, detection, designation, guidance, aim-point selection, and mission accomplishment. The effectiveness of these technologies is amply demonstrated during recent wars. This paper brings out the emerging trends in visible/IR/radar smart-sensors and the related signal processing technologies that lead to brilliant guided weapon systems. The purpose of this paper is to give an overview to the readers about futuristic systems. This paper also addresses various system configurations including sensor-fusion.

  20. The Bulk Density of Meteoroids from Electro-Optical Measurements

    NASA Astrophysics Data System (ADS)

    Kikwaya-Eluo, J.-B.; Brown, P.; Hawkes, R. L.

    2004-11-01

    The mean bulk density of small meteoroids remains a poorly measured quantity. Based on photographic observations of large (gram-sized) meteoroids and the theory of quasi-continuous fragmentation Lebedinets (1987) and Babadzhanov (1994) estimated the average bulk density of meteoroids to be near 3300kg m-3, with values for individual meteoroids ranging from 100 and 8000 kg m-3. These high values are close to the density of solid-iron and stony meteorites and have been shown to contradict some of the assumptions of the quasi-continuous theory (Bellot Rubio et al., 2002). In contrast, application of the competing single body theory (i.e. the heating of the meteoroid occurs without intensive ablation) on 370 meteors with a magnitude range between +2.5 and -5 mag (McCrosky and Posen, 1961) by Bellot et al. (2002) found low values for the density of meteoroids in a similar mass range. For sporadic meteors, Bellot et al. (2002) found an average density of 800 kg m-3, while the density for individual meteoroids ranged from 100 to 4500 kg m-3. Here we report our attempt to measure the bulk density of smaller ( mg) meteoroids using the single body model applied to low-light-level tv (LLLTV) observations. Our data are gathered from two stations (separation 50 km). One station uses a digital, gated image intensifier coupled to a megapixel CCD detector, while the other station uses an image intensifier coupled to a video-rate CCD. The gated sensor permits high temporal snapshots (0.5 ms) of meteors which can then be combined with the LLLTV systems at the second site to define both the trajectory and velocity of the meteoroid to high precision. It is our goal to detect significant deceleration in a sample of both shower and sporadic meteors. Absence of significant wake in the gated images is used as a criterion to select those meteors for which fragmentation is not important and thus application of the single body model is most appropriate.

  1. A Super-Imaging Fourier Transform Spectrometer for the VLT

    NASA Astrophysics Data System (ADS)

    Maillard, Jean-Pierre; Bacon, Roland

    A cryogenic, near-infrared (Hawaii2 domain) imaging FTS is proposed for a Nasmyth focus of an 8-m VLT, as a unique solution for providing integral field spectroscopy at high spectral resolution (R = 50,000 at 2 μm) over a large field, up to 3 x 3 arcmin FOV. Another mode is proposed behind AO with a smaller field but preserving high spectral resolution.

  2. A lightweight, rugged, solid state laser radar system enabled by non-mechanical electro-optic beam steerers

    NASA Astrophysics Data System (ADS)

    Davis, Scott R.; Rommel, Scott D.; Gann, Derek; Luey, Ben; Gamble, Joseph D.; Ziemkiewicz, Michael; Anderson, Mike

    2016-05-01

    There is currently a good deal of interest in developing laser radar (ladar) for autonomous navigation and collision avoidance in a wide variety of vehicles. In many of these applications, minimizing size, weight and power (SWaP) is of critical importance, particularly onboard aircraft and spacecraft where advanced imaging systems are also needed for location, alignment, and docking. In this paper, we describe the miniaturization of a powerful ladar system based on an electro-optic (EO) beamsteering device in which liquid crystal birefringence is exploited to achieve a 20° x 5° field of view (FOV) with no moving parts. This FOV will be significantly increased in future versions. In addition to scanning, the device is capable of operating in a "point and hold" mode where it locks onto a single moving object. The nonmechanical design leads to exceptionally favorable size and weight values: 1 L and < 1 kg respectively. Furthermore, these EO scanners operate without mechanical resonances or inertial effects. A demonstration was performed with a 50 kHz, 1 microjoule laser with a 2 mm beam diameter to image at a range of 100 m yielding a 2 fps frame rate limited by the pulse laser repetition rate. The fine control provided by the EO steerer results in an angle precision of 6x10-4 degrees. This FOV can be increased with discreet, non-mechanical polarization grating beamsteerers. In this paper, we will present the design, preliminary results, and planned next generation improvements.

  3. Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Yanbin; Zhang, Feng; Li, Yuanchao; Tao, Ran

    2015-09-01

    A multiple-image cryptosystem is proposed based on the cascaded fractional Fourier transform. During an encryption procedure, each of the original images is directly separated into two phase masks. A portion of the masks is subsequently modulated into an interim mask, which is encrypted into the ciphertext image; the others are used as the encryption keys. Using phase truncation in the fractional Fourier domain, one can use an asymmetric cryptosystem to produce a real-valued noise-like ciphertext, while a legal user can reconstruct all of the original images using a different group of phase masks. The encryption key is an indivisible part of the corresponding original image and is still useful during decryption. The proposed system has high resistance to various potential attacks, including the chosen-plaintext attack. Numerical simulations also demonstrate the security and feasibility of the proposed scheme.

  4. Dismount tracking and identification from electro-optical imagery

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Ling, Haibin; Wu, Yi; Seetharaman, Guna; Talbert, Michael; Bai, Li; Chen, Genshe

    2012-06-01

    With the advent of new technology in wide-area motion imagery (WAMI) and full-motion video (FMV), there is a capability to exploit the imagery in conjunction with other information sources for improving confidence in detection, tracking, and identification (DTI) of dismounts. Image exploitation, along with other radar and intelligence information can aid decision support and situation awareness. Many advantages and limitations exist in dismount tracking analysis using WAMI/FMV; however, through layered management of sensing resources, there are future capabilities to explore that would increase dismount DTI accuracy, confidence, and timeliness. A layered sensing approach enables commandlevel strategic, operational, and tactical analysis of dismounts to combine multiple sensors and databases, to validate DTI information, as well as to enhance reporting results. In this paper, we discuss WAMI/FMV, compile a list of issues and challenges of exploiting the data for WAMI, and provide examples from recently reported results. Our aim is to provide a discussion to ensure that nominated combatants are detected, the sensed information is validated across multiple perspectives, the reported confidence values achieve positive combatant versus non- combatant detection, and the related situational awareness attributes including behavior analysis, spatial-temporal relations, and cueing are provided in a timely and reliable manner to stakeholders.

  5. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging.

    PubMed

    Dong, Siyuan; Shiradkar, Radhika; Nanda, Pariksheet; Zheng, Guoan

    2014-06-01

    Information multiplexing is important for biomedical imaging and chemical sensing. In this paper, we report a microscopy imaging technique, termed state-multiplexed Fourier ptychography (FP), for information multiplexing and coherent-state decomposition. Similar to a typical Fourier ptychographic setting, we use an array of light sources to illuminate the sample from different incident angles and acquire corresponding low-resolution images using a monochromatic camera. In the reported technique, however, multiple light sources are lit up simultaneously for information multiplexing, and the acquired images thus represent incoherent summations of the sample transmission profiles corresponding to different coherent states. We show that, by using the state-multiplexed FP recovery routine, we can decompose the incoherent mixture of the FP acquisitions to recover a high-resolution sample image. We also show that, color-multiplexed imaging can be performed by simultaneously turning on R/G/B LEDs for data acquisition. The reported technique may provide a solution for handling the partially coherent effect of light sources used in Fourier ptychographic imaging platforms. It can also be used to replace spectral filter, gratings or other optical components for spectral multiplexing and demultiplexing. With the availability of cost-effective broadband LEDs, the reported technique may open up exciting opportunities for computational multispectral imaging.

  6. Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator.

    PubMed

    Meng, Xin; Li, Jianxin; Song, Huaqing; Zhu, Rihong

    2014-08-20

    A Fourier-transform imaging spectropolarimeter is presented and demonstrated. It is composed of a time-division polarization modulator and a high radiation throughput Fourier-transform spectrometer. Four polarization states of the input light are generated by rotating the retarder. Then, the polarized light enters the Fourier-transform spectrometer to create four sets of interferometric images, where we can recover four polarization spectra and calculate the full-Stokes vector in various wavenumber frequency. The method has good performance to resist instrument noise and has the advantage of high spatial resolution. The laboratory setup is described and the noise source is analyzed. Two proven experiments have been carried out in visible light.

  7. Gallery of Datacubes Obtained with the Livermore Imaging Fourier Transform Spectrometer

    SciTech Connect

    Wurtz, R; Wishnow, E H; Blais-Ouellette, S; Cook, K H; Holden, B P; Carr, D J; Stubbs, C W

    2002-09-12

    We have acquired spatial-spectral datacubes of astronomical objects using the Livermore visible-band imaging Fourier transform spectrometer at Apache Point Observatory. Each raw datacube contains hundreds of thousands of spectral interferograms. We present in-progress demonstrations of these observations.

  8. Gaseous effluent monitoring and identification using an imaging Fourier transform spectrometer

    SciTech Connect

    Carter, M.R.; Bennett, C.L.; Fields, D.J.; Hernandez, J.

    1993-10-01

    We are developing an imaging Fourier transform spectrometer for chemical effluent monitoring. The system consists of a 2-D infrared imaging array in the focal plane of a Michelson interferometer. Individual images are coordinated with the positioning of a moving mirror in the Michelson interferometer. A three dimensional data cube with two spatial dimensions and one interferogram dimension is then Fourier transformed to produce a hyperspectral data cube with one spectral dimension and two spatial dimensions. The spectral range of the instrument is determined by the choice of optical components and the spectral range of the focal plane array. Measurements in the near UV, visible, near IR, and mid-IR ranges are possible with the existing instrument. Gaseous effluent monitoring and identification measurements will be primarily in the ``fingerprint`` region of the spectrum, ({lambda} = 8 to 12 {mu}m). Initial measurements of effluent using this imaging interferometer in the mid-IR will be presented.

  9. Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy.

    PubMed

    Kim, Jinho; Henley, Beverley M; Kim, Charlene H; Lester, Henry A; Yang, Changhuei

    2016-08-01

    Multi-day tracking of cells in culture systems can provide valuable information in bioscience experiments. We report the development of a cell culture imaging system, named EmSight, which incorporates multiple compact Fourier ptychographic microscopes with a standard multiwell imaging plate. The system is housed in an incubator and presently incorporates six microscopes. By using the same low magnification objective lenses as the objective and the tube lens, the EmSight is configured as a 1:1 imaging system that, providing large field-of-view (FOV) imaging onto a low-cost CMOS imaging sensor. The EmSight improves the image resolution by capturing a series of images of the sample at varying illumination angles; the instrument reconstructs a higher-resolution image by using the iterative Fourier ptychographic algorithm. In addition to providing high-resolution brightfield and phase imaging, the EmSight is also capable of fluorescence imaging at the native resolution of the objectives. We characterized the system using a phase Siemens star target, and show four-fold improved coherent resolution (synthetic NA of 0.42) and a depth of field of 0.2 mm. To conduct live, long-term dopaminergic neuron imaging, we cultured ventral midbrain from mice driving eGFP from the tyrosine hydroxylase promoter. The EmSight system tracks movements of dopaminergic neurons over a 21 day period. PMID:27570701

  10. Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy

    PubMed Central

    Kim, Jinho; Henley, Beverley M.; Kim, Charlene H.; Lester, Henry A.; Yang, Changhuei

    2016-01-01

    Multi-day tracking of cells in culture systems can provide valuable information in bioscience experiments. We report the development of a cell culture imaging system, named EmSight, which incorporates multiple compact Fourier ptychographic microscopes with a standard multiwell imaging plate. The system is housed in an incubator and presently incorporates six microscopes. By using the same low magnification objective lenses as the objective and the tube lens, the EmSight is configured as a 1:1 imaging system that, providing large field-of-view (FOV) imaging onto a low-cost CMOS imaging sensor. The EmSight improves the image resolution by capturing a series of images of the sample at varying illumination angles; the instrument reconstructs a higher-resolution image by using the iterative Fourier ptychographic algorithm. In addition to providing high-resolution brightfield and phase imaging, the EmSight is also capable of fluorescence imaging at the native resolution of the objectives. We characterized the system using a phase Siemens star target, and show four-fold improved coherent resolution (synthetic NA of 0.42) and a depth of field of 0.2 mm. To conduct live, long-term dopaminergic neuron imaging, we cultured ventral midbrain from mice driving eGFP from the tyrosine hydroxylase promoter. The EmSight system tracks movements of dopaminergic neurons over a 21 day period. PMID:27570701

  11. Image Stability Requirements For a Geostationary Imaging Fourier Transform Spectrometer (GIFTS)

    NASA Technical Reports Server (NTRS)

    Bingham, G. E.; Cantwell, G.; Robinson, R. C.; Revercomb, H. E.; Smith, W. L.

    2001-01-01

    A Geostationary Imaging Fourier Transform Spectrometer (GIFTS) has been selected for the NASA New Millennium Program (NMP) Earth Observing-3 (EO-3) mission. Our paper will discuss one of the key GIFTS measurement requirements, Field of View (FOV) stability, and its impact on required system performance. The GIFTS NMP mission is designed to demonstrate new and emerging sensor and data processing technologies with the goal of making revolutionary improvements in meteorological observational capability and forecasting accuracy. The GIFTS payload is a versatile imaging FTS with programmable spectral resolution and spatial scene selection that allows radiometric accuracy and atmospheric sounding precision to be traded in near real time for area coverage. The GIFTS sensor combines high sensitivity with a massively parallel spatial data collection scheme to allow high spatial resolution measurement of the Earth's atmosphere and rapid broad area coverage. An objective of the GIFTS mission is to demonstrate the advantages of high spatial resolution (4 km ground sample distance - gsd) on temperature and water vapor retrieval by allowing sampling in broken cloud regions. This small gsd, combined with the relatively long scan time required (approximately 10 s) to collect high resolution spectra from geostationary (GEO) orbit, may require extremely good pointing control. This paper discusses the analysis of this requirement.

  12. Microencapsulation effects on the electro-optical behavior of polymer cholesteric liquid crystal flakes

    NASA Astrophysics Data System (ADS)

    Cox, Gerald Philip

    A modeling method is introduced for predicting the effect of microencapsulation on the electro-optical behavior of polymer cholesteric liquid crystal (PCLC) flakes suspended in a host fluid. The electric field acting on the flakes is significantly altered as various materials and boundary conditions are explored. The modeling predicts that test cells with multiple materials in the electric field path can have a wide range of electro-optic responses in AC electric fields. For DC drive conditions at high field strengths and test cell materials with low dielectric constants, electrophoretic behavior is observed for PCLC flakes. Prototype test cells for several encapsulation configurations are characterized for their resulting electro-optical behavior. The observed flake motions are in good agreement with the predicted results. This modeling method is shown to be a useful predictive tool for developing switchable particle devices utilizing microencapsulated dielectric particles in a host fluid medium. This work further builds on previous research on flake motion in a host fluid suspension, exploring flake doping effects, both internal and surface coated. Host fluids were also doped for increased conductivity and are explored for their effect on PCLC flake motion. A low dielectric property host fluid doped with an aqueous salt solution and a surfactant is found to enable Maxwell-Wagner reorientation in a DC electric field. In an AC electric field the doped host fluid is found to have dual-frequency response enabling a reverse drive for PCLC flakes. Below the turnover frequency, flakes align parallel to the electric field and above the turnover frequency the flakes align perpendicular.

  13. Electro-Optical Sensors Used For Inspection And Quality Control Of Solar Panels

    NASA Astrophysics Data System (ADS)

    Paulson, R. W.; Decker, H.; Hodor, J.; Barney, J.

    1983-05-01

    Optical techniques have been a key ingredient in greatly improving the quality control and product assurance of solar panel manufacturing. In fact, major breakthroughs in this area have been in progress over the last two years. These techniques involve electro-optical devices used for on line sensing and, in some cases, controlling production. Optical sensor displays assist the operator and inspector to assure maximum quality control. The sensors output is simultaneously, along with other pertinent data, recorded for documentation and stored for future reference. In this age of very large, lightweight, folding solar arrays, the individual solar cell bonding to the circuit is most critical. The bond must be strong mechanically, good electrically and introduce no undesirable side effects such as puncturing the junction, cracking the cell, or melting the circuit material. One related problem is mislocating the bond such that edge effects or unwanted insulation material interfere with the bonding, reducing the strength and size of the bond. This alignment problem was solved by using a high resolution, high contrast color TV camera with high contrast capability allowed detection of the low contrast insulation material. Color effects immediately after bonding, giving the inspector, bond quality and bond shape data, as well as revealing any circuit melting. Since bonding takes only a few milliseconds and there can be more than 20 variables involved, a sensor controlled bonder was required. This was solved by means of an electro-optical bond temperature sensor that automatically controlled the bonder to a preset bond temperature. Another inspection technique utilized was an electro-optical sensor which consisted of a custom designed videoized near infrared microscope that permitted crack inspection after bonding and gives infrared bond footprints. By inserting crossed polarizers, inspection of the residual stress patterns left in the silicon was possible. In addition, a

  14. Characterization of devices, circuits, and high-temperature superconductor transmission lines by electro-optic testing

    NASA Technical Reports Server (NTRS)

    Whitaker, John F.

    1991-01-01

    The development of a capability for testing transmission lines, devices, and circuits using the optically-based technique of electro-optics sampling was the goal of this project. Electro-optic network analysis of a high-speed device was demonstrated. The project involved research on all of the facets necessary in order to realize this result, including the discovery of the optimum electronic pulse source, development of an adequate test fixture, improvement of the electro-optic probe tip, and identification of a device which responded at high frequency but did not oscillate in the test fixture. In addition, during the process of investigating patterned high-critical-temperature superconductors, several non-contacting techniques for the determination of the transport properties of high T(sub c) films were developed and implemented. These are a transient, optical pump-probe, time-resolved reflectivity experiment, an impulsive-stimulated Raman scattering experiment, and a terahertz-beam coherent-spectroscopy experiment. The latter technique has enabled us to measure both the complex refractive index of an MgO substrate used for high-T(sub c) films and the complex conductivity of a YBa2Cu3O(7-x) sample. This information was acquired across an extremely wide frequency range: from the microwave to the submillimeter-wave regime. The experiments on the YBCO were conducted without patterning of, or contact to, the thin film. Thus, the need for the more difficult transmission-line experiments was eliminated. Progress in all of these areas was made and is documented in a number of papers. These papers may be found in the section listing the abstracts of the publications that were issued during the course of the research.

  15. Two-dimensional Kerr-Fourier imaging of translucent phantoms in thick turbid media

    NASA Astrophysics Data System (ADS)

    Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.

    1995-06-01

    Translucent scattering phantoms hidden inside a 5.5-cm-thick Intralipid solution were imaged as a function of phantom scattering coefficients by the use of a picosecond time-and space-gated Kerr-Fourier imaging system. A 2-mm-thick translucent phantom with a 0.1% concentration (scattering coefficient) difference from the 55-mm-thick surrounding scattering host can be distinguished at a signal level of approximately 10-10 of the incidence illumination intensity.

  16. LETTER TO THE EDITOR: The fractional Fourier transform and ISAR imaging

    NASA Astrophysics Data System (ADS)

    Borden, Brett

    2000-04-01

    We comment on a connection between the fractional Fourier transform and inverse synthetic aperture radar imaging (ISAR). The results help illuminate older constructions due to Bernfeld (Bernfeld M 1984 Chirp Doppler radar Proc. IEEE Lett. 72 540) and Feig and Grünbaum (Feig E and Grünbaum A 1986 Tomographic methods in range-Doppler radar Inverse Problems 2 185-95) and suggest a fast scheme for eliminating the polar data reformatting step in (ordinary) ISAR imaging.

  17. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor.

    PubMed

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-02-01

    We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.

  18. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz.

  19. Electro-optical sun compass with a very high degree of accuracy.

    PubMed

    Bollanti, Sarah; De Meis, Domenico; Di Lazzaro, Paolo; Flora, Francesco; Gallerano, Gian Piero; Mezi, Luca; Murra, Daniele; Torre, Amalia; Vicca, Davide

    2015-08-01

    We present a novel electro-optical solar compass that is able to determine the true North direction with an accuracy better than 1/100 of degree, superior to that of any other magnetic or electronic compass that does not resort to differential GPS. The compass has an electronic sensor to determine the line of sight of the Sun and a simple but effective algorithm to calculate the position of the Sun. The excellent results obtained during the experimental tests demonstrate the advantages of this compass, which is also compact and not expensive. PMID:26258372

  20. Electro-optic and viscoelastic properties of a ferroelectric liquid crystalline binary mixture

    NASA Astrophysics Data System (ADS)

    Dardas, Dorota

    2016-04-01

    This study describes the properties of a binary liquid crystalline mixture composed of commercially available materials, Ce-3 (4-(n-hexyloxy phenyl)-1-(2-fuethyl butyl) biphenyl-4-carboxylate) and Ce-8 (4-(2-methylbutyl) phenyl-4-n-octylbiphenyl-4-carboxylate), in a weight ratio of 50:50. Both compounds show polymesomorphism and ferroelectric properties within a relatively wide temperature range. Taken separately, each compound has its advantages and disadvantages from the technical point of view. The influence of temperature on the electro-optical and viscoelastic properties of the produced binary mixture is investigated in this paper.

  1. The precision analysis of continuous zoom lens in airborne electro-optical pod

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-xu; Li, Da-wei; Han, Jun-feng; Dong, Qiang; Huang, Wei; Wei, Yu

    2014-02-01

    In the research of electro-optical pod, this paper propose a mission requirements that continuous zoom lens system is using for measuring angle in the process. This paper analyzes the influence of angle measurement accuracy from focal length and optical axis errors in the process of continuous zoom, and given the mathematical model of the influence of angle measurement accuracy. The simulation analysis indicated that Angle measuring accuracy is affected by the process of continuous zoom. The simulation analysis results have certain instructive significance to engineering practice.

  2. Nuclear reactor pulse calibration using a CdZnTe electro-optic radiation detector.

    PubMed

    Nelson, Kyle A; Geuther, Jeffrey A; Neihart, James L; Riedel, Todd A; Rojeski, Ronald A; Saddler, Jeffrey L; Schmidt, Aaron J; McGregor, Douglas S

    2012-07-01

    A CdZnTe electro-optic radiation detector was used to calibrate nuclear reactor pulses. The standard configuration of the Pockels cell has collimated light passing through an optically transparent CdZnTe crystal located between crossed polarizers. The transmitted light was focused onto an IR sensitive photodiode. Calibrations of reactor pulses were performed using the CdZnTe Pockels cell by measuring the change in the photodiode current, repeated 10 times for each set of reactor pulses, set between 1.00 and 2.50 dollars in 0.50 increments of reactivity.

  3. Precursor polymer approach towards functional conjugated polymer networks and ultrathin film electro-optical applications

    NASA Astrophysics Data System (ADS)

    Taranekar, Prasad

    Conjugated polymers are organic semiconductors which are of interest to a wide variety of optical, electronic, opto-electronic, and sensory applications; including light emitting diodes, thin film transistors, photovoltaic cells, and chemical sensors. While conducting polymers have some similarities to conventional polymeric materials, it is clearly the extensive main chain pi-conjugated structure and its implicit electro-optical properties that make it distinct. The same structure, however, gives it "chain stiffness" that affects its physical behavior. As a direct consequence of this, virtually all unsubstituted conducting polymers are found to be intractable and insoluble. This dissertation details the issue of tailoring the electro-optical properties and processability of conjugated polymers via a novel "precursor polymer approach". In this approach, electroactive side group units of either similar or different kind are tethered to a polymeric backbone. This combination determines the eventual electro-optical and electrochemical properties of these polymers including their ability to form ultrathin films. Thus, the desired macroscopic property is transformed by designing new precursor polymer structures, manipulating polymer-based compositions and blends, and the exploration and exploitation of their electrochemical processing conditions. In Chapters 2, 3, and 4, we have used single or binary electroactive compositions of species such as pyrrole, thiophene, carbazole and terthiophene are tethered to a linear polymeric backbone. Besides, the linear approach, in Chapters 5 and 6, we have also explored the use of generational dendrimers as backbone with carbazole units attached as peripheral electroactive groups. These precursor polymers were then subjected to electrochemical cross-linking to generate high optical quality ultrathin films on a conducting substrate such as indium tin oxide (ITO) or Au surfaces. The reaction of such electroactive species inimically

  4. New Remote Gas Sensor Using Rapid Electro-Optical Path Switching

    NASA Technical Reports Server (NTRS)

    Sachse, G. W.; Lebel, P. J.; Wallio, H. A.; Vay, S. A.; Wang, L. G.

    1994-01-01

    Innovative gas filter correlation radiometer (GFCR) features nonmechanical switching of internal optical paths. Incoming radiation switched electro-optically, by means of polarization, between two optical paths, one of which contains correlation gas cell while other does not. Advantages include switching speed, 2 to 3 orders of magnitude faster than mechanical techniques, and high reliability. Applications include regional studies of atmospheric chemistry from either manned or unmanned aircraft as well as satellite studies of global distributions, sources and sink mechanisms for key species involved in chemistry of troposphere. Commercial applications: ability to survey many miles of natural gas pipelines rapidly from aircraft, pinpointing gas leaks by measuring methane at 2.3 micrometers.

  5. Electro-optical characterization of MPPC detectors for the ASTRI Cherenkov telescope camera

    NASA Astrophysics Data System (ADS)

    Marano, D.; Belluso, M.; Bonanno, G.; Billotta, S.; Grillo, A.; Garozzo, S.; Romeo, G.; Catalano, O.; La Rosa, G.; Sottile, G.; Impiombato, D.; Giarrusso, S.

    2014-12-01

    This work addresses a systematic and in-depth electro-optical characterization of the Multi-Pixel Photon Counter (MPPC) sensors constituting the camera detection system at the focal plane of the ASTRI telescope prototype. The paper reports the experimental results of a large set of measurements on the MPPC devices in order to provide a reliable qualification of the detector performance and evaluate its compliance with the telescope focal plane requirements. In particular, breakdown voltage, internal gain, dark count rate, cross-talk and extra-charge probability, and absolute photon detection efficiency measurements are performed on the basic sensor device unit as a function of the detector operating conditions.

  6. External electro-optic probing of millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Whitaker, J. F.; Valdmanis, J. A.; Jackson, T. A.; Bhasin, K. B.; Romanofsky, Robert R.; Mourou, G. A.

    1989-01-01

    An external, noncontact electro-optic measurement system, designed to operate at the wafer level with conventional wafer probing equipment and without any special circuit preparation, has been developed. Measurements have demonstrated the system's ability to probe continuous and pulsed signals on microwave integrated circuits on arbitrary substrates with excellent spatial resolution. Experimental measurements on a variety of digital and analog circuits, including a GaAs selectively-doped heterostructure transistor prescaler, an NMOS silicon multiplexer, and a GaAs power amplifier MMIC are reported.

  7. Polymeric waveguide electro-optic beam-steering device with DNA biopolymer conductive cladding layers

    NASA Astrophysics Data System (ADS)

    Aga, Roberto S.; Ouchen, Fahima; Lesko, Alyssa; Telek, Brian A.; Fehrman Cory, Emily M.; Bartsch, Carrie M.; Lombardi, Jack; Grote, James; Heckman, Emily M.

    2012-11-01

    A polymer electro-optic (EO) waveguide beam-steering device with deoxyribonucleic acid (DNA) biopolymer conductive cladding layers and a core layer of the commercially available EO polymer SEO100 is demonstrated with 100% relative poling efficiency. This demonstration device exhibits a deflection efficiency of 99 mrad/kV with a corresponding in-device EO coefficient r33 of 124 pm/V at 1550 nm. When the DNA biopolymer bottom cladding layer is replaced by the commonly used cladding polymer UV15, the deflection efficiency and in-device r33 drop to 34 mrad/kV and 43 pm/V, respectively.

  8. Electrical and electro-optic characterization of nonlinear polymer thin films on silicon substrate

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Schulz, Marvin; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.

    2014-05-01

    In this paper we present electrical and electro-optical (EO) measurements of polymer thin films on silicon substrates. A method is presented on how to interpret ellipsometric measurements of the (EO) coefficient on silicon substrate by taking into account multiple reflections in each sample layer. The obtained EO coefficients on silicon substrate are compared to measurements for indium tin oxide (ITO) coated glass substrates. Electrical measurements are performed to analyze the conduction mechanisms inside the polymer film. Based on the presented experimental data different models are discussed in order to explain the differences in current density during poling between ITO coated glass substrates and silicon substrates.

  9. Improved interferometer studies of linear electro-optic effects of dye-doped polymers.

    PubMed

    Ghebremichael, F; Lackritz, H S

    1997-06-20

    The basic Mach-Zehnder interferometer was modified for use in in situ temperature-dependent linear electro-optic (LEO) measurements of thin films of 4-dimethylamino-4?-nitrostilbene (DANS) doped into poly(methyl methacrylate) (PMMA). Optimum interferometer phase stability was possible because of an incorporated electronic feedback system. Film thickness variation was compensated for to obtain more accurate LEO coefficient measurements and thus the second-order susceptibility. Moreover, both the alpha relaxation associated with the glass transition, T(g), and beta relaxation associated with the secondary transition occurring below T(g) of PMMA + 2 wt.% DANS was obtained. PMID:18253430

  10. Kerr Nonlinearity via Cascaded Optical Rectification and the Linear Electro-optic Effect

    NASA Astrophysics Data System (ADS)

    Bosshard, Ch.; Spreiter, R.; Zgonik, M.; Günter, P.

    1995-04-01

    We show both theoretically and experimentally that the combined processes of optical rectification and the linear electro-optic effect lead to an effective nonlinear refractive index n2 in noncentrosymmetric materials. This cascaded second-order nonlinear optical effect arises in addition to the well-known contribution due to second-harmonic generation and difference-frequency mixing and is of comparable magnitude. However, it has the advantage of a broad acceptance angle because no precise phase matching is needed. Experimental results in KNbO3 crystals are presented.

  11. Simulation study on cascaded terahertz pulse generation in electro-optic crystals

    NASA Astrophysics Data System (ADS)

    Hattori, Toshiaki; Takeuchi, Kousuke

    2007-06-01

    We studied cascaded optical rectification processes for intense terahertz (THz) pulse generation in electro-optic crystals using simulations based on one-dimensional coupled propagation equations of THz and optical fields. We found that under ideal conditions of perfect phase matching and no absorption, cascaded optical rectification processes produce intense THz pulses with efficiencies exceeding the Manley-Rowe limit. Large red shifting of the pump light spectrum was observed. Effects of finite optical and THz absorption, phase mismatches, and pulse width were examined using parameters of a ZnTe crystal pumped by 800 nm pulses. THz field enhancement by multiple pulse pumping was also studied.

  12. Phase polymorphism and electro-optical properties of a ferroelectric liquid crystal containing the biphenyl system

    NASA Astrophysics Data System (ADS)

    Zalewski, Sławomir; Ossowska-Chruściel, Mirosława D.

    2016-04-01

    In this article we present results concerning phase transitions and physical properties of the ferroelectric phase of the compound (S)-4-(1-methylheptyloxy)biphenyl-4'-(heptyloxy phenyl)-4-carboxylate (MHOBOPO7). The compound has the following phases: smectic ferroelectric C (SmC*), chiral nematic N*, and two defected phases, TGBC and blue phase. The mesomorphic properties were investigated by means of three complementary methods: differential scanning calorimetry, polarizing light optical microscopy, and transmitted light intensity. The electro-optical measurements were carried out on an ordered sample in a middle electric field during very slow cooling from the nematic phase to the ferroelectric phase.

  13. High-Sensitivity Optical Pulse Characterization Using Sagnac Electro-Optic Spectral Shearing Interferometry

    SciTech Connect

    Dorrer, C.; Bromage, J.

    2010-05-04

    An electro-optic spectral shearing interferometer for high-sensitivity optical pulse characterization is described. Two replicas of the test pulse counterpropagate in a Sagnac interferometer with orthogonal polarization states, resulting in two relatively sheared copolarized replicas after temporal phase modulation. The polarization interferometer is intrinsically stable, and its birefringence sets the delay between interfering replicas to reduce the spectrometer resolution requirement. Experimental implementations demonstrate real-time pulse characterization at average powers as low as 1 nWwith spectral shears as high as 280 GHz.

  14. Electro-optic detection of continuous-wave mid-infrared radiation.

    PubMed

    Cao, Hua; Nahata, Ajay

    2002-01-01

    We demonstrate coherent detection of continuous-wave mid-infrared radiation. This radiation is produced by use of conventional difference-frequency mixing and detected via the linear electro-optic effect. The detection process allows for the simultaneous measurement of the amplitude and phase properties of the infrared field. Both processes require an amplitude-modulated optical beam that is derived from the superimposed output of two single-frequency lasers. With appropriate choice of lasers and nonlinear optical crystals, the technique may be applied to any wavelength throughout the far and mid infrared.

  15. Effects of graphene on electro-optic switching and spontaneous polarization of a ferroelectric liquid crystal

    SciTech Connect

    Basu, Rajratan

    2014-09-15

    A small quantity of graphene flakes was doped in a ferroelectric liquid crystal (FLC), and the field-induced ferroelectric electro-optic switching was found to be significantly faster in the FLC + graphene hybrid than that of the pure FLC. Further studies revealed that the suspended graphene flakes enhanced the FLC's spontaneous polarization by improving smectic-C ordering resulting from the π–π electron stacking, and reduced rotation viscosity by trapping some of the free ions of the FLC media. These effects coherently impacted the FLC-switching phenomenon, enabling the FLC molecules to switch faster on reversing an external electric field.

  16. Injected-charge-driven increase in electro-optic effect of KTN crystals

    SciTech Connect

    Toyoda, Seiji; Imai, Tadayuki; Miyazu, Jun; Okabe, Yuichi; Ueno, Masahiro; Kobayashi, Junya

    2014-05-15

    We report a significant increase in the electro-optic (EO) effect of KTa{sub x}Nb{sub 1-x}O{sub 3} (KTN) crystals that we achieved by injecting carriers into them. The dielectric constant of KTN was increased approximately twofold by carrier injection. The EO beam scanning performance was effectively improved by the increase in the EO effect resulting from the increased dielectric constant. The estimated densities of the trapped electrons were as small as 5.8 × 10{sup 20}m{sup -3}. The very small quantity of injected electrons greatly affected the dielectric constant and EO effect of the KTN crystals.

  17. Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films

    NASA Astrophysics Data System (ADS)

    Shuto, Yoshito; Amano, Michiyuki

    1995-05-01

    An experimental arrangement for linear electro-optic (EO) measurements at wavelength 1.31 micron was described, the principle of which was the comparative determination of the phase-modulation indices by a reflection method. This method was used to measure the r(sub 33) values of both lithium niobate crystal and diazo-dye substituted poled polymers. Second harmonic generation (SHG) and EO effects were both depicted by a second-order susceptibility tensor. Finally, a comparison between the SHG and EO coefficients of the diazo-dye-substituted poled polymer films was presented.

  18. An electro-optic modulator-assisted wavevector-resolving Brillouin light scattering setup.

    PubMed

    Neumann, T; Schneider, T; Serga, A A; Hillebrands, B

    2009-05-01

    Brillouin light scattering spectroscopy is a powerful technique which incorporates several extensions such as space-, time-, phase-, and wavevector-resolution. Here, we report on the improvement of the wavevector-resolving setup by including an electro-optic modulator. This provides a reference to calibrate the position of the diaphragm hole which is used for wavevector selection. The accuracy of this calibration is only limited by the accuracy of the wavevector measurement itself. To demonstrate the validity of the approach the wavevectors of dipole-dominated spin waves excited by a microstrip antenna were measured. PMID:19485518

  19. Application of Fourier descriptors and fuzzy logic to classification of radar subsurface images

    NASA Astrophysics Data System (ADS)

    Parsiani, Hamed; Tolstoy, Leonid

    2004-02-01

    This paper presents an application of Fourier Descriptors and Fuzzy Logic for the recognition of archeological artifacts in Ground Penetrating Radar (GPR) images of a surveyed site. 2-D GPR survey images of a site are made available by NASA-SSC center. The buried artifacts in these images appear in the form of hyperbolas which are the results of radar backscatter from the artifacts. The Fourier Descriptors of an image are applied as inputs to a Fuzzy C-Mean Classifier (FCMC). The FCMC algorithm has to recognize different types of shapes, in order to separate hyperbola-like shapes from non-hyperbola shapes in the sub-surface images. The procedure consisted of removing background noise using a suitable threshold filter, locating the separate shapes in the image using N8(p) connectivity algorithm, calculating a short sequence of Fourier Descriptors (FD) of each isolated shape, and obtaining an unsupervised classification by applying Fuzzy C-Mean clustering algorithm to the FD sequences. The classes obtained depend upon the requirements of the user, namely, two classes of hyperbola/no-hyperbola objects, or several classes from symmetric hyperbolas to total rejects could be obtained. The results consisting of recognized hyperbolas indicate the presence of buried artifacts. Also, our previous results of supervised FD-Neural Network (FD-NNC) published in the proceedings of SPIE 2002 are compared with unsupervised FD-FCMC. The compared results in terms of the quality of classification are presented in this work.

  20. Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser

    NASA Astrophysics Data System (ADS)

    Kirsten, Lars; Walther, Julia; Cimalla, Peter; Gaertner, Maria; Meissner, Sven; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is a noninvasive imaging modality generating cross sectional and volumetric images of translucent samples. In Fourier domain OCT (FD OCT), the depth profile is calculated by a fast Fourier transformation of the interference spectrum, providing speed and SNR advantage and thus making FD OCT well suitable in biomedical applications. The interference spectrum can be acquired spectrally resolved in spectral domain OCT or time-resolved in optical frequency domain imaging (OFDI). Since OCT images still suffer from motion artifacts, especially under in vivo conditions, increased depth scan rates are required. Therefor, the principle of Fourier domain mode locking has been presented by R. Huber et al. circumventing the speed limitations of conventional FD OCT systems. In FDML lasers, a long single mode fiber is inserted in the ring resonator of the laser resulting in an optical round trip time of a few microseconds. Sweeping the wavelength synchronously by a tunable Fabry-Perot filter can provide wavelength sweeps with repetition rates up to a few MHz used for OFDI. Imaging of subpleural lung tissue for investigation of lung dynamics and its elastic properties is a further biomedical application demanding high-speed OCT imaging techniques. For the first time, the visualization of subpleural alveolar structures of a rabbit lung is presented by the use of an FDML-based OCT system enabling repetition rates of 49.5 kHz and 122.6 kHz, respectively.

  1. Ultrahigh resolution spectral/Fourier domain OCT systems for retinal imaging applications

    NASA Astrophysics Data System (ADS)

    Srinivasan, V. J.; Wojtkowski, M.; Witkin, A.; Monson, B.; Duker, J. S.; Schuman, J. S.; Shidlovski, V.; Yakubovich, S.; Fujimoto, J. G.

    2006-02-01

    In this manuscript we describe the design and optimization of ultrahigh resolution spectral/Fourier domain OCT systems for three applications in retinal imaging: imaging of the normal retina, three-dimensional (3D) imaging of retinal pathologies, and 3D imaging of the rodent retina. Seven spectrometer configurations were tested for resolution and sensitivity drop with depth, and CCD pixel crosstalk was characterized. The human retina was imaged in vivo with five different axial resolutions between 2 and 10 microns, and with three different transverse resolutions. Information from these experiments enabled the optimization of OCT systems for the above applications. Results include clinical 3D data of retinal pathologies, high quality cross-sectional images of the normal retina with different axial and transverse resolutions and 3D data from the rat and mouse retinas. Factors affecting the sensitivity fall-off are discussed and theoretical predictions are compared with experimental measurements. Different retinal imaging applications necessitate different system designs, depending on the requirements of speed, axial resolution, axial measurement range, transverse resolution, and field of view. While axial resolution is the dominant factor in image quality, a smaller transverse spot size can reduce speckle size and improve contrast at boundaries such as the boundary between the ganglion cell layer and the inner plexiform layer. The effect of reducing the transverse spot size is most pronounced in images with 5-10 um axial resolution. In addition, we characterize all factors responsible for the sensitivity drop with depth in spectral/Fourier domain OCT.

  2. A method for estimating spatial resolution of real image in the Fourier domain.

    PubMed

    Mizutani, Ryuta; Saiga, Rino; Takekoshi, Susumu; Inomoto, Chie; Nakamura, Naoya; Itokawa, Masanari; Arai, Makoto; Oshima, Kenichi; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Suzuki, Yoshio

    2015-01-01

    Spatial resolution is a fundamental parameter in structural sciences. In crystallography, the resolution is determined from the detection limit of high-angle diffraction in reciprocal space. In electron microscopy, correlation in the Fourier domain is used for estimating the resolution. In this paper, we report a method for estimating the spatial resolution of real images from a logarithmic intensity plot in the Fourier domain. The logarithmic intensity plots of test images indicated that the full width at half maximum of a Gaussian point spread function can be estimated from the images. The spatial resolution of imaging X-ray microtomography using Fresnel zone-plate optics was also estimated with this method. A cross section of a test object visualized with the imaging microtomography indicated that square-wave patterns up to 120-nm pitch were resolved. The logarithmic intensity plot was calculated from a tomographic cross section of brain tissue. The full width at half maximum of the point spread function estimated from the plot coincided with the resolution determined from the test object. These results indicated that the logarithmic intensity plot in the Fourier domain provides an alternative measure of the spatial resolution without explicitly defining a noise criterion.

  3. Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.

  4. Detection of correlated fragments in a sequence of images by superimposed Fourier holograms

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-08-01

    The problem of detecting correlated fragments in a sequence of images recorded by the superimposing holograms within the Fourier holography scheme with angular multiplication of a spatially modulated reference beam is considered. The approach to the solution of this problem is based on the properties of the variance of the image sum. It is shown that this problem can be solved by providing a constant distance between the signal and reference images when recording superimposed holograms and a partial mutual correlatedness of reference images. The detection efficiency is analysed from the point of view of estimated image data capacity, the degree of mutual correlation of reference images, and the hologram recording conditions. The results of a numerical experiment under the most complicated conditions (representation of images by realisations of homogeneous random fields) confirm the theoretical conclusions.

  5. Quantum Color Image Encryption Algorithm Based on A Hyper-Chaotic System and Quantum Fourier Transform

    NASA Astrophysics Data System (ADS)

    Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong

    2016-09-01

    To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.

  6. High-definition Fourier transform infrared spectroscopic imaging of breast tissue

    NASA Astrophysics Data System (ADS)

    Leslie, L. Suzanne; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2015-03-01

    Breast cancer diagnosis relies on staining serial sections of a biopsy in a process that can be time intensive and costly. Fourier transform infrared imaging (FT-IR) is a non-destructive, label-free chemical imaging technique that uses the vibrational structure of the biological molecules of the sample to provide contrast for images at any absorption peak in the mid-infrared. The full potential of spectroscopic imaging has been limited by the spatial resolution provided by most commercial instruments. By increasing the magnification and numerical aperture of the microscope, image pixel sizes on the order of 1.1 micron can be achieved, allowing HD FT-IR spectroscopic imaging to provide high quality images that could aid in histopathology, diagnosis, and studies of breast cancer progression.

  7. Digital watermarking algorithm research of color images based on quaternion Fourier transform

    NASA Astrophysics Data System (ADS)

    An, Mali; Wang, Weijiang; Zhao, Zhen

    2013-10-01

    A watermarking algorithm of color images based on the quaternion Fourier Transform (QFFT) and improved quantization index algorithm (QIM) is proposed in this paper. The original image is transformed by QFFT, the watermark image is processed by compression and quantization coding, and then the processed watermark image is embedded into the components of the transformed original image. It achieves embedding and blind extraction of the watermark image. The experimental results show that the watermarking algorithm based on the improved QIM algorithm with distortion compensation achieves a good tradeoff between invisibility and robustness, and better robustness for the attacks of Gaussian noises, salt and pepper noises, JPEG compression, cropping, filtering and image enhancement than the traditional QIM algorithm.

  8. Electro-optic sampling for time resolving relativistic ultrafast electron diffraction

    SciTech Connect

    Scoby, C. M.; Musumeci, P.; Moody, J.; Gutierrez, M.; Tran, T.

    2009-01-22

    The Pegasus laboratory at UCLA features a state-of-the-art electron photoinjector capable of producing ultrashort (<100 fs) high-brightness electron bunches at energies of 3.75 MeV. These beams recently have been used to produce static diffraction patterns from scattering off thin metal foils, and it is foreseen to take advantage of the ultrashort nature of these bunches in future pump-probe time-resolved diffraction studies. In this paper, single shot 2-d electro-optic sampling is presented as a potential technique for time of arrival stamping of electron bunches used for diffraction. Effects of relatively low bunch charge (a few 10's of pC) and modestly relativistic beams are discussed and background compensation techniques to obtain high signal-to-noise ratio are explored. From these preliminary tests, electro-optic sampling is suitable to be a reliable nondestructive time stamping method for relativistic ultrafast electron diffraction at the Pegasus lab.

  9. Controlling Fringe Sensitivity of Electro-Optic Holography Systems Using Laser Diode Current Modulation

    NASA Technical Reports Server (NTRS)

    Bybee, Shannon J.

    2001-01-01

    Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.

  10. Performance of an electro-optical solar compass in partially obscured Sun conditions.

    PubMed

    Bollanti, S; De Meis, D; Di Lazzaro, P; Flora, F; Gallerano, G P; Mezi, L; Murra, D; Vicca, D

    2016-04-20

    Solar compasses are designed to accurately find true North on sunny days. However, no data on their performance are available when sunlight is partially blocked, e.g., by a cloud. We have measured, for the first time to the best of our knowledge, the performance of one of the most accurate electro-optical solar compasses (accuracy better than 0.01  deg) as a function of the solar disk obscuration during the Sun's eclipse on 20 March 2015. The measurements show that the accuracy level is mainly dependent on the asymmetry of the obscuration with respect to the main axis of the optical detection system and, to a lesser extent, on the percentage of the solar disk covered. In particular, azimuth measurement suffered a maximum deviation of 0.08 deg when 35% of the solar disk was asymmetrically obscured. The deviation was smaller when 46% of the solar disk was more symmetrically obscured. This experiment demonstrates that, even in the case of a partially obscured Sun, the electro-optical solar compass maintains an accuracy better than magnetic and electronic compasses. PMID:27140077

  11. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators.

    PubMed

    Himmelhuber, Roland; Norwood, Robert A; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  12. Electro-optical logic gates based on graphene-silicon waveguides

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Yang, Longzhi; Wang, Pengjun; Zhang, Yawei; Zhou, Liqiang; Yang, Tianjun; Wang, Yang; Yang, Jianyi

    2016-08-01

    In this paper, designs of electro-optical AND/NAND, OR/ NOR, XOR/XNOR logic gates based on cascaded silicon graphene switches and regular 2×1 multimode interference combiners are presented. Each switch consists of a Mach-Zehnder interferometer in which silicon slot waveguides embedded with graphene flakes are designed for phase shifters. High-speed switching function is achieved by applying an electrical signal to tune the Fermi levels of graphene flakes causing the variation of modal effective index. Calculation results show the crosstalk in the proposed optical switch is lower than -22.9 dB within a bandwidth from 1510 nm to 1600 nm. The designed six electro-optical logic gates with the operation speed of 10 Gbit/s have a minimum extinction ratio of 35.6 dB and a maximum insertion loss of 0.21 dB for transverse electric modes at 1.55 μm.

  13. T-shaped cavity dual-frequency Nd:YAG laser with electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Xing, Junhong; Jiao, Mingxing; Liu, Yun

    2016-05-01

    A T-shaped cavity dual-frequency Nd:YAG laser with electro-optical modulation is proposed, which consists of both p- and s-cavities sharing the same gain medium of Nd:YAG. Each cavity was not only able to select longitudinal mode but also tune frequency using an electro-optic birefringent filter polarization beam splitter + lithium niobate. The frequency difference of dual frequency was tuned through the whole gain bandwidth of Nd:YAG, which is far above the usually accepted free spectral range value in the case of a single-axis laser. As a result, the simultaneous operation of orthogonally and linearly polarized dual-frequency laser was obtained, which coincides with the theoretical analysis based on Jones matrices. The obtained frequency difference ranges from 0 to 132 GHz. This offers a simple and widely tunable source with potential for portable frequency reference applications in terahertz-wave generation and absolute-distance interferometry measurement areas.

  14. Hybrid Si-LiNbO₃ microring electro-optically tunable resonators for active photonic devices.

    PubMed

    Lee, Yoo Seung; Kim, Gun-Duk; Kim, Woo-Ju; Lee, Sang-Shin; Lee, Wan-Gyu; Steier, William H

    2011-04-01

    Hybrid Si-LiNbO₃ electro-optic tunable ring resonators have been proposed and demonstrated as a path to achieving ultracompact and high-speed electro-optic devices. Free standing single crystal LiNbO₃ microplatelets (~mm long and ~1 μm thick) were obtained from a z-cut LiNbO₃ substrate by ion implantation and thermal treatment. The platelets were transferred and thermally bonded on top of Si resonators that were fabricated in a Si-on-insulator platform by a 0.18 μm standard complementary metal-oxide-semiconductor process. For the hybrid microring resonator, a free spectral range of 16.5 nm, a finesse F of ~1.67 × 10², a Q-factor of ~1.68 × 10⁴, and an effective r coefficient of ~1.7 pm/V were achieved for the TE mode. These values are in good agreement with the calculated results. PMID:21479002

  15. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.

    2002-03-26

    A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.

  16. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators.

    PubMed

    Himmelhuber, Roland; Norwood, Robert A; Enami, Yasufumi; Peyghambarian, Nasser

    2015-07-27

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed.

  17. Millimeter-wave and microwave signal generation by low-bandwidth electro-optic phase modulation.

    PubMed

    Torres-Company, Víctor; Fernández-Alonso, Mercedes; Lancis, Jesús; Barreiro, Juan C; Andrés, Pedro

    2006-10-16

    We propose, analyze and numerically illustrate a photonic-based technique for waveform generation of electrical signals approaching the 50 GHz bandwidth with time apertures as large as a few nanoseconds, by low-frequency, up to 2 GHz, electro-optic phase modulation of time-stretched optical pulses. Synthesis of the electrical waveform relies on phase-to-amplitude conversion of the modulated signal by a group delay dispersion circuit designed to behave as a transversal filter with N taps. Although arbitrary waveform generation capabilities are limited, a wide variety of user-defined signals are numerically demonstrated by appropriately designing the low-frequency signal driving the electro-optical modulator. Frequency upshifting is controlled by the chirp of the stretched pulse which provides an additional degree of freedom. Finally, optical-to-electrical conversion allows for the user-defined electrical waveform. Simulations are given for square waveform generation demonstrating the high resolution and wide-band capabilities of the technique.

  18. Electro-optical backplane demonstrator with integrated multimode gradient-index thin glass waveguide panel

    NASA Astrophysics Data System (ADS)

    Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter

    2015-03-01

    Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.

  19. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    PubMed

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%). PMID:27131714

  20. Electro-optic polymer modulator based on guided-wave resonance

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Cao, Zhuangqi; Shen, Qishun; Dou, Xiaoming; Chen, Yingli; Ozaki, Yukihiro

    2000-10-01

    A new type of electro-optic polymer modulator based on guided modes of the Attenuated Total Reflection (ATR) spectrum is described and fabricated. Using a prism to couple a laser beam into a poled polymer thin film, it is found in its ATR spectrum that the fall-offs of the absorbance peaks corresponding to the guided modes can be considered linear. The angular positions of these fall-offs are sensitive to the dielectric coefficient of the poled polymer. If the operating interior angle of the modulator is properly chosen at the midst of these fall-offs, the intensity of the reflected light can be directly modulated by the applied electric field due to the electric-field-induced dielectric coefficient change in the poled polymer film. Compared with the conventional Electro-optical (EO) modulator based on waveguide technology, the insertion loss of the device can be greatly reduced; Compared with the EO modulator based on surface plasmon resonance, the driven voltage can be lessen because that guided wave resonance is much sharper than the surface plasmon resonance.

  1. Single-shot electron bunch length measurements using a spatial electro-optical autocorrelation interferometer

    NASA Astrophysics Data System (ADS)

    Sütterlin, Daniel; Erni, Daniel; Schlott, Volker; Sigg, Hans; Jäckel, Heinz; Murk, Axel

    2010-10-01

    A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

  2. Partially slotted silicon ring resonator covered with electro-optical polymer

    NASA Astrophysics Data System (ADS)

    Steglich, Patrick; Mai, Christian; Stolarek, David; Lischke, Stefan; Kupijai, Sebastian; Villringer, Claus; Pulwer, Silvio; Heinrich, Friedhelm; Bauer, Joachim; Meister, Stefan; Knoll, Dieter; Casalboni, Mauro; Schrader, Sigurd

    2016-05-01

    In this work, we present for the first time a partially slotted silicon ring resonator (PSRR) covered with an electro-optical polymer (Poly[(methyl methacrylate)-co-(Disperse Red 1 acrylate)]). The PSRR takes advantage of both a highly efficient vertical slot waveguide based phase shifter and a low loss strip waveguide in a single ring. The device is realized on 200 mm silicon-on-insulator wafers using 248 nm DUV lithography and covered with the electro-optic polymer in a post process. This silicon-organic hybrid ring resonator has a small footprint, high optical quality factor, and high DC device tunability. A quality factor of up to 105 and a DC device tunability of about 700 pm/V is experimentally demonstrated in the wavelength range of 1540 nm to 1590 nm. Further, we compare our results with state-of-the-art silicon-organic hybrid devices by determining the poling efficiency. It is demonstrated that the active PSRR is a promising candidate for efficient optical switches and tunable filters.

  3. Synthesis and characterization of cross-linkable polyurethane-imide electro-optic waveguide polymer

    NASA Astrophysics Data System (ADS)

    Wang, Long-De; Tang, Jie; Li, Ruo-Zhou; Zhang, Tong; Tong, Ling; Tang, Jing

    2016-01-01

    The novel electro-optic (EO) polymers of fluorinated cross-linkable polyurethane-imides (CLPUI) were designed and synthesized by polycondensation of azo chromophore C1 and C2, diisocyanate MDI, and aromatic dianhydride 6FDA. Molecular structural characterization for the resulting polymers was achieved by 1HNMR, FT-IR, elemental analysis, and gel permeation chromatography. The polymers exhibit good film-forming properties, high glass transition temperature ( T g) in the range of 193-200 °C, and thermal stability up to 290 °C. The polymers that possess a high EO coefficient (γ_{33} = 48 and 56 pm/V) at 1550 nm for poled polymer thin films were measured by the simple reflection technique. Excellent temporal stability and low optical losses in the range of 1.1-1.7 dB/cm at 1550 nm were observed for these polymers. Using the synthesized side-chain electro-optic CLPUI as the active core material and of a fluorinated polyimide as cladding material, we have designed and successfully fabricated the high-performance polymer waveguide Mach-Zehnder EO modulators.

  4. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    PubMed Central

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  5. Electro-optical equivalent calibration technology for high-energy laser energy meters

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  6. Electro-optical study of the exposure of Azospirillum brasilense carbohydrate epitopes.

    PubMed

    Guliy, Olga I; Matora, Larisa Yu; Dykman, Lev A; Staroverov, Sergey A; Burygin, Gennady L; Bunin, Viktor D; Burov, Andrei M; Ignatov, Oleg V

    2015-01-01

    The exposure of Azospirillum brasilense carbohydrate epitopes was investigated by electro-optical analysis of bacterial cell suspensions. To study changes in the electro-optical (EO) properties of the suspensions, we used antibodies generated to the complete lipopolysaccharide of A. brasilense type strain Sp7 and also antibodies to the smooth and rough O polysaccharides of Sp7. After 18 hr of culture growth, the EO signal of the suspension treated with antibodies to smooth O polysaccharide was approximately 20% lower than that of the suspension treated with antibodies to complete lipopolysaccharide (control). After 72 hr of culture growth, the strongest EO signal was observed for the cells treated with antibodies to rough O polysaccharide (approximately 46% greater than the control), whereas for the cells treated with antibodies to smooth O polysaccharide, it was much lower (approximately 23% of the control). These data were confirmed by electron microscopy. The results of the study may have importance for the rapid evaluation of changes in lipopolysaccharide form in microbial biotechnology, when the antigenic composition of the bacterial surface requires close control.

  7. Polymer/(liquid crystal) composite systems for novel electro-optical effects

    NASA Astrophysics Data System (ADS)

    Kajiyama, Tisato; Kikuchi, Hirotsugu; Takahara, Atsushi

    1992-06-01

    Aggregation states and electro-optical effects based on light scattering have been investigated for polymer (liquid crystal) composite films. The composite film was prepared by a solvent- evaporation method. Since a continuous liquid crystalline domain is embedded in a three- dimensional spongy network of polymer matrix, the liquid crystalline material is self- supported in the composite film in spite of its very low viscosity. The composite film composed of poly(methyl methacrylate) and a nematic LC(E44) with positive dielectric- anisotropy exhibited remarkable and reversible light scattering-light transmission switching under the modulation of an ac electric field. A light scattering state was dependent on optical heterogeneities such as a spatial distribution of nematic directors and/or mismatching in refractive indices of the components. Reversible and bistable electro-optical effects were also recognized for a smectic phase of a binary composite system composed of liquid crystalline polymer (LCP) and nematic LC. A light-addressed optical information storage of the LCP/nematic LC/(photoresponsive molecule) ternary composite membrane has also been demonstrated.

  8. Impact of lateral carrier confinement on electro-optical tuning properties of polariton condensates

    SciTech Connect

    Brodbeck, S.; Suchomel, H.; Amthor, M.; Wolf, A.; Kamp, M.; Schneider, C.; Höfling, S.

    2015-07-27

    Electro-optical measurements on exciton-polaritons below and above the condensation threshold are performed on high quality, pin-doped microcavities with embedded GaAs quantum wells. Applying an external electric field shifts the polariton emission by hundreds of μeV both in the linear and the nonlinear regime. We study three device geometries to investigate the influence of carrier confinement in the plane of the quantum well on the electro-optical tuning properties. In the conventional micropillar geometry, the electric field tuning behavior is dominated by the effects of carrier tunneling and electric field screening that manifest in a blueshift of the polariton emission. In stark contrast, for a planar sample geometry, we can significantly extend the range of electric fields and a redshift is observed. To separate the contributions of quantum confined Stark effect and reduced exciton oscillator strength to the energy shift, we study a third sample where the etching of micropillars is stopped just above the active region. In this semi-planar geometry, exciton and polariton emissions can be measured simultaneously. As for the planar geometry, redshifts of the polariton emission are observed below and above threshold that are well reproduced by theoretical shifts.

  9. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    PubMed

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  10. Performance of an electro-optical solar compass in partially obscured Sun conditions.

    PubMed

    Bollanti, S; De Meis, D; Di Lazzaro, P; Flora, F; Gallerano, G P; Mezi, L; Murra, D; Vicca, D

    2016-04-20

    Solar compasses are designed to accurately find true North on sunny days. However, no data on their performance are available when sunlight is partially blocked, e.g., by a cloud. We have measured, for the first time to the best of our knowledge, the performance of one of the most accurate electro-optical solar compasses (accuracy better than 0.01  deg) as a function of the solar disk obscuration during the Sun's eclipse on 20 March 2015. The measurements show that the accuracy level is mainly dependent on the asymmetry of the obscuration with respect to the main axis of the optical detection system and, to a lesser extent, on the percentage of the solar disk covered. In particular, azimuth measurement suffered a maximum deviation of 0.08 deg when 35% of the solar disk was asymmetrically obscured. The deviation was smaller when 46% of the solar disk was more symmetrically obscured. This experiment demonstrates that, even in the case of a partially obscured Sun, the electro-optical solar compass maintains an accuracy better than magnetic and electronic compasses.

  11. Low power compact hybrid plasmonic double microring electro-optical modulator

    NASA Astrophysics Data System (ADS)

    Zaki, Aya O.; Fouad, Nourhan H.; Zografopoulos, Dimitrios C.; Beccherelli, Romeo; Swillam, Mohamed A.

    2016-02-01

    In this work, we present an electro-optical modulator based on electromagnetically induced transparency (EIT). Our modulator employs a conductor-gap-silicon (CGS) microring resonator on each side of the input waveguide in a pushpull configuration utilizing an embedded electro-optical polymer (EOP). CGS waveguides support hybrid plasmonic modes offering a sound trade-off between mode confinement and propagation loss. The modulator is designed and analyzed using 3D finite difference time domain (FDTD) simulations. To have a high quality resonator, the rings are designed to have moderate waveguide propagation losses and a sub-micron radius of R = 805 nm. With an exact capacitance of just 1.06 fF per single microring resonator and applied voltage of 2 V, the exact energy consumption is estimated to be 4.24 fJ/bit. To the best of our knowledge, this figure represents 40% less power consumption in comparison with different modulators structures. The ultra-small capacitance of the proposed modulator and the instantaneous response of the used polymer make our design suitable for high bit rate applications. At the wavelength of -1550 nm-, the insertion loss is 0.34 dB and the extinction ratio is 10.23 dB.

  12. Filters and electro-optic modulators on fiber end-faces

    NASA Astrophysics Data System (ADS)

    Meister, Stefan; Schweda, Dawid; Dziedzina, Marcus; Juhre, Ronny; Al-Saadi, Aws; Franke, Bülent A.; Grimm, Bernd; Schrader, Sigurd K.; Benight, Stephanie J.; Bale, Denise H.; Kosilkin, Ilya; Dalton, Larry R.; Eichler, Hans J.

    2011-03-01

    Passive and tunable optical filters as well as optical modulators, directly fabricated on the end-faces of optical fibers can provide a fast and low cost production. A hybrid layer system can be built up to a passive Fabry-Pérot microcavity, where alternating dielectric high and low refractive materials are used as mirrors and a highly transparent polymer as the spacer material. The mirror design and the spacer thickness define the center operation wavelength and the filter bandwidth. Bandwidths of less than 1 nm (FWHM) at a wavelength of 1560 nm could be achieved for such microcavities on the end-faces of optical fibers. Enhancing the hybrid layer system by transparent conductive electrodes and by adding electro-optically active chromophores to the polymeric spacer material, the filters become tunable. The material used for the electrodes is indium tin oxide (ITO). The oxidic electrodes have to be merged with the dielectric mirrors and the polymeric spacer. Applying a voltage to the electro-optically active polymeric spacer utilizing such electrodes, the refractive index of the spacer can be changed and therefore the resonance criteria of the microcavity.

  13. H-infinity mix sensitivity controller design based on GIMC for electro-optical stabilization and tracking system

    NASA Astrophysics Data System (ADS)

    Liu, Zi-dong; Bao, Qi-liang; Xia, Yunxia; Liu, Xiang

    2013-08-01

    Electro-optical stabilization and tracking system is critical and difficult issue in satellite laser communication. Moreover, line-of-sight stabilized system is the kernel of implementing electro-optical stabilization and tracking system, which can be used to isolate the vibration of the moving platform of the satellite and the disturbance of the space environment. In this paper, we propose a new method, which using H∞ mix sensitivity based on generalized internal model controller (GIMC), to design the control system of the electro-optical stabilized platform. It is well known that there is an intrinsic conflict between performance and robustness in the standard feedback framework. Generalized internal model controller is a new architecture which can separate the performance and robustness design in controller design. This architecture has two parts: a high performance controller, say K0,which is designed by PI controller in this paper, and then a robustification controller, say Q, which is designed to improve the ability of the anti disturbance by using H-infinity mix sensitivity controller design method. In this paper, we also present the steps of controller design by using this method to make it easier to use. Based on the proposed method, numerical simulation and experiment are both carried out for a gyro stabilized platform of electro-optical tacking system. Both the numerical simulated and the experimental results show that the electro-optical stabilized platform using the H-infinity mix sensitivity controller design method based on GIMC is accurate and effective. Comparing with the same PI controller in standard feedback framework, the proposed method can guarantee the high tracking performance as same as the PI controller and improve the external disturbance restraining ability a lot. In conclusion, H-infinity mix sensitivity controller design method based on GIMC is a new approach for gyro stabilized platform of electro-optical stabilization and tracking

  14. Application of the fractional Fourier transform to image reconstruction in MRI.

    PubMed

    Parot, Vicente; Sing-Long, Carlos; Lizama, Carlos; Tejos, Cristian; Uribe, Sergio; Irarrazaval, Pablo

    2012-07-01

    The classic paradigm for MRI requires a homogeneous B(0) field in combination with linear encoding gradients. Distortions are produced when the B(0) is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short-bore magnets and higher B(0) fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low-field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second-order component is key, because it constitutes the first step to approximate higher-order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the object's magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field-induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding.

  15. Reprint of: Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    NASA Astrophysics Data System (ADS)

    Pan, R.; Jamison, S. P.; Lefevre, T.; Gillespie, W. A.

    2016-09-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding (EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  16. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    SciTech Connect

    Singh, U. B.; Pandey, M. B.; Dhar, R; Pandey, A. S.; Kumar, S.; Dabrowski, R.

    2014-11-15

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature.

  17. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  18. Fourier-interpolation superresolution optical fluctuation imaging (fSOFi) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Enderlein, Joerg; Stein, Simon C.; Huss, Anja; Hähnel, Dirk; Gregor, Ingo

    2016-02-01

    Stochastic Optical Fluctuation Imaging (SOFI) is a superresolution fluorescence microscopy technique which allows to enhance the spatial resolution of an image by evaluating the temporal fluctuations of blinking fluorescent emitters. SOFI is not based on the identification and localization of single molecules such as in the widely used Photoactivation Localization Microsopy (PALM) or Stochastic Optical Reconstruction Microscopy (STORM), but computes a superresolved image via temporal cumulants from a recorded movie. A technical challenge hereby is that, when directly applying the SOFI algorithm to a movie of raw images, the pixel size of the final SOFI image is the same as that of the original images, which becomes problematic when the final SOFI resolution is much smaller than this value. In the past, sophisticated cross-correlation schemes have been used for tackling this problem. Here, we present an alternative, exact, straightforward, and simple solution using an interpolation scheme based on Fourier transforms. We exemplify the method on simulated and experimental data.

  19. Identification of Earthquake Induced Damage Areas Using Fourier Transform and SPOT HRVIR Pan Images.

    PubMed

    Sertel, Elif

    2009-01-01

    A devastating earthquake with a magnitude of Mw 7.4 occurred on the North Anatolian Fault Zone (NAFZ) of Turkey on August 17, 1999 at 00:01:39 UTC (3:01 a.m. local time). The aim of this study is to propose a new approach to automatically identify earthquake induced damage areas which can provide valuable information to support emergency response and recovery assessment procedures. This research was conducted in the Adapazari inner city, covering a 3 × 3 km area, where 11,373 buildings collapsed as a result of the earthquake. SPOT high resolution visible infrared (HRVIR) Pan images obtained before (25 June 1999) and after (4 October 1999) the earthquake were used in the study. Five steps were employed to conduct the research and these are: (i) geometric and radiometric correction of satellite images, (ii) Fast Fourier Transform (FFT) of pre- and post-earthquake images and filtering the images in frequency domain, (iii) generating difference image using Inverse Fast Fourier Transform (IFFT) pre- and post- earthquake images, (iv) application of level slicing to difference image to identify the earthquake-induced damages, (v) accuracy assessment of the method using ground truth obtained from a 1/5,000 scale damage map. The total accuracy obtained in the research is 80.19 %, illustrating that the proposed method can be successfully used to automatically identify earthquake-induced damage areas.

  20. Identification of Earthquake Induced Damage Areas Using Fourier Transform and SPOT HRVIR Pan Images

    PubMed Central

    Sertel, Elif

    2009-01-01

    A devastating earthquake with a magnitude of Mw 7.4 occurred on the North Anatolian Fault Zone (NAFZ) of Turkey on August 17, 1999 at 00:01:39 UTC (3:01 a.m. local time). The aim of this study is to propose a new approach to automatically identify earthquake induced damage areas which can provide valuable information to support emergency response and recovery assessment procedures. This research was conducted in the Adapazari inner city, covering a 3 × 3 km area, where 11,373 buildings collapsed as a result of the earthquake. SPOT high resolution visible infrared (HRVIR) Pan images obtained before (25 June 1999) and after (4 October 1999) the earthquake were used in the study. Five steps were employed to conduct the research and these are: (i) geometric and radiometric correction of satellite images, (ii) Fast Fourier Transform (FFT) of pre- and post-earthquake images and filtering the images in frequency domain, (iii) generating difference image using Inverse Fast Fourier Transform (IFFT) pre- and post- earthquake images, (iv) application of level slicing to difference image to identify the earthquake-induced damages, (v) accuracy assessment of the method using ground truth obtained from a 1/5,000 scale damage map. The total accuracy obtained in the research is 80.19 %, illustrating that the proposed method can be successfully used to automatically identify earthquake-induced damage areas. PMID:22573966

  1. Structure and dynamics of fluorescently labeled complex fluids by fourier imaging correlation spectroscopy

    PubMed

    Grassman; Knowles; Marcus

    2000-12-01

    We present a method of Fourier imaging correlation spectroscopy (FICS) that performs phase-sensitive measurements of modulated optical signals from fluorescently labeled complex fluids. FICS experiments probe the time-dependent trajectory of a spatial Fourier component of the fluid particle density at a specified wave number k, and provide a direct route to the intermediate scattering function. The FICS approach overcomes signal sensitivity problems associated with dynamic light scattering, while offering a means to acquire time-dependent information about spatial distributions of fluorescent particles, superior in efficiency to direct imaging methods. We describe the instrumental setup necessary to perform FICS experiments, and outline the theory that establishes the connection between FICS observables and statistical mechanical quantities describing liquid state dynamics. Test measurements on monolayer suspensions of rhodamine labeled polystyrene spheres are detailed.

  2. Image Reconstruction from Under sampled Fourier Data Using the Polynomial Annihilation Transform

    DOE PAGESBeta

    Archibald, Richard K.; Gelb, Anne; Platte, Rodrigo

    2015-09-09

    Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, l1 regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more l1 regularization terms. The Split Bregman Algorithm provides a fast explicit solutionmore » for the case when TV is used for the l1l1 regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an l1 regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the “polynomial annihilation (PA) transform.” This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the l1 regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach.« less

  3. Image Reconstruction from Under sampled Fourier Data Using the Polynomial Annihilation Transform

    SciTech Connect

    Archibald, Richard K.; Gelb, Anne; Platte, Rodrigo

    2015-09-09

    Fourier samples are collected in a variety of applications including magnetic resonance imaging and synthetic aperture radar. The data are typically under-sampled and noisy. In recent years, l1 regularization has received considerable attention in designing image reconstruction algorithms from under-sampled and noisy Fourier data. The underlying image is assumed to have some sparsity features, that is, some measurable features of the image have sparse representation. The reconstruction algorithm is typically designed to solve a convex optimization problem, which consists of a fidelity term penalized by one or more l1 regularization terms. The Split Bregman Algorithm provides a fast explicit solution for the case when TV is used for the l1l1 regularization terms. Due to its numerical efficiency, it has been widely adopted for a variety of applications. A well known drawback in using TV as an l1 regularization term is that the reconstructed image will tend to default to a piecewise constant image. This issue has been addressed in several ways. Recently, the polynomial annihilation edge detection method was used to generate a higher order sparsifying transform, and was coined the “polynomial annihilation (PA) transform.” This paper adapts the Split Bregman Algorithm for the case when the PA transform is used as the l1 regularization term. In so doing, we achieve a more accurate image reconstruction method from under-sampled and noisy Fourier data. Our new method compares favorably to the TV Split Bregman Algorithm, as well as to the popular TGV combined with shearlet approach.

  4. Reconstruction of piecewise homogeneous images from partial knowledge of their Fourier Transform

    NASA Astrophysics Data System (ADS)

    Féron, Olivier; Chama, Zouaoui; Mohammad-Djafari, Ali

    2004-11-01

    Fourier synthesis (FS) inverse problem consists in reconstructing a multi-variable function from the measured data which correspond to partial and uncertain knowledge of its Fourier Transform (FT). By partial knowledge we mean either partial support and/or the knowledge of only the module and by uncertain we mean both uncertainty of the model and noisy data. This inverse problem arises in many applications such as : optical imaging, radio astronomy, magnetic resonance imaging (MRI) and diffraction scattering (ultrasounds or microwave imaging). Most classical methods of inversion are based on interpolation of the data and fast inverse FT. But when the data do not fill uniformly the Fourier domain or when the phase of the signal is lacking as in optical interferometry, the results obtained by such methods are not satisfactory, because these inverse problems are ill-posed. The Bayesian estimation approach, via an appropriate modeling of the unknown functions gives the possibility of compensating the lack of information in the data, thus giving satisfactory results. In this paper we study the case where the observations are a part of the FT modulus of objects which are composed of a few number of homogeneous materials. To model such objects we use a Hierarchical Hidden Markov Modeling (HMM) and propose a Bayesian inversion method using appropriate Markov Chain Monte Carlo (MCMC) algorithms.

  5. Fourier transforms with rotations on circles or ellipses in signal and image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.

    2015-03-01

    Fast unitary transforms are widely used in different areas such as data compression, pattern recognition and image reconstruction, interpolation, linear filtering, and spectral analysis. In this paper, we analyze the general concept of rotation and processing of data around not only circles but ellipses, in general. For that, we describe and analyze the general concept of the elliptic Fourier transform which was developed by Grigoryan in 2009. The block-wise representation of the discrete Fourier transform is considered in the real space, which is effective and that can be generalized to obtain new methods in spectral analysis. The N-point Elliptic discrete Fourier transform (EDFT) uses as a basic 2 × 2 transformation the rotations around ellipses. The EDFT distinguishes well from the carrying frequencies of the signal in both real and imaginary parts. It also has a simple inverse matrix. It is parameterized and includes also the DFT. Our preliminary results show that by using different parameters, the EDFT can be used effectively for solving many problems in signal and image processing field, in which includes problems such as image enhancement, filtration, encryption and many others.

  6. Optimized multiplexing super resolution imaging based on a Fourier ptychographic microscope

    NASA Astrophysics Data System (ADS)

    Sun, Jiasong; Chen, Qian; Zhang, Yuzhen; Zuo, Chao; Feng, Shijie; Hu, Yan; Zhang, Jialin

    2015-10-01

    Fourier ptychographic microscopy (FPM) is a recently developed super-resolution technique by using angularly varying illumination and a phase retrieval algorithm to surpass the diffraction limit of the objective lens. To be specific, FP captures a set of low-resolution (LR) images under angularly varying illuminations, and combines them into one high-resolution (HR) image in the Fourier domain. However, the long capturing process becomes an obvious limitation since there are large number of images need to be acquired. Furthermore, the time can be increased several times over in order to acquire high-dynamic range images. Utilizing the multiplexing principle, we propose an optimized multiplexing FP algorithm, which is highly efficient, to shorten the exposure time of each raw image in this work. High acquisition efficiency is achieved by employing two set of optimized multiplexing patterns for bright-field and dark-field imaging respectively. Experimental results demonstrated that this method could improve the quality of reconstructed HR intensity distributions in a faster measuring process.

  7. Single-channel color image encryption using phase retrieve algorithm in fractional Fourier domain

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Xin, Meiting; Tian, Ailing; Jin, Haiyan

    2013-12-01

    A single-channel color image encryption is proposed based on a phase retrieve algorithm and a two-coupled logistic map. Firstly, a gray scale image is constituted with three channels of the color image, and then permuted by a sequence of chaotic pairs generated by the two-coupled logistic map. Secondly, the permutation image is decomposed into three new components, where each component is encoded into a phase-only function in the fractional Fourier domain with a phase retrieve algorithm that is proposed based on the iterative fractional Fourier transform. Finally, an interim image is formed by the combination of these phase-only functions and encrypted into the final gray scale ciphertext with stationary white noise distribution by using chaotic diffusion, which has camouflage property to some extent. In the process of encryption and decryption, chaotic permutation and diffusion makes the resultant image nonlinear and disorder both in spatial domain and frequency domain, and the proposed phase iterative algorithm has faster convergent speed. Additionally, the encryption scheme enlarges the key space of the cryptosystem. Simulation results and security analysis verify the feasibility and effectiveness of this method.

  8. Perfusion and ventilation filters for Fourier-decomposition MR lung imaging.

    PubMed

    Wujcicki, Artur; Corteville, Dominique; Materka, Andrzej; Schad, Lothar R

    2015-03-01

    MR imaging without the use of contrast agents has recently been used for creating perfusion and ventilation functional lung images. The technique incorporates frequency- or wavelet-domain filters to separate the MR signal components. This paper presents a new, subject-adaptive algorithm for perfusion and ventilation filters design. The proposed algorithm uses a lung signal model for separation of the signal components in the frequency domain. Non-stationary lung signals are handled by a short time Fourier transform. This method was applied to sets of 192 and 90 co-registered non-contrast MR lung images measured for five healthy subjects at the rate of 3,33 images per second, using different slice thicknesses. In each case, the resulted perfusion and ventilation images showed a smaller amount of mutual information, when compared to those obtained using the known lowpass/highpass filter approach.

  9. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography.

    PubMed

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-08-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise. PMID:27570687

  10. Fourier-processed images of dynamic lung function from list-mode data

    SciTech Connect

    Zubal, I.G.; Rowe, R.W.; Bizais, Y.; Susskind, H.; Bennett, G.W.; Brill, A.B.

    1983-01-01

    Time and volume correlated amplitude and phase images are computed from nuclear medical ventilation studies and for dynamic transmission scans of the lungs. This is made possible by a hardware interface and data acquisition system, developed in-house, allowing camera events and multiple ancillary physiological signals (including lung volume) to be acquired simultaneously in list mode. The first harmonic amplitude and phase images are constructed on an event by event basis. These are computed for both equal time and equal lung volume increments. Time and volume correlated Fourier images for ventilation studies have shown details and functional structures not usually seen in conventional imaging techniques. Processed transmission scans show similar results compared to ventilation images.

  11. Evaluation of Fourier transform coefficients for the diagnosis of rheumatoid arthritis from diffuse optical tomography images

    NASA Astrophysics Data System (ADS)

    Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2013-03-01

    We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.

  12. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography

    PubMed Central

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-01-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise. PMID:27570687

  13. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry.

    PubMed

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T; So, Peter T C

    2014-10-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively.

  14. High-definition Fourier transform infrared spectroscopic imaging of prostate tissue

    NASA Astrophysics Data System (ADS)

    Wrobel, Tomasz P.; Kwak, Jin Tae; Kadjacsy-Balla, Andre; Bhargava, Rohit

    2016-03-01

    Histopathology forms the gold standard for cancer diagnosis and therapy, and generally relies on manual examination of microscopic structural morphology within tissue. Fourier-Transform Infrared (FT-IR) imaging is an emerging vibrational spectroscopic imaging technique, especially in a High-Definition (HD) format, that provides the spatial specificity of microscopy at magnifications used in diagnostic surgical pathology. While it has been shown for standard imaging that IR absorption by tissue creates a strong signal where the spectrum at each pixel is a quantitative "fingerprint" of the molecular composition of the sample, here we show that this fingerprint also enables direct digital pathology without the need for stains or dyes for HD imaging. An assessment of the potential of HD imaging to improve diagnostic pathology accuracy is presented.

  15. Histopathology mapping of biochemical changes in myocardial infarction by Fourier transform infrared spectral imaging.

    PubMed

    Yang, Tian T; Weng, Shi F; Zheng, Na; Pan, Qing H; Cao, Hong L; Liu, Liang; Zhang, Hai D; Mu, Da W

    2011-04-15

    Fourier transform infrared (FTIR) imaging and microspectroscopy have been extensively applied in the identification and investigation of both healthy and diseased tissues. FTIR imaging can be used to determine the biodistribution of several molecules of interest (carbohydrates, lipids, proteins) for tissue analysis, without the need for prior staining of these tissues. Molecular structure data, such as protein secondary structure and collagen triple helix exhibits, can also be obtained from the same analysis. Thus, several histopathological lesions, for example myocardial infarction, can be identified from FTIR-analyzed tissue images, the latter which can allow for more accurate discrimination between healthy tissues and pathological lesions. Accordingly, we propose FTIR imaging as a new tool integrating both molecular and histopathological assessment to investigate the degree of pathological changes in tissues. In this study, myocardial infarction is presented as an illustrative example of the wide potential of FTIR imaging for biomedical applications.

  16. Quantitative zonal differentiation of articular cartilage by microscopic magnetic resonance imaging, polarized light microscopy, and Fourier-transform infrared imaging.

    PubMed

    Lee, Ji Hyun; Xia, Yang

    2013-06-01

    This study aimed to synchronize the zonal differentiation of the full-thickness articular cartilage by three micro-imaging techniques, namely microscopic magnetic resonance imaging (µMRI), polarized light microscopy (PLM), and Fourier-transform infrared imaging (FTIRI). Eighteen cartilage-bone blocks from three canine humeral joints were imaged by: (a) µMRI T2 relaxation at 0° and 55° orientations in a 7 T magnetic field, (b) PLM optical retardation and azimuthal angle, and (c) FTIRI amide I and amide II anisotropies at 0° and 90° polarizations relative to the articular surface. In addition, µMRI T1 relaxation was imaged before and after the tissue being immersed in gadolinium (contrast agent) solution, to calculate the proteoglycan concentration. A set of previously established criteria in cartilage imaging was revised. The new criteria could simultaneously correlate the thicknesses of the three consecutive subtissue zones in articular cartilage among these imaging techniques.

  17. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  18. Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit.

    PubMed

    Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung

    2012-10-01

    Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.

  19. Image registration under translation and rotation in two-dimensional planes using Fourier slice theorem.

    PubMed

    Pohit, M; Sharma, J

    2015-05-10

    Image recognition in the presence of both rotation and translation is a longstanding problem in correlation pattern recognition. Use of log polar transform gives a solution to this problem, but at a cost of losing the vital phase information from the image. The main objective of this paper is to develop an algorithm based on Fourier slice theorem for measuring the simultaneous rotation and translation of an object in a 2D plane. The algorithm is applicable for any arbitrary object shift for full 180° rotation.

  20. Research on algorithm for infrared hyperspectral imaging Fourier transform spectrometer technology

    NASA Astrophysics Data System (ADS)

    Wan, Lifang; Chen, Yan; Liao, Ningfang; Lv, Hang; He, Shufang; Li, Yasheng

    2015-08-01

    This paper reported the algorithm for Infrared Hyperspectral Imaging Radiometric Spectrometer Technology. Six different apodization functions are been used and compared, and the phase corrected technologies of Forman is researched and improved, fast fourier transform(FFT)is been used in this paper instead of the linear convolution to reduce the quantity of computation.The interferograms is achieved by the Infrared Hyperspectral Imaging Radiometric Spectrometer which are corrected and rebuilded by the improved algorithm, this algorithm reduce the noise and accelerate the computing speed with the higher accuracy of spectrometers.

  1. Imaging the in-plane magnetization in a Co microstructure by Fourier transform holography.

    PubMed

    Tieg, C; Frömter, R; Stickler, D; Hankemeier, S; Kobs, A; Streit-Nierobisch, S; Gutt, C; Grübel, G; Oepen, H P

    2010-12-20

    We report on experiments using Fourier transform holography to image the in-plane magnetization of a magnetic microstructure. Magnetic sensitivity is achieved via the x-ray magnetic circular dichroism effect by recording holograms in transmission at off-normal incidence. The reference beam is defined by a narrow hole milled at an inclined angle into the opaque mask. We present magnetic domain images of an in-plane magnetized cobalt element with a size of 2 μm × 2 μm× 20 nm. The domain pattern shows a multi-vortex state that deviates from the simple Landau ground state.

  2. Chemical imaging with Fourier transform coherent anti-Stokes Raman scattering microscopy.

    PubMed

    Cui, Meng; Skodack, Joshua; Ogilvie, Jennifer P

    2008-11-01

    We report chemical imaging using Fourier transform coherent anti-Stokes Raman scattering (FTCARS) microscopy. Adding a passively phase-stable local field to amplify the weak FTCARS signal, we also demonstrate interferometric FTCARS microscopy, permitting reduced incident power to be used for imaging. We discuss signal-to-noise considerations and the conditions necessary to effectively suppress background noise, allowing FTCARS microscopy that is limited by the shot noise of the detector. We also discuss differences between the signal-to-noise obtainable by time and frequency domain coherent anti-Stokes Raman scattering (CARS) methods. PMID:19122721

  3. Three-wave mixing with whispering-gallery modes for electro-optic modulation and photonic reception

    NASA Technical Reports Server (NTRS)

    Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2002-01-01

    We demonstrate an electro-optic microwave modulator with milliWatt control power and a sub-microWatt photonic receiver based on triply-resonant three-wave mixing in high-Q toroidal lithium niobate cavities with whispering-gallery (WG) modes.

  4. Coupled-cavity electro-optically {ital Q}-switched Nd:YVO{sub 4} microchip lasers

    SciTech Connect

    Zayhowski, J.J.; Dill, C. III

    1995-04-01

    Nd:YVO{sub 4} microchip lasers have been electro-optically {ital Q} switched to produce 12-{mu}J pulses of 115-ps duration at repetition rates of up to 1 kHz. At a repetition rate of 2.25 MHz, 0.16-{mu}J pulses with an 8.8-ns duration were obtained.

  5. Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm

    NASA Astrophysics Data System (ADS)

    Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu

    2015-05-01

    A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.

  6. Photonic DPASK/QAM signal generation at microwave/millimeter-wave band based on an electro-optic phase modulator.

    PubMed

    Zhang, Ye; Xu, Kun; Zhu, Ran; Li, Jianqiang; Wu, Jian; Hong, Xiaobin; Lin, Jintong

    2008-10-15

    We have proposed and experimentally demonstrated two novel photonic architectures to generate differential-phase amplitude-shift keying and circular quadrature amplitude modulation signals at microwave/millimeter-wave band based on an electro-optic phase modulator. In our proposed schemes, the electronic driven circuits were greatly simplified by employing the photonic vector modulation technique.

  7. Electro-optical effects in porous PET films filled with liquid crystal: new possibilities for fiber optics and THZ applications.

    PubMed

    Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V

    2014-03-15

    The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (ffc) electric field induces an overall change in the light intensity, which is typical for an electro-optical response of a liquid crystal (LC) layer in a conventional "sandwich"-like cell. The dependences of critical frequency fc, threshold voltages, and characteristic times on a pore diameter d were established. The peculiarities of electro-optical effects can be explained in the framework of the approach which connects the variations of light intensity with the corresponding changes of the effective refractive index n(eff) of a composite LC media. The unusual behavior of the electro-optical response at low frequencies is assigned to the orienting action of the specific shear flow typical for electrokinetic phenomena in polar liquids.

  8. Fourier synthesis image reconstruction by use of one-dimensional position-sensitive detectors.

    PubMed

    Kotoku, Jun'ichi; Makishima, Kazuo; Okada, Yuu; Negoro, Hitoshi; Terada, Yukikatsu; Kaneda, Hidehiro; Oda, Minoru

    2003-07-10

    An improvement of Fourier synthesis optics for hard x-ray imaging is described, and the basic performance of the new optics is confirmed through numerical simulations. The original concept of the Fourier synthesis imager utilizes nonposition-sensitive hard x-ray detectors coupled to individual bigrid modulation collimators. The improved concept employs a one-dimensional position-sensitive detector (such as a CdTe strip detector) instead of the second grid layer of each bigrid modulation collimator. This improves the imaging performance in several respects over the original design. One performance improvement is a two-fold increase in the average transmission, from 1/4 to 1/2. The second merit is that both the sine and cosine components can be derived from a single grid-detector module, and hence the number of imaging modules can be halved. Furthermore, it provides information along the depth direction simultaneously. This in turn enables a three-dimensional imaging hard x-ray microscope for medical diagnostics, incorporating radioactive tracers. A conceptual design of such a microscope is presented, designed to provide a field of view of 4 mm and a spatial resolution of 400 microm.

  9. ULTRASOUND PULSE-ECHO IMAGING USING THE SPLIT-STEP FOURIER PROPAGATOR

    SciTech Connect

    HUANG, LIANJIE; QUAN, YOULI

    2007-01-31

    Ultrasonic reflection imaging has the potential to produce higher image resolution than transmission tomography, but imaging resolution and quality still need to be further improved for early cancer detection and diagnosis. We present an ultrasound reflection image reconstruction method using the split-step Fourier propagator. It is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wavenumber domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wavenumber domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the breast. We use synthetic ultrasound pulse-echo data recorded around a ring for heterogeneous, computer-generated numerical breast phantoms to study the imaging capability of the method. The phantoms are derived from an experimental breast phantom and a sound-speed tomography image of an in-vivo ultrasound breast data collected usi ng a ring array. The heterogeneous sound-speed models used for pulse-echo imaging are obtained using a computationally efficient, first-arrival-time (time-of-flight) transmission tomography method. Our studies demonstrate that reflection image reconstruction using the split-step Fourier propagator with heterogeneous sound-speed models significantly improves image quality and resolution. We also numerically verify the spatial sampling criterion of wavefields for a ring transducer array.

  10. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.

    PubMed

    Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li

    2014-04-01

    We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field. PMID:24787175

  11. Simultaneous measurement of electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics.

    PubMed

    Xiao, Pingping; Wang, Xianping; Sun, Jingjing; Huang, Meizhen; Chen, Xianfeng; Cao, Zhuangqi

    2012-06-18

    A new scheme is proposed to measure the electro-optical (EO) and converse-piezoelectric (CPE) coefficients of the PMN-PT ceramics simultaneously, in which the PMN-PT ceramics acts as the guiding layer of a symmetrical metal-cladding waveguide. As the applied electric field exerts on the waveguide, the effective refractive index (RI) (or synchronous angle) can be effectively tuned from a selected mode to another adjacent mode owing to the high sensitivity and the small spacing of the ultra-high order modes. Subsequently, a correlation between EO and CPE coefficients is established. With this correlation and the measurement of the effective RI change to the applied voltage, the quadratic EO and CPE coefficients of PMN-PT ceramics are obtained simultaneously. The obtained results are further checked by fitting the variations of effective RI to a quadratic function. Our measurement method can be extended to a wide range of other materials.

  12. A compact plasmonic MOS-based 2×2 electro-optic switch

    NASA Astrophysics Data System (ADS)

    Ye, Chenran; Liu, Ke; Soref, Richard A.; Sorger, Volker J.

    2015-01-01

    We report on a three-waveguide electro-optic switch for compact photonic integrated circuits and data routing applications. The device features a plasmonic metal-oxide-semiconductor (MOS) mode for enhanced light-matter-interactions. The switching mechanism originates from a capacitor-like design where the refractive index of the active medium, indium-tin-oxide, is altered via shifting the plasma frequency due to carrier accumulation inside the waveguide-based MOS structure. This light manipulation mechanism controls the transmission direction of transverse magnetic polarized light into either a CROSS or BAR waveguide port. The extinction ratio of 18 (7) dB for the CROSS (BAR) state, respectively, is achieved via a gating voltage bias. The ultrafast broadband fJ/bit device allows for seamless integration with silicon-on-insulator platforms for low-cost manufacturing.

  13. Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators.

    PubMed

    Tian, Yonghui; Zhao, Yongpeng; Chen, Wenjie; Guo, Anqi; Li, Dezhao; Zhao, Guolin; Liu, Zilong; Xiao, Huifu; Liu, Guipeng; Yang, Jianhong

    2015-10-01

    We report an electro-optic photonic integrated circuit which can perform the exclusive (XOR) logic operation based on two silicon parallel-cascaded microring resonators (MRRs) fabricated on the silicon-on-insulator (SOI) platform. PIN diodes embedded around MRRs are employed to achieve the carrier injection modulation. Two electrical pulse sequences regarded as two operands of operations are applied to PIN diodes to modulate two MRRs through the free carrier dispersion effect. The final operation result of two operands is output at the Output port in the form of light. The scattering matrix method is employed to establish numerical model of the device, and numerical simulator SG-framework is used to simulate the electrical characteristics of the PIN diodes. XOR operation with the speed of 100Mbps is demonstrated successfully.

  14. Strictly non-blocking 4×4 silicon electro-optic switch matrix

    NASA Astrophysics Data System (ADS)

    Zhou, Pei-Ji; Xing, Jie-Jiang; Li, Xian-Yao; Li, Zhi-Yong; Yu, Jin-Zhong; Yu, Yu-De

    2015-12-01

    The first path-independent insertion-loss (PILOSS) strictly non-blocking 4×4 silicon electro-optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm modulation, the crosstalk measured in this test is -13 dB˜ -27 dB. And a maximum crosstalk deterioration of 6dB caused by two-path interference is also found. Project supported by the National Basic Research Program of China (Grant No. 2011CB301701), the National High Technology Research and Development Program of China (Grant Nos. 2013AA014402, 2012AA012202, and 2015AA016904), and the National Natural Science Foundation of China (Grant Nos. 61275065 and 61107048).

  15. Influence of large signal modulation on photonic UWB generation based on electro-optic modulator.

    PubMed

    Gu, Rong; Pan, Shilong; Chen, Xiangfei; Pan, Minghai; Ben, De

    2011-07-01

    Various schemes based on electro-optic modulators have been reported to generate ultra-wideband (UWB) signals in the optical domain, but the availability of these methods always relies on small signal modulation. In this paper, the influence of large signal modulation on two typical schemes, representing two major categories of external-modulator-based photonic UWB generation schemes, is analytically and numerically studied. While the quasi single-sideband UWB (QSSB-UWB) pulse can maintain its shape, the Gaussian UWB (GUWB) generation scheme suffers serious modulation distortion when the phase modulation index is greater than π/6. The modulation distortion would have negative impact on the receiver sensitivity when the signal is sent to a correlation receiver.

  16. Selecting among competing models of electro-optic, infrared camera system range performance

    USGS Publications Warehouse

    Nichols, Jonathan M.; Hines, James E.; Nichols, James D.

    2013-01-01

    Range performance is often the key requirement around which electro-optical and infrared camera systems are designed. This work presents an objective framework for evaluating competing range performance models. Model selection based on the Akaike’s Information Criterion (AIC) is presented for the type of data collected during a typical human observer and target identification experiment. These methods are then demonstrated on observer responses to both visible and infrared imagery in which one of three maritime targets was placed at various ranges. We compare the performance of a number of different models, including those appearing previously in the literature. We conclude that our model-based approach offers substantial improvements over the traditional approach to inference, including increased precision and the ability to make predictions for some distances other than the specific set for which experimental trials were conducted.

  17. Challenges of developing an electro-optical system for measuring man's operational envelope

    NASA Technical Reports Server (NTRS)

    Woolford, B.

    1985-01-01

    In designing work stations and restraint systems, and in planning tasks to be performed in space, a knowledge of the capabilities of the operator is essential. Answers to such questions as whether a specific control or work surface can be reached from a given restraint and how much force can be applied are of particular interest. A computer-aided design system has been developed for designing and evaluating work stations, etc., and the Anthropometric Measurement Laboratory (AML) has been charged with obtaining the data to be used in design and modeling. Traditional methods of measuring reach and force are very labor intensive and require bulky equipment. The AML has developed a series of electro-optical devices for collecting reach data easily, in computer readable form, with portable systems. The systems developed, their use, and data collected with them are described.

  18. Electro-optic fiber sensor for amplitude and phase detection of radio frequency electromagnetic fields.

    PubMed

    Kramer, Axel; Müller, Peter; Lott, Urs; Kuster, Niels; Bomholt, Fin

    2006-08-15

    We present a miniature fiber-optic electromagnetic field (EMF) sensor that is capable of simultaneously detecting the amplitude and phase of an EMF in the range of 0.1-6 GHz. We focus on magnetic field measurements, since the H-field is more significant in our target applications due its direct relation to the current. The sensor is based on an open optical platform to which various antennas can be attached and contains a radio-frequency amplifier for signal conditioning and a vertical-cavity surface-emitting laser as an electro-optic converter. The millimeter size and the full electrical isolation of the sensor allow EMF detection with minimal disturbance. We have characterized the sensor in the near field of a lambda/2 dipole, a rectangular waveguide, and a microstrip line, and we explain the experimental results with a simple theoretical model confirming the mapped near-field distribution of the investigated field source.

  19. Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators.

    PubMed

    Qiu, Ciyuan; Gao, Weilu; Soref, Richard; Robinson, Jacob T; Xu, Qianfan

    2014-12-15

    Here we demonstrate a reconfigurable electro-optical directed-logic circuit based on a regular array of integrated optical switches. Each 1×1 optical switch consists of a micro-ring resonator with an embedded lateral p-n junction and a micro-heater. We achieve high-speed on-off switching by applying electrical logic signals to the p-n junction. We can configure the operation mode of each switch by thermal tuning the resonance wavelength. The result is an integrated optical circuit that can be reconfigured to perform any combinational logic operation. As a proof-of-principle, we fabricated a multi-spectral directed-logic circuit based on a fourfold array of switches and showed that this circuit can be reconfigured to perform arbitrary two-input logic functions with speeds up to 3  GB/s.

  20. Characterizing a fiber-based frequency comb with electro-optic modulator.

    PubMed

    Zhang, Wei; Lours, Michel; Fischer, Marc; Holzwarth, Ronald; Santarelli, Giorgio; Coq, Yann

    2012-03-01

    We report on the characterization of a commercial- core fiber-based frequency comb equipped with an intracavity free-space electro-optic modulator (EOM). We investigate the relationship between the noise of the pump diode and the laser relative intensity noise (RIN) and demonstrate the use of a low-noise current supply to substantially reduce the laser RIN. By measuring several critical transfer functions, we evaluate the potential of the EOM for comb repetition rate stabilization. We also evaluate the coupling to other relevant parameters of the comb. From these measurements, we infer the capabilities of the femtosecond laser comb to generate very-low-phase-noise microwave signals when phase-locked to a high-spectral-purity ultra-stable laser. PMID:22481776

  1. Degradation of electro-optic components aboard LDEF. [long duration exposure facility

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    Re-measurement of the properties of a set of electro-optic components exposed to the low earth orbital environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, LED's, filter, mirrors, and black paints will be presented. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens. We find plastics and multi-layer dielectric coatings to be potentially unstable. Semiconductor devices, metal, and glass are more likely to be stable.

  2. Synthesis and characterization of a new type of electro-optic polymer without carbon main chains

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Qiu, Chengjun; Li, You; Zhang, Wenlong; Xuan, Wang

    2014-09-01

    A new type of electro-optic (EO) polymer is prepared in this work. The main chain of the EO polymer is made of polyphosphazenes, and the side chain consists of carbazole based nitro azobenzene. The principle and method of preparation are given and the characteristics of this material are studied in details. The polymer with an EO coefficient of 35 pm/V has fine stability and can be easily processed. It also shows photoconductivity due to the carbazole group. This polymer thin film is obtained through performance improvement. Terahertz (THz) wave can be detected using the device, which is made of the new polymer. Owing to its fascinating properties, this new type of EO polymer has the potential to be widely applied in photorefractive materials as well as for emission and detection of THz radiation.

  3. Photopatterning and electro-optical switching of redox active fluorescent polymers

    NASA Astrophysics Data System (ADS)

    Seo, Seogjae; Kim, Yuna; You, Jungmok; Park, Teahoon; Kim, Eunkyoung

    2011-02-01

    The fluorescent poly(1,3,4-oxadiazole)s (POD) and polypyrene (PPy) were examined for electro-optic device. The fluorescence switching device prepared using poly(1,3,4-oxadiazole)s showed molecular structure-dependent switching properties depending on the para- or meta-linkage. Thin films of POD and PPy were prepared by solution process to give highly fluorescent film, of which emission intensity was switched on and off upon application of step potentials. Using a photochemical reaction, the thin films of POD and PPy were directly patterned to give a fluorescent pattern. An all solid state device containing the patterned films of POD and PPy was prepared using a solid polymer electrolyte layer. The device showed reversible fluorescence switching in response to external voltage applications. Patterning of the switching device in different dimension and scale will be demonstrated.

  4. Electro-optic polymer/TiO2 multilayer slot waveguide modulators

    NASA Astrophysics Data System (ADS)

    Enami, Y.; Yuan, B.; Tanaka, M.; Luo, J.; Jen, A. K.-Y.

    2012-09-01

    We report an all-dielectric electro-optic (EO) polymer/TiO2 multilayer slot waveguide modulator with low optical insertion loss for high-speed operations. The EO polymer is sandwiched between thin TiO2 slot waveguide films to improve mode confinement in the EO polymer. The structure increased the mode confinement in the TiO2 and EO polymer slot layers and reduced the electrode distance between the Au electrodes without introducing optical loss from the metal electrodes. The half-wave voltage of the modulator was 6.5 V for a 5-mm-long electrode at a wavelength of 1550 nm. The half-wave voltage and length product was 3.25 V.cm.

  5. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  6. A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Spring, Andrew M.; Maeda, Daisuke; Ozawa, Masa-Aki; Odoi, Keisuke; Otomo, Akira; Aoki, Isao; Yokoyama, Shiyoshi

    2015-02-01

    An electro-optic (EO) modulator using a TiO2 slot hybrid waveguide has been designed and fabricated. Optical mode calculations revealed that the mode was primarily confined within the slots when using a double-slot configuration, thus achieving a high EO activity experimentally. The TiO2 slots also acted as an important barrier to induce an enhanced DC field during the poling of the EO polymer and the driving of the EO modulator. The hybrid phase modulator exhibited a driving voltage (Vπ) of 1.6 V at 1550 nm, which can be further reduced to 0.8 V in a 1 cm-long push-pull Mach-Zehnder interferometer (MZI) structure. The modulator demonstrated a low propagation loss of 5 dB/cm and a relatively high end-fire coupling efficiency.

  7. Hybrid silicon-electro-optic-polymer integrated high-performance optical modulator

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Hosseini, Amir; Luo, Jingdong; Jen, Alex K.-Y.; Chen, Ray T.

    2014-03-01

    We design and demonstrate a compact and low-power band-engineered electro-optic (EO) polymer refilled silicon slot photonic crystal waveguide (PCW) modulator. The EO polymer is engineered for large EO activity and nearinfrared transparency. A PCW step coupler is used for optimum coupling to the slow-light mode of the bandengineered PCW. The half-wave switching-voltage is measured to be Vπ=0.97+/-0.02V over optical spectrum range of 8nm, corresponding to the effective in-device r33 of 1190pm/V and Vπ×L of 0.291+/-0.006V×mm in a push-pull configuration. Excluding the slow-light effect, we estimate the EO polymer is poled with an efficiency of 89pm/V in the slot.

  8. Electro-optical parameters in excited states of some spectrally active molecules

    NASA Astrophysics Data System (ADS)

    Benchea, Andreea Celia; Closca, Valentina; Rusu, Cristina Marcela; Morosanu, Cezarina; Dorohoi, Dana Ortansa

    2014-08-01

    The spectral shifts measured in different solvents are expressed as functions of the solvent macroscopic parameters. The value of the correlation coefficient multiplying the functions of electric permittivity was determined by statistical means. The correlation coefficient depends on the electric dipole moment of the spectrally active molecules. The electro-optical parameters in the ground state of the solute molecules can be approximated by molecular modeling. The excited state parameters are usually estimated using the results obtained both by HyperChem Programme and solvatochromic study. The importance of this approximate method is that it offers information about of the excited state of solute molecule for which our measuring possibilities are very restrictive. The information about the excited electronic state is affected by the limits in which the theories of liquid solutions are developed. Our results refer to two molecules of vitamins from B class, namely B3 and B6.

  9. Unusual electro-optical behavior in a wide-temperature BPIII cell.

    PubMed

    Chen, Hui-Yu; Lu, Sheng-Feng; Hsieh, Yi-Chun

    2013-04-22

    A low driving voltage and fast response blue phase III (BPIII) liquid-crystal device with very low dielectric anisotropy is demonstrated. To stabilize BPIII in a wide temperature range (> 15°C), a chiral molecule with good solubility was chosen. By studying field-dependent polarization state of the transmitting light, it was found that the field-induced birefringence becomes saturated in the high field. However, the transmitting intensity exhibits a tendency to increase as the electric field increases. This indicates that the electro-optical behavior in BPIII device may be from the flexoelectric effect, which induces tilted optical axis and then induces birefringence. Because the phase transition from BPIII to chiral nematic phase does not happen, the device shows no hysteresis effect and no residual birefringence, exhibits fast response, and can be a candidate for fast photonic application. PMID:23609684

  10. Electro-optical techniques for the investigation of photoplethysmographic signals in human abdominal organs

    NASA Astrophysics Data System (ADS)

    Kyriacou, P. A.; Crerar-Gilber, A.; Langford, R. M.; Jones, D. P.

    2006-07-01

    There is a need for reliable continuous monitoring of abdominal organ oxygen saturation (SpO2). Splanchnic ischaemia may ultimately lead to cellular hypoxia and necrosis and may well contribute to the development of multiple organ failures and increased mortality. A new reflectance electro-optical photoplethysmographic (PPG) probe and signal processing system were developed. PPG signals from abdominal organs (bowel, liver, and kidney) and the finger were obtained from 12 anaesthetised patients. The amplitudes of the abdominal organ PPGs were, on average, approximately the same as those obtained simultaneously from the finger. These observations suggest that pulse oximetry may be a valid monitoring technique for abdominal organs such as the bowel liver and kidney.

  11. Simultaneous measurement of electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics.

    PubMed

    Xiao, Pingping; Wang, Xianping; Sun, Jingjing; Huang, Meizhen; Chen, Xianfeng; Cao, Zhuangqi

    2012-06-18

    A new scheme is proposed to measure the electro-optical (EO) and converse-piezoelectric (CPE) coefficients of the PMN-PT ceramics simultaneously, in which the PMN-PT ceramics acts as the guiding layer of a symmetrical metal-cladding waveguide. As the applied electric field exerts on the waveguide, the effective refractive index (RI) (or synchronous angle) can be effectively tuned from a selected mode to another adjacent mode owing to the high sensitivity and the small spacing of the ultra-high order modes. Subsequently, a correlation between EO and CPE coefficients is established. With this correlation and the measurement of the effective RI change to the applied voltage, the quadratic EO and CPE coefficients of PMN-PT ceramics are obtained simultaneously. The obtained results are further checked by fitting the variations of effective RI to a quadratic function. Our measurement method can be extended to a wide range of other materials. PMID:22714448

  12. Laser pulse amplitude changes induced by terahertz waves under linear electro-optic effect

    SciTech Connect

    Ilyakov, I. E. Shishkin, B. V.; Kitaeva, G. Kh.; Akhmedzhanov, R. A.

    2014-04-14

    Changes in the amplitude of femtosecond laser pulses and in the energy of terahertz wave radiation induced during their co-propagation in ZnTe and GaP crystals are studied theoretically and experimentally. The results show that variation of the optical field amplitude leads to changes in the laser pulse energy and spectrum shift. We investigate the quantitative correlations between variations of the optical pulse energy, spectrum, phase and terahertz radiation energy. The values of laser pulse energy change and spectrum shift are proportional to the first time derivative of the magnitude of terahertz electric field, which enables coherent electro-optic detection. A simple and convenient calibration technique for terahertz energy detectors based on the correlation between laser and terahertz energy changes is proposed and tested.

  13. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.

    PubMed

    Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li

    2014-04-01

    We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field.

  14. Whispering-gallery-mode electro-optic modulator and photonic microwave receiver

    NASA Astrophysics Data System (ADS)

    Ilchenko, Vladimir S.; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute

    2003-02-01

    We report on the experimental observation of efficient all-resonant three-wave mixing using high-Q whispering-gallery modes. The modes were excited in a millimeter size toroidal cavity fabricated from LiNbO3. We implemented a low-noise resonant electro-optic modulator based on this wave mixing process. We observe an efficient modulation of light with coherent microwave pumping at 9 GHz with applied power of approximately 10 mW. Used as a receiver, the modulator allows us to detect nanowatt microwave radiation. Preliminary results with a 33-GHz modulator prototype are also reported. We present a theoretical interpretation of the experimental results and discuss possible applications of the device.

  15. Deployment optimization of electro-optical sensor systems for naval missions

    NASA Astrophysics Data System (ADS)

    van Valkenburg-Haarst, Tanja Y. C.; van Norden, Wilbert L.; van der Meiden, Hilderick A.; ten Holter, Koen P. A.

    2010-10-01

    In today's naval missions, such as anti-piracy or counter-drugs operations, Electro-Optical (EO) sensors play an increasingly important role. In particular, these sensors are essential for classification and identification of targets. These tasks are traditionally performed by human operators, but because the complexity of today's missions, in combination with reduced manning, automating the information processing of EO sensors is increasingly necessary. This paper discusses the contribution of EO sensor systems to the picture compilation process, and how the deployment of EO sensors can be optimized for current naval missions. In particular, we discuss automation techniques for detection, classification and identification using EO sensors. Based on our findings, we give recommendations for future research.

  16. Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder

    NASA Technical Reports Server (NTRS)

    Baer, James

    2012-01-01

    A document discusses a liquid crystal variable retarder, an electro-optic element that changes the polarization of an optical beam in response to a low-voltage electronic signal. This device can be fabricated so that the element creates, among other states, a half-wave of retardance that can be reduced to a very small retardance. When aligned to a polarized source, this can act to rotate the polarization by 90 in one state, but generate no rotation in the other state. If the beam is then incident on a polarization beam splitter, it will efficiently switch from one path to the other when the voltage is applied. The laser beam switching system has no moving parts, improving reliability over mechanical switching. It is low cost, tolerant of high laser power density, and needs only simple drive electronics, minimizing the required system resources.

  17. The electro-optical behavior of SrS:Ce electroluminescent devices under photonic excitation

    NASA Astrophysics Data System (ADS)

    Benoit, J.; Barthou, C.; Benalloul, P.; Polamo, K.

    2000-01-01

    The electro-optical behavior of the SrS:Ce electroluminescent devices under pulsed photonic excitation in the lower energy absorption band of Ce3+ was analyzed below the electroluminescence threshold voltage for a rectangular electric pulse. The photoluminescence quenching due to the ionization of the Ce3+ ions under the electrical field increases with the applied voltage (40% at the threshold). Delocalization of involved electrons is responsible for emissions at the trailing edge of the electric pulse and for emissions during the following pulse. These emissions do not restore the level of the photoluminescence without applied voltage. These different emissions allow detailed study of energy trap levels for each insulator/SrS interface. An interpretation of the photoluminescence quenching is proposed

  18. Electro-optical properties of low viscosity driven holographic polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Moon, K. R.; Bae, S. Y.; Kim, B. K.

    2015-04-01

    Relative diffraction efficiency (RDE), operating voltage, and response times are most important performance characteristics of holographic polymer dispersed liquid crystals (HPDLC). Two types of triallyl isocyanurate (TI) having different structures were incorporated into the conventional transmission grating of HPDLC. Premix viscosity decreased by 13-18% with up to 3% TI, beyond which it increased. TI eliminated induction period and augmented initial grating formation rate at all contents. Saturation RDE increased over 200% while threshold voltage and rise time decreased to about half and 2/3, respectively up to 3% TI, beyond which the tendencies were reversed. Among the two TIs, low viscosity monomer (TA) showed high RDE, while high miscibility monomer (TE) low characteristic voltages and short response times. It is concluded that grating formation is largely favored by low viscosity, while interface tensions and electro-optical performances by miscibility at similar viscosities.

  19. Aluminum nitride electro-optic phase shifter for backend integration on silicon.

    PubMed

    Zhu, Shiyang; Lo, Guo-Qiang

    2016-06-13

    An AlN electro-optic phase shifter with a parallel plate capacitor structure is fabricated on Si using the back-end complementary metal-oxide-semiconductor technology, which is feasible for multilayer photonics integration. The modulation efficiency (Vπ⋅Lπ product) measured from the fabricated waveguide-ring resonators and Mach-Zehnder Interferometer (MZI) modulators near the 1550-nm wavelength is ∼240 V⋅cm for the transverse electric (TE) mode and ∼320 V⋅cm for the transverse magnetic (TM) mode, from which the Pockels coefficient of the deposited AlN is deduced to be ∼1.0 pm/V for both TE and TM modes. The methods for further modulation efficiency improvement are addressed.

  20. Datalink Design Trade-Offs For Electro-Optical Reconnaissance Systems

    NASA Astrophysics Data System (ADS)

    Waggener, William N.

    1987-02-01

    The design of the datalink for real-time electro-optical reconnaissance systems is a function of many system variables with many conflicting requirements. The datalink design must consider cost and frequency management issues. Sensor data rate has a particularly strong impact on a number of key design parameters. As the data rate increases, RF bandwidth increases forcing the datalink to operate at higher carrier frequencies. With a fixed RF bandwidth constraint, the higher rate decreases anti-jam processing margin, increases cost and generally increases system complexity. With data compression, the bandwidth can be decreased at the expense of an increasing sensitivity to datalink errors. In this paper, the sensitivity of the datalink design to a number of the most important design requirements is examined with particular attention paid to the datalink cost and frequency management issues.

  1. Multi-frequency THz Heterodyne Spectroscopy using Electro-Optic Sampling

    NASA Astrophysics Data System (ADS)

    Jones, David

    2010-03-01

    Multi-frequency heterodyne spectroscopy, developed by two groups (Schiller as well as van der Weide, Keilmann and co-workers) uses one optical femtosecond frequency comb (FFC) to probe a sample. A second FFC with a slightly detuned spacing is used as a multi frequency local oscillator to uniquely map the broadband optical spectroscopic information to the RF domain where it can be easily analyzed. Researchers at NIST (Coddington et al) have realized the full potential of this technique by tightly locking the detuned combs together using optical locking techniques. It is of considerable interest to extend such capabilities to access the so-called molecular vibrational ``fingerprint'' range of approximately 10 to 100 THz (300 to 3000 cm-1). A transfer of the direct heterodyne detection approach used in the optical regime down to this frequency range is fraught with difficulties including significantly lower power of the probe THz frequency comb. In addition, a low noise detector with a relatively fast RF response (>100 MHz at a minimum) is required. An alternative, indirect detection technique for detecting THz signals is electro-optic sampling (EOS). It has employed for time domain THz spectroscopic applications for a number of years with a demonstrated spectral detection ranging from 0.5 THz range to over 100 THz. Through careful analysis of the EOS we show how electro-optic sampling of THz frequency comb by a detuned optical FFC followed by direct optical detection of the optical sampling beam enables conversion of the THz spectroscopic data directly to the RF domain. In particular, we show there is a one-to-one correspondence between a detected RF heterodyne beat and THz comb element. Numerical simulations predict excellent signal to noise ratio of the RF beats (20 dB) with modest acquisition times (10 μs). We will also summarize our progress toward experimental realization of such a system.

  2. Electro-optical circuit board with single-mode glass waveguide optical interconnects

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Pernthaler, Dominik; Weber, Daniel; Sirbu, Bogdan; Herbst, Christian; Frey, Christopher; Queisser, Marco; Wöhrmann, Markus; Manessis, Dionysios; Schild, Beatrice; Oppermann, Hermann; Eichhammer, Yann; Schröder, Henning; Hâkansson, Andreas; Tekin, Tolga

    2016-03-01

    A glass optical waveguide process has been developed for fabrication of electro-optical circuit boards (EOCB). Very thin glass panels with planar integrated single-mode waveguides can be embedded as a core layer in printed circuit boards for high-speed board-level chip-to-chip and board-to-board optical interconnects over an optical backplane. Such singlemode EOCBs will be needed in upcoming high performance computers and data storage network environments in case single-mode operating silicon photonic ICs generate high-bandwidth signals [1]. The paper will describe some project results of the ongoing PhoxTroT project, in which a development of glass based single-mode on-board and board-to-board interconnection platform is successfully in progress. The optical design comprises a 500 μm thin glass panel (Schott D263Teco) with purely optical layers for single-mode glass waveguides. The board size is accommodated to the mask size limitations of the fabrication (200 mm wafer level process, being later transferred also to larger panel size). Our concept consists of directly assembling of silicon photonic ICs on cut-out areas in glass-based optical waveguide panels. A part of the electrical wiring is patterned by thin film technology directly on the glass wafer surface. A coupling element will be assembled on bottom side of the glass-based waveguide panel for 3D coupling between board-level glass waveguides and chip-level silicon waveguides. The laminate has a defined window for direct glass access for assembling of the photonic integrated circuit chip and optical coupling element. The paper describes the design, fabrication and characterization of glass-based electro-optical circuit board with format of (228 x 305) mm2.

  3. Nanosecond electro-optics of a nematic liquid crystal with negative dielectric anisotropy.

    PubMed

    Borshch, Volodymyr; Shiyanovskii, Sergij V; Li, Bing-Xiang; Lavrentovich, Oleg D

    2014-12-01

    We study a nanosecond electro-optic response of a nematic liquid crystal in a geometry where an applied electric field E modifies the tensor order parameter but does not change the orientation of the optic axis (director N ̂). We use a nematic with negative dielectric anisotropy with the electric field applied perpendicularly to N ̂. The field changes the dielectric tensor at optical frequencies (optic tensor) due to the following mechanisms: (a) nanosecond creation of the biaxial orientational order, (b) uniaxial modification of the orientational order that occurs over time scales of tens of nanoseconds, and (c) the quenching of director fluctuations with a wide range of characteristic times up to milliseconds. We develop a model to describe the dynamics of all three mechanisms. We design the experimental conditions to selectively suppress the contributions from the quenching of director fluctuations (c) and from the biaxial order effect (a) and thus, separate the contributions of the three mechanisms in the electro-optic response. As a result, the experimental data can be well fitted with the model parameters. The analysis provides a rather detailed physical picture of how the liquid crystal responds to a strong electric field on a time scale of nanoseconds. The paper provides a useful guidance in the current search for the biaxial nematic phase. Namely, the temperature dependence of the biaxial susceptibility allows one to estimate the temperature of the potential uniaxial-to-biaxial phase transition. An analysis of the quenching of director fluctuations indicates that on a time scale of nanoseconds, the classic model with constant viscoelastic material parameters might reach its limit of validity. The effect of nanosecond electric modification of the order parameter can be used in applications in which one needs to achieve ultrafast (nanosecond) changes in optical characteristics, such as birefringence. PMID:25615116

  4. 2-port internal model control for gyro stabilized platform of electro-optical tracking system

    NASA Astrophysics Data System (ADS)

    Xia, Yun-xia; Bao, Qi-liang; Li, Zhi-jun; Wu, Qiong-yan

    2012-06-01

    Line-of-sight stabilized system, which can be used to isolate the vibration of the moving bed and the disturbance of environment, is the most important part of an electro-optical tracking system. The steady precision and robustness are the key issues of recent researches. In this paper, a novel control approach so called 2-Port Internal Model Control (2-PIMC) for line-of-sight stabilized system is proposed. By adding a parallel feedback control loop on the basis of Internal Model Control (IMC), the 2-PIMC method can improve precision while it also has strong robustness as the IMC. The robustness and the static error of 2-PIMC method were subsequently analyzed. Based on this novel method, Simulation and experiment are both carried out for a gyro stabilized platform of electro-optical tracking system. The experiments include a shaking table which can generate disturbance as the moving bed and a gyro stabilized platform which is mounted on the shaking table. The experimental result indicated that the gyro stabilized platform using 2-PIMC method is accurate and effective. Comparing with PI control, the following error and disturbance restraining error were both greatly improved at low-frequency and mid-frequency by the 2-PIMC method proposed. The improvement of precision is more than 10dB at 4Hz. In addition, the 2-PIMC method doesn't need any extra sensors for the platform and it's easy for parameters regulation. It can be concluded that the2-PIMC method is a new approach for the high-performance gyro stabilized platform and might have broad application prospect.

  5. Nuclear reactor pulse tracing using a CdZnTe electro-optic radiation detector

    NASA Astrophysics Data System (ADS)

    Nelson, Kyle A.; Geuther, Jeffrey A.; Neihart, James L.; Riedel, Todd A.; Rojeski, Ronald A.; Ugorowski, Philip B.; McGregor, Douglas S.

    2012-07-01

    CdZnTe has previously been shown to operate as an electro-optic radiation detector by utilizing the Pockels effect to measure steady-state nuclear reactor power levels. In the present work, the detector response to reactor power excursion experiments was investigated. Peak power levels during an excursion were predicted to be between 965 MW and 1009 MW using the Fuchs-Nordheim and Fuchs-Hansen models and confirmed with experimental data from the Kansas State University TRIGA Mark II nuclear reactor. The experimental arrangement of the Pockels cell detector includes collimated laser light passing through a transparent birefringent crystal, located between crossed polarizers, and focused upon a photodiode. The birefringent crystal, CdZnTe in this case, is placed in a neutron beam emanating from a nuclear reactor beam port. After obtaining the voltage-dependent Pockels characteristic response curve with a photodiode, neutron measurements were conducted from reactor pulses with the Pockels cell set at the 1/4 and 3/4 wave bias voltages. The detector responses to nuclear reactor pulses were recorded in real-time using data logging electronics, each showing a sharp increase in photodiode current for the 1/4 wave bias, and a sharp decrease in photodiode current for the 3/4 wave bias. The polarizers were readjusted to equal angles in which the maximum light transmission occurred at 0 V bias, thereby, inverting the detector response to reactor pulses. A high sample rate oscilloscope was also used to more accurately measure the FWHM of the pulse from the electro-optic detector, 64 ms, and is compared to the experimentally obtained FWHM of 16.0 ms obtained with the 10B-lined counter.

  6. Field experiment and image reconstruction using a Fourier telescopy imaging system over a 600-m-long horizontal path.

    PubMed

    Yu, Shu-Hai; Dong, Lei; Liu, Xin-Yue; Lin, Xu-Dong; Megn, Hao-Ran; Zhong, Xing

    2016-08-20

    To confirm the effect of uplink atmospheric turbulence on Fourier telescopy (FT), we designed a system for far-field imaging, utilizing a T-type laser transmitting configuration with commercially available hardware, except for a green imaging laser. The horizontal light transmission distance for both uplink and downlink was ∼300  m. For both the transmitting and received beams, the height upon the ground was below 1 m. The imaging laser's pointing accuracy was ∼9.3  μrad. A novel image reconstruction approach was proposed, yielding significantly improved quality and Strehl ratio of reconstructed images. From the reconstruction result, we observed that the tip/tilt aberration is tolerated by the FT system even for Changchun's atmospheric coherence length parameter (r0) below 3 cm. The resolution of the reconstructed images was ∼0.615  μrad. PMID:27556991

  7. In-vivo human corneal nerve imaging using Fourier-domain OCT

    NASA Astrophysics Data System (ADS)

    Shin, Jun Geun; Lee, Byeong Ha; Eom, Tae Joong; Hwang, Ho Sik

    2015-03-01

    We have imaged human corneal nerve bundles by using real-time Fourier-domain OCT (FD-OCT). Corneal nerves contribute to the maintenance of healthy ocular surface owing to their trophic influences on the corneal epithelium. The FD-OCT system was based on a swept laser of a 50 kHz sweeping rate and 1.31 μm center wavelength. At the area including sclera, limbus, and cornea, we could successfully get the in-vivo tomograms of the corneal nerve bundles. The scan range was 5 x 5mm. In this study, the A-scan images in each B-scan were realigned to have a flat air-surface boundary in the final B-scan image. With this effort, we could align corneal nerve bundle in a same depth and get the 3D image showing the branched and threadlike corneal nerve bundles.

  8. Color image encryption using iterative phase retrieve process in quaternion Fourier transform domain

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Duan, Kuaikuai

    2015-02-01

    A single-channel color image encryption method is proposed based on iterative phase iterative process in quaternion Fourier transform domain. First, three components of the plain color image is confused respectively by using cat map. Second, the confused components are combined into a pure quaternion image, which is encode to the phase only function by using an iterative phase retrieval process. Finally, the phase only function is encrypted into the gray scale ciphertext with stationary white noise distribution based on the chaotic diffusion, which has camouflage property to some extent. The corresponding plain color image can be recovered from the ciphertext only with correct keys in the decryption process. Simulation results verify the feasibility and effectiveness of the proposed method.

  9. Fourier transform infrared imaging analysis in discrimination studies of St. John's wort (Hypericum perforatum).

    PubMed

    Huck-Pezzei, V A; Pallua, J D; Pezzei, C; Bittner, L K; Schönbichler, S A; Abel, G; Popp, M; Bonn, G K; Huck, C W

    2012-10-01

    In the present study, Fourier transform infrared (FTIR) imaging and data analysis methods were combined to study morphological and molecular patterns of St. John's wort (Hypericum perforatum) in detail. For interpretation, FTIR imaging results were correlated with histological information gained from light microscopy (LM). Additionally, we tested several evaluation processes and optimized the methodology for use of complex FTIR microscopic images to monitor molecular patterns. It is demonstrated that the combination of the used spectroscopic method with LM enables a more distinct picture, concerning morphology and distribution of active ingredients, to be gained. We were able to obtain high-quality FTIR microscopic imaging results and to distinguish different tissue types with their chemical ingredients.

  10. Reconstruction of magnetic domain structure using the reverse Monte Carlo method with an extended Fourier image

    PubMed Central

    Tokii, Maki; Kita, Eiji; Mitsumata, Chiharu; Ono, Kanta; Yanagihara, Hideto

    2015-01-01

    Visualization of the magnetic domain structure is indispensable to the investigation of magnetization processes and the coercivity mechanism. It is necessary to develop a reconstruction method from the reciprocal-space image to the real-space image. For this purpose, it is necessary to solve the problem of missing phase information in the reciprocal-space image. We propose the method of extend Fourier image with mean-value padding to compensate for the phase information. We visualized the magnetic domain structure using the Reverse Monte Carlo method with simulated annealing to accelerate the calculation. With this technique, we demonstrated the restoration of the magnetic domain structure, obtained magnetization and magnetic domain width, and reproduced the characteristic form that constitutes a magnetic domain. PMID:25991875

  11. Automated segmentation of intramacular layers in Fourier domain optical coherence tomography structural images from normal subjects

    PubMed Central

    Zhang, Xusheng; Yousefi, Siavash; An, Lin

    2012-01-01

    Abstract. Segmentation of optical coherence tomography (OCT) cross-sectional structural images is important for assisting ophthalmologists in clinical decision making in terms of both diagnosis and treatment. We present an automatic approach for segmenting intramacular layers in Fourier domain optical coherence tomography (FD-OCT) images using a searching strategy based on locally weighted gradient extrema, coupled with an error-removing technique based on statistical error estimation. A two-step denoising preprocess in different directions is also employed to suppress random speckle noise while preserving the layer boundary as intact as possible. The algorithms are tested on the FD-OCT volume images obtained from four normal subjects, which successfully identify the boundaries of seven physiological layers, consistent with the results based on manual determination of macular OCT images. PMID:22559689

  12. MightySat II.1 Fourier-transform hyperspectral imager payload performance

    NASA Astrophysics Data System (ADS)

    Otten, Leonard J.; Sellar, R. Glenn; Rafert, J. Bruce

    1995-12-01

    Using a new microsat called MightySat II as a platform, Kestrel Corporation is designing and building the first Fourier transform hyperspectral imager (FTHSI) to be operated from a spacecraft. This payload will also be the first to fly on the Phillips Laboratory MightySat II spacecraft series, a new, innovative approach, to affordable space testing of high risk, high payoff technologies. Performance enhancements offered by the Fourier transform approach have shown it to be one of the more promising spaceborne hyperspectral concepts. Simulations of the payload's performance have shown that the instrument is capable of separating a wide range of subtle spectral differences. Variations in the return from the Georges Bank and shoals are discernible and various types of coastal grasses (sea oats and spartina) can be isolated against a sand background.

  13. Prediction of image partitions using Fourier descriptors: application to segmentation-based coding schemes.

    PubMed

    Marqués, F; Llorens, B; Gasull, A

    1998-01-01

    This paper presents a prediction technique for partition sequences. It uses a region-by-region approach that consists of four steps: region parameterization, region prediction, region ordering, and partition creation. The time evolution of each region is divided into two types: regular motion and shape deformation. Both types of evolution are parameterized by means of the Fourier descriptors and they are separately predicted in the Fourier domain. The final predicted partition is built from the ordered combination of the predicted regions, using morphological tools. With this prediction technique, two different applications are addressed in the context of segmentation-based coding approaches. Noncausal partition prediction is applied to partition interpolation, and examples using complete partitions are presented. In turn, causal partition prediction is applied to partition extrapolation for coding purposes, and examples using complete partitions as well as sequences of binary images--shape information in video object planes (VOPs)--are presented. PMID:18276271

  14. Remote measurement of highly toxic vapors by scanning imaging Fourier-transform spectrometry

    NASA Astrophysics Data System (ADS)

    Harig, Roland; Rusch, Peter; Dyer, Chris; Jones, Anita; Moseley, Richard; Truscott, Benjamin

    2005-11-01

    In the case of chemical accidents, terrorist attacks, or war, hazardous compounds may be released into the atmosphere. Remote sensing by Fourier-transform infrared spectrometry allows identification and quantification of these hazardous clouds. The output of current standoff detection systems is a yes/no decision by an automatic identification algorithm that analyses the measured spectrum. The interpretation of the measured spectrum by the operator is complicated and thus this task requires an expert. Even if a scanning system is used for surveillance of a large area the operator is dependent on the decision of the algorithm. In contrast to that, imaging systems allow automatic identification but also simple interpretation of the result, the image of the cloud. Therefore, an imaging spectrometer, the scanning infrared gas imaging system (SIGIS) has been developed. The system is based on an interferometer with a single detector element (Bruker OPAG 22) in combination with a telescope and a synchronised scanning mirror. The results of the analyses of the spectra are displayed by an overlay of a false colour image, the "chemical cloud image", on a video image. In this work, the first application of the system as chemical warfare agent identification and imaging system is described. The system, the data analysis method, and results of measurements of chemical warfare agents are presented.

  15. Fourier spatial frequency analysis for image classification: training the training set

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy H.; Lhamo, Yigah; Shi, Lingyan; Alfano, Robert R.; Russell, Stewart

    2016-04-01

    The Directional Fourier Spatial Frequencies (DFSF) of a 2D image can identify similarity in spatial patterns within groups of related images. A Support Vector Machine (SVM) can then be used to classify images if the inter-image variance of the FSF in the training set is bounded. However, if variation in FSF increases with training set size, accuracy may decrease as the size of the training set increases. This calls for a method to identify a set of training images from among the originals that can form a vector basis for the entire class. Applying the Cauchy product method we extract the DFSF spectrum from radiographs of osteoporotic bone, and use it as a matched filter set to eliminate noise and image specific frequencies, and demonstrate that selection of a subset of superclassifiers from within a set of training images improves SVM accuracy. Central to this challenge is that the size of the search space can become computationally prohibitive for all but the smallest training sets. We are investigating methods to reduce the search space to identify an optimal subset of basis training images.

  16. Fourier domain pump-probe optical coherence tomography imaging of Melanin

    PubMed Central

    Jacob, Desmond; Shelton, Ryan L.; Applegate, Brian E.

    2010-01-01

    We report the development of a two-color Fourier domain Pump-Probe Optical Coherence Tomography (PPOCT) system. Tissue phantom experiments to characterize the system performance demonstrated imaging depths in excess of 725 μm, nearly comparable to the base Optical Coherence Tomography system. PPOCT A-line rates were also demonstrated in excess of 1 kHz. The physical origin of the PPOCT signal was investigated with a series of experiments which revealed that the signal is a mixture of short and long lifetime component signals. The short lifetime component was attributed to transient absorption while the long lifetime component may be due to a mixture of transient absorption and thermal effects. Ex vivo images of porcine iris demonstrated the potential for imaging melanin in the eye, where cancer of the melanocytes is the most common form of eye cancer in adults. PMID:20588366

  17. Palm-size wide-field Fourier spectroscopic imager with uncooled infrared microbolometer arrays for smartphone

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Suzuki, Yo; Qi, Wei; Hosono, Satsuki; Saito, Tsubasa; Ogawa, Satoshi; Sato, Shun; Fujiwara, Masaru; Nishiyama, Akira; Wada, Kenji; Tanaka, Naotaka; Ishimaru, Ichiro

    2015-03-01

    We proposed the imaging-type 2-dimensional Fourier spectroscopy that is a near-common-path interferometer with strong robustness against mechanical vibrations. We introduced the miniature uncooled infrared microbolometer arrays for smartphone (e.g. product name: FILR ONE price: around 400USD). And we constructed the phase-shifter with the piezo impact drive mechanism (maker: Technohands.co.Ltd., stroke: 4.5mm, resolution: 0.01μm, size: 20mm, price: around 800USD). Thus, we realized the palm-size mid-infrared spectroscopic imager [size: L56mm×W69mm×H43mm weight: 500g]. And by using wide-angle lens as objective lens, the proposed method can obtain the wide-field 2- dimensional middle-infrared (wavelength: 7.5-13.5[μm]) spectroscopic imaging of radiation lights emitted from human bodies itself

  18. Fourier transform acousto-optic imaging with a custom-designed CMOS smart-pixels array.

    PubMed

    Barjean, Kinia; Contreras, Kevin; Laudereau, Jean-Baptiste; Tinet, Éric; Ettori, Dominique; Ramaz, François; Tualle, Jean-Michel

    2015-03-01

    We report acousto-optic imaging (AOI) into a scattering medium using a Fourier Transform (FT) analysis to achieve axial resolution. The measurement system was implemented using a CMOS smart-pixels sensor dedicated to the real-time analysis of speckle patterns. This first proof-of-principle of FT-AOI demonstrates some of its potential advantages, with a signal-to-noise ratio comparable to the one obtained without axial resolution, and with an acquisition rate compatible with a use on living biological tissue.

  19. High-resolution Fourier hologram synthesis from photographic images through computing the light field.

    PubMed

    Chen, Ni; Ren, Zhenbo; Lam, Edmund Y

    2016-03-01

    We present a technique for synthesizing the Fourier hologram of a three-dimensional scene from its light field. The light field captures the volumetric information of an object, and an important advantage is that it does not require coherent illumination, as in conventional holography. In this work, we show how to obtain a high-resolution digital hologram with the light field obtained from a series of photographic images captured along the optical axis. The method is verified both by simulations and experimentally captured light field.

  20. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2009-05-01

    OPTRA is developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill.