Optical and electro-optic anisotropy of epitaxial PZT thin films
NASA Astrophysics Data System (ADS)
Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang
2015-07-01
Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.
Stoichiometric Lithium Niobate (SLN) Based Linearized Electro-Optic (EO) Modulator
2006-01-01
AFRL-SN-RS-TR-2006-15 Final Technical Report January 2006 STOICHIOMETRIC LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO...LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO) MODULATOR 6. AUTHOR(S) Dr Stuart Kingsley, Dr Sri Sriram 5. FUNDING NUMBERS C...SUBJECT TERMS electro - optic modulator, linearization, directional coupler, variable coupling, optical waveguide, Mach-Zehnder, photonic link, lithium
NASA Astrophysics Data System (ADS)
Serafini, John; Hossain, A.; James, R. B.; Guziewicz, M.; Kruszka, R.; Słysz, W.; Kochanowska, D.; Domagala, J. Z.; Mycielski, A.; Sobolewski, Roman
2017-07-01
We present our studies on both photoconductive (PC) and electro-optic (EO) responses of (Cd,Mg)Te single crystals. In an In-doped Cd0.92Mg0.08Te single crystal, subpicosecond electrical pulses were optically generated via a PC effect, coupled into a transmission line, and, subsequently, detected using an internal EO sampling scheme, all in the same (Cd,Mg)Te material. For photo-excitation and EO sampling, we used femtosecond optical pulses generated by the same Ti:sapphire laser with the wavelengths of 410 and 820 nm, respectively. The shortest transmission line distance between the optical excitation and EO sampling points was 75 μm. By measuring the transient waveforms at different distances from the excitation point, we calculated the transmission-line complex propagation factor, as well as the THz frequency attenuation factor and the propagation velocity, all of which allowed us to reconstruct the electromagnetic transient generated directly at the excitation point, showing that the original PC transient was subpicosecond in duration with a fall time of ˜500 fs. Finally, the measured EO retardation, together with the amount of the electric-field penetration, allowed us to determine the magnitude of the internal EO effect in our (Cd,Mg)Te crystal. The obtained THz-frequency EO coefficient was equal to 0.4 pm/V, which is at the lower end among the values reported for CdTe-based ternaries, apparently, due to the disorientation of the tested crystal that resulted in the non-optimal EO measurement condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguchi, Kenichi; Iwasaki, Hotsumi; Okano, Makoto
2016-01-04
We investigated polarization-sensitive electro-optic (EO) detection of terahertz (THz) waves by using two uniaxial crystals: a c-cut gallium selenide and a c-cut lithium niobate crystals. We formulated a general frequency-domain description of EO detection by in-plane isotropic EO crystals, which holds regardless of the frequency. Based on this description, the polarization of THz waves can be derived by analyzing EO sampling signals measured with two orthogonal configurations of the in-plane isotropic EO crystals as well as typical (111) zinc-blende EO crystals. In addition, we experimentally demonstrated that the frequency-dependent polarization of THz waves can be reproducibly retrieved using three EOmore » crystals with different crystal symmetries and with different phase matching conditions. Our description provides essential information for practical polarization sensing in the THz frequency range as well as in the mid-infrared range.« less
Electro-optic sampling of near-infrared waveforms
NASA Astrophysics Data System (ADS)
Keiber, Sabine; Sederberg, Shawn; Schwarz, Alexander; Trubetskov, Michael; Pervak, Volodymyr; Krausz, Ferenc; Karpowicz, Nicholas
2016-03-01
Access to the complete electric field evolution of a laser pulse is essential for attosecond science in general, and for the scrutiny and control of electron phenomena in solid-state physics specifically. Time-resolved field measurements are routine in the terahertz spectral range, using electro-optic sampling (EOS), photoconductive switches and field-induced second harmonic generation. EOS in particular features outstanding sensitivity and ease of use, making it the basis of time-resolved spectroscopic measurements for studying charge carrier dynamics and active optical devices. In this Letter, we show that careful optical filtering allows the bandwidth of this technique to be extended to wavelengths as short as 1.2 μm (230 THz) with half-cycle durations 2.3 times shorter than the sampling pulse. In a proof-of-principle application, we measure the influence of optical parametric amplification (OPA) on the electric field dynamics of a few-cycle near-infrared (NIR) pulse.
Serafini, John; Hossain, A.; James, R. B.; ...
2017-07-03
We present our studies on both photoconductive (PC) and electro-optic (EO) responses of (Cd,Mg)Te single crystals. In an In-doped Cd 0.92Mg 0.08Te single crystal, subpicosecond electrical pulses were optically generated via a PC effect, coupled into a transmission line, and, subsequently, detected using an internal EO sampling scheme, all in the same (Cd,Mg)Te material. For photo-excitation and EO sampling, we used femtosecond optical pulses generated by the same Ti:sapphire laser with the wavelength 410 and 820 nm, respectively. The shortest transmission line distance between the optical excitation and EO sampling points was 75 μm. By measuring the transient waveforms atmore » different distances from the excitation point, we calculated the transmission-line complex propagation factor, as well as the THz frequency attenuation factor and the propagation velocity, all of which allowed us to reconstruct the electromagnetic transient generated directly at the excitation point, showing that the original PC transient was subpicosecond in duration with a fall time of ~500 fs. Finally, the measured EO retardation, together with the amount of the electric-field penetration, allowed us to determine the magnitude of the internal EO effect in our (Cd,Mg)Te crystal. The obtained THz-frequency EO coefficient was equal to 0.4 pm/V, which is at the lower end among the values reported for CdTe-based ternaries, due to a twinned structure and misalignment of the tested (Cd,Mg)Te crystal.« less
Phase-locked-loop-based delay-line-free picosecond electro-optic sampling system
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru; Chang, Yung-Cheng
2003-04-01
A delay-line-free, high-speed electro-optic sampling (EOS) system is proposed by employing a delay-time-controlled ultrafast laser diode as the optical probe. Versatile optoelectronic delay-time controllers (ODTCs) based on modified voltage-controlled phase-locked-loop phase-shifting technologies are designed for the laser. The integration of the ODTC circuit and the pulsed laser diode has replaced the traditional optomechanical delay-line module used in the conventional EOS system. This design essentially prevents sampling distortion from misalignment of the probe beam, and overcomes the difficulty in sampling free-running high-speed transients. The maximum tuning range, error, scanning speed, tuning responsivity, and resolution of the ODTC are 3.9π (700°), <5% deviation, 25-2405 ns/s, 0.557 ps/mV, and ˜1 ps, respectively. Free-running wave forms from the analog, digital, and pulsed microwave signals are sampled and compared with those measured by the commercial apparatus.
NASA Astrophysics Data System (ADS)
Chao, Tien-Hsin; Davis, Scott R.; Rommel, Scott D.; Farca, George; Luey, Ben; Martin, Alan; Anderson, Michael H.
2009-11-01
Jet Propulsion Lab and Vescent Photonics Inc. are jointly developing an innovative ultra-compact (volume < 10 cm3), ultra-low power (<10-3 Watt-hours per measurement and zero power consumption when not measuring), completely nonmechanical electro-optic Fourier transform spectrometers (EO-FTS) that will be suitable for a variety of remoteplatform, in-situ measurements. This EO-FTS consists of: i) a novel electro-evanescent waveguide architecture as the solid-state time delay device whose optical path difference (OPD) can be precisely varied utilizing voltage control, ii) a photodetector diode, and iii) an external light/sample collecting devices tailored for either in-situ gas and/or rock sample analysis or for remote atmospheric gas analysis. These devices are made possible by a novel electro-evanescent waveguide architecture, enabling "chip-scale" EO-FTS sensors. The potential performance of these EO-FTS sensors include: i) a spectral range throughout 0.4-5 μm (25000 - 2000 cm-1), ii) high-resolution ▵λ <= 0.1 nm), iii) high-speed (< 1 ms) measurements, and iv) rugged integrated optical construction. This performance potential enables the detection and quantification of a large number of different atmospheric gases simultaneously in the same air mass and the rugged construction will enable deployment on previously inaccessible platforms. In this paper, the up-to-date EO-FTS sensor development status will be presented; initial experimental results will also be demonstrated.
Operation Desert Storm: Evaluation of the Air Campaign.
1997-06-12
210Weight of Effort and TOE Platform Comparisons 217 Type of Effort Analysis Appendix IX 22RTreSesrRadar 221 Target Sensor Electro- optical 221 Technologies...DSMAC Digital Scene Matching Area Correlator ELE electrical facilities EO electro- optical EW electronic warfare FLIR forward-looking infrared FOV...the exposure of aircraft to clouds, haze, smoke, and high humidity, thereby impeding IR and electro- optical (EO) sensors and laser designators for
Weather and Atmospheric Effects on the Measurement and Use of Electro-Optical Signature Data
2017-02-01
and the problem of correcting and applying measured data. It provides glossaries of electro-optical and weather terms related to EO/ IR test... IR infrared LWIR long-wave infrared MG Meteorology Group mm millimeter MWIR mid-wave infrared NIR near infrared nm nanometer O2 oxygen O3...applying measured data. It provides glossaries of EO and weather terms related to EO/infrared ( IR ) test environments (parameters, quantity names, symbols
NASA Astrophysics Data System (ADS)
Zhu, Minmin; Du, Zehui; Li, Hongling; Chen, Bensong; Jing, Lin; Tay, Roland Ying Jie; Lin, Jinjun; Tsang, Siu Hon; Teo, Edwin Hang Tong
2017-12-01
A series of Pb(Zr1-xTix)O3 multilayer films alternatively stacked by Pb(Zr0.52Ti0.48)O3 and Pb(Zr0.35Ti0.65)O3 layers have been deposited on corning glass by magnetron sputtering. The films demonstrate pure perovskite structure and good crystallinity. A large tetragonality (c/a) of ∼1.061 and a shift of ∼0.08 eV for optical bandgap were investigated at layer engineered films. In addition, these samples exhibited a wild tunable electro-optic behavior from tens to ∼250.2 pm/V, as well as fast switching time of down to a few microseconds. The giant EO coefficient was attribute the strain-polarization coupling effect and also comparable to that of epitaxial (001) single crystal PZT thin films. The combination of high transparency, large EO effect, fast switching time, and huge phase transition temperature in PZT-based thin films show the potential on electro-optics from laser to information telecommunication.
Processing and Fusion of Electro-Optic Information
2001-04-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010886 TITLE: Processing and Fusion of Electro - Optic Information...component part numbers comprise the compilation report: ADP010865 thru ADP010894 UNCLASSIFIED 21-1 Processing and Fusion of Electro - Optic Information I...additional electro - optic (EO) sensor model within OOPSDG. It describes TM IT TT T T T performance estimates found prior to producing the New Ne- New
Electro Optic Modulation In a Polymer Ringresonator
NASA Astrophysics Data System (ADS)
Leinse, A.; Driessen, A.; Diemeer, M. B. J.
2004-05-01
A thermo optic and electro optic (EO) tunable polymer ringresonator was realized and tested. The device consisted of a microring resonator made of the 4-dimethylamino-4‵-nitrostilbene (DANS) containing polymer and measurements were done on the through port of this device. The ring was used in a vertical coupling structure. The port waveguides were made of the photo-definable epoxy (SU8). The rings used had a diameter of 100 μm and thermo optic tuning of about 170 pm/°C was measured. EO modulation was measured for TE polarization.
Development of in-orbit refocusing mechanism for SpaceEye-1 electro-optical payload
NASA Astrophysics Data System (ADS)
Lee, Minwoo; Kim, Jongun; Chang, Jin-Soo; Kang, Myung-Seok
2016-09-01
SpaceEye-1 earth observation satellite, developed by Satrec Initiative Co. Ltd., is a 300 kg scale spacecraft with high resolution electro-optical payload (EOS-D) which performs 1 m GSD, 12 km swath in low earth orbit. Metering structure of EOS-D is manufactured with Carbon Fiber Reinforced Plastic (CFRP). Due to the moisture emission from CFRP metering structure, this spaceborne electro-optical payload undergoes shrinkage after orbit insertion. The shrinkage of metering structure causes change of the distance between primary and secondary mirror. In order to compensate the moisture shrinkage effect, two types of thermal refocusing mechanism were developed, analyzed and applied to EOS-D. Thermal analysis simulating in-orbit thermal condition and thermo-elastic displacement analysis was conducted to calculate the performance of refocusing mechanism. For each EOS-D telescope, analytical refocusing range (displacement change between primary and secondary mirror) was 2.5 um and 3.6 um. Thus, the refocusing mechanism can compensate the dimensional instability of metering structure caused by moisture emission. Furthermore, modal, static and wavefront error analysis was conducted in order to evaluate natural frequency, structural stability and optical performance. As a result, it can be concluded that the refocusing system of EOS-D payload can perform its function in orbit.
Demonstration of an optical phased array using electro-optic polymer phase shifters
NASA Astrophysics Data System (ADS)
Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi
2018-03-01
We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.
NASA Technical Reports Server (NTRS)
Zou, Yingyin Kevin (Inventor); Jiang, Hua (Inventor); Li, Kewen Kevin (Inventor); Guo, Xiaomei (Inventor)
2012-01-01
A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.
Graphene electrodes for lithium-niobate electro-optic devices.
Chang, Zeshan; Jin, Wei; Chiang, Kin Seng
2018-04-15
We propose and demonstrate the use of graphene electrodes for lithium-niobate electro-optic (EO) devices to exempt the need of incorporating a buffer layer between the waveguide and the electrodes. Using graphene electrodes, our experimental mode converter, based on an EO-generated long-period grating in a LiNbO 3 waveguide, shows a reduction in the half-π voltage by almost three times, compared with the conventional electrode design using metal. With the buffer layer exempted, the device fabrication process is also significantly simplified. The use of graphene electrodes is an effective approach to enhancing the efficiency of EO devices and, at the same time, reducing their fabrication cost.
Novel EO/IR sensor technologies
NASA Astrophysics Data System (ADS)
Lewis, Keith
2011-10-01
The requirements for advanced EO/IR sensor technologies are discussed in the context of evolving military operations, with significant emphasis on the development of new sensing technologies to meet the challenges posed by asymmetric threats. The Electro-Magnetic Remote Sensing (EMRS DTC) was established in 2003 to provide a centre of excellence in sensor research and development, supporting new capabilities in key military areas such as precision attack, battlespace manoeuvre and information superiority. In the area of advanced electro-optic technology, the DTC has supported work on discriminative imaging, advanced detectors, laser components/technologies, and novel optical techniques. This paper provides a summary of some of the EO/IR technologies explored by the DTC.
A hybrid electro-optic polymer and TiO2 double-slot waveguide modulator
Qiu, Feng; Spring, Andrew M.; Maeda, Daisuke; Ozawa, Masa-aki; Odoi, Keisuke; Otomo, Akira; Aoki, Isao; Yokoyama, Shiyoshi
2015-01-01
An electro-optic (EO) modulator using a TiO2 slot hybrid waveguide has been designed and fabricated. Optical mode calculations revealed that the mode was primarily confined within the slots when using a double-slot configuration, thus achieving a high EO activity experimentally. The TiO2 slots also acted as an important barrier to induce an enhanced DC field during the poling of the EO polymer and the driving of the EO modulator. The hybrid phase modulator exhibited a driving voltage (Vπ) of 1.6 V at 1550 nm, which can be further reduced to 0.8 V in a 1 cm-long push-pull Mach–Zehnder interferometer (MZI) structure. The modulator demonstrated a low propagation loss of 5 dB/cm and a relatively high end-fire coupling efficiency. PMID:25708425
Overview of EO polymers and polymer modulator stability
NASA Astrophysics Data System (ADS)
Lindsay, Geoffrey A.; Ashley, Paul R.; Guenther, Andrew P.; Sanghadasa, Mohan
2005-09-01
This is a brief overview of the technology of nonlinear optical polymers (NLOP) and their use in electro-optic (EO) modulators. This paper also covers preliminary results from the authors' laboratories on highly active CLD- and FTC-type chromophores in guest-host films of APC amorphous polycarbonate. Emphasis will be given to thermal stability and long-term EO modulator aging.
Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Feng; Spring, Andrew M.; Sato, Hiromu
2015-09-21
Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that ofmore » the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.« less
DOT National Transportation Integrated Search
2005-09-30
Under Deliverable 2.1 of the Work Plan governing the Altarum Restricted Use Technology Study, the Altarum project team is required to produce an unclassified summary and comprehensive written report of Electro-Optical (EO) systems that can potentiall...
The synthesis of branched TCP chromophores and the research on their electro-optical properties
NASA Astrophysics Data System (ADS)
Bo, Shuhui; Chen, Zhuo; Gao, Wu; Zhen, Zhen; Liu, Xinhou
2012-10-01
In order to minimize the intermolecular electrostatic interactions and effectively translate high value of chromophore into macroscopic electro-optical (EO) coeffcient (r33), the shape-modification of aniline-pyrroline (TCP) chromophore by combining three kinds of dendritic groups respectively to the N atom of pyrroline acceptor produced three kinds of dendritic chromophores. Their spherical structures can minimize intermolecular electrostatic interactions, and thus the poling efficience was higher than the chromophores without dendritic groups when chromophores as a guest in the host polymer APC. A large electro-optical (EO) coefficient was achieved as high as 75 pm/V at 1315 nm with 9% chromophores loading in APC film. On the basis of the above TCP chromophores, two kinds of novel molecular glasses based on self-assembly dendritic chromophores are also designed and synthesized as second-order nonlinear optical (NLO) materials, which named ETO and ETF. The NLO chromophore glasses ETO and ETF showed excellent filmforming ability by themselves. Their glass transition temperatures (Tg) were determined at 41° and 39°, respectively. The in-situ second harmonic generation (SHG) measurement revealed the resonant electro-optical (EO) coefficient (d33) values of 38 and 32 pm/V for the poled films of ETO and ETF, respectively. The results indicate molecular glasses provide a new possible way different from the conventional polymer approach to prepare second-order NLO materials.
Self-assembled materials and devices that process light
NASA Astrophysics Data System (ADS)
Zhu, Peiwang; Kang, Hu; van der Boom, Milko E.; Liu, Zhifu; Xu, Guoyang; Ma, Jing; Zhou, Delai; Ho, Seng-Tiong; Marks, Tobin J.
2004-12-01
Self-assembled superlattices (SASs) are intrinsically acentric and highly cross-linked structures. For organic electro-optics, they offer great advantages such as not requiring electric field poling for creating an acentric, EO-active microstructure and having excellent chemical, thermal, and orientational stabilities. In this paper, a greatly improved two-step all "wet-chemical" self-assembly (SA) approach is reported. Excellent radiation hardness of the SAS films is demonstrated by high-energy proton irradiation experiments. By introducing metal oxide nanolayers during SA, we show that the refractive indices of SAS films can be tuned over a wide range. Through special chromophore design, the optical absorption maxima of SAS films can also be greatly blue-shifted. Prototype waveguiding electro-optic modulators have been fabricated using the SAS films integrated with low-loss polymeric materials functioning as partial guiding and cladding layers. EO parameters such as the half-wave voltage and the effective electro-optic coefficient are reported.
Hinakura, Yosuke; Terada, Yosuke; Arai, Hiroyuki; Baba, Toshihiko
2018-04-30
We demonstrate a Si photonic crystal waveguide Mach-Zehnder modulator that incorporates meander-line electrodes to compensate for the phase mismatch between slow light and RF signals. We first employed commonized ground electrodes in the modulator to suppress undesired fluctuations in the electro-optic (EO) response due to coupled slot-line modes of RF signals. Then, we theoretically and experimentally investigated the effect of the phase mismatch on the EO response. We confirmed that meander-line electrodes improve the EO response, particularly in the absence of internal reflection of the RF signals. The cut-off frequency of this device can reach 27 GHz, which allows high-speed modulation up to 50 Gbps.
Anisotropic electro-optic effect on InGaAs quantum dot chain modulators.
Liu, Wei; Liang, Baolai; Huffaker, Diana; Fetterman, Harold
2013-10-15
We investigated the anisotropic electro-optic (EO) effect on InGaAs quantum dot (QD) chain modulators. The linear EO coefficients were determined as 24.3 pm/V (33.8 pm/V) along the [011] direction and 30.6 pm/V (40.3 pm/V) along the [011¯] direction at 1.55 μm (1.32 μm) operational wavelength. The corresponding half-wave voltages (Vπs) were measured to be 5.35 V (4.35 V) and 4.65 V (3.86 V) at 1.55 μm (1.32 μm) wavelength. This is the first report on the anisotropic EO effect on QD chain structures. These modulators have 3 dB bandwidths larger than 10 GHz.
Electro-optical study of the exposure of Azospirillum brasilense carbohydrate epitopes.
Guliy, Olga I; Matora, Larisa Yu; Dykman, Lev A; Staroverov, Sergey A; Burygin, Gennady L; Bunin, Viktor D; Burov, Andrei M; Ignatov, Oleg V
2015-01-01
The exposure of Azospirillum brasilense carbohydrate epitopes was investigated by electro-optical analysis of bacterial cell suspensions. To study changes in the electro-optical (EO) properties of the suspensions, we used antibodies generated to the complete lipopolysaccharide of A. brasilense type strain Sp7 and also antibodies to the smooth and rough O polysaccharides of Sp7. After 18 hr of culture growth, the EO signal of the suspension treated with antibodies to smooth O polysaccharide was approximately 20% lower than that of the suspension treated with antibodies to complete lipopolysaccharide (control). After 72 hr of culture growth, the strongest EO signal was observed for the cells treated with antibodies to rough O polysaccharide (approximately 46% greater than the control), whereas for the cells treated with antibodies to smooth O polysaccharide, it was much lower (approximately 23% of the control). These data were confirmed by electron microscopy. The results of the study may have importance for the rapid evaluation of changes in lipopolysaccharide form in microbial biotechnology, when the antigenic composition of the bacterial surface requires close control.
CoBOP: Electro-Optic Identification Laser Line Sean Sensors
1998-01-01
Electro - Optic Identification Sensors Project[1] is to develop and demonstrate high resolution underwater electro - optic (EO) imaging sensors, and associated image processing/analysis methods, for rapid visual identification of mines and mine-like contacts (MLCs). Identification of MLCs is a pressing Fleet need. During MCM operations, sonar contacts are classified as mine-like if they are sufficiently similar to signatures of mines. Each contact classified as mine-like must be identified as a mine or not a mine. During MCM operations in littoral areas,
Multichannel imager for littoral zone characterization
NASA Astrophysics Data System (ADS)
Podobna, Yuliya; Schoonmaker, Jon; Dirbas, Joe; Sofianos, James; Boucher, Cynthia; Gilbert, Gary
2010-04-01
This paper describes an approach to utilize a multi-channel, multi-spectral electro-optic (EO) system for littoral zone characterization. Advanced Coherent Technologies, LLC (ACT) presents their EO sensor systems for the surf zone environmental assessment and potential surf zone target detection. Specifically, an approach is presented to determine a Surf Zone Index (SZI) from the multi-spectral EO sensor system. SZI provides a single quantitative value of the surf zone conditions delivering an immediate understanding of the area and an assessment as to how well an airborne optical system might perform in a mine countermeasures (MCM) operation. Utilizing consecutive frames of SZI images, ACT is able to measure variability over time. A surf zone nomograph, which incorporates targets, sensor, and environmental data, including the SZI to determine the environmental impact on system performance, is reviewed in this work. ACT's electro-optical multi-channel, multi-spectral imaging system and test results are presented and discussed.
NASA Astrophysics Data System (ADS)
Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.
2016-08-01
Design challenges and performance optimization of an all-optical analog-to-digital converter (AOADC) is presented here. The paper addresses both microwave and optical design of a leaky waveguide optical deflector using electro-optic (E-O) polymer. The optical deflector converts magnitude variation of the applied RF voltage into variation of deflection angle out of a leaky waveguide optical beam using the linear E-O effect (Pockels effect) as part of the E-O polymer based optical waveguide. This variation of deflection angle as result of the applied RF signal is then quantized using optical windows followed by an array of high-speed photodetectors. We optimized the leakage coefficient of the leaky waveguide and its physical length to achieve the best trade-off between bandwidth and the deflected optical beam resolution, by improving the phase velocity matching between lightwave and microwave on one hand and using pre-emphasis technique to compensate for the RF signal attenuation on the other hand. In addition, for ease of access from both optical and RF perspective, a via-hole less broad bandwidth transition is designed between coplanar pads and coupled microstrip (CPW-CMS) driving electrodes. With the best reported E-O coefficient of 350 pm/V, the designed E-O deflector should allow an AOADC operating over 44 giga-samples-per-seconds with an estimated effective resolution of 6.5 bits on RF signals with Nyquist bandwidth of 22 GHz. The overall DC power consumption of all components used in this AOADC is of order of 4 W and is dominated by power consumption in the power amplifier to generate a 20 V RF voltage in 50 Ohm system. A higher sampling rate can be achieved at similar bits of resolution by interleaving a number of this elementary AOADC at the expense of a higher power consumption.
Compact conductively cooled electro-optical Q-switched Nd:YAG laser
NASA Astrophysics Data System (ADS)
Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Zang, Yannan; Yang, Zhen; Han, Song; Li, Ye; Yang, Ning; Shi, Junfeng; Zhou, Zewu
2017-11-01
We report on a compact conductively cooled high-repetition-rate nanosecond Nd:YAG laser. The oscillator was an laser diode side-pumped electro-optical (EO) Q-switched Nd:YAG rod laser adopting unstable cavity with a variable reflectivity mirror. A pulse train of 142 mJ with duration of 10 ns, repetition rate of 80 Hz at 1064 nm has been achieved. Maximum pulse energy was obtained at the pump energy of 1380 mJ, corresponding to the optical-optical conversion efficiency of 10.3%. The peak power was deduced to be 14.2 MW. The near-field pattern demonstrated a nearly super Gaussian flat top profile. To our knowledge, this is the highest repetition rate operation for a conductively cooled EO Q-switched Nd:YAG rod laser.
EO system concepts in the littoral
NASA Astrophysics Data System (ADS)
Schwering, Piet B. W.; van den Broek, Sebastiaan P.; van Iersel, Miranda
2007-04-01
In recent years, operations executed by naval forces have taken place at many different locations. At present, operations against international terrorism and asymmetric warfare in coastal environments are of major concern. In these scenarios, the threat caused by pirates on-board of small surface targets, such as jetskis and fast inshore attack crafts, is increasing. In the littoral environment, the understanding of its complexity and the efficient use of the limited reaction time, are essential for successful operations. Present-day electro-optical sensor suites, also incorporating Infrared Search and Track systems, can be used for varying tasks as detection, classification and identification. By means of passive electro-optical systems, infrared and visible light sensors, improved situational awareness can be achieved. For long range capability, elevated sensor masts and flying platforms are ideally suited for the surveillance task and improve situational awareness. A primary issue is how to incorporate new electro-optical technology and signal processing into the new sensor concepts, to improve system performance. It is essential to derive accurate information from the high spatial-resolution imagery created by the EO sensors. As electro-optical sensors do not have all-weather capability, the performance degradation in adverse scenarios must be understood, in order to support the operational use of adaptive sensor management techniques. In this paper we discuss the approach taken at TNO in the design and assessment of system concepts for future IRST development. An overview of our maritime programme in future IRST and EO system concepts including signal processing is presented.
NASA Astrophysics Data System (ADS)
Gan, Haiyong; Zhang, Hongxi; DeRose, Christopher T.; Norwood, Robert A.; Fallahi, Mahmoud; Luo, Jingdong; Jen, Alex K.-Y.; Liu, Boyang; Ho, Seng-Tiong; Peyghambarian, Nasser
2007-02-01
Fabry-Perot etalons using electro-optic (EO) organic materials can be used for devices such as tunable filters and spatial light modulators (SLM's) for wavelength division multiplexing (WDM) communication systems 1-5 and ultrafast imaging systems. For these applications the SLM's need to have: (i) low insertion loss, (ii) high speed operation, and (iii) large modulation depth with low drive voltage. Recently, there have been three developments which together can enhance the SLM performance to a higher level. First, low loss distributed Bragg reflector (DBR) mirrors are now used in SLM's to replace thin metal mirrors, resulting in reduced transmission loss, high reflectivity (>99%) and high finesse. Second, EO polymer materials have shown excellent properties for wide bandwidth optical modulation for information technology due to their fabrication flexibility, compatibility with high speed operation, and large EO coefficients at telecommunication wavelengths. For instance, the EO polymer AJL8/APC (AJL8: nonlinear optical chromophore, and APC: amorphous polycarbonate has recently been incorporated into waveguide modulators and achieved good performance for optical modulation. Finally, very low loss transparent conducting oxide (TCO) electrodes have drawn increasing attention for applications in optoelectronic devices. Here we will address how the low loss indium oxide (In IIO 3) electrodes with an absorption coefficient ~1000/cm and conductivity ~204 S/cm can help improve the modulation performance of EO polymer Fabry-Pérot étalons using the advanced electro-optic (EO) polymer material (AJL8/APC). A hybrid etalon structure with one highly conductive indium tin oxide (ITO) electrode outside the etalon cavity and one low-absorption In IIO 3 electrode inside etalon cavity has been demonstrated. High finesse (~234), improved effective applied voltage ratio (~0.25), and low insertion loss (~4 dB) have been obtained. A 10 dB isolation ratio and ~10% modulation depth at 200 kHz with only 5 V applied voltage have been achieved. These results indicate that such etalons are very promising candidates for ultrafast spatial light modulation in information technology.
Yasumatsu, Naoya; Watanabe, Shinichi
2012-02-01
We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.
NASA Astrophysics Data System (ADS)
Gao, Wu; Hou, Wenjun; Zhen, Zhen; Liu, Xinhou; Liu, Jialei; Fedorchuk, A. A.; Czaja, P.
2016-07-01
Novel crosslinkable organic linear electro-optical (EO) material based on polyarylene ether as the main chain host polymer was designed and prepared. The host polymer with rigid aromatic has demonstrated a good compatibility with the guest chromophore. Long side chain with anthracene ensured the crosslinkable reaction and appropriate glass transition temperature of the host polymer (55 °C). The EO r33 tensor coefficient for this novel EO material has been magnitude of 66 pm/V at 1310 nm and the excellent long term stability at 85 °C. These parameters permit to consider their application in fabrication of organic electro optical devices. The semi-empirical and DFT quantum chemical simulations were performed for 4 principal chromophores to clarify a role of cross-linker in the enhancement of the ground state dipole moments and effective hyperpolarizabilities.
Plate-slot polymer waveguide modulator on silicon-on-insulator.
Qiu, Feng; Spring, Andrew M; Hong, Jianxun; Yokoyama, Shiyoshi
2018-04-30
Electro-optic (EO) modulators are vital for efficient "electrical to optical" transitions and high-speed optical interconnects. In this work, we applied an EO polymer to demonstrate modulators on silicon-on-insulator substrates. The fabricated Mach-Zehnder interferometer (MZI) and ring resonator consist of a Si and TiO 2 slot, in which the EO polymer was embedded to realize a low-driving and large bandwidth modulation. The designed optical and electrical constructions are able to provide a highly concentrated TM mode with low propagation loss and effective EO properties. The fabricated MZI modulator shows a π-voltage-length product of 0.66 V·cm and a 3-dB bandwidth of 31 GHz. The measured EO activity is advantageous to exploit the ring modulator with a resonant tunability of 0.065 nm/V and a 3-dB modulation bandwidth up to 13 GHz.
Design of an electro-optic-polymer-based Mach-Zehnder modulator
NASA Astrophysics Data System (ADS)
Haugen, Chris J.; DeCorby, Ray G.; McMullin, James N.; Pulikkaseril, C.
2000-12-01
A novel structure for an electro-optic (e-o) polymer based Mach-Zehnder modulator is proposed and its anticipated device performance is detailed. The modulator is designed using commercially available materials and makes usc of wellcharacterized electrical and optical structures. The modulator is designed to be competitive with the pertrmance of LiNbO based modulators. The results of the analysis predict a bandwidth of 20 GHz, V of 8-10 V, optical insertion loss of S d13, and a contrast ratio of approximately 13 dB.
NASA Astrophysics Data System (ADS)
Huang, Diyun; Parker, Timothy; Guan, Hann Wen; Cong, Shuxin; Jin, Danliang; Dinu, Raluca; Chen, Baoquan; Tolstedt, Don; Wolf, Nick; Condon, Stephen
2005-01-01
The electro-optic coefficient and long-term dipole alignment stability are two major factors in the development of high performance NLO materials for the application of high-speed EO devices. We have developed a high performance non-linear organic chromophore and incorporated it into a crosslinkable side-chain polyimide system. The polymer was synthesized through stepwise grafting of the crosslinker followed by the chromophore onto the polyimide backbone via esterification. Different chromophore loading levels were achieved by adjusting the crosslinker/chromophore feeding ratio. The polyimides films were contact-poled with second-harmonic generation monitoring. A large EO coefficient value was obtained and good long-term thermal stability at 85°C was observed.
NASA Astrophysics Data System (ADS)
Gandhi, Sahil Sandesh; Kim, Min Su; Hwang, Jeoung-Yeon; Chien, Liang-Chy
2017-02-01
We demonstrate the application of the nanostructured scaffold of BPIII as a resuable EO device that retains the BPIII ordering and sub-millisecond EO switching characteristics, that is, "EO-memory" of the original BPIII even after removal of the cholesteric blue phase liquid crystal (LC) and subsequent refilling with different nematic LCs. We also fabricate scaffolds mimicking the isotropic phase and cubic blue phase I (BPI) to demonstrate the versatility of our material system to nano-engineer EO-memory scaffolds of various structures. We envisage that this work will promote new experimental investigations of the mysterious BPIII and the development of novel device architectures and optically functional nanomaterials.
Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images
Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor
2012-01-01
Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available. PMID:23112602
Multi-sensor fusion of infrared and electro-optic signals for high resolution night images.
Huang, Xiaopeng; Netravali, Ravi; Man, Hong; Lawrence, Victor
2012-01-01
Electro-optic (EO) image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR) image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge) from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF) proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF) of a uniform detector array and the incoherent optical transfer function (OTF) of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1) inverse filter-based IR image transformation; (2) EO image edge detection; (3) registration; and (4) blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.
(012)-cut chalcopyrite ZnGeP2 as a high-bandwidth terahertz electro-optic detection crystal
NASA Astrophysics Data System (ADS)
Carnio, B. N.; Greig, S. R.; Firby, C. J.; Zawilski, K. T.; Schunemann, P. G.; Elezzabi, A. Y.
2017-02-01
The detection properties of a chalcopyrite zinc germanium diphosphide (ZnGeP2, ZGP) electro-optic (EO) crystal, having thickness of 1080 μm and cut along the <012> plane, is studied in the terahertz (THz) frequency range. Outstanding phase matching is achieved between the optical probe pulse and the THz frequency components, leading to a large EO detection bandwidth. ZGP has the ability to measure frequencies that are 1.3 and 1.2 times greater than that of ZnTe for crystal thicknesses of 1080 and 500 μm, respectively. Furthermore, the ZGP crystal is able to detect frequency components that are >=4.6 times larger than both ZnSe and GaP (for crystal thicknesses of 1080 μm) and >=2.2 times larger than ZnSe and GaP (for crystal thicknesses of 500 μm).
An Underwater Target Detection System for Electro-Optical Imagery Data
2010-06-01
detection and segmentation of underwater mine-like objects in the EO images captured with a CCD-based image sensor. The main focus of this research is to...develop a robust detection algorithm that can be used to detect low contrast and partial underwater objects from the EO imagery with low false alarm rate...underwater target detection I. INTRODUCTION Automatic detection and recognition of underwater objects from EO imagery poses a serious challenge due to poor
High dynamic range electric field sensor for electromagnetic pulse detection.
Lin, Che-Yun; Wang, Alan X; Lee, Beom Suk; Zhang, Xingyu; Chen, Ray T
2011-08-29
We design a high dynamic range electric field sensor based on domain inverted electro-optic (E-O) polymer Y-fed directional coupler for electromagnetic wave detection. This electrode-less, all optical, wideband electrical field sensor is fabricated using standard processing for E-O polymer photonic devices. Experimental results demonstrate effective detection of electric field from 16.7V/m to 750KV/m at a frequency of 1GHz, and spurious free measurement range of 70dB.
Silica/Electro-optic Polymer Optical Modulator for MMW Receiving (Preprint)
2014-05-01
radiation receiver with the use of a bowtie antenna . Waveguide design optimization is presented for a waveguide with an EO polymer core and silica/solgel...established. The bowtie antenna is simulated and shows a broadband response with a maximum at 5GHz and a 3dB-bandwidth of approximately 12GHz. A fiber...millimeter-wave (MMW) radiation receiver with the use of a bowtie antenna . Waveguide design optimization is presented for a waveguide with an EO polymer
An Advanced 500-MHZ-Bandwidth Fiber-Optic Signal Link for EMP and General Laboratory Applications.
1981-07-01
EVALUATION DIR DEPT OF THE ARMY REDSTONE ARSENAL, AL 35809 ATTN STEWS -CE, COMMUNICATIONS/ ELEC OFFICE DIRECTOR ATTN STEWS -NR, NATIONAL RANGE NIGHT...VISION & ELECTRO-OPTICS LABORATORY OPERATIONS DIR ATTN DELNV-EO, E-O DEVICES DIV ATTN STEWS -ID, INSTRUMENTATION DIR FORT BELVOIR, VA 22060 ATTN STEWS -ID...22900 ATTN WHITTAKER, D., 22900 SPECTRONICS ATTN LAMB , R. C., 22900 ATTN L. STEWART ATTN OLDHAM, T. R., 2300 ATTN MR. SHAUNFIELD ATTN KEHS, A., 22300
Nayek, Prasenjit; Li, Guoqiang
2015-01-01
A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701
NASA Astrophysics Data System (ADS)
Soltani, Mohammad; Zhang, Mian; Ryan, Colm; Ribeill, Guilhem J.; Wang, Cheng; Loncar, Marko
2017-10-01
We propose a low-noise, triply resonant, electro-optic (EO) scheme for quantum microwave-to-optical conversion based on coupled nanophotonics resonators integrated with a superconducting qubit. Our optical system features a split resonance—a doublet—with a tunable frequency splitting that matches the microwave resonance frequency of the superconducting qubit. This is in contrast to conventional approaches, where large optical resonators with free-spectral range comparable to the qubit microwave frequency are used. In our system, EO mixing between the optical pump coupled into the low-frequency doublet mode and a resonance microwave photon results in an up-converted optical photon on resonance with high-frequency doublet mode. Importantly, the down-conversion process, which is the source of noise, is suppressed in our scheme as the coupled-resonator system does not support modes at that frequency. Our device has at least an order of magnitude smaller footprint than conventional devices, resulting in large overlap between optical and microwave fields and a large photon conversion rate (g /2 π ) in the range of ˜5 -15 kHz. Owing to a large g factor and doubly resonant nature of our device, microwave-to-optical frequency conversion can be achieved with optical pump powers in the range of tens of microwatts, even with moderate values for optical Q (˜106 ) and microwave Q (˜104 ). The performance metrics of our device, with substantial improvement over the previous EO-based approaches, promise a scalable quantum microwave-to-optical conversion and networking of superconducting processors via optical fiber communication.
A Spherical Electro Optic High Voltage Sensor
1989-06-01
electro - optic (EO) crystal is introduced for photonic measurement of pulsed high-voltage fields. A spherical shape is used in order to reduce electric field gradients in the vicinity of the sensor. The sensor is pure dielectric and is interrogated remotely using a laser. The sensor does not require the connection of any conducting components, which results in the highest electrical isolation. The spherical nature of the crystal coupled with the incident laser beam, and crossed polarizers (intensity modulation scheme). automatically produces interference figures. The
Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011
2014-12-01
20 Figure 8. FFM maneuver used in the LASP/DYNAMO experiment (from Wang et al. 2013...Atmosphere Response Experiment DYNAMO Dynamics of Madden-Julian Oscillation EM electro-magnetic EO electro-optical FFM flight-level flux mapping FVS...level flux mapping ( FFM ) modules. Convection modules consisted of dropsonde cloud survey or radar convective element maneuver. Dropsonde modules
SPIDER: Next Generation Chip Scale Imaging Sensor Update
NASA Astrophysics Data System (ADS)
Duncan, A.; Kendrick, R.; Ogden, C.; Wuchenich, D.; Thurman, S.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; Yoo, S. J. B.
2016-09-01
The Lockheed Martin Advanced Technology Center (LM ATC) and the University of California at Davis (UC Davis) are developing an electro-optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that seeks to provide a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal-plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger-aperture imager in a constrained volume. Our SPIDER imager replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies that samples the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then reconstructs an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., complementary metal-oxide-semiconductor (CMOS) fabrication). The standard EO payload integration and test process that involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication, which substantially reduces associated schedule and cost. This paper provides an overview of performance data on the second-generation PIC for SPIDER developed under the Defense Advanced Research Projects Agency (DARPA)'s SPIDER Zoom research funding. We also update the design description of the SPIDER Zoom imaging sensor and the second-generation PIC (high- and low resolution versions).
Testbed Experiment for SPIDER: A Photonic Integrated Circuit-based Interferometric imaging system
NASA Astrophysics Data System (ADS)
Badham, K.; Duncan, A.; Kendrick, R. L.; Wuchenich, D.; Ogden, C.; Chriqui, G.; Thurman, S. T.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; Yoo, S. J. B.
The Lockheed Martin Advanced Technology Center (LM ATC) and the University of California at Davis (UC Davis) are developing an electro-optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that seeks to provide a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal-plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger-aperture imager in a constrained volume. Our SPIDER imager replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies that samples the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then reconstructs an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., complementary metal-oxide-semiconductor (CMOS) fabrication). The standard EO payload integration and test process that involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication, which substantially reduces associated schedule and cost. In this paper we describe the photonic integrated circuit design and the testbed used to create the first images of extended scenes. We summarize the image reconstruction steps and present the final images. We also describe our next generation PIC design for a larger (16x area, 4x field of view) image.
NASA Astrophysics Data System (ADS)
Bisesto, F. G.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Costa, G.; Curcio, A.; Ferrario, M.; Galletti, M.; Pompili, R.; Schleifer, E.; Zigler, A.
2017-05-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.
NASA Technical Reports Server (NTRS)
Oneil, William F.
1993-01-01
The fusion of radar and electro-optic (E-O) sensor images presents unique challenges. The two sensors measure different properties of the real three-dimensional (3-D) world. Forming the sensor outputs into a common format does not mask these differences. In this paper, the conditions under which fusion of the two sensor signals is possible are explored. The program currently planned to investigate this problem is briefly discussed.
Electro-optic modulation of a laser at microwave frequencies for interferometric purposes
NASA Astrophysics Data System (ADS)
Specht, Paul E.; Jilek, Brook A.
2017-02-01
A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.
Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.
Specht, Paul E; Jilek, Brook A
2017-02-01
A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.
Impacts of underwater turbulence on acoustical and optical signals and their linkage.
Hou, Weilin; Jarosz, Ewa; Woods, Sarah; Goode, Wesley; Weidemann, Alan
2013-02-25
Acoustical and optical signal transmission underwater is of vital interest for both civilian and military applications. The range and signal to noise during the transmission, as a function of system and water optical properties, in terms of absorption and scattering, determines the effectiveness of deployed electro-optical (EO) technology. The impacts from turbulence have been demonstrated to affect system performance comparable to those from particles by recent studies. This paper examines the impacts from underwater turbulence on both acoustic scattering and EO imaging degradation, and establishes a framework that can be used to correlate these. It is hypothesized here that underwater turbulence would influence the acoustic scattering cross section and the optical turbulence intensity coefficient in a similar manner. Data from a recent field campaign, Skaneateles Optical Turbulence Exercise (SOTEX, July, 2010) is used to examine the above relationship. Results presented here show strong correlation between the acoustic scattering cross-sections and the intensity coefficient related to the modulation transfer function of an EO imaging system. This significant finding will pave ways to utilize long range acoustical returns to predict EO system performance.
Electro-Optical Imaging Fourier-Transform Spectrometer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Zhou, Hanying
2006-01-01
An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.
Monolithic liquid crystal waveguide Fourier transform spectrometer for gas species sensing
NASA Astrophysics Data System (ADS)
Chao, Tien-Hsin; Lu, Thomas T.; Davis, Scott R.; Rommel, Scott D.; Farca, George; Luey, Ben; Martin, Alan; Anderson, Michael H.
2011-04-01
Jet Propulsion Lab and Vescent Photonics Inc. and are jointly developing an innovative ultracompact (volume < 10 cm3), ultra-low power (<10-3 Watt-hours per measurement and zero power consumption when not measuring), completely non-mechanical Liquid Crystal Waveguide Fourier Transform Spectrometer (LCWFTS) that will be suitable for a variety of remote-platform, in-situ measurements. These devices are made possible by novel electro-evanescent waveguide architecture, enabling "monolithic chip-scale" Electro Optic-FTS (EO-FTS) sensors. The potential performance of these EO-FTS sensors include: i) a spectral range throughout 0.4-5 μm (25000 - 2000 cm-1), ii) high-resolution (Δλ <= 0.1 nm), iii) high-speed (< 1 ms) measurements, and iv) rugged integrated optical construction. This performance potential enables the detection and quantification of a large number of different atmospheric gases simultaneously in the same air mass and the rugged construction will enable deployment on previously inaccessible platforms. The sensor construction is also amenable for analyzing aqueous samples on remote floating or submerged platforms. We will report a proof-of-principle prototype LCWFTS sensor that has been demonstrated in the near-IR (range of 1450-1700 nm) with a 5 nm resolution. This performance is in good agreement with theoretical models, which are being used to design and build the next generation LCWFTS devices.
Li, Tao; Zhao, Shengzhi; Zhuo, Zhuang; Yang, Kejian; Li, Guiqiu; Li, Dechun
2009-04-20
A diode end-pumped doubly Q-switched YVO4/Nd:YVO4 laser has been realized for the first time to our knowledge by using both an electro-optic (EO) modulator and a Cr4):YAG saturable absorber. A 3.8 ns pulse width is generated by this laser under a pump power of 15 W at 2 kHz, which is obviously compressed in comparison with that of 8.8 ns from a single actively EO Q-switched laser. Under the same conditions, peak power values of 174.7 and 93 kW are also obtained. A coupled equation is given to theoretically analyze the experimental data. The experimental and theoretical results show that the doubly Q-switched laser has the advantages of a shorter pulse width and higher pulse peak power in contrast with a singly Q-switched laser.
Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He
2012-11-30
The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.
Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He
2012-01-01
The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium. PMID:23443393
DNA-based nonlinear photonic materials
NASA Astrophysics Data System (ADS)
Heckman, Emily M.; Grote, James G.; Yaney, Perry P.; Hopkins, F. K.
2004-10-01
Deoxyribonucleic acid (DNA), extracted from salmon sperm through an enzyme isolation process, is a by-product of Japan"s fishing industry. To make DNA a suitable material for nonlinear optic (NLO) applications, it is precipitated with a surfactant complex, hexadecyltrimethlammonium chloride (CTMA). Preliminary characterization studies suggest DNA-CTMA may be a suitable host material for guest-host NLO polymer based electro-optic (EO) waveguide devices. The optical and electromagnetic properties of DNA-CTMA, as well as the development and EO measurement of a disperse red 1 (DR1) guest / DNA/CTMA host NLO material, are reported. Comparisons to a DR1 guest / poly(methyl methacrylate) (PMMA) host NLO material are made.
NASA Astrophysics Data System (ADS)
Masuda, Shin; Seki, Atsushi; Masuda, Yoichiro
2010-02-01
We describe here how we have improved the crystal qualities and controlled the crystal phase of the lanthanum-modified lead zirconate titanate (PLZT) film without changing the composition ratio using an oxygen-pressure crystallization process. A PLZT film deposited on a SrTiO3 substrate with the largest electro-optic (EO) coefficient of 498 pm/V has been achieved by controlling the crystal phase of the film. Additionally, a fatigue-free lead zirconate titanate (PZT) capacitor with platinum electrodes has been realized by reducing the oxygen vacancies in the films.
High-throughput electrical measurement and microfluidic sorting of semiconductor nanowires.
Akin, Cevat; Feldman, Leonard C; Durand, Corentin; Hus, Saban M; Li, An-Ping; Hui, Ho Yee; Filler, Michael A; Yi, Jingang; Shan, Jerry W
2016-05-24
Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies. We demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 6-order-of-magnitude range (10(-5) to 10 S m(-1), corresponding to typical carrier densities of 10(10)-10(16) cm(-3)), with different fluids used to suspend the nanowires. By implementing EOS in a simple microfluidic device, continuous electrical characterization is achieved, and the sorting of nanowires is demonstrated as a proof-of-concept. With measurement speeds two orders of magnitude faster than direct-contact methods, the automated EOS instrument enables for the first time the statistical characterization of highly variable 1D nanomaterials.
Kim, Seong-Ku; Liu, Wei; Pei, Qibing; Dalton, Larry R; Fetterman, Harold R
2011-04-11
A linearized dual parallel Mach-Zehnder modulator (DPMZM) based on electro-optic (EO) polymer was both fabricated, and experimentally used to suppress the third-order intermodulation distortion (IMD3) in a coherent analog fiber optic link. This optical transmitter design was based on a new EO chromophore called B10, which was synthesized for applications dealing with the fiber-optic communication systems. The chromophore was mixed with amorphous polycarbonate (APC) to form the waveguide's core material. The DPMZM was configured with two MZMs, of different lengths in parallel, with unbalanced input and output couplers and a phase shifter in one arm. In this configuration each of the MZMs carried a different optical power, and imposed a different depth of optical modulation. When the two optical beams from the MZMs were combined to generate the transmitted signal it was possible to set the IMD3 produced by each modulator to be equal in amplitude but 180° out of phase from the other. Therefore, the resulting IMD3 of the DPMZM transmitter was effectively canceled out during two-tone experiments. A reduction of the IMD3 below the noise floor was observed while leaving fifth-order distortion (IMD5) as the dominant IMD product. This configuration has the capability of broadband operation and shot-noise limited operation simultaneously. © 2011 Optical Society of America
Morphological and electro optic studies of polymer dispersed liquid crystal in reverse mode
NASA Astrophysics Data System (ADS)
Sharma, Vandna; Kumar, Pankaj; Chinky, Malik, Praveen; Raina, K. K.
2018-05-01
Present work deals with reverse mode polymer dispersed liquid crystals (PDLCs) sensitive to electric field. Contrary to the conventional PDLCs operate from opaque (OFF state) to transparent state (ON state) with the application of field, reverse mode PDLCs work in transparent to opaque state. Reverse mode PDLC composed of nematic LC and UV curable optical adhesive polymer were prepared by the polymerization induced phase separation. The polarizing optical microscope study shows the vertical alignment of LCs within droplets with initial dark state under cross polarizers and confirms preliminary natural transparent state. The electro optic (EO) results show that the reverse mode PDLC lowered the threshold and operating voltages significantly compared with reported values. The contrast ratio of the film was also studied.
Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME
NASA Astrophysics Data System (ADS)
Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.
2017-07-01
Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.
NASA Astrophysics Data System (ADS)
Jiang, Ming-Hui; Wang, Xi-Bin; Xu, Qiang; Li, Ming; Niu, Dong-Hai; Sun, Xiao-Qiang; Wang, Fei; Li, Zhi-Yong; Zhang, Da-Ming
2018-01-01
Nonlinear optical (NLO) polymer is a promising material for active waveguide devices that can provide large bandwidth and high-speed response time. However, the performance of the active devices is not only related to the waveguide materials, but also related to the waveguide and electrode structures. In this paper, a high-speed Mach-Zehnder interferometer (MZI) type of electro-optic (EO) switch based on NLO polymer-clad waveguide was fabricated. The quasi-in-plane coplanar waveguide electrodes were also introduced to enhance the poling and modulating efficiency. The characteristic parameters of the waveguide and electrode were carefully designed and simulated. The switches were fabricated by the conventional micro-fabrication process. Under 1550-nm operating wavelength, a typical fabricated switch showed a low insertion loss of 10.2 dB, and the switching rise time and fall time were 55.58 and 57.98 ns, respectively. The proposed waveguide and electrode structures could be developed into other active EO devices and also used as the component in the polymer-based large-scale photonic integrated circuit.
What the ultimate polymeric electro-optic materials will be: guest-host, crosslinked, or side-chain?
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Zhang, Hua; Oh, Min-Cheol; Dalton, Larry R.; Steier, William H.
2003-07-01
Material processing and device fabrication of many different electro-optic (EO) polymers developed at USC are reviewed. Detailed discussion is given to guest-host CLD/APCs, crosslinking perfluorocyclobutane (PFCB) polymer CX1, and thermally stable side-chain polymers CX2 and CX3. Excellent EO performance (1.4V at 1.31 μm, 2.1 V at 1.55 μm) was achieved in CLD/APC Mach-Zehnder modulators (2-cm, push-pull). CLD/APCs also possess low optical losses (1.2 dB/cm in slab waveguides and in thick core channel waveguides). However, the guest-host materials only have limited thermal stability (110-132 °C in short term, <60 °C in long term) and require special techniques in device fabrication. The crosslinking polymer CX1 was able to provide long-term stability at 85 oC when fully cured. It also has a low optical loss (comparable to CLD/APCs) before curing and decent EO coefficient when poled at 180 °C. However, after the films were poled at the crosslinking temperatures (200 °C or above), the transmissions of the waveguides and EO activity became very poor due to poling-induced chromophore degradation. By judicial molecular design of both chromophore and monomer structures to suppress thermal motion of polymer segments, we were able to realize the same or even better thermal stability in side-chain polymers CX2 and CX3. Since no curing is needed, devices can be poled at their optimal poling temperatures, and all good properties can be obtained simultaneously. Despite the excellent solubility in chlorinated solvents, these side-chain polymers are resistant to some other organic solvents or solutions such as acetone, photoresist and various UV-curable liquids.
NASA Astrophysics Data System (ADS)
Chao, Tien-Hsin; Lu, Thomas T.; Davis, Scott R.; Rommel, Scott D.; Farca, George; Luey, Ben; Martin, Alan; Anderson, Michael H.
2012-04-01
Jet Propulsion Lab and Vescent Photonics Inc. and are jointly developing an innovative ultra-compact (volume < 10 cm3), ultra-low power (<10 -3 Watt-hours per measurement and zero power consumption when not measuring), completely non-mechanical Liquid Crystal Waveguide Fourier Transform Spectrometer (LCWFTS) that will be suitable for a variety of remote-platform, in-situ measurements. These devices are made possible by novel electro-evanescent waveguide architecture, enabling "monolithic chip-scale" Electro Optic-FTS (EO-FTS) sensors. The potential performance of these EO-FTS sensors include: i) a spectral range throughout 0.4-5 μm (25000 - 2000 cm-1), ii) highresolution (Δλ<= 0.1 nm), iii) high-speed (< 1 ms) measurements, and iv) rugged integrated optical construction. This performance potential enables the detection and quantification of a large number of different atmospheric gases simultaneously in the same air mass and the rugged construction will enable deployment on previously inaccessible platforms. The sensor construction is also amenable for analyzing aqueous samples on remote floating or submerged platforms. We have reported [1] a proof-of-principle prototype LCWFTS sensor that has been demonstrated in the near- IR (range of 1450-1600 nm) with a 5 nm resolution. In this paper, we will report the recently built and tested LCWFTS test bed and the demonstration of a real-time gas sensing applications.
Electric field measurement in microwave discharge ion thruster with electro-optic probe.
Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi
2012-12-01
In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.
Laser-based satellite communication systems stabilized by non-mechanical electro-optic scanners
NASA Astrophysics Data System (ADS)
Ziemkiewicz, Michael; Davis, Scott R.; Rommel, Scott D.; Gann, Derek; Luey, Benjamin; Gamble, Joseph D.; Anderson, Mike
2016-05-01
Laser communications systems provide numerous advantages for establishing satellite-to-ground data links. As a carrier for information, lasers are characterized by high bandwidth and directionality, allowing for fast and secure transfer of data. These systems are also highly resistant to RF influences since they operate in the infrared portion of the electromagnetic spectrum, far from radio bands. In this paper we will discuss an entirely non-mechanical electro-optic (EO) laser beam steering technology, with no moving parts, which we have used to form robust 400 Mbps optical data connections through air. This technology will enable low cost, compact, and rugged free space optical (FSO) communication modules for small satellite applications. The EO beam-steerer at the heart of this system is used to maintain beam pointing as the satellite orbits. It is characterized by extremely low values for size, weight and power consumption (SWaP) - approximately 300 cm3, 300 g, and 5 W respectively, which represents a marked improvement compared to heavy, and power-consuming gimbal mechanisms. It is capable of steering a 500 mW, 1 mm short wave infrared (SWIR) beam over a field of view (FOV) of up to 50° x 15°, a range which can be increased by adding polarization gratings, which provide a coarse adjust stage at the EO beam scanner output. We have integrated this device into a communication system and demonstrated the capability to lock on and transmit a high quality data stream by modulation of SWIR power.
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2017-07-01
Binary to Binary coded decimal (BCD) converter is a basic building block for BCD processing. The last few decades have witnessed exponential rise in applications of binary coded data processing in the field of optical computing thus there is an eventual increase in demand of acceptable hardware platform for the same. Keeping this as an approach a novel design exploiting the preeminent feature of Mach-Zehnder Interferometer (MZI) is presented in this paper. Here, an optical 4-bit binary to binary coded decimal (BCD) converter utilizing the electro-optic effect of lithium niobate based MZI has been demonstrated. It exhibits the property of switching the optical signal from one port to the other, when a certain appropriate voltage is applied to its electrodes. The projected scheme is implemented using the combinations of cascaded electro-optic (EO) switches. Theoretical description along with mathematical formulation of the device is provided and the operation is analyzed through finite difference-Beam propagation method (FD-BPM). The fabrication techniques to develop the device are also discussed.
Multidimensional System Analysis of Electro-Optic Sensors with Sampled Deterministic Output.
1987-12-18
System descriptions of scanning and staring electro - optic sensors with sampled output are developed as follows. Functions representing image...to complete the system descriptions. The results should be useful for designing electro - optic sensor systems and correcting data for instrumental...effects and other experimental conditions. Keywords include: Electro - optic system analysis, Scanning sensors, Staring sensors, Spatial sampling, and Temporal sampling.
Electro-optical line cards with multimode polymer waveguides for chip-to-chip interconnects
NASA Astrophysics Data System (ADS)
Zhu, Long Xiu; Immonen, Marika; Wu, Jinhua; Yan, Hui Juan; Shi, Ruizhi; Chen, Peifeng; Rapala-Virtanen, Tarja
2014-10-01
In this paper, we report developments of electro-optical PCBs (EO-PCB) with low-loss (<0.05dB/cm) polymer waveguides. Our results shows successful fabrication of complex waveguide structures part of hybrid EO-PCBs utilizing production scale process on standard board panels. Test patterns include 90° bends of varying radii (40mm - 2mm), waveguide crossing with varied crossing angles (90°-20°), cascaded bends with varying radii, splitters and tapered waveguides. Full ranges of geometric configurations are required to meet practical optical routing functions and layouts. Moreover, we report results obtained to realize structures to integrate optical connectors with waveguides. Experimental results are shown for MT in-plane and 90° out-of-plane optical connectors realized with coupling loss < 2dB and < 2.5 dB, respectively. These connectors are crucial to realize efficient light coupling from/to TX/RX chip-to-waveguide and within waveguide-to-fiber connections in practical optical PCBs. Furthermore, we show results for fabricating electrical interconnect structures e.g. tracing layers, vias, plated vias top/bottom and through optical layers. Process compatibility with accepted practices and production scale up for high volumes are key concerns to meet the yield target and cost efficiency. Results include waveguide characterization, transmission loss, misalignment tolerance, and effect of lamination. Critical link metrics are reported.
NASA Astrophysics Data System (ADS)
Zhang, Maolin; Qin, Guangjiong; Liu, Jialei; Zhen, Zhen; Fedorchuk, A. A.; Lakshminarayana, G.; Albassam, A. A.; El-Naggar, A. M.; Ozga, Katarzyna; Kityk, I. V.
2017-08-01
Novel nonlinear optical (NLO) chromophore based on 6-(pyrrolidin-1-yl)-1H-indole as the electron donor group was designed and synthesized. The molecular structure of this chromophore was characterized by 1H NMR spectra, 13C NMR spectra, and MS spectra. The delocalized energy level was estimated by UV-Vis. spectra. The thermal property was studied by thermogravimetric analysis (TGA). The poled films containing chromophores ZML-1 with a loading density of 10 wt% in amorphous polycarbonate (APC) afford an average electro-optic (EO) coefficient (r33) of 19 pm/V at 1310 nm. Compared to the reported aniline-based chromophore (r33 = 12 pm/V) analogues, chromophore ZML-1 exhibits enhanced electro-optical activity.
New Light Sources and Concepts for Electro-Optic Sampling
1994-03-01
Research to improve electro - optic sampling led to the development of several high performance optical phase modulators. These phase modulators serve...method of optical pulse shape measurement was demonstrated with 3 ps time resolution, excellent power sensitivity and relative system simplicity. These experiments have opened up the field of temporal optics. Electro - optic sampling.
NASA Astrophysics Data System (ADS)
Chen, Kaixin; Zhang, Hongbo; Zhang, Daming; Yang, Han; Yi, Maobin
2002-09-01
External electro-optic sampling utilizing a poled polymer asymmetry Fabry-Perot cavity as electro-optic probe tip has been demonstrated. Electro-optical polymer spin coated on the high-reflectivity mirror (HRM) was corona poled. Thus, an asymmetric F-P cavity was formed based on the different reflectivity of the polymer and HRM and it converted the phase modulation that originates from electro-optic effect of the poled polymer to amplitude modulation, so only one laser beam is needed in this system. The principle of the sampling was analyzed by multiple reflection and index ellipsoid methods. A 1.2 GHz microwave signal propagating on coplanar waveguide transmission line was sampled, and the voltage sensitivity about 0.5 mV/ Hz was obtained.
NASA Astrophysics Data System (ADS)
delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer
2018-04-01
The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.
NASA Astrophysics Data System (ADS)
delos Santos, Ramon; Mag-usara, Valynn; Tuico, Anthony; Copa, Vernalyn; Salvador, Arnel; Yamamoto, Kohji; Somintac, Armando; Kurihara, Kazuyoshi; Kitahara, Hideaki; Tani, Masahiko; Estacio, Elmer
2018-06-01
The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs' thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.
Non-optically combined multispectral source for IR, visible, and laser testing
NASA Astrophysics Data System (ADS)
Laveigne, Joe; Rich, Brian; McHugh, Steve; Chua, Peter
2010-04-01
Electro Optical technology continues to advance, incorporating developments in infrared and laser technology into smaller, more tightly-integrated systems that can see and discriminate military targets at ever-increasing distances. New systems incorporate laser illumination and ranging with gated sensors that allow unparalleled vision at a distance. These new capabilities augment existing all-weather performance in the mid-wave infrared (MWIR) and long-wave infrared (LWIR), as well as low light level visible and near infrared (VNIR), giving the user multiple means of looking at targets of interest. There is a need in the test industry to generate imagery in the relevant spectral bands, and to provide temporal stimulus for testing range-gated systems. Santa Barbara Infrared (SBIR) has developed a new means of combining a uniform infrared source with uniform laser and visible sources for electro-optics (EO) testing. The source has been designed to allow laboratory testing of surveillance systems incorporating an infrared imager and a range-gated camera; and for field testing of emerging multi-spectral/fused sensor systems. A description of the source will be presented along with performance data relating to EO testing, including output in pertinent spectral bands, stability and resolution.
Hisatake, Shintaro; Tada, Keiji; Nagatsuma, Tadao
2010-03-01
We demonstrate the generation of an optical frequency comb (OFC) with a Gaussian spectrum using a continuous-wave (CW) laser, based on spatial convolution of a slit and a periodically moving optical beam spot in a linear time-to-space mapping system. A CW optical beam is linearly mapped to a spatial signal using two sinusoidal electro-optic (EO) deflections and an OFC is extracted by inserting a narrow spatial slit in the Fourier-transform plane of a second EO deflector (EOD). The spectral shape of the OFC corresponds to the spatial beam profile in the near-field region of the second EOD, which can be manipulated by a spatial filter without spectral dispersers. In a proof-of-concept experiment, a 16.25-GHz-spaced, 240-GHz-wide Gaussian-envelope OFC (corresponding to 1.8 ps Gaussian pulse generation) was demonstrated.
Tailoring entanglement through domain engineering in a lithium niobate waveguide
Ming, Yang; Tan, Ai-Hong; Wu, Zi-Jian; Chen, Zhao-Xian; Xu, Fei; Lu, Yan-Qing
2014-01-01
We propose to integrate the electro-optic (EO) tuning function into on-chip domain engineered lithium niobate (LN) waveguide. Due to the versatility of LN, both the spontaneously parametric down conversion (SPDC) and EO interaction could be realized simultaneously. Photon pairs are generated through SPDC, and the formation of entangled state is modulated by EO processes. An EO tunable polarization-entangled photon state is proposed. Orthogonally-polarized and parallel-polarized entanglements of photon pairs are instantly switchable by tuning the applied field. The characteristics of the source are theoretically investigated showing adjustable bandwidths and high entanglement degrees. Moreover, other kinds of reconfigurable entanglement are also achievable based on suitable domain-design. We believe tailoring entanglement based on domain engineering is a very promising solution for next generation function-integrated quantum circuits. PMID:24770555
Numerical model of the polymer electro-optic waveguide
NASA Astrophysics Data System (ADS)
Fan, Guofang; Li, Yuan; Han, Bing; Wang, Qi; Liu, Xinhou; Zhen, Zhen
2012-09-01
A numerical design model is presented for the polymer waveguide in an electro-optic modulator. The effective index method is used to analyze the height of the core waveguide and rib waveguide, an improved Marcatili method is presented to design the rib waveguide width in order to keep the strong single mode operation and have a good match with the standard fiber. Also, the thickness of the upper cladding layer is discussed through calculating the effective index of the multilayer planar waveguide structure has been obtained by setting the optical loss due to the metallic absorption to an acceptable value (<0.1 dB/cm). As a consequence, we take the EO polymer waveguide structure of UV15:CLD/APC:UFC170 as an example, an optimized design is reported.
Virtual Simulation Capability for Deployable Force Protection Analysis (VSCDFP) FY 15 Plan
2014-07-30
Unmanned Aircraft Systems ( SUAS ) outfitted with a baseline two-axis steerable “Infini-spin” electro- optic/infrared (EO/IR) sensor payload. The current...Payload (EPRP) enhanced sensor system to the Puma SUAS will be beneficial for Soldiers executing RCP mission sets. • Develop the RCP EPRP Concept of
Enhancing Combat Survivability of Existing Unmanned Aircraft Systems
2008-12-01
EL/K-1861 ...........................................................30 Figure 15. RQ-4 Global Hawk Communications Architecture Showing Various...ELINT Electronic Intelligence ESM Electronic Support Measures EW Electronic Warfare EO Electro-Optics FLIR Forward Looking Infrared GPS Global ...system performance (speed, altitude, maneuverability, and agility) reduces susceptibility through system design. The RQ-4 Global Hawk is designed to fly
Advanced E-O test capability for Army Next-Generation Automated Test System (NGATS)
NASA Astrophysics Data System (ADS)
Errea, S.; Grigor, J.; King, D. F.; Matis, G.; McHugh, S.; McKechnie, J.; Nehring, B.
2015-05-01
The Future E-O (FEO) program was established to develop a flexible, modular, automated test capability as part of the Next Generation Automatic Test System (NGATS) program to support the test and diagnostic needs of currently fielded U.S. Army electro-optical (E-O) devices, as well as being expandable to address the requirements of future Navy, Marine Corps and Air Force E-O systems. Santa Barbara infrared (SBIR) has designed, fabricated, and delivered three (3) prototype FEO for engineering and logistics evaluation prior to anticipated full-scale production beginning in 2016. In addition to presenting a detailed overview of the FEO system hardware design, features and testing capabilities, the integration of SBIR's EO-IR sensor and laser test software package, IRWindows 4™, into FEO to automate the test execution, data collection and analysis, archiving and reporting of results is also described.
Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth.
Mercante, Andrew J; Shi, Shouyuan; Yao, Peng; Xie, Linli; Weikle, Robert M; Prather, Dennis W
2018-05-28
We present a thin film crystal ion sliced (CIS) LiNbO 3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device's broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator's interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm -1 . The design, fabrication, and characterization of our broadband modulator is presented in this work.
Temporal profile monitor based on electro-optic spatial decoding for low-energy bunches
NASA Astrophysics Data System (ADS)
Wang, Wei; Du, Yingchao; Yan, Lixin; Chi, Zhijun; Zhang, Zhen; Hua, Jianfei; Huang, Wenhui; Tang, Chuanxiang; Li, Ming
2017-11-01
The measurement of electron bunch temporal profile is one of the key diagnostics in accelerators, especially for ultrashort bunches. The electro-optic (EO) technique enables the precise longitudinal characterization of bunch electric field in a single-shot and nondestructive way, which can simultaneously obtain and analyze the time jitter between the electron bunch and the synchronized laser. An EO monitor based on spatial decoding for temporal profile measurement and timing jitter recoding has recently been demonstrated and analyzed in depth for low-energy bunches at the Tsinghua Thomson scattering X-ray source. A detailed description of the experimental setup and measurement results are presented in this paper. An EO signal as short as 82 fs (rms) is observed with 100 μ m gallium phosphide for a 40 MeV electron bunch, and the corresponding length is 106 fs (rms) with 300 μ m zinc telluride. Owing to the field-opening angle, we propose a method to eliminate the influence of energy factor for bunches with low energy, resulting in a bunch length of ˜60 fs (rms). The monitor is also successfully applied to measure time jitter with approximately 10 fs accuracy. The experiment environment is proved to be the main source of the slow drift, which is removed using feedback control. Consequently, the rms time jitter decreases from 430 fs to 320 fs.
Sol-Gel Material-Enabled Electro-Optic Polymer Modulators
Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser
2015-01-01
Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971
Electro-optic Imaging Fourier Transform Spectrometer
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
2005-01-01
JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.
Research topics on EO systems for maritime platforms
NASA Astrophysics Data System (ADS)
Dijk, Judith; Bijl, Piet; van den Broek, Sebastiaan P.; van Eijk, Alenxander M. J.
2014-10-01
Our world is constantly changing, and this has its effect on worldwide military operations. For example, there is a change from conventional warfare into a domain that contains asymmetric threats as well. The availability of high-quality imaging information from Electro-Optical (EO) sensors is of high importance, for instance for timely detection and identification of small threatening vessels in an environment with a large amount of neutral vessels. Furthermore, Rules of Engagement often require a visual identification before action is allowed. The challenge in these operations is to detect, classify and identify a target at a reasonable range, while avoiding too many false alarms or missed detections. Current sensor technology is not able to cope with the performance requirements under all circumstances. For example, environmental conditions can reduce the sensor range in such a way that the operational task becomes challenging or even impossible. Further, limitations in automatic detection algorithms occur, e.g. due to the effects of sun glints and spray which are not yet well-modelled in the detection filters. For these reasons, Tactical Decision Aids will become an important factor in future operations to select the best moment to act. In this paper, we describe current research within The Netherlands on this topic. The Defence Research and Development Programme "Multifunctional Electro-Optical Sensor Suite (MEOSS)" aims at the development of knowledge necessary for optimal employment of Electro-Optical systems on board of current and future ships of the Royal Netherlands Navy, in order to carry out present and future maritime operations in various environments and weather conditions.
AO corrected satellite imaging from Mount Stromlo
NASA Astrophysics Data System (ADS)
Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.
2016-07-01
The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.
Xu, Huajun; Yang, Dan; Liu, Fenggang; Fu, Mingkai; Bo, Shuhui; Liu, Xinhou; Cao, Yuan
2015-11-28
In this work, we investigated the enhancement of the electro-optic response by introducing electron-rich heteroatoms as additional donors into the donor or bridge of a conventional second-order nonlinear optical chromophore. A series of chromophores C2-C4 based on the same tricyanofuran acceptor (TCF) but with different heteroatoms in the alkylamino phenyl donor (C2 or C3) or thiophene bridge (C4) have been synthesized and systematically investigated. Density functional theory calculations suggested that chromophores C2-C4 had a smaller energy gap and larger first-order hyperpolarizability (β) than traditional chromophore C1 due to the additional heteroatoms. Single crystal structure analyses and optimized configurations indicate that the rationally introduced heteroatom group would bring larger β and weaker intermolecular interactions which were beneficial for translating molecular β into macro-electro-optic activity in electric field poled films. The electro-optic coefficient of poled films containing 25 wt% of these new chromophores doped in amorphous poly-carbonate afforded values of 83 and 91 pm V(-1) at 1310 nm for chromophores C3 and C4, respectively, which are two times higher than that of the traditional chromophore C1 (39 pm V(-1)). High r33 values indicated that introducing heteroatoms to the donor and bridge of a conventional molecular structure can efficiently improve the electron-donating ability, which improves the β. The long-chain on the donor or bridge part, acting as the isolation group, may reduce inter-molecular electrostatic interactions, thus enhancing the macroscopic EO activity. These results, together with good solubility and compatibility with the polymer, show the new chromophore's potential application in electro-optic devices.
A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio
NASA Astrophysics Data System (ADS)
Pan, Xinjian; Cai, Yi; Zeng, Xuanke; Zheng, Shuiqin; Li, Jingzhen; Xu, Shixiang
2017-05-01
The paper presents a novel design for terahertz (THz) free-space time domain electro-optic (EO) detection where the static birefringent phases of the two balanced arms are set close to zero but opposite to each other. Our theoretical and numerical analyses show this design has much stronger ability to cancel the optical background noise than both THz ellipsometer and traditional crossed polarizer geometry (CPG). Its optical modulation depth is about twice as high as that of traditional CPG, but about ten times as high as that of THz ellipsometer. As for the dynamical range, our improved design is comparable to the THz ellipsometer but obviously larger than the traditional CPG. Some experiments for comparing our improved CPG with traditional CPG agree well with the corresponding theoretical predictions. Our experiments also show that the splitting ratio of the used non-polarization beam splitter is critical for the performance of our design.
Coastal Surveillance Baseline Model Development
2015-02-27
In the current STK model, a set of areas was defined for two reasons: To provide visual assistance during ship and aircraft route planning; and To...RF), electro-optic (EO), infrared (IR), and visual Partially Met The free version of STK can only generate simple generic sensors RQ-04 The model...25 APPENDIX A PLATFORM OBJECT ROUTE PLANNING PROCEDURE ............. A-1 APPENDIX B STK INSTALLATION
Electro-optic tracking R&D for defense surveillance
NASA Astrophysics Data System (ADS)
Sutherland, Stuart; Woodruff, Chris J.
1995-09-01
Two aspects of work on automatic target detection and tracking for electro-optic (EO) surveillance are described. Firstly, a detection and tracking algorithm test-bed developed by DSTO and running on a PC under Windows NT is being used to assess candidate algorithms for unresolved and minimally resolved target detection. The structure of this test-bed is described and examples are given of its user interfaces and outputs. Secondly, a development by Australian industry under a Defence-funded contract, of a reconfigurable generic track processor (GTP) is outlined. The GTP will include reconfigurable image processing stages and target tracking algorithms. It will be used to demonstrate to the Australian Defence Force automatic detection and tracking capabilities, and to serve as a hardware base for real time algorithm refinement.
An airborne thematic thermal infrared and electro-optical imaging system
NASA Astrophysics Data System (ADS)
Sun, Xiuhong; Shu, Peter
2011-08-01
This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.
Photoinduced electro-optics measurements of biosilica transformation to cristobalite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, Ido; Aluma, Yaniv; Ilan, Micha
2015-03-15
In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown thatmore » natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.« less
Electro-optic polymeric reflection modulator based on plasmonic metamaterial
NASA Astrophysics Data System (ADS)
Abbas, A.; Swillam, M.
2018-02-01
A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.
Ultrafast characterization of optoelectronic devices and systems
NASA Astrophysics Data System (ADS)
Zheng, Xuemei
The recent fast growth in high-speed electronics and optoelectronics has placed demanding requirements on testing tools. Electro-optic (EO) sampling is a well-established technique for characterization of high-speed electronic and optoelectronic devices and circuits. However, with the progress in device miniaturization, lower power consumption (smaller signal), and higher throughput (higher clock rate), EO sampling also needs to be updated, accordingly, towards better signal-to-noise ratio (SNR) and sensitivity, without speed sacrifice. In this thesis, a novel EO sampler with a single-crystal organic 4-dimethylamino-N-methy-4-stilbazolium tosylate (DAST) as the EO sensor is developed. The system exhibits sub-picosecond temporal resolution, sub-millivolt sensitivity, and a 10-fold improvement on SNR, compared with its LiTaO3 counterpart. The success is attributed to the very high EO coefficient, the very low dielectric constant, and the fast response, coming from the major contribution of the pi-electrons in DAST. With the advance of ultrafast laser technology, low-noise and compact femtosecond fiber lasers have come to maturation and become light-source options for ultrafast metrology systems. We have successfully integrated a femtosecond erbium-doped-fiber laser into an EO sampler, making the system compact and very reliable. The fact that EO sampling is essentially an impulse-response measurement process, requires integration of ultrashort (sub-picosecond) impulse generation network with the device under test. We have implemented a reliable lift-off and transfer technique in order to obtain epitaxial-quality freestanding low-temperature-grown GaAs (LT-GaAs) thin-film photo-switches, which can be integrated with many substrates. The photoresponse of our freestanding LT-GaAs devices was thoroughly characterized with the help of our EO sampler. As fast as 360 fs full-width-at-half-maximum (FWHM) and >1 V electrical pulses were obtained, with quantum efficiency reaching 54%. The response time was found to not depend on either the device bias or excitation power. Nitrogen-implanted GaAs is a novel ion-implanted semiconductor. Its intrinsic property of high density of incorporated defects due to the implantation process makes it a promising candidate for ultrafast photodetection. A novel photodetector based on N+-GaAs has been successfully fabricated and its performance was characterized, using again our EO sampler. Our photodetectors, based on N+-GaAs, exhibit ˜2.1 ps FWHM photoresponse and very high sensitivity.
NASA Astrophysics Data System (ADS)
Zheng, Chuan-Tao; Zheng, Li-Hua; Luo, Qian-Qian; Liang, Lei; Ma, Chun-Sheng; Zhang, Da-Ming
2013-05-01
A novel non-resonance 2×2 polymer electro-optic (EO) switch with flatting spectral response is proposed by employing two-section reversed active Mach-Zehnder interferometers (MZIs), a passive middle directional coupler (M-DC) and two passive phase generating couplers (PGCs). Two crosstalk compensations are performed by optimizing the PGCs to broaden the spectrum under bar-state and optimizing the two active MZIs to broaden the spectrum under cross-state. The bar-state and cross-state voltages are 0 and ±4 V, respectively, with the two optimized MZI EO region lengths of 4068 and 5941 μm. Sufficiently considering wavelength dispersion of material and waveguide, a wide spectrum over 130 nm (1473-1603 nm) is achieved for dropping the crosstalk below -30 dB, and within this range, an insertion loss of 1.8-12.3 dB is observed. Under the same crosstalk level, this spectrum is over 2 times of that of the traditional 2×2 MZI switch (60 nm) based on the same materials. This broadband 2×2 switch is more attractive than our previously reported broadband 1×1 switch due to cross/bar routing operations other than simple ON/OFF functions.
Jeong, Mi-Yun; Cho, Bong Rae
2015-02-01
We summarize the nonlinear optical (NLO) properties of octupolar molecules, crystals, and films developed in our laboratory. We present the design strategy, structure-property relationship, and second-order NLO properties of 1,3,5-trinitro- and 1,3,5-tricyano-2,4,6-tris(p-diethylaminostyryl)benzene (TTB) derivatives, TTB crystals, and films prepared by free-casting TTB in poly(methyl methacrylate) (PMMA). The first hyperpolarizability of TTB was fivefold larger than that of the dipolar analogue. Moreover, the TTB crystal showed unprecedentedly large second-harmonic generation (SHG). While TTB crystal films (20 wt% TTB/PMMA) on various substrates showed appreciable SHG values, the cylinder film exhibited much larger SHG values and large electro-optic (EO) coefficients. The large SHG values and EO coefficients, as well as the high thermal stability of the cylinder film, will make it a potential candidate for NLO device applications. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The relationship of acquisition systems to automated stereo correlation.
Colvocoresses, A.P.
1983-01-01
Today a concerted effort is being made to expedite the mapping process through automated correlation of stereo data. Stereo correlation involves the comparison of radiance (brightness) signals or patterns recorded by sensors. Conventionally, two-dimensional area correlation is utilized but this is a rather slow and cumbersome procedure. Digital correlation can be performed in only one dimension where suitable signal patterns exist, and the one-dimensional mode is much faster. Electro-optical (EO) systems, suitable for space use, also have much greater flexibility than film systems. Thus, an EO space system can be designed which will optimize one-dimensional stereo correlation and lead toward the automation of topographic mapping.-from Author
Multiple-mode reconfigurable electro-optic switching network for optical fiber sensor array
NASA Technical Reports Server (NTRS)
Chen, Ray T.; Wang, Michael R.; Jannson, Tomasz; Baumbick, Robert
1991-01-01
This paper reports the first switching network compatible with multimode fibers. A one-to-many cascaded reconfigurable interconnection was built. A thin glass substrate was used as the guiding medium which provides not only higher coupling efficiency from multimode fiber to waveguide but also better tolerance of phase-matching conditions. Involvement of a total-internal-reflection hologram and multimode waveguide eliminates interface problems between fibers and waveguides. The DCG polymer graft has proven to be reliable from -180 C to +200 C. Survivability of such an electrooptic system in harsh environments is further ensured. LiNbO3 was chosen as the E-O material because of its stability at high temperatures (phase-transition temperature of more than 1000 C) and maturity of E-O device technology. Further theoretical calculation was conducted to provide the optimal interaction length and device capacitance.
CW-THz vector spectroscopy and imaging system based on 1.55-µm fiber-optics.
Kim, Jae-Young; Song, Ho-Jin; Yaita, Makoto; Hirata, Akihiko; Ajito, Katsuhiro
2014-01-27
We present a continuous-wave terahertz (THz) vector spectroscopy and imaging system based on a 1.5-µm fiber optic uni-traveling-carrier photodiode and InGaAs photo-conductive receiver. Using electro-optic (EO) phase modulators for THz phase control with shortened optical paths, the system achieves fast vector measurement with effective phase stabilization. Dynamic ranges of 100 dB · Hz and 75 dB · Hz at 300 GHz and 1 THz, and phase stability of 1.5° per minute are obtained. With the simultaneous measurement of absorbance and relative permittivity, we demonstrate non-destructive analyses of pharmaceutical cocrystals inside tablets within a few minutes.
All-dielectric fiber-optic passive millimeter-wave antenna
NASA Astrophysics Data System (ADS)
Wang, Wen C.; Lin, Weiping; Marshall, Hank; Schaafsma, David T.; Chaung, Richard
2003-07-01
An integrated Mach-Zehnder interferometer made of electro-optic polymer, which has excellent broadband (>100 GHz) response, was fabricated as a mm-wave receive antenna. When an electric field is applied to the interferometer arm(s) made of EO material, a phase delay is generated which results in a net imbalance in the interferometer and thus a change in the output intensity. This output intensity change, which contains electric field strength and temporal profile information, is then read by a photodetector and processed. To test this antenna in free space, a micro-strip travelling electromagnetic cell, which has uniform electric field distribution in the 1 GHz range, was constructed. The test results show the antenna had good linear response over a 40 dB power range, at 1 GHz center frequency. The measured minimum detectable E-field strength was about 0.22 V/m (or 6.7 nW/cm2) at 1 kHz bandwidth with a laser power of 7.9 μWatt (-21dBm) measured after the sensor, which agrees with our theoretical calculations. The measured E-field signal increases with increasing laser power, which indicates that significant sensitivity improvement, can be easily obtained by lowering passive losses. The antenna was found to be thermally stable over a temperature range from -30 to 50 C. The antenna sensitivity can be further improved by lowering the device insertion loss, optimizing the photodetector and detection circuitry, and using EO polymers with higher electro-optic coefficients.
Time Critical Targeting: Predictive Vs Reactionary Methods An Analysis For The Future
2002-06-01
critical targets. To conduct the analysis, a four-step process is used. First, research is conducted to determine which future aircraft, spacecraft , and...the most promising aircraft, spacecraft , and weapons are determined , they are categorized for use in either the reactive or preemptive method. For...no significant delays, 292; Alan Vick et al., 17. 33 Ibid. 12 sensors are Electro-optical (EO) sensors, thermal imagers , and signal intelligence
Technology Assessment: 1983 Forecast of Future Test Technology Requirements.
1983-06-01
effectively utilizes existing vehicle space , power and support equipment while maintaining critical interfaces with on-board computers and fire control...Scan Converter EAR Electronically Agile Radar E-O Electro-Optics FET Field Effect Transistor FLIR Forward Looking Infrared GaAs Gallium Arsenide HEL...They might be a part of a large ATE system due to such things as the environmental effects on noise and signal/power loss. A summary of meaningful
A Tutorial on Electro-Optical/Infrared (EO/IR) Theory and Systems
2013-01-01
engine of a small UAV to an intercontinental ballistic missile (ICBM) launch. Comparison of the available energy at the sensor to the noise level...of the sensor provides the central metric of sensor performance, the noise equivalent irradiance or NEI. The problem of extracting the target from...effectiveness of imaging systems can be degraded by many factors, including limited contrast and luminance, the presence of noise , and blurring due to
Manufacturing polymer light emitting diode with high luminance efficiency by solution process
NASA Astrophysics Data System (ADS)
Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog
2012-06-01
While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.
Electro-optic properties of organic nanotubes.
Stoylov, Stoyl P; Stoilova-McPhie, Svetla
2011-08-10
In this review article the theoretical and experimental possibilities of applying EO-methods for estimation of the physico-chemical properties of the organic nanotubes (ONTs) are studied. The ONTs are highly organized nanostructures of strongly elongated, anysometric, and hollow cylinders with a size range of 1 nm to 10,000 nm, e.g. in aqueous solutions they could behave as colloid (disperse) particles. They have high interaction ability due to their extremely large curved, rolled-up external surfaces (bilayers of membrane walls) and unique properties because of their specific electric charge distribution and dynamics that make possible the functionalization of their surfaces. Thus they could template guestsubstances such as membrane proteins and protein complexes on the exterior surfaces and in the membrane. We performed our investigations for the case of ONT aqueous colloid suspension. Following our earlier proposition of the general expression for the electro-optic (EO) effect we derived equations for the evaluation of the electric properties of ONT particles such as mechanism of electric polarization and identification of their most important electric Dipole Moments (DM), permanent (pDM) and induced (iDMs). Further we recommend ways for the calculation of their magnitude and direction. Also we evaluated some geometrical properties such as length of the ONT particles and their polydispersity. The knowledge that we provided about the ONT properties may enable us to elucidate and predict their biological activity. Templating biological active ligands (such as membrane proteins and protein complexes) on the inner and outer surfaces as well as in the surface membrane creates their potential usefulness as carrier and deliverer of biopharmaceuticals in bio-nanodevices. The theoretical equations were compared with the experimental data for ONTs such as (lipid) LNT, Tobacco Mosaic Virus (TMV) and microtubules (MT). Comparison of EO methods with other methods used till now shows that the EO methods are faster, not invasive and do not alter the studied particles. Copyright © 2011 Elsevier B.V. All rights reserved.
Magnetic Gimbal Proof-of-Concept Hardware performance results
NASA Technical Reports Server (NTRS)
Stuart, Keith O.
1993-01-01
The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.
Magnetic Gimbal Proof-of-Concept Hardware performance results
NASA Astrophysics Data System (ADS)
Stuart, Keith O.
The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.
2013-12-01
effectors (deployed on ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF...ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF emitting targets. In the...Electronic Support EO Electro-Optic FPGAs Field Programmable Gate Arrays IR Infra-red LADAR Laser Detection and Ranging OSX Mac OS X; the apple
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun
2016-11-01
The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.
Aspects of detection and tracking of ground targets from an airborne EO/IR sensor
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam; Sithiravel, Rajiv; Daya, Zahir; Kirubarajan, Thiagalingam
2015-05-01
An airborne EO/IR (electro-optical/infrared) camera system comprises of a suite of sensors, such as a narrow and wide field of view (FOV) EO and mid-wave IR sensors. EO/IR camera systems are regularly employed on military and search and rescue aircrafts. The EO/IR system can be used to detect and identify objects rapidly in daylight and at night, often with superior performance in challenging conditions such as fog. There exist several algorithms for detecting potential targets in the bearing elevation grid. The nonlinear filtering problem is one of estimation of the kinematic parameters from bearing and elevation measurements from a moving platform. In this paper, we developed a complete model for the state of a target as detected by an airborne EO/IR system and simulated a typical scenario with single target with 1 or 2 airborne sensors. We have demonstrated the ability to track the target with `high precision' and noted the improvement from using two sensors on a single platform or on separate platforms. The performance of the Extended Kalman filter (EKF) is investigated on simulated data. Image/video data collected from an IR sensor on an airborne platform are processed using an image tracking by detection algorithm.
NASA Astrophysics Data System (ADS)
Hammann, Mark Gregory
The fusion of electro-optical (EO) multi-spectral satellite imagery with Synthetic Aperture Radar (SAR) data was explored with the working hypothesis that the addition of multi-band SAR will increase the land-cover (LC) classification accuracy compared to EO alone. Three satellite sources for SAR imagery were used: X-band from TerraSAR-X, C-band from RADARSAT-2, and L-band from PALSAR. Images from the RapidEye satellites were the source of the EO imagery. Imagery from the GeoEye-1 and WorldView-2 satellites aided the selection of ground truth. Three study areas were chosen: Wad Medani, Sudan; Campinas, Brazil; and Fresno- Kings Counties, USA. EO imagery were radiometrically calibrated, atmospherically compensated, orthorectifed, co-registered, and clipped to a common area of interest (AOI). SAR imagery were radiometrically calibrated, and geometrically corrected for terrain and incidence angle by converting to ground range and Sigma Naught (?0). The original SAR HH data were included in the fused image stack after despeckling with a 3x3 Enhanced Lee filter. The variance and Gray-Level-Co-occurrence Matrix (GLCM) texture measures of contrast, entropy, and correlation were derived from the non-despeckled SAR HH bands. Data fusion was done with layer stacking and all data were resampled to a common spatial resolution. The Support Vector Machine (SVM) decision rule was used for the supervised classifications. Similar LC classes were identified and tested for each study area. For Wad Medani, nine classes were tested: low and medium intensity urban, sparse forest, water, barren ground, and four agriculture classes (fallow, bare agricultural ground, green crops, and orchards). For Campinas, Brazil, five generic classes were tested: urban, agriculture, forest, water, and barren ground. For the Fresno-Kings Counties location 11 classes were studied: three generic classes (urban, water, barren land), and eight specific crops. In all cases the addition of SAR to EO resulted in higher overall classification accuracies. In many cases using more than a single SAR band also improved the classification accuracy. There was no single best SAR band for all cases; for specific study areas or LC classes, different SAR bands were better. For Wad Medani, the overall accuracy increased nearly 25% over EO by using all three SAR bands and GLCM texture. For Campinas, the improvement over EO was 4.3%; the large areas of vegetation were classified by EO with good accuracy. At Fresno-Kings Counties, EO+SAR fusion improved the overall classification accuracy by 7%. For times or regions where EO is not available due to extended cloud cover, classification with SAR is often the only option; note that SAR alone typically results in lower classification accuracies than when using EO or EO-SAR fusion. Fusion of EO and SAR was especially important to improve the separability of orchards from other crops, and separating urban areas with buildings from bare soil; those classes are difficult to accurately separate with EO. The outcome of this dissertation contributes to the understanding of the benefits of combining data from EO imagery with different SAR bands and SAR derived texture data to identify different LC classes. In times of increased public and private budget constraints and industry consolidation, this dissertation provides insight as to which band packages could be most useful for increased accuracy in LC classification.
Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus
NASA Astrophysics Data System (ADS)
Feng, Huicheng; Wong, Teck Neng; Che, Zhizhao; Marcos
2016-06-01
Efficient mixing is of significant importance in numerous chemical and biomedical applications but difficult to realize rapidly in microgeometries due to the lack of turbulence. We propose to enhance mixing by introducing Lagrangian chaos through electro-osmosis (EO) or induced charge electro-osmosis (ICEO) in an eccentric annulus. The analysis reveals that the created Lagrangian chaos can achieve a homogeneous mixing much more rapidly than either the pure EO or the pure ICEO. Our systematic investigations on the key parameters, ranging from the eccentricity, the alternating time period, the number of flow patterns in one time period, to the specific flow patterns utilized for the Lagrangian chaos creation, present that the Lagrangian chaos is considerably robust. The system can obtain a good mixing effect with wide ranges of eccentricity, alternating time period, and specific flow patterns utilized for the Lagrangian chaos creation as long as the number of flow patterns in one time period is two. As the electric field increases, the time consumption for homogenous mixing is reduced more remarkably for the Lagrangian chaos of the ICEO than that of the EO.
Radiation resistance of a gamma-ray irradiated nonlinear optic chromophore
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Taylor, Edward W.
2009-11-01
The radiation resistance of organic electro-optic and optoelectronic materials for space applications is receiving increased attention. An earlier investigation reported that guest-host poled polymer EO modulator devices composed of a phenyltetraene bridge-type chromophore in amorphous polycarbonate (CLD/APC) did not exhibit a decrease in EO response (i.e., an increase in modulation-switching voltage- Vπ) following irradiation by low dose [10-160 krad(Si)] 60Co gamma-rays. To provide further evidences to the observed radiation stability, the post-irradiation responses of 60Co gamma-rays on CLD1/APC thin films are examined by various chemical and spectroscopic methods including: a solubility test, thin-layer chromatography, proton nuclear magnetic resonance spectroscopy, UV-vis absorption, and infra-red absorption. The results indicate that CLD1 and APC did not decompose under gamma-ray irradiation at dose levels ranging from 66-274 krad(Si) and from 61-154 krad(Si), respectively which support the previously reported data.
Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Kassiba, A.; Bouclé, J.; Makowska-Janusik, M.; Errien, N.
2007-08-01
Hybrid nanocomposites which combine polymer as host matrix and nanocrystals as active elements are promising functional materials for electronics, optics or photonics. In these systems, the physical response is governed by the nanocrystal features (size, surface and defect states), the polymer properties and the polymer-nanocrystal interface. This work reviews some selective nanostructured architectures based on active elements such as silicon carbide (SiC) nanocrystals and polymer host matrices. Beyond an overview of some key properties of the nanocrystals, a main part will be devoted to the electro-optical (EO) properties of SiC based hybrid systems where SiC nanocrystals are embedded in polymer matrices of different chemical nature such as poly-(methylmethacrylate) (PMMA), poly-vinylcarbazole (PVK) or polycarbonate. Using this approach, the organic-inorganic interface effects are emphasised with regard to the dielectric or hole transporting behaviour of PMMA and PVK respectively. These effects are illustrated through different EO responses associated with hybrid composites based on PMMA or PVK.
SFG characterization of a cationic ONLO dye in biological thin films
NASA Astrophysics Data System (ADS)
Johnson, Lewis E.; Casford, Michael T.; Elder, Delwin L.; Davies, Paul B.; Johal, Malkiat S.
2013-10-01
Biopolymer-based thin films, such as those composed of CTMA-DNA, can be used as a host material for NLOactive dyes for applications such as electro-optic (EO) switching and second harmonic generation. Previous work by Heckman et al. (Proc. SPIE 6401, 640108-2) has demonstrated functioning DNA-based EO modulators. Improved performance requires optimization of both the first hyperpolarizabilities (β) and degree of acentric ordering exhibited by the chromophores. The cationic dye DANPY-1 (Proc. SPIE 8464, 846409-D) has a high affinity for DNA and a substantial hyperpolarizability; however, its macroscopic ordering has not been previously characterized. We have characterized the acentric ordering of the dye using sum-frequency generation (SFG) vibrational spectroscopy in surface-immobilized DNA and on planar metal and dielectric surfaces.
100 GHz pulse waveform measurement based on electro-optic sampling
NASA Astrophysics Data System (ADS)
Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He
2018-05-01
We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.
NASA Astrophysics Data System (ADS)
Ashley, P. R.; Temmen, M. G.; Diffey, W. M.; Sanghadasa, M.; Bramson, M. D.
2007-10-01
Active and passive polymer materials have been successfully used in the development of highly accurate, compact and low cost guided-wave components: an optical transceiver and a phase modulator, for inertial measurement units (IMUs) based on the interferometric fibre optic gyroscope (IFOG) technology for precision guidance in navigation systems. High performance and low noise transceivers with high optical power and good spectral quality were fabricated using a silicon-bench architecture. Low loss phase modulators with low halfwave drive voltage (Vπ) have been fabricated with a backscatter compensated design using polarizing waveguides consisting of CLD- and FTC-type high performance electro-optic (E-O) chromophores. Gyro bias stability of less than 0.02° h-1 has been demonstrated with these guided-wave components.
Model-based engineering for laser weapons systems
NASA Astrophysics Data System (ADS)
Panthaki, Malcolm; Coy, Steve
2011-10-01
The Comet Performance Engineering Workspace is an environment that enables integrated, multidisciplinary modeling and design/simulation process automation. One of the many multi-disciplinary applications of the Comet Workspace is for the integrated Structural, Thermal, Optical Performance (STOP) analysis of complex, multi-disciplinary space systems containing Electro-Optical (EO) sensors such as those which are designed and developed by and for NASA and the Department of Defense. The CometTM software is currently able to integrate performance simulation data and processes from a wide range of 3-D CAD and analysis software programs including CODE VTM from Optical Research Associates and SigFitTM from Sigmadyne Inc. which are used to simulate the optics performance of EO sensor systems in space-borne applications. Over the past year, Comet Solutions has been working with MZA Associates of Albuquerque, NM, under a contract with the Air Force Research Laboratories. This funded effort is a "risk reduction effort", to help determine whether the combination of Comet and WaveTrainTM, a wave optics systems engineering analysis environment developed and maintained by MZA Associates and used by the Air Force Research Laboratory, will result in an effective Model-Based Engineering (MBE) environment for the analysis and design of laser weapons systems. This paper will review the results of this effort and future steps.
Chaotic micromixer utilizing electro-osmosis and induced charge electro-osmosis in eccentric annulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Huicheng; Wong, Teck Neng, E-mail: mtnwong@ntu.edu.sg; Marcos
Efficient mixing is of significant importance in numerous chemical and biomedical applications but difficult to realize rapidly in microgeometries due to the lack of turbulence. We propose to enhance mixing by introducing Lagrangian chaos through electro-osmosis (EO) or induced charge electro-osmosis (ICEO) in an eccentric annulus. The analysis reveals that the created Lagrangian chaos can achieve a homogeneous mixing much more rapidly than either the pure EO or the pure ICEO. Our systematic investigations on the key parameters, ranging from the eccentricity, the alternating time period, the number of flow patterns in one time period, to the specific flow patternsmore » utilized for the Lagrangian chaos creation, present that the Lagrangian chaos is considerably robust. The system can obtain a good mixing effect with wide ranges of eccentricity, alternating time period, and specific flow patterns utilized for the Lagrangian chaos creation as long as the number of flow patterns in one time period is two. As the electric field increases, the time consumption for homogenous mixing is reduced more remarkably for the Lagrangian chaos of the ICEO than that of the EO.« less
The impact of turbulent fluctuations on light propagation in a controlled environment
NASA Astrophysics Data System (ADS)
Matt, Silvia; Hou, Weilin; Goode, Wesley
2014-05-01
Underwater temperature and salinity microstructure can lead to localized changes in the index of refraction and can be a limiting factor in oceanic environments. This optical turbulence can affect electro-optical (EO) signal transmissions that impact various applications, from diver visibility to active and passive remote sensing. To quantify the scope of the impacts from turbulent flows on EO signal transmission, and to examine and mitigate turbulence effects, we perform experiments in a controlled turbulence environment allowing the variation of turbulence intensity. This controlled turbulence setup is implemented at the Naval Research Laboratory Stennis Space Center (NRLSSC). Convective turbulence is generated in a classical Rayleigh-Benard tank and the turbulent flow is quantified using a state-of-the-art suite of sensors that includes high-resolution Acoustic Doppler Velocimeter profilers and fast thermistor probes. The measurements are complemented by very high- resolution non-hydrostatic numerical simulations. These computational fluid dynamics simulations allow for a more complete characterization of the convective flow in the laboratory tank than would be provided by measurements alone. Optical image degradation in the tank is assessed in relation to turbulence intensity. The unique approach of integrating optical techniques, turbulence measurements and numerical simulations helps advance our understanding of how to mitigate the effects of turbulence impacts on underwater optical signal transmission, as well as of the use of optical techniques to probe oceanic processes.
Advanced diagnosis of the temporal characteristics of ultra-short electron beams
NASA Astrophysics Data System (ADS)
Otake, Yuji
2011-05-01
Monitoring the temporal structure of an ultra-short electron beam is an indispensable function in order to tune a machine to obtain a highly qualified beam for a recent sophisticated accelerator, such as an X-ray free electron laser (XFEL), and to maintain stable X-ray laser operation. For this purpose, various instruments, such as an HEM11-mode RF beam deflector (RFDEF), a screen monitor (SCM), an electro-optic (EO) sampling method that uses a ZnTe crystal, and a beam position monitor (BPM) have been developed. The SCM that is used to observe the deflected beam image has a position resolution of 2.5 μm, which corresponds to a temporal resolution of 0.5 fs and it is installed at a position 5 m downstream from the RFDEF. The EO sampling method showed the ability to observe an electron bunch length for up to 300 fs (FWHM) at the SCSS test accelerator. The phase reference cavity of the BPM has an additional function of providing beam arrival timing information. A test for the BPM showed temporal fluctuation of 46 fs on the beam arrival timing at the test accelerator. These monitors with high temporal resolutions allow us to achieve the fine beam tuning demanded for the XFEL. The above-mentioned activities are described in this paper as a review article.
NASA Astrophysics Data System (ADS)
Knorr, Daniel; Gray, Tomoko; Kim, Tae-Dong; Luo, Jingdong; Jen, Alex; Overney, Rene
2008-03-01
For organic non-linear optical (NLO) materials composed of intricate molecular building blocks, the challenge is to deduce meaningful molecular scale mobility information to understand complex relaxation and phase behavior. This is crucial, as the process of achieving a robust acentric alignment strongly depends on the availability of inter- and intra-molecular mobilities outside the temperature range of the device operation window. Here, we introduce a nanoscale methodology based on scanning probe microscopy that provides direct insight into structural relaxations and shows great potential to direct material design of sophisticated macromolecules. It also offers a means by which mesoscale dynamics and cooperativity involved in relaxation processes can be quantified in terms of dynamic entropy and enthalpy. This study demonstrates this methodology to describe the mesocale dynamics of two systems (1) organic networking dendronized NLO molecular glasses that self-assemble into physically linked polymers due to quadrupolar phenyl-perfluorophenyl interactions and (2) dendronized side-chain electro-optic (EO) polymers. For the self assembling glasses, the degree of intermolecular cooperativity can be deduced using this methodology, while for the dendronized side-chain polymers, specific side chain mobilities are exploited to improve EO properties.
NASA Technical Reports Server (NTRS)
Davis, Scott; Lichter, Michael; Raible, Daniel
2016-01-01
Emergent data-intensive missions coupled with dramatic reductions in spacecraft size plus an increasing number of space-based missions necessitates new high performance, compact and low cost communications technology. Free space optical communications offer advantages including orders of magnitude increase for data rate performance, increased security, immunity to jamming and lack of frequency allocation requirements when compared with conventional radio frequency (RF) means. The spatial coherence and low divergence associated with the optical frequencies of laser communications lends themselves to superior performance, but this increased directionality also creates one of the primary technical challenges in establishing a laser communications link by repeatedly and reliably pointing the beam onto the receive aperture. Several solutions have emerged from wide angle (slow) mechanical articulation systems, fine (fast) steering mirrors and rotating prisms, inertial compensation gyros and vibration isolation cancellation systems, but each requires moving components and imparts a measured amount of burden on the host platform. The complexity, cost and size of current mechanically scanned solutions limits their platform applicability, and restricts the feasibility of deploying optical communications payloads on very compact spacecraft employing critical systems. A high speed, wide angle, non-mechanical solution is therefore desirable. The purpose of this work is to share the development, testing, and demonstration of a breadboard prototype electro-optic (EO) scanned laser-communication link (see Figure 1). This demonstration is a step toward realizing ultra-low Size, Weight and Power (SWaP) SmallSat/MicroSat EO non-mechanical laser beam steering modules for high bandwidth ( greater than Gbps) free-space data links operating in the 1550 nm wavelength bands. The elimination of all moving parts will dramatically reduce SWaP and cost, increase component lifetime and reliability, and simplify the system design of laser communication modules. This paper describes the target mission architectures and requirements (few cubic centimeters of volume, 10's of grams of weight with milliwatts of power) and design of the beam steering module. Laboratory metrology is used to determine the component performance including horizontal and vertical resolution (20urad) as a function of control voltage (see Figure 2), transition time (0.1-1ms), pointing repeatability and optic insertion loss. A test bed system demonstration, including a full laser communications link, is conducted. The capabilities of this new EO beam steerer provide an opportunity to dramatically improve space communications through increased utilization of laser technology on smaller platforms than were previously attainable.
Solid state electro-optic color filter and iris
NASA Technical Reports Server (NTRS)
1974-01-01
Test results obtained have confirmed the practicality of the solid state electro-optic filters as an optical control element in a television system. Neutral-density control range in excess of 1000:1 has been obtained on sample filters. Test results, measurements in a complete camera system, discussions of problem areas, analytical comparisons, and recommendations for future investigations are included.
Wideband THz Time Domain Spectroscopy based on Optical Rectification and Electro-Optic Sampling
Tomasino, A.; Parisi, A.; Stivala, S.; Livreri, P.; Cino, A. C.; Busacca, A. C.; Peccianti, M.; Morandotti, R.
2013-01-01
We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement. PMID:24173583
Polymer enabled 100 Gbaud connectivity for datacom applications
NASA Astrophysics Data System (ADS)
Katopodis, V.; Groumas, P.; Zhang, Z.; Dinu, R.; Miller, E.; Konczykowska, A.; Dupuy, J.-Y.; Beretta, A.; Dede, A.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Riet, Muriel; Cangini, G.; Vannucci, A.; Keil, N.; Bach, H.-G.; Grote, N.; Avramopoulos, H.; Kouloumentas, Ch.
2016-03-01
Polymers hold the promise for ultra-fast modulation of optical signals due to their potential for ultra-fast electro-optic (EO) response and high EO coefficient. In this work, we present the basic structure and properties of an efficient EO material system, and we summarize the efforts made within the project ICT-POLYSYS for the development of high-speed transmitters based on this system. More specifically, we describe successful efforts for the monolithic integration of multi-mode interference (MMI) couplers and Bragg-gratings (BGs) along with Mach-Zehnder modulators (MZMs) on this platform, and for the hybrid integration of InP active elements in the form of laser diodes (LDs) and gain chips (GCs). Using these integration techniques and the combination of the hybrid optical chips with ultra-fast indium phosphide double heterojunction bipolar transistor (InP-DHBT) electronics, we develop and fully package a single 100 Gb/s transmitter and a 2×100 Gb/s transmitter that can support serial operation at this rate with conventional non-return-to-zero on-off-keying (NRZ-OOK) modulation format. We also present the experimental evaluation of the devices, validating the efficiency of the monolithic and hybrid integration concepts and confirming the potential of this technology for single-lane 100 Gb/s optical connectivity in data-center network environments. Results from transmission experiments to this end include the achievement of BER close to 6·10-9 in B2B configuration, the achievement of BER lower than 10-7 for propagation over standard single-mode fiber (SSMF) with total length up to 1000 m, and the achievement of BER at the level of 10-5 after 1625 m of SSMF. Finally, plans for the use of the EO polymer system in a more complex hybrid integration platform for high-flexibility/high-capacity transmitters are also outlined.
The SPARC_LAB femtosecond synchronization for electron and photon pulsed beams
NASA Astrophysics Data System (ADS)
Bellaveglia, M.; Gallo, A.; Piersanti, L.; Pompili, R.; Gatti, G.; Anania, M. P.; Petrarca, M.; Villa, F.; Chiadroni, E.; Biagioni, A.; Mostacci, A.
2015-05-01
The SPARC LAB complex hosts a 150 MeV electron photo-injector equipped with an undulator for FEL production (SPARC) together with a high power TW laser (FLAME). Recently the synchronization system reached the performance of < 100 fsRMS relative jitter between lasers, electron beam and RF accelerating fields. This matches the requirements for next future experiments: (i) the production of X-rays by means of Thomson scattering (first collisions achieved in 2014) and (ii) the particle driven PWFA experiment by means of multiple electron bunches. We report about the measurements taken during the machine operation using BAMs (Bunch Arrival Monitors) and EOS (Electro-Optical Sampling) system. A new R and D activity concerning the LWFA using the external injection of electron bunches in a plasma generated by the FLAME laser pulse is under design. The upgrade of the synchronization system is under way to guarantee the < 30 fs RMS jitter required specification. It foresees the transition from electrical to optical architecture that mainly affects the reference signal distribution and the time of arrival detection performances. The new system architecture is presented together with the related experimental data.
NASA Astrophysics Data System (ADS)
Yuan, Wuhan; Mohabir, Amar; Tutuncuoglu, Gozde; Filler, Michael; Feldman, Leonard; Shan, Jerry
2017-11-01
Solution-based, contactless methods for determining the electrical conductivity of nanowires and nanotubes have unique advantages over conventional techniques in terms of high throughput and compatibility with further solution-based processing and assembly methods. Here, we describe the solution-based electro-orientation spectroscopy (EOS) method, in which nanowire conductivity is measured from the AC-electric-field-induced alignment rate of the nanowire in a suspending fluid. The particle conductivity is determined from the measured crossover frequency between conductivity-dominated, low-frequency alignment to the permittivity-dominated, high-frequency regime. We discuss the extension of the EOS measurement range by an order-of-magnitude, taking advantage of the high dielectric constant of deionized water. With water and other fluids, we demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 7-order-of-magnitude range, 10-5 to 102 S/m. We highlight the efficiency and utility of EOS for nanomaterial characterization by statistically characterizing the variability of semiconductor nanowires of the same nominal composition, and studying the connection between synthesis parameters and properties. NSF CBET-1604931.
Ding, Tingting; Zheng, Yuanlin; Chen, Xianfeng
2018-04-30
Configurable narrow bandwidth filters are indispensable components in optical communication networks. Here, we present an easily-integrated compact tunable filtering based on polarization-coupling process in a thin periodically poled lithium niobate (PPLN) in a reflective geometry via the transverse electro-optic (EO) effect. The structure, composed of an in-line polarizer and a thinned PPLN chip, forms a phase-shift Solc-type filter with similar mechanism to defected Bragg gratings. The filtering effect can be dynamically switched on and off by a transverse electric filed. Analogy of electromagnetically induced transparency (EIT) transmission spectrum and electrically controllable group delay is experimentally observed. The mechanism features tunable center wavelength in a wide range with respect to temperature and tunable optical delay to the applied voltage, which may offer another way for optical tunable filters or delay lines.
NASA Astrophysics Data System (ADS)
Remo, John L.
2010-10-01
An electro-optic laser probe was developed to obtain parameters for high energy density equations of state (EoS), Hugoniot pressures (PH), and strain rates for high energy density laser irradiation intensity, I, experiments at ˜170 GW/cm2 (λ = 1064 nm) to ˜13 TW/cm2 (λ = 527 nm) on Al, Cu, Ti, Fe, Ni metal targets in a vacuum. At I ˜7 TW/cm2 front surface plasma pressures and temperatures reached 100's GPa and over two million K. Rear surface PH ranged from 7-120 GPa at average shock wave transit velocities 4.2-8.5 km/s, depending on target thickness and I. A surface plasma compression ˜100's GPa generated an impulsive radial expanding shock wave causing compression, rarefactions, and surface elastic and plastic deformations depending on I. A laser/fiber optic system measured rear surface shock wave emergence and particle velocity with ˜3 GHz resolution by monitoring light deflection from diamond polished rear surfaces of malleable metallic targets, analogous to an atomic force microscope. Target thickness, ˜0.5-2.9 mm, prevented front surface laser irradiation penetration, due to low radiation skin depth, from altering rear surface reflectivity (refractive index). At ˜10 TW electromagnetic plasma pulse noise generated from the target chamber overwhelmed detector signals. Pulse frequency analysis using Moebius loop antennae probed transient noise characteristics. Average shock (compression) and particle (rear surface displacement) velocity measurements determined rear surface PH and GPa) EoS that are compared with gas guns.
Development of zwitterionic chromophores for electro-optic applications
NASA Astrophysics Data System (ADS)
Xiong, Ying
In order to unlock the full potential of the zwitterionic NLO chromophores for electro-optic (EO) applications, a new series of PeQDM chromophores with large first hyperpolarizabilities (beta0 ˜ 600 x 10-30 esu) have been designed and synthesized. A large EO coefficient (r33) of 110 pm/V at 1550 nm has been realized with a 5 wt% (corresponding to 3.8 wt% core content) chromophore doped polymer. The EO study of guest-host polymers reveals that dipolar dye aggregation in a less polar medium is responsible for a low chromophore loading and low EO activity. Modification of NLO chromophore by attaching large dendrons can effectively increase the chromophore loading in a host and improve the poling efficiency. Crosslinkable NLO polymers have also been prepared to improve the temporal stability of the poled noncentrosymmetric order. The following are some important highlights from this thesis work. (1) A series of thermally stable zwitterionic chromophores (PeQDM) with large first hyperpolarizabilities (beta up to -1797 x 10-30 esu) are synthesized in good yields (˜ 50%). The charge-separated ground state is evident by a negative solvatochromism. X-ray crystallographic data further confirms the zwitterionic nature and demonstrates a face-to-face anti-parallel H-aggregation of two monomers due to strong electrostatic interactions between the dipoles. (2) PeQDM chromophores are also NIR fluorescent (lambdaPL ˜ 840-870 nm in solution) and labile to acid, making them potential candidates for NIR pH sensor applications. (3) The hydroxyl-containing PeQDM chromophores are modified with ES-dendron, which exhibit good solubility in solvents and polymers. Self-forming films can be prepared by direct casting or spin-coating of two dendrons modified chromophores (ES-PeQDM-2 and ES-PeQDM-3), in which the chromophore core contents reach 14.9 and 16.9 wt%, respectively. Compared to ES-PeQDM-2 with two dendrons only at the donor part (r33 = 0 pm/V), ES-PeQDM-3 with the bulky ES-dendrons anchored at both the donor and acceptor parts can be poled (r33 = 63 pm/V). (4) Crosslinkable NLO polymers can be prepared by grafting PeQDM-C3OH and 5-aminobenzocyclobutenone as a thermal crosslinker onto acid-containing polyethersulfone. The EO coefficient of a crosslinkable NLO polyethersulfone with 4.8 wt% chromophore core content is 37 pm/V. (5) The use of a polymer with a high dielectric constant to host PeQDM gives rise to the largest EO coefficient (r33 = 110 pm/V), due to the well dispersed monomeric chromophores. The J-type chromophore aggregates formed in a less polar polymer host could still contribute to EO activity, if the dissociated monomer intermediate during the J-H aggregate transformation could be oriented under the poling conditions.
Selective laser sintering: A qualitative and objective approach
NASA Astrophysics Data System (ADS)
Kumar, Sanjay
2003-10-01
This article presents an overview of selective laser sintering (SLS) work as reported in various journals and proceedings. Selective laser sintering was first done mainly on polymers and nylon to create prototypes for audio-visual help and fit-to-form tests. Gradually it was expanded to include metals and alloys to manufacture functional prototypes and develop rapid tooling. The growth gained momentum with the entry of commercial entities such as DTM Corporation and EOS GmbH Electro Optical Systems. Computational modeling has been used to understand the SLS process, optimize the process parameters, and enhance the efficiency of the sintering machine.
Marine atmospheric effects on electro-optical systems performance
NASA Astrophysics Data System (ADS)
Richter, Juergen H.; Hughes, Herbert G.
1990-09-01
For the past twelve years, a coordinated tri-service effort has been underway in the United States Department of Defense to provide an atmospheric effects assessment capability for existing and planned electro-optical (E0) systems. This paper reviews the exploratory development effort in the US Navy. A key responsibility for the Navy was the development of marine aerosol models. An initial model, the Navy Aerosol Model (NAN), was developed, tested, and transitioned into LOWTRAN 6. A more comprehensive model, the Navy Oceanic Vertical Aerosol Model (NOVAM), has been formulated and is presently undergoing comprehensive evaluation and testing. Marine aerosols and their extinction properties are only one important factor in EO systems performance assessment. For many EO systems applications, an accurate knowledge of marine background radiances is required in addition to considering the effects of the intervening atmosphere. Accordingly, a capability was developed to estimate the apparent sea surface radiance for different sea states and meteorological conditions. Also, an empirical relationship was developed which directly relates apparent mean sea temperature to calculated mean sky temperature. In situ measurements of relevant environmental parameters are essential for real-time EO systems performance assessment. Direct measurement of slant path extinction would be most desirable. This motivated a careful investigation of lidar (light detection and ranging) techniques including improvements to single-ended lidar profile inversion algorithms and development of new lidar techniques such as double-ended and dual-angle configurations. It was concluded that single-ended, single frequency lidars can not be used to infer slant path extinction with an accuracy necessary to make meaningful performance assessments. Other lidar configurations may find limited application in model validation and research efforts. No technique has emerged yet which could be considered ready for shipboard implementation. A shipboard real-time performance assessment system was developed and named PREOS (Performance and Range for EO Systems). PREOS has been incorporated into the Navy's Tactical Environmental Support System (TESS). The present version of PREOS is a first step in accomplishing the complex task of real-time systems performance assessment. Improved target and background models are under development and will be incorporated into TESS when tested and validated. A reliable assessment capability can be used to develop Tactical Decision Aids (TDAs). TDAs permit optimum selection or combination of sensors and estimation of a ship's own vulnerability against hostile systems.
NASA Astrophysics Data System (ADS)
Olivares, Irene; Angelova, Todora I.; Pinilla-Cienfuegos, Elena; Sanchis, Pablo
2016-05-01
The electro-optic Pockels effect may be generated in silicon photonics structures by breaking the crystal symmetry by means of a highly stressing cladding layer (typically silicon nitride, SiN) deposited on top of the silicon waveguide. In this work, the influence of the waveguide parameters on the strain distribution and its overlap with the optical mode to enhance the Pockels effect has been analyzed. The optimum waveguide structure have been designed based on the definition and quantification of a figure of merit. The fabrication of highly stressing SiN layers by PECVD has also been optimized to characterize the designed structures. The residual stress has been controlled during the growth process by analyzing the influence of the main deposition parameters. Therefore, two identical samples with low and high stress conditions were fabricated and electro-optically characterized to test the induced Pockels effect and the influence of carrier effects. Electro-optical modulation was only measured in the sample with the high stressing SiN layer that could be attributed to the Pockels effect. Nevertheless, the influence of carriers were also observed thus making necessary additional experiments to decouple both effects.
NASA Astrophysics Data System (ADS)
Huang, Su
Organic electro-optic (E-O) materials have attracted considerable research attention in the past 20 years due to their rising potentials in a lot of novel photonic applications, such as high-speed telecommunication, terahertz generation and ultra-fast optical interconnections. Chapter 2 of this dissertation focuses on a barrier layer approach to improve the poling efficiency of electro-optic polymers. First of all, high conduction current from excessive charge injection is identified as a fundamental challenge of effective poling. After analyzing the conduction mechanism, we introduce a sol-gel derived thin titanium dioxide (TiO2) layer that can significantly block excessive charge injection and reduce the leakage current during high field poling. Ultralarge E-O coefficients, up to 160-350 pm/V at 1310 nm have been achieved by poling with such a barrier, which are 26%-40% higher than the results poled without such a TiO2 layer. This enhancement is explained by the suppressed charge injection and space charge accumulation by the insertion of the high injection barrier from the TiO2 barrier layer. In Chapter 3, the impact of the inserted barrier layer on the temporal alignment stability of E-O polymers is discussed. Considerable stability enhancement is confirmed using both standard 500-hour temporal alignment stability test at 85 °C and thermally stimulated discharge method. We suggest that the enhancement comes from improved stability of the screening charge. During poling the additional barrier layer helps to lower the injection and thus the space charge accumulation. And this reduced space charge accumulation further helps to replace the space charge part in the total formulation of screening charge with more stable interface trapped charge. We thus expand this knowledge to a group of other materials that can also block excessive charge injection and suppressed space charge accumulation, including dielectric polymers polyvinyl alcohol (PVA), poly(4-vinylphenol) (PVP) and TOPAS as well as ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE), 65/35 copolymer), which differ largely from the others in dielectric constant, conductivity and surface properties. The only common feature of them is that they all lowered the charge injection and leakage current for 1-2 orders during poling. On every buffer layer we tried, similar trend of stability enhancement is found. These results suggest that the observed temporal stability enhancement is indeed an effect from the abovementioned mechanism. Chapter 4 focuses on the development of an innovative new poling method, which utilizes pyroelectric effect instead of external power sources to overcome the limitations of conventional contact poling and corona poling. With careful theory assisted design, we developed a reliable protocol to efficiently introduce dipole orientation in organic E-O materials by heating and cooling them with detachable pyroelectric crystals. This new method can potentially improve the process adaptability of organic E-O materials in a variety of photonic devices. Large Pockels coefficients (up to 81 pm/V at 1.3 micron) have been successfully achieved in thin films poled using this method. The effective fields in these experiments are estimated to be around 0.5 to 0.9 MV/cm, which agree well with the electrostatics analysis using an idealized model. The same method is directly applied to surface modified hybrid polymer silicon slot waveguide ring-resonator modulators devices. A 25 pm/V tunability of resonance peak wavelength shift has been realized, which was higher than any reported results in similar devices. Chapter 5 discusses about the possible application of the pyroelectric poling in a multi-stack waveguide device architecture. A long-existing challenge to pole E-O polymer based photonic devices is how to effectively drop the poling voltage to the core layer, which is usually sandwiched between two dielectric claddings. In the past, this was done by using relatively conductive claddings, which on the other hand can bring larger optical loss and dielectric loss to the waveguide. Thus careful engineering compromise must be made between better poling efficiency and lower loss. Pyroelectric poling as discussed in Chapter 4 opens up new possibilities. In this chapter, it is demonstrated that E-O polymer films can be poled even with 3 orders thicker dielectric layer in circuit using pyroelectric poling. The theoretical analysis matches well with the experimental results. (Abstract shortened by UMI.).
Modules and methods for all photonic computing
Schultz, David R.; Ma, Chao Hung
2001-01-01
A method for all photonic computing, comprising the steps of: encoding a first optical/electro-optical element with a two dimensional mathematical function representing input data; illuminating the first optical/electro-optical element with a collimated beam of light; illuminating a second optical/electro-optical element with light from the first optical/electro-optical element, the second optical/electro-optical element having a characteristic response corresponding to an iterative algorithm useful for solving a partial differential equation; iteratively recirculating the signal through the second optical/electro-optical element with light from the second optical/electro-optical element for a predetermined number of iterations; and, after the predetermined number of iterations, optically and/or electro-optically collecting output data representing an iterative optical solution from the second optical/electro-optical element.
Improved high operating temperature MCT MWIR modules
NASA Astrophysics Data System (ADS)
Lutz, H.; Breiter, R.; Figgemeier, H.; Schallenberg, T.; Schirmacher, W.; Wollrab, R.
2014-06-01
High operating temperature (HOT) IR-detectors are a key factor to size, weight and power (SWaP) reduced IR-systems. Such systems are essential to provide infantrymen with low-weight handheld systems with increased battery lifetimes or most compact clip-on weapon sights in combination with high electro-optical performance offered by cooled IR-technology. AIM's MCT standard n-on-p technology with vacancy doping has been optimized over many years resulting in MWIR-detectors with excellent electro-optical performance up to operating temperatures of ~120K. In the last years the effort has been intensified to improve this standard technology by introducing extrinsic doping with Gold as an acceptor. As a consequence the dark current could considerably be suppressed and allows for operation at ~140K with good e/o performance. More detailed investigations showed that limitation for HOT > 140K is explained by consequences from rising dark current rather than from defective pixel level. Recently, several crucial parameters were identified showing great promise for further optimization of HOT-performance. Among those, p-type concentration could successfully be reduced from the mid 1016 / cm3 to the lower 1015/ cm3 range. Since AIM is one of the leading manufacturers of split linear cryocoolers, an increase in operating temperature will directly lead to IR-modules with improved SWaP characteristics by making use of the miniature members of its SX cooler family with single piston and balancer technology. The paper will present recent progress in the development of HOT MWIR-detector arrays at AIM and show electro-optical performance data in comparison to focal plane arrays produced in the standard technology.
Electro-Optic Characterisation of Extremely Wide Bandwidth Electrical Signals
1993-02-01
In this report an ultrafast electro - optic sampling system suitable for applications such as device characterisation is described. The aperture time of the sampler is calculated to be about 290 fs, implying an attainable device bandwidth in excess of 300 GHz. The sampler was characterised using a test pulse with approximately 12 GHz of frequency content, and the results compared to those obtained from an 18 GHz digital sampling oscilloscope. Signal Processing, Bandwidth, Frequencies, Oscilloscopes.
Chopik, A; Pasechnik, S; Semerenko, D; Shmeliova, D; Dubtsov, A; Srivastava, A K; Chigrinov, V
2014-03-15
The results of investigation of electro-optical properties of porous polyethylene terephthalate films filled with a nematic liquid crystal (5 CB) are presented. It is established that the optical response of the samples on the applied voltage drastically depends on the frequency range. At low frequencies of applied electrical field (f
NASA Astrophysics Data System (ADS)
Goswami, Debarghya; Sinha, Debashis; Mandal, Pradip Kumar
2018-05-01
One newly synthesized fluorinated ferroelectric liquid crystal, (S)-(+)-4_-[(3-undecafluorohexanoyloxy) prop-1-oxy]biphenyl-4-yl 4-(1-methylheptyloxy)-benzoate (code name 5F3R), has been characterized by dielectric and electro-optic investigations. The sample exhibits only SmC* phase for a considerable range of temperature. Only Gold stone mode of relaxation has been observed in dielectric study. Spontaneous polarization, response time, optical tilt angle, rotational viscosity have also been measured. The values of observed physical parameters and their temperature dependence have been compared with that of other samples of same homologues series.
Development of a Multi-Point Microwave Interferometry (MPMI) Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Paul Elliott; Cooper, Marcia A.; Jilek, Brook Anton
2015-09-01
A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of themore » MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.« less
Electro-optic and acousto-optic scanning and deflection
NASA Astrophysics Data System (ADS)
Gottlieb, M.; Ireland, C. L. M.; Ley, J. M.
This book attempts to cover sufficient electro- and acousto-optic theory for the reader to understand and appreciate the design and application of solid state optical deflectors. It is also hoped that for the more experienced engineer the book will serve as a useful reference book covering the most important work in this field of engineering. The theory of the electro-optic effect is considered along with the properties and selection of electro-optic materials, the principles of electro-optic deflectors, electro-optic deflector designs, and applications for electro-optic deflectors. Attention is given to EM wave propagation in a crystal, the linear electro-optic effect, the quadratic electro-optic effect in crystals and in liquids, electro-optic ceramics in the (Pb,La)(Zr,Ti)O3 system, and digital and analog light deflectors. Aspects related to acousto-optic deflectors are discussed, taking into account acousto-optic interactions, materials for acousto-optic scanning, acoustic techniques, scanning systems, and acousto-optic light diffraction in thin films.
Flat Panel Space Based Space Surveillance Sensor
NASA Astrophysics Data System (ADS)
Kendrick, R.; Duncan, A.; Wilm, J.; Thurman, S. T.; Stubbs, D. M.; Ogden, C.
2013-09-01
Traditional electro-optical (EO) imaging payloads consist of an optical telescope to collect the light from the object scene and map the photons to an image plane to be digitized by a focal plane detector array. The size, weight, and power (SWaP) for the traditional EO imager is dominated by the optical telescope, driven primarily by the large optics, large stiff structures, and the thermal control needed to maintain precision free-space optical alignments. We propose a non-traditional Segmented Planar Imaging Detector for EO Reconnaissance (SPIDER) imager concept that is designed to substantially reduce SWaP, by at least an order of magnitude. SPIDER maximizes performance by providing a larger effective diameter (resolution) while minimizing mass and cost. SPIDER replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies. Lenslets couple light from the object into a set of waveguides on a PIC. Light from each lenslet is distributed among different waveguides by both field angle and optical frequency, and the lenslets are paired up to form unique interferometer baselines by combining light from different waveguides. The complex spatial coherence of the object (for each field angle, frequency, and baseline) is measured with a balanced four quadrature detection scheme. By the Van-Cittert Zernike Theorem, each measurement corresponds to a unique Fourier component of the incoherent object intensity distribution. Finally, an image reconstruction algorithm is used to invert all the data and form an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., CMOS fabrication). The standard EO payload integration and test process which involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication that substantially reduces associated schedule and cost. The low profile and low SWaP of a SPIDER system enables high resolution imaging with a payload that is similar in size and aspect ratio to a solar panel. This allows high resolution low cost options for space based space surveillance telescopes. The low SWaP design enables hosted payloads, cubesat designs as well as traditional bus options that are lower cost. We present a description of the concept and preliminary simulation and experimental data that demonstrate the imaging capabilities of the SPIDER technique.
Remote sensing of stress using electro-optics imaging technique
NASA Astrophysics Data System (ADS)
Chen, Tong; Yuen, Peter; Hong, Kan; Tsitiridis, Aristeidis; Kam, Firmin; Jackman, James; James, David; Richardson, Mark; Oxford, William; Piper, Jonathan; Thomas, Francis; Lightman, Stafford
2009-09-01
Emotional or physical stresses induce a surge of adrenaline in the blood stream under the command of the sympathetic nerve system, which, cannot be suppressed by training. The onset of this alleviated level of adrenaline triggers a number of physiological chain reactions in the body, such as dilation of pupil and an increased feed of blood to muscles etc. This paper reports for the first time how Electro-Optics (EO) technologies such as hyperspectral [1,2] and thermal imaging[3] methods can be used for the detection of stress remotely. Preliminary result using hyperspectral imaging technique has shown a positive identification of stress through an elevation of haemoglobin oxygenation saturation level in the facial region, and the effect is seen more prominently for the physical stressor than the emotional one. However, all results presented so far in this work have been interpreted together with the base line information as the reference point, and that really has limited the overall usefulness of the developing technology. The present result has highlighted this drawback and it prompts for the need of a quantitative assessment of the oxygenation saturation and to correlate it directly with the stress level as the top priority of the next stage of research.
Atmospheric turbulence and sensor system effects on biometric algorithm performance
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy
2015-05-01
Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.
NASA Technical Reports Server (NTRS)
Mackey, Jeffrey R.
1999-01-01
We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.
NASA Astrophysics Data System (ADS)
Rosu-Hamzescu, Mihnea; Polonschii, Cristina; Oprea, Sergiu; Popescu, Dragos; David, Sorin; Bratu, Dumitru; Gheorghiu, Eugen
2018-06-01
Electro-optical measurements, i.e., optical waveguides and plasmonic based electrochemical impedance spectroscopy (P-EIS), are based on the sensitive dependence of refractive index of electro-optical sensors on surface charge density, modulated by an AC electrical field applied to the sensor surface. Recently, P-EIS has emerged as a new analytical tool that can resolve local impedance with high, optical spatial resolution, without using microelectrodes. This study describes a high speed image acquisition and processing system for electro-optical measurements, based on a high speed complementary metal-oxide semiconductor (CMOS) sensor and a field-programmable gate array (FPGA) board. The FPGA is used to configure CMOS parameters, as well as to receive and locally process the acquired images by performing Fourier analysis for each pixel, deriving the real and imaginary parts of the Fourier coefficients for the AC field frequencies. An AC field generator, for single or multi-sine signals, is synchronized with the high speed acquisition system for phase measurements. The system was successfully used for real-time angle-resolved electro-plasmonic measurements from 30 Hz up to 10 kHz, providing results consistent to ones obtained by a conventional electrical impedance approach. The system was able to detect amplitude variations with a relative variation of ±1%, even for rather low sampling rates per period (i.e., 8 samples per period). The PC (personal computer) acquisition and control software allows synchronized acquisition for multiple FPGA boards, making it also suitable for simultaneous angle-resolved P-EIS imaging.
AN/ASQ-197 provides commonality to Recce systems and avionics upgrades
NASA Astrophysics Data System (ADS)
Regan, Brendan P.
1993-02-01
In an attempt to strike a balance between increases in multi-role tactical air reconnaissance mission tasking and simultaneous decreases in defense spending, many users are evaluating upgrades to existing sensors and reconnaissance systems. At the heart of any cost-effective reconnaissance system upgrade must be a flexible reconnaissance management system, capable of filling multiple rolls in today's film backed reconnaissance system, while enabling successful transition to the Electro-Optical (EO) system of tomorrow. As a case in point this paper describes enhanced effectiveness and growth potential that Fairchild's AN/ASQ-197 Sensor Control-Data Display Set (SC-DDS) can provide.
Side-Chain Liquid Crystalline Poly(meth)acrylates with Bent-Core Mesogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen,X.; Tenneti, K.; Li, C.
2007-01-01
We report the design, synthesis, and characterization of side-chain liquid crystalline (LC) poly(meth)acrylates with end-on bent-core liquid crystalline (BCLC) mesogens. Both conventional free radical polymerization and atom transfer radical polymerization have been used to synthesize these liquid crystalline polymers (LCP). The resulting polymers exhibit thermotropic LC behavior. Differential scanning calorimetry, thermopolarized light microscopy, wide-angle X-ray diffraction, and small-angle X-ray scattering were used to characterize the LC structure of both monomers and polymers. The electro-optic (EO) measurement was carried out by applying a triangular wave and measuring the LC EO response. SmCP (Smectic C indicates the LC molecules are tilted withmore » respect to the layer normal; P denotes polar ordering) phases were observed for both monomers and polymers. In LC monomers, typical antiferroelectric switching was observed. In the ground state, SmCP{sub A} (A denotes antiferroelectric) was observed which switched to SmCP{sub F} (F denotes ferroelectric) upon applying an electric field. In the corresponding LCP, a unique bilayer structure was observed, which is different from the reported BCLC bilayer SmCG (G denotes generated) phase. Most of the LCPs did not switch upon applying electric field while weak AF switching was observed in a low molecular weight poly{l_brace}3'-[4-(4-n-dodecyloxybenzoyloxy)benzoyloxy]-4-(12-acryloyloxydodecyloxy)benzoyloxybiphenyl{r_brace} sample.« less
Tripathi, Dharmendra; Yadav, Ashu; Bég, O Anwar
2017-01-01
Analytical solutions are developed for the electro-kinetic flow of a viscoelastic biological liquid in a finite length cylindrical capillary geometry under peristaltic waves. The Jefferys' non-Newtonian constitutive model is employed to characterize rheological properties of the fluid. The unsteady conservation equations for mass and momentum with electro-kinetic and Darcian porous medium drag force terms are reduced to a system of steady linearized conservation equations in an axisymmetric coordinate system. The long wavelength, creeping (low Reynolds number) and Debye-Hückel linearization approximations are utilized. The resulting boundary value problem is shown to be controlled by a number of parameters including the electro-osmotic parameter, Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), and Jefferys' first parameter (ratio of relaxation and retardation time), wave amplitude. The influence of these parameters and also time on axial velocity, pressure difference, maximum volumetric flow rate and streamline distributions (for elucidating trapping phenomena) is visualized graphically and interpreted in detail. Pressure difference magnitudes are enhanced consistently with both increasing electro-osmotic parameter and Helmholtz-Smoluchowski velocity, whereas they are only elevated with increasing Jefferys' first parameter for positive volumetric flow rates. Maximum time averaged flow rate is enhanced with increasing electro-osmotic parameter, Helmholtz-Smoluchowski velocity and Jefferys' first parameter. Axial flow is accelerated in the core (plug) region of the conduit with greater values of electro-osmotic parameter and Helmholtz-Smoluchowski velocity whereas it is significantly decelerated with increasing Jefferys' first parameter. The simulations find applications in electro-osmotic (EO) transport processes in capillary physiology and also bio-inspired EO pump devices in chemical and aerospace engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
Electro-Optic Computing Architectures. Volume I
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit (OW
NASA Astrophysics Data System (ADS)
Girouard, Peter D.
The microwave, optical, and electro-optic properties of epitaxial barium titanate thin films grown on (100) MgO substrates and photonic crystal electro-optic modulators fabricated on these films were investigated to demonstrate the applicability of these devices for telecommunication and data networks. The electrical and electro-optical properties were characterized up to modulation frequencies of 50 GHz, and the optical properties of photonic crystal waveguides were determined for wavelengths spanning the optical C band between 1500 and 1580 nm. Microwave scattering parameters were measured on coplanar stripline devices with electrode gap spacings between 5 and 12 mum on barium titanate films with thicknesses between 230 and 680 nm. The microwave index and device characteristic impedance were obtained from the measurements. Larger (lower) microwave indices (impedances) were obtained for devices with narrower electrode gap spacings and on thicker films. Thinner film devices have both lower index mismatch between the co-propagating microwave and optical signals and lower impedance mismatch to a 50O system, resulting in a larger predicted electro-optical 3 dB bandwidth. This was experimentally verified with electro-optical frequency response measurements. These observations were applied to demonstrate a record high 28 GHz electro-optic bandwidth measured for a BaTiO3 conventional ridge waveguide modulator having 1mm long electrodes and 12 mum gap spacing on a 260nm thick film. The half-wave voltage and electro-optic coefficients of barium titanate modulators were measured for films having thicknesses between 260 and 500 nm. The half-wave voltage was directly measured at low frequencies using a polarizer-sample-compensator-analyzer setup by over-driving waveguide integrated modulators beyond their linear response regime. Effective in-device electro-optic coefficients were obtained from the measured half-wave voltages. The effective electro-optic coefficients were found to increase with both applied electrical dc bias and with film thickness. A record low 0.39V ˙ cm (0.45V ˙ cm) voltage-length product was measured for barium titanate modulators operating at telecommunication wavelengths on a device with 5 ?m electrode gap spacing on a 500nm thick film modulated at a frequency of 100 Hz (1 MHz). This measured voltage-length product is more than a factor of 5 lower than that reported for state-of-the-art silicon conventional waveguide modulators. The electro-optical characterization of BaTiO3 films revealed a trade-off that exists for traveling wave BaTiO3 modulators: lower voltages are obtained in thicker film devices with narrow electrode gap spacing while larger bandwidths are obtained in thinner film devices with wider electrode gap spacing. These findings were supported by calculations of the film thickness dependent half-wave voltage and electro-optic bandwidth. In order to demonstrate modulators having simultaneously low voltage operation and high electro-optic bandwidth, photonic crystal waveguide modulators with large group index were investigated through theory and experiment. The theory for slow light phase delay in linear optical materials was extended for second order nonlinear optical materials. This theory was incorporated into a detailed model for predicting photonic crystal modulator performance in terms of voltage-length product and electro-optic bandwidth. Modeling shows that barium titanate photonic crystal modulators with sub-millimeter length, sub-volt operation, and greater than 40 GHz electro-optic bandwidth are achievable in a single device. Two types of photonic crystal waveguides (PC) on BaTiO3 films were designed, fabricated, and characterized: waveguides with hexagonal lattice symmetry and waveguides with hexagonal symmetry having a line defect oriented in the direction of light propagation. Excellent agreement was obtained between the simulated and measured transmission for hexagonal lattice PC waveguides. An extinction of 20 dB was measured across a 9.9 nm stop band edge, yielding a record large band edge sharpness of 2 dB/nm for all photonic crystal waveguides on ferroelectric films. A 12-fold enhancement of the electro-optic coefficient was measured via optical spectral analysis in a line defect BaTiO3 modulator, yielding an effective electro-optic coefficient of 900 pm/V in the photonic crystal region at a modulation frequency of 10 GHz. This enhancement was demonstrated over a 48 nm range, demonstrating the wideband operation of these devices.
Sensors with centroid-based common sensing scheme and their multiplexing
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul; Tiemann, Jerome J.; Brooksby, Glen W.
1993-03-01
The ability to multiplex sensors with different measurands but with a common sensing scheme is of importance in aircraft and aircraft engine applications; this unification of the sensors into a common interface has major implications for weight, cost, and reliability. A new class of sensors based on a common sensing scheme and their E/O Interface has been developed. The approach detects the location of the centroid of a beam of light; the set of fiber optic sensors with this sensing scheme include linear and rotary position, temperature, pressure, as well as duct Mach number. The sensing scheme provides immunity to intensity variations of the source or due to environmental effects on the fiber. A detector spatially multiplexed common electro-optic interface for the sensors has been demonstrated with a position and a temperature sensor.
NASA Astrophysics Data System (ADS)
Hinojosa, A.; Shive, C.; Sharma, Suresh
2010-03-01
We have studied the electro-optical properties of a polymer-dispersed liquid crystal (PDLC) as functions of relative concentrations of gold nanoparticles. PDLC samples were synthesized between indium-tin-oxide (ITO) coated glass slides, separated by SiO2 spacers, by using liquid crystal E44, a monofunctional acrylic oligomer (CN135), and a tetrafunctional crosslinker (SR295). A UV photoinitiator (SR1124) was used to facilitate the curing of the monomer exposed to UV radiation from a Hg spectral lamp. A He-Ne laser was used to measure optical transmission through the PDLC as a function of applied ac electric field (1 kHz). The PDLC without gold nanoparticles shows the expected behavior; transmission through the PDLC increases from a minimum (opaque) to a maximum (transparent) with increasing electric field. The electro-optical behavior of the PDLC is altered significantly (e. g., relatively low switching field) upon addition of relatively low concentrations of gold nanoparticles into the starting PDLC syrup. We present electro-optical data as functions of gold nanoparticle concentration and discuss possible mechanism to understand our results.
Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis
1998-02-01
The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit
Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki
2016-01-01
Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 106, which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results. PMID:26976363
Ibrahim, Akram; Férachou, Denis; Sharma, Gargi; Singh, Kanwarpal; Kirouac-Turmel, Marie; Ozaki, Tsuneyuki
2016-03-15
Time-domain spectroscopy using coherent millimeter and sub-millimeter radiation (also known as terahertz radiation) is rapidly expanding its application, owing greatly to the remarkable advances in generating and detecting such radiation. However, many current techniques for coherent terahertz detection have limited dynamic range, thus making it difficult to perform some basic experiments that need to directly compare strong and weak terahertz signals. Here, we propose and demonstrate a novel technique based on cross-polarized spectral-domain interferometry to achieve ultra-high dynamic range electro-optic sampling measurement of coherent millimeter and sub-millimeter radiation. In our scheme, we exploit the birefringence in a single-mode polarization maintaining fiber in order to measure the phase change induced by the electric field of terahertz radiation in the detection crystal. With our new technique, we have achieved a dynamic range of 7 × 10(6), which is 4 orders of magnitude higher than conventional electro-optic sampling techniques, while maintaining comparable signal-to-noise ratio. The present technique is foreseen to have great impact on experiments such as linear terahertz spectroscopy of optically thick materials (such as aqueous samples) and nonlinear terahertz spectroscopy, where the higher dynamic range is crucial for proper interpretation of experimentally obtained results.
Electro-Optic Surface Field Imaging System
1989-06-01
ELECTRO - OPTIC SURFACE FIELD IMAGING SYSTEM L. E. Kingsley and W. R. Donaldson LABORATORY FOR LASER ENERGETICS University of Rochester 250 East...surface electric fields present during switch operation. The electro - optic , or Pockel’s effect, provides an extremely useful probe of surface electric...fields. Using the electro - optic effect, surface fields can be measured with an optical probe. This paper describes an electro - optic probe which is
Development of New Electro-Optic and Acousto-Optic Materials.
1983-11-01
Improved materials are required for active optical devices, including electro - optic and acousto-optic modulators, switches and tunable filters, as...many microwave applications. In addition, electro - optic and acousto-optic devices are materials limited because the materials currently available are...these materials for applications involving the electro - optic effect, degenerate four-wave mixing and surface acoustic wave technology.
A Wavelength Optimization Study on Visible and Infrared Propagation Systems in Coastal Environments
NASA Technical Reports Server (NTRS)
Reid, J. S.; Tsay, Si-Chee; Moision, W. K.; Gasso, S.; Cook, J. R.; Westphal, D. L.; Paulus, R. A.; Bucholtz, A.; Lau, William K. M. (Technical Monitor)
2002-01-01
Electro-optical (EO) systems employed for communications, surveillance and weapons systems are commonly assessed in the North American and European continents. However, the atmospheric propagation environment in these regions is often dissimilar to most other parts of the world. In particular, atmospheric dust, industrial pollution, and smoke frequently reduce visibility to less than 5 km in Asia and South America significantly hampering EO system performance. Because atmospheric aerosol species vary considerably in size and chemistry, optimal wavelengths for EO systems vary from region to region. In this paper we examine the extinction effects from aerosol particles and water vapor on a regional basis. Theoretical studies are coupled with visibility and satellite climatologies to make an assessment for the coastal regions of the world. While longer wavelengths permit higher transmission by particles in regions significantly hampered by fine mode particles (such as industrial pollution and smoke), this advantage is commonly offset by high extinction values from water vapor. This offsetting effect is particularly strong in industrial and developing countries in the tropics and sub-tropics such as Southeast Asia and South America. Conversely, the advantage of low water vapor concentrations in longer wavelengths is offset by high mass-extinction efficiencies of atmospheric dust in this portion of the spectrum.
Video-microscopy of NCAP films: the observation of LC droplets in real time
NASA Astrophysics Data System (ADS)
Reamey, Robert H.; Montoya, Wayne; Wong, Abraham
1992-06-01
We have used video-microscopy to observe the behavior of liquid crystal (LC) droplets within nematic droplet-polymer films (NCAP) as the droplets respond to an applied electric field. The textures observed at intermediate fields yielded information about the process of liquid crystal orientation dynamics within droplets. The nematic droplet-polymer films had low LC content (less than 1 percent) to allow the observation of individual droplets in a 2 - 6 micrometers size range. The aqueous emulsification technique was used to prepare the films as it allows the straightforward preparation of low LC content films with a controlled droplet size range. Standard electro-optical (E-O) tests were also performed on the films, allowing us to correlate single droplet behavior with that of the film as a whole. Hysteresis measured in E-O tests was visually confirmed by droplet orientation dynamics; a film which had high hysteresis in E-O tests exhibited distinctly different LC orientations within the droplet when ramped up in voltage than when ramped down in voltage. Ramping the applied voltage to well above saturation resulted in some droplets becoming `stuck'' in a new droplet structure which can be made to revert back to bipolar with high voltage pulses or with heat.
1994-09-01
free-space and waveguide interconnects is investigated through the fabrication, testing and modeling of polycrystalline PLZT/ITO ceramic electro - optic phase...only gratings. PLZT Diffraction grating, Electro - optic diffraction grating, Optical switching, Optical interconnects, Reconfigurable interconnect
Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro-Optic Devices
1992-01-07
COVERED 4. TITLE AND SUBTITLE Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro - Optic Devices 5a. CONTRACT NUMBER 5b. GRANT...generators, computational devices and the like. 15. SUBJECT TERMS optical devices, electro - optical devices, optical signal processing...THEREOF IN OPTICAL AND ELECTRO - OPTIC DEVICES [75] Inventors: Le*lie H. Sperling, Bethlehem; Clarence J. Murphy, Stroudsburg; Warren A. Rosen
NASA Astrophysics Data System (ADS)
Zhao, Ye; Wang, Sanhong; Fu, Xiaotian; Zhuang, Yongyong; Yang, Rui; Yang, Zhi; Li, Zhenrong; Xu, Zhuo; Wei, Xiaoyong
2018-02-01
The relaxor-PbTiO3 single crystal has attracted extensive attention in ultrasound transducers, sensors, actuators, and optoelectronics devices due to its excellent piezoelectric response and electro-optic properties. Preparation of a single-domain crystal as a critical process for application in electro-optic and non-linear optical devices suffers from serious and inevitable cracking. Therefore, a pre-poling thermal annealing process was suggested to release residual stress from crystal growth and the ferroelectric-paraelectric phase transition, which significantly reduced the chance of cracking. The effect of thermal annealing on dielectric properties, strain behavior, and domain structure were investigated. As a result, a significant increase of the dielectric constant near room temperature was obtained after annealing, which is close to the dielectric constant of the a-oriented domain. The annealed single crystal showed a lower and sharper strain peak at the coercive electric field compared with the unannealed sample, and the 90° domain walls completely vanished, which was verified by optical microscopy. The crack-free single-domain crystal showed excellent optical quality, with high transmittance of approximately 70% in the visible and near-infrared regions, which indicates that this crystal is a promising candidate for applications in electro-optic and non-linear optical devices.
Polymeric Materials for Electro-Optic Testing.
1987-07-01
what Langmuir Blodgett films are, how they are grown and deposited on a material, and the electro - optic effects in Langmuir/Blodgett films. Stephen...Kowel has experimented with several different types of organic dyes mixed in the films to increase the electro - optic effect in the films. The bulk of his...test integrated circuits. Keywords: Langmuir Blodgett films, Electro - optic testing, Integrated circuits, Linear electro - optic effect.
300 K Isothermal Equations of State of DADNE, DNAN, and LX-17
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Stavrou, Elissaios; Grivickas, Paulius; Pagoria, Phil; Hansen, Donald; Gagliardi, Franco; Sain, John; Bastea, Sorin
2017-06-01
Using a direct optical-based measurement approach, we report 10 GPa scale, 300 K isothermal equations of state (EOS) of single crystal 1,1-Diamino-2,2-dinitroethylene (DADNE, FOX-7), single crystal 2,4, Dintrosoanisole (DNAN) and a polymer blended explosive (PBX) composite LX-17 (92.5% triamino trinitro benzene (TATB), and 7.5% KEL-F 800). Results from quasi-statically compressed LX-17 represent the first-ever isothermal EOS measurements of a PBX. Recently, we published a paper outlining the utility of using in-house optical microscopy and interferometry (OMI) diagnostics to directly measure pressure dependent sample volumes of single crystals TATB and alpha-NTO compressed within diamond-anvil cell sample chambers. (Our TATB OMI results agree remarkably well with two independent powder x-ray diffraction EOS studies.) In addition, here we report single crystal pressure dependent indices of refraction from DADNE that clearly signal the onset of electronic and/or molecular (structural) transitions that are otherwise indistinguishable in 300 K plotted pressure-volume EOS isotherms. EOS model parameters are reported from weighted and unweighted fits to the OMI experimental data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Modulation transfer function of a triangular pixel array detector.
Karimzadeh, Ayatollah
2014-07-01
The modulation transfer function (MTF) is the main parameter that is used to evaluate image quality in electro-optical systems. Detector sampling MTF in most electro-optical systems determines the cutoff frequency of the system. The MTF of the detector depends on its pixel shape. In this work, we calculated the MTF of a detector with an equilateral triangular pixel shape. Some new results were found in deriving the MTF for the equilateral triangular pixel shape.
Electro-Optic Beam Steering Using Non-Linear Organic Materials
1993-08-01
York (SUNY), Buffalo, for potential application to the Hughes electro - optic beam deflector device. Evaluations include electro - optic coefficient...response time, transmission, and resistivity. Electro - optic coefficient measurements were made at 633 nm using a simple reflection technique. The
10μm pitch family of InSb and XBn detectors for MWIR imaging
NASA Astrophysics Data System (ADS)
Gershon, G.; Avnon, E.; Brumer, M.; Freiman, W.; Karni, Y.; Niderman, T.; Ofer, O.; Rosenstock, T.; Seref, D.; Shiloah, N.; Shkedy, L.; Tessler, R.; Shtrichman, I.
2017-02-01
There has been a growing demand over the past few years for infrared detectors with a smaller pixel dimension. On the one hand, this trend of pixel shrinkage enables the overall size of a given Focal Plan Array (FPA) to be reduced, allowing the production of more compact, lower power, and lower cost electro-optical (EO) systems. On the other hand, it enables a higher image resolution for a given FPA area, which is especially suitable in infrared systems with a large format that are used with a wide Field of View (FOV). In response to these market trends SCD has developed the Blackbird family of 10 μm pitch MWIR digital infrared detectors. The Blackbird family is based on three different Read- Out Integrated Circuit (ROIC) formats: 1920×1536, 1280×1024 and 640×512, which exploit advanced and mature 0.18 μm CMOS technology and exhibit high functionality with relatively low power consumption. Two types of 10 μm pixel sensing arrays are supported. The first is an InSb photodiode array based on SCD's mature planar implanted p-n junction technology, which covers the full MWIR band, and is designed to operate at 77K. The second type of sensing array covers the blue part of the MWIR band and uses the patented XBn-InAsSb barrier detector technology that provides electro-optical performance equivalent to planar InSb but at operating temperatures as high as 150 K. The XBn detector is therefore ideal for low Size, Weight and Power (SWaP) applications. Both sensing arrays, InSb and XBn, are Flip-chip bonded to the ROICs and assembled into custom designed Dewars that can withstand harsh environmental conditions while minimizing the detector heat load. A dedicated proximity electronics board provides power supplies and timing to the ROIC and enables communication and video output to the system. Together with a wide range of cryogenic coolers, a high flexibility of housing designs and various modes of operation, the Blackbird family of detectors presents solutions for EO systems which cover both the very high-end and the low SWaP types of application. In this work we present in detail the EO performance of the Blackbird detector family.
Growth and nonlinear optical characterization of organic single crystal films
NASA Astrophysics Data System (ADS)
Zhou, Ligui
1997-12-01
Organic single crystal films are important for various future applications in photonics and integrated optics. The conventional method for inorganic crystal growth is not suitable for organic materials, and the high temperature melting method is not good for most organic materials due to decomposition problems. We developed a new method-modified shear method-to grow large area organic single crystal thin films which have exceptional nonlinear optical properties and high quality surfaces. Several organic materials (NPP, PNP and DAST) were synthesized and purified before the thin film crystal growth. Organic single crystal thin films were grown from saturated organic solutions using modified shear method. The area of single crystal films were about 1.5 cm2 for PNP, 1 cm2 for NPP and 5 mm2 for DAST. The thickness of the thin films which could be controlled by the applied pressure ranged from 1μm to 10 μm. The single crystal thin films of organic materials were characterized by polarized microscopy, x-ray diffraction, polarized UV-Visible and polarized micro-FTIR spectroscopy. Polarized microscopy showed uniform birefringence and complete extinction with the rotation of the single crystal thin films under crossed- polarization, which indicated high quality single crystals with no scattering. The surface orientation of single crystal thin films was characterized by x-ray diffraction. The molecular orientation within the crystal was further studied by the polarized UV-Visible and Polarized micro-FTIR techniques combined with the x-ray and polarized microscopy results. A Nd:YAG laser with 35 picosecond pulses at 1064nm wavelength was employed to perform the nonlinear optical characterization of the organic single crystal thin films. Two measurement techniques were used to study the crystal films: second harmonic generation (SHG) and electro-optic (EO) effect. SHG results showed that the nonlinear optical coefficient of NPP was 18 times that of LiNbO3, a standard inorganic crystal material, and the nonlinear optical coefficient of PNP was 11 times that of LiNbO3. Electro-optic measurements showed that r11 = 65 pm/V for NPP and r12 = 350 pm/V for DAST. EO modulation effect was also observed using Fabry-Perot interferometry. Waveguide devices are very important for integrated optics. But the fabrication of waveguide devices on the organic single crystal thin films was difficult due to the solubility of the film in common organic solvents. A modified photolithographic technique was employed to make channel waveguides and poly(vinyl alcohol) (PVA) was used as a protective layer in the fabrication of the waveguides. Waveguides with dimensions about 7/mum x 1μm x 1mm were obtained.
The effects of gamma-ray irradiation on organic materials of different conjugation lengths
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Taylor, Edward W.
2009-08-01
The radiation resistance of organic electro-optic and optoelectronic materials of different conjugation lengths for space applications is receiving increased attention. Earlier investigation reported that guest-host (G-H) poled polymer EO modulator devices composed of a phenyltetraene bridge-type chromophore in amorphous polycarbonate (CLD/APC) did not exhibit a decrease in EO response (i.e., an increase in modulation-switching voltage- Vπ) following irradiation by low dose [10-160 krad(Si)] 60Co gamma-rays. In this work, the post-irradiation responses of 60Co gamma-rays on CLD1/APC thin films are examined by various chemical and spectroscopic methods including: a solubility test, thin-layer chromatography, proton nuclear magnetic resonance spectroscopy, UV-vis absorption, and infra-red absorption. The results indicate that CLD1 and APC did not decompose under gamma-ray irradiation at dose levels ranging from 66-274 krad(Si) and from 61-154 krad(Si), respectively which support the previously reported data. A comparison with an in situ proton irradiated DRI/PMMA material is also presented.
Advancements in high-power diode laser stacks for defense applications
NASA Astrophysics Data System (ADS)
Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens
2012-06-01
This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.
Adaptive early detection ML/PDA estimator for LO targets with EO sensors
NASA Astrophysics Data System (ADS)
Chummun, Muhammad R.; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov
2000-07-01
The batch Maximum Likelihood Estimator, combined with Probabilistic Data (ML-PDA), has been shown to be effective in acquiring low observable (LO) - low SNR - non-maneuvering targets in the presence of heavy clutter. The use of signal strength or amplitude information (AI) in the ML-PDA estimator with AI in a sliding-window fashion, to detect high- speed targets in heavy clutter using electro-optical (EO) sensors. The initial time and the length of the sliding-window are adjusted adaptively according to the information content of the received measurements. A track validation scheme via hypothesis testing is developed to confirm the estimated track, that is, the presence of a target, in each window. The sliding-window ML-PDA approach, together with track validation, enables early detection by rejecting noninformative scans, target reacquisition in case of temporary target disappearance and the handling of targets with speeds evolving over time. The proposed algorithm is shown to detect the target, which is hidden in as many as 600 false alarms per scan, 10 frames earlier than the Multiple Hypothesis Tracking (MHT) algorithm.
Electro-optic crystal mosaics for the generation of terahertz radiation
Carrig, Timothy J.; Taylor, Antoinette J.; Stewart, Kevin R.
1996-01-01
Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification.
Electro-optic crystal mosaics for the generation of terahertz radiation
Carrig, T.J.; Taylor, A.J.; Stewart, K.R.
1996-08-06
Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification. 5 figs.
Developments in Sampling and Analysis Instrumentation for Stationary Sources
ERIC Educational Resources Information Center
Nader, John S.
1973-01-01
Instrumentation for the measurement of pollutant emissions is considered including sample-site selection, sample transport, sample treatment, sample analysis, and data reduction, display, and interpretation. Measurement approaches discussed involve sample extraction from within the stack and electro-optical methods. (BL)
Improved Electro-Optical Switches
NASA Technical Reports Server (NTRS)
Nelson, Bruce N.; Cooper, Ronald F.
1994-01-01
Improved single-pole, double-throw electro-optical switches operate in switching times less than microsecond developed for applications as optical communication systems and networks of optical sensors. Contain no moving parts. In comparison with some prior electro-optical switches, these are simpler and operate with smaller optical losses. Beam of light switched from one output path to other by applying, to electro-optical crystal, voltage causing polarization of beam of light to change from vertical to horizontal.
Spickermann, Gunnar; Friederich, Fabian; Roskos, Hartmut G; Bolívar, Peter Haring
2009-11-01
We present a 64x48 pixel 2D electro-optical terahertz (THz) imaging system using a photonic mixing device time-of-flight camera as an optical demodulating detector array. The combination of electro-optic detection with a time-of-flight camera increases sensitivity drastically, enabling the use of a nonamplified laser source for high-resolution real-time THz electro-optic imaging.
Electro-optic device with gap-coupled electrode
Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.
2013-08-20
An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.
Electro-Optic Modulator and Method
An optical intensity modulator which uses a Sagnac interferometer having an electro - optic phase modulator therein. An electric modulation signal is...modulating the optical signals by the electrical signal, the electro - optic effect in the modulator phase shifts the optical signals with respect to one another
Electro-Optic Diffraction Grating Tuned Laser.
The patent concerns an electro - optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro - optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating. An optional angle multiplier may be used between the electro - optic diffraction grating and the reflective grating.
Electro-Optic Generation and Detection of Femtosecond Electromagnetic Pulses
1991-11-20
electromagnetic pulses from an electro - optic crystal following their generation by electro - optic Cherenkov radiation, and their subsequent propagation and detection...in free space; (4) The measurement of subpicosecond electrical response of a new organic electrooptic material (polymer); (5) The observation of terahertz transition radiation from the surfaces of electro - optic crystals.
Acousto-Optic and Linear Electro-Optic Properties of Organic Polymeric Materials
1989-04-27
Naval Research Laboratory Washington, DC 20375-5000 NRL Memorandum Report 6454 od I3 Acousto - Optic and Linear Electro-Optic Properties of Organic...PROGRAM P1RC;EC7 ASK Arlington, VA 22217-5000 ELEMENT NO NO1 I1I TITLE (Include Security Classification) Acousto - Optic and Linear Electro-Optic...briefly discussing the important molecular properties for enhanced acousto ~ optic and electro-Ooptic ef fects and then relating these to "current
2012-02-01
code) 01/02/2012 FINAL 15/11/2008 - 15/11/2011 High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer... optic modulator, silicon photonics, integrated optics, electro - optic polymer, avionics, optical communications, sol-gel, nanotechnology U U U UU 25...2011 Program Manager: Dr. Charles Y-C Lee High-speed, Low Voltage, Miniature Electro - optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol
NASA Technical Reports Server (NTRS)
Whitaker, John F.
1991-01-01
The development of a capability for testing transmission lines, devices, and circuits using the optically-based technique of electro-optics sampling was the goal of this project. Electro-optic network analysis of a high-speed device was demonstrated. The project involved research on all of the facets necessary in order to realize this result, including the discovery of the optimum electronic pulse source, development of an adequate test fixture, improvement of the electro-optic probe tip, and identification of a device which responded at high frequency but did not oscillate in the test fixture. In addition, during the process of investigating patterned high-critical-temperature superconductors, several non-contacting techniques for the determination of the transport properties of high T(sub c) films were developed and implemented. These are a transient, optical pump-probe, time-resolved reflectivity experiment, an impulsive-stimulated Raman scattering experiment, and a terahertz-beam coherent-spectroscopy experiment. The latter technique has enabled us to measure both the complex refractive index of an MgO substrate used for high-T(sub c) films and the complex conductivity of a YBa2Cu3O(7-x) sample. This information was acquired across an extremely wide frequency range: from the microwave to the submillimeter-wave regime. The experiments on the YBCO were conducted without patterning of, or contact to, the thin film. Thus, the need for the more difficult transmission-line experiments was eliminated. Progress in all of these areas was made and is documented in a number of papers. These papers may be found in the section listing the abstracts of the publications that were issued during the course of the research.
A strong electro-optically active lead-free ferroelectric integrated on silicon
NASA Astrophysics Data System (ADS)
Abel, Stefan; Stöferle, Thilo; Marchiori, Chiara; Rossel, Christophe; Rossell, Marta D.; Erni, Rolf; Caimi, Daniele; Sousa, Marilyne; Chelnokov, Alexei; Offrein, Bert J.; Fompeyrine, Jean
2013-04-01
The development of silicon photonics could greatly benefit from the linear electro-optical properties, absent in bulk silicon, of ferroelectric oxides, as a novel way to seamlessly connect the electrical and optical domain. Of all oxides, barium titanate exhibits one of the largest linear electro-optical coefficients, which has however not yet been explored for thin films on silicon. Here we report on the electro-optical properties of thin barium titanate films epitaxially grown on silicon substrates. We extract a large effective Pockels coefficient of reff=148 pm V-1, which is five times larger than in the current standard material for electro-optical devices, lithium niobate. We also reveal the tensor nature of the electro-optical properties, as necessary for properly designing future devices, and furthermore unambiguously demonstrate the presence of ferroelectricity. The integration of electro-optical active films on silicon could pave the way towards power-efficient, ultra-compact integrated devices, such as modulators, tuning elements and bistable switches.
Direct electro-optic effect in langasites and α-quartz
NASA Astrophysics Data System (ADS)
Ivanov, Vadim
2018-05-01
Strain-constant (clamped) electro-optic coefficients r11S of langasite La3Ga5SiO14 (LGS), langatate La3Ga5.5Ta0.5O14 (LGT), catangasite Ca3TaGa3Si2O14 (CTGS) and α-quartz are measured at 1540 nm in the frequency range of 3-25 MHz. Experimental ratio of clamped and unclamped electro-optic coefficients r11S/r11T is 0.97 for LGS, 0.91 for LGT, 0.31 for CTGS, and 0.49 for quartz. Most of direct electro-optic effect in LGS and LGT is associated with lanthanum ions: clamped electro-optic coefficient r11S in lanthanum-free CTGS is 14 times less than in LGS. Low piezoelectric contribution to unclamped electro-optic coefficient r11T makes LGS and LGT promising materials for electro-optic devices, whose performance can be deteriorated by piezoelectric effect, especially, for high-voltage optical voltage sensors.
2005-07-09
This final report summarizes the progress during the Phase I SBIR project entitled Embedded Electro - Optic Sensor Network for the On-Site Calibration...network based on an electro - optic field-detection technique (the Electro - optic Sensor Network, or ESN) for the performance evaluation of phased
2002-09-30
Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...OBJECTIVES The electro - optical propagation objectives are: 1) The acquisition and analysis of mid-wave and long-wave infrared transmission and...elements to the electro - optical propagation model development. The first element is the design and execution of field experiments to generate useful
Electro-optic routing of photons from a single quantum dot in photonic integrated circuits
NASA Astrophysics Data System (ADS)
Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren
2017-12-01
Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.
NASA Astrophysics Data System (ADS)
Chu, Qiuhui; Shen, Yijie; Yuan, Meng; Gong, Mali
2017-12-01
Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) is a cutting-edge electro-optical imaging technology to realize miniaturization and complanation of imaging systems. In this paper, the principle of SPIDER has been numerically demonstrated based on the partially coherent light theory, and a novel concept of adjustable baseline pairing SPIDER system has further been proposed. Based on the results of simulation, it is verified that the imaging quality could be effectively improved by adjusting the Nyquist sampling density, optimizing the baseline pairing method and increasing the spectral channel of demultiplexer. Therefore, an adjustable baseline pairing algorithm is established for further enhancing the image quality, and the optimal design procedure in SPIDER for arbitrary targets is also summarized. The SPIDER system with adjustable baseline pairing method can broaden its application and reduce cost under the same imaging quality.
2003-09-30
Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...scenarios to extend the capabilities of TAWS to surface and low altitude situations. OBJECTIVES The electro - optical propagation objectives are: 1...development of a new propagation assessment tool called EOSTAR ( Electro - Optical Signal Transmission and Ranging). The goal of the EOSTAR project is to
Waveguide electro-optic modulators based on intrinsically polar self-assembled superlattices (SASs)
NASA Astrophysics Data System (ADS)
Liu, Zhifu; Ho, Seng Tiong; Chang, Seongsik; Zhao, Yiguang; Marks, Tobin J.; Kang, Hu; van der Boom, Milko E.; Zhu, Peiwang
2002-12-01
In this paper we describe methods of fabricating and characterizing organic electro-optic modulators based on intrinsically polar self-assembled superlattices. These structures are intrinsically acentric, and exhibit large second harmonic generation and electro-optic responses without the requirement of poling by an external electric field. A novel wet chemical protection-deprotection approach for the growth of self-assembled superlattices have been developed, and the refractive indices of self-assembled organic electro-optic superlattices may be tuned during the self-assembly process. Prototype electro-optic modulators based on chromophoric self-assembled superlattices have been designed and fabricated. The effective electro-optic coefficient of the self-assembled superlattice film in a phase modulator is estimated as about 20 pm/V at a wavelength of 1064 nm.
Electro-optic analyzer of angular momentum hyperentanglement
Wu, Ziwen; Chen, Lixiang
2016-01-01
Characterizing a high-dimensional entanglement is fundamental in quantum information applications. Here, we propose a theoretical scheme to analyze and characterize the angular momentum hyperentanglement that two photons are entangled simultaneously in spin and orbital angular momentum. Based on the electro-optic sampling with a proposed hyper-entanglement analyzer and the simple matrix operation using Cramer rule, our simulations show that it is possible to retrieve effectively both the information about the degree of polarization entanglement and the spiral spectrum of high-dimensional orbital angular momentum entanglement. PMID:26911530
Electro-optic component mounting device
Gruchalla, M.E.
1994-09-13
A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.
Electro-optic studies of novel organic materials and devices
NASA Astrophysics Data System (ADS)
Xu, Jianjun
1997-11-01
Specific single crystal organic materials have high potential for use in high speed optical signal processing and various other electro-optic applications. In this project some of the most important organic crystal materials were studied regarding their detailed electro- optic properties and potential device applications. In particular, the electro-optic properties of N-(4- Nitrophenyl)-L-Prolinol (NPP) and 4'-N,N- dimethylamino-4-methylstilbazolium tosylate (DAST) both of which have extremely large second order susceptibilites were studied. The orientation of the thin film crystal with respect to the substrate surface was determined using-X-ray diffraction. The principal axes of the single crystal thin film were determined by polarization transmission microscopy. The elements of the electro-optic coefficient tensor were measured by field induced birefringence measurements. Detailed measurements for NPP thin films with different orientations of the external electric field with respect to the charge transfer axis were carried out at a wavelength of 1064nm. The wavelength dependence of the electro-optic effect for DAST single crystal thin films was measured using a Ti:Sapphire laser. Several device geometries involving organic single crystal thin film materials were studied. A new method for the fabrication of channel waveguides for organic materials was initiated. Channel waveguides for NPP and ABP were obtained using this methods. Optical modulation due to the electro-optic effect based on the organic channel waveguide for NPP single crystal was demonstrated. The electro-optic modulation using NPP single crystals thin film in a Fabry-Perot cavity was measured. A device using a optical fiber half coupler and organic electro-optic thin film material was constructed, and it has potential applications in optical signal processing.
Advanced Organic Electro-Optic Materials for Integrated Device Applications
2001-06-01
Electro - optic chromophores (FTC and CLD) were synthesized in bulk (kilogram) quantities and were distributed to the participants of this program...to stabilize electro - optic activity for operation at elevated temperatures and photon flux levels. Over 100 variants of these chromophores were...1.5-2.0 improvement over FTC and CLD chromophores in terms of electro - optic activity at telecommunication wavelengths. They also have proven more
2007-01-01
Electro - optic properties of cholesteric liquid crystals with holographically patterned polymer stabilization were examined. It is hypothesized that...enhanced electro - optic properties of the final device. Prior to holographic patterning, polymer stabilization with large elastic memory was generated by way... electro - optic properties appear to stem from a single dimension domain size increase, which allows for a reduction in the LC/polymer interaction.
Isobe, Keisuke; Kawano, Hiroyuki; Kumagai, Akiko; Miyawaki, Atsushi; Midorikawa, Katsumi
2013-01-01
A spatial overlap modulation (SPOM) technique is a nonlinear optical microscopy technique which enhances the three-dimensional spatial resolution and rejects the out-of-focus background limiting the imaging depth inside a highly scattering sample. Here, we report on the implementation of SPOM in which beam pointing modulation is achieved by an electro-optic deflector. The modulation and demodulation frequencies are enhanced to 200 kHz and 400 kHz, respectively, resulting in a 200-fold enhancement compared with the previously reported system. The resolution enhancement and suppression of the out-of-focus background are demonstrated by sum-frequency-generation imaging of pounded granulated sugar and deep imaging of fluorescent beads in a tissue-like phantom, respectively. PMID:24156055
ELECTRO-OPTIC PROJECTOR STUDY.
The report describes research and development tasks undertaken in the development of a Pockels Effect electro - optic light valve. Two reflex...lens electron optics are used in different configurations. The electro - optic crystal utilized was KD2PO4 and when operated in a reflex mode provides
Electro-Optic Effect in the PESO Acousto-Optic Modulator
1994-11-09
AD-A286 355 NAIC-ID(RS)T-0395-94 NATIONAL AIR INTELLIGENCE CENTER ELECTRO - OPTIC EFFECT IN THE PESO ACOUSTO-OPTIC MODULATOR by Tai Renzhong, Lu Futun...owing to coupling.betw;ee.elecuc grazing" and "acou- tic grating". Linear electro - optic effect in PESO modulator is helpful to the diffraction and...crystaO A-l/Am,ARjAb, anl / ar:.. thtta=30 and theta=900 . Along these two orientations. th;- electro - optic effect is restricted tcŽ the rn :-t m:,n e
NASA Astrophysics Data System (ADS)
Simcik, John C.
1989-04-01
Texas State Technical Institute-Waco (TSTI-WACO) was the first school in the United States to offer an Associate of Applied Science degree in Laser Electro-Optics Technology. The program began in September 1969 and has produced 1,827 graduates since inception. These graduates are readily adaptable to any area of the laser electro-optics industry. Areas of study include Optics, Electronics, Vacuum, Physics, Mathematics, and English with emphasis on Electro-Optics. Graduate placement is centered around research and development, life sciences and manufacturing in technical and engineering areas.
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Bobick, Aaron; Jones, Eric
2010-04-01
In this paper, we describe results from experimental analysis of a model designed to recognize activities and functions of moving and static objects from low-resolution wide-area video inputs. Our model is based on representing the activities and functions using three variables: (i) time; (ii) space; and (iii) structures. The activity and function recognition is achieved by imposing lexical, syntactic, and semantic constraints on the lower-level event sequences. In the reported research, we have evaluated the utility and sensitivity of several algorithms derived from natural language processing and pattern recognition domains. We achieved high recognition accuracy for a wide range of activity and function types in the experiments using Electro-Optical (EO) imagery collected by Wide Area Airborne Surveillance (WAAS) platform.
Electro-Optic Identification Research Program
2002-04-01
Electro - optic identification (EOID) sensors provide photographic quality images that can be used to identify mine-like contacts provided by long...tasks such as validating existing electro - optic models, development of performance metrics, and development of computer aided identification and
Wave-Coupled Millimeter-Wave Electro-Optic Techniques
2001-03-01
This report details results on two antenna-coupled millimeter-wave electro - optic modulators, the slot-vee antenna-coupled modulator and a 94 GHz...study of the effects of velocity mismatch on linearized electro - optic modulators was made and the results published. A key result was that directional...drift in electro - optic modulators was made and protons were determined to be the cause. Several inventions were made to reduce or eliminate proton-caused bias drift.
Electro-optic component mounting device
Gruchalla, Michael E.
1994-01-01
A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.
Frequency accurate coherent electro-optic dual-comb spectroscopy in real-time.
Martín-Mateos, Pedro; Jerez, Borja; Largo-Izquierdo, Pedro; Acedo, Pablo
2018-04-16
Electro-optic dual-comb spectrometers have proved to be a promising technology for sensitive, high-resolution and rapid spectral measurements. Electro-optic combs possess very attractive features like simplicity, reliability, bright optical teeth, and typically moderate but quickly tunable optical spans. Furthermore, in a dual-comb arrangement, narrowband electro-optic combs are generated with a level of mutual coherence that is sufficiently high to enable optical multiheterodyning without inter-comb stabilization or signal processing systems. However, this valuable tool still presents several limitations; for instance, on most systems, absolute frequency accuracy and long-term stability cannot be guaranteed; likewise, interferometer-induced phase noise restricts coherence time and limits the attainable signal-to-noise ratio. In this paper, we address these drawbacks and demonstrate a cost-efficient absolute electro-optic dual-comb instrument based on a frequency stabilization mechanism and a novel adaptive interferogram acquisition approach devised for electro-optic dual-combs capable of operating in real-time. The spectrometer, completely built from commercial components, provides sub-ppm frequency uncertainties and enables a signal-to-noise ratio of 10000 (intensity noise) in 30 seconds of integration time.
A LATTICE THEORY OF THE ELECTRO-OPTIC EFFECTS IN SEMICONDUCTORS.
A unified lattice theory of the electro - optic effect in semiconductor crystals, which encompasses the piezo-electric and elasto-optic effects, is...presented. Expressions are derived for the constant stress and constant strain electro - optic coefficients and the results are specialized to crystals of the zincblende structure. (Author)
Zhang, Haijuan; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Zhao, Jia; Wang, Yonggang
2013-09-20
A solid-state green laser generating subnanosecond pulses with adjustable kilohertz repetition rate is presented. This pulse laser system is composed of a Q-switched and mode-locked YVO(4)/Nd:YVO(4)/KTP laser simultaneously modulated by an electro-optic (EO) modulator and a central semiconductor saturable absorption mirror. Because the repetition rate of the Q-switched envelope in this laser depends on the modulation frequency of the EO modulator, so long as the pulsewidth of the Q-switched envelope is shorter than the cavity roundtrip transmit time, i.e., the time interval of two neighboring mode-locking pulses, only one mode-locking pulse exists underneath a Q-switched envelope, resulting in the generation of subnanosecond pulses with kilohertz repetition rate. The experimental results show that the pulsewidth of subnanosecond pulses decreases with increasing pump power and the shortest pulse generated at 1 kHz was 450 ps with pulse energy as high as 252 μJ, corresponding to a peak power of 560 kW. In addition, this laser was confirmed to have high stability, and the pulse repetition rate could be freely adjusted from 1 to 4 kHz.
Assimilation of nontraditional datasets to improve atmospheric compensation
NASA Astrophysics Data System (ADS)
Kelly, Michael A.; Osei-Wusu, Kwame; Spisz, Thomas S.; Strong, Shadrian; Setters, Nathan; Gibson, David M.
2012-06-01
Detection and characterization of space objects require the capability to derive physical properties such as brightness temperature and reflectance. These quantities, together with trajectory and position, are often used to correlate an object from a catalogue of known characteristics. However, retrieval of these physical quantities can be hampered by the radiative obscuration of the atmosphere. Atmospheric compensation must therefore be applied to remove the radiative signature of the atmosphere from electro-optical (EO) collections and enable object characterization. The JHU/APL Atmospheric Compensation System (ACS) was designed to perform atmospheric compensation for long, slant-range paths at wavelengths from the visible to infrared. Atmospheric compensation is critically important for airand ground-based sensors collecting at low elevations near the Earth's limb. It can be demonstrated that undetected thin, sub-visual cirrus clouds in the line of sight (LOS) can significantly alter retrieved target properties (temperature, irradiance). The ACS algorithm employs non-traditional cirrus datasets and slant-range atmospheric profiles to estimate and remove atmospheric radiative effects from EO/IR collections. Results are presented for a NASA-sponsored collection in the near-IR (NIR) during hypersonic reentry of the Space Shuttle during STS-132.
Solid state electro-optic color filter and iris
NASA Technical Reports Server (NTRS)
1974-01-01
The electro-optic properties of lanthanum-modified lead zirconate titanate (PLZT) ferroelectric ceramic material are evaluated when utilized as a variable density and/or spectral filter in conjunction with a television scanning system. Emphasis was placed on the development of techniques and procedures for processing the PLZT disks and for applying efficient electrode structures. A number of samples were processed using different combinations of cleaning, electrode material, and deposition process. Best overall performance resulted from the direct evaporation of gold over chrome electrodes. A ruggedized mounting holder assembly was designed, fabricated, and tested. The assembly provides electrical contacts, high voltage protection, and support for the fragile PLZT disk, and permits mounting and optical alignment of the associated polarizers. Operational measurements of a PLZT sample mounted in the holder assembly were performed in conjunction with a television camera and the associated drive circuits. The data verified achievement of the elimination of the observed white-line effect.
Studies of the Electro-Optic Effect.
1983-01-01
electro - optic effect in crystalline solids has been pursued by employing a tight-binding theory for dielectric susceptibilities. The electronic and lattice contributions to the second-order electro - optic susceptibility have been treated separately and the lattice response of a crystal to an external dc electric field has been investigated in a general formalism. The theory has been specifically applied to the compound, tellurium dioxide. In addition, an experimental determination of the electro - optic coefficient, re, in thallium
TRANSVERSE MODE ELECTRO-OPTIC MATERIALS.
electro - optic modulators presently used are crystals such as KDP which exhibit a longitudinal electro - optic effect. It has been demonstrated that a more efficient modulator can be produced when a crystal having a transverse electro - optic effect is employed. Generally these crystals are produced either from the melt or from fluxes. Since melt grown crystals must be cooled through several hundred degrees and often must undergo phase transitions, these crystals are generally highly strained. Flux grown crystals are also
An electro - optic modulator is used to modulate coherent light beams by the application of an electric potential. It combines a Fabry-Perot etalon and...a diffraction grating in a single unit. An etalon is constructed with an electro - optic material between reflecting surfaces. A voltage applied...between alternate, spaced-apart electrodes of a metal grid attached to one reflecting surface induces a diffraction grating in the electro optic material. Light entering the etalon is diffracted, reflected and efficiently coupled out.
A magneto-electro-optical effect in a plasmonic nanowire material
Valente, João; Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.
2015-01-01
Electro- and magneto-optical phenomena play key roles in photonic technology enabling light modulators, optical data storage, sensors and numerous spectroscopic techniques. Optical effects, linear and quadratic in external electric and magnetic field are widely known and comprehensively studied. However, optical phenomena that depend on the simultaneous application of external electric and magnetic fields in conventional media are barely detectable and technologically insignificant. Here we report that a large reciprocal magneto-electro-optical effect can be observed in metamaterials. In an artificial chevron nanowire structure fabricated on an elastic nano-membrane, the Lorentz force drives reversible transmission changes on application of a fraction of a volt when the structure is placed in a fraction-of-tesla magnetic field. We show that magneto-electro-optical modulation can be driven to hundreds of thousands of cycles per second promising applications in magneto-electro-optical modulators and field sensors at nano-tesla levels. PMID:25906761
ELECTRO-OPTIC PROJECTION STUDY.
light modulation. The light valve tubes used in the study employ an electron beam to develop discrete electric fields through an electro - optic material...Characteristics of two electro - optic materials, potassium dihydrogen phosphate and potassium dideuterium phosphate, were measured in order to optimize the
2014-01-01
Quadratic electro-optic effects (QEOEs) and electro-absorption (EA) process in a GaN/AlGaN spherical quantum dot are theoretically investigated. It is found that the magnitude and resonant position of third-order nonlinear optical susceptibility depend on the nanostructure size and aluminum mole fraction. With increase of the well width and barrier potential, quadratic electro-optic effect and electro-absorption process nonlinear susceptibilities are decreased and blueshifted. The results show that the DC Kerr effect in this case is much larger than that in the bulk case. Finally, it is observed that QEOEs and EA susceptibilities decrease and broaden with the decrease of relaxation time. PMID:24646318
Peña, Adrián F; Doronin, Alexander; Tuchin, Valery V; Meglinski, Igor
2014-08-01
The influence of a low-frequency electric field applied to soft biological tissues ex vivo at normal conditions and upon the topical application of optical clearing agents has been studied by optical coherence tomography (OCT). The electro-kinetic response of tissues has been observed and quantitatively evaluated by the double correlation OCT approach, utilizing consistent application of an adaptive Wiener filtering and Fourier domain correlation algorithm. The results show that fluctuations, induced by the electric field within the biological tissues are exponentially increased in time. We demonstrate that in comparison to impedance measurements and the mapping of the temperature profile at the surface of the tissue samples, the double correlation OCT approach is much more sensitive to the changes associated with the tissues' electro-kinetic response. We also found that topical application of the optical clearing agent reduces the tissues' electro-kinetic response and is cooling the tissue, thus reducing the temperature induced by the electric current by a few degrees. We anticipate that dcOCT approach can find a new application in bioelectrical impedance analysis and monitoring of the electric properties of biological tissues, including the resistivity of high water content tissues and its variations.
Poling of Microwave Electro-Optic Devices
NASA Technical Reports Server (NTRS)
Singer, Kenneth D.
1997-01-01
The desire to transmit high frequency, microwave RF signals over fiber optic cables has necessitated the need for electro-optic modulation devices. However, in order to reap these potential benefits, it is necessary to develop the devices and their associated fabrication processes, particularly those processes associated with the poling of the devices. To this end, we entered into a cooperative research agreement with Richard Kunath of NASA LeRC. A graduate student in my group, Tony Kowalczyk, worked closely with the group at NASA to develop processes for construction of a microwave frequency electro-optic modulator. Materials were commercially obtained from Amoco Chemical and in collaboration with Lockheed-Martin. The photolithography processes were developed at NASA LeRC and the electric-field poling process was carried out in our laboratory at CWRU. During the grant period, the poling process conditions were investigated for these multilayer devices. Samples were poled and the resulting nonlinear optical properties were evaluated in our laboratory. Following the grant period, Kowalczyk went to NASA under a NRC fellowship, and I continued to collaborate as a consultant. Publications listed at the end of this report came out of this work. Another manuscript is in preparation and will be submitted shortly.
Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy.
Wang, Shuai; Fan, Xinyu; Xu, Bingxin; He, Zuyuan
2017-10-01
An electro-optic frequency comb enables frequency-agile comb-based spectroscopy without using sophisticated phase-locking electronics. Nevertheless, dense electro-optic frequency combs over broad spans have yet to be developed. In this Letter, we propose a straightforward and efficient method for electro-optic frequency comb generation with a small line spacing and a large span. This method is based on two-stage modulation: generating an 18 GHz line-spacing comb at the first stage and a 250 MHz line-spacing comb at the second stage. After generating an electro-optic frequency comb covering 1500 lines, we set up an easily established mutually coherent hybrid dual-comb interferometer, which combines the generated electro-optic frequency comb and a free-running mode-locked laser. As a proof of concept, this hybrid dual-comb interferometer is used to measure the absorption and dispersion profiles of the molecular transition of H 13 CN with a spectral resolution of 250 MHz.
High performance electro-optical modulator based on photonic crystal and graphene
NASA Astrophysics Data System (ADS)
Malekmohammad, M.; Asadi, R.
2017-07-01
An electro-optical modulator is demonstrated based on Fano-resonance effect in an out-of-plane illumination of one-dimensional slab photonic crystal composed of two graphene layers. It has been shown that high sensitivity of the Fano-resonance and electro-refractive tuning of graphene layers provides a suitable condition to obtain an electro-optical modulator with low energy consumption (8 pJ) with contrast of 0.4.
Training the Next Generation in Space Situational Awareness Research
NASA Astrophysics Data System (ADS)
Colpo, D.; Reddy, V.; Arora, S.; Tucker, S.; Jeffries, L.; May, D.; Bronson, R.; Hunten, E.
Traditional academic SSA research has relied on commercial off the shelf (COTS) systems for collecting metric and lightcurve data. COTS systems have several advantages over a custom built system including cost, easy integration, technical support and short deployment timescales. We at the University of Arizona took an alternative approach to develop a sensor system for space object characterization. Five engineering students designed and built two 0.6-meter F/4 electro-optical (EO) systems for collecting lightcurve and spectral data. All the design and fabrication work was carried out over the course of two semesters as part f their senior design project that is mandatory for the completion of their bachelors in engineering degree. The students designed over 200 individual parts using three-dimensional modeling software (SolidWorks), and conducted detailed optical design analysis using raytracing software (ZEMAX), with oversight and advice from faculty sponsor and Starizona, a local small business in Tucson. The components of the design were verified by test, analysis, inspection, or demonstration, per the process that the University of Arizona requires for each of its design projects. Methods to complete this project include mechanical FEA, optical testing methods (Foucault Knife Edge Test and Couder Mask Test), tests to verify the function of the thermometers, and a final pointing model test. A surprise outcome of our exercise is that the entire cost of the design and fabrication of these two EO systems was significantly lower than a COTS alternative. With careful planning and coordination we were also able to reduce to the deployment times to those for a commercial system. Our experience shows that development of hardware and software for SSA research could be accomplished in an academic environment that would enable the training of the next generation with active support from local small businesses.
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Klein, Mark D.; Viola, Timothy S.; Hepokoski, Mark A.
2016-10-01
The ability to predict electro-optical (EO) signatures of diverse targets against cluttered backgrounds is paramount for signature evaluation and/or management. Knowledge of target and background signatures is essential for a variety of defense-related applications. While there is no substitute for measured target and background signatures to determine contrast and detection probability, the capability to simulate any mission scenario with desired environmental conditions is a tremendous asset for defense agencies. In this paper, a systematic process for the thermal and visible-through-infrared simulation of camouflaged human dismounts in cluttered outdoor environments is presented. This process, utilizing the thermal and EO/IR radiance simulation tool TAIThermIR (and MuSES), provides a repeatable and accurate approach for analyzing contrast, signature and detectability of humans in multiple wavebands. The engineering workflow required to combine natural weather boundary conditions and the human thermoregulatory module developed by ThermoAnalytics is summarized. The procedure includes human geometry creation, human segmental physiology description and transient physical temperature prediction using environmental boundary conditions and active thermoregulation. Radiance renderings, which use Sandford-Robertson BRDF optical surface property descriptions and are coupled with MODTRAN for the calculation of atmospheric effects, are demonstrated. Sensor effects such as optical blurring and photon noise can be optionally included, increasing the accuracy of detection probability outputs that accompany each rendering. This virtual evaluation procedure has been extensively validated and provides a flexible evaluation process that minimizes the difficulties inherent in human-subject field testing. Defense applications such as detection probability assessment, camouflage pattern evaluation, conspicuity tests and automatic target recognition are discussed.
Electro-Optic Identification (EOID) Research Program
2001-09-30
1 Electro - Optic Identification (EOID) Research Program Gene M. Cumm Northrop Grumman Oceanic and Naval Systems P.O. Box 1488 Annapolis...control number. 1. REPORT DATE 30 SEP 2001 2. REPORT TYPE 3. DATES COVERED 00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE Electro - Optic Identification
The use of algorithmic behavioural transfer functions in parametric EO system performance models
NASA Astrophysics Data System (ADS)
Hickman, Duncan L.; Smith, Moira I.
2015-10-01
The use of mathematical models to predict the overall performance of an electro-optic (EO) system is well-established as a methodology and is used widely to support requirements definition, system design, and produce performance predictions. Traditionally these models have been based upon cascades of transfer functions based on established physical theory, such as the calculation of signal levels from radiometry equations, as well as the use of statistical models. However, the performance of an EO system is increasing being dominated by the on-board processing of the image data and this automated interpretation of image content is complex in nature and presents significant modelling challenges. Models and simulations of EO systems tend to either involve processing of image data as part of a performance simulation (image-flow) or else a series of mathematical functions that attempt to define the overall system characteristics (parametric). The former approach is generally more accurate but statistically and theoretically weak in terms of specific operational scenarios, and is also time consuming. The latter approach is generally faster but is unable to provide accurate predictions of a system's performance under operational conditions. An alternative and novel architecture is presented in this paper which combines the processing speed attributes of parametric models with the accuracy of image-flow representations in a statistically valid framework. An additional dimension needed to create an effective simulation is a robust software design whose architecture reflects the structure of the EO System and its interfaces. As such, the design of the simulator can be viewed as a software prototype of a new EO System or an abstraction of an existing design. This new approach has been used successfully to model a number of complex military systems and has been shown to combine improved performance estimation with speed of computation. Within the paper details of the approach and architecture are described in detail, and example results based on a practical application are then given which illustrate the performance benefits. Finally, conclusions are drawn and comments given regarding the benefits and uses of the new approach.
Holographic data storage crystals for LDEF (A0044)
NASA Technical Reports Server (NTRS)
Callen, W. R.; Gaylord, T. K.
1984-01-01
Electro-optic holographic recording systems were developed. The spaceworthiness of electro-optic crystals for use in ultrahigh capacity space data storage and retrieval systems are examined. The crystals for this experiment are included with the various electro-optical components of LDEF experiment. The effects of long-duration exposure on active optical system components is investigated. The concept of data storage in an optical-phase holographic memory is illustrated.
Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)
2006-01-01
Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.
NASA Astrophysics Data System (ADS)
Lakhtakia, Akhlesh
2006-05-01
The Oseen transformation is generalized to define a non-electro-optic structurally chiral material, wherein propagation along the axis of chirality is equivalent to that in an electro-optic SCM with local 4¯2m point group symmetry. This generalization shows that the exploitation of the Pockels effect amounts to an enhancement of the effective local birefringence, which in turn can enhance the characteristics of the circular Bragg phenomenon. Electro-optic SCMs can therefore serve as efficient and electrically controllable circular- and elliptical-polarization rejection filters.
Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin
2016-07-01
A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.
Analysis of Electro-Optic Materials Properties on Guided Wave Devices
1992-12-16
AD-A262 787 APPLIED RESEARCH, INC, ANALYSIS OF ELECTRO - OPTIC MATERIALS PROPERTIES ON GUIDED WAVE DEVICES FINAL REPORT DTI 6700 ODYSSEY DR HUNTSVILLE...ALABAMA 35814-1220 s IMAR1893 APPROVED FOR PUKIC RE’.EASE DISTRIBUTION UNLIMlITED Applied Research Inc. ARI/92iR-048Z ANALYSIS OF ELECTRO - OPTIC MATERIALS...uNiT ATTN: Dr. 2aul Ashley-AMSMI-RD-~WS--CM ELEMENT NO 4 NO IAr SSiON No t1I TI TLE iciup SeawIfy 0Mft*G’I Analysis of Electro - optic Materials
NASA Astrophysics Data System (ADS)
Balakrishnan, M.; Diemeer, M. B. J.; Driessen, A.; Faccini, M.; Verboom, W.; Reinhoudt, D. N.; Leinse, A.
2006-02-01
Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (T g) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability 1 has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficient (r33) compared to the unmodified TCVDPA was shown. A microring resonator design was made based on the PS-TCVDPA system. SU8 (passive) and TCVDPA (active) channel waveguides were fabricated by the photodefinition technique and the passive waveguide losses were measured to be 5 dB/cm at 1550 nm.
NASA Astrophysics Data System (ADS)
Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.
2016-05-01
Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene (;A-dye;: hydrogen bond donor) and dimethyl-aminoazobenzene (;B-dye;) dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.
Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.
1987-01-01
A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.
1984-07-01
improved, they show a considerable enhancement in electro - optic and photorefractive properties, specifically for Ce(3+)-doped SBN:60 crystals. The...concentration of impurity ions increased. Undoped SBN:60 single crystals have also been grown and they are almost striation-free and exhibit excellent electro - optic properties.
1984-02-01
110) film orientations. Electro - optic measurements on SBN:60 single crystals have shown a high value for r51 of 80 x 10 to the minus 12th power m/v...showing morphotropic boundary conditions with enhanced dielectric properties. Both systems look promising for future electro - optic development.
Electro-optical Probing Of Terahertz Integrated Circuits
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Romanofsky, R.; Whitaker, J. F.; Valdmanis, J. A.; Mourou, G.; Jackson, T. A.
1990-01-01
Electro-optical probe developed to perform noncontact, nondestructive, and relatively noninvasive measurements of electric fields over broad spectrum at millimeter and shorter wavelengths in integrated circuits. Manipulated with conventional intregrated-circuit-wafer-probing equipment and operated without any special preparation of integrated circuits. Tip of probe small electro-optical crystal serving as proximity electric-field sensor.
Electro-Optical Laser Technology. Curriculum Utilization. Final Report.
ERIC Educational Resources Information Center
Nawn, John H.
This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…
Future electro-optical sensors and processing in urban operations
NASA Astrophysics Data System (ADS)
Grönwall, Christina; Schwering, Piet B.; Rantakokko, Jouni; Benoist, Koen W.; Kemp, Rob A. W.; Steinvall, Ove; Letalick, Dietmar; Björkert, Stefan
2013-10-01
In the electro-optical sensors and processing in urban operations (ESUO) study we pave the way for the European Defence Agency (EDA) group of Electro-Optics experts (IAP03) for a common understanding of the optimal distribution of processing functions between the different platforms. Combinations of local, distributed and centralized processing are proposed. In this way one can match processing functionality to the required power, and available communication systems data rates, to obtain the desired reaction times. In the study, three priority scenarios were defined. For these scenarios, present-day and future sensors and signal processing technologies were studied. The priority scenarios were camp protection, patrol and house search. A method for analyzing information quality in single and multi-sensor systems has been applied. A method for estimating reaction times for transmission of data through the chain of command has been proposed and used. These methods are documented and can be used to modify scenarios, or be applied to other scenarios. Present day data processing is organized mainly locally. Very limited exchange of information with other platforms is present; this is performed mainly at a high information level. Main issues that arose from the analysis of present-day systems and methodology are the slow reaction time due to the limited field of view of present-day sensors and the lack of robust automated processing. Efficient handover schemes between wide and narrow field of view sensors may however reduce the delay times. The main effort in the study was in forecasting the signal processing of EO-sensors in the next ten to twenty years. Distributed processing is proposed between hand-held and vehicle based sensors. This can be accompanied by cloud processing on board several vehicles. Additionally, to perform sensor fusion on sensor data originating from different platforms, and making full use of UAV imagery, a combination of distributed and centralized processing is essential. There is a central role for sensor fusion of heterogeneous sensors in future processing. The changes that occur in the urban operations of the future due to the application of these new technologies will be the improved quality of information, with shorter reaction time, and with lower operator load.
Electro-optic spatial decoding on the spherical-wavefront Coulomb fields of plasma electron sources.
Huang, K; Esirkepov, T; Koga, J K; Kotaki, H; Mori, M; Hayashi, Y; Nakanii, N; Bulanov, S V; Kando, M
2018-02-13
Detections of the pulse durations and arrival timings of relativistic electron beams are important issues in accelerator physics. Electro-optic diagnostics on the Coulomb fields of electron beams have the advantages of single shot and non-destructive characteristics. We present a study of introducing the electro-optic spatial decoding technique to laser wakefield acceleration. By placing an electro-optic crystal very close to a gas target, we discovered that the Coulomb field of the electron beam possessed a spherical wavefront and was inconsistent with the previously widely used model. The field structure was demonstrated by experimental measurement, analytic calculations and simulations. A temporal mapping relationship with generality was derived in a geometry where the signals had spherical wavefronts. This study could be helpful for the applications of electro-optic diagnostics in laser plasma acceleration experiments.
Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos.
Ai, Jianzhou; Wang, Lulu; Wang, Jian
2017-09-15
Chaos-based secure communication can provide a high level of privacy in data transmission. Here, we experimentally demonstrate secure signal transmission over two kinds of multimode fiber (MMF) based on electro-optic intensity chaos. High-quality synchronization is achieved in an electro-optic feedback configuration. Both 5 Gbit/s carrier-less amplitude/phase (CAP-4) modulation and 10 Gbit/s on-off key (OOK) signals are recovered efficiently in electro-optic chaos-based communication systems. Degradations of chaos synchronization and communication system due to mismatch of various hardware keys are also discussed.
An active interference projector for the electro-optical test facility
NASA Astrophysics Data System (ADS)
Crowe, D. G.; Nowak, T. M.
1980-09-01
A projection system is described which can simulate emissions from flares, muzzle-flashes, shellbursts, and other emissive agents which may degrade the performance of electro-optical systems in the 0.5-15 micron spectral range. The simulation capability obtained will allow the apparent radiance and temporal characteristics of muzzleflashes and shellbursts to be mimicked at simulated ranges as close as 23 m within the Electro-Optical Test Facility. This demonstrates that tests of electro-optical system performance in the presence of interferers can be performed under laboratory conditions with higher repeatability and lower cost than field tests.
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...
2016-04-07
Quasi-hydrostatic high-pressure equations of state (EOS) are typically determined, for crystalline solids, by measuring unit-cell volumes using x-ray diffraction (XRD) techniques. However, when characterizing low-symmetry materials with large unit cells, conventional XRD approaches may become problematic. To overcome this issue, we examined the utility of a "direct" approach toward determining high pressure material volume by measuring surface area and sample thickness using optical microscopy and interferometry (OMI) respectively. We have validated this experimental approach by comparing results obtained for TATB (2,4,6-triamino-1,3,5-trinitrobenzene) with an EOS determined from synchrotron XRD measurements; and, a good match is observed. We have measured the highmore » pressure EOS of 5-nitro-2,4-dihydro-1,2,4-triazol-3-one (α-NTO) up to 33 GPa. No high-pressure XRD EOS data have been published on α-NTO, probably due to its complex crystal structure. Furthermore, the results of this study suggest that OMI is a reliable and versatile alternative for determining EOSs, especially when conventional methodologies are impractical.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrou, Elissaios, E-mail: stavrou1@llnl.gov; Zaug, Joseph M., E-mail: zaug1@llnl.gov; Bastea, Sorin
2016-04-07
Quasi-hydrostatic high-pressure equations of state (EOS) are typically determined, for crystalline solids, by measuring unit-cell volumes using x-ray diffraction (XRD) techniques. However, when characterizing low-symmetry materials with large unit cells, conventional XRD approaches may become problematic. To overcome this issue, we examined the utility of a “direct” approach toward determining high pressure material volume by measuring surface area and sample thickness using optical microscopy and interferometry (OMI), respectively. We have validated this experimental approach by comparing results obtained for 2,4,6-triamino-1,3,5-trinitrobenzene TATB with an EOS determined from synchrotron XRD measurements; and, a good match is observed. We have measured the high pressure EOS of 5-nitro-2,4-dihydro-1,2,4,-triazol-3-one (α-NTO) upmore » to 28 GPa. No high-pressure XRD EOS data have been published on α-NTO, probably due to its complex crystal structure. The results of this study suggest that OMI is a reliable and versatile alternative for determining EOSs, especially when conventional methodologies are impractical.« less
High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate
NASA Astrophysics Data System (ADS)
Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.
2017-04-01
Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.
Terahertz wave electro-optic measurements with optical spectral filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyakov, I. E., E-mail: igor-ilyakov@mail.ru; Shishkin, B. V.; Kitaeva, G. Kh.
We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.
Realization of New and Enhanced Materials Properties Through Nanostructural Control
2007-06-11
methods have been used to guide the design of novel new organic electroactive materials (e.g., electro - optic binary chromophore organic glasses...These new materials have yielded electro - optic coefficients as high as 450 pm/V (15 times lithium niobate) with auxiliary properties of modest optical... electro - optic activity has been achieved for the first time and theoretical conclusions have been verified by a number of new measurement techniques
1981-08-01
electro - optic effect is investigated both theoretically and experimentally. The theoretical approach is based upon W.A. Harrison’s ’Bond-Orbital Model’. The separate electronic and lattice contributions to the second-order, electro - optic susceptibility are examined within the context of this model and formulae which can accommodate any crystal structure are presented. In addition, a method for estimating the lattice response to a low frequency (dc) electric field is outlined. Finally, experimental measurements of the electro -
NASA Astrophysics Data System (ADS)
Elder, Delwin L.; Johnson, Lewis E.; Tillack, Andreas F.; Robinson, Bruce H.; Haffner, Christian; Heni, Wolfgang; Hoessbacher, Claudia; Fedoryshyn, Yuriy; Salamin, Yannick; Baeuerle, Benedikt; Josten, Arne; Ayata, Masafumi; Koch, Ueli; Leuthold, Juerg; Dalton, Larry R.
2018-02-01
Multi-scale (correlated quantum and statistical mechanics) modeling methods have been advanced and employed to guide the improvement of organic electro-optic (OEO) materials, including by analyzing electric field poling induced electro-optic activity in nanoscopic plasmonic-organic hybrid (POH) waveguide devices. The analysis of in-device electro-optic activity emphasizes the importance of considering both the details of intermolecular interactions within organic electro-optic materials and interactions at interfaces between OEO materials and device architectures. Dramatic improvement in electro-optic device performance-including voltage-length performance, bandwidth, energy efficiency, and lower optical losses have been realized. These improvements are critical to applications in telecommunications, computing, sensor technology, and metrology. Multi-scale modeling methods illustrate the complexity of improving the electro-optic activity of organic materials, including the necessity of considering the trade-off between improving poling-induced acentric order through chromophore modification and the reduction of chromophore number density associated with such modification. Computational simulations also emphasize the importance of developing chromophore modifications that serve multiple purposes including matrix hardening for enhanced thermal and photochemical stability, control of matrix dimensionality, influence on material viscoelasticity, improvement of chromophore molecular hyperpolarizability, control of material dielectric permittivity and index of refraction properties, and control of material conductance. Consideration of new device architectures is critical to the implementation of chipscale integration of electronics and photonics and achieving the high bandwidths for applications such as next generation (e.g., 5G) telecommunications.
Electro-optically Q-switched dual-wavelength Nd:YLF laser emitting at 1047 nm and 1053 nm
NASA Astrophysics Data System (ADS)
Men, Shaojie; Liu, Zhaojun; Cong, Zhenhua; Li, Yongfu; Zhang, Xingyu
2015-05-01
A flash-lamp pumped electro-optically Q-switched dual-wavelength Nd:YLF laser is demonstrated. Two Nd:YLF crystals placed in two cavities are employed to generate orthogonally polarized 1047 nm and 1053 nm radiations, respectively. The two cavities are jointed together by a polarizer and share the same electro-optical Q-switch. Two narrow-band pass filters are used to block unexpected oscillations at the hold-off state of the electro-optical Q-switch. In this case, electro-optical Q-switching is able to operate successfully. With pulse synchronization realized, the maximum output energy of 66.2 mJ and 83.9 mJ are obtained for 1047 nm and 1053 nm lasers, respectively. Correspondingly, the minimum pulse width is both 17 ns for 1047 nm and 1053 nm lasers. Sum frequency generation is realized. This demonstrates the potential of this laser in difference-frequency generations to obtain terahertz wave.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Raghuwanshi, Sanjeev Kumar
2016-06-01
The optical switching activity is one of the most essential phenomena in the optical domain. The electro-optic effect-based switching phenomena are applicable to generate some effective combinational and sequential logic circuits. The processing of digital computational technique in the optical domain includes some considerable advantages of optical communication technology, e.g. immunity to electro-magnetic interferences, compact size, signal security, parallel computing and larger bandwidth. The paper describes some efficient technique to implement single bit magnitude comparator and 1's complement calculator using the concepts of electro-optic effect. The proposed techniques are simulated on the MATLAB software. However, the suitability of the techniques is verified using the highly reliable Opti-BPM software. It is interesting to analyze the circuits in order to specify some optimized device parameter in order to optimize some performance affecting parameters, e.g. crosstalk, extinction ratio, signal losses through the curved and straight waveguide sections.
NASA Astrophysics Data System (ADS)
Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.
2017-10-01
Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.
NASA Technical Reports Server (NTRS)
Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)
2006-01-01
An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.
Electro-optical propagation measurements during the MINOTAUROS experiment in the Cretan Sea
NASA Astrophysics Data System (ADS)
Eisele, Christian; Sucher, Erik; Wendelstein, Norbert; Stein, Karin
2017-09-01
We report on propagation measurements performed during the MINOTAUROS (Maritime INvestigations On Targets and Atmosphere Under Reduction of Optical Signatures) experiment on Crete, Greece, in late summer of 2016. The field trial has been organized by NATO STO Task Group SET-211 on Naval Platform Protection in the EO/IR Domain with strong support of the Hellenic Navy. Besides meteorological measurements, the experiment included measurements of turbulence using a boundary layer scintillometer on a slant path (d = 8 km) across the entry of Souda Bay (Crete). These are compared to values obtained by a 3D sonic anemometer, which was deployed at one end of the propagation path. Refraction effects have been measured using a 17.5 km path from Drapanos to Gerani. Two meteorological buoys along the path were used to gather information about the atmospheric conditions. An overview and a first analysis of the results are presented. The refraction measurements are compared to simulations using MORTICIA (Model of Range and Transmission in Coastal Inland Atmospheres), a new software tool currently under development in a collaboration of Fraunhofer IOSB and TNO.
NASA Technical Reports Server (NTRS)
Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)
2006-01-01
Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.
Garcia, Luane Ferreira; Rodrigues Siqueira, Ana Claudia; Lobón, Germán Sanz; Marcuzzo, Jossano Saldanha; Pessela, Benevides Costa; Mendez, Eduardo; Garcia, Telma Alves; de Souza Gil, Eric
2017-11-01
The bioremediation and electro-oxidation (EO) processes are included among the most promising cleaning and decontamination mechanisms of water. The efficiency of bioremediation is dictated by the biological actuator for a specific substrate, its suitable immobilization and all involved biochemical concepts. The EO performance is defined by the anode efficiency to perform the complete mineralization of target compounds and is highlighted by the low or null use of reagent. Recently, the combination of both technologies has been proposed. Thus, the development of high efficient, low cost and eco-friendly anodes for sustainable EO, as well as, supporting devices for immobilization of biological systems applied in bioremediation is an open field of research. Therefore, the aim of this work was to promote the bio-electrochemical remediation of indigo carmine dye (widely common in textile industry), using new anode based on a microporous activated carbon fiber felt (ACFF) and ACFF with immobilized Laccase (Lcc) from Pycnoporus sanguineus. The results were discolorations of 62.7% with ACFF anode and 83.60% with ACFF-MANAE-Lcc anode, both for 60 min in tap water. This remediation rates show that this new anode has low cost and efficiency in the degradation of indigo dye and can be applied for other organic pollutant. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spatially Modulated Gain Waveguide Electro-Optic Laser
2013-08-09
1997, pp 1223-1226. 5. Y. Li, S. M. Goldwasser, P. Herczfeld, L.M. Narducci, "Dynamics of an electro-optically tunable microchip laser ", IEEE...TYPE Final 3. DATES COVERED (From 7/2/2010-5-10-2013 To) 4. TITLE AND SUBTITLE Spatially modulated gain waveguide electro-optic laser 5a...optical waveguides laser on LiNb03 substrate. The main goal of this work is to implement an active LiNb03 waveguide with the desired spatially modulated
Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light
NASA Astrophysics Data System (ADS)
Kniazkov, A. V.
2016-04-01
Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.
High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate
Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.
2017-01-01
Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices. PMID:28406177
Electrooptic modulation methods for high sensitivity tunable diode laser spectroscopy
NASA Technical Reports Server (NTRS)
Glenar, David A.; Jennings, Donald E.; Nadler, Shacher
1990-01-01
A CdTe phase modulator and low power RF sources have been used with Pb-salt tunable diode lasers operating near 8 microns to generate optical sidebands for high sensitivity absorption spectroscopy. Sweep averaged, first-derivative sample spectra of CH4 were acquired by wideband phase sensitive detection of the electrooptically (EO) generated carrier-sideband beat signal. EO generated beat signals were also used to frequency lock the TDL to spectral lines. This eliminates low frequency diode jitter, and avoids the excess laser linewidth broadening that accompanies TDL current modulation frequency locking methods.
Dykman, Lev A; Staroverov, Sergei A; Guliy, Olga I; Ignatov, Oleg V; Fomin, Alexander S; Vidyasheva, Irina V; Karavaeva, Olga A; Bunin, Viktor D; Burygin, Gennady L
2012-01-01
This article reports the first preparation of miniantibodies to Azospirillum brasilense Sp245 surface antigens by using a combinatorial phage library of sheep antibodies. The prepared phage antibodies were used for the first time for lipopolysaccharide and flagellin detection by dot assay, electro-optical analysis of cell suspensions, and transmission electron microscopy. Interaction of A. brasilense Sp245 with antilipopolysaccharide and antiflagellin phage-displayed miniantibodies caused the magnitude of the electro-optical signal to change considerably. The electro-optical results were in good agreement with the electron microscopic data. This is the first reported possibility of employing phage-displayed miniantibodies in bacterial detection aided by electro-optical analysis of cell suspensions.
Hybrid electro-optics and chipscale integration of electronics and photonics
NASA Astrophysics Data System (ADS)
Dalton, L. R.; Robinson, B. H.; Elder, D. L.; Tillack, A. F.; Johnson, L. E.
2017-08-01
Taken together, theory-guided nano-engineering of organic electro-optic materials and hybrid device architectures have permitted dramatic improvement of the performance of electro-optic devices. For example, the voltage-length product has been improved by nearly a factor of 104 , bandwidths have been extended to nearly 200 GHz, device footprints reduced to less than 200 μm2 , and femtojoule energy efficiency achieved. This presentation discusses the utilization of new coarse-grained theoretical methods and advanced quantum mechanical methods to quantitatively simulate the physical properties of new classes of organic electro-optic materials and to evaluate their performance in nanoscopic device architectures, accounting for the effect on chromophore ordering at interfaces in nanoscopic waveguides.
NASA Astrophysics Data System (ADS)
Narayanan, Ananthakrishnan; Thakur, Mrinal
2009-03-01
Quadratic electro-optic effect in a novel nonconjugated conductive polymer, iodine-doped polynorbornene has been measured using field-induced birefringence at 633 nm. The electrical conductivity^1 of polynorbornene increases by twelve orders of magnitude to about 0.01 S/cm upon doping with iodine. The electro-optic measurement has been made in a film doped at the medium doping-level. The electro-optic modulation signal was recorded using a lock-in amplifier for various applied ac voltages (4 kHz) and the quadratic dependence of the modulation on the applied voltage was observed. A modulation of about 0.01% was observed for an applied electric field of 3 V/micron for a 100 nm thick film The Kerr coefficient as determined is about 1.77x10-11m/V^2. This exceptionally large quadratic electro-optic effect has been attributed to the confinement of this charge-transfer system within a sub-nanometer dimension. 1. A. Narayanan, A. Palthi and M. Thakur, J. Macromol. Sci. -- PAC, accepted.
Sun, Enwei; Wang, Zhu; Zhang, Rui; Cao, Wenwu
2011-01-01
The influence of converse piezoelectric effect on the electro-optic coefficient of single domain relaxor-based 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 (PZN-0.07PT) has been quantified under ambient conditions. It was found that the large piezoelectric constants d31 and d33 have significant influence to the half-wave voltage of electro-optic modulators. For single domain PZN-0.07PT crystal, Vπ13T is reduced by a factor of 8 and Vπ13L can be decreased by more than an order of magnitude due to the large piezoelectric effect. Compared to commonly used electro-optic crystal LiNbO3 and BaTiO3, PZN-xPT single crystal is much superior for optic phase modulation applications because they have much higher linear electro-optic coefficients and much lower half-wave voltage when piezoelectric strain influence is considered. PMID:21308004
Hybrid Electro-Optic Processor
1991-07-01
This report describes the design of a hybrid electro - optic processor to perform adaptive interference cancellation in radar systems. The processor is...modulator is reported. Included is this report is a discussion of the design, partial fabrication in the laboratory, and partial testing of the hybrid electro ... optic processor. A follow on effort is planned to complete the construction and testing of the processor. The work described in this report is the
Electro-Optic Identification (EOID) Research Program
2002-09-30
The goal of this research is to provide computer-assisted identification of underwater mines in electro - optic imagery. Identification algorithms will...greatly reduce the time and risk to reacquire mine-like-objects for positive classification and identification. The objectives are to collect electro ... optic data under a wide range of operating and environmental conditions and develop precise algorithms that can provide accurate target recognition on this data for all possible conditions.
Nanodoping: a route for enhancing electro-optic performance of bent core nematic system
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Debnath, Somen; Rao, Nandiraju V. S.; Sinha, Aloka
2018-03-01
We report the effect of dispersion of barium titanate (BaTiO3) nanoparticles (BNPs) in a four ring bent core nematic (BCN) liquid crystal. Polarizing optical microscopy reveals the presence of a single nematic phase in pure and doped states. Polar switching has been observed in the bent core system and the value of spontaneous polarization (P s) increases with increase in doping concentration of BNPs in BCN. Dielectric study shows a lower frequency mode, which can be ascribed to the formation of cybotactic clusters. These clusters are also responsible for the observed polar switching in pure, as well as, in doped BCNs. Another higher frequency mode, observed only in pure BCN, indicates the rotation of molecules about their long molecular axis. The conductivity of doped samples is also found to decrease as compared to the pure BCN. This reduction helps in the minimization of negative effects caused by free ions in liquid crystal based devices. This study demonstrates that the interaction between BNPs and BCN molecules improves the P s, dielectric behaviour, viscosity and reduces the conductivity of pure BCN. Hence, nanodoping in a BCN is an effective method for the enhancement of electro-optic performances and will lead to the development of faster electro-optic devices.
NASA Astrophysics Data System (ADS)
Geary, Kevin
The development of high-frequency polymer electro-optic modulators has seen steady and significant progress in recent years, yet applications of these promising materials to more complicated integrated optic structures and arrays of devices have been limited primarily due to high optical waveguide loss characteristics. This is unfortunate since a major advantage of polymers as photonic materials is their compatibility with photolithographic processing of large components. In this Dissertation, etchless waveguide writing techniques are presented in order to improve the overall optical insertion loss of electro-optic polymer waveguide devices. These techniques include poling-induced writing, stress-induced waveguide writing, and photobleaching. Using these waveguide writing mechanisms, we have demonstrated straight waveguides, phase modulators, Mach-Zehnder intensity modulators, variable optical attenuators, and multimode interference (MMI) power splitters, all with improved loss characteristics over their etched rib waveguide counterparts. Ultimately, the insertion loss of an integrated optic device is limited by the actual material loss of the core waveguide material. In this Dissertation, passive-to-active polymer waveguide transitions are proposed to circumvent this problem. These transitions are compact, in-plane, self-aligned, and require no tapering of any physical dimensions of the waveguides. By utilizing both the time-dependent and intensity-dependent photobleaching characteristics of electro-optic polymer materials, adiabatic refractive index tapers can be seamlessly coupled to in-plane butt couple transitions, resulting in losses as low as 0.1 dB per interface. By integrating passive polymer planar lightwave circuits with the high-speed phase shifting capability of electro-optic polymers, active wideband photonic devices of increased size and complexity can be realized. Optical fiber-to-device coupling can also result in significant contributions to the overall insertion loss of an integrated electro-optic polymer device. In this Dissertation, we leverage the photobleached refractive index taper component of our proposed passive-to-active polymer waveguide transitions in order to realize a two-dimensional optical mode transformer for improved overall fiber-to-device coupling of electro-optic polymer waveguide devices.
Space Qualification Issues in Acousto-optic and Electro-optic Devices
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta
2007-01-01
Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.
1989-01-01
A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.
NASA Astrophysics Data System (ADS)
Zia, Shahneel; Banerjee, Anirudh
2016-05-01
This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zia, Shahneel, E-mail: shahneelzia@gmail.com; Banerjee, Anirudh, E-mail: abanerjee@amity.edu
2016-05-06
This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.
Ferroic Crystals for Electro-Optic and Acousto-Optic Applications.
properties for potential application in acousto - optic devices; and, (2) A systematic examination of the role of domain structures in modifying the...macroscopic properties of all types of ferroic crystals and the manner in which these property modifications could be exploited in acousto - optic , electro
NASA Astrophysics Data System (ADS)
El-Sheikh, H. M.; Yakushenkov, Y. G.
2014-08-01
Formulas for determination of the interconnection between the spatial resolution from perspective distortions and the temporal resolution of the onboard electro-optical system for remote sensing application for a variety of scene viewing modes is offered. These dependences can be compared with the user's requirements, upon the permission values of the design parameters of the modern main units of the electro-optical system is discussed.
A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.
Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching
2010-05-01
A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.
Direct Absorption Spectroscopy with Electro-Optic Frequency Combs
NASA Astrophysics Data System (ADS)
Fleisher, Adam J.; Long, David A.; Plusquellic, David F.; Hodges, Joseph T.
2017-06-01
The application of electro-optic frequency combs to direct absorption spectroscopy has increased research interest in high-agility, modulator-based comb generation. This talk will review common architectures for electro-optic frequency comb generators as well as describe common self-heterodyne and multi-heterodyne (i.e., dual-comb) detection approaches. In order to achieve a sufficient signal-to-noise ratio on the recorded interferogram while allowing for manageable data volumes, broadband electro-optic frequency combs require deep coherent averaging, preferably in real-time. Applications such as cavity-enhanced spectroscopy, precision atomic and molecular spectroscopy, as well as time-resolved spectroscopy will be introduced. D.A. Long et al., Opt. Lett. 39, 2688 (2014) A.J. Fleisher et al., Opt. Express 24, 10424 (2016)
Interferometric phase locking of two electronic oscillators with a cascade electro-optic modulator
NASA Astrophysics Data System (ADS)
Chao, C. H.; Chien, P. Y.; Chang, L. W.; Juang, F. Y.; Hsia, C. H.; Chang, C. C.
1993-01-01
An optical-type electrical phase-locked-loop system based on a cascade electro-optic modulator has been demonstrated. By using this technique, a set of optical-type phase detectors, operating at any harmonic frequencies of two applied phase-modulation signals, has been implemented.
NASA Astrophysics Data System (ADS)
Asano, Motoki; Ohta, Ryuichi; Yamamoto, Takashi; Okamoto, Hajime; Yamaguchi, Hiroshi
2018-05-01
Evanescent coupling between a high-Q silica optical microbottle and a GaAs electromechanical resonator is demonstrated. This coupling offers an opto-electro-mechanical system which possesses both cavity-enhanced optical sensitivity and electrical controllability of the mechanical motion. Cooling and heating of the mechanical mode are demonstrated based on optomechanical detection via the radiation pressure and electromechanical feedback via the piezoelectric effect. This evanescent approach allows for individual design of optical, mechanical, and electrical systems, which could lead to highly sensitive and functionalized opto-electro-mechanical systems.
NASA Technical Reports Server (NTRS)
Liu, Tsuen-Hsi (Inventor); Psaltis, Demetri (Inventor); Mok, Fai H. (Inventor); Zhou, Gan (Inventor)
2005-01-01
An optical memory for storing and/or reading data on an optical disk. The optical disk incorporates a material in which holographic gratings can be created, and subsequently detected, at plural locations within the disk by an electro-optical head. Creation and detection of holographic gratings with variable diffraction efficiency is possible with the electro-optical head. Multiple holographic gratings can also be created at each one of the plural locations via a beam of light which has a different wavelength or point of focus. These data elements can be read by the electro-optical head using a beam of light sequentially varied in wavelength or point of focus to correspond to the multiple holographic gratings to be recorded.
NASA Astrophysics Data System (ADS)
Andersson, G.; Dahl, I.; Keller, P.; Kuczyński, W.; Lagerwall, S. T.; Skarp, K.; Stebler, B.
1987-08-01
A new liquid-crystal electro-optic modulating device similar to the surface-stabilized ferroelectric liquid-crystal device is described. It uses the same kind of ferroelectric chiral smectics and the same geometry as that device (thin sample in the ``bookshelf '' layer arrangement) but instead of using a tilted smectic phase like the C* phase, it utilizes the above-lying, nonferroelectric A phase, taking advantage of the electroclinic effect. The achievable optical intensity modulation that can be detected through the full range of the A phase is considerably lower than for the surface-stabilized device, but the response is much faster. Furthermore, the response is strictly linear with respect to the applied electric field. The device concept is thus appropriate for modulator rather than for display applications. We describe the underlying physics and present measurements of induced tilt angle, of light modulation depth, and of rise time.
Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance
NASA Astrophysics Data System (ADS)
Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.
2017-10-01
Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.
Kim, Byeong Hak; Kim, Min Young; Chae, You Seong
2017-01-01
Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC. PMID:29280970
Kim, Byeong Hak; Kim, Min Young; Chae, You Seong
2017-12-27
Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.
Passive and electro-optic polymer photonics and InP electronics integration
NASA Astrophysics Data System (ADS)
Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.
2015-05-01
Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.
Liang, Xiao; Chen, Mei; Guo, Shumeng; Zhang, Lanying; Li, Fasheng; Yang, Huai
2017-11-22
Smart windows with controllable visible and near-infrared light transmittance can significantly improve the building's energy efficiency and inhabitant comfort. However, most of the current smart window technology cannot achieve the target of ideal solar control. Herein, we present a novel all-solution-processed hybrid micronano composite smart material that have four optical states to separately modulate the visible and NIR light transmittance through voltage and temperature, respectively. This dual-band optical modulation was achieved by constructing a phase-separated polymer framework, which contains the microsized liquid crystals domains with a negative dielectric constant and tungsten-doped vanadium dioxide (W-VO 2 ) nanocrystals (NCs). The film with 2.5 wt % W-VO 2 NCs exhibits transparency at normal condition, and the passage of visible light can be reversibly and actively regulated between 60.8% and 1.3% by external applied voltage. Also, the transmittance of NIR light can be reversibly and passively modulated between 59.4% and 41.2% by temperature. Besides, the film also features easy all-solution processability, fast electro-optical (E-O) response time, high mechanical strength, and long-term stability. The as-prepared film provides new opportunities for next-generation smart window technology, and the proposed strategy is conductive to engineering novel hybrid inorganic-organic functional matters.
Jin, Ru-Long; Yang, Han; Zhao, Di; Chen, Qi-Dai; Yan, Zhao-Xu; Yi, Mao-Bin; Sun, Hong-Bo
2010-02-15
Electro-optic probing of electric fields has been considered as a promising approach for integrated circuit diagnosis. However, the method is subject to relatively weak voltage sensitivity. In this Letter, we solve the problems with electro-acoustic effect. In contrast to the general electro-optic effect, the light phase modulation induced by the acoustic effect is 2 orders of magnitude stronger at its resonant frequency, as we observed in a GaAs thin film probe. Furthermore, this what we believe to be a novel method shows a highly reproducible linearity between the detected signals and the input voltages, which facilitates the voltage calibration.
Ishizawa, A.; Nishikawa, T.; Goto, T.; Hitachi, K.; Sogawa, T.; Gotoh, H.
2016-01-01
Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise “booster” for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz). PMID:27185040
Wu, Fengmin; Yang, Bin; Sun, Enwei; Liu, Gang; Tian, Hao; Cao, Wenwu
2013-01-01
Linear electro-optic properties of 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, with compositions in the rhombohedral, morphotropic phase boundary (MPB) and tetragonal phases, have been investigated. Very large effective electro-optic coefficient γc (204 pm/V) was observed in a crystal with the MPB composition when it is poled along [001]. The rhombohedral phase (x = 0.27 and 0.30) single crystals poled along [111] direction and tetragonal phase (x = 0.39) single crystal poled along [001] direction are in single domain, and their electro-optic coefficients (γc = 76, 94, and 43 pm/V for the crystals with x = 0.27, 0.30, and 0.39, respectively) were found to be much higher than that of traditional electro-optic single crystal LiNbO3 (γc = 19.9 pm/V). The electro-optic coefficients of the single crystal in the rhombohedral phase have excellent temperature stability in the experimental temperature range of 10–40 °C. The half-wave voltage Vπ was calculated to be much lower (less than 1000 V) than that of LiNbO3 single crystal (2800 V). These superior properties make the ternary relaxor-PT single crystals very promising for electro-optic modulation applications. PMID:23922449
NASA Astrophysics Data System (ADS)
Zhao, Y.-G.; Wu, A.; Lu, H.-L.; Chang, S.; Lu, W.-K.; Ho, S. T.; van der Boom, M. E.; Marks, T. J.
2001-07-01
Traveling-wave electro-optic modulators based on chromophoric self-assembled superlattices (SASs) possessing intrinsically polar microstructures have been designed and fabricated. Although the thickness of the SAS layer is only ˜150 nm, a π-phase shift is clearly observed. From the measured Vπ value, the effective electro-optic coefficient of the SAS film is determined to be ˜21.8 pm/V at an input wavelength of 1064 nm.
Electro-optical Synergy Technique
El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, My G.
2010-01-01
Objectives: Electro-optical synergy technology is one of the most recently described methods for nonablative skin rejuvenation. The aim of this study is to evaluate the effects of electro-optical synergy on connective tissue composition by histological and immunohistochemical techniques coupled with computerized morphometric analysis. Design: A prospective clinical study. Participants: Six volunteers with Fitzpatrick skin types 3 to 4 and Glogau class I to II wrinkles were subjected to three months (6 sessions at 2-week intervals) of electro-optical synergy treatment. Measurements: Standard photographs and skin biopsies were obtained at baseline as well as three and six months after the start of treatment. The authors performed quantitative evaluation of total elastin, tropoelastin, collagen types I, III, and VII, and newly synthesized collagen. Results: Noticeable clinical and histological improvement was observed after electro-optical synergy treatment. A statistically significant increase in the means of collagen types I, III, and VII, as well as newly synthesized collagen, together with increased levels of tropoelastin, were detected, while the mean level of total elastin was significantly decreased at the end of treatment and three months post-treatment. Conclusion: Electro-optical synergy is an effective treatment for contouring facial skin laxity. This modality stimulates the repair processes and reverses the clinical, as well as the histopathological, signs of aging with the advantage of being a relatively risk-free procedure with minimal patient recovery time. PMID:21203352
NASA Astrophysics Data System (ADS)
Thubthimthong, B.; Sasaki, T.; Hane, K.
2018-02-01
GaN as a nanophotonic material has gained much attention in recent years. Using the hybrid GaN/Si platform, we report the electro-optic tuning of guided-mode resonance in a vertically coupled hybrid GaN/Si microring resonator operating in the 1.5 μm window with up to a 6 dB extinction ratio and a 1.5 MHz modulation frequency (test equipment limit). The electro-optic tuning could be optically suppressed by electron-hole-originated screening induced by an ultraviolet excitation at 325 nm. Our work may benefit in externally intervenable optical interconnects for uninterrupted secure photonic networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyushkov, B N; Pivtsov, V S; Koliada, N A
2015-05-31
A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extrememore » light fields and their applications)« less
Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S.
2002-01-01
The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.
Electro-optic modulation at 1.4 GHz using single-crystal film of DAST
NASA Astrophysics Data System (ADS)
Ahyi, Ayayi; Titus, Jitto; Thakur, Mrinal
2002-03-01
Electro-optic modulation at 4 kHz using single-crystal film of DAST has been recently reported.^1 The measurement was made in the transverse configuration with the light beam propagating perpendicular to the film while electric field was applied in the plane of the film - along the dipole axis. In this presentation, we will discuss results of electro-optic modulation in DAST single-crystal films at significantly higher speed (0.1 - 1.4 GHz). Single-crystal films of DAST with excellent optical quality were prepared by modified shear method. The electro-optic modulation was measured using the technique of field-induced birefringence and the signal was recorded by a spectrum analyzer. Light (λ = 750 nm) propagated perpendicular to the film (thickness ~ 3 μm). We have observed excellent signal-to-noise ratio at these high frequencies, along with a low insertion loss. The voltage we applied is only ~ 1 volt across a gap of 15 μm and the observed signal-to-noise ratio is comparable to that of guided-wave electro-optic modulators. 1. M. Thakur, J. Xu, A. Bhowmik and M. Thakur, Appl. Phys. Lett., 74 635
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Swaminathan, S.
2016-04-01
The efficient application of electro-optic effect in lithium niobate based Mach-Zehnder interferometer (MZI) to construct the temperature sensor is used. An experimental set up for liquid temperature sensor is proposed. Temperature dependence of the bending loss light energy in multimode micro-plastic optical fiber (m-POF) and electro-optic effect of MZI are used. The performance of sensor at different temperatures is measured. It is seen that the light output of MZI switches from one port to the other port as temperature of liquid changes from 0°C to 100°C.
Fast optical switch having reduced light loss
NASA Technical Reports Server (NTRS)
Nelson, Bruce N. (Inventor); Cooper, Ronald F. (Inventor)
1992-01-01
An electrically controlled optical switch uses an electro-optic crystal of the type having at least one set of fast and slow optical axes. The crystal exhibits electric field induced birefringence such that a plane of polarization oriented along a first direction of a light beam passing through the crystal may be switched to a plane of polarization oriented along a second direction. A beam splitting polarizer means is disposed at one end of the crystal and directs a light beam passing through the crystal whose plane of polarization is oriented along the first direction differently from a light beam having a plane of polarization oriented along the second direction. The electro-optic crystal may be chosen from the crystal classes 43m, 42m, and 23. In a preferred embodiment, the electro-optic crystal is a bismuth germanium oxide crystal or a bismuth silicon oxide crystal. In another embodiment of the invention, polarization control optics are provided which transmit substantially all of the incident light to the electro-optic crystal, substantially reducing the insertion loss of the switch.
Electro-optic Waveguide Beam Deflector.
beam deflection by variation in the electro - optic effect produced within the waveguide region in response to known or determinable magnitude variations in the electrical potential of an applied signal source.
Embodiment of Learning in Electro-Optical Signal Processors
NASA Astrophysics Data System (ADS)
Hermans, Michiel; Antonik, Piotr; Haelterman, Marc; Massar, Serge
2016-09-01
Delay-coupled electro-optical systems have received much attention for their dynamical properties and their potential use in signal processing. In particular, it has recently been demonstrated, using the artificial intelligence algorithm known as reservoir computing, that photonic implementations of such systems solve complex tasks such as speech recognition. Here, we show how the backpropagation algorithm can be physically implemented on the same electro-optical delay-coupled architecture used for computation with only minor changes to the original design. We find that, compared to when the backpropagation algorithm is not used, the error rate of the resulting computing device, evaluated on three benchmark tasks, decreases considerably. This demonstrates that electro-optical analog computers can embody a large part of their own training process, allowing them to be applied to new, more difficult tasks.
Embodiment of Learning in Electro-Optical Signal Processors.
Hermans, Michiel; Antonik, Piotr; Haelterman, Marc; Massar, Serge
2016-09-16
Delay-coupled electro-optical systems have received much attention for their dynamical properties and their potential use in signal processing. In particular, it has recently been demonstrated, using the artificial intelligence algorithm known as reservoir computing, that photonic implementations of such systems solve complex tasks such as speech recognition. Here, we show how the backpropagation algorithm can be physically implemented on the same electro-optical delay-coupled architecture used for computation with only minor changes to the original design. We find that, compared to when the backpropagation algorithm is not used, the error rate of the resulting computing device, evaluated on three benchmark tasks, decreases considerably. This demonstrates that electro-optical analog computers can embody a large part of their own training process, allowing them to be applied to new, more difficult tasks.
Textured digital elevation model formation from low-cost UAV LADAR/digital image data
NASA Astrophysics Data System (ADS)
Bybee, Taylor C.; Budge, Scott E.
2015-05-01
Textured digital elevation models (TDEMs) have valuable use in precision agriculture, situational awareness, and disaster response. However, scientific-quality models are expensive to obtain using conventional aircraft-based methods. The cost of creating an accurate textured terrain model can be reduced by using a low-cost (<$20k) UAV system fitted with ladar and electro-optical (EO) sensors. A texel camera fuses calibrated ladar and EO data upon simultaneous capture, creating a texel image. This eliminates the problem of fusing the data in a post-processing step and enables both 2D- and 3D-image registration techniques to be used. This paper describes formation of TDEMs using simulated data from a small UAV gathering swaths of texel images of the terrain below. Being a low-cost UAV, only a coarse knowledge of position and attitude is known, and thus both 2D- and 3D-image registration techniques must be used to register adjacent swaths of texel imagery to create a TDEM. The process of creating an aggregate texel image (a TDEM) from many smaller texel image swaths is described. The algorithm is seeded with the rough estimate of position and attitude of each capture. Details such as the required amount of texel image overlap, registration models, simulated flight patterns (level and turbulent), and texture image formation are presented. In addition, examples of such TDEMs are shown and analyzed for accuracy.
Study of Linearization of Optical Polymer Modulators
2004-02-01
To improve the Spur Free Dynamic Range of analog electro - optic modulators in the 10 GHz regime, techniques for improving the linearity of these...devices must be developed. This report discusses an investigation into electro - optic directional couplers that use variable coupling in polymer-based
NASA Astrophysics Data System (ADS)
Yagi, Shogo; Fujiura, Kazuo
We have grown KTN crystals with optical quality, and developed high-speed beam deflectors and variable focal length lenses based on KTN's large electro-optic effect. Furthermore, by using the KTN beam deflectors, we have developed a swept light source for OCT operable at 200 kHz.
Thermal Relaxation Processes and Stability in Poled Electro-Optic Polymers
1994-06-30
34, Gordon Research Conference on Dielectric Phenomena, Holderness School, NH July 31-August 5, 1994. 2. K.D. Singer, R. Dureiko, J. Khaydarov , and R...Fuerst, "Relaxation in Poled Electro- optic Polymers", 4th Iketani Conference, Hawaii, May 17-20, 1994. 3. J.H. Andrews, J.D.V. Khaydarov , and K.D. Singer...Dureiko, J. Khaydarov , and R. Fuerst, "Relaxation Phenomena in Poled Electro-Optic Polymers", Proc. Mat. Res. Soc. 328, 499 (1994). 5. R.A. Fuerst, "Thermal
1984-12-01
The concept proposed is an electro - optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro - optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test. (Author)
The Hunter-Killer Model, Version 2.0. User’s Manual.
1986-12-01
Contract No. DAAK21-85-C-0058 Prepared for The Center for Night Vision and Electro - Optics DELNV-V Fort Belvoir, Virginia 22060 This document has been...INQUIRIES Inquiries concerning the Hunter-Killer Model or the Hunter-Killer Database System should be addressed to: 1-1 I The Night Vision and Electro - Optics Center...is designed and constructed to study the performance of electro - optic sensor systems in a combat scenario. The model simulates a two-sided battle
NASA Astrophysics Data System (ADS)
1984-12-01
The concept proposed is an electro-optic technique that would make it possible to spatially modulate a high power pulsed laser beam to thermoelastically induce focused ultrasound in a test material. Being a purely electro-optic device, the modulator, and therefore the depth at which the acoustic focus occurs, can be programmed electronically at electronic speeds. If successful, it would become possible to scan ultrasound continuously in three dimensions within the component or structure under test.
Cross-linked polyimides for integrated optics
NASA Astrophysics Data System (ADS)
Singer, Kenneth D.; Kowalczyk, Tony C.; Nguyen, Hung D.; Beuhler, Allyson J.; Wargowski, David A.
1997-01-01
We have investigated a promising class of polyimide materials for both passive and active electro-optic devices, namely crosslinkable polyimides. These fluorinated polyimides are soluble in the imidized form and are both thermally and photo-crosslinkable leading to easy processability into waveguide structures and the possibility of stable electro-optic properties. We have fabricated channel and slab waveguides and investigated the mechanism of optical propagation loss using photothermal deflection spectroscopy and waveguide loss spectroscopy, and found the losses to arise from residual absorption due to the formation of charge transfer states. The absorption is inhibited by fluorination leading to propagation losses as low as 0.3 dB/cm in the near infrared. Because of the ability to photocrosslink, channel waveguides are fabricated using a simple wet-etch process. Channel waveguides so formed are observed to have no excess loss over slab structures. Solubility followed by thermal cross-linking allows the formation of multilayer structures. We have produced electro-optic polymers by doping with the nonlinear optical chromophores, DCM and DADC; and a process of concurrent poling and thermal crosslinking. Multilayer structures have been investigated and poling fields optimized in the active layer by doping the cladding with an anti-static agent. The high glass-transition temperature and cross-linking leads to very stable electro-optic properties. We are currently building electro-optic modulators based on these materials. Progress and results in this area also are reported.
Silicon-integrated thin-film structure for electro-optic applications
McKee, Rodney A.; Walker, Frederick Joseph
2000-01-01
A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.
2015-01-01
integrated circuit,” AFRL/SNDP Rome, NY (MIPR#F1ATA06317G002) (2007). [2] S-K. Kim, W. Yun, K. Geary, Y.-C. Hung, and H. R. Fetterman , “Electro-optic...Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, A. Zhang, G. Todorova, A. Harper, H. R. Fetterman , D. Chen, A. Upupa, D. Bhattacharya... Fetterman , “Push-pull electro-optic polymer modulators with half-wave voltage and low loss at both 1310 and 1550 nm,” Appl. Phys. Lett., 78, 3136-3138
Detection of radio-frequency modulated optical signals by two and three terminal microwave devices
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Simons, R. N.; Wojtczuk, S.
1987-01-01
An interdigitated photoconductor (two terminal device) on GaAlAs/GaAs heterostructure was fabricated and tested by an electro-optical sampling technique. Further, the photoresponse of GaAlAs/GaAs HEMT (three terminal device) was obtained by illuminating the device with an optical signal modulated up to 8 GHz. Gain-bandwidth product, response time, and noise properties of photoconductor and HEMT devices were obtained. Monolithic integration of these photodetectors with GaAs microwave devices for optically controlled phased array antenna applications is discussed.
Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques
2010-09-01
panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical
NASA Astrophysics Data System (ADS)
Sprung, Detlev; van Eijk, Alexander M. J.; Sucher, Erik; Eisele, Christian; Seiffer, Dirk; Stein, Karin
2016-10-01
The experiment FESTER (First European South African Transmission ExpeRiment) took place in 2015 to investigate the atmospheric influence on electro-optical systems performance across False Bay / South Africa on a long term basis. Several permanent stations for monitoring electro-optical propagation and atmospheric parameters were set up around the Bay. Additional intensive observation periods (IOPs) allowed for boat runs to assess the inhomogeneous atmospheric propagation conditions over water. In this paper we focus on the distribution of optical turbulence over the Bay. The different impact of water masses originating from the Indian Ocean and the Benguela current on the development of optical turbulence is discussed. The seasonal behavior of optical turbulence is presented and its effect on electro-optical system performance examined.
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru
2002-12-01
We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.
NASA Astrophysics Data System (ADS)
Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.
2008-02-01
Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.
Ultrafast modulators based on nonlinear photonic crystal waveguides
NASA Astrophysics Data System (ADS)
Liu, Zhifu; Li, Jianheng; Tu, Yongming; Ho, Seng-Tiong; Wessels, Bruce W.
2011-03-01
Nonlinear photonic crystal (PhC) waveguides are being developed for ultrafast modulators. To enable phase velocity matching we have investigated one- and two-dimensional structures. Photonic crystal (PhC) waveguides based on epitaxial barium titanate (BTO) thin film in a Si3N4/BTO/MgO multilayer structure were fabricated by electron beam lithography or focused ion beam (FIB) milling. For both one- and two-dimensional PhCs, simulation shows that sufficient refractive index contrast is achieved to form a stop band. For one-dimensional Bragg reflector, we measured its slow light properties and the group refractive index of optical wave. For a millimeter long waveguide a 27 nm wide stop band was obtained at 1550 nm. A slowing of the light was observed, the group refractive indices at the mid band gap and at the band edges were estimated to be between 8.0 and 12 for the transverse electric (TE) mode, and 6.9 and 13 for the transverse magnetic (TM) mode. For TE optical modes, the enhancement factor of EO coefficient ranges from 7 to 13, and for the TM mode, the factor ranges from 5.9 to 15. Measurements indicate that near velocity phase matching can be realized. Upon realizing the phase velocity matching condition, devices with a small foot print with bandwidths at 490 GHz can be attained. Two-dimensional PhC crystal with a hexagonal lattice was also investigated. The PhCs were fabricated from epitaxial BTO thin film multilayers using focused ion beam milling. The PhCs are based on BTO slab waveguide and air hole arrays defined within Si3N4 and BTO thin films. A refractive index contrast of 0.4 between the barium titanate thin film multilayers and the air holes enables strong light confinement. For the TE optical mode, the hexagonal photonic crystal lattice with a diameter of 155 nm and a lattice constant of 740 nm yields a photonic bandgap over the wavelength range from 1525 to 1575 nm. The transmission spectrum of the PhC waveguide exhibits stronger Fabry Perot resonance compared to that of conventional waveguide. Measured transmission spectra show a bandgap in the ΓM direction in the reciprocal lattice that is in agreement with the simulated results using the finite-difference time-domain (FDTD) method. Compared to polarization intensity EO modulator with a half-wave voltage length product of 4.7 V•mm. The PhC based EO modulator has a factor of 6.6 improvement in the figure of merit performance. The thin film PhC waveguide devices show considerable potential for ultra-wide bandwidth electro-optic modulators as well as tunable optical filters and switches.
Ouarda, Yassine; Tiwari, Bhagyashree; Azaïs, Antonin; Vaudreuil, Marc-Antoine; Ndiaye, Sokhna Dieng; Drogui, Patrick; Tyagi, Rajeshwhar Dayal; Sauvé, Sébastien; Desrosiers, Mélanie; Buelna, Gerardo; Dubé, Rino
2018-02-01
In this work, the combination of membrane bioreactor (MBR) and electro-oxidation (EO) process was studied for the treatment of a synthetic hospital wastewater fortified with four pharmaceutical pollutants namely carbamazepine (CBZ), ibuprofen (IBU), estradiol (E-E) at a concentration of 10 μg L -1 venlafaxine (VEN) at 0.2 μg L -1 . Two treatment configurations were studied: EO process as pre-treatment and post-treatment. Wastewater treatment with MBR alone shows high removal percentages of IBU and E-E (∼90%). Unlikely for CBZ and VEN, a low elimination percentage (∼10%) was observed. The hydraulic and the solid retention times (HRT and SRT) were 18 h and 140 d respectively, while the biomass concentration in the MBR was 16.5 g L -1 . To enhance pharmaceuticals elimination, an EO pretreatment was conducted during 40 min at 2 A. This configuration allowed a 92% removal for VEN, which was far greater than both treatments alone, with lower than 30% and 50% for MBR and EO, respectively. The MBR-EO coupling (EO as post-treatment) allows high removal percentages (∼97%) of the four pharmaceutical pollutants after 40 min of treatment at a current intensity of 0.5 A with Nb/BDD as electrodes. This configuration appears to be very effective compared to the first configuration (EO-MBR) where EO process is used as a pre-treatment. Toxicity assessment showed that the treated effluent of this configuration is not toxic to Daphnia magna except at 100% v/v. The MBR-EO coupling appears to be a promising treatment for contaminated hospital effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Electronic and Electro-Optic Future of III-V Semiconductor Compounds.
1978-12-01
An assessment of material development of III-V compounds for electro - optic , microwave and millimeter wave technology is presented. Questions concerning material selection, needs and processing is addressed. (Author)
Linear electro-optic effect in semiconductors: Ab initio description of the electronic contribution
NASA Astrophysics Data System (ADS)
Prussel, Lucie; Véniard, Valérie
2018-05-01
We propose an ab initio framework to derive the electronic part of the second-order susceptibility tensor for the electro-optic effect in bulk semiconductors. We find a general expression for χ(2 ) evaluated within time-dependent density-functional theory, including explicitly the band-gap corrections at the level of the scissors approximation. Excitonic effects are accounted for, on the basis of a simple scalar approximation. We apply our formalism to the computation of the electro-optic susceptibilities for several semiconductors, such as GaAs, GaN, and SiC. Taking into account the ionic contribution according to the Faust-Henry coefficient, we obtain a good agreement with experimental results. Finally, using different types of strain to break centrosymmetry, we show that high electro-optic coefficients can be obtained in bulk silicon for a large range of frequencies.
Extreme nonlinear terahertz electro-optics in diamond for ultrafast pulse switching
NASA Astrophysics Data System (ADS)
Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.
2017-03-01
Polarization switching of picosecond laser pulses is a fundamental concept in signal processing [C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986); V. R. Almeida et al., Nature 431, 1081 (2004); and A. A. P. Pohl et al., Photonics Sens. 3, 1 (2013)]. Conventional switching devices rely on the electro-optical Pockels effect and work at radio frequencies. The ensuing gating time of several nanoseconds is a bottleneck for faster switches which is set by the performance of state-of-the-art high-voltage electronics. Here we show that by substituting the electric field of several kV/cm provided by modern electronics by the MV/cm field of a single-cycle THz laser pulse, the electro-optical gating process can be driven orders of magnitude faster, at THz frequencies. In this context, we introduce diamond as an exceptional electro-optical material and demonstrate a pulse gating time as fast as 100 fs using sub-cycle THz-induced Kerr nonlinearity. We show that THz-induced switching in the insulator diamond is fully governed by the THz pulse shape. The presented THz-based electro-optical approach overcomes the bandwidth and switching speed limits of conventional MHz/GHz electronics and establishes the ultrafast electro-optical gating technology for the first time in the THz frequency range. We finally show that the presented THz polarization gating technique is applicable for advanced beam diagnostics. As a first example, we demonstrate tomographic reconstruction of a THz pulse in three dimensions.
Infrared sensor and window system issues
NASA Astrophysics Data System (ADS)
Hargraves, Charles H., Jr.; Martin, James M.
1992-12-01
EO/IR windows are a significant challenge for the weapon system sensor designer who must design for high EO performance, low radar cross section (RCS), supersonic flight, durability, producibility and affordable initial and life cycle costs. This is particularly true in the 8 to 12 micron IR band at which window materials and coating choices are limited by system design requirements. The requirements also drive the optimization of numerous mechanical, optical, materials, and electrical parameters. This paper addresses the EO/IR window as a system design challenge. The interrelationship of the optical, mechanical, and system design processes are examined. This paper presents a summary of the test results, trade studies and analyses that were performed for multi-segment, flight-worthy optical windows with superior optical performance at subsonic and supersonic aircraft velocities and reduced radar cross section. The impact of the window assembly on EO system modulation transfer function (MTF) and sensitivity will be discussed. The use of conductive coatings for shielding/signature control will be discussed.
Alterable Magnetic Gratings for Fiber Optic Switching.
1982-12-01
monotonically decreasing function as X moves into the infrared from the visible. The Faraday rotation of bismuth garnet samples including the new large... photodector giving as fast a response as possible while still providing usable signal levels, measure the detector response * using the electro-optic...icity. Normally a stripe domain array is configured as a linear grating. In-plane magnetic fields can rotate the grating as well as alter the periodicity
Electro-optic voltage sensor head
Crawford, T.M.; Davidson, J.R.; Woods, G.K.
1999-08-17
The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.
Electro-optic voltage sensor head
Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.
1999-01-01
The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.
Research on a solid state-streak camera based on an electro-optic crystal
NASA Astrophysics Data System (ADS)
Wang, Chen; Liu, Baiyu; Bai, Yonglin; Bai, Xiaohong; Tian, Jinshou; Yang, Wenzheng; Xian, Ouyang
2006-06-01
With excellent temporal resolution ranging from nanosecond to sub-picoseconds, a streak camera is widely utilized in measuring ultrafast light phenomena, such as detecting synchrotron radiation, examining inertial confinement fusion target, and making measurements of laser-induced discharge. In combination with appropriate optics or spectroscope, the streak camera delivers intensity vs. position (or wavelength) information on the ultrafast process. The current streak camera is based on a sweep electric pulse and an image converting tube with a wavelength-sensitive photocathode ranging from the x-ray to near infrared region. This kind of streak camera is comparatively costly and complex. This paper describes the design and performance of a new-style streak camera based on an electro-optic crystal with large electro-optic coefficient. Crystal streak camera accomplishes the goal of time resolution by direct photon beam deflection using the electro-optic effect which can replace the current streak camera from the visible to near infrared region. After computer-aided simulation, we design a crystal streak camera which has the potential of time resolution between 1ns and 10ns.Some further improvements in sweep electric circuits, a crystal with a larger electro-optic coefficient, for example LN (γ 33=33.6×10 -12m/v) and the optimal optic system may lead to better time resolution less than 1ns.
Innovative 3D Visualization of Electro-optic Data for MCM
2001-09-30
The long-term goal is to develop innovative methods for transforming data taken by electro - optic and acoustic MCM sensors into graphical representations better suited to human interpretation, specifically to aid mine classification.
Quantum model for electro-optical amplitude modulation.
Capmany, José; Fernández-Pousa, Carlos R
2010-11-22
We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.
2.79 μm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser.
Wang, Li; Wang, Jintao; Yang, Jingwei; Wu, Xianyou; Sun, Dunlu; Yin, Shaotang; Jiang, Haihe; Wang, Jiyang; Xu, Changqing
2013-06-15
A flash lamp pumped Cr,Er:YSGG laser utilizing a langasite (LGS) crystal as an electro-optic Q-switch is proposed and demonstrated. It is proved that a LGS crystal with relatively high damage threshold can be used as the electro-optic Q-switch at 2.79 μm, and 216 mJ pulse energy with 14.36 ns pulse width is achieved. Its corresponding peak power of pulse can reach 15 MW, to our knowledge the best result at a 2.79 μm wavelength.
Athermal design for the potassium titanyl phosphate electro-optical modulator
NASA Astrophysics Data System (ADS)
Zheng, Guoliang; Xu, Jie; Chen, Lixiang; Wang, Hongcheng; She, Weilong
2007-09-01
An athermal design for the KTP electro-optical modulator is presented. By using the wave coupling theory of linear electro-optic effect and taking account of thermal expansion, the more accurate athermal static phase retardation (ASPR) directions in potassium titanyl phosphate (KTP) are found, and the optimized design for a transverse amplitude modulator at ASPR orientation is obtained. The numerical results show that the modulator with an athermal Soleil-Babinet compensator is of excellent thermal stability, and the acceptable error of the ASPR direction is less than 0.1°.
Electro-optically actuated liquid-lens zoom
NASA Astrophysics Data System (ADS)
Pütsch, O.; Loosen, P.
2012-06-01
Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.
Electro-optic architecture (EOA) for sensors and actuators in aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Glomb, W. L., Jr.
1989-01-01
Results of a study to design an optimal architecture for electro-optical sensing and control in advanced aircraft and space systems are described. The propulsion full authority digital Electronic Engine Control (EEC) was the focus for the study. The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors on the engine. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pair of optical fibers to common electro-optical interfaces. The architecture contains common, multiplex interfaces to seven sensor groups: (1) self luminous sensors; (2) high temperatures; (3) low temperatures; (4) speeds and flows; (5) vibration; (6) pressures; and (7) mechanical positions. Nine distinct fiber-optic sensor types were found to provide these sensing functions: (1) continuous wave (CW) intensity modulators; (2) time division multiplexing (TDM) digital optic codeplates; (3) time division multiplexing (TDM) analog self-referenced sensors; (4) wavelength division multiplexing (WDM) digital optic code plates; (5) wavelength division multiplexing (WDM) analog self-referenced intensity modulators; (6) analog optical spectral shifters; (7) self-luminous bodies; (8) coherent optical interferometers; and (9) remote electrical sensors. The report includes the results of a trade study including engine sensor requirements, environment, the basic sensor types, and relevant evaluation criteria. These figures of merit for the candidate interface types were calculated from the data supplied by leading manufacturers of fiber-optic sensors.
NASA Astrophysics Data System (ADS)
Najafi-Ashtiani, Hamed; Bahari, Ali; Gholipour, Samira; Hoseinzadeh, Siamak
2018-01-01
The composites of tungsten trioxide and silver are synthesized by sodium tungstate and silver nitrate precursors. The structural properties of composite coatings are studied by FTIR, XRD, and XPS. The FTIR analysis of synthesized composite powder corroborated the bonds between tungsten and oxygen elements in WO3 molecules. Furthermore, the XRD spectra show crystalline nature while particle size analysis that is investigated by X-powder software shows average particle size of 24 and 25 nm for samples. The structural analyses show that the addition of silver dopant does not change the stoichiometry of tungsten trioxide and only increase the size of the aggregation in the films. Furthermore, these films have an average approximate roughness of about 10.7, 13.1 and 14.2 nm for sample 1, 2 and 3, respectively. The real and imaginative parts of permittivity are investigated using LCR meter in the frequency range 1 Hz-10 GHz. The optical spectra of composite coatings are characterized in the 300-900 nm wavelength range and the calculation of optical band gaps of them exhibited the directly allowed transition with the values of 3.8 and 3.85 eV. From UV-visible spectroscopy studies, the absorption coefficient of the composite thin films is determined to be of the order of 105 cm- 1 and the obtained refraction and extinction indexes indicated normal dispersive coatings. Due to their optical and electrical properties, the synthesized composite material is a promising candidate for use in electro-optical applicants.
Night vision and electro-optics technology transfer, 1972 - 1981
NASA Astrophysics Data System (ADS)
Fulton, R. W.; Mason, G. F.
1981-09-01
The purpose of this special report, 'Night Vision and Electro-Optics Technology Transfer 1972-1981,' is threefold: To illustrate, through actual case histories, the potential for exploiting a highly developed and available military technology for solving non-military problems. To provide, in a layman's language, the principles behind night vision and electro-optical devices in order that an awareness may be developed relative to the potential for adopting this technology for non-military applications. To obtain maximum dollar return from research and development investments by applying this technology to secondary applications. This includes, but is not limited to, applications by other Government agencies, state and local governments, colleges and universities, and medical organizations. It is desired that this summary of Technology Transfer activities within Night Vision and Electro-Optics Laboratory (NV/EOL) will benefit those who desire to explore one of the vast technological resources available within the Defense Department and the Federal Government.
Present status of metrology of electro-optical surveillance systems
NASA Astrophysics Data System (ADS)
Chrzanowski, K.
2017-10-01
There has been a significant progress in equipment for testing electro-optical surveillance systems over the last decade. Modern test systems are increasingly computerized, employ advanced image processing and offer software support in measurement process. However, one great challenge, in form of relative low accuracy, still remains not solved. It is quite common that different test stations, when testing the same device, produce different results. It can even happen that two testing teams, while working on the same test station, with the same tested device, produce different results. Rapid growth of electro-optical technology, poor standardization, limited metrology infrastructure, subjective nature of some measurements, fundamental limitations from laws of physics, tendering rules and advances in artificial intelligence are major factors responsible for such situation. Regardless, next decade should bring significant improvements, since improvement in measurement accuracy is needed to sustain fast growth of electro-optical surveillance technology.
Electro-optic Modulation in Single-crystal Film of DAST Measured at 1.55 microns
NASA Astrophysics Data System (ADS)
Titus, Jitto; Swamy, Rajendra; Govindan Kutty, Srivatsa; Khatavkar, Sanchit; Thakur, Mrinal
2003-03-01
Exceptionally large electro-optic coefficient and high-speed modulation at 750 nm in DAST single-crystal film has been recently reported.[1] In this presentation, our measurement of electro-optic modulation in DAST single-crystal film at 1.55 microns will be discussed. The single-crystal film was prepared by the modified shear method. The modulation measurement was performed in the transverse configuration using the field-induced birefringence method. A semiconductor laser was used for this experiment. The light beam was propagated perpendicular to the film and the modulation was recorded for an ac field applied along the dipole axis on the film. About 6.5at a low field leading to a magnitude of the electro-optic coefficient (r11) of about 200 pm/V at 1.55 microns. 1. M. Thakur, A. Mishra, J. Titus and A.C. Ahyi, APL, 81 3738 (2002).
Electro-optic product design for manufacture: where next?
NASA Astrophysics Data System (ADS)
Barr, John R. M.; MacDonald, M.; Jeffery, G.; Troughton, M.
2016-10-01
Manufacturing of electro-optic products for military environments poses a large number of apparently intractable and mutually contradictory problems. The ability to successfully engage in this area presents an intellectual challenge of a high order. The Advanced Targeting Sector of Leonardo's Airborne and Space Systems Division, based in Edinburgh, has developed a successful range of electro-optic products and transitioned these into a volume, and high value, manufacturing environment. As products cycle through the design process, there has been strong feedback from users, suppliers, and most importantly from our manufacturing organization, that has driven evolution of our design practices. It is fair to say that recent pointer trackers and lasers bear little resemblance to those designed and built 10 years ago. Looking ahead, this process will only continue. There are interesting technologies that will drive improvements in manufacturability, reliability and usability of electro-optic products. Examples might include freeform optics, additive manufacture of metal components, and laser welding of optics to metals, to name but a few. These have uses across our product portfolio and, when sufficiently matured, will have a major impact on the product quality and reliability
Optical logic gates based on electro-optic modulation with Sagnac interferometer.
Li, Qiliang; Zhu, Mengyun; Li, Dongqiang; Zhang, Zhen; Wei, Yizhen; Hu, Miao; Zhou, Xuefang; Tang, Xianghong
2014-07-20
In this work, we present a new structure to realize optical logic operation in a Sagnac interferometer with electro-optical modulation. In the scheme, we divide two counterpropagation signals in a Sagnac loop to two different arms with the electro-optical crystal by using two circulators. Lithium niobate materials whose electro-optical coefficient can be as large as 32.2×10(-12) m/V make up the arms of the waveguides. Using the transfer matrix of the fiber coupler, we analyze the propagation of signals in this system and obtain the transmission characteristic curves and the extinction ratio. The results indicate that this optical switching has a high extinction ratio of about 60 dB and an ultrafast response time of 2.036 ns. In addition, the results reveal that the change of the dephasing between the two input signals and the modification of the modulation voltage added to the electro-optical crystal leads to the change of the extinction ratio. We also conclude that, in cases of the dephasing of two initial input signals Δφ=0, we can obtain the various logical operations, such as the logical operations D=A¯·B, D=A·B¯, C=A+B, and D=A⊕B in ports C and D of the system by adjusting the modulation voltage. When Δφ≠0, we obtain the arithmetic operations D=A+B, C=A⊕B, D=A·B¯, and C=A¯·B in ports C and D. This study is significant for the design of all optical networks by adjusting the modulation voltage.
NASA Astrophysics Data System (ADS)
Phelan, Brian R.; Ranney, Kenneth I.; Ressler, Marc A.; Clark, John T.; Sherbondy, Kelly D.; Kirose, Getachew A.; Harrison, Arthur C.; Galanos, Daniel T.; Saponaro, Philip J.; Treible, Wayne R.; Narayanan, Ram M.
2017-05-01
The U.S. Army Research Laboratory has developed the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar, which is capable of imaging concealed/buried targets using forward- and side-looking configurations. The SAFIRE radar is vehicle-mounted and operates from 300 MHz-2 GHz; the step size can be adjusted in multiples of 1 MHz. It is also spectrally agile and capable of excising frequency bands, which makes it ideal for operation in congested and/or contested radio frequency (RF) environments. Furthermore, the SAFIRE radar receiver has a super-heterodyne architecture, which was designed so that intermodulation products caused by interfering signals could be easily filtered from the desired received signal. The SAFIRE system also includes electro-optical (EO) and infrared (IR) cameras, which can be fused with radar data and displayed in a stereoscopic augmented reality user interface. In this paper, recent upgrades to the SAFIRE system are discussed and results from the SAFIRE's initial field tests are presented.
Multi-Site Simultaneous Time-Resolved Photometry with a Low Cost Electro-Optics System †
Gasdia, Forrest; Barjatya, Aroh; Bilardi, Sergei
2017-01-01
Sunlight reflected off of resident space objects can be used as an optical signal for astrometric orbit determination and for deducing geometric information about the object. With the increasing population of small satellites and debris in low Earth orbit, photometry is a powerful tool in operational support of space missions, whether for anomaly resolution or object identification. To accurately determine size, shape, spin rate, status of deployables, or attitude information of an unresolved resident space object, multi-hertz sample rate photometry is required to capture the relatively rapid changes in brightness that these objects can exhibit. OSCOM, which stands for Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a low cost and portable telescope system capable of time-resolved small satellite photometry, and is field deployable on short notice for simultaneous observation from multiple sites. We present the electro-optical design principles behind OSCOM and light curves of the 1.5 U DICE-2 CubeSat and simultaneous observations of the main body of the ASTRO-H satellite after its fragmentation event. PMID:28556802
Multi-Site Simultaneous Time-Resolved Photometry with a Low Cost Electro-Optics System.
Gasdia, Forrest; Barjatya, Aroh; Bilardi, Sergei
2017-05-30
Sunlight reflected off of resident space objects can be used as an optical signal for astrometric orbit determination and for deducing geometric information about the object. With the increasing population of small satellites and debris in low Earth orbit, photometry is a powerful tool in operational support of space missions, whether for anomaly resolution or object identification. To accurately determine size, shape, spin rate, status of deployables, or attitude information of an unresolved resident space object, multi-hertz sample rate photometry is required to capture the relatively rapid changes in brightness that these objects can exhibit. OSCOM, which stands for Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a low cost and portable telescope system capable of time-resolved small satellite photometry, and is field deployable on short notice for simultaneous observation from multiple sites. We present the electro-optical design principles behind OSCOM and light curves of the 1.5 U DICE-2 CubeSat and simultaneous observations of the main body of the ASTRO-H satellite after its fragmentation event.
NASA Astrophysics Data System (ADS)
Narayanan, A.; Titus, J.; Rajagopalan, H.; Vippa, P.; Thakur, M.
2006-03-01
Single-crystal film of DAST (4'-dimethylamino-N-methyl-4-stilbazolium tosylate) has been shown [1] to have exceptionally large electro-optic coefficients (r11 ˜ 770 pm/V at 633 nm). In this report, single crystal film of a combination of materials (co-crystal) involving DAST and a dye molecule IR-125 will be discussed. Modified shear method was used to prepare the co-crystal films. The film has been characterized using polarized optical microscopy, optical absorption spectroscopy and x-ray diffraction. The optical absorption spectrum has two major bands: one at about 350--600 nm corresponding to DAST and the other at about 600-900 nm corresponding to IR-125. The x-ray diffraction results show peaks involving the presence of DAST and IR-125 within the co-crystal film. Since the co-crystal has strong absorption at longer wavelengths it is expected to show higher electro-optic coefficients at longer wavelengths. Preliminary measurements at 1.55 μm indicate a high electro-optic coefficient of the co-crystal film. [1] Swamy, Kutty, Titus, Khatavkar, Thakur, Appl. Phys. Lett. 2004, 85, 4025; Kutty, Thakur, Appl. Phys. Lett. 2005, 87, 191111.
Large electro-optic coefficient in single-crystal film of a novel organic salt, DASMS
NASA Astrophysics Data System (ADS)
Tan, Shida; Ahyi, Ayayi; Mishra, Alpana; Thakur, Mrinal
2001-03-01
We have synthesized a novel electro-optic material 4'-dimethylamino-4-methylstilbazolium methanesulfonate (DASMS). Large-area ( 60 mm^2), single-crystal films of DASMS with excellent optical quality have been grown for the first time by a modified shear method^1. These films have the noncentrosymmetric hydrated phase, which is electro-optically active^2. Polarized optical microscopy, X-ray diffraction and polarized UV-visible spectroscopic studies have been used to characterize the films. The single-crystal films were observed to be highly dichroic. Using field-induced birefringence measurement, the electro-optic coefficient of DASMS at 632.8 nm has been estimated to be r_11 160 pm/V, which is five times larger than the eletro-optic coefficient of LiNbO_3. For a 1.8 μm thick film, 28% intensity modulation was observed for an electric field of 4 V/μm. 1. M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989). 2. E. P. Boden, P. D. Phelps, C. P. Yakymyshyn, and K. R. Stewart, US patent 5,194,584.
Electro-optical muzzle flash detection
NASA Astrophysics Data System (ADS)
Krieg, Jürgen; Eisele, Christian; Seiffer, Dirk
2016-10-01
Localizing a shooter in a complex scenario is a difficult task. Acoustic sensors can be used to detect blast waves. Radar technology permits detection of the projectile. A third method is to detect the muzzle flash using electro-optical devices. Detection of muzzle flash events is possible with focal plane arrays, line and single element detectors. In this paper, we will show that the detection of a muzzle flash works well in the shortwave infrared spectral range. Important for the acceptance of an operational warning system in daily use is a very low false alarm rate. Using data from a detector with a high sampling rate the temporal signature of a potential muzzle flash event can be analyzed and the false alarm rate can be reduced. Another important issue is the realization of an omnidirectional view required on an operational level. It will be shown that a combination of single element detectors and simple optics in an appropriate configuration is a capable solution.
Lee, Dong-Joon; Kang, No-Weon; Choi, Jun-Ho; Kim, Junyeon; Whitaker, John F.
2011-01-01
In this paper we review recent design methodologies for fully dielectric electro-optic sensors that have applications in non-destructive evaluation (NDE) of devices and materials that radiate, guide, or otherwise may be impacted by microwave fields. In many practical NDE situations, fiber-coupled-sensor configurations are preferred due to their advantages over free-space bulk sensors in terms of optical alignment, spatial resolution, and especially, a low degree of field invasiveness. We propose and review five distinct types of fiber-coupled electro-optic sensor probes. The design guidelines for each probe type and their performances in absolute electric-field measurements are compared and summarized. PMID:22346604
Electro-optical resonance modulation of vertical-cavity surface-emitting lasers.
Germann, Tim David; Hofmann, Werner; Nadtochiy, Alexey M; Schulze, Jan-Hindrik; Mutig, Alex; Strittmatter, André; Bimberg, Dieter
2012-02-27
Optical and electrical investigations of vertical-cavity surface-emitting lasers (VCSEL) with a monolithically integrated electro-optical modulator (EOM) allow for a detailed physical understanding of this complex compound cavity laser system. The EOM VCSEL light output is investigated to identify optimal working points. An electro-optic resonance feature triggered by the quantum confined Stark effect is used to modulate individual VCSEL modes by more than 20 dB with an extremely small EOM voltage change of less than 100 mV. Spectral mode analysis reveals modulation of higher order modes and very low wavelength chirp of < 0.5 nm. Dynamic experiments and simulation predict an intrinsic bandwidth of the EOM VCSEL exceeding 50 GHz.
32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units.
Qiao, Lei; Tang, Weijie; Chu, Tao
2017-02-09
To construct large-scale silicon electro-optical switches for optical interconnections, we developed a method using a limited number of power monitors inserted at certain positions to detect and determine the optimum operating points of all switch units to eliminate non-uniform effects arising from fabrication errors. We also introduced an optical phase bias to one phase-shifter arm of a Mach-Zehnder interferometer (MZI)-type switch unit to balance the two operation statuses of a silicon electro-optical switch during push-pull operation. With these methods, a 32 × 32 MZI-based silicon electro-optical switch was successfully fabricated with 180-nm complementary metal-oxide-semiconductor (CMOS) process technology, which is the largest scale silicon electro-optical switch to the best of our knowledge. At a wavelength of 1520 nm, the on-chip insertion losses were 12.9 to 16.5 dB, and the crosstalk ranged from -17.9 to -24.8 dB when all units were set to the 'Cross' status. The losses were 14.4 to 18.5 dB, and the crosstalk ranged from -15.1 to -19.0 dB when all units were in the 'Bar' status. The total power consumptions of the 32 × 32 switch were 247.4 and 542.3 mW when all units were set to the 'Cross' and 'Bar' statuses, respectively.
32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units
Qiao, Lei; Tang, Weijie; Chu, Tao
2017-01-01
To construct large-scale silicon electro-optical switches for optical interconnections, we developed a method using a limited number of power monitors inserted at certain positions to detect and determine the optimum operating points of all switch units to eliminate non-uniform effects arising from fabrication errors. We also introduced an optical phase bias to one phase-shifter arm of a Mach–Zehnder interferometer (MZI)-type switch unit to balance the two operation statuses of a silicon electro-optical switch during push–pull operation. With these methods, a 32 × 32 MZI-based silicon electro-optical switch was successfully fabricated with 180-nm complementary metal–oxide–semiconductor (CMOS) process technology, which is the largest scale silicon electro-optical switch to the best of our knowledge. At a wavelength of 1520 nm, the on-chip insertion losses were 12.9 to 16.5 dB, and the crosstalk ranged from −17.9 to −24.8 dB when all units were set to the ‘Cross’ status. The losses were 14.4 to 18.5 dB, and the crosstalk ranged from −15.1 to −19.0 dB when all units were in the ‘Bar’ status. The total power consumptions of the 32 × 32 switch were 247.4 and 542.3 mW when all units were set to the ‘Cross’ and ‘Bar’ statuses, respectively. PMID:28181557
Analog electro-optical readout of SiPMs achieves fast timing required for time-of-flight PET/MR
Bieniosek, MF
2015-01-01
The design of combined positron emission tomography/magnetic resonance (PET/MR) systems presents a number of challenges to engineers, as it forces the PET system to acquire data in space constrained environment that is sensitive to electro-magnetic interference and contains high static, radio frequency (RF) and gradient fields. In this work we validate fast timing performance of a PET scintillation detector using a potentially very compact, very low power, and MR compatible readout method in which analog silicon photomultipliers (SiPM) signals are transmitted optically away from the MR bore with little or even no additional readout electronics. This analog ‘electro-optial’ method could reduce the entire PET readout in the MR bore to two compact, low power components (SiPMs and lasers). Our experiments show fast timing performance from analog electro-optical readout with and without pre-amplification. With 3mm × 3mm × 20mm lutetium-yttrium oxyorthosilicate (LYSO) crystals and Excelitas SiPMs the best two-sided fwhm coincident timing resolution achieved was 220 +/- 3ps in electrical mode, 230 +/- 2ps in electro-optical with preamp mode, and 253 +/- 2ps in electro-optical without preamp mode. Timing measurements were also performed with Hamamatsu SiPMs and 3mm × 3mm × 5mm crystals. In the future the timing degradation seen can be further reduced with lower laser noise or improvements SiPM rise time or gain. PMID:25905626
NASA Astrophysics Data System (ADS)
Feng, M.; Holonyak, N.; Wang, C. Y.
2017-09-01
Optical bistable devices are fundamental to digital photonics as building blocks of switches, logic gates, and memories in future computer systems. Here, we demonstrate both optical and electrical bistability and capability for switching in a single transistor operated at room temperature. The electro-optical hysteresis is explained by the interaction of electron-hole (e-h) generation and recombination dynamics with the cavity photon modulation in different switching paths. The switch-UP and switch-DOWN threshold voltages are determined by the rate difference of photon generation at the base quantum-well and the photon absorption via intra-cavity photon-assisted tunneling controlled by the collector voltage. Thus, the transistor laser electro-optical bistable switching is programmable with base current and collector voltage, and the basis for high speed optical logic processors.
Real-time digital signal processing for live electro-optic imaging.
Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro
2009-08-31
We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chizhov, P A; Ushakov, A A; Bukin, V V
2015-05-31
We propose a scheme for measuring the spatial distribution of the THz pulse electric field strength in an electro-optic crystal using optical interferometry. The resulting images of the field distribution from a test source with a spherical wave front are presented. (extreme light fields and their applications)
Third-order nonlinear electro-optic measurements in the smectic-? phase
NASA Astrophysics Data System (ADS)
Nowicka, Kamila; Bielejewska, Natalia
2018-02-01
The chiral smectic subphase with three-layer structure, ?, is now of great interest from the point of view of device technologies such as multistate or symmetric switching. We report that the unique nonlinear electro-optic response can serve as precise mark of the phase transition into three-layer structure. The problem is illustrated with the first and third harmonic electro-optic spectra. Furthermore, the characteristic response of the helical liquid crystal phases correlated with particular collective modes using the Debye-type relaxation method for the well-known prototype liquid crystal material (MHPOBC) are presented.
Carrier-envelope phase control using linear electro-optic effect.
Gobert, O; Paul, P M; Hergott, J F; Tcherbakoff, O; Lepetit, F; 'Oliveira, P D; Viala, F; Comte, M
2011-03-14
We present a new method to control the Carrier-Envelope Phase of ultra-short laser pulses by using the linear Electro-Optic Effect. Experimental demonstration is carried out on a Chirped Pulse Amplification based laser. Phase shifts greater than π radian can be obtained by applying moderate voltage on a LiNbO3 crystal with practically no changes to all other parameters of the pulse with the exception of its group delay. Time response of the Electro-Optic effect makes possible shaping at a high repetition rate or stabilization of the CEP of ultra short CPA laser systems.
High-power electro-optic switch technology based on novel transparent ceramic
NASA Astrophysics Data System (ADS)
Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai
2016-03-01
A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).
The influence of the accelerated ageing on the black screen element of the Electroink prints
NASA Astrophysics Data System (ADS)
Majnaric, I.; Bolanca, Z.; Bolanca Mirkovic, I.
2010-06-01
Printing material and prints undergo changes during ageing which can be recognized in deterioration in the physical, chemical and optical properties. The aim of this work is to determine the optical changes of the prints caused by ageing of the printing material and of the prints obtained by the application of the indirect electrophotography. The change of the screen elements in lighter halftone areas, which was obtained by the usage of the microscopic image analysis, has been discussed in the article. For the preparation of samples the following papers were used: fine art paper, recycled paper and offset paper as well as black Electroink. Three sample series were observed: prints on nonaged paper and ElectroInk, prints on aged paper and ElectroInk and prints on aged paper and nonaged ElectroInk. The investigation results show that by ageing of the uncoated printing substrates the decrease of the dots on prints can be expected, while the printing on the aged paper results in the increased reproduction of the halftone dots. The obtained results are the contribution to the explanation of the influence of the accelerated ageing process of papers which are used for printing and the aged prints on the halftone dot changes. Except the mentioned determined scientific contribution the results are applicable in the area of the printing product quality as well as in the forensic science.
NASA Technical Reports Server (NTRS)
Leslie, Thomas M.
1993-01-01
A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film-forming material in a working device is a complex, multifaceted endeavor. It requires close attention to maintaining the optical properties of the electro-optic active portion of the polymer while manipulating the polymer structure to obtain the desired secondary polymer properties.
Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik
2015-08-01
This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers.
MOEMS optical delay line for optical coherence tomography
NASA Astrophysics Data System (ADS)
Choudhary, Om P.; Chouksey, S.; Sen, P. K.; Sen, P.; Solanki, J.; Andrews, J. T.
2014-09-01
Micro-Opto-Electro-Mechanical optical coherence tomography, a lab-on-chip for biomedical applications is designed, studied, fabricated and characterized. To fabricate the device standard PolyMUMPS processes is adopted. We report the utilization of electro-optic modulator for a fast scanning optical delay line for time domain optical coherence tomography. Design optimization are performed using Tanner EDA while simulations are performed using COMSOL. The paper summarizes various results and fabrication methodology adopted. The success of the device promises a future hand-held or endoscopic optical coherence tomography for biomedical applications.
High bandwidth electro-optic technology for intersatellite optical communications
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
1992-01-01
The research and development of electronic and electro-optic components for geosynchronous and low earth orbiting satellite optical high bandwidth communications at the NASA-Goddard Space Flight Center is reviewed. Intersatellite optical communications retains a strong reliance on microwave circuit technology in several areas - the microwave to optical interface, the laser transmitter modulation driver and the optical receiver. A microwave to optical interface is described requiring high bandwidth electronic downconverters and demodulators. Electrical bandwidth and current drive requirements for the laser modulation driver for three laser alternatives are discussed. Bandwidth and noise requirements are presented for optical receiver architectures.
Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications
NASA Astrophysics Data System (ADS)
Weng, Libo
There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.
Electro-Optic Data Acquisition and Processing.
Methods for the analysis of electro - optic relaxation data are discussed. Emphasis is on numerical methods using high speed computers. A data acquisition system using a minicomputer for data manipulation is described. Relationship of the results obtained here to other possible uses is given. (Author)
Electro-optic Modulation Using a DAST Single-crystal Film in a Fabry-Perot Cavity
NASA Astrophysics Data System (ADS)
Kutty, S. P.
2005-03-01
In this paper, we report a multiple-pass electro-optic modulator using a single- crystal film of 4'-dimethyamino-N-methyl-4-stilbazolium tosylate (DAST) placed inside a Fabry-Perot cavity. The single-crystal film was prepared using the modified shear method. Electro-optic modulation was achieved at 633 nm using field-induced birefringence in the cross polarized geometry including the Fabry-Perot cavity. The modulation due to the electro-optic effect was recorded as a function of phase while the phase was controlled by moving one of the mirrors in the cavity. The observed modulation was high (80 percent) for a low field (0.5V/micron) applied along the charge transfer axis on the film. Similar modulation using the Fabry-Perot cavity with a lower modulation depth was observed involving electroabsorption at 633 nm. Electroabsorption in the DAST film has been recently reported [1]. These are important results considering applications in photonics. [1] ``Electroabsorption in single-crystal film of a second-order optical material,'' R. K. Swamy, S. P. Kutty, J. Titus, S. Khatavkar, and M. Thakur, APL, Vol. 85, 4025, (2004).
Olcott, Peter D; Peng, Hao; Levin, Craig S
2009-01-01
A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.
NASA Astrophysics Data System (ADS)
Xi, Wenze; McKisson, J. E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl
2014-06-01
A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over 29% of the modulator's switching voltage range. Optical spectrum analysis revealed less than -14 dB crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.
The deformable secondary mirror of VLT: final electro-mechanical and optical acceptance test results
NASA Astrophysics Data System (ADS)
Briguglio, Runa; Biasi, Roberto; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Angerer, Gerald; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves
2014-07-01
The Deformable Secondary Mirror (DSM) for the VLT ended the stand-alone electro-mechanical and optical acceptance process, entering the test phase as part of the Adaptive Optics Facility (AOF) at the ESO Headquarter (Garching). The VLT-DSM currently represents the most advanced already-built large-format deformable mirror with its 1170 voice-coil actuators and its internal metrology based on co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the final results of the electro-mechanical and optical characterization of the DSM executed in a collaborative effort by the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.), INAF-Osservatorio Astrofisico di Arcetri and ESO. The electro-mechanical acceptance tests have been performed in the company premises and their main purpose was the dynamical characterization of the internal control loop response and the calibration of the system data that are needed for its optimization. The optical acceptance tests have been performed at ESO (Garching) using the ASSIST optical test facility. The main purpose of the tests are the characterization of the optical shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions.
Electro-Optic Analog/Digital Converter.
electro - optic material and a source of linearly polarized light is arranged to transmit its light energy along each of the optical waveguides. Electrodes are disposed contiguous to the optical waveguides for impressing electric fields thereacross. An input signal potential is applied to the electrodes to produce electric fields of intensity relative to each of the waveguides such that causes phase shift and resultant change of polarization which can be detected as representative of a binary ’one’ or binary ’zero’ for each of the channel optical
NASA Astrophysics Data System (ADS)
Miccoli, M.; Usai, A.; Tafuto, A.; Albertoni, A.; Togna, F.
2016-10-01
The propagation environment around airborne platforms may significantly degrade the performance of Electro-Optical (EO) self-protection systems installed onboard. To ensure the sufficient level of protection, it is necessary to understand that are the best sensors/effectors installation positions to guarantee that the aeromechanical turbulence, generated by the engine exhausts and the rotor downwash, does not interfere with the imaging systems normal operations. Since the radiation-propagation-in-turbulence is a hardly predictable process, it was proposed a high-level approach in which, instead of studying the medium under turbulence, the turbulence effects on the imaging systems processing are assessed by means of an equivalent statistical model representation, allowing a definition of a Turbulence index to classify different level of turbulence intensities. Hence, a general measurement methodology for the degradation of the imaging systems performance in turbulence conditions was developed. The analysis of the performance degradation started by evaluating the effects of turbulences with a given index on the image processing chain (i.e., thresholding, blob analysis). The processing in turbulence (PIT) index is then derived by combining the effects of the given turbulence on the different image processing primitive functions. By evaluating the corresponding PIT index for a sufficient number of testing directions, it is possible to map the performance degradation around the aircraft installation for a generic imaging system, and to identify the best installation position for sensors/effectors composing the EO self-protection suite.
High Resolution Near Real Time Image Processing and Support for MSSS Modernization
NASA Astrophysics Data System (ADS)
Duncan, R. B.; Sabol, C.; Borelli, K.; Spetka, S.; Addison, J.; Mallo, A.; Farnsworth, B.; Viloria, R.
2012-09-01
This paper describes image enhancement software applications engineering development work that has been performed in support of Maui Space Surveillance System (MSSS) Modernization. It also includes R&D and transition activity that has been performed over the past few years with the objective of providing increased space situational awareness (SSA) capabilities. This includes Air Force Research Laboratory (AFRL) use of an FY10 Dedicated High Performance Investment (DHPI) cluster award -- and our selection and planned use for an FY12 DHPI award. We provide an introduction to image processing of electro optical (EO) telescope sensors data; and a high resolution image enhancement and near real time processing and summary status overview. We then describe recent image enhancement applications development and support for MSSS Modernization, results to date, and end with a discussion of desired future development work and conclusions. Significant improvements to image processing enhancement have been realized over the past several years, including a key application that has realized more than a 10,000-times speedup compared to the original R&D code -- and a greater than 72-times speedup over the past few years. The latest version of this code maintains software efficiency for post-mission processing while providing optimization for image processing of data from a new EO sensor at MSSS. Additional work has also been performed to develop low latency, near real time processing of data that is collected by the ground-based sensor during overhead passes of space objects.
SiPM electro-optical detection system noise suppression method
NASA Astrophysics Data System (ADS)
Bi, Xiangli; Yang, Suhui; Hu, Tao; Song, Yiheng
2014-11-01
In this paper, the single photon detection principle of Silicon Photomultipliers (SiPM) device is introduced. The main noise factors that infect the sensitivity of the electro-optical detection system are analyzed, including background light noise, detector dark noise, preamplifier noise and signal light noise etc. The Optical, electrical and thermodynamic methods are used to suppress the SiPM electro-optical detection system noise, which improved the response sensitivity of the detector. Using SiPM optoelectronic detector with a even high sensitivity, together with small field large aperture optical system, high cutoff narrow bandwidth filters, low-noise operational amplifier circuit, the modular design of functional circuit, semiconductor refrigeration technology, greatly improved the sensitivity of optical detection system, reduced system noise and achieved long-range detection of weak laser radiation signal. Theoretical analysis and experimental results show that the proposed methods are reasonable and efficient.
Electro-optical full-adder/full-subtractor based on graphene-silicon switches
NASA Astrophysics Data System (ADS)
Zivarian, Hossein; Zarifkar, Abbas; Miri, Mehdi
2018-01-01
A compact footprint, low-power consumption, and high-speed operation electro-optical full-adder/full-subtractor based on graphene-silicon electro-optical switches is demonstrated. Each switch consists of a Mach-Zehnder interferometer in which few-layer graphene is embedded in a silicon slot waveguide to construct phase shifters. The presented structure can be used as full-adder and full-subtractor simultaneously. The analysis of various factors such as extinction ratio, power consumption, and operation speed has been presented. As will be shown, the proposed electro-optical switch has a minimum extinction ratio of 36.21 dB, maximum insertion loss about 0.18 dB, high operation speed of 180 GHz, and is able to work with a low applied voltage about 1.4 V. Also, the extinction ratio and insertion loss of the full-adder/full-subtractor are about 30 and 1.5 dB, respectively, for transfer electric modes at telecommunication wavelength of 1.55 μm.
NASA Astrophysics Data System (ADS)
Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.
2010-02-01
We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.
Micro-electro-mechanically switchable near infrared complementary metamaterial absorber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitchappa, Prakash; Pei Ho, Chong; Institute of Microelectronics
2014-05-19
We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μmmore » in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.« less
Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA.
Sorace-Agaskar, Cheryl; Leu, Jonathan; Watts, Michael R; Stojanovic, Vladimir
2015-10-19
We present a Cadence toolkit library written in VerilogA for simulation of electro-optical systems. We have identified and described a set of fundamental photonic components at the physical level such that characteristics of composite devices (e.g. ring modulators) are created organically - by simple instantiation of fundamental primitives. Both the amplitude and phase of optical signals as well as optical-electrical interactions are simulated. We show that the results match other simulations and analytic solutions that have previously been compared to theory for both simple devices, such as ring resonators, and more complicated devices and systems such as single-sideband modulators, WDM links and Pound Drever Hall Locking loops. We also illustrate the capability of such toolkit for co-simulation with electronic circuits, which is a key enabler of the electro-optic system development and verification.
Electro-optical rendezvous and docking sensors
NASA Technical Reports Server (NTRS)
Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.
1991-01-01
Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.
Linear electro-optic effect in the organic crystal 4-aminobenzophenone
NASA Astrophysics Data System (ADS)
Lochran, S.; Bailey, R. T.; Cruickshank, F. R.; Pugh, D.; Sherwood, J. N.
1997-01-01
The linear electro-optic effect in single crystals of 4-aminobenzphenone (ABP) is reported together with calibration data on LiNbO 3 . For ABP the linear electro-optic coefficients r 22 and r 32 at 488 nm were found to be 2.12 and 5.05 pm V, respectively, with the corresponding reduced half-wave voltages being 49.4 0.1 and 9.3 0.1 kV. For LiNbO 3 the half-wave voltage was found to be 4.0 0.1 kV at 632.8 nm and 2.4 0.1 kV at 488 nm.
Preparation of Ferroelectric Samples for Electrical and Radiation Characterization Studies
1991-12-01
Nuclear Agency Attn Technology Dir Attn RAEE , LTC A. Constantine 5001 Eisenhower Ave Attn RAEE , MAJ G. Kweder Alexandria, VA 22333-0001 Attn RAEE , L...Palkuti Attn RAEE , LCDR L. Cohn Director Attn TITL, Technical Library Div Night Vision & Electro-Optics Lab.. LABCOM 680’ Telegraph RD Attn AMSEL-TMS
Xu, J.; Stickrath, A. B.; Bhattacharya, P.; Nees, J.; Váró, G.; Hillebrecht, J. R.; Ren, L.; Birge, R. R.
2003-01-01
The photovoltaic signal associated with the primary photochemical event in an oriented bacteriorhodopsin film is measured by directly probing the electric field in the bacteriorhodopsin film using an ultrafast electro-optic sampling technique. The inherent response time is limited only by the laser pulse width of 500 fs, and permits a measurement of the photovoltage with a bandwidth of better than 350 GHz. All previous published studies have been carried out with bandwidths of 50 GHz or lower. We observe a charge buildup with an exponential formation time of 1.68 ± 0.05 ps and an initial decay time of 31.7 ps. Deconvolution with a 500-fs Gaussian excitation pulse reduces the exponential formation time to 1.61 ± 0.04 ps. The photovoltaic signal continues to rise for 4.5 ps after excitation, and the voltage profile corresponds well with the population dynamics of the K state. The origin of the fast photovoltage is assigned to the partial isomerization of the chromophore and the coupled motion of the Arg-82 residue during the primary event. PMID:12885657
Airborne Electro-Optical Sensor Simulation System. Final Report.
ERIC Educational Resources Information Center
Hayworth, Don
The total system capability, including all the special purpose and general purpose hardware comprising the Airborne Electro-Optical Sensor Simulation (AEOSS) System, is described. The functional relationship between hardware portions is described together with interface to the software portion of the computer image generation. Supporting rationale…
Laser Electro-Optic Engineering Technology. Florida Vocational Program Guide.
ERIC Educational Resources Information Center
University of South Florida, Tampa. Dept. of Adult and Vocational Education.
This program guide identifies particular considerations in the organization, operation, and evaluation of laser electro-optic engineering technology programs. Contents include an occupational description and information on the following: program content, including a curriculum framework that details major concepts and intended outcomes and a list…
Laser Electro-Optic Technology. Florida Vocational Program Guide.
ERIC Educational Resources Information Center
University of South Florida, Tampa. Dept. of Adult and Vocational Education.
This program guide identifies primary considerations in the organization, operation, and evaluation of a laser electro-optic technology program. An occupational description and program content are presented. A curriculum framework specifies the exact course title, course number, levels of instruction, major course content, laboratory activities,…
Disposable cartridge biosensor platform for portable diagnostics
NASA Astrophysics Data System (ADS)
Yaras, Yusuf S.; Cakmak, Onur; Gunduz, Ali B.; Saglam, Gokhan; Olcer, Selim; Mostafazadeh, Aref; Baris, Ibrahim; Civitci, Fehmi; Yaralioglu, Goksen G.; Urey, Hakan
2017-03-01
We developed two types of cantilever-based biosensors for portable diagnostics applications. One sensor is based on MEMS cantilever chip mounted in a microfluidic channel and the other sensor is based on a movable optical fiber placed across a microfluidic channel. Both types of sensors were aimed at direct mechanical measurement of coagulation time in a disposable cartridge using plasma or whole blood samples. There are several similarities and also some important differences between the MEMS based and the optical fiber based solutions. The aim of this paper is to provide a comparison between the two solutions and the results. For both types of sensors, actuation of the cantilever or the moving fiber is achieved using an electro coil and the readout is optical. Since both the actuation and sensing are remote, no electrical connections are required for the cartridge. Therefore it is possible to build low cost disposable cartridges. The reader unit for the cartridge contains light sources, photodetectors, the electro coil, a heater, analog electronics, and a microprocessor. The reader unit has different optical interfaces for the cartridges that have MEMS cantilevers and moving fibers. MEMS based platform has better sensitivity but optomechanical alignment is a challenge and measurements with whole blood were not possible due to high scattering of light by the red blood cells. Fiber sensor based platform has relaxed optomechanical tolerances, ease of manufacturing, and it allows measurements in whole blood. Both sensors were tested using control plasma samples for activated-Partial-Thromboplastin-Time (aPTT) measurements. Control plasma test results matched with the manufacturer's datasheet. Optical fiber based system was tested for aPTT tests with human whole blood samples and the proposed platform provided repeatable test results making the system method of choice for portable diagnostics.
Integrated Electro-optical Laser-Beam Scanners
NASA Technical Reports Server (NTRS)
Boord, Warren T.
1990-01-01
Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.
Organic crystalline films for optical applications and related methods of fabrication
NASA Technical Reports Server (NTRS)
Leyderman, Alexander (Inventor); Cui, Yunlong (Inventor)
2003-01-01
The present invention provides organic single crystal films of less than 20 .mu.m, and devices and methods of making such films. The crystal films are useful in electro-optical applications and can be provided as part of an electro-optical device which provides strength, durability, and relative ease of manipulation of the mono-crystalline films during and after crystal growth.
Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices
Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.
1995-09-26
An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.
Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices
Conder, Alan D.; Haigh, Ronald E.; Hugenberg, Keith F.
1995-01-01
An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.
Micro-optics technology and sensor systems applications
NASA Technical Reports Server (NTRS)
Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.
1993-01-01
The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.
Development of Generalizable Educational Programs in Laser/Electro-Optics Technology: Final Report.
ERIC Educational Resources Information Center
Hull, Daniel M.
The purpose of the Laser/Electro-Optics Technology (LEOT) Project was to establish a pilot educational program, develop a flexible curriculum, prepare and test instructional materials, transport the curriculum and instructional materials into other educational institutions by establishing relevant LEOT programs wherever they are needed, and to…
NASA Technical Reports Server (NTRS)
Skindhoj, J.; Bourhill, G.; Gilmour, S.; Tiemann, B.; Mansour, K.; Perry, K.; Heng, L-T.; Marder, S.; Perry, J.
1994-01-01
the electro-optic r33, coefficients of poled poly(methylmethacrylate) films containing dyes with first hyperpolarizabilities that span nearly two orders of magnitude have been determined at 820 and 1300 nm by modulated ellipsometry.
Tracy, C.E.; Benson, D.K.; Ruth, M.R.
1985-08-16
A method of synthesizing a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z; Hoerner, M; Lamoureux, R
Purpose: Children in early teens with scoliosis require repeated radiographic exams over a number of years. The EOS (EOS imaging S.A., Paris, France) is a novel low-dose slot-scanning digital radiographic system designed to produce full-spine images of a free-standing patient. The radiation dose and image quality characteristics of the EOS were evaluated relative to those of a Computed Radiography (CR) system for scoliosis imaging. Methods: For dose evaluation, a full-torso anthropomorphic phantom was scanned five times using the default standard clinical protocols for both the EOS and a CR system, which include both posteroanterior and lateral full-spine views. Optically stimulatedmore » luminescent dosimeters (OSLDs), also known as nanoDots™ (Landauer, Inc., Glenwood, IL), were placed on the phantom’s surface to measure entrance skin dose. To assess image quality, MTF curves were generated from sampling the noise levels within the high-contrast regions of a line-pair phantom. Vertical and horizontal distortions were measured for the square line-pair phantom with the EOS system to evaluate the effects of geometric magnification and misalignment with the indicated imaging plane. Results: The entrance skin dose was measured to be 0.4 to 1.1 mGy for the EOS, and 0.7 to 3.6 mGy for the CR study. MTF comparison shows that CR greatly outperforms the EOS, despite both systems having a limiting resolution at 1.8 line-pairs per mm. Vertical distortion was unaffected by phantom positioning, because of the EOS slot-scanning geometry. Horizontal distortion increased linearly with miscentering distance. Conclusion: The EOS system resulted in approximately 70% lower radiation dose than CR for full-spine images. Image quality was found to be inferior to CR. Further investigation is required to see if EOS system is an acceptable modality for performing clinically diagnostic scoliosis examinations.« less
Piccardi, Armando; Alberucci, Alessandro; Assanto, Gaetano
2013-01-01
Liquid crystals in the nematic phase exhibit substantial reorientation when the molecules are driven by electric fields of any frequencies. Exploiting such a response at optical frequencies, self-focusing supports transverse localization of light and the propagation of self-confined beams and waveguides, namely “nematicons”. Nematicons can guide other light signals and interact with inhomogeneities and other beams. Moreover, they can be effectively deviated by using the electro-optic response of the medium, leading to several strategies for voltage-controlled reconfiguration of light-induced guided-wave circuits and signal readdressing. Hereby, we outline the main features of nematicons and review the outstanding progress achieved in the last twelve years on beam self-trapping and electro-optic readdressing. PMID:24108367
Electro-optofluidics: achieving dynamic control on-chip
Soltani, Mohammad; Inman, James T.; Lipson, Michal; Wang, Michelle D.
2012-01-01
A vital element in integrated optofluidics is dynamic tuning and precise control of photonic devices, especially when employing electronic techniques which are challenging to utilize in an aqueous environment. We overcome this challenge by introducing a new platform in which the photonic device is controlled using electro-optical phase tuning. The phase tuning is generated by the thermo-optic effect using an on-chip electric microheater located outside the fluidic channel, and is transmitted to the optofluidic device through optical waveguides. The microheater is compact, high-speed (> 18 kHz), and consumes low power (~mW). We demonstrate dynamic optical trapping control of nanoparticles by an optofluidic resonator. This novel electro-optofluidic platform allows the realization of high throughput optofluidic devices with switching, tuning, and reconfiguration capability, and promises new directions in optofluidics. PMID:23037380
NASA Technical Reports Server (NTRS)
Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.
2000-01-01
Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against monthly averaged diagnostics obtained from hourly samplings over the entire globe. Results show that differences between irregularly (satellite) and regularly (true) sampled diagnostics of the longwave net radiative budgets are the greatest at the surface and the smallest in the atmosphere and at the top-of-the-atmosphere, under both cloud-free and cloudy conditions. In contrast, differences between the satellite and the true diagnostics of the longwave cloud radiative forcings are the largest in the atmosphere and at the top-of-the-atmosphere, and the smallest at the surface. A poorer diurnal sampling of the surface temperature in the satellite simulations relative to the true simulation contributes a major part to sampling biases in the longwave net radiative budgets, while a poorer diurnal sampling of cloudiness and its optical properties directly affects diagnostics of the longwave cloud radiative forcings. A factor of 8 difference in the number of satellite overpasses between PICA705 and PICA485 and ICESAT leads to a systematic factor of 3 difference in the spatial standard deviations of all radiative and cloudiness diagnostics.
Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo
2000-08-29
Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.
Optical Peaking Enhancement in High-Speed Ring Modulators
Müller, J.; Merget, F.; Azadeh, S. Sharif; Hauck, J.; García, S. Romero; Shen, B.; Witzens, J.
2014-01-01
Ring resonator modulators (RRM) combine extreme compactness, low power consumption and wavelength division multiplexing functionality, making them a frontrunner for addressing the scalability requirements of short distance optical links. To extend data rates beyond the classically assumed bandwidth capability, we derive and experimentally verify closed form equations of the electro-optic response and asymmetric side band generation resulting from inherent transient time dynamics and leverage these to significantly improve device performance. An equivalent circuit description with a commonly used peaking amplifier model allows straightforward assessment of the effect on existing communication system architectures. A small signal analytical expression of peaking in the electro-optic response of RRMs is derived and used to extend the electro-optic bandwidth of the device above 40 GHz as well as to open eye diagrams penalized by intersymbol interference at 32, 40 and 44 Gbps. Predicted peaking and asymmetric side band generation are in excellent agreement with experiments. PMID:25209255
Stretchable liquid-crystal blue-phase gels.
Castles, F; Morris, S M; Hung, J M C; Qasim, M M; Wright, A D; Nosheen, S; Choi, S S; Outram, B I; Elston, S J; Burgess, C; Hill, L; Wilkinson, T D; Coles, H J
2014-08-01
Liquid-crystalline polymers are materials of considerable scientific interest and technological value. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.
Enhance the performance of liquid crystal as an optical switch by doping CdS quantum dots
NASA Astrophysics Data System (ADS)
Ahmed, Sudad S.; Ibrahim, Rawa K.; Al-Naimee, Kais; Naje, Asama N.; Ibrahim, Omar A.; Majeed, K. A.
2018-05-01
The electrical and optical properties results were studied for Cadmium Sulphide (CdS) Nanoparticles / Nematic liquid crystal (5CB) mixtures. Doping of CdS nanoparticles increases the spontaneous polarization and response time, the increase is due to large dipole-dipole interaction between the liquid crystal (LC) molecules and CdS nanoparticles, which increase the anchoring energy. The electro-optic measurements revealed a decrease (∼40%) in threshold voltage, and faster response time in doped sample cells than Pure 4'-n-pentyl-4-cyanobiphenyl (5CB) nematic liquid crystal.
Measurement of strains at high temperatures by means of electro-optics holography
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Bhat, G.; Vaitekunas, Jeffrey
Electro-optics holographic-moire interferometry is used to measure strains at temperatures up to 1000 C. A description of the instrumentation developed to carry out the measurements is given. The data processing technique is also explained. Main problems encountered in recording patterns at high temperatures are analyzed and possible solutions are outlined. Optical results are compared with strain gage values obtained with instrumented specimens and with theoretical results. Very good agreement is found between optical, strain gage and theoretical results.
Measurement of strains at high temperatures by means of electro-optics holography
NASA Technical Reports Server (NTRS)
Sciammarella, Cesar A.; Bhat, G.; Vaitekunas, Jeffrey
1991-01-01
Electro-optics holographic-moire interferometry is used to measure strains at temperatures up to 1000 C. A description of the instrumentation developed to carry out the measurements is given. The data processing technique is also explained. Main problems encountered in recording patterns at high temperatures are analyzed and possible solutions are outlined. Optical results are compared with strain gage values obtained with instrumented specimens and with theoretical results. Very good agreement is found between optical, strain gage and theoretical results.
Electro-optical study of nanoscale Al-Si-truncated conical photodetector with subwavelength aperture
NASA Astrophysics Data System (ADS)
Karelits, Matityahu; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi
2017-10-01
A type of silicon photodiode has been designed and simulated to probe the optical near field and detect evanescent waves. These waves convey subwavelength resolution. This photodiode consists of a truncated conical shaped, silicon Schottky diode having a subwavelength aperture of 150 nm. Electrical and electro-optical simulations have been conducted. These results are promising toward the fabrication of a new generation of photodetector devices.
Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes
NASA Technical Reports Server (NTRS)
Abramovici, Alex
2012-01-01
A document discusses an electro-optic sensor that consists of a collimator, attached to one segment, and a quad diode, attached to an adjacent segment. Relative segment-segment motion causes the beam from the collimator to move across the quad diode, thus generating a measureable electric signal. This sensor type, which is relatively inexpensive, can be configured as an edge sensor, or as a remote segment-segment motion sensor.
NASA Astrophysics Data System (ADS)
Sousani, Abbas; Motiei, Hamideh; Najafimoghadam, Peyman; Hasanzade, Reza
2017-05-01
In this study new nanocompoites based on polyglycidylmethacrylate grafted 4-[(4-methoxyphenyl) diazenyl] phenol (Azo-PGMA) and Carboxylicacid functionalized multi-walled carbon nanotubes (MWCNT-COOH) were prepared. The nanocomposites structure was characterized by FT-IR, TGA and SEM. The Z-scan technique was applied for measuring the nonlinear parameters of nanocomposites. The samples after solving in AWM solution (equal ratio of acetone, deionized water and methanol) were investigated by using closed aperture Z-scan technique and a diode-pumped laser at the line 532 nm. All the nonlinear refractive index of the samples at three concentrations of carbon nanotubes in three different intensities of the laser beam were investigated and the nonlinear optical response of them are compared under the same condition. Because of high order of nonlinear refractive coefficient and good nonlinearity, these compounds are suitable candidate for optical switching, optical limiting and electro-optical devices.
NASA Astrophysics Data System (ADS)
Bishop, Z. K.; Foster, A. P.; Royall, B.; Bentham, C.; Clarke, E.; Skolnick, M. S.; Wilson, L. R.
2018-05-01
We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electro-mechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.
NASA Astrophysics Data System (ADS)
Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao
2018-04-01
We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.
Electro-optical phenomena based on ionic liquids in an optofluidic waveguide.
He, Xiaodong; Shao, Qunfeng; Cao, Pengfei; Kong, Weijie; Sun, Jiqian; Zhang, Xiaoping; Deng, Youquan
2015-03-07
An optofluidic waveguide with a simple two-terminal electrode geometry, when filled with an ionic liquid (IL), forms a lateral electric double-layer capacitor under a direct current (DC) electric field, which allows the realization of an extremely high carrier density in the vicinity of the electrode surface and terminals to modulate optical transmission at room temperature under low voltage operation (0 to 4 V). The unique electro-optical phenomenon of ILs was investigated at three wavelengths (663, 1330 and 1530 nm) using two waveguide geometries. Strong electro-optical modulations with different efficiencies were observed at the two near-infrared (NIR) wavelengths, while no detectable modulation was observed at 663 nm. The first waveguide geometry was used to investigate the position-dependent modulation along the waveguide; the strongest modulation was observed in the vicinity of the electrode terminal. The modulation phase is associated with the applied voltage polarity, which increases in the vicinity of the negative electrode and decreases at the positive electrode. The second waveguide geometry was used to improve the modulation efficiency. Meanwhile, the electro-optical modulations of seven ILs were compared at an applied voltage ranging from ±2 V to ±3.5 V. The results reveal that the modulation amplitude and response speed increase with increasing applied voltage, as well as the electrical conductivity of ILs. Despite the fact that the response speed isn't fast due to the high ionic density of ILs, the modulation amplitude can reach up to 6.0 dB when a higher voltage (U = ±3.5 V) is applied for the IL [Emim][BF4]. Finally, the physical explanation of the phenomenon was discussed. The effect of the change in IL structure on the electro-optical phenomena was investigated in another new experiment. The results reveal that the electro-optical phenomenon is probably caused mainly by the change in carrier concentration (ion redistribution near charged electrodes), which induces the enhancement and suppression of NIR optical absorption (contributed by C-H and N-H groups) in the vicinity of the negative electrode and positive electrode, respectively.
X-ray diffraction imaging (topography) of electroopticcrystals by synchrotron radiation
NASA Technical Reports Server (NTRS)
Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri
1988-01-01
Information of special interest to crystal growers and device physicists now available from monochromatic synchrotron diffraction imaging (topography) is reviewed. Illustrations are taken from a variety of electro-optic crystals. Aspects of the detailed understanding of crystal growth processes obtainable from carefully selected samples are described. Finally, new experimental opportunities now available for exploitation are indicated.
Linear electro-optic effect in sputtered polycrystalline LiNbO3 films
NASA Astrophysics Data System (ADS)
Griffel, G.; Ruschin, S.; Croitoru, N.
1989-04-01
Light guiding and modulation was demonstrated in sputtered LiNbO3 films deposited on glass substrates. We report on films' exceptionally low attenuation (<2 dB/cm) and the highest electro-optical coefficient reported so far for this kind of film (1.34×10-12 m/V).
ERIC Educational Resources Information Center
Luzerne County Community Coll., Nanticoke, PA.
A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in laser/electro-optics technology. Existing programs were reviewed and private sector input was sought in developing the curriculum and identifying…
Electro-optic response in thin smectic C* film with chevron structures
NASA Astrophysics Data System (ADS)
Kudreyko, Aleksey A.; Migranov, Nail G.; Migranova, Dana N.
2016-12-01
The effects in electrostatic models of chevron surface-stabilized ferroelectric liquid crystals are investigated through numerical modeling. To study smectic C* director distribution within the cell, we consider two nonlinear approaches: the chevron interface does not interplay with the electric field; the electric field interplays with the chevron interface. The obtained results of the director field distribution are compared with the earlier linearized studies. We find that whether or not the electric field interplays with the chevron interface, the electro-optic response requires a generalized approach for its description. The threshold electric field, which is necessary for switching between two stable director states in the chevron cell is evaluated. This study suggests that, in many cases of practical interest, electro-optic response to the electric field and the threshold electric field can be precisely estimated. We argue that, beside being numerically efficient, our approach provides a convenient and a novel standpoint for looking at the electro-optic response problem. Project supported by the Russian Foundation for Basic Research (RFBR) (Grant Nos. 16-32-00043 and 14-02-97026).
Electro-optic voltage sensor for sensing voltage in an E-field
Woods, G.K.; Renak, T.W.
1999-04-06
A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 18 figs.
Electro-optical voltage sensor head
Woods, Gregory K.
1998-01-01
A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.
Electro-optic voltage sensor for sensing voltage in an E-field
Woods, Gregory K.; Renak, Todd W.
1999-01-01
A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.
Electro-optical voltage sensor head
Woods, G.K.
1998-03-24
A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 6 figs.
Electro-optic voltage sensor with Multiple Beam Splitting
Woods, Gregory K.; Renak, Todd W.; Crawford, Thomas M.; Davidson, James R.
2000-01-01
A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.
NASA Astrophysics Data System (ADS)
Yoshimura, Tetsuzo
1987-09-01
The electro-optic effect in styrylpyridinium cyanine dye (SPCD) thin-film crystals is characterized by a newly developed ac modulation method that is effective in characterizing thin-film materials of small area. SPCD thin-film crystals 3-10 μm thick were grown from a methanol solution of SPCD. The crystal shows strong dichroism and anisotropy of refractive index, indicating that molecular dipole moments align along a definite direction (z axis). When an electric field is applied along the z axis, SPCD thin-film crystals show a large figure of merit of electro-optic phase retardation of 6.5×10-10 m/V, which is 5 times as large as in LiNbO3 crystal, 2 times that in 2-methyl-4-nitroaniline (MNA) crystal, and is the largest ever reported in organic solids. The electro-optic coefficient r33 of SPCD crystals is estimated to be approximately 4.3×10-10 m/V, which is 6 times larger than that of an MNA crystal. This value is consistent with that expected from second-harmonic generation measurements.
Quadratic Electro-optic Effect in a Novel Nano-optical Polymer (iodine-doped polyisoprene)
NASA Astrophysics Data System (ADS)
Swamy, Rajendra; Titus, Jitto; Thakur, Mrinal
2004-03-01
In this report, exceptionally large quadratic electro-optic effect in a novel nano-optical polymer will be discussed. The material involved is cis-1,4-polyisoprene or natural rubber which is a nonconjugated conductive polymer[1,2].Upon doping with an acceptor such as iodine, an electron is transferred from its isolated double bond to the dopant leading to a charge-transfer complex. The positive charge (hole) thus created is localized around the double-bond site, within a nanometer dimension - thus, forming a nano-optical material. The quadratic electro-optic measurement on the doped polyisoprene film was made using field-induced birefringence method. The measured Kerr coefficient is about sixty six times that of nitrobenzene at 632 nm. Significant electroabsorption was also observed in this material at 632 nm. 1. M. Thakur, J. Macromol. Sci. - PAC, 2001, A38(12), 1337. 2. M. Thakur, S. Khatavkar and E.J. Parish, J. Macromol. Sci. - PAC, 2003, A40 (12), 1397.
Flow-based analysis using microfluidics-chemiluminescence systems.
Al Lawati, Haider A J
2013-01-01
This review will discuss various approaches and techniques in which analysis using microfluidics-chemiluminescence systems (MF-CL) has been reported. A variety of applications is examined, including environmental, pharmaceutical, biological, food and herbal analysis. Reported uses of CL reagents, sample introduction techniques, sample pretreatment methods, CL signal enhancement and detection systems are discussed. A hydrodynamic pumping system is predominately used for these applications. However, several reports are available in which electro-osmotic (EO) pumping has been implemented. Various sample pretreatment methods have been used, including liquid-liquid extraction, solid-phase extraction and molecularly imprinted polymers. A wide range of innovative techniques has been reported for CL signal enhancement. Most of these techniques are based on enhancement of the mixing process in the microfluidics channels, which leads to enhancement of the CL signal. However, other techniques are also reported, such as mirror reaction, liquid core waveguide, on-line pre-derivatization and the use of an opaque white chip with a thin transparent seal. Photodetectors are the most commonly used detectors; however, other detection systems have also been used, including integrated electrochemiluminescence (ECL) and organic photodiodes (OPDs). Copyright © 2012 John Wiley & Sons, Ltd.
Coherent anti-Stokes Raman scattering under electric field stimulation
NASA Astrophysics Data System (ADS)
Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe
2016-12-01
We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.
Passive Infrared Surveillance: New Methods of Analysis
1979-09-24
f NRL Memorandum Report 4078 EOTPO Report 55 Passive Infrared Surveillance: New Methods of Analysis RICHARD A. STINBERG Electro- Optical Technology...Progrant Offtcw Management Information and Special Programs Organizallon September 24, 1979 KL I -r- ’I . ,3 ELECTRO- OPTICAL TECHNOLOGY PROGRAM OFFICE...by Dr.Joh M.Ma1a1u m ,J, I’ Head, Bleutro- Optical Technology Program Office SECURITY CLASSIPICATION Of THII4 PAGE (Wim"u Data Bille) REPORT
A final look at LDEF electro-optic systems components
NASA Technical Reports Server (NTRS)
Blue, M. D.
1995-01-01
Postrecovery characteristics of LDEF electro-optic components from the GTRI tray are compared with their prelaunch characteristics and with the characteristics of similar components from related experiments. Components considered here include lasers, light-emitting diodes, semiconducting radiation detectors and arrays, optical substrates, filters, and mirrors, and specialized coatings. Our understanding of the physical effects resulting from low earth orbit are described, and guidelines and recommendations for component and materials choices are presented.
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-01-01
This paper presents the preparation of high-quality vanadium dioxide (VO2) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO2 thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc) of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications. PMID:28773679
An Overview of SIMBIOS Program Activities and Accomplishments. Chapter 1
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; McClain, Charles R.
2003-01-01
The SIMBIOS Program was conceived in 1994 as a result of a NASA management review of the agency's strategy for monitoring the bio-optical properties of the global ocean through space-based ocean color remote sensing. At that time, the NASA ocean color flight manifest included two data buy missions, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Earth Observing System (EOS) Color, and three sensors, two Moderate Resolution Imaging Spectroradiometers (MODIS) and the Multi-angle Imaging Spectro-Radiometer (MISR), scheduled for flight on the EOS-Terra and EOS-Aqua satellites. The review led to a decision that the international assemblage of ocean color satellite systems provided ample redundancy to assure continuous global coverage, with no need for the EOS Color mission. At the same time, it was noted that non-trivial technical difficulties attended the challenge (and opportunity) of combining ocean color data from this array of independent satellite systems to form consistent and accurate global bio-optical time series products. Thus, it was announced at the October 1994 EOS Interdisciplinary Working Group meeting that some of the resources budgeted for EOS Color should be redirected into an intercalibration and validation program (McClain et al., 2002).
Harnessing Adaptive Optics for Space Debris Collision Mitigation
NASA Astrophysics Data System (ADS)
Zovaro, A.; Bennet, F.; Copeland, M.; Rigaut, F.; d'Orgeville, C.; Grosse, D.
2016-09-01
Human kind's continued use of space depends upon minimising the build-up of debris in low Earth-orbit (LEO). Preventing collisions between satellites and debris is essential given that a single collision can generate thousands of new debris objects. However, in-orbit manoeuvring of satellites is extremely expensive and shortens their operational life. Adjusting the orbits of debris objects instead of satellites would shift the responsibility of collision avoidance away from satellite operators altogether, thereby offering a superior solution. The Research School of Astronomy and Astrophysics at the Australian National University, partnered with Electro Optic Systems (EOS) Space Systems, Lockheed Martin Corporation and the Space Environment Research Centre (SERC) Limited, are developing the Adaptive Optics Tracking and Pushing (AOTP) system. AOTP will be used to perturb the orbits of debris objects using photon pressure from a 10 kW IR laser beam launched from the 1.8 m telescope at Mount. Stromlo Observatory, Australia. Initial simulations predict that AOTP will be able to displace debris objects 10 cm in size by up to 100 m with several overhead passes. An operational demonstrator is planned for 2019. Turbulence will distort the laser beam as it propagates through the atmosphere, resulting in a lower photon flux on the target and reduced pointing accuracy. To mitigate these effects, adaptive optics (AO) will be used to apply wavefront correction to the beam prior to launch. A unique challenge in designing the AO system arises from the high slew rate needed to track objects in LEO, which in turn requires laser guide star AO for satisfactory wavefront correction. The optical design and results from simulations of estimated performance of AOTP will be presented. In particular, design considerations associated with the high-power laser will be detailed.
Ma, Shihui; Yu, Haohai; Zhang, Huaijin; Han, Xuekun; Lu, Qingming; Ma, Changqin; Boughton, Robert I.; Wang, Jiyang
2016-01-01
With an optically active langasite (LGS) crystal as the electro-optic Q-switch, we demonstrate an efficient Q-switched laser with a repetition rate of 200 kHz. Based on the theoretical analysis of the interaction between optical activity and electro-optic property, the optical activity of the crystal has no influence on the birefringence during Q-switching if the quarter wave plate used was rotated to align with the polarization direction. With a Nd:LuVO4 crystal possessing a large emission cross-section and a short fluorescence lifetime as the gain medium, a stable LGS Q-switched laser was designed with average output power of 4.39 W, corresponding to a slope efficiency of 29.4% and with a minimum pulse width of 5.1 ns. This work represents the highest repetition rate achieved so far in a LGS Q-switched laser and it can provide a practical Q-switched laser with a tunable high repetition rates for many applications, such as materials processing, laser ranging, medicine, military applications, biomacromolecule materials, remote sensing, etc. PMID:27461819
Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators
NASA Technical Reports Server (NTRS)
Watson, Michael Dale
2004-01-01
Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.
Nonlinear optical polymers for electro-optic signal processing
NASA Technical Reports Server (NTRS)
Lindsay, Geoffrey A.
1991-01-01
Photonics is an emerging technology, slated for rapid growth in communications systems, sensors, imagers, and computers. Its growth is driven by the need for speed, reliability, and low cost. New nonlinear polymeric materials will be a key technology in the new wave of photonics devices. Electron-conjubated polymeric materials offer large electro-optic figures of merit, ease of processing into films and fibers, ruggedness, low cost, and a plethora of design options. Several new broad classes of second-order nonlinear optical polymers were developed at the Navy's Michelson Laboratory at China Lake, California. Polar alignment in thin film waveguides was achieved by electric-field poling and Langmuir-Blodgett processing. Our polymers have high softening temperatures and good aging properties. While most of the films can be photobleached with ultraviolet (UV) light, some have excellent stability in the 500-1600 nm range, and UV stability in the 290-310 nm range. The optical nonlinear response of these polymers is subpicosecond. Electro-optic switches, frequency doublers, light modulators, and optical data storage media are some of the device applications anticipated for these polymers.
ERIC Educational Resources Information Center
Luzerne County Community Coll., Nanticoke, PA.
The project described in this report was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in conjunction with area vocational-technical schools, the second year of a competency-based curriculum in laser/electro-optics technology. During the project, a task force of teachers from the area schools and the college…
2010-08-01
In this work, a novel electro - optic beam switch (EOBS) is designed, fabricated and demonstrated. The EOBS presented in this work is designed for a...consists of a series of electronically controlled prisms fabricated by ferroelectric domain inversion in an electro - optic crystal wafer. The prisms are
Liquid-crystals electro-optic modulator based on electrohydrodynamic effects.
Muriel, M A; Martin-Pereda, J A
1980-11-01
A new method of light modulation is reported. This method is based on the electro-optical properties of nematic materials and on the use of a new wedge structure. The advantages of this structure are the possibility of modulating nonpolarized light and the improved signal-to-noise ratio. The highest modulating frequency obtained is 25 kHz.
Electro-optic modulation for high-speed characterization of entangled photon pairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.
In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less
Electro-optic modulation for high-speed characterization of entangled photon pairs
Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; ...
2015-11-10
In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less
Li n @B36 ( n = 1, 2) Nanosheet with Remarkable Electro-Optical Properties: A DFT Study
NASA Astrophysics Data System (ADS)
Solimannejad, Mohammad; Kamalinahad, Saeedeh; Shakerzadeh, Ehsan
2017-07-01
In this study, an attempt has been made to investigate alteration in electro-optical properties of bowl-shape B36 nanosheet due to interaction with one and two Li atoms. Our results reveal that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap of B36 nanosheet is decreased because of a high energy level which is formed under influence of interactions with Li atoms. Gigantic enhancement in the first hyperpolarizability ( β 0) of the studied nanosheet up to 4920.62 au is indicated owing to the effect of Li adsorption. The result of the present study may be eventuating to design and fabrication of a nanosheet with tunable electro-optical properties.
Oriented niobate ferroelectric thin films for electrical and optical devices
Wessels, Bruce W.; Nystrom, Michael J.
2001-01-01
Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.
Kroesen, Sebastian; Horn, Wolfgang; Imbrock, Jörg; Denz, Cornelia
2014-09-22
optical tunable Bragg gratings in lithium niobate fabricated by direct femtosecond laser writing. The hybrid design that consists of a circular type-II waveguide and a multiscan type-I Bragg grating exhibits low loss ordinary and extraordinary polarized guiding as well as narrowband reflections in the c-band of optical communications. High bandwidth tunability of more than a peak width and nearly preserved electro-optic coefficients of r(13) = 7.59 pm V(-1) and r(33) = 23.21 pm V(-1) are demonstrated.
A lithium niobate electro-optic tunable Bragg filter fabricated by electron beam lithography
NASA Astrophysics Data System (ADS)
Pierno, L.; Dispenza, M.; Secchi, A.; Fiorello, A.; Foglietti, V.
2008-06-01
We have designed and fabricated a lithium niobate tunable Bragg filter patterned by electron beam lithography and etched by reactive ion etching. Devices with 1 mm, 2 mm and 4 mm length and 360 and 1080 nm Bragg period, with 5 pm V-1 tuning efficiency, have been characterized. Some applications were identified. Optical simulation based on finite element model (FEM) software showing the optical filtering curve and the coupling factor dependence on the manufacturing parameter is reported. The tuning of the filter window position is electro-optically controlled.
NASA Astrophysics Data System (ADS)
van Howe, James William
Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high-speed operation, and electronic control of signals. Finally, we devote much attention to the paradigm of space-time duality and temporal imaging which allows the electro-optic phase modulators used in our instrumentation to be framed as temporal analogs of diffractive optical elements such as lenses and prisms. We show how the concepts of "time-lenses" and "time-prisms" give an intuitive understanding of our work as well as insight for the general development of optical instrumentation.
SCORPION persistent surveillance system with universal gateway
NASA Astrophysics Data System (ADS)
Coster, Michael; Chambers, Jon; Winters, Michael; Belesi, Joe
2008-04-01
This paper addresses benefits derived from the universal gateway utilized in Northrop Grumman Systems Corporation's (NGSC) SCORPION, a persistent surveillance and target recognition system produced by the Xetron campus in Cincinnati, Ohio. SCORPION is currently deployed in Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). The SCORPION universal gateway is a flexible, field programmable system that provides integration of over forty Unattended Ground Sensor (UGS) types from a variety of manufacturers, multiple visible and thermal electro-optical (EO) imagers, and numerous long haul satellite and terrestrial communications links, including the Army Research Lab (ARL) Blue Radio. Xetron has been integrating best in class sensors with this universal gateway to provide encrypted data exfiltration and remote sensor command and control since 1998. SCORPION data can be distributed point to point, or to multiple Common Operational Picture (COP) systems, including Command and Control Personal Computer (C2PC), Common Data Interchange Format for the Situational Awareness Display (CDIF/SAD), Force XXI Battle Command Brigade and Below (FBCB2), Defense Common Ground Systems (DCGS), and Remote Automated Position Identification System (RAPIDS).
Compact pulsed high-energy Er:glass laser
NASA Astrophysics Data System (ADS)
Wan, Peng; Liu, Jian
2012-03-01
Bulk Erbium-doped lasers are widely used for long-distance telemetry and ranging. In some applications such as coherent Doppler radars, laser outputs with a relatively long pulse width, good beam profile and pulse shape are required. High energy Q-switched Er:glass lasers were demonstrated by use of electro-optic (E/O) Q-switching or frustrated total internal reflection (FTIR) Q-switching. However, the output pulse durations in these lasers were fixed to relatively small values and extremely hard to tune. We report here on developing a novel and compact Q-switched Er:Yb co-doped phosphate glass laser at an eye-safe wavelength of 1.5 μm. A rotating mirror was used as a Q-switch. Co-linear pump scheme was used to maintain a good output beam profile. Near-perfect Gaussian temporal shape was obtained in our experiment. By changing motor rotation speed, pulse duration was tunable and up to 240 ns was achieved. In our preliminary experiment, output pulse energies of 44 mJ and 4.5 mJ were obtained in free-running and Q-switched operation modes respectively.
Development and validation of the AFIT scene and sensor emulator for testing (ASSET)
NASA Astrophysics Data System (ADS)
Young, Shannon R.; Steward, Bryan J.; Gross, Kevin C.
2017-05-01
ASSET is a physics-based model used to generate synthetic data sets of wide field of view (WFOV) electro-optical and infrared (EO/IR) sensors with realistic radiometric properties, noise characteristics, and sensor artifacts. It was developed to meet the need for applications where precise knowledge of the underlying truth is required but is impractical to obtain for real sensors. For example, due to accelerating advances in imaging technology, the volume of data available from WFOV EO/IR sensors has drastically increased over the past several decades, and as a result, there is a need for fast, robust, automatic detection and tracking algorithms. Evaluation of these algorithms is difficult for objects that traverse a wide area (100-10,000 km) because obtaining accurate truth for the full object trajectory often requires costly instrumentation. Additionally, tracking and detection algorithms perform differently depending on factors such as the object kinematics, environment, and sensor configuration. A variety of truth data sets spanning these parameters are needed for thorough testing, which is often cost prohibitive. The use of synthetic data sets for algorithm development allows for full control of scene parameters with full knowledge of truth. However, in order for analysis using synthetic data to be meaningful, the data must be truly representative of real sensor collections. ASSET aims to provide a means of generating such representative data sets for WFOV sensors operating in the visible through thermal infrared. The work reported here describes the ASSET model, as well as provides validation results from comparisons to laboratory imagers and satellite data (e.g. Landsat-8).
Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics
NASA Astrophysics Data System (ADS)
Kormondy, Kristy J.; Popoff, Youri; Sousa, Marilyne; Eltes, Felix; Caimi, Daniele; Rossell, Marta D.; Fiebig, Manfred; Hoffmann, Patrik; Marchiori, Chiara; Reinke, Michael; Trassin, Morgan; Demkov, Alexander A.; Fompeyrine, Jean; Abe, Stefan
2017-02-01
Significant progress has been made in integrating novel materials into silicon photonic structures in order to extend the functionality of photonic circuits. One of these promising optical materials is BaTiO3 or barium titanate (BTO) that exhibits a very large Pockels coefficient as required for high-speed light modulators. However, all previous demonstrations show a noticable reduction of the Pockels effect in BTO thin films deposited on silicon substrates compared to BTO bulk crystals. Here, we report on the strong dependence of the Pockels effect in BTO thin films on their microstructure, and provide guidelines on how to engineer thin films with strong electro-optic response. We employ several deposition methods such as molecular beam epitaxy and chemical vapor deposition to realize BTO thin films with different morphology and crystalline structure. While a linear electro-optic response is present even in porous, polycrystalline BTO thin films with an effective Pockels coefficient r eff = 6 pm V-1, it is maximized for dense, tetragonal, epitaxial BTO films (r eff = 140 pm V-1). By identifying the key structural predictors of electro-optic response in BTO/Si, we provide a roadmap to fully exploit the linear electro-optic effect in novel hybrid oxide/semiconductor nanophotonic devices.
2008-12-01
attached DR1 to a tunable high glass transition temperatue (Tg) polymeric backbone prepared by ROMP. Figure 1. Standard and required poling...approximately 13-15 g of polymer. The remainder of the mixed polymer adhered to screw or barrel. Norbornyl-DR1 monomer (1). 5-norbornene-2- carboxylic acid
Electro-optical properties of an ABS-type insulating polymer irradiated with neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bue, J.L.; Ables, E.; Fahey, T.
1995-12-31
An extruded insulating polymer [a possible candidate for the outer walls of resistive plate counters in the muon sub-systems for the Large Hadron Collider detectors] shows a significant drop in its bulk electrical resistivity after irradiation with neutrons (3-4 MeV peak, flux 3.6x10{sup 6}/sec/cm{sup 2}). Irradiation times were 11, 50, and 77 days. Also, the dielectric constant was studied at 30{degrees}C via a Cole-Cole plot using a Precision Time-Domain Dielectric Spectrometer. A depolarization current was investigated from 30{degrees} to minus 120{degrees}C using Thermally Stimulated Current Spectroscopy (TSCS). Most interesting was a correlation discovered between resistivity and absorption/transmission of polarized lightmore » in the visible region when a sample of the polymer is inserted between crossed polarizers. This experiment illustrates the birefringent nature of the material as it shows a dependence of transmitted light intensity on both the rotation angle of the sample and on wavelength. An electro-optical mechanism is suggested to qualitatively describe this discovery of common fluctuations in resistivity and birefringent behavior after neutron irradiation.« less
Electro-optical logic gates based on graphene-silicon waveguides
NASA Astrophysics Data System (ADS)
Chen, Weiwei; Yang, Longzhi; Wang, Pengjun; Zhang, Yawei; Zhou, Liqiang; Yang, Tianjun; Wang, Yang; Yang, Jianyi
2016-08-01
In this paper, designs of electro-optical AND/NAND, OR/ NOR, XOR/XNOR logic gates based on cascaded silicon graphene switches and regular 2×1 multimode interference combiners are presented. Each switch consists of a Mach-Zehnder interferometer in which silicon slot waveguides embedded with graphene flakes are designed for phase shifters. High-speed switching function is achieved by applying an electrical signal to tune the Fermi levels of graphene flakes causing the variation of modal effective index. Calculation results show the crosstalk in the proposed optical switch is lower than -22.9 dB within a bandwidth from 1510 nm to 1600 nm. The designed six electro-optical logic gates with the operation speed of 10 Gbit/s have a minimum extinction ratio of 35.6 dB and a maximum insertion loss of 0.21 dB for transverse electric modes at 1.55 μm.
Science and technology of stressed liquid crystals: display and non-display applications
NASA Astrophysics Data System (ADS)
Melnyk, Olha; Garbovskiy, Yuriy; Glushchenko, Anatoliy
2017-08-01
Stressed liquid crystals (SLCs) have emerged as promising tunable electro-optical materials more than a decade ago. They are optically transparent and are characterized by a giant phase modulation of the incident light (Nπ, N >> 1), fast (millisecond and shorter) electro-optical response, and a relatively low driving voltage (∼1 V/μm). Surprisingly, despite their advanced electro-optical performance, these new materials did not receive due attention in the research community. One possible reason of such an inadequate interest in SLCs is the lack of the well-documented procedure describing how to actually produce these materials. This paper is aimed at the development of such a step-by-step practical guide suitable for experimentalist and engineers. The proposed technology is applied to produce and characterize SLCs. In addition, some applications of the materials are briefly discussed and a broader overview of their possible use is outlined.
Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review
Johnson, Steven
2017-01-01
The monitoring of biomolecular interactions is a key requirement for the study of complex biological processes and the diagnosis of disease. Technologies that are capable of providing label-free, real-time insight into these interactions are of great value for the scientific and clinical communities. Greater understanding of biomolecular interactions alongside increased detection accuracy can be achieved using technology that can provide parallel information about multiple parameters of a single biomolecular process. For example, electro-optical techniques combine optical and electrochemical information to provide more accurate and detailed measurements that provide unique insights into molecular structure and function. Here, we present a comparison of the main methods for electro-optical biosensing, namely, electrochemical surface plasmon resonance (EC-SPR), electrochemical optical waveguide lightmode spectroscopy (EC-OWLS), and the recently reported silicon-based electrophotonic approach. The comparison considers different application spaces, such as the detection of low concentrations of biomolecules, integration, the tailoring of light-matter interaction for the understanding of biomolecular processes, and 2D imaging of biointeractions on a surface. PMID:28880211
Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review.
Juan-Colás, José; Johnson, Steven; Krauss, Thomas F
2017-09-07
The monitoring of biomolecular interactions is a key requirement for the study of complex biological processes and the diagnosis of disease. Technologies that are capable of providing label-free, real-time insight into these interactions are of great value for the scientific and clinical communities. Greater understanding of biomolecular interactions alongside increased detection accuracy can be achieved using technology that can provide parallel information about multiple parameters of a single biomolecular process. For example, electro-optical techniques combine optical and electrochemical information to provide more accurate and detailed measurements that provide unique insights into molecular structure and function. Here, we present a comparison of the main methods for electro-optical biosensing, namely, electrochemical surface plasmon resonance (EC-SPR), electrochemical optical waveguide lightmode spectroscopy (EC-OWLS), and the recently reported silicon-based electrophotonic approach. The comparison considers different application spaces, such as the detection of low concentrations of biomolecules, integration, the tailoring of light-matter interaction for the understanding of biomolecular processes, and 2D imaging of biointeractions on a surface.
NASA Astrophysics Data System (ADS)
Swamy, R.; Vippa, P.; Rajagopalan, H.; Titus, J.; Thakur, M.; Sen, A.
2005-03-01
We report quadratic electro-optic effect and electroabsorption measurements in a novel nano-optical material based on the nonconjugated conductive polymer, iodine-doped poly(ethylenepyrrolediyl) derivative. Such effect has been recently reported in doped polyisoprene [1]. The measurement was made at 633 nm using field-induced birefringence. A modulation of 0.1% was observed for a field of 0.66 V/micron (film thickness 0.3 micron). The change in refractive index, δn, is 3.35x10-4 and the Kerr constant is 1.2x10-9 m/V^2 which is about 125 times that of nitrobenzene. Modulation due to electroabsorption was 0.05%. The exceptionally large electro-optic effect is most likely due to the specific structure and quantum confinement within a nanometer volume. In contrast, nonlinearity in a conjugated polymer is known to decrease upon iodine doping. [1] Thakur, Swamy and Titus, Macromolecules, Vol.37, 2677, (2004).
Embedded optical interconnect technology in data storage systems
NASA Astrophysics Data System (ADS)
Pitwon, Richard C. A.; Hopkins, Ken; Milward, Dave; Muggeridge, Malcolm
2010-05-01
As both data storage interconnect speeds increase and form factors in hard disk drive technologies continue to shrink, the density of printed channels on the storage array midplane goes up. The dominant interconnect protocol on storage array midplanes is expected to increase to 12 Gb/s by 2012 thereby exacerbating the performance bottleneck in future digital data storage systems. The design challenges inherent to modern data storage systems are discussed and an embedded optical infrastructure proposed to mitigate this bottleneck. The proposed solution is based on the deployment of an electro-optical printed circuit board and active interconnect technology. The connection architecture adopted would allow for electronic line cards with active optical edge connectors to be plugged into and unplugged from a passive electro-optical midplane with embedded polymeric waveguides. A demonstration platform has been developed to assess the viability of embedded electro-optical midplane technology in dense data storage systems and successfully demonstrated at 10.3 Gb/s. Active connectors incorporate optical transceiver interfaces operating at 850 nm and are connected in an in-plane coupling configuration to the embedded waveguides in the midplane. In addition a novel method of passively aligning and assembling passive optical devices to embedded polymer waveguide arrays has also been demonstrated.
Lattice-patterned LC-polymer composites containing various nanoparticles as additives
2012-01-01
In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices. PMID:22222011
Electro-optic voltage sensor with beam splitting
Woods, Gregory K.; Renak, Todd W.; Davidson, James R.; Crawford, Thomas M.
2002-01-01
The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.
NASA Astrophysics Data System (ADS)
Singh, Dharmendra Pratap; Vimal, Tripti; Mange, Yatin J.; Varia, Mahesh C.; Nann, Thomas; Pandey, K. K.; Manohar, Rajiv; Douali, Redouane
2018-01-01
CuInS2/ZnS core/shell quantum dots (CIS/ZnS QDs) dispersed ferroelectric liquid crystal (FLC) mixtures have been characterized for their application in electro-optical devices, energy storage, and solar cells. Physical properties of the CIS/ZnS QD-FLC (ferroelectric liquid crystal) mixtures have also been investigated with varying QD concentrations in order to optimize the critical concentration of QDs in mixtures. The presence of QDs breaks the geometrical symmetry in the FLC matrix, which results in a change in the physical properties of the mixtures. We observed the reduced values of primary and secondary order parameters (tilt angle and spontaneous polarization, respectively) for mixtures, which also depend on the concentration of QDs. The reduction of spontaneous polarization in QDs-FLC mixtures is attributed to the adverse role of flexoelectric contribution in the mixtures. The 92% faster electro-optic response and enhanced capacitance indicate the possible application of these mixtures in electro-optical devices and solar cells. Photoluminescence emission of pure FLC and QDs-FLC mixtures has been thermally tailored, which is explained by suitable models.
Twu, Ruey-Ching; Lee, Yi-Huan; Hou, Hong-Yao
2010-01-01
In this paper we have successfully demonstrated a z-propagating Zn-indiffused lithium niobate electro-optic modulator used for optical heterodyne interferometry. Compared to a commercial buck-type electro-optic modulator, the proposed waveguide-type modulator has a lower driving voltage and smaller phase variation while measuring visible wavelengths of 532 nm and 632.8 nm. We also demonstrate an optical temperature measurement system using a homemade modulator. The results show that the measurement sensitivities are almost the same values of 25 deg/°C for both the homemade and the buck-type modulators for a sensing light with a wavelength of 632.8 nm. Because photorefractive impacts are essential in the buck-type modulator at a wavelength of 532 nm, it is difficult to obtain reliable phase measurements, whereas the stable phase operation of the homemade one allows the measurement sensitivity to be improved up to 30 deg/°C with the best measurement resolution at about 0.07 °C for 532 nm. PMID:22163429
The analysis of optical-electro collimated light tube measurement system
NASA Astrophysics Data System (ADS)
Li, Zhenhui; Jiang, Tao; Cao, Guohua; Wang, Yanfei
2005-12-01
A new type of collimated light tube (CLT) is mentioned in this paper. The analysis and structure of CLT are described detail. The reticle and discrimination board are replaced by a optical-electro graphics generator, or DLP-Digital Light Processor. DLP gives all kinds of graphics controlled by computer, the lighting surface lies on the focus of the CLT. The rays of light pass through the CLT, and the tested products, the image of aim is received by variant focus objective CCD camera, the image can be processed by computer, then, some basic optical parameters will be obtained, such as optical aberration, image slope, etc. At the same time, motorized translation stage carry the DLP moving to simulate the limited distance. The grating ruler records the displacement of the DLP. The key technique is optical-electro auto-focus, the best imaging quality can be gotten by moving 6-D motorized positioning stage. Some principal questions can be solved in this device, for example, the aim generating, the structure of receiving system and optical matching.
Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation
Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi
1999-09-14
Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.
MM&T: Testing of Electro-Optic Components.
1981-02-01
electro - optic components with special emphasis on diamond-turned optics. The primary purpose of that study was to determine where new government initiatives could be most effective in moving this area forward. Besides an ordered list of recommended government actions, this study has resulted in+ an extensive survey of experts (the most extensive yet made), the largest annotated bibliography in the field, an improved form of Ronchi testing giving quantitative results, a general approach to nonconjugate interferometry, a high accuracy form of multiple-wavelength absolute
Micro electro mechanical system optical switching
Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J
2013-12-17
The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.
High Bandwidth Optical Links for Micro-Satellite Support
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)
2016-01-01
A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.
Andreev, Alexander L; Andreeva, Tatiana B; Kompanets, Igor N; Zalyapin, Nikolay V
2018-02-20
Spatially inhomogeneous modulation of a phase delay with the depth of the order π or more makes it possible to destroy phase relations in a laser beam passing through an electro-optical cell with the ferroelectric liquid crystal (FLC) and, as a consequence, to suppress speckle noise in images formed by this beam. Such a modulation is a consequence of chaotic changes in the position of the scattering indicatrix of helix-free FLC, when an electro-optical cell is simultaneously supplied with a low-frequency and high-frequency bipolar control voltage. In this work, the phase modulation and effective suppressing of the speckles are realized using a new type of helix-free FLC material with periodic deformations of smectic layers.
SPIDER: Next Generation Chip Scale Imaging Sensor
NASA Astrophysics Data System (ADS)
Duncan, Alan; Kendrick, Rick; Thurman, Sam; Wuchenich, Danielle; Scott, Ryan P.; Yoo, S. J. B.; Su, Tiehui; Yu, Runxiang; Ogden, Chad; Proiett, Roberto
The LM Advanced Technology Center and UC Davis are developing an Electro-Optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that provides a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger aperture imager in a constrained volume. The SPIDER concept consists of thousands of direct detection white-light interferometers densely packed onto Photonic Integrated Circuits (PICs) to measure the amplitude and phase of the visibility function at spatial frequencies that span the full synthetic aperture. In other words, SPIDER would sample the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then digitally reconstruct an image. The conventional approach for imaging interferometers requires complex mechanical delay lines to form the interference fringes. This results in designs that are not traceable to more than a few simultaneous spatial frequency measurements. SPIDER seeks to achieve this traceability by employing micron-=scale optical waveguides and nanophotonic structures fabricated on a PIC with micron-scale packing density to form the necessary interferometers. Prior LM IRAD and DARPA/NASA CRAD-funded SPIDER risk reduction experiments, design trades, and simulations have matured the SPIDER imager concept to a TRL 3 level. Current funding under the DARPA SPIDER Zoom program is maturing the underlying PIC technology for SPIDER to the TRL 4 level. This is done by developing and fabricating a second-generation PIC that is fully traceable to the multiple layers and low-power phase modulators required for higher-dimension waveguide arrays that are needed for higher field-of-view sensors. Our project also seeks to extend the SPIDER concept to add a zoom capability that would provide simultaneous low-resolution, large field-of-view and steerable high-resolution, narrow field-of-view imaging modes. A proof of concept demo is being designed to validate this capability. Finally, data collected by this project would be used to benchmark and increase the fidelity of our SPIDER image simulations and enhance our ability to predict the performance of existing and future SPIDER sensor design variations. These designs and their associated performance characteristics could then be evaluated as candidates for future mission opportunities to identify specific transition paths. This paper provides an overview of performance data on the first-generation PIC for SPIDER developed under DARPA SeeMe program funding. We provide a design description of the SPICER Zoom imaging sensor and the second-generation PIC (high- and low-resolution versions) currently under development on the DARPA SPIDER Zoom effort. Results of performance simulations and design trades are presented. Unique low-cost payload applications for future SSA missions are also discussed.
Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Electro-optical Applications
2010-05-01
samples were dipped in an aqueous solution of iodine (I) and potassium iodide (KI) (25 gm I and 100 gm KI per liter of water [H2O] ) (16). The samples...Satterfield, C. N.; Wentworth, R. L. in Hydrogen Peroxide , Reinhold Publishing, New York, 1955, p. 370. 12 19. Kishioka, K.; Horita, S.; Ohdaria, K...germanium H2O water HBT heterojunction bipolar transistor I iodine IPA isopropal alcohol KI potassium iodide MEE metal enhanced etching
Wessels, B.W.; Nystrom, M.J.
1998-05-19
Sr{sub x}Ba{sub 1{minus}x}Nb{sub 2}O{sub 6}, where x is greater than 0.25 and less than 0.75, and KNbO{sub 3} ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface are disclosed. Such films can be used in electronic, electro-optic, and frequency doubling components. 8 figs.
Wessels, Bruce W.; Nystrom, Michael J.
1998-01-01
Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.
Airborne Systems Course Textbook. Electro-Optical Systems Test and Evaluation,
1981-06-01
by twice the angle between the reflecting faces. The porro - prism shown in Figure 2.2.3.1(c) is used to deflect the beam by 1800. Beam Retro-Reflection...Reflection of Electromagnetic Radiation at the Interface Between Two Media 2.13 2.2 Optics 2.15 2.2.1 The Lens 2.15 2.2.2 The Mirror 2.25 2.2.3 The Prism 2.30...2.5.2 The Optical Resonator 2.77 2.5.3 Laser Implementation 2.79 2.5.4 Laser Radiation Characteristics 2.81 2.6 Electro-Optical Sensors 2.83 2.6.1
Tiede, Dirk; Baraldi, Andrea; Sudmanns, Martin; Belgiu, Mariana; Lang, Stefan
2017-01-01
ABSTRACT Spatiotemporal analytics of multi-source Earth observation (EO) big data is a pre-condition for semantic content-based image retrieval (SCBIR). As a proof of concept, an innovative EO semantic querying (EO-SQ) subsystem was designed and prototypically implemented in series with an EO image understanding (EO-IU) subsystem. The EO-IU subsystem is automatically generating ESA Level 2 products (scene classification map, up to basic land cover units) from optical satellite data. The EO-SQ subsystem comprises a graphical user interface (GUI) and an array database embedded in a client server model. In the array database, all EO images are stored as a space-time data cube together with their Level 2 products generated by the EO-IU subsystem. The GUI allows users to (a) develop a conceptual world model based on a graphically supported query pipeline as a combination of spatial and temporal operators and/or standard algorithms and (b) create, save and share within the client-server architecture complex semantic queries/decision rules, suitable for SCBIR and/or spatiotemporal EO image analytics, consistent with the conceptual world model. PMID:29098143
Imaging quality evaluation method of pixel coupled electro-optical imaging system
NASA Astrophysics Data System (ADS)
He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui
2017-09-01
With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.
Determination of electro-optical coefficients of 2-Methyl-4-Nitroaniline
NASA Astrophysics Data System (ADS)
Ho, Edmond S. S.; Iizuka, Keigo; Freundorfer, Alois P.; Wah, Christopher K. L.
1991-02-01
The electro-optical constants of 2-Methyl-4-Nitroaniline crystals are measured at a wavelength of 632.8 nm. The results confirm the measurements made by Lipscomb, Garito, and R. S. Narang [J. Chem. Phys. 75, 1509 (1981)] for the first time and settle the descrepency between Tokura, Kurita, and Koda experiment [Phys. Rev. B 31, 2588 (1985)] and Lipscomb, Garito, and R. S. Narang.
Ultrasensitive Silicon Photonic-Crystal Nanobeam Electro-Optical Modulator (Preprint)
2013-10-01
and simulation results are presented for an ultralow switching energy, resonator based silicon-on-insulator (SOI) electro-optical modulator. The...joshua.hendrickson@wpafb.af.mil Abstract: Design and simulation results are presented for an ultralow switching energy, resonator based silicon-on...S. Fegadolli, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Compact and low power consumption tunable photonic crystal nanobeam cavity,” 21
Universal Infantry Weapons Trainer (UIWT). Volume 1. M-16 Rifle Model.
1980-07-01
id entityb bloc moo") The Universal Infantry Weapons Trainer (UIWT) is an electro-optic based , micro- computer controlled, training device that...CLASIIClATSON OF THIS PAOt(la., Diat Eaeied) t SUMMARY The Universal Infantry Weapon Trainer (UIWT), is an electro-optic based , microcomputer controlled...Routine Flowchart .... ................ .. 52 111-36 Fixed Base FIFO Operation ...... ................. 54 111-37 Moving Base FIFO Operation
Clauser, Luigi C; Tieghi, Riccardo; Galie', Manlio; Franco, Filippo; Carinci, Francesco
2012-10-01
Endocrine orbitopathy (EO) represents the most frequent and important extrathyroidal stigma of Graves disease. This chronic autoimmune condition involves the orbital contents, including extraocular muscles, periorbital connective-fatty tissue and lacrimal gland. The increase of fat tissue and the enlargement of extraocular muscles within the bony confines of the orbit leads to proptosis, and in the most severe cases optic neuropathy, caused by compression and stretching of the optic nerve. The congestion and the pressure of the enlarged muscles, constrict the nerve and can lead to reduced sight or loss of vision with the so called "orbital apex syndrome". Generally surgical treatment of EO, based on fat and/or orbital wall expansion, is possible and effective in improving exophthalmos and diplopia. Since there are limited reports focussing on optic neuropathy recovery after fat and/or orbital walls decompression the Authors decided to perform a retrospective analysis on a series of patients affected by EO. The study population was composed of 10 patients affected by EO and presenting to the Unit of Cranio Maxillofacial Surgery, Center for Craniofacial Deformities & Orbital Surgery St. Anna Hospital and University, Ferrara, Italy, for evaluation and treatment. A complete Visual Evoked Potentials (VEP) evaluation was performed. There were seven women and three men with a median age of 55 years. Optic nerve VEP amplitude and latency were recorded as normal or pathological. Abnormal results were scored as moderate, mild and severe. Differences in VEP pre and post-operatively were recorded as present or absent (i.e. VEP Delta). Pearson chi square test was applied. There were 20 operated orbits. The first VEP evaluation was performed 3.2 months before surgery and post-operative VEP control was done after a mean of 18.7 months. Fat decompression was performed in all cases and eight patients had also bony decompression. VEP amplitude and latency were affected in 10 and 15 cases before operation and six and nine after surgery, respectively. VEP amplitude and latency significantly improved after orbital decompression. Fat and orbital wall decompression are of paramount importance not only to improve exophthalmos and diplopia in patients affected by EO but also as rescue surgery for severe cases where optic neuropathy caused by stretching of the optical nerve is detected by VEP. Imaging and functional nerve evaluation are mandatory in all cases of EO. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Guenther, Bruce W. (Editor)
1991-01-01
Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability.
Cvetkovikj, Ivana; Stefkov, Gjoshe; Acevska, Jelena; Karapandzova, Marija; Dimitrovska, Aneta; Kulevanova, Svetlana
2016-07-01
Quality assessment of essential oil (EO) from culinary sage (Salvia officinalis L., Lamiaceae) is limited by the long pharmacopoeial procedure. The aim of this study was to employ headspace (HS) sampling in the quality assessment of sage EO. Different populations (30) of culinary sage were assessed using GC/FID/MS analysis of the hydrodistilled EO (pharmacopoeial method) and HS sampling directly from leaves. Compound profiles from both procedures were evaluated according to ISO 9909 and GDC standards for sage EO quality, revealing compliance for only 10 populations. Factors to convert HS values, for the target ISO and GDC components, into theoretical EO values were calculated. Statistical analysis revealed a significant relationship between HS and EO values for seven target components. Consequently, HS sampling could be used as a complementary extraction technique for rapid screening in quality assessment of sage EOs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Are we witnessing the epoch of reionisation at z = 7.1 from the spectrum of J1120+0641?
NASA Astrophysics Data System (ADS)
Greig, Bradley; Mesinger, Andrei; Haiman, Zoltán; Simcoe, Robert A.
2017-04-01
We quantify the presence of Lyα damping wing absorption from a partially neutral intergalactic medium (IGM) in the spectrum of the z = 7.08 QSO, ULASJ1120+0641. Using a Bayesian framework, we simultaneously account for uncertainties in: (I) the intrinsic QSO emission spectrum; and (II) the distribution of cosmic H I patches during the epoch of reionization (EoR). For (I), we use a new intrinsic Lyα emission line reconstruction method, sampling a covariance matrix of emission line properties built from a large data base of moderate-z QSOs. For (II), we use the Evolution of 21-cm Structure (EOS; Mesinger et al.) simulations, which span a range of physically motivated EoR models. We find strong evidence for the presence of damping wing absorption redward of Lyα (where there is no contamination from the Lyα forest). Our analysis implies that the EoR is not yet complete by z = 7.1, with the volume-weighted IGM neutral fraction constrained to \\bar{x}_{H I} = 0.40^{+0.21 }_{ -0.19} at 1σ (\\bar{x}_{H I} = 0.40^{+0.41 }_{ -0.32} at 2σ). This result is insensitive to the EoR morphology. Our detection of significant neutral H I in the IGM at z = 7.1 is consistent with the latest Planck 2016 measurements of the CMB Thompson scattering optical depth.
GilPavas, Edison; Arbeláez-Castaño, Paula; Medina, José; Acosta, Diego A
2017-11-01
A combined electrocoagulation (EC) and electrochemical oxidation (EO) industrial textile wastewater treatment potential is evaluated in this work. A fractional factorial design of experiment showed that EC current density, followed by pH, were the most significant factors. Conductivity and number of electrooxidation cells did not affect chemical oxygen demand degradation (DCOD). Aluminum and iron anodes performed similarly as sacrificial anodes. Current density, pH and conductivity were chosen for a Box-Behnken design of experiment to determine optimal conditions to achieve a high DCOD minimizing operating cost (OC). The optimum to achieve a 70% DCOD with an OC of USD 1.47/m 3 was: pH of 4, a conductivity of 3.7 mS/cm and a current density of 4.1 mA/cm 2 . This study also shows the applicability of a combined EC/EO treatment process of a real complex industrial wastewater.
Electro-optic voltage sensor for sensing voltage in an E-field
Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.
2002-03-26
A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.
Optical to optical interface device
NASA Technical Reports Server (NTRS)
Oliver, D. S.; Vohl, P.; Nisenson, P.
1972-01-01
The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.
Optical Imaging of Nonuniform Ferroelectricity and Strain at the Diffraction Limit
Vlasin, Ondrej; Casals, Blai; Dix, Nico; Gutiérrez, Diego; Sánchez, Florencio; Herranz, Gervasi
2015-01-01
We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics –linked to ferroelectricity– as well as strain –arising from converse piezoelectric effects– have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing. PMID:26522345
Western Eos Chaos on Mars: A Potential Site for Future Landing and Returning Samples
NASA Astrophysics Data System (ADS)
Asif Iqbal Kakkassery; Rajesh, V. J.
2018-04-01
Introducing Eos Chaos as a potential area for collecting samples. Eos Chaos contains a number of aqueous minerals. We have detected zoisite — a least reported low-grade metamorphic mineral from this area.
Kaneko, Kosuke; Oto, Kodai; Kawai, Toshiaki; Choi, Hyunseok; Kikuchi, Hirotsugu; Nakamura, Naotake
2013-08-26
The electrorheological (ER) effect and the electro-optical properties of a ''side-on'' liquid crystalline polysiloxane (PS) are investigated. A large ER effect is observed and the response to the shear stress of neat PS in the nematic phase is shown to be affected by the shear rate. PS is also mixed with a low-molar nematic liquid crystal (5CB) in order to improve the response behavior to the applied electric field. The rheological properties of such mixtures are highly dependent on the concentration of 5CB. The composites respond faster to the applied electric field and have improved electro-optical properties. This study offers a new perspective on the development of liquid crystal materials for the ER effect. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wafer bonded virtual substrate and method for forming the same
Atwater, Jr., Harry A.; Zahler, James M [Pasadena, CA; Morral, Anna Fontcuberta i [Paris, FR
2007-07-03
A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.
Wafer bonded virtual substrate and method for forming the same
NASA Technical Reports Server (NTRS)
Atwater, Jr., Harry A. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcuberta i (Inventor)
2007-01-01
A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.
Tai, Zhaoyang; Yan, Lulu; Zhang, Yanyan; Zhang, Xiaofei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng
2016-12-01
The reduction of the residual amplitude modulation (RAM) induced by electro-optic modulation is essential for many applications of frequency modulation spectroscopy requiring a lower system noise floor. Here, we demonstrate a simple passive approach employing an electro-optic modulator (EOM) cut at Brewster's angle. The proposed EOM exhibits a RAM of a few parts per million, which is comparable with that achieved by a common EOM under critical active temperature and bias voltage controls. The frequency instability of a 10 cm cavity-stabilized laser induced by the RAM effect of the proposed EOM is below 3×10-17 for integration times from 1 to 1000 s, and below 4×10-16 for comprehensive noise contributions for integration times from 1 to 100 s.
Early, James W.; Lester, Charles S.
2002-01-01
Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.
Architecture for fiber-optic sensors and actuators in aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Glomb, W. L., Jr.
1990-01-01
This paper describes a design for fiber-optic sensing and control in advanced aircraft Electronic Engine Control (EEC). The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pairs of optical fibers to common electro-optical interfaces. The architecture contains interfaces to seven sensor groups. Nine distinct fiber-optic sensor types were found to provide the sensing functions. Analysis revealed no strong discriminator (except reliability of laser diodes and remote electronics) on which to base a selection of preferred common interface type. A hardware test program is recommended to assess the relative maturity of the technologies and to determine real performance in the engine environment.
Non-Electronic Radio Front-End (NERF)
2007-04-01
electro - optic field sensor. The absence of metallic interconnects and the charge isolation provided by the optics removes the soft spots in a traditional receiver. In the proof-of concept experiment, detection of C band electromagnetic signals at 7.38 GHz with a sensitivity of 4.3x10 -3 V/m.Hz(exp 1/2) is demonstrated. The dielectric approach has an added benefit: it reduces physical size of the front end an important benefit in mobile applications. DIELECTRIC RESONATOR ANTENNA, PHOTONICALLY ISOLATED ANTENNA RECEIVER, ELECTRO - OPTIC DIELECTRIC ANTENNA,
Moon, Seong Min; Kim, Y D; Oh, S K; Park, M J; Kwak, Joon Seop
2012-05-01
We have investigated the high-temperature degradation of optical power as well as electrical properties of InGaN/GaN light-emitting diodes (LEDs) fabricated with ITO transparent p-electrode during accelerated electro-thermal stress. As the thermal stress increased from 150 degrees C to 250 degrees C at a electrical stress of 200 mA, the optical power of the LEDs was significantly reduced. Degradation of the optical power was thermally activated, with the activation of 0.9 eV. In addition, the activation energy of the degradation of optical power was fairly similar to that of the degradation of series resistance of the LEDs, 1.0 eV, which implies that the increase in the series resistance may result in the severe degradation of optical power. We also showed that the increase in the series resistance of the LEDs during the accelerated electro-thermal stress can be attributed to reduction of the active acceptor concentration in the p-type semiconductor layers and local joule heating due to the current crowding.
Mirzaei, Javad; Urbanski, Martin; Kitzerow, Heinz-S; Hegmann, Torsten
2014-05-19
Chemically and thermally robust liquid crystal silane-functionalized gold nanoparticles (i.e. AuNP1-AuNP3) were synthesized through silane conjugation. Colloidal dispersions of these particles with mesogenic ligands that are structurally identical (as in AuNP1, AuNP2) or compatible (as in AuNP3) with molecules of the nematic liquid crystal (N-LC) host showed superior colloidal stability and dispersibility. The thermal, optical, and electro-optic behaviors of the N-LC composites at different concentrations of each gold nanoparticle were investigated. All dispersions showed lower values for the rotational viscosity and elastic constant, but only AuNP3 with a dissimilar structure between the nanoparticle ligand and the host displayed the most drastic thermal effects and overall strongest impact on the electro-optic properties of the host. The observed results were explained considering both the structure and the density of the surface ligands of each gold nanoparticle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Investigation of a GaAlAs Mach-Zehnder electro-optic modulator. M.S. Thesis. Final Contractor Report
NASA Technical Reports Server (NTRS)
Materna, David M.
1987-01-01
A GaAs modulator operating at 0.78 to 0.88 micron wavelength has the potential to be integrated with a GaAs/GaAlAs laser diode for an integrated fiber-optic transmitter. A travelling-wave Mach-Zehnder modulator using the electro-optic effect of GaAs and operating at a wavelength of 0.82 microns has been investigated for the first time. A four layer Strip-loaded ridge optical waveguide has been analyzed using the effective index method and single mode waveguides have been designed. The electro-optic effect of GaAs has also been analyzed and a modulator using the geometry producing the maximum phase shift has been designed. A coplanar transmission line structure is used in an effort to tap the potentially higher bandwidth of travelling-wave electrodes. The modulator bandwidth has been calculated at 11.95 GHz with a required drive power of 2.335 Watts for full intensity modulation. Finally, some preliminary experiments were performed to characterize a fabrication process for the modulator.
Visualizing Sound with an Electro-Optical Eardrum
NASA Astrophysics Data System (ADS)
Truncale, Nicholas P.; Graham, Michelle T.
2014-02-01
As science educators, one of our important responsibilities is ensuring students possess the proper tools and accommodations to examine phenomena in a laboratory setting. It is our job to innovate methods enabling students with disabilities to participate in all aspects of investigations. This article describes an experimental accommodation allowing a deaf student to determine and plot the sensitivity of an electro-optical eardrum in the sound range of 10-150 Hz.
Analysis of Multilayered Printed Circuit Boards using Computed Tomography
2014-05-01
complex PCBs that present a challenge for any testing or fault analysis. Set-to- work testing and fault analysis of any electronic circuit require...Electronic Warfare and Radar Division in December 2010. He is currently in Electro- Optic Countermeasures Group. Samuel works on embedded system design...and software optimisation of complex electro-optical systems, including the set to work and characterisation of these systems. He has a Bachelor of
41. View of electro/mechanical fiber optic system panel in transmitter ...
41. View of electro/mechanical fiber optic system panel in transmitter building no. 102. Images projected to screen (panel at upper left) are projected to back side of screen located in MWOC to display changing information. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
ERIC Educational Resources Information Center
Alfano, Kathleen
A model program was developed to increase the number of noncollege-bound students who were capable of succeeding in electronics and laser/electro-optics technology (LET) vocational training. The target population was noncollege-bound disadvantaged students, at least 60 percent minorities and women who were historically underrepresented in…
NASA Astrophysics Data System (ADS)
Ushakov, A. A.; Chizhov, P. A.; Bukin, V. V.; Garnov, S. V.; Savel'ev, A. B.
2018-05-01
Two 2D techniques for visualising the field of pulsed THz radiation ('shadow' and 'interferometric'), which are based on the linear electro-optical effect with application of a ZnTe detector crystal 1 × 1 cm in size, are compared. The noise level and dynamic range for the aforementioned techniques are analysed and their applicability limits are discussed.
Holographically Encoded Volume Phase Masks
2015-07-13
Lu et al., “Coherent beam combination of fiber laser arrays via multiplexed volume Bragg gratings,” in Conf. on Lasers and Electro- Optics: Science...combining of fiber lasers using multiplexed volume Bragg gratings,” in Conf. on Lasers and Electro- Optics: Science and Innovations, OSA Technical Digest...satisfying the Bragg condition of the hologram. Moreover, this approach enables the capability to encode and multiplex several phase masks into a single
Multiple p-n junction subwavelength gratings for transmission-mode electro-optic modulators
Lee, Ki Young; Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert
2017-01-01
We propose a free-space electro-optic transmission modulator based on multiple p-n-junction semiconductor subwavelength gratings. The proposed device operates with a high-Q guided-mode resonance undergoing electro-optic resonance shift due to direct electrical control. Using rigorous electrical and optical modeling methods, we theoretically demonstrate a modulation depth of 84%, on-state efficiency 85%, and on-off extinction ratio of 19 dB at 1,550 nm wavelength under electrical control signals within a favorably low bias voltage range from −4 V to +1 V. This functionality operates in the transmission mode and sustainable in the high-speed operation regime up to a 10-GHz-scale modulation bandwidth in principle. The theoretical performance prediction is remarkably advantageous over plasmonic tunable metasurfaces in the power-efficiency and absolute modulation-depth aspects. Therefore, further experimental study is of great interest for creating practical-level metasurface components in various application areas. PMID:28417962