Science.gov

Sample records for electrocatalysts

  1. Palladium-based electrocatalysts and fuel cells employing such electrocatalysts

    DOEpatents

    Masel; Richard I. , Zhu; Yimin , Larsen; Robert T.

    2010-08-31

    A direct organic fuel cell includes a fluid fuel comprising formic acid, an anode having an electrocatalyst comprising palladium nanoparticles, a fluid oxidant, a cathode electrically connected to the anode, and an electrolyte interposed between the anode and the cathode.

  2. Electrocatalysts for carbon dioxide conversion

    SciTech Connect

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  3. Electrocatalysts using porous polymers and method of preparation

    DOEpatents

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2016-08-02

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  4. Photocatalytic methods for preparation of electrocatalyst materials

    DOEpatents

    Nwoga, Tochi Tudor; Kawahara, Kazuo; Li, Wen; Song, Yujiang; Shelnutt, John A; Miller, James E; Medforth, Craig John; Ueno, Yukiyoshi; Kawamura, Tetsuo

    2013-12-17

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in proton exchange membrane fuel cells (PEM-FCs).

  5. Photocatalytic methods for preparation of electrocatalyst materials

    DOEpatents

    Li, Wen; Kawamura, Tetsuo; Nagami, Tetsuo; Takahashi, Hiroaki; Muldoon, John; Shelnutt, John A; Song, Yujiang; Miller, James E; Hickner, Michael A; Medforth, Craig

    2013-09-24

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).

  6. Lead-ruthenium pyrochlores as oxygen electrocatalysts

    NASA Technical Reports Server (NTRS)

    Anderson, E. B.; Taylor, E. J.; Moniz, G. A.

    1990-01-01

    An investigation of lead-ruthenium pyrochlores of the structure Pb2(Ru/2-x/Pb/x/) O7-y for use as oxygen electrocatalysts in alkaline media is discussed. Lead-ruthenium pyrochlore mixed metal oxides were prepared and characterized by X-ray diffraction, BET surface area, dry powder conductivity, and chemical stability. Gas diffusion electrodes were developed specifically for the lead-ruthenium pyrochlore materials. Also investigated were the effects of varying electrode fabrication parameters on the oxygen reduction performance of the lead-ruthenium pyrochlore electrocatalyst. Long-term stability performance was also evaluated. The oxygen reduction performance of the pyrochlore electrocatalyst is considerably higher than that of the state-of-the-art gold-platinum alloy electrocatalyst currently used by NASA. Furthermore, the pyrochlore electrocatalysts are attractive candidates for high-performance pressurized alkaline fuel cells.

  7. Electrocatalyst for alcohol oxidation in fuel cells

    DOEpatents

    Adzic, Radoslav R.; Marinkovic, Nebojsa S.

    2001-01-01

    Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.

  8. Electrocatalyst for alcohol oxidation at fuel cell anodes

    DOEpatents

    Adzic, Radoslav; Kowal, Andrzej

    2011-11-02

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  9. Electrocatalysts for oxygen electrodes. Final report

    SciTech Connect

    Yeager, E.

    1993-02-01

    Object was to understand factors controlling the activity of O{sub 2} reduction and generation electrocatalysts, in order to attain higher activity and longer-term stability. Two broad classes of catalysts were developed: transition metal macrocycles in monomeric and polymeric forms, and transition metal oxides including perovskites and pyrochlores. 20 refs., 14 figs.

  10. Electrocatalyst advances for hydrogen oxidation in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.

    1984-01-01

    The important considerations that presently exist for achieving commercial acceptance of fuel cells are centered on cost (which translates to efficiency) and lifetime. This paper addresses the questions of electrocatalyst utilization within porous electrode structures and the preparation of low-cost noble metal electrocatalyst combinations with extreme dispersions of the metal. Now that electrocatalyst particles can be prepared with dimensions of 10 A, either singly or in alloy combinations, a very large percentage of the noble metal atoms in a crystallite are available for reaction. The cost savings for such electrocatalysts in the present commercially driven environment are considerable.

  11. Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

    2013-03-30

    Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalyst supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.

  12. Development of Molecular Electrocatalysts for Energy Storage

    SciTech Connect

    DuBois, Daniel L.

    2014-02-20

    Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high energy and low energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is the control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intramolecular and intermolecular proton transfer steps, and the coupling of proton and electron transfer steps. Studies also indicate an important role for outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton transfer reactions and their

  13. Fuel cell with Pt/Pd electrocatalyst electrode

    DOEpatents

    Stonehart, Paul

    1983-01-01

    An electrode for use in a phosphoric acid fuel cell comprising a graphitized or partially graphitized carbon support having a platinum/palladium electrocatalyst thereon. Preferably, the platinum/palladium catalyst comprises 20 to 65 weight percent palladium.

  14. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rhodes, Christopher P. (Inventor); Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  15. A metal-organic framework-derived bifunctional oxygen electrocatalyst

    NASA Astrophysics Data System (ADS)

    Xia, Bao Yu; Yan, Ya; Li, Nan; Wu, Hao Bin; Lou, Xiong Wen (David); Wang, Xin

    2016-01-01

    Oxygen electrocatalysis is of great importance for many energy storage and conversion technologies, including fuel cells, metal-air batteries and water electrolysis. Replacing noble metal-based electrocatalysts with highly efficient and inexpensive non-noble metal-based oxygen electrocatalysts is critical for the practical applications of these technologies. Here we report a general approach for the synthesis of hollow frameworks of nitrogen-doped carbon nanotubes derived from metal-organic frameworks, which exhibit higher electrocatalytic activity and stability for oxygen reduction and evolution than commercial Pt/C electrocatalysts. The remarkable electrochemical properties are mainly attributed to the synergistic effect from chemical compositions and the robust hollow structure composed of interconnected crystalline nitrogen-doped carbon nanotubes. The presented strategy for controlled design and synthesis of metal-organic framework-derived functional nanomaterials offers prospects in developing highly active electrocatalysts in electrochemical energy devices.

  16. Nanostructured electrocatalysts with tunable activity and selectivity

    NASA Astrophysics Data System (ADS)

    Mistry, Hemma; Varela, Ana Sofia; Kühl, Stefanie; Strasser, Peter; Cuenya, Beatriz Roldan

    2016-04-01

    The field of electrocatalysis has undergone tremendous advancement in the past few decades, in part owing to improvements in catalyst design at the nanoscale. These developments have been crucial for the realization of and improvement in alternative energy technologies based on electrochemical reactions such as fuel cells. Through the development of novel synthesis methods, characterization techniques and theoretical methods, rationally designed nanoscale electrocatalysts with tunable activity and selectivity have been achieved. This Review explores how nanostructures can be used to control electrochemical reactivity, focusing on three model reactions: O2 electroreduction, CO2 electroreduction and ethanol electrooxidation. The mechanisms behind nanoscale control of reactivity are discussed, such as the presence of low-coordinated sites or facets, strain, ligand effects and bifunctional effects in multimetallic materials. In particular, studies of how particle size, shape and composition in nanostructures can be used to tune reactivity are highlighted.

  17. Platinum monolayer electrocatalysts for oxygen reduction in fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Junliang

    Fuel cells are expected to be one of the major clean energy sources in the near future. However, the slow kinetics of electrocatalytic oxygen reduction reaction (ORR) and the high loading of Pt for the cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this study, a new approach was developed for designing electrocatalysts for the ORR in fuel cells. These electrocatalysts consist of only one Pt monolayer, or mixed transition metal-Pt monolayer, on suitable carbon-supported metal, or alloy nanoparticles. The synthesis involved depositing a monolayer of Cu on a suitable transition metal or metal alloy surface at underpotentials, followed by galvanic displacement of the Cu monolayer with Pt or mixed metal-Pt. It was found that the electronic properties of Pt monolayer could be fine-tuned by the electronic and geometric effects introduced by the substrate metal (or alloy) and the lateral effects of the neighboring metal atoms. The role of substrates was found reflected in a "volcano" plot of the monolayer activity for the ORR as a function of their calculated d-band centers. The Pt mass-specific activity of the new Pt monolayer electrocatalysts was up to twenty times higher than the state-of-the-art commercial Pt/C catalysts. The enhancement of the activity is caused mainly by decreased formation of PtOH (the blocking species for ORR), and to a lesser degree by the electronic effects. Fuel cell tests showed a very good long term stability of the new electrocatalysts. Our results demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issues facing the commercialization of fuel cells---the costs of electrocatalysts and their efficiency.

  18. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  19. Platinum-based oxygen reduction electrocatalysts.

    PubMed

    Wu, Jianbo; Yang, Hong

    2013-08-20

    An efficient oxygen reduction reaction (ORR) offers the potential for clean energy generation in low-temperature, proton-exchange membrane fuel cells running on hydrogen fuel and air. In the past several years, researchers have developed high-performance electrocatalysts for the ORR to address the obstacles of high cost of the Pt catalyst per kilowatt of output power and of declining catalyst activity over time. Current efforts are focused on new catalyst structures that add a secondary metal to change the d-band center and the surface atomic arrangement of the catalyst, altering the chemisorption of those oxygencontaining species that have the largest impact on the ORR kinetics and improving the catalyst activity and cost effectiveness. This Account reviews recent progress in the design of Pt-based ORR electrocatalysts, including improved understanding of the reaction mechanisms and the development of synthetic methods for producing catalysts with high activity and stability. Researchers have made several types of highly active catalysts, including an extended single crystal surface of Pt and its alloy, bimetallic nanoparticles, and self-supported, low-dimensional nanostructures. We focus on the design and synthetic strategies for ORR catalysts including controlling the shape (or facet) and size of Pt and its bimetallic alloys, and controlling the surface composition and structure of core-shell, monolayer, and hollow porous structures. The strong dependence of ORR performance on facet and size suggests that synthesizing nanocrystals with large, highly reactive {111} facets could be as important, if not more important, to increasing their activity as simply making smaller nanoparticles. A newly developed carbon-monoxide (CO)-assisted reduction method produces Pt bimetallic nanoparticles with controlled facets. This CO-based approach works well to control shapes because of the selective CO binding on different, low-indexed metal surfaces. Post-treatment under

  20. Synthesis and characterization of catalysts and electrocatalysts using combinatorial methods

    NASA Astrophysics Data System (ADS)

    Ramanathan, Ramnarayanan

    This thesis documents attempts at solving three problems. Bead-based parallel synthetic and screening methods based on matrix algorithms were developed. The method was applied to search for new heterogeneous catalysts for dehydrogenation of methylcyclohexane. The most powerful use of the method to date was to optimize metal adsorption and evaluate catalysts as a function of incident energy, likely to be important in the future, should availability of energy be an optimization parameter. This work also highlighted the importance of order of addition of metal salts on catalytic activity and a portion of this work resulted in a patent with UOP LLC, Desplaines, Illinois. Combinatorial methods were also investigated as a tool to search for carbon-monoxide tolerant anode electrocatalysts and methanol tolerant cathode electrocatalysts, resulting in discovery of no new electrocatalysts. A physically intuitive scaling criterion was developed to analyze all experiments on electrocatalysts, providing insight for future experiments. We attempted to solve the CO poisoning problem in polymer electrolyte fuel cells using carbon molecular sieves as a separator. This approach was unsuccessful in solving the CO poisoning problem, possibly due to the tendency of the carbon molecular sieves to concentrate CO and CO 2 in pore walls.

  1. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    DOEpatents

    Adzic, Radoslav; Huang, Tao

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  2. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    NASA Astrophysics Data System (ADS)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  3. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.

    1981-01-01

    Two cooperative phenomena are required the development of highly efficient porous electrocatalysts: (1) is an increase in the electrocatalytic activity of the catalyst particle; and (2) is the availability of that electrocatalyst particle for the electromechanical reaction. The two processes interact with each other so that improvements in the electrochemical activity must be coupled with improvements in the availability of the electrocatalyst for reaction. Cost effective and highly reactive electrocatalysts were developed. The utilization of the electrocatalyst particles in the porous electrode structures was analyzed. It is shown that a large percentage of the electrocatalyst in anode structures is not utilized. This low utilization translates directly into a noble metal cost penalty for the fuel cell.

  4. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Pagliaro, P.

    1980-01-01

    Results are presented for hydrogen oxidation and hydrogen oxidation poisoned by carbon monoxide at levels between 0 and 30%. Due to the high activities that are now being observed for our platinum based electrocatalysts, the hydrogen concentrations were reduced to 10% levels in the gas supplies. Perturbation techniques were used to determine that a mechanism for the efficient operation of our porous gas diffusion electrodes is diffusion of the carbon monoxide out of the electrode structure through the electrolyte film on the electro-catalyst. A survey of the literature on platinum group materials (PGM) was carried out so that an identification of successful electrocatalysts could be made. Two PGM electrocatalysts were prepared and performance data for hydrogen oxidation in hot phosphoric acid in the presence of high carbon monoxide concentrations showed that they matched the best platinum on carbon electrocatalysts but with an electrocatalyst cost that was half of the platinum catalyst cost.

  5. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hochmutt, J.; Pagliaro, P.

    1980-01-01

    Alloy electrocatalysts on carbon supports were developed for hydrogen oxidation in the presence of carbon monoxide. These electrocatalysts match the best platinum on carbon catalysts for performance yet cost half as much. The results demonstrate that a significant reduction in anode electrocatalyst material cost can be achieved by replacing the platinum. Since surface characterization of this catalyst is important to explain its performance, several approaches and pitfalls to the elucidation of the surface characterization are presented.

  6. High-surface-area, dual-function oxygen electrocatalysts for space power applications

    NASA Technical Reports Server (NTRS)

    Ham, David O.; Moniz, Gary; Taylor, E. Jennings

    1987-01-01

    The processes of hydration/dehydration and carbonation/decarbonation are investigated as an approach to provide higher surface area mixed metal oxides that are more active electrochemically. These materials are candidates for use as electrocatalysts and electrocatalyst supports for alkaline electrolyzers and fuel cells. For the case of the perovskite, LaCoO3 , higher surface areas were achieved with no change in structure and a more active oxygen electrocatalyst.

  7. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    PubMed Central

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  8. A Perovskite Electrocatalyst for Efficient Hydrogen Evolution Reaction.

    PubMed

    Xu, Xiaomin; Chen, Yubo; Zhou, Wei; Zhu, Zhonghua; Su, Chao; Liu, Meilin; Shao, Zongping

    2016-08-01

    Perovskite oxides are demonstrated for the first time as efficient electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solutions. A-site praseodymium-doped Pr0.5 (Ba0.5 Sr0.5 )0.5 Co0.8 Fe0.2 O3- δ (Pr0.5BSCF) exhibits dramatically enhanced HER activity and stability compared to Ba0.5 Sr0.5 Co0.8 Fe0.2 O3- δ (BSCF), superior to many well-developed bulk/nanosized nonprecious electrocatalysts. The improved HER performance originates from the modified surface electronic structures and properties of Pr0.5BSCF induced by the Pr-doping. PMID:27185219

  9. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes

    DOEpatents

    Wu, Gang; Zelenay, Piotr

    2013-08-27

    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  10. Turning Indium Oxide into a Superior Electrocatalyst: Deterministic Heteroatoms

    PubMed Central

    Zhang, Bo; Zhang, Nan Nan; Chen, Jian Fu; Hou, Yu; Yang, Shuang; Guo, Jian Wei; Yang, Xiao Hua; Zhong, Ju Hua; Wang, Hai Feng; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui

    2013-01-01

    The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future. PMID:24173503

  11. Copper as a robust and transparent electrocatalyst for water oxidation.

    PubMed

    Du, Jialei; Chen, Zuofeng; Ye, Shengrong; Wiley, Benjamin J; Meyer, Thomas J

    2015-02-01

    Copper metal is in theory a viable oxidative electrocatalyst based on surface oxidation to Cu(III) and/or Cu(IV) , but its use in water oxidation has been impeded by anodic corrosion. The in situ formation of an efficient interfacial oxygen-evolving Cu catalyst from Cu(II) in concentrated carbonate solutions is presented. The catalyst necessitates use of dissolved Cu(II) and accesses the higher oxidation states prior to decompostion to form an active surface film, which is limited by solution conditions. This observation and restriction led to the exploration of ways to use surface-protected Cu metal as a robust electrocatalyst for water oxidation. Formation of a compact film of CuO on Cu surface prevents anodic corrosion and results in sustained catalytic water oxidation. The Cu/CuO surface stabilization was also applied to Cu nanowire films, which are transparent and flexible electrocatalysts for water oxidation and are an attractive alternative to ITO-supported catalysts for photoelectrochemical applications. PMID:25581365

  12. Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting.

    PubMed

    Li, Jun; Wang, Yongcheng; Zhou, Tong; Zhang, Hui; Sun, Xuhui; Tang, Jing; Zhang, Lijuan; Al-Enizi, Abdullah M; Yang, Zhongqin; Zheng, Gengfeng

    2015-11-18

    The solar-driven water splitting process is highly attractive for alternative energy utilization, while developing efficient, earth-abundant, bifunctional catalysts for both oxygen evolution reaction and hydrogen evolution reaction has remained as a major challenge. Herein, we develop an ordered CoMnO@CN superlattice structure as an efficient bifunctional water-splitting electrocatalyst, in which uniform Co-Mn oxide (CoMnO) nanoparticles are coated with a thin, continuous nitrogen-doped carbon (CN) framework. The CoMnO nanoparticles enable optimized OER activity with effective electronic structure configuration, and the CN framework serves as an excellent HER catalyst. Importantly, the ordered superlattice structure is beneficial for enhanced reactive sites, efficient charge transfer, and structural stability. This bifunctional superlattice catalyst manifests optimized current densities and electrochemical stability in overall water splitting, outperforming most of the previously reported single- or bifunctional electrocatalysts. Combining with a silicon photovoltaic cell, this CoMnO@CN superlattice bifunctional catalyst enables unassisted solar water splitting continuously for ∼5 days with a solar-to-hydrogen conversion efficiency of ∼8.0%. Our discovery suggests that these transition metal oxide-based superlattices may serve as a unique structure modality for efficient bifunctional water splitting electrocatalysts with scale-up potentials.

  13. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.

    1981-01-01

    A number of electrocatalyst combinations were prepared and characterized. These electrocatalysts were formulated to contain platinum combined with transition metal carbide forming elements (W, Mo, V) for cathodes and platinum combined with palladium for anodes. High resolution electron microscopy was used to determine the crystallite size and dispersion of platinum-palladium alloy electrocatalysts in order to provide analytical support for the electrochemical determinations of the particle dispersions. An equation was derived which correlates palladium crystallite size with electrochemical hydrogen adsorption. Based on comparisons of electrocatalyst performances in the presence of pure hydrogen and hydrogen containing carbon monoxide, it was shown that the apparent poisoning of the electrocatalyst by carbon monoxide is influenced by the electrode structure.

  14. Electrocatalyst approaches and challenges for automotive fuel cells.

    PubMed

    Debe, Mark K

    2012-06-06

    Fuel cells powered by hydrogen from secure and renewable sources are the ideal solution for non-polluting vehicles, and extensive research and development on all aspects of this technology over the past fifteen years has delivered prototype cars with impressive performances. But taking the step towards successful commercialization requires oxygen reduction electrocatalysts--crucial components at the heart of fuel cells--that meet exacting performance targets. In addition, these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality. Not all the catalyst approaches currently being pursued will meet those demands.

  15. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts.

    PubMed

    Liu, Wei; Herrmann, Anne-Kristin; Bigall, Nadja C; Rodriguez, Paramaconi; Wen, Dan; Oezaslan, Mehtap; Schmidt, Thomas J; Gaponik, Nikolai; Eychmüller, Alexander

    2015-02-17

    CONSPECTUS: Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this

  16. Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts

    PubMed Central

    2015-01-01

    Conspectus Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this

  17. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting.

    PubMed

    Xu, You; Kraft, Markus; Xu, Rong

    2016-05-31

    Water splitting driven by sunlight or renewable resource-derived electricity has attracted great attention for sustainable production of hydrogen from water. Current research interest in this field is focused on the development of earth-abundant photo- or electrocatalytic materials with high activity and long-term stability for hydrogen and/or oxygen evolution reactions. Due to their unique properties and characteristics, carbon and related carbon-based materials show great potential to replace some of the existing precious metal catalysts in water splitting technology. This tutorial review summarizes the recent significant progress in the fabrication and application of metal-free carbonaceous materials as photo- or electrocatalysts for water splitting. Synthetic strategies and applications of various carbonaceous materials, including graphitic carbon nitride (g-C3N4), graphene, carbon nanotubes (CNTs) as well as other forms of carbon-containing materials, for electrochemical or photochemical water splitting are presented, accompanied by a discussion of the key scientific issues and prospects for the future development of metal-free photo- and electrocatalysts. PMID:27094875

  18. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting.

    PubMed

    Xu, You; Kraft, Markus; Xu, Rong

    2016-05-31

    Water splitting driven by sunlight or renewable resource-derived electricity has attracted great attention for sustainable production of hydrogen from water. Current research interest in this field is focused on the development of earth-abundant photo- or electrocatalytic materials with high activity and long-term stability for hydrogen and/or oxygen evolution reactions. Due to their unique properties and characteristics, carbon and related carbon-based materials show great potential to replace some of the existing precious metal catalysts in water splitting technology. This tutorial review summarizes the recent significant progress in the fabrication and application of metal-free carbonaceous materials as photo- or electrocatalysts for water splitting. Synthetic strategies and applications of various carbonaceous materials, including graphitic carbon nitride (g-C3N4), graphene, carbon nanotubes (CNTs) as well as other forms of carbon-containing materials, for electrochemical or photochemical water splitting are presented, accompanied by a discussion of the key scientific issues and prospects for the future development of metal-free photo- and electrocatalysts.

  19. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.

    1981-01-01

    The highest performance fuel cell cathode electrocatalyst combination ever observed gives 755 mV vs hydrogen at 100 ASF on air at 180 C and shows a potential improvement to 775 mV vs hydrogen for better electrode structures. A pressurized fuel cell (UTC at 5 atm) would then give 805 mV at 320 ASF and 180 C. Another activity diagnostic is the performance of this electrocatalyst on oxygen at 900 mV vs hydrogen. The value for electrocatalyst is 44 mA per milligram of platinum and is projected to reach 60 mA per milligram of platinum with improved electrode structures. Since the electrocatalyst surface area and the electrode structure are not yet optimized there is considerable room for performance enhancement beyond these values, especially at higher temperatures.

  20. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2011-11-22

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  1. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  2. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2012-11-13

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  3. Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective

    SciTech Connect

    Park, Seh Kyu; Shao, Yuyan; Liu, Jun; Wang, Yong

    2012-11-01

    Hydrogen production by electrochemical water electrolysis has received great attention as an alternative technology for energy conversion and storage. The oxygen electrode has a substantial effect on the performance and durability in water electrolyzers and reversible fuel cells because of its intrinsically slow kinetics for oxygen evolution/reduction and poor durability under harsh operating environments. To improve oxygen kinetics and durability of the electrode, extensive studies for highly active and stable oxygen electrocatalyst have been performed. However, due to the thermodynamic instability of transition metals in acidic media, noble metal compounds have been primarily utilized as electrocatalysts in water electrolyzers and reversible fuel cells. For water electrolyzer applications, single noble metal oxides such as ruthenium oxide and iridium oxide have been studied, and binary or ternary metal oxides have been developed to take synergestic effects of each component. On the other hand, a variety of bifunctional electrocatalysts with a combination of monofunctional electrocatalysts such as platinum for oxygen reduction and iridium oxide for oxygen evolution for reversible fuel cell applications have been mainly proposed. Practically, supported iridium oxide-on-platinum, its reverse type, and non-precious metal-supported platinum and iridium bifunctional electrocatalysts have been developed. Recent theoretical calculations and experimental studies in terms of water electrolysis and fuel cell technology suggest effective ways to cope with current major challenges of cost and durability of oxygen electrocatalysts for technical applications.

  4. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  5. Carbon-based electrocatalysts for advanced energy conversion and storage

    PubMed Central

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  6. Electrosynthesis of trifluorochloroethylene on porous hydrophobized electrodes with different electrocatalysts

    SciTech Connect

    Kolyagin, G.A.; Kornienko, V.L.

    1988-08-10

    The promising perspectives for the production of trifluorochloroethylene by the electrochemical dechlorination of 1,1,2-trifluorotrichloroethane (khladon 113, Freon-113) have been pointed out. Trifluorochloroethylene was obtained with high current and substance yields on zinc electrodes; however, destruction of the electrodes takes place, due to interaction of zinc with the freon. In the present study they have investigated other electrocatalysts which are chemically resistant to the freon and which give to the electrodes the necessary mechanical strength. Cadmium, lead, copper, BAU carbon, and acetylene carbon black (Technical specification TU-14-7-24-80) were selected from the materials recommended in the literature. The most promising for the electrochemical dechlorination of Freon-113 the electrodes with a catalyst-carrier and the carbon black electrodes.

  7. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.

    PubMed

    Park, Minjoon; Ryu, Jaechan; Cho, Jaephil

    2015-10-01

    Vanadium redox reactions have been considered as a key factor affecting the energy efficiency of the all-vanadium redox flow batteries (VRFBs). This redox reaction determines the reaction kinetics of whole cells. However, poor kinetic reversibility and catalytic activity towards the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples on the commonly used carbon substrate limit broader applications of VRFBs. Consequently, modified carbon substrates have been extensively investigated to improve vanadium redox reactions. In this Focus Review, recent progress on metal- and carbon-based nanomaterials as an electrocatalyst for VRFBs is discussed in detail, without the intention to provide a comprehensive review on the whole components of the system. Instead, the focus is mainly placed on the redox chemistry of vanadium ions at a surface of various metals, different dimensional carbons, nitrogen-doped carbon nanostructures, and metal-carbon composites.

  8. Carbon-based electrocatalysts for advanced energy conversion and storage.

    PubMed

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-08-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  9. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction.

    PubMed

    Shao, M H; Huang, T; Liu, P; Zhang, J; Sasaki, K; Vukmirovic, M B; Adzic, R R

    2006-12-01

    We investigated the oxygen-reduction reaction (ORR) on Pd monolayers on various surfaces and on Pd alloys to obtain a substitute for Pt and to elucidate the origin of their activity. The activity of Pd monolayers supported on Ru(0001), Rh(111), Ir(111), Pt(111), and Au(111) increased in the following order: Pd/Ru(0001) < Pd/Ir(111) < Pd/Rh(111) < Pd/Au(111) < Pd/Pt(111). Their activity was correlated with their d-band centers, which were calculated using density functional theory (DFT). We found a volcano-type dependence of activity on the energy of the d-band center of Pd monolayers, with Pd/Pt(111) at the top of the curve. The activity of the non-Pt Pd2Co/C alloy electrocatalyst nanoparticles that we synthesized was comparable to that of commercial Pt-containing catalysts. The kinetics of the ORR on this electrocatalyst predominantly involves a four-electron step reduction with the first electron transfer being the rate-determining step. The downshift of the d-band center of the Pd "skin", which constitutes the alloy surface due to the strong surface segregation of Pd at elevated temperatures, determined its high ORR activity. Additionally, it showed very high methanol tolerance, retaining very high catalytic activity for the ORR at high concentrations of methanol. Provided its stability is satisfactory, this catalyst might possibly replace Pt in fuel-cell cathodes, especially those of direct methanol oxidation fuel cells (DMFCs).

  10. Degradation of Bimetallic Model Electrocatalysts ___ an in situ XAS Study

    SciTech Connect

    Friebel, Daniel

    2011-06-22

    One of the major challenges in the development of clean energy fuel cells is the performance degradation of the electrocatalyst, which, apart from poisoning effects, can suffer from corrosion due to its exposure to a harsh environment under high potentials. In this communication, we demonstrate how interactions of Pt with a transition metal support affect not only, as commonly intended, the catalytic activity, but also the reactivity of Pt towards oxide formation or dissolution. We use two well-defined single-crystal model systems, Pt/Rh(111) and Pt/Au(111) and a unique x-ray spectroscopy technique with enhanced energy resolution to monitor the potential-dependent oxidation state of Pt, and find two markedly different oxidation mechanisms on the two different substrates. This information can be of great significance for future design of more active and more stable catalysts. We have studied the potential-induced degradation of Pt monolayer model electrocatalysts on Rh(111) and Au(111) single-crystal substrates. The anodic formation of Pt oxides was monitored using in situ high energy resolution fluorescence detection x-ray absorption spectroscopy (HERFD XAS). Although Pt was deposited on both substrates in a three-dimensional island growth mode, we observed remarkable differences during oxide formation that can only be understood in terms of strong Pt-substrate interactions throughout the Pt islands. Anodic polarization of Pt/Rh(111) up to +1.6 V vs. RHE (reversible hydrogen electrode) leads to formation an incompletely oxidized passive layer, whereas formation of PtO2 and partial Pt dissolution is observed for Pt/Au(111).

  11. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.

    PubMed

    Sasaki, K; Zhang, L; Adzic, R R

    2008-01-01

    We demonstrate a new approach to synthesizing high-activity electrocatalysts for the O(2) reduction reaction with ultra low Pt content. The synthesis involves placing a small amount of Pt, the equivalent of a monolayer, on carbon-supported niobium oxide nanoparticles (NbO(2) or Nb(2)O(5)). Rotating disk electrode measurements show that the Pt/NbO(2)/C electrocatalyst has three times higher Pt mass activity for the O(2) reduction reaction than a commercial Pt/C electrocatalyst. The observed high activity of the Pt deposit is attributed to the reduced OH adsorption caused by lateral repulsion between PtOH and oxide surface species. The new electrocatalyst also exhibits improved stability against Pt dissolution under a potential cycling regime (30,000 cycles from 0.6 V to 1.1 V). These findings demonstrate that niobium-oxide (NbO(2)) nanoparticles can be adequate supports for Pt and facilitate further reducing the noble metal content in electrocatalysts for the oxygen reduction reaction.

  12. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution

    PubMed Central

    Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming

    2015-01-01

    Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer. PMID:26315066

  13. A Class of High Performance Metal-Free Oxygen Reduction Electrocatalysts based on Cheap Carbon Blacks

    NASA Astrophysics Data System (ADS)

    Sun, Xiujuan; Song, Ping; Zhang, Yuwei; Liu, Changpeng; Xu, Weilin; Xing, Wei

    2013-08-01

    For the goal of practical industrial development of fuel cells, cheap, sustainable and high performance electrocatalysts for oxygen reduction reactions (ORR) which rival those based on platinum (Pt) and other rare materials are highly desirable. In this work, we report a class of cheap and high-performance metal-free oxygen reduction electrocatalysts obtained by co-doping carbon blacks with nitrogen and fluorine (CB-NF).The CB-NF electrocatalysts are highly active and exhibit long-term operation stability and tolerance to poisons during oxygen reduction process in alkaline medium. The alkaline direct methanol fuel cell with the best CB-NF as cathode (3 mg/cm2) outperforms the one with commercial platinum-based cathode (3 mg Pt/cm2). To the best of our knowledge, these are among the most efficient non-Pt based electrocatalysts. Since carbon blacks are 10,000 times cheaper than Pt, these CB-NF electrocatalysts possess the best price/performance ratio for ORR, and are the most promising alternatives to Pt-based ones to date.

  14. Rational design of competitive electrocatalysts for the oxygen reduction reaction in hydrogen fuel cells

    NASA Astrophysics Data System (ADS)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2012-02-01

    The large-scale application of one of the most promising clean and renewable sources of energy, hydrogen fuel cells, still awaits efficient and cost-effective electrocatalysts for the oxygen reduction reaction (ORR) occurring on the cathode. We demonstrate that truly rational design renders electrocatalysts possessing both qualities. By unifying the knowledge on surface morphology, composition, electronic structure and reactivity, we solve that sandwich-like structures are an excellent choice for optimization. Their constituting species couple synergistically yielding reaction-environment stability, cost-effectiveness and tunable reactivity. This cooperative-action concept enabled us to predict two advantageous ORR electrocatalysts. Density functional theory calculations of the reaction free-energy diagrams confirm that these materials are more active toward ORR than the so far best Pt-based catalysts. Our designing concept advances also a general approach for engineering materials in heterogeneous catalysis.

  15. Pt/Pd electrocatalyst electrons for fuel cells

    DOEpatents

    Stonehart, P.

    1981-11-03

    This invention relates to improved electrochemical cells and to novel electrodes for use therein. In particular, the present invention comprises a fuel cell used primarily for the consumption of impure hydrogen fuels containing carbon monoxide or carbonaceous fuels where the electrode in contact with the fuel is not substantially poisoned by carbon monoxide. The anode of the fuel cell comprises a Pd/Pt alloy supported on a graphitized or partially graphitized carbon material. Fuel cells which comprise as essential elements a fuel electrode, an oxidizing electrode, and an electrolyte between said electrodes are devices for the direct production of electricity through the electrochemical combustion of a fuel and oxidant. These devices are recognized for their high efficiency as energy conversion units, since unlike conventional combustion engines, they are not subject to the limitations of the Carnot heat cycle. It is the primary object of the present invention to provide an electrode having high electrochemical activity for an electrochemical cell. It is another object of the present invention to provide an electrode having an electro-catalyst which is highly resistant to the corrosive environment of an electrochemical cell.

  16. Highly efficient and durable TiN nanofiber electrocatalyst supports.

    PubMed

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young

    2015-11-28

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions. PMID:26489450

  17. Palladium modified gold nanoparticles as electrocatalysts for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Chen, Huimei; Xing, Zelong; Zhu, Shangqiang; Zhang, Lulu; Chang, Qiaowan; Huang, Jiale; Cai, Wen-Bin; Kang, Ning; Zhong, Chuan-Jian; Shao, Minhua

    2016-07-01

    Resemblin, g core-shell electrocatalysts consisting of a Au core and Pd shell (Au@Pd) are synthesized via a Cu underpotential deposition (UPD)-Pd-displacement method. The Pd shell is non-uniform consisting of tiny Pd clusters with a coverage of 0.5-0.6. The ethanol oxidation reaction (EOR) activity of this kind of structure is much higher than Pd/C in an alkaline solution. The forward peak current density of Au@Pd is 5.4 times higher than that of Pd/C. Furthermore, the onset potential for EOR of the former is ∼100 mV more negative. An interesting particle size dependent EOR activity is also observed. With increasing the Au particle size (2.9, 5.8 and 6.5 nm), the EOR activity increases. The strain and ligand effects from the Au core, together with the bifunctional reaction mechanism in the Au-Pd system may be reasons for the enhanced activity in Au@Pd catalysts.

  18. A soluble copper-bipyridine water-oxidation electrocatalyst

    NASA Astrophysics Data System (ADS)

    Barnett, Shoshanna M.; Goldberg, Karen I.; Mayer, James M.

    2012-06-01

    The oxidation of water to O2 is a key challenge in the production of chemical fuels from electricity. Although several catalysts have been developed for this reaction, substantial challenges remain towards the ultimate goal of an efficient, inexpensive and robust electrocatalyst. Reported here is the first copper-based catalyst for electrolytic water oxidation. Copper-bipyridine-hydroxo complexes rapidly form in situ from simple commercially available copper salts and bipyridine at high pH. Cyclic voltammetry of these solutions at pH 11.8-13.3 shows large, irreversible currents, indicative of catalysis. The production of O2 is demonstrated both electrochemically and with a fluorescence probe. Catalysis occurs at about 750 mV overpotential. Electrochemical, electron paramagnetic resonance and other studies indicate that the catalyst is a soluble molecular species, that the dominant species in the catalytically active solutions is (2,2‧-bipyridine)Cu(OH)2 and that this is among the most rapid homogeneous water-oxidation catalysts, with a turnover frequency of ~100 s-1.

  19. Engineering of Carbon-Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality.

    PubMed

    Zheng, Yao; Jiao, Yan; Qiao, Shi Zhang

    2015-09-23

    Over the past decade, developing advanced catalysts for clean and sustainable energy conversion has been subject to extensive study. Driven by great advances achieved in computational quantum chemistry, synthetic chemistry, and material characterization techniques, the preferential design of a most-appropriate catalyst for a specific electrochemical reaction is possible. Here a universal process for the design of high-performance carbon-based electrocatalysts, by engineering their intrinsic electronic structures and physical structures to promote their extrinsic activities for different energy conversion reactions, is presented and summarized. How such a powerful strategy may aid the discovery of more electrocatalysts for a sustainable and clean energy infrastructure is discussed.

  20. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  1. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm‑2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm‑2 at 1.64 V.

  2. Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation

    DOEpatents

    Adzic, Radoslav; Brankovic, Stanko; Wang, Jia

    2003-12-30

    An electrocatalyst is provided for use in a fuel cell that has low platinum loading and a high tolerance to carbon monoxide poisoning. The fuel cell anode includes an electrocatalyst that has a conductive support material, ruthenium nanoparticles reduced in H.sub.2 and a Group VIII noble metal in an amount of between about 0.1 and 25 wt % of the ruthenium nanoparticles, preferably between about 0.5 and 15 wt %. The preferred Group VIII noble metal is platinum. In one embodiment, the anode can also have a perfluorinated polymer membrane on its surface.

  3. Highly efficient and durable TiN nanofiber electrocatalyst supports

    NASA Astrophysics Data System (ADS)

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, Eunae; Lee, Kwan-Young; Kim, Jin Young

    2015-11-01

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via

  4. Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen

    SciTech Connect

    Hulley, Elliott; Kumar, Neeraj; Raugei, Simone; Bullock, R. Morris

    2015-10-05

    Oxidation of H2 (1 atm) is catalyzed by the manganese electrocatalysts [(P2N2)MnI(CO)(bppm)]+ and [(PNP)MnI(CO)(bppm)]+ (P2N2= 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; PNP = (Ph2PCH2)2NMe); bppm = (PArF2)2CH2, and ArF = 3,5-(CF3)2C6H3). In fluorobenzene solvent using 2,6-lutidine as the exogeneous base, the turnover frequency for [(P2N2)MnI(CO)(bppm)]+ is 3.5 s-1 with an estimated overpotential of 590 mV. For [(PNP)MnI(CO)(bppm)], in fluorobenzene solvent using N-methylpyrrolidine as the exogeneous base, the turnover frequency is 1.4 s-1 with an estimated overpotential of 700 mV. Density functional theory calculations suggest that the slow step in the catalytic cycle is proton transfer from the oxidized 17-electron manganese hydride, e.g., [(P2N2)MnIIH(CO)(bppm)]+ to the pendant amine. The computed activation barrier for intramolecular proton transfer from the metal to the pendant amine is 20.4 kcal/mol in [(P2N2)MnIIH(CO)(bppm)]+ and 21.3 kcal/mol in [(PNP)MnI(CO)(bppm)]. The high barrier appears to result from both the unfavorability of metal-to-nitrogen proton transfer (thermodynamically uphill by 6.6 pKa units, 9 kcal/mol), as well as the relatively long manganese-nitrogen separation in the MnIIH complexes.

  5. Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping.

    PubMed

    Bayatsarmadi, Bita; Zheng, Yao; Tang, Youhong; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-07-01

    Replacement of precious metal electrocatalysts with highly active and cost efficient alternatives for complete water splitting at low voltage has attracted a growing attention in recent years. Here, this study reports a carbon-based composite co-doped with nitrogen and trace amount of metallic cobalt (1 at%) as a bifunctional electrocatalyst for water splitting at low overpotential and high current density. An excellent electrochemical activity of the newly developed electrocatalyst originates from its graphitic nanostructure and highly active Co-Nx sites. In the case of carefully optimized sample of this electrocatalyst, 10 mA cm(-2) current density can be achieved for two half reactions in alkaline solutions-hydrogen evolution reaction and oxygen evolution reaction-at low overpotentials of 220 and 350 mV, respectively, which are smaller than those previously reported for nonprecious metal and metal-free counterparts. Based on the spectroscopic and electrochemical investigations, the newly identified Co-Nx sites in the carbon framework are responsible for high electrocatalytic activity of the Co,N-doped carbon. This study indicates that a trace level of the introduced Co into N-doped carbon can significantly enhance its electrocatalytic activity toward water splitting. PMID:27246288

  6. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  7. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  8. Bimetallic IrNi Core Platinum Monolayer Shell Electrocatalysts for the Oxygen Reduction Reaction

    SciTech Connect

    Kuttiyiel K. A.; Sasaki, K.; Choi, Y.M.; Su, D.; Liu, P.; Adzic, R.R.

    2012-01-01

    We synthesized a low-Pt content electrocatalyst consisting of a Pt monolayer placed on carbon-supported thermally treated IrNi core-shell structured nanoparticles using galvanic displacement of a Cu monolayer deposited at underpotentials. The Pt mass activity of the Pt{sub ML}/IrNi/C electrocatalyst obtained in a scale-up synthesis is approximately 3 times higher than that of the commercial Pt/C electrocatalyst. The electronic and geometrical effects of the IrNi substrate on the Pt monolayer result in its higher catalytic activity than that of Pt nanoparticles. The structure and composition of the core-shell nanoparticles were verified using transmission electron microscopy and in situ X-ray absorption spectroscopy, while a potential cycling test was employed to confirm the stability of the electrocatalyst. Our experimental results, supported by the density functional calculations using a sphere-like model, demonstrate an effective way of using Pt that can resolve key problems of cathodic oxygen reduction hampering fuel cell commercialization.

  9. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    Adzic, R.R.; Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y.M.; Liu, P.; Vukmirovic, M.B.; Wang, J.X.

    2010-11-08

    More than skin deep: Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200?000 potential cycles, whereas loss of palladium was significant.

  10. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    K Sasaki; H Naohara; Y Cai; Y Choi; P Liu; M Vukmirovic; J Wang; R Adzic

    2011-12-31

    Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200,000 potential cycles, whereas loss of palladium was significant.

  11. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  12. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    PubMed

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-07-06

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  13. Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping.

    PubMed

    Bayatsarmadi, Bita; Zheng, Yao; Tang, Youhong; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-07-01

    Replacement of precious metal electrocatalysts with highly active and cost efficient alternatives for complete water splitting at low voltage has attracted a growing attention in recent years. Here, this study reports a carbon-based composite co-doped with nitrogen and trace amount of metallic cobalt (1 at%) as a bifunctional electrocatalyst for water splitting at low overpotential and high current density. An excellent electrochemical activity of the newly developed electrocatalyst originates from its graphitic nanostructure and highly active Co-Nx sites. In the case of carefully optimized sample of this electrocatalyst, 10 mA cm(-2) current density can be achieved for two half reactions in alkaline solutions-hydrogen evolution reaction and oxygen evolution reaction-at low overpotentials of 220 and 350 mV, respectively, which are smaller than those previously reported for nonprecious metal and metal-free counterparts. Based on the spectroscopic and electrochemical investigations, the newly identified Co-Nx sites in the carbon framework are responsible for high electrocatalytic activity of the Co,N-doped carbon. This study indicates that a trace level of the introduced Co into N-doped carbon can significantly enhance its electrocatalytic activity toward water splitting.

  14. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGES

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM basedmore » systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  15. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes

    PubMed Central

    Berber, Mohamed R.; Hafez, Inas H.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-01-01

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm2 (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs. PMID:26594045

  16. Electrodeposition of Metals in Catalyst Synthesis: The Case of Platinum Monolayer Electrocatalysts

    SciTech Connect

    Vukmirovic, M.B.; Bliznakov, S.T.; Sasaki, K.; Wang, J.X.; Adzic, R.R.

    2011-07-01

    The concern about energy sources, their availability, and related environmental effects, is at an all time high. Proton Exchange Membrane Fuel Cells (PEMFCs) - with an efficiency higher than that of internal combustion engines, light weight, low operating temperature, and fast-start-up capability - are strong candidates for automotive applications. Transportation applications could be especially important in shaping up the new energy economy since they may entail a substantial decrease in the adverse environmental effects linked to the use of fossil fuels and prolong their availability. The largest portion of the cost of PEMFCs reflects the large amount of Pt needed in the cathode's catalytic layer due to the low catalytic activity of Pt for the oxygen reduction reaction (ORR). Recently, considerable advances have been made in fuel cell electrocatalysis yielding improved electrocatalysts, and increasing our understanding of the kinetics of the ORR in combination with significant advances in theoretical treatments. Some of these studies involved: (1) alloying Pt to synthesize bi-metallic catalysts, (2) core-shell nanoparticles catalysts, (3) the role of size, structure, and shape of nanoparticles, and (4) de-alloying of bimetallic alloys. However, a complete understanding of the ORR kinetics on Pt, the best single element catalyst, and of its low efficiency, is yet to be achieved. These problems, compounded with the high Pt content in current cathode catalysts, and with their gradual loss of performance under operating conditions, still hamper commercialization of fuel cells. In order to minimize the amount of noble metal electrocatalysts and maximize their utilization, while achieving high catalytic activity, numerous synthetic approaches have been attempted. The electrocatalysts were prepared using vacuum deposition methods, wet chemistry methods, or electrodeposition techniques. Electrodeposition in particular has several attractive features with respect to the

  17. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.

    PubMed

    Nellist, Michael R; Laskowski, Forrest A L; Lin, Fuding; Mills, Thomas J; Boettcher, Shannon W

    2016-04-19

    Light-absorbing semiconductor electrodes coated with electrocatalysts are key components of photoelectrochemical energy conversion and storage systems. Efforts to optimize these systems have been slowed by an inadequate understanding of the semiconductor-electrocatalyst (sem|cat) interface. The sem|cat interface is important because it separates and collects photoexcited charge carriers from the semiconductor. The photovoltage generated by the interface drives "uphill" photochemical reactions, such as water splitting to form hydrogen fuel. Here we describe efforts to understand the microscopic processes and materials parameters governing interfacial electron transfer between light-absorbing semiconductors, electrocatalysts, and solution. We highlight the properties of transition-metal oxyhydroxide electrocatalysts, such as Ni(Fe)OOH, because they are the fastest oxygen-evolution catalysts known in alkaline media and are (typically) permeable to electrolyte. We describe the physics that govern the charge-transfer kinetics for different interface types, and show how numerical simulations can explain the response of composite systems. Emphasis is placed on "limiting" behavior. Electrocatalysts that are permeable to electrolyte form "adaptive" junctions where the interface energetics change during operation as charge accumulates in the catalyst, but is screened locally by electrolyte ions. Electrocatalysts that are dense, and thus impermeable to electrolyte, form buried junctions where the interface physics are unchanged during operation. Experiments to directly measure the interface behavior and test the theory/simulations are challenging because conventional photoelectrochemical techniques do not measure the electrocatalyst potential during operation. We developed dual-working-electrode (DWE) photoelectrochemistry to address this limitation. A second electrode is attached to the catalyst layer to sense or control current/voltage independent from that of the

  18. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.

    PubMed

    Nellist, Michael R; Laskowski, Forrest A L; Lin, Fuding; Mills, Thomas J; Boettcher, Shannon W

    2016-04-19

    Light-absorbing semiconductor electrodes coated with electrocatalysts are key components of photoelectrochemical energy conversion and storage systems. Efforts to optimize these systems have been slowed by an inadequate understanding of the semiconductor-electrocatalyst (sem|cat) interface. The sem|cat interface is important because it separates and collects photoexcited charge carriers from the semiconductor. The photovoltage generated by the interface drives "uphill" photochemical reactions, such as water splitting to form hydrogen fuel. Here we describe efforts to understand the microscopic processes and materials parameters governing interfacial electron transfer between light-absorbing semiconductors, electrocatalysts, and solution. We highlight the properties of transition-metal oxyhydroxide electrocatalysts, such as Ni(Fe)OOH, because they are the fastest oxygen-evolution catalysts known in alkaline media and are (typically) permeable to electrolyte. We describe the physics that govern the charge-transfer kinetics for different interface types, and show how numerical simulations can explain the response of composite systems. Emphasis is placed on "limiting" behavior. Electrocatalysts that are permeable to electrolyte form "adaptive" junctions where the interface energetics change during operation as charge accumulates in the catalyst, but is screened locally by electrolyte ions. Electrocatalysts that are dense, and thus impermeable to electrolyte, form buried junctions where the interface physics are unchanged during operation. Experiments to directly measure the interface behavior and test the theory/simulations are challenging because conventional photoelectrochemical techniques do not measure the electrocatalyst potential during operation. We developed dual-working-electrode (DWE) photoelectrochemistry to address this limitation. A second electrode is attached to the catalyst layer to sense or control current/voltage independent from that of the

  19. Nanostructured carbon-supported Pd electrocatalysts for ethanol oxidation: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Gacutan, E. M.; Climaco, M. I.; Telan, G. J.; Malijan, F.; Hsu, H. Y.; Garcia, J.; Fulo, H.; Tongol, B. J.

    2012-12-01

    The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm-2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H2SO4:HNO3. The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0-15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd-NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst.

  20. Photoelectrocatalytic hydrogen production using nanoparticulate titania and a novel Pt/carbon electrocatalyst: The concept of the "Photoelectrocatalytic Leaf"

    NASA Astrophysics Data System (ADS)

    Pop, Lucian-Cristian; Dracopoulos, Vassilios; Lianos, Panagiotis

    2015-04-01

    Photoelectrocatalytic hydrogen production was realized my means of a double electrode carrying photocatalyst and electrocatalyst, deposited side by side on an FTO electrode, acting as a "Photoelectrocatalytic Leaf". As photocatalyst we used plain commercial nanoparticulate titania and as electrocatalyst a conductive carbon film made by a commercial carbon paste enriched with a small quantity of Pt nanoparticles (0.0134 mg/cm2). This quantity of Pt is much smaller than used in other applications and it may be further optimized. Hydrogen was produced in an alkaline environment in the presence of ethanol acting as sacrificial agent. A few variants of electrode geometry were studied in order to set the basic terms for efficient hydrogen production. It was found that optimal electrode geometry necessitates a much larger area for photocatalyst coverage than electrocatalyst and that it is preferable to divide photocatalyst and electrocatalyst areas in alternating zones.

  1. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    DOEpatents

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  2. Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lubers, Alia Marie

    successful hydrogen pumping catalysts, comparable to a commercial Pt/C catalyst. Synthesized Pt/C materials were also used as PEMFC catalysts. We found the ALD catalysts with lower platinum loading to be competitive with a commercial fuel cell catalyst, especially when exhibiting similar platinum particle characteristics. The functionalized carbon helped produce smaller and more dispersed platinum particles; however, it encouraged carbon corrosion within an electrode, severing electrical connections and lowering energy production. The most suitable chemistry for competitive Pt/C catalysts was produced by platinum ALD on unmodified carbon using hydrogen as a reactant. ALD is a promising method for fabricating electrocatalysts, which could help fuel cells become an economically viable alternative to fossil fuels.

  3. Non-noble electrocatalysts for alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Manoukian, M.; Giner, J.

    1989-01-01

    Carbons activated with macrocyclics have attracted increasing attention as alternative electrocatalysts for oxygen reduction. Initial activity of these catalysts is good, but performance declines rapidly. Pyrolyzing the macrocyclic on the carbon support leads to enhanced stability and the catalysts retain good activity. The approach described is designed to develop bulk doped catalysts with similar structures to pyrolyzed macrocyclic catalysts. The transition metal and coordinated ligands are dispersed throughout the bulk of the conductive carbon skeleton. Two approaches to realizing this concept are being pursued, both involving the doping of carbon precursors. In one approach, the precursor is a solid phase carbon-containing ion-exchange resin. The precursor is doped with a transition metal and/or nitrogen, and the resulting mixture is pyrolyzed. In the other approach, the precursor is a gas-phase hydrocarbon. This is introduced with a transition metal species and nitrogen species into a reactor and pyrolyzed. Several studies have been conducted to determine if there is a synergistic effect between the transition metal and nitrogen and the effect of different methods of introducing the metal-nitrogen (M-N) coordination on performance. One approach was to introduce the metal and nitrogen separately, for example, by sequentially doping FeCl3 and NH4OH into the resin. Catalysts were prepared from an undoped ion-exchange resin, a resin doped only with N, a resin doped only with Fe, and a resin doped with both Fe and N. Introduction of nitrogen alone has no beneficial effect on the performance of the catalysts. The introduction of the Fe alone significantly improves the performance in both the high and low current density regions. When both Fe and N are introduced, the performance at lower current densities (catalytic activity) is increased beyond that of the Fe-doped carbon, but the performance at higher current densities is similar to the carbon containing only Fe

  4. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts.

    PubMed

    Greeley, J; Stephens, I E L; Bondarenko, A S; Johansson, T P; Hansen, H A; Jaramillo, T F; Rossmeisl, J; Chorkendorff, I; Nørskov, J K

    2009-10-01

    The widespread use of low-temperature polymer electrolyte membrane fuel cells for mobile applications will require significant reductions in the amount of expensive Pt contained within their cathodes, which drive the oxygen reduction reaction (ORR). Although progress has been made in this respect, further reductions through the development of more active and stable electrocatalysts are still necessary. Here we describe a new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y. They were identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt. Electrochemical measurements show that the activity of polycrystalline Pt(3)Sc and Pt(3)Y electrodes is enhanced relative to pure Pt by a factor of 1.5-1.8 and 6-10, respectively, in the range 0.9-0.87 V. PMID:21378936

  5. Durability Enhancement of Intermetallics Electrocatalysts via N-anchor Effect for Fuel Cells

    PubMed Central

    Li, Xiang; An, Li; Chen, Xin; Zhang, Nanlin; Xia, Dingguo; Huang, Weifeng; Chu, Wangsheng; Wu, Ziyu

    2013-01-01

    Insufficient durability and catalytic activity of oxygen reduction reaction (ORR) electrocatalyst are key issues that have to be solved for the practical application of low temperature fuel cell. This paper introduces a new catalyst design strategy using N-anchor to promote the corrosion resistance of electrocatalyst. The as-synthesized N-Pt3Fe1/C shows a high electrocatalytic activity and a superior durability towards ORR. The kinetic current density of N-Pt3Fe1/C as normalized by ECSA is still as high as 0.145 mA cm−2 and only 7% loss after 20000 potential cycles from 0.6 to 1.2 V (vs. NHE) in O2-bubbling perchloric acid solution, whereas Pt3Fe1/C shows 49% loss under the same tests. The N-anchor approach offers novel opportunities for the development of ORR catalyst with excellent electrochemical properties. PMID:24240982

  6. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water.

    PubMed

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-19

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  7. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water

    PubMed Central

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P.; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-01-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry. PMID:26286479

  8. Theoretical Design of Molecular Electrocatalysts with Flexible Pendant Amines for Hydrogen Production and Oxidation.

    PubMed

    Fernandez, Laura E; Horvath, Samantha; Hammes-Schiffer, Sharon

    2013-02-01

    The design of hydrogen oxidation and production electrocatalysts is important for the development of alternative renewable energy sources. The overall objective is to maximize the turnover frequency and minimize the overpotential. We use computational methods to examine a variety of nickel-based molecular electrocatalysts with pendant amines. Our studies focus on the proton-coupled electron transfer (PCET) process involving electron transfer between the complex and the electrode and intramolecular proton transfer between the nickel center and the nitrogen of the pendant amine. The concerted PCET mechanism, which tends to require a lower overpotential, is favored by a smaller equilibrium Ni-N distance and a more flexible pendant amine ligand, thereby decreasing the energetic penalty for the nitrogen to approach the nickel center for proton transfer. Our calculations provide predictions about designing catalysts that incorporate these properties. These design principles will be useful for developing the next generation of hydrogen catalysts. PMID:26281752

  9. Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2006-05-18

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we used four Pt-based electrocatalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) in MEAs and these were evaluated for CO-tolerance with 20 and 100 ppm CO concentration in H{sub 2}-fuel. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. From preliminary cost analysis it appears that could of the catalyst metal loading can reduced by 40% to 60% depending on the selection of metal combinations without compromising the fuel cell performance.

  10. Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2005-07-20

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized several tri-metallic electrocatalysts catalysts (Pt/Ru/Mo, Pt/Ru/Ir, Pt/Ru/W, Ptr/Ru/Co, and Pt/Ru/Se on Vulcan XG72 Carbon) by ultrasonication method. These catalysts were tested in MEAs for CO tolerance at 20 and 100 ppm CO concentrations. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/Mo/C > Pt/Ru/Ir/C > Pt/Ru/W/C > Ptr/Ru/Co/C > and Pt/Ru/Se. The catalysts performed very well at 20 ppm CO but at 100 ppm CO performance dropped significantly.

  11. A Highly Efficient Metal-Free Oxygen Reduction Electrocatalyst Assembled from Carbon Nanotubes and Graphene.

    PubMed

    Yang, Jia; Sun, Haiyan; Liang, Haiyi; Ji, Hengxing; Song, Li; Gao, Chao; Xu, Hangxun

    2016-06-01

    A novel carbon-nanotube-graphene hybrid nanostructure is developed using an aerosol-assisted assembly approach. After doping with nitrogen and phosphorus, the prepared hybrid nanomaterials exhibit excellent electrocatalytic performance for oxygen reduction in both alkaline and acidic media. This research presents a continuous and low-cost route to prepare high-performance metal-free electrocatalysts while replacing Pt-based materials. PMID:27062506

  12. Inhibition of Tafel Kinetics for Electrolytic Hydrogen Evolution on Isolated Micron Scale Electrocatalysts on Semiconductor Interfaces.

    PubMed

    Coridan, Robert H; Schichtl, Zebulon G; Sun, Tao; Fezzaa, Kamel

    2016-09-21

    Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches to artificial photosynthesis. By analogy with the antennae and reaction centers in natural photosynthetic complexes, separating the light-absorbing semiconductor and electrocatalysts can improve catalytic efficiency. A catalytic layer can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. Here, we have developed a method using high-speed X-ray phase contrast imaging to study in situ electrolytic bubble growth on semiconductor electrodes fabricated with isolated, micron-scale platinum electrocatalysts. X-rays are a nonperturbative probe by which gas evolution dynamics can be studied under conditions relevant to solar fuels applications. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary. Contrary to observations on macroscopic electrodes, bubble evolution on isolated, microscopic Pt pads on Si electrodes was insensitive to increasing overpotential. The persistence of the bubble causes mass transport limitations and inhibits the expected Tafel-like kinetics. The observed scaling of catalytic current densities with pad size implies that electrolysis is occurring predominantly on the perimeter of the active area. PMID:27575549

  13. Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells.

    PubMed

    Su, Liang; Jia, Wenzhao; Li, Chang-Ming; Lei, Yu

    2014-02-01

    As a new generation of power sources, fuel cells have shown great promise for application in transportation. However, the expensive catalyst materials, especially the cathode catalysts for oxygen reduction reaction (ORR), severely limit the widespread commercialization of fuel cells. Therefore, this review article focuses on platinum (Pt)-based electrocatalysts for ORR with better catalytic performance and lower cost. Major breakthroughs in the improvement of activity and durability of electrocatalysts are discussed. Specifically, on one hand, the enhanced activity of Pt has been achieved through crystallographic control, ligand effect, or geometric effect; on the other hand, improved durability of Pt-based cathode catalysts has been realized by means of the incorporation of another noble metal or the morphological control of nanostructures. Furthermore, based on these improvement mechanisms, rationally designed Pt-based nanoparticles are summarized in terms of different synthetic strategies such as wet-chemical synthesis, Pt-skin catalysts, electrochemically dealloyed nanomaterials, and Pt-monolayer deposition. These nanoparticulate electrocatalysts show greatly enhanced catalytic performance towards ORR, aiming not only to outperform the commercial Pt/C, but also to exceed the US Department of Energy 2015 technical target ($30/kW and 5000 h).

  14. Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction.

    PubMed

    Yu, Haiyan; Fisher, Adrian; Cheng, Daojian; Cao, Dapeng

    2016-08-24

    It remains a huge challenge to develop nonprecious electrocatalysts with high activity to substitute commercial Pt catalysts for oxygen reduction reactions (ORR). Here, the Cu,N-codoped hierarchical porous carbon (Cu-N-C) with a high content of pyridinic N was synthesized by carbonizing Cu-containing ZIF-8. Results indicate that Cu-N-C shows excellent ORR electrocatalyst properties. First of all, it nearly follows the four-electron route, and its electron transfer number reaches 3.92 at -0.4 V. Second, both the onset potential and limited current density of Cu-N-C are almost equal to those of a commercial Pt/C catalyst. Third, it exhibits a better half-wave potential (∼16 mV) than a commercial Pt/C catalyst. More importantly, the Cu-N-C displays better stability and methanol tolerance than the Pt/C catalyst. All of these good properties are attributed to hierarchical structure, high pyridinic N content, and the synergism of Cu and N dopants. The metal-N codoping strategy can significantly enhance the activity of electrocatalysts, and it will provide reference for the design of novel N-doped porous carbon ORR catalysts. PMID:27490846

  15. Platinum Monolayer on IrFe Core-Shell Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction

    SciTech Connect

    K Sasaki; K Kuttiyiel; D Su; R Adzic

    2011-12-31

    We synthesized high activity and stability platinum monolayer on IrFe core-shell nanoparticle electrocatalysts. Carbon-supported IrFe core-shell nanoparticles were synthesized by chemical reduction and subsequent thermal annealing. The formation of Ir shells on IrFe solid-solution alloy cores has been verified by scanning transmission electron microscopy coupled with energy-loss spectroscopy (EELS) and in situ X-ray absorption spectroscopy. The Pt monolayers were deposited on IrFe core-shell nanoparticles by galvanic replacement of underpotentially deposited Cu adatoms on the Ir shell surfaces. The specific and Pt mass activities for the ORR on the Pt monolayer on IrFe core-shell nanoparticle electrocatalyst are 0.46 mA/cm{sup 2} and 1.1 A/mg{sub Pt}, which are much higher than those on a commercial Pt/C electrocatalyst. High durability of Pt{sub ML}/IrFe/C has also been demonstrated by potential cycling tests. These high activity and durability observed can be ascribed to the structural and electronic interaction between the Pt monolayer and the IrFe core-shell nanoparticles.

  16. Platinum Monolayer on IrFe Core–Shell Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction

    SciTech Connect

    Sasaki K.; Kuttiyiel, K.A.; Su, D.; Adzic, R.R.

    2012-04-19

    We synthesized high activity and stability platinum monolayer on IrFe core-shell nanoparticle electrocatalysts. Carbon-supported IrFe core-shell nanoparticles were synthesized by chemical reduction and subsequent thermal annealing. The formation of Ir shells on IrFe solid-solution alloy cores has been verified by scanning transmission electron microscopy coupled with energy-loss spectroscopy (EELS) and in situ X-ray absorption spectroscopy. The Pt monolayers were deposited on IrFe core-shell nanoparticles by galvanic replacement of underpotentially deposited Cu adatoms on the Ir shell surfaces. The specific and Pt mass activities for the ORR on the Pt monolayer on IrFe core-shell nanoparticle electrocatalyst are 0.46 mA/cm{sup 2} and 1.1 A/mg{sub Pt}, which are much higher than those on a commercial Pt/C electrocatalyst. High durability of Pt{sub ML}/IrFe/C has also been demonstrated by potential cycling tests. These high activity and durability observed can be ascribed to the structural and electronic interaction between the Pt monolayer and the IrFe core-shell nanoparticles.

  17. Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction.

    PubMed

    Yu, Haiyan; Fisher, Adrian; Cheng, Daojian; Cao, Dapeng

    2016-08-24

    It remains a huge challenge to develop nonprecious electrocatalysts with high activity to substitute commercial Pt catalysts for oxygen reduction reactions (ORR). Here, the Cu,N-codoped hierarchical porous carbon (Cu-N-C) with a high content of pyridinic N was synthesized by carbonizing Cu-containing ZIF-8. Results indicate that Cu-N-C shows excellent ORR electrocatalyst properties. First of all, it nearly follows the four-electron route, and its electron transfer number reaches 3.92 at -0.4 V. Second, both the onset potential and limited current density of Cu-N-C are almost equal to those of a commercial Pt/C catalyst. Third, it exhibits a better half-wave potential (∼16 mV) than a commercial Pt/C catalyst. More importantly, the Cu-N-C displays better stability and methanol tolerance than the Pt/C catalyst. All of these good properties are attributed to hierarchical structure, high pyridinic N content, and the synergism of Cu and N dopants. The metal-N codoping strategy can significantly enhance the activity of electrocatalysts, and it will provide reference for the design of novel N-doped porous carbon ORR catalysts.

  18. Recent Advances in Developing Platinum Monolayer Electrocatalysts for the O2 Reduction Reaction

    SciTech Connect

    Vukmirovic,M.B.; Sasaki, K.; Zhou, W.-P.; Li, M.; Liu, P.; Wang, J.X.; Adzic, R.R.

    2008-09-15

    For Pt, the best single-element catalyst for many reactions, the question of content and loading is exceedingly important because of its price and availability. Using platinum as a fuel-cell catalyst in automotive applications will cause an unquantifiable increase in the demand for this metal. This big obstacle for using fuel cells in electric cars must be solved by decreasing the content of Pt, which is a great challenge of electrocatalysis Over the last several years we inaugurated a new class of electrocatalysts for the oxygen reduction reaction (ORR) based on a monolayer of Pt deposited on metal or alloy carbon-supported nanoparticles. The possibility of decreasing the Pt content in the ORR catalysts down to a monolayer level has a considerable importance because this reaction requires high loadings due to its slow kinetics. The Pt-monolayer approach has several unique features and some of them are: high Pt utilization, enhanced (or decreased) activity, enhanced stability, and direct activity correlations. The synthesis of Pt monolayer (ML) electrocatalysts was facilitated by our new synthesis method which allowed us to deposit a monolayer of Pt on various metals, or alloy nanoparticles [1, 2] for the cathode electrocatalyst. In this synthesis approach Pt is laid down by the galvanically displacing a Cu monolayer, which was deposited at underpotentials in a monolayer-limited reaction on appropriate metal substrate, with Pt after immersing the electrode in a K{sub 2}PtCl{sub 4} solution.

  19. Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting.

    PubMed

    Govindhan, Maduraiveeran; Mao, Brennan; Chen, Aicheng

    2016-01-21

    A cost-effective, non-noble metal based high-performance electrocatalyst for the oxygen evolution reaction (OER) is critical to energy conversion and storage processes. Here, we report on a facile and effective in situ strategy for the synthesis of an advanced nanocomposite material that is comprised of cobalt quantum dots (Co QDs, ∼3.2 nm), uniformly dispersed on reduced graphene oxide (rGO) as a highly efficient OER electrocatalyst platform. This nanocomposite electrocatalyst afforded a mass activity of 1250 A g(-1) at a low overpotential (η) of 0.37 V, a small Tafel slope of ∼37 mV dec(-1) and a turnover frequency (TOF) of 0.188 s(-1) in 0.1 M KOH, comparing favorably with state-of-the-art RuO2, IrO2 and Pt/C catalysts. The synergy between abundant catalytically active sites through the fine dispersion of Co QDs, and enhanced electron transfer generated from the graphene resulted in first-rate electrocatalytic properties toward the OER. These merits coupled with the higher stability of the nanocomposite hold great promise for triggering breakthroughs in electrocatalysis for water splitting. PMID:26677009

  20. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface.

    PubMed

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun

    2015-04-01

    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts. PMID:25714902

  1. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene

    PubMed Central

    Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N.; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie

    2015-01-01

    Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum–nickel hydroxide–graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts. PMID:26602295

  2. Single-Molecule Nanocatalysis Shows In Situ Deactivation of Pt/C Electrocatalysts during the Hydrogen-Oxidation Reaction.

    PubMed

    Zhang, Yuwei; Chen, Tao; Alia, Shaun; Pivovar, Bryan S; Xu, Weilin

    2016-02-24

    By coupling a Pt-catalyzed fluorogenic reaction with the Pt-electrocatalyzed hydrogen-oxidation reaction (HOR), we combine single-molecule fluorescence microscopy with traditional electrochemical methods to study the real-time deactivation kinetics of a Pt/C electrocatalyst at single-particle level during electrocatalytic hydrogen-oxidation reaction. The decay of the catalytic performance of Pt/C could be mainly attributed to the electrocatalysis-induced etching or dissolution of Pt nanoparticles. Spontaneous regeneration of activity and incubation period of the Pt electrocatalyst were also observed at single-particle level. All these new insights are practically useful for the understanding and rational design of highly efficient electrocatalysts for application in fuel cells. PMID:26821777

  3. Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells.

    PubMed

    Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei

    2010-04-23

    Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.

  4. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Wang, F. Z.; Zheng, M. J.; Zhang, B.; Zhu, C. Q.; Li, Q.; Ma, L.; Shen, W. Z.

    2016-08-01

    Ammonia intercalated flower-like MoS2 electrocatalyst film assembled by vertical orientated ultrathin nanosheet on graphite sheethas been successfully synthesized using one-step hydrothermal method. In this strategy, ammonia can effectively insert into the parallel plane of the MoS2 nanosheets, leading to the expansion of lattice and phase transfer from 2H to 1T, generating more active unsaturated sulfur atoms. The flower-like ammoniated MoS2 electrocatalysts with more active sites and large surface area exhibited excellent HER activity with a small Tafel slope and low onset overpotential, resulting a great enhancement in hydrogen evolution. The high efficient activity and recyclable utilization, as well as large-scale, indicate that it is a very promising electrocatalyst to replace Pt in industry application.

  5. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect

    A. Patel; K. Artyushkova; P. Atanassov; V. Colbow; M. Dutta; D. Harvey; S. Wessel

    2012-04-30

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  6. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Colbow, Vesna; Dutta, Monica; Harvey, Davie; Wessel, Silvia

    2012-04-01

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 #2;C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  7. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution.

    PubMed

    Wang, F Z; Zheng, M J; Zhang, B; Zhu, C Q; Li, Q; Ma, L; Shen, W Z

    2016-01-01

    Ammonia intercalated flower-like MoS2 electrocatalyst film assembled by vertical orientated ultrathin nanosheet on graphite sheethas been successfully synthesized using one-step hydrothermal method. In this strategy, ammonia can effectively insert into the parallel plane of the MoS2 nanosheets, leading to the expansion of lattice and phase transfer from 2H to 1T, generating more active unsaturated sulfur atoms. The flower-like ammoniated MoS2 electrocatalysts with more active sites and large surface area exhibited excellent HER activity with a small Tafel slope and low onset overpotential, resulting a great enhancement in hydrogen evolution. The high efficient activity and recyclable utilization, as well as large-scale, indicate that it is a very promising electrocatalyst to replace Pt in industry application. PMID:27538812

  8. Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries.

    PubMed

    Li, Ge; Wang, Xiaolei; Fu, Jing; Li, Jingde; Park, Moon Gyu; Zhang, Yining; Lui, Gregory; Chen, Zhongwei

    2016-04-11

    Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal-air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen-doped, partially graphitized carbon framework. Benefiting from the unique pomegranate-like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4-based composite electrocatalyst exhibited a high half-wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm(-2) for OER. A single-cell zinc-air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal-air batteries. PMID:26970076

  9. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution

    PubMed Central

    Wang, F. Z.; Zheng, M. J.; Zhang, B.; Zhu, C. Q.; Li, Q.; Ma, L.; Shen, W. Z.

    2016-01-01

    Ammonia intercalated flower-like MoS2 electrocatalyst film assembled by vertical orientated ultrathin nanosheet on graphite sheethas been successfully synthesized using one-step hydrothermal method. In this strategy, ammonia can effectively insert into the parallel plane of the MoS2 nanosheets, leading to the expansion of lattice and phase transfer from 2H to 1T, generating more active unsaturated sulfur atoms. The flower-like ammoniated MoS2 electrocatalysts with more active sites and large surface area exhibited excellent HER activity with a small Tafel slope and low onset overpotential, resulting a great enhancement in hydrogen evolution. The high efficient activity and recyclable utilization, as well as large-scale, indicate that it is a very promising electrocatalyst to replace Pt in industry application. PMID:27538812

  10. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene.

    PubMed

    Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie

    2015-11-25

    Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum-nickel hydroxide-graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts.

  11. Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries.

    PubMed

    Li, Ge; Wang, Xiaolei; Fu, Jing; Li, Jingde; Park, Moon Gyu; Zhang, Yining; Lui, Gregory; Chen, Zhongwei

    2016-04-11

    Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal-air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen-doped, partially graphitized carbon framework. Benefiting from the unique pomegranate-like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4-based composite electrocatalyst exhibited a high half-wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm(-2) for OER. A single-cell zinc-air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal-air batteries.

  12. Bioinspired synthesis of nitrogen/sulfur co-doped graphene as an efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Huanhuan; Liu, Xiangqian; He, Guangli; Zhang, Xiaoxing; Bao, Shujuan; Hu, Weihua

    2015-04-01

    Efficient electrocatalyst of oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications and heteroatom-doped carbon materials have demonstrated promising catalytic performance towards ORR. In this paper we report a bioinspired method to synthesize nitrogen/sulfur (N/S) co-doped graphene as an efficient ORR electrocatalyst via self-polymerization of polydopamine (PDA) thin layer on graphene oxide sheets, followed by reacting with cysteine and finally thermal annealing in Argon (Ar) atmosphere. As-prepared N/S co-doped graphene exhibits significantly enhanced ORR catalytic activity in alkaline solution compared with pristine graphene or N-doped graphene. It also displays long-term operation stability and strong tolerance to methanol poison effect, indicating it a promising ORR electrocatalyst.

  13. SYNTHESIS AND CHARACTERIZATION OF CO-AND H2S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect

    Shamsuddin Ilias

    2005-03-29

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several bi-metallic electrocatalysts were synthesized using ultra-sonication. These catalysts (Pt/Ru, Pt/Mo and Pt/Ir) were tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/C > Pt/Mo/C > Pt/Ir/C. It appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC and identify potential candidate metals for synthesis of tri-metallic electrocatalysts.

  14. Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation

    NASA Astrophysics Data System (ADS)

    Joya, Khurram S.; Sinatra, Lutfan; Abdulhalim, Lina G.; Joshi, Chakra P.; Hedhili, M. N.; Bakr, Osman M.; Hussain, Irshad

    2016-05-01

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 which initiate oxygen evolution at an amazingly low overpotential of ~1.51 V (vs. RHE; η ~ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm-2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec-1 is observed using Ni4(PET)8. These results are comparable to the state-of-the-art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm-2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these

  15. Semiconductor-electrocatalyst contacts: theory, experiment, and applications to solar water photoelectrolysis

    SciTech Connect

    Boettcher, Shannon W.

    2015-10-21

    Semiconductor photoelectrodes coated with electrocatalysts are key components of photoelectrochemical (PEC) energy conversion and storage systems. Such systems could provide a way to convert the energy in sunlight directly into energy stored in a fuel like hydrogen gas to power our modern society without using fossil fuels. Despite an intense effort aimed at optimizing these materials, there has been little systematic work focused on the semiconductor-electrocatalyst (SC|EC) interface. The SC|EC interface is important because it is responsible for collecting the photoexcited electron-hole pairs generated in the semiconductor. During the performance period we initiated a fundamental effort to understand interfacial electron transfer between electrocatalysts and bulk semiconductors. We developed an experimental technique, dual-working-electrode (DWE) photoelectrochemistry, allowing for direct electrical measurement of the SC-EC interface in situ. We also developed the first theory of the SC|EC interface and applied the theory through numerical simulation to explain the measured interfacial charge transfer properties of the SC|EC junction. We discovered that porous, ion-permeable, redox-active catalysts such as Ni-(Fe) oxyhydroxides form so-called “adaptive” junctions where the effective interfacial barrier height for electron transfer depends on the charge state of the catalyst. This is in sharp contrast to interface properties of dense ion-impermeable catalysts, which we found form buried junctions that could be described by simple equivalent electrical circuits. These results elucidated a design principle for catalyzed photoelectrodes - high-performance photoelectrodes with direct SC|EC junctions use soft deposition techniques that yield ion-permeable catalysts. This work thus provides a foundation for the development of improved photoelectrodes that are practically relevant because they provide a mechanism to directly convert and store solar energy in the form

  16. Triblock polymer mediated synthesis of Ir-Sn oxide electrocatalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Li, Guangfu; Yu, Hongmei; Wang, Xunying; Yang, Donglei; Li, Yongkun; Shao, Zhigang; Yi, Baolian

    2014-03-01

    Over the past several decades, tremendous effort has been put into developing cost-effective, highly active and durable electrocatalysts for oxygen evolution reaction (OER) in the proton exchange membrane water electrolyzer. This report explores an advanced and effective "soft" material-assistant method to fabricate Ir0.6Sn0.4O2 electrocatalysts with a 0.6/0.4 ratio of Ir/Sn in precursors. Adopting a series of characterization methods, the collective results suggest that the surfactant-material F127 content, as an important factor, can efficiently control the formation of Ir-Sn oxides with varying surface properties and morphologies, such as the grainy and rod-shaped structures. Associating with the half-cell and single electrolyzer, it is affirmed that the optimal ratio of (Ir + Sn)/F127 is 100 for the preparation of S100-Ir0.6Sn0.4O2 with obviously enhanced activity and sufficient durability under the electrolysis circumstances. The lowest cell voltages obtained at 80 °C are 1.631 V at 1000 mA cm-2, and 1.820 V at 2000 mA cm-2, when applying S100-Ir0.6Sn0.4O2 OER catalyst and Ti-material diffusion layer on the anode side and Nafion® 115 membrane. Furthermore, the noble-metal Ir loading in the same cell decreases to 0.77 mg cm-2. These results highlight that Ir-Sn oxide synthesized by the soft-material method is a promising OER electrocatalyst.

  17. Pt/C-Electrocatalyst Painting on Polymer Electrolyte Membrane by Electrostatic Spray Deposition

    NASA Astrophysics Data System (ADS)

    Umeda, Minoru; Kawaguchi, Syunsuke; Yamada, Akifumi; Uchida, Isamu

    2005-02-01

    An electrocatalyst painting technique for use in a limited surface area of a polymer electrolyte membrane has been developed by employing electrostatic spray deposition (ESD). ESD is a process in which an aerosol of a solution is ejected from a metal syringe nozzle with a high applied voltage under atmosphere to obtain a thin film on the counter electrode. First, a dispersion containing Pt-loading carbon (Pt/C) powder and Nafion solution was sprayed by using the ESD technique. As a result, the dispersion was deposited over the entire surface area of a polymer electrolyte membrane of Nafion that was placed on the counter Au electrode, whereas, the dispersion was neither deposited on an electric-insulating poly(ethylene telephthalete) (PET) nor on the Nafion membrane on the PET. For the experiment, the Nafion membrane was pretreated to give it ionic conductivity. Next, a dye solution containing Rhodamine B was sprayed in the same manner, with the same result. In the case where the sizes of Nafion membrane and Au electrode were the same, the deposition only occurred on the Nafion/Au layered structure. According to these results, the aerosol generated at the syringe nozzle is introduced to the conductive area and kept away from the insulating area. Finally, for the untreated Nafion membrane on which a water droplet was placed, ESD of the Pt/C dispersion was conducted. Consequently, an electrocatalyst layer was successfully formed only at the wetted point of the Nafion membrane. This technique enables the painting of an electrocatalyst layer over a limited area without the use of any surface mask.

  18. Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation.

    PubMed

    Joya, Khurram S; Sinatra, Lutfan; AbdulHalim, Lina G; Joshi, Chakra P; Hedhili, M N; Bakr, Osman M; Hussain, Irshad

    2016-05-14

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 which initiate oxygen evolution at an amazingly low overpotential of ∼1.51 V (vs. RHE; η≈ 280 mV). The peak oxygen evolution current density (J) of ∼150 mA cm(-2) at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec(-1) is observed using Ni4(PET)8. These results are comparable to the state-of-the-art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm(-2) demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation. PMID:27109550

  19. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    SciTech Connect

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present

  20. An ultrastable bimetallic carbide as platinum electrocatalyst support for highly active oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Yan, Zaoxue; Zhang, Mingmei; Xie, Jimin; Shen, Pei Kang

    2015-11-01

    Stable bimetallic carbide (Fe2MoC) with graphitized carbon (GC) as matrix has been synthesized through an ion-exchange method. The Pt nanoparticles are loaded on the GC-Fe2MoC composite to form Pt/GC-Fe2MoC electrocatalyst which shows much higher activity and stability than those of commercial Pt/C for oxygen reduction reaction in acidic media. The excellent performances of Pt/GC-Fe2MoC are mainly due to the inherent stability of GC-Fe2MoC and the promotion effect between Fe2MoC and Pt.

  1. Metal-Carbon Hybrid Electrocatalysts Derived from Ion-Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction.

    PubMed

    Zhou, Yucheng; Zhou, Weijia; Hou, Dongman; Li, Guoqiang; Wan, Jinquan; Feng, Chunhua; Tang, Zhenghua; Chen, Shaowei

    2016-05-01

    Transition metal-carbon hybrids have been proposed as efficient electrocatalysts for hydrogen evolution reaction (HER) in acidic media. Herein, effective HER electrocatalysts based on metal-carbon composites are prepared by controlled pyrolysis of resin containing a variety of heavy metals. For the first time, Cr2 O3 nanoparticles of 3-6 nm in diameter homogeneously dispersed in the resulting porous carbon framework (Cr-C hybrid) is synthesized as efficient HER electrocatalyst. Electrochemical measurements show that Cr-C hybrids display a high HER activity with an onset potential of -49 mV (vs reversible hydrogen electrode), a Tafel slope of 90 mV dec(-1) , a large catalytic current density of 10 mA cm(-2) at -123 mV, and the prominent electrochemical durability. X-ray photoelectron spectroscopic measurements confirm that electron transfer occurs from Cr2 O3 into carbon, which is consistent with the reported metal@carbon systems. The obtained correlation between metals and HER activities may be exploited as a rational guideline in the design and engineering of HER electrocatalysts. PMID:27061759

  2. Metal-Carbon Hybrid Electrocatalysts Derived from Ion-Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction.

    PubMed

    Zhou, Yucheng; Zhou, Weijia; Hou, Dongman; Li, Guoqiang; Wan, Jinquan; Feng, Chunhua; Tang, Zhenghua; Chen, Shaowei

    2016-05-01

    Transition metal-carbon hybrids have been proposed as efficient electrocatalysts for hydrogen evolution reaction (HER) in acidic media. Herein, effective HER electrocatalysts based on metal-carbon composites are prepared by controlled pyrolysis of resin containing a variety of heavy metals. For the first time, Cr2 O3 nanoparticles of 3-6 nm in diameter homogeneously dispersed in the resulting porous carbon framework (Cr-C hybrid) is synthesized as efficient HER electrocatalyst. Electrochemical measurements show that Cr-C hybrids display a high HER activity with an onset potential of -49 mV (vs reversible hydrogen electrode), a Tafel slope of 90 mV dec(-1) , a large catalytic current density of 10 mA cm(-2) at -123 mV, and the prominent electrochemical durability. X-ray photoelectron spectroscopic measurements confirm that electron transfer occurs from Cr2 O3 into carbon, which is consistent with the reported metal@carbon systems. The obtained correlation between metals and HER activities may be exploited as a rational guideline in the design and engineering of HER electrocatalysts.

  3. Porous platinum nanotubes modified with dendrimers as nanocarriers and electrocatalysts for sensitive electrochemical aptasensors based on enzymatic signal amplification.

    PubMed

    Xu, Wenju; Wu, Yongmei; Yi, Huayu; Bai, Lijuan; Chai, Yaqin; Yuan, Ruo

    2014-02-11

    A highly sensitive electrochemical aptasensor for thrombin detection is developed and demonstrated by using porous platinum nanotubes modified with polyamidoamine dendrimers as nanocarriers and electrocatalysts. The proposed strategy affords a low detection limit of 0.03 pM based on enzyme-based signal amplification.

  4. Immobilization of a molecular cobalt electrocatalyst by hydrophobic interaction with a hematite photoanode for highly stable oxygen evolution.

    PubMed

    Joya, Khurram S; Morlanés, Natalia; Maloney, Edward; Rodionov, Valentin; Takanabe, Kazuhiro

    2015-09-11

    A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst - a hematite photoanode hybrid material showed a significant onset shift and high stability for the photoelectrochemical oxidation evolution reaction (OER). PMID:26214272

  5. Immobilization of a molecular cobalt electrocatalyst by hydrophobic interaction with a hematite photoanode for highly stable oxygen evolution.

    PubMed

    Joya, Khurram S; Morlanés, Natalia; Maloney, Edward; Rodionov, Valentin; Takanabe, Kazuhiro

    2015-09-11

    A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst - a hematite photoanode hybrid material showed a significant onset shift and high stability for the photoelectrochemical oxidation evolution reaction (OER).

  6. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction.

    PubMed

    Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus

    2014-01-01

    Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm(-2)) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst.

  7. A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction.

    PubMed

    Mukherjee, Sohini; Mukherjee, Arnab; Bhagi-Damodaran, Ambika; Mukherjee, Manjistha; Lu, Yi; Dey, Abhishek

    2015-01-01

    Creating an artificial functional mimic of the mitochondrial enzyme cytochrome c oxidase (CcO) has been a long-term goal of the scientific community as such a mimic will not only add to our fundamental understanding of how CcO works but may also pave the way for efficient electrocatalysts for oxygen reduction in hydrogen/oxygen fuel cells. Here we develop an electrocatalyst for reducing oxygen to water under ambient conditions. We use site-directed mutants of myoglobin, where both the distal Cu and the redox-active tyrosine residue present in CcO are modelled. In situ Raman spectroscopy shows that this catalyst features very fast electron transfer rates, facile oxygen binding and O-O bond lysis. An electron transfer shunt from the electrode circumvents the slow dissociation of a ferric hydroxide species, which slows down native CcO (bovine 500 s(-1)), allowing electrocatalytic oxygen reduction rates of 5,000 s(-1) for these biosynthetic models. PMID:26455726

  8. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus

    2014-09-01

    Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm-2) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst.

  9. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide.

    PubMed

    Zhu, Dong Dong; Liu, Jin Long; Qiao, Shi Zhang

    2016-05-01

    In view of the climate changes caused by the continuously rising levels of atmospheric CO2 , advanced technologies associated with CO2 conversion are highly desirable. In recent decades, electrochemical reduction of CO2 has been extensively studied since it can reduce CO2 to value-added chemicals and fuels. Considering the sluggish reaction kinetics of the CO2 molecule, efficient and robust electrocatalysts are required to promote this conversion reaction. Here, recent progress and opportunities in inorganic heterogeneous electrocatalysts for CO2 reduction are discussed, from the viewpoint of both experimental and computational aspects. Based on elemental composition, the inorganic catalysts presented here are classified into four groups: metals, transition-metal oxides, transition-metal chalcogenides, and carbon-based materials. However, despite encouraging accomplishments made in this area, substantial advances in CO2 electrolysis are still needed to meet the criteria for practical applications. Therefore, in the last part, several promising strategies, including surface engineering, chemical modification, nanostructured catalysts, and composite materials, are proposed to facilitate the future development of CO2 electroreduction. PMID:26996295

  10. Development of gold electrocatalysts for alkaline media. Final report on phase 2

    SciTech Connect

    Taylor, E.J.

    1992-04-01

    A research program for the development of carbon-based gold electrode technologies for oxygen reduction in alkali media was conducted. A Phase I feasibility study established very favorable oxygen reduction kinetics on the Au(100) surface and developed a fabrication technique for producing small (less than 20A), highly dispersed gold electrocatalysts. The Phase II program consisted of two parts: (1) development of small, highly dispersed supported gold electrocatalysts and development of corrosion resistant support material for chlor-alkali applications, and (2) development of low-cost, high performance gold electrodes for a commercial oxygen gas sensor. For the oxygen sensor application, thirty electrodes, demonstrated for a period of six months, passed all performance criteria. The chlor-alkali applications included three fuel cell derived technologies: (1) fuel cell, (2) electrochemical concentrator, and (3) air-depolarized cell. Researchers investigated the effect of carbon support, gold catalyst content, and catalyst heat treatment temperature on electrode performance. An economic analysis of each of these technologies incorporated at a chlor-alkali facility was conducted.

  11. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis

    NASA Astrophysics Data System (ADS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Park, Sung Kyoo; Hong, Dae Ho; Chung, Sung Jae; Kumta, Prashant N.

    2014-12-01

    Fluorine doped iridium oxide (IrO2:F) powders with varying F content ranging from 0 to 20 wt.% has been synthesized by using a modification of the Adams fusion method. The precursors (IrCl4 and NH4F) are mixed with NaNO3 and heated to elevated temperatures to form high surface area nanomaterials as electro-catalysts for PEM based water electrolysis. The catalysts were then coated on a porous Ti substrate and have been studied for the oxygen evolution reaction in PEM based water electrolysis. The IrO2:F with an optimum composition of IrO2:10 wt.% F shows remarkably superior electrochemical activity and chemical stability compared to pure IrO2. The results have also been supported via kinetic studies by conducting rotating disk electrode (RDE) experiments. The RDE studies confirm that the electro-catalysts follow the two electron transfer reaction for electrolysis with calculated activation energy of ∼25 kJ mol-1. Single full cell tests conducted also validate the superior electrochemical activity of the 10 wt.% F doped IrO2.

  12. Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering

    PubMed Central

    Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe

    2016-01-01

    Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal−air batteries. Herein, we report the novel system of nickel−aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles. PMID:27650532

  13. Gram-Scale-Synthesized Pd2Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction

    SciTech Connect

    Zhou, W.; Sasaki, K; Su, D; Zhu, Y; Wang, J; Adzic, R

    2010-01-01

    Gram-scale synthesis of Pt{sub ML} electrocatalysts with a well-defined core-shell structure has been carried out using method involving galvanic displacement of an underpotential deposition Cu layer. The Pt shell thickness can be controlled by stepwise deposition. The Pt{at}Pd{sub 2}Co/C nanoparticles were characterized by X-ray powder diffraction, aberration-corrected scanning transmission electron microscopy, high-resolution energy-loss spectrometry, and in situ X-ray absorption spectroscopy. A complete Pt shell of 0.6 nm on a Pd{sub 2}Co core has been confirmed. The Pt{at}Pd{sub 2}Co/C core-shell electrocatalysts showed a very high activity for the oxygen reduction reaction; the Pt mass and specific activity were 0.72 A mg{sub Pt}{sup -1} and 0.5 mA cm{sup -2}, respectively (3.5 and 2.5 times higher than the corresponding values for commercial Pt catalysts), at 0.9 V in 0.1 M HClO{sub 4} at room temperature. In an accelerated potential cycling test, a loss in active surface area and a decrease in catalytic activity for gram-scale-synthesized Pt{sub ML} catalysts were also determined.

  14. Carbon-Free Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions.

    PubMed

    Yang, Yang; Fei, Huilong; Ruan, Gedeng; Li, Lei; Wang, Gunuk; Kim, Nam Dong; Tour, James M

    2015-09-23

    A nanoporous Ag-embedded SnO2 thin film was fabricated by anodic treatment of electrodeposited Ag-Sn alloy layers. The ordered nanoporous structure formed by anodization played a key role in enhancing the electrocatalytic performance of the Ag-embedded SnO2 layer in several ways: (1) the roughness factor of the thin film is greatly increased from 23 in the compact layer to 145 in the nanoporous layer, creating additional active sites that are involved in oxygen electrochemical reactions; (2) a trace amount of Ag (∼1.7 at %, corresponding to a Ag loading of ∼3.8 μg cm(-2)) embedded in the self-organized SnO2 nanoporous matrix avoids the agglomeration of nanoparticles, which is a common problem leading to the electrocatalyst deactivation; (3) the fabricated nanoporous thin film is active without additional additives or porous carbon that is usually necessary to support and stabilize the electrocatalyst. More importantly, the Ag-embedded SnO2 nanoporous thin film shows outstanding bifunctional oxygen electrochemical performance (oxygen reduction and evolution reactions) that is considered a promising candidate for use in metal-air batteries. The present technique has a wide range of applications for the preparation of other carbon-free electrocatalytic nanoporous films that could be useful for renewable energy production and storage applications. PMID:26320368

  15. Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe

    2016-09-01

    Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal‑air batteries. Herein, we report the novel system of nickel‑aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles.

  16. Ultrafine Molybdenum Carbide Nanoparticles Composited with Carbon as a Highly Active Hydrogen-Evolution Electrocatalyst.

    PubMed

    Ma, Ruguang; Zhou, Yao; Chen, Yongfang; Li, Pengxi; Liu, Qian; Wang, Jiacheng

    2015-12-01

    The replacement of platinum with non-precious-metal electrocatalysts with high efficiency and superior stability for the hydrogen-evolution reaction (HER) remains a great challenge. Herein, we report the one-step synthesis of uniform, ultrafine molybdenum carbide (Mo2C) nanoparticles (NPs) within a carbon matrix from inexpensive starting materials (dicyanamide and ammonium molybdate). The optimized catalyst consisting of Mo2C NPs with sizes lower than 3 nm encapsulated by ultrathin graphene shells (ca. 1-3 layers) showed superior HER activity in acidic media, with a very low onset potential of -6 mV, a small Tafel slope of 41 mV dec(-1), and a large exchange current density of 0.179 mA cm(-2), as well as good stability during operation for 12 h. These excellent properties are similar to those of state-of-the-art 20% Pt/C and make the catalyst one of the most active acid-stable electrocatalysts ever reported for HER.

  17. A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction

    PubMed Central

    Mukherjee, Sohini; Mukherjee, Arnab; Bhagi-Damodaran, Ambika; Mukherjee, Manjistha; Lu, Yi; Dey, Abhishek

    2015-01-01

    Creating an artificial functional mimic of the mitochondrial enzyme cytochrome c oxidase (CcO) has been a long-term goal of the scientific community as such a mimic will not only add to our fundamental understanding of how CcO works but may also pave the way for efficient electrocatalysts for oxygen reduction in hydrogen/oxygen fuel cells. Here we develop an electrocatalyst for reducing oxygen to water under ambient conditions. We use site-directed mutants of myoglobin, where both the distal Cu and the redox-active tyrosine residue present in CcO are modelled. In situ Raman spectroscopy shows that this catalyst features very fast electron transfer rates, facile oxygen binding and O–O bond lysis. An electron transfer shunt from the electrode circumvents the slow dissociation of a ferric hydroxide species, which slows down native CcO (bovine 500 s−1), allowing electrocatalytic oxygen reduction rates of 5,000 s−1 for these biosynthetic models. PMID:26455726

  18. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting.

    PubMed

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng-Chang; Wang, Di-Yan; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-10-01

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2 O3 -blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2 O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2 O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm(-2) at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. The non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells. PMID:26307213

  19. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE PAGES

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng -Chang; Wang, Di -Yan; Yang, Jiang; et al

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20more » mA cm–2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  20. Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2015-04-01

    In addressing the growing need of renewable and sustainable energy resources, hydrogen-fuel-cells stand as one of the most promising routes to transform the current energy paradigm into one that integrally fulfills environmental sustainability. Nevertheless, accomplishing this technology at a large scale demands to surpass the efficiency and enhance the cost-effectiveness of platinum-based cathodes, which catalyze the oxygen reduction reaction (ORR). In this work, our first-principles calculations show that Au atoms incorporated into graphene di-vacancies form a highly stable and cost-effective electrocatalyst that is, at the same time, as or more (dependently of the dopant concentration) active toward ORR than the best-known Pt-based electrocatalysts. We reveal that partial passivation of defected-graphene by gold atoms reduces the reactivity of C dangling bonds and increases that of Au, thus optimizing them for catalyzing the ORR and yielding a system of high thermodynamic and electrochemical stabilities. We also demonstrate that the linear relation among the binding energies of the reaction intermediates assumed in computational high-throughput material screening does not hold, at least for this non-purely transition-metal material. We expect Au-doped graphene to finally overcome the cathode-related challenge hindering the realization of hydrogen-fuel cells as the leading means of powering transportation and portable devices.

  1. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction.

    PubMed

    Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus

    2014-01-01

    Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm(-2)) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst. PMID:25229121

  2. Carbon monoxide tolerant platinum electrocatalysts on niobium doped titania and carbon nanotube composite supports

    NASA Astrophysics Data System (ADS)

    Rigdon, William A.; Huang, Xinyu

    2014-12-01

    In the anode of electrochemical cells operating at low temperature, the hydrogen oxidation reaction is susceptible to poisoning from carbon monoxide (CO) which strongly adsorbs on platinum (Pt) catalysts and increases activation overpotential. Adsorbed CO is removed by oxidative processes such as electrochemical stripping, though cleaning can also cause corrosion. One approach to improve the tolerance of Pt is through alloying with less-noble metals, but the durability of alloyed electrocatalysts is a critical concern. Without sacrificing stability, tolerance can be improved by careful design of the support composition using metal oxides. The bifunctional mechanism is promoted at junctions of the catalyst and metal oxides used in the support. Stable metal oxides can also form strong interactions with catalysts, as is the case for platinum on titania (TiOx). In this study, niobium (Nb) serves as an electron donor dopant in titania. The transition metal oxides are joined to functionalized multi-wall carbon nanotube (CNT) supports in order to synthesize composite supports. Pt is then deposited to form electrocatalysts which are characterized before fabrication into anodes for tests as an electrochemical hydrogen pump. Comparisons are made between the control from Pt-CNT to Pt-TiOx-CNT and Pt-Ti0.9Nb0.1Ox-CNT in order to demonstrate advantages.

  3. Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction

    SciTech Connect

    Stolbov, Sergey Alcántara Ortigoza, Marisol

    2015-04-21

    In addressing the growing need of renewable and sustainable energy resources, hydrogen-fuel-cells stand as one of the most promising routes to transform the current energy paradigm into one that integrally fulfills environmental sustainability. Nevertheless, accomplishing this technology at a large scale demands to surpass the efficiency and enhance the cost-effectiveness of platinum-based cathodes, which catalyze the oxygen reduction reaction (ORR). In this work, our first-principles calculations show that Au atoms incorporated into graphene di-vacancies form a highly stable and cost-effective electrocatalyst that is, at the same time, as or more (dependently of the dopant concentration) active toward ORR than the best-known Pt-based electrocatalysts. We reveal that partial passivation of defected-graphene by gold atoms reduces the reactivity of C dangling bonds and increases that of Au, thus optimizing them for catalyzing the ORR and yielding a system of high thermodynamic and electrochemical stabilities. We also demonstrate that the linear relation among the binding energies of the reaction intermediates assumed in computational high-throughput material screening does not hold, at least for this non-purely transition-metal material. We expect Au-doped graphene to finally overcome the cathode-related challenge hindering the realization of hydrogen-fuel cells as the leading means of powering transportation and portable devices.

  4. Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering.

    PubMed

    Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe

    2016-01-01

    Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal-air batteries. Herein, we report the novel system of nickel-aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles. PMID:27650532

  5. Advanced Evaluation of the Long-Term Stability of Oxygen Evolution Electrocatalysts.

    PubMed

    Maljusch, Artjom; Conradi, Oliver; Hoch, Sascha; Blug, Matthias; Schuhmann, Wolfgang

    2016-08-01

    Evaluation of the long-term stability of electrocatalysts is typically performed using galvanostatic polarization at a predefined current density. A stable or insignificant increase in the applied potential is usually interpreted as high long-term stability of the tested catalyst. However, effects such as (i) electrochemical degradation of a catalyst due to its oxidation, (ii) blocking of the catalyst surface by evolved gas bubbles, and (iii) detachment of the catalyst from the electrode surface may lead to a decrease of the catalyst's active surface area being exposed to the electrolyte. In order to separate these effects and to evaluate the true electrochemical degradation of electrocatalysts, an advanced evaluation protocol based on subsequently performed electrochemical impedance, double layer capacitance, cyclic voltammetry, and galvanostatic polarization measurements was developed and used to evaluate the degradation of IrO2 particles drop-coated on glassy carbon rotating disk electrode using Nafion as a binder. A flow-through electrochemical cell was developed enabling circulation of the electrolyte leading to an efficient removal of evolved oxygen bubbles even at high current densities of up to 250 mA/cm(2). The degradation rate of IrO2 was evaluated over 225 test cycles (0.733 ± 0.022 mV/h) with a total duration of galvanostatic polarization measurements of over 55 h. PMID:27398712

  6. A new electrocatalyst and its application method for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Guanjie; Jing, Minghua; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2015-08-01

    The edge plane in carbon structure has good electrocatalytic activity toward vanadium redox reaction. To apply it in vanadium redox flow battery (VRFB) practically, the graphite nanopowders (GNPs) containing amounts of edge planes are used as electrocatalyst and embedded in the electrospun carbon nanofibers (ECNFs) by different mass ratios to make composite electrodes. The morphology and electrochemical activity of the GNPs and the composite electrodes containing them are characterized. Compared with the pristine ECNFs, the composite electrodes show much higher electrochemical activity. With the increase of GNPs content in composite electrodes, the electrochemical reversibility of the vanadium redox couples also increases. It proves the addition of GNPs can surely improve the electrochemical activity of ECNFs. Among the composite electrodes, the ECNFs containing 30 nm GNP by mass ratio of 1:50 show the best electrochemical activity, largest active surface area and excellent stability. Due to the high performance of GNP/ECNFs composite electrode and its relatively low cost preparation process, the GNPs are expected to be used as electrocatalyst in VRFB on a large scale to improve the cell performance.

  7. An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance

    PubMed Central

    Li, Bo-Quan; Tang, Cheng; Wang, Hao-Fan; Zhu, Xiao-Lin; Zhang, Qiang

    2016-01-01

    Perovskite oxides with poor conductivity call for three-dimensional (3D) conductive scaffolds to demonstrate their superb reactivities for oxygen evolution reaction (OER). However, perovskite formation usually requires high-temperature annealing at 600° to 900°C in air, under which most of the used conductive frameworks (for example, carbon and metal current collectors) are reductive and cannot survive. We propose a preoxidization coupled electrodeposition strategy in which Co2+ is preoxidized to Co3+ through cobalt Fenton reaction in aqueous solution, whereas the reductive nickel framework is well maintained during the sequential annealing under nonoxidative atmosphere. The in situ–generated Co3+ is inherited into oxidized perovskites deposited on 3D nickel foam, rendering the monolithic perovskite electrocatalysts with extraordinary OER performance with an ultralow overpotential of 350 mV required for 10 mA cm−2, a very small Tafel slope of 59 mV dec−1, and superb stability in 0.10 M KOH. Therefore, we inaugurate a unique strategy for in situ hybridization of oxidative active phase with reductive framework, affording superb reactivity of perovskite electrocatalyst for efficient water oxidation.

  8. Ca₂Mn₂O₅ as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction.

    PubMed

    Kim, Jaemin; Yin, Xi; Tsao, Kai-Chieh; Fang, Shaohua; Yang, Hong

    2014-10-22

    This paper presents the use of Ca2Mn2O5 as an oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction (OER) in alkaline media. Phase-pure Ca2Mn2O5 was made under mild reaction temperatures through a reductive annealing method. This oxygen deficient perovskite can catalyze the generation of oxygen at ~1.50 V versus (vs) reversible hydrogen electrode (RHE) electrochemically, and reach an OER mass activity of 30.1 A/g at 1.70 V (vs RHE). In comparison to the perovskite CaMnO3, Ca2Mn2O5 shows higher OER activities. The molecular level oxygen vacancies and high spin electron configuration on manganese in the crystal structures are likely the contributing factors for the enhanced performance. This work demonstrates that oxygen-deficient perovskite, A2B2O5, is a new class of high performance electrocatalyst for those reactions that involve active oxygen intermediates, such as reduction of oxygen and OER in water splitting.

  9. SYNTHESIS AND CHARACTERIZATION OF CO- AND H{sub 2}S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect

    Shamsuddin Ilias

    2005-04-05

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several tri-metallic electrocatalysts were synthesized using both ultra-sonication and conventional method. These catalysts (Pt/Ru/Mo, Pt/Ru/Ir, Pt/Ru/W, Ptr/Ru/Co, and Pt/Ru/Se on carbon) were tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/Mo/C > Pt/Ru/Ir/C > Pt/Ru/W/C > Ptr/Ru/Co/C > and Pt/Ru/Se. It appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC.

  10. Bipolar Electrochemistry for Concurrently Evaluating the Stability of Anode and Cathode Electrocatalysts and the Overall Cell Performance during Long-Term Water Electrolysis.

    PubMed

    Eßmann, Vera; Barwe, Stefan; Masa, Justus; Schuhmann, Wolfgang

    2016-09-01

    Electrochemical efficiency and stability are among the most important characteristics of electrocatalysts. These parameters are usually evaluated separately for the anodic and cathodic half-cell reactions in a three-electrode system or by measuring the overall cell voltage between the anode and cathode as a function of current or time. Here, we demonstrate how bipolar electrochemistry can be exploited to evaluate the efficiency of electrocatalysts for full electrochemical water splitting while simultaneously and independently monitoring the individual performance and stability of the half-cell electrocatalysts. Using a closed bipolar electrochemistry setup, all important parameters such as overvoltage, half-cell potential, and catalyst stability can be derived from a single galvanostatic experiment. In the proposed experiment, none of the half-reactions is limiting on the other, making it possible to precisely monitor the contribution of the individual half-cell reactions on the durability of the cell performance. The proposed approach was successfully employed to investigate the long-term performance of a bifunctional water splitting catalyst, specifically amorphous cobalt boride (Co2B), and the durability of the electrocatalyst at the anode and cathode during water electrolysis. Additionally, by periodically alternating the polarization applied to the bipolar electrode (BE) modified with a bifunctional oxygen electrocatalyst, it was possible to explicitly follow the contributions of the oxygen reduction (ORR) and the oxygen evolution (OER) half-reactions on the overall long-term durability of the bifunctional OER/ORR electrocatalyst. PMID:27469162

  11. Bipolar Electrochemistry for Concurrently Evaluating the Stability of Anode and Cathode Electrocatalysts and the Overall Cell Performance during Long-Term Water Electrolysis.

    PubMed

    Eßmann, Vera; Barwe, Stefan; Masa, Justus; Schuhmann, Wolfgang

    2016-09-01

    Electrochemical efficiency and stability are among the most important characteristics of electrocatalysts. These parameters are usually evaluated separately for the anodic and cathodic half-cell reactions in a three-electrode system or by measuring the overall cell voltage between the anode and cathode as a function of current or time. Here, we demonstrate how bipolar electrochemistry can be exploited to evaluate the efficiency of electrocatalysts for full electrochemical water splitting while simultaneously and independently monitoring the individual performance and stability of the half-cell electrocatalysts. Using a closed bipolar electrochemistry setup, all important parameters such as overvoltage, half-cell potential, and catalyst stability can be derived from a single galvanostatic experiment. In the proposed experiment, none of the half-reactions is limiting on the other, making it possible to precisely monitor the contribution of the individual half-cell reactions on the durability of the cell performance. The proposed approach was successfully employed to investigate the long-term performance of a bifunctional water splitting catalyst, specifically amorphous cobalt boride (Co2B), and the durability of the electrocatalyst at the anode and cathode during water electrolysis. Additionally, by periodically alternating the polarization applied to the bipolar electrode (BE) modified with a bifunctional oxygen electrocatalyst, it was possible to explicitly follow the contributions of the oxygen reduction (ORR) and the oxygen evolution (OER) half-reactions on the overall long-term durability of the bifunctional OER/ORR electrocatalyst.

  12. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum

    PubMed Central

    Yang, Zehui; Nakashima, Naotoshi

    2015-01-01

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance. PMID:26192397

  13. Enabling direct H2O2 production through rational electrocatalyst design.

    PubMed

    Siahrostami, Samira; Verdaguer-Casadevall, Arnau; Karamad, Mohammadreza; Deiana, Davide; Malacrida, Paolo; Wickman, Björn; Escudero-Escribano, María; Paoli, Elisa A; Frydendal, Rasmus; Hansen, Thomas W; Chorkendorff, Ib; Stephens, Ifan E L S; Stephens, Ifan E; Rossmeisl, Jan

    2013-12-01

    Future generations require more efficient and localized processes for energy conversion and chemical synthesis. The continuous on-site production of hydrogen peroxide would provide an attractive alternative to the present state-of-the-art, which is based on the complex anthraquinone process. The electrochemical reduction of oxygen to hydrogen peroxide is a particularly promising means of achieving this aim. However, it would require active, selective and stable materials to catalyse the reaction. Although progress has been made in this respect, further improvements through the development of new electrocatalysts are needed. Using density functional theory calculations, we identify Pt-Hg as a promising candidate. Electrochemical measurements on Pt-Hg nanoparticles show more than an order of magnitude improvement in mass activity, that is, A g(-1) precious metal, for H2O2 production, over the best performing catalysts in the literature. PMID:24240242

  14. Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review

    SciTech Connect

    Shao, Yuyan; Cheng, Yingwen; Duan, Wentao; Wang, Wei; Lin, Yuehe; Wang, Yong; Liu, Jun

    2015-12-04

    PEM fuel cells and redox flow batteries are two very similar technologies which share common component materials and device design. Electrocatalysts are the key components in these two devices. In this Review, we discuss recent progress of electrocatalytic materials for these two technologies with a focus on our research activities at Pacific Northwest National Laboratory (PNNL) in the past years. This includes (1) nondestructive functionalization of graphitic carbon as Pt support to improve its electrocatalytic performance, (2) triple-junction of metal–carbon–metal oxides to promote Pt performance, (3) nitrogen-doped carbon and metal-doped carbon (i.e., metal oxides) to improve redox reactions in flow batteries. A perspective on future research and the synergy between the two technologies are also discussed.

  15. Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wu, Renbing; Xue, Yanhong; Liu, Bo; Zhou, Kun; Wei, Jun; Chan, Siew Hwa

    2016-10-01

    Highly efficient and cost-effective electrocatalyst for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications. Herein, strongly coupled hybrid composites composed of cobalt diselenide (CoSe2) nanoparticles embedded within graphitic carbon polyhedra (GCP) as high-performance ORR catalyst have been rationally designed and synthesized. The catalyst is fabricated by a convenient method, which involves the simultaneous pyrolysis and selenization of preformed Co-based zeolitic imidazolate framework (ZIF-67). Benefiting from the unique structural features, the resulting CoSe2/GCP hybrid catalyst shows high stability and excellent electrocatalytic activity towards ORR (the onset and half-wave potentials are 0.935 and 0.806 V vs. RHE, respectively), which is superior to the state-of-the-art commercial Pt/C catalyst (0.912 and 0.781 V vs. RHE, respectively).

  16. Electrochemical Reconstitution of Biomolecules for Applications as Electrocatalysts for the Bionanofuel Cell

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; King, Glen C.; Watt, Gerald D.; Chu, Sang-Hyon; Park, Yeonjoon; Thibeault, Sheila

    2004-01-01

    Platinum-cored ferritins were synthesized as electrocatalysts by electrochemical biomineralization of immobilized apoferritin with platinum. The platinum cored ferritin was fabricated by exposing the immobilized apoferritin to platinum ions at a reduction potential. On the platinum-cored ferritin, oxygen is reduced to water with four protons and four electrons generated from the anode. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This results in a smaller catalyst loading of the electrodes for fuel cells or other electrochemical devices. In addition, the catalytic activity of the ferritin-stabilized platinum nanoparticles is enhanced by the large surface area and particle size phenomena. The work presented herein details the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritin with different inorganic cores, and the fabrication of self-assembled 2-D arrays with thiolated ferritin.

  17. Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction.

    PubMed

    Chen, Minghua; Liu, Jilei; Zhou, Weijiang; Lin, Jianyi; Shen, Zexiang

    2015-05-22

    A novel and facile two-step strategy has been designed to prepare high performance bi-transition-metals (Fe- and Mo-) carbide supported on nitrogen-doped graphene (FeMo-NG) as electrocatalysts for oxygen reduction reactions (ORR). The as-synthesized FeMo carbide -NG catalysts exhibit excellent electrocatalytic activities for ORR in alkaline solution, with high onset potential (-0.09 V vs. saturated KCl Ag/AgCl), nearly four electron transfer number (nearly 4) and high kinetic-limiting current density (up to 3.5 mA cm(-2) at -0.8 V vs. Ag/AgCl). Furthermore, FeMo carbide -NG composites show good cycle stability and much better toxicity tolerance durability than the commercial Pt/C catalyst, paving their application in high-performance fuel cell and lithium-air batteries.

  18. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    PubMed

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst. PMID:23750804

  19. Is Ammonium Peroxydisulate Indispensable for Preparation of Aniline-Derived Iron-Nitrogen-Carbon Electrocatalysts?

    PubMed

    Xie, Nan-Hong; Yan, Xiang-Hui; Xu, Bo-Qing

    2016-09-01

    Iron and nitrogen co-doped carbon (Fe-N-C) materials are among the most active non-precious metal catalysts that could replace Pt-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. The synthesis of the Fe-N-C catalysts often involves the use of aniline as the precursor for both N and C and ammonium peroxydisulfate (APS) as an indispensable oxidative initiator for aniline polymerization. Herein, a detailed structure and catalytic ORR performance comparison of aniline-derived Fe-N-C catalysts synthesized with and without the use of APS is reported. The APS-free preparation, which uses Fe(III) ions as the Fe source as well as the aniline polymerization initiator, results in a simple Fe-N-C catalyst with a high activity for the ORR. We show that APS is not necessary for the preparation and even detrimental to the performance of the catalyst.

  20. Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wu, Tian; Zhang, Lieyu

    2015-12-01

    Development of non-precious electrocatalysts with applicable electrocatalytic activity towards the oxygen reduction reaction (ORR) is important to fulfill broad-based and large-scale applications of metal/air batteries and fuel cells. Herein, nickel and cobalt molybdates with uniform nanorod morphology are synthesized using a facile one-pot hydrothermal method. The ORR activity of the prepared metal molybdate nanorods in alkaline media are investigated by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperomety in rotating disk electrode (RDE) techniques. The present study suggests that the prepared metal molybdate nanorods exhibit applicable electrocatalytic activities towards the ORR in alkaline media, promising the applications as non-precious cathode in fuel cells and metal-air batteries.

  1. Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction.

    PubMed

    Chen, Minghua; Liu, Jilei; Zhou, Weijiang; Lin, Jianyi; Shen, Zexiang

    2015-01-01

    A novel and facile two-step strategy has been designed to prepare high performance bi-transition-metals (Fe- and Mo-) carbide supported on nitrogen-doped graphene (FeMo-NG) as electrocatalysts for oxygen reduction reactions (ORR). The as-synthesized FeMo carbide -NG catalysts exhibit excellent electrocatalytic activities for ORR in alkaline solution, with high onset potential (-0.09 V vs. saturated KCl Ag/AgCl), nearly four electron transfer number (nearly 4) and high kinetic-limiting current density (up to 3.5 mA cm(-2) at -0.8 V vs. Ag/AgCl). Furthermore, FeMo carbide -NG composites show good cycle stability and much better toxicity tolerance durability than the commercial Pt/C catalyst, paving their application in high-performance fuel cell and lithium-air batteries. PMID:25997590

  2. Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction

    PubMed Central

    Chen, Minghua; Liu, Jilei; Zhou, Weijiang; Lin, Jianyi; Shen, Zexiang

    2015-01-01

    A novel and facile two-step strategy has been designed to prepare high performance bi-transition-metals (Fe- and Mo-) carbide supported on nitrogen-doped graphene (FeMo-NG) as electrocatalysts for oxygen reduction reactions (ORR). The as-synthesized FeMo carbide -NG catalysts exhibit excellent electrocatalytic activities for ORR in alkaline solution, with high onset potential (−0.09 V vs. saturated KCl Ag/AgCl), nearly four electron transfer number (nearly 4) and high kinetic-limiting current density (up to 3.5 mA cm−2 at −0.8 V vs. Ag/AgCl). Furthermore, FeMo carbide -NG composites show good cycle stability and much better toxicity tolerance durability than the commercial Pt/C catalyst, paving their application in high-performance fuel cell and lithium-air batteries. PMID:25997590

  3. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

    PubMed Central

    Panas, Itai

    2014-01-01

    Summary Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE), where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions. PMID:24605286

  4. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction.

    PubMed

    Cheng, Liang; Huang, Wenjing; Gong, Qiufang; Liu, Changhai; Liu, Zhuang; Li, Yanguang; Dai, Hongjie

    2014-07-21

    Much has been done to search for highly efficient and inexpensive electrocatalysts for the hydrogen evolution reaction (HER), which is critical to a range of electrochemical and photoelectrochemical processes. A new, high-temperature solution-phase method for the synthesis of ultrathin WS2 nanoflakes is now reported. The resulting product possesses monolayer thickness with dimensions in the nanometer range and abundant edges. These favorable structural features render the WS2 nanoflakes highly active and durable catalysts for the HER in acids. The catalyst exhibits a small HER overpotential of approximately 100 mV and a Tafel slope of 48 mV/decade. These ultrathin WS2 nanoflakes represent an attractive alternative to the precious platinum benchmark catalyst and rival MoS2 materials that have recently been heavily scrutinized for the electrocatalytic HER.

  5. Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Chen, Minghua; Liu, Jilei; Zhou, Weijiang; Lin, Jianyi; Shen, Zexiang

    2015-05-01

    A novel and facile two-step strategy has been designed to prepare high performance bi-transition-metals (Fe- and Mo-) carbide supported on nitrogen-doped graphene (FeMo-NG) as electrocatalysts for oxygen reduction reactions (ORR). The as-synthesized FeMo carbide -NG catalysts exhibit excellent electrocatalytic activities for ORR in alkaline solution, with high onset potential (-0.09 V vs. saturated KCl Ag/AgCl), nearly four electron transfer number (nearly 4) and high kinetic-limiting current density (up to 3.5 mA cm-2 at -0.8 V vs. Ag/AgCl). Furthermore, FeMo carbide -NG composites show good cycle stability and much better toxicity tolerance durability than the commercial Pt/C catalyst, paving their application in high-performance fuel cell and lithium-air batteries.

  6. Hydrogen Production Using Nickel Electrocatalysts with Pendant Amines: Ligand Effects on Rates and Overpotentials

    SciTech Connect

    Wiese, Stefan; Kilgore, Uriah J.; Ho, Ming-Hsun; Raugei, Simone; DuBois, Daniel L.; Bullock, R. Morris; Helm, Monte L.

    2013-11-01

    A Ni-based electrocatalyst for H2 production, [Ni(8PPh2NC6H4Br)2](BF4)2, featuring eight-membered cyclic diphosphine ligands incorporating a single amine base, 1-para-bromo-phenyl-3,7-triphenyl-1-aza-3,7-diphosphacycloheptane (8PPh2NC6H4Br) has been synthesized and characterized. X-ray diffraction studies reveal that the cation of [Ni(8PPh2NC6H4Br)2(CH3CN)](BF4)2 has a distorted trigonal bipyramidal geometry. In CH3CN [Ni(8PPh2NC6H4Br)2]2+ is an electrocatalyst for reduction of protons, and it has a maximum turnover frequency for H2 production of 800 s-1 with a 700 mV overpotential (at Ecat/2) when using [(DMF)H]OTf as the acid. Addition of H2O to acidic CH3CN solutions of [Ni(8PPh2NC6H4Br)2]2+ results in an increase of the turnover frequency for H2 production to a maximum of 3,300 s-1 with an overpotential of 760 mV at Ecat/2. Computational studies carried out on [Ni(8PPh2NC6H4Br)2]2+ indicate the observed catalytic rate is limited by formation of non-productive protonated isomers, diverting active catalyst from the catalytic cycle. The results of this research show that proton delivery from the exogenous acid to the correct position on the proton relay of the metal complex is essential for fast H2 production. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  7. A cobalt-nitrogen complex on N-doped three-dimensional graphene framework as a highly efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanyuan; Lu, Yizhong; Wang, Xiaodan; Bao, Yu; Chen, Wei; Niu, Li

    2014-11-01

    The high cost and limited natural abundance of platinum hinder its widespread applications as the oxygen reduction reaction (ORR) electrocatalyst for fuel cells. Carbon-supported materials containing metals such as Fe or Co as well as nitrogen have been proposed to reduce the cost without obvious lowering the performance compared to Pt-based electrocatalysts. In this work, based on the pyrolyzed corrin structure of vitamin B12 on the simultaneously reduced graphene support (g-VB12), we construct an efficient oxygen reduction electrocatalyst with very positive half-wave potential (only ~30 mV deviation from Pt/C), high selectivity (electron transfer number close to 4) and excellent durability (only 11 mV shift of the half-wave potential after 10 000 potential cycles). The admirable performance of this electrocatalyst can be attributed to the homogeneous distribution of abundant Co-Nx active sites, and a well-defined three-dimensional mesoporous structure of the N-doped graphene support. The high activity and long-term stability of the low cost g-VB12 make it a promising ORR electrocatalyst in alkaline fuel cells.The high cost and limited natural abundance of platinum hinder its widespread applications as the oxygen reduction reaction (ORR) electrocatalyst for fuel cells. Carbon-supported materials containing metals such as Fe or Co as well as nitrogen have been proposed to reduce the cost without obvious lowering the performance compared to Pt-based electrocatalysts. In this work, based on the pyrolyzed corrin structure of vitamin B12 on the simultaneously reduced graphene support (g-VB12), we construct an efficient oxygen reduction electrocatalyst with very positive half-wave potential (only ~30 mV deviation from Pt/C), high selectivity (electron transfer number close to 4) and excellent durability (only 11 mV shift of the half-wave potential after 10 000 potential cycles). The admirable performance of this electrocatalyst can be attributed to the homogeneous

  8. A facile approach to synthesize stable CNTs@MnO electrocatalyst for high energy lithium oxygen batteries

    PubMed Central

    Luo, Wen-Bin; Chou, Shu-Lei; Jia-Zhao Wang; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-01-01

    A composite of manganese monoxide loaded onto carbon nanotubes (CNTs@MnO) has been synthesized by a facile approach, in which the CNTs form a continuous conductive network connecting the electrocatalyst MnO nanoparticles together to facilitate good electrochemical performance. The electrocatalyst MnO shows favourable rechargeability, and good phase and morphology stability in lithium oxygen batteries. Excellent cycling performance is also demonstrated, in which the terminal voltage is higher than 2.4 V after 100 cycles at 0.4 mA cm−2, with 1000 mAh g−1(composite) capacity. Therefore, this hybrid material is promising for use as a cathode material for lithium oxygen batteries. PMID:25634100

  9. Carbon-coated MoS2 nanosheets as highly efficient electrocatalysts for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Dou, Shuo; Wu, Jianghong; Tao, Li; Shen, Anli; Huo, Jia; Wang, Shuangyin

    2016-01-01

    As a green and highly efficient energy resource, hydrogen (H2) has attracted much attention in recent years. Electrochemical water splitting is an economic process to generate H2. MoS2 is a promising candidate to replace traditional Pt-based electrocatalysts for the hydrogen evolution reaction (HER) under acidic conditions. But low electrical conductivity is one of bottlenecks for the large-scale application of MoS2. In this work, a carbon-coated MoS2 hybrid electrocatalyst was prepared with a chemical vapour deposition (CVD) approach to improve the electrical conductivity of MoS2. In addition to the surface-coating carbon, a small graphene-like layer could also be inserted into the interlayers of MoS2 during the CVD process which resulted in more active sites being exposed in MoS2. Enhanced electrical conductivity and more exposed active sites lead to excellent HER activity.

  10. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials

    PubMed Central

    Zhu, Lili; Lin, Haiping; Li, Youyong; Liao, Fan; Lifshitz, Yeshayahu; Sheng, Minqi; Lee, Shuit-Tong; Shao, Mingwang

    2016-01-01

    Currently, platinum-based electrocatalysts show the best performance for hydrogen evolution. All hydrogen evolution reaction catalysts should however obey Sabatier's principle, that is, the adsorption energy of hydrogen to the catalyst surface should be neither too high nor too low to balance between hydrogen adsorption and desorption. To overcome the limitation of this principle, here we choose a composite (rhodium/silicon nanowire) catalyst, in which hydrogen adsorption occurs on rhodium with a large adsorption energy while hydrogen evolution occurs on silicon with a small adsorption energy. We show that the composite is stable with better hydrogen evolution activity than rhodium nanoparticles and even exceeding those of commercial platinum/carbon at high overpotentials. The results reveal that silicon plays a key role in the electrocatalysis. This work may thus open the door for the design and fabrication of electrocatalysts for high-efficiency electric energy to hydrogen energy conversion. PMID:27447292

  11. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials.

    PubMed

    Zhu, Lili; Lin, Haiping; Li, Youyong; Liao, Fan; Lifshitz, Yeshayahu; Sheng, Minqi; Lee, Shuit-Tong; Shao, Mingwang

    2016-01-01

    Currently, platinum-based electrocatalysts show the best performance for hydrogen evolution. All hydrogen evolution reaction catalysts should however obey Sabatier's principle, that is, the adsorption energy of hydrogen to the catalyst surface should be neither too high nor too low to balance between hydrogen adsorption and desorption. To overcome the limitation of this principle, here we choose a composite (rhodium/silicon nanowire) catalyst, in which hydrogen adsorption occurs on rhodium with a large adsorption energy while hydrogen evolution occurs on silicon with a small adsorption energy. We show that the composite is stable with better hydrogen evolution activity than rhodium nanoparticles and even exceeding those of commercial platinum/carbon at high overpotentials. The results reveal that silicon plays a key role in the electrocatalysis. This work may thus open the door for the design and fabrication of electrocatalysts for high-efficiency electric energy to hydrogen energy conversion. PMID:27447292

  12. Two dimensional MoS2/graphene composites as promising supports for Pt electrocatalysts towards methanol oxidation

    NASA Astrophysics Data System (ADS)

    Zhai, Chunyang; Zhu, Mingshan; Bin, Duan; Ren, Fangfang; Wang, Caiqin; Yang, Ping; Du, Yukou

    2015-02-01

    Two dimensional (2D) molybdenum disulfide (MoS2)/reduced graphene oxide (RGO) nanocomposites are synthesized by a hydrothermal method and served as supports for Pt electrocatalysts towards electrocatalytic methanol oxidation. The Pt nanoclusters with uniform size of 3.41 nm are well-dispersed on the surface of MoS2/RGO sheets. Compare to commercial Pt/C and Pt-MoS2 electrodes, the as-prepared Pt-MoS2/RGO composites display 5.65 and 1.73 times higher electrocatalytic activity of methanol oxidation, respectively. This outstanding electrocatalytic performance evidences 2D MoS2/graphene nanocomposites as promising electrocatalyst supports for the commercialization of fuel cells.

  13. Evaluation of the performance degradation at PAFC investigation of dealloying process of electrocatalysts with in-situ XRD

    SciTech Connect

    Nakajima, Noriyuki; Uchida, Hiroyuki; Watanabe, Masahiro

    1996-12-31

    As a complementary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. This work has been performed in the Basic Research Project, as part of that project on PAFC`s, selecting four subjects (Electrocatalysts degradation, Electrolyte fill-level, Cell material corrosion, Electrolyte loss) as the essential factors relating to the life-time. In this study, the effect of temperature and potential on the dealloying process of electrocatalysts was examined in H{sub 3}PO{sub 4} electrolyte with X-ray diffraction measurement.

  14. Spinel ZnCo2O4/N-doped carbon nanotube composite: A high active oxygen reduction reaction electrocatalyst

    NASA Astrophysics Data System (ADS)

    Pu, Zonghua; Liu, Qian; Tang, Chun; Asiri, Abdullah M.; Qusti, Abdullah H.; Al-Youbi, Abdulrahman O.; Sun, Xuping

    2014-07-01

    In this communication, we report on the solvothermal preparation of spinel ZnCo2O4/N-doped carbon nanotube (ZnCo2O4/NCNT) composite. As a novel oxygen reduction reaction (ORR) electrocatalyst, the ZnCo2O4/NCNT composite shows high activity via a four-electron pathway in alkaline solution. Such catalyst also exhibits superior methanol tolerance ability and durability over commercial Pt/C catalyst.

  15. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond

    SciTech Connect

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, N.; More, Karren Leslie; Adzic, Radoslav R.

    2013-01-01

    Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

  16. Strongly Coupled CoCr2 O4 /Carbon Nanosheets as High Performance Electrocatalysts for Oxygen Evolution Reaction.

    PubMed

    Al-Mamun, Mohammad; Su, Xintai; Zhang, Haimin; Yin, Huajie; Liu, Porun; Yang, Huagui; Wang, Dan; Tang, Zhiyong; Wang, Yun; Zhao, Huijun

    2016-06-01

    A strongly coupled CoCr2 O4 /carbon nanosheet composite is concurrently grown via a facile one-step molten-salt calcination approach. The strong coupling between carbon and CoCr2 O4 has improved the electrical conductivity and preserved the active sites in catalysts. These results may pave the way to improve the performance of spinel oxides as electrocatalysts for oxygen evolution reactions. PMID:27087475

  17. Synthesis and Characterization of Bimetallic Core-Shell-Supported Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Kuttiyiel, Kurian Abraham

    Fuel cells are expected to be one of the major clean energy sources in the near future. However, the slow kinetics of electrocatalytic oxygen reduction reaction (ORR) and the high loading of Platinum (Pt) for the cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this study, a new approach was developed for designing electrocatalysts for the ORR in fuel cells. These electrocatalysts consist of only one Pt monolayer on suitable carbon-supported Iridium-Nickel (IrNi) core-shell nanoparticles. The synthesis involved depositing a monolayer of Copper (Cu) on IrNi metal alloy surface at under-potentials, followed by galvanic displacement of the Cu monolayer with Pt. It was found that the electronic properties of Pt monolayer could be fine-tuned by the electronic and geometric effects introduced by the substrate metal. The Pt mass activity of the new Pt monolayer IrNi electrocatalysts was up to six times higher than the state-of-the-art commercial Pt/C catalysts. The structure and composition of the core-shell nanoparticles were verified using transmission electron microscopy and in situ X-ray absorption spectroscopy, while potential cycling test was employed to confirm the stability of the electrocatalyst. The formation of Ir shell on IrNi alloy during annealing due to thermal segregation was monitored by time-resolved synchrotron XRD measurements. Our experimental results, supported by computations, demonstrated an effective way of using Pt that can resolve key ORR problems which include inadequate activity and durability while minimizing the Pt loading.

  18. Synthesis and Characterization of CO-and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2005-12-22

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized four Pt-based electrocatalysts catalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) on Vulcan XG72 Carbon support by both conventional and ultra-sonication method. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. Sonication method appears to provide better dispersion of catalysts on carbon support.

  19. Boron/nitrogen co-doped helically unzipped multiwalled carbon nanotubes as efficient electrocatalyst for oxygen reduction.

    PubMed

    Zehtab Yazdi, Alireza; Fei, Huilong; Ye, Ruquan; Wang, Gunuk; Tour, James; Sundararaj, Uttandaraman

    2015-04-15

    Bamboo structured nitrogen doped multiwalled carbon nanotubes have been helically unzipped, and nitrogen doped graphene oxide nanoribbons (CNx-GONRs) with a multifaceted microstructure have been obtained. CNx-GONRs have then been codoped with nitrogen and boron by simultaneous thermal annealing in ammonia and boron oxide atmospheres, respectively. The effects of the codoping time and temperature on the concentration of the dopants and their functional groups have been extensively investigated. X-ray photoelectron spectroscopy results indicate that pyridinic and BC3 are the main nitrogen and boron functional groups, respectively, in the codoped samples. The oxygen reduction reaction (ORR) properties of the samples have been measured in an alkaline electrolyte and compared with the state-of-the-art Pt/C (20%) electrocatalyst. The results show that the nitrogen/boron codoped graphene nanoribbons with helically unzipped structures (CNx/CBx-GNRs) can compete with the Pt/C (20%) electrocatalyst in all of the key ORR properties: onset potential, exchange current density, four electron pathway selectivity, kinetic current density, and stability. The development of such graphene nanoribbon-based electrocatalyst could be a harbinger of precious metal-free carbon-based nanomaterials for ORR applications.

  20. Ru xCr ySe z electrocatalyst loading and stability effects on the electrochemical performance in a PEMFC

    NASA Astrophysics Data System (ADS)

    Suárez-Alcántara, K.; Rodríguez-Castellanos, A.; Durón-Torres, S.; Solorza-Feria, O.

    The present paper presents a study of the Ru xCr ySe z chalcogenide electrocatalyst based on physical-chemical characterization through scanning electron (SEM), atomic force (AFM) microscopy and energy dispersion elemental analysis (EDS), thermal stability using differential scanning calorimeter (DSC), electrochemical kinetics towards the oxygen reduction reaction (ORR) in acid media by rotating ring-disk electrode (RRDE) and single and three-stack membrane-electrode assembly (MEA) performance as a function of catalyst loading (10%, 20% and 40% W from 0.2 to 2 mg cm -2). Results indicate an electrocatalyst with chemical composition of Ru 6Cr 4Se 5. AFM images showed 80-160 nm nanoparticle agglomerates. Good thermal stability of the cathode Ru 6Cr 4Se 5 was established after 100 h of continuous operation. The electrochemical kinetics study (RRDE) resulted in a electrocatalyst with high activity towards the ORR, preferentially proceeding via 4e - charge transfer pathway towards water formation (i.e., O 2+4H ++4e -→2H 2O), with a maximum of 2.8% H 2O 2 formation at 25 °C. Finally, MEA tests revealed a maximum power density of 220 mW cm -2 with a catalyst loading of 20 wt% at 1.6 mg cm -2.

  1. Strong-Coupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions.

    PubMed

    Chen, Pengzuo; Xu, Kun; Zhou, Tianpei; Tong, Yun; Wu, Junchi; Cheng, Han; Lu, Xiuli; Ding, Hui; Wu, Changzheng; Xie, Yi

    2016-02-12

    Developing highly active catalysts for the oxygen evolution reaction (OER) is of paramount importance for designing various renewable energy storage and conversion devices. Herein, we report the synthesis of a category of Co-Pi analogue, namely cobalt-based borate (Co-Bi ) ultrathin nanosheets/graphene hybrid by a room-temperature synthesis approach. Benefiting from the high surface active sites exposure yield, enhanced electron transfer capacity, and strong synergetic coupled effect, this Co-Bi NS/G hybrid shows high catalytic activity with current density of 10 mA cm(-2) at overpotential of 290 mV and Tafel slope of 53 mV dec(-1) in alkaline medium. Moreover, Co-Bi NS/G electrocatalysts also exhibit promising performance under neutral conditions, with a low onset potential of 235 mV and high current density of 14.4 mA cm(-2) at 1.8 V, which is the best OER performance among well-developed Co-based OER electrocatalysts to date. Our finding paves a way to develop highly active OER electrocatalysts. PMID:26757358

  2. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions.

    PubMed

    Maiyalagan, Thandavarayan; Jarvis, Karalee A; Therese, Soosairaj; Ferreira, Paulo J; Manthiram, Arumugam

    2014-05-27

    Development of efficient, affordable electrocatalysts for the oxygen evolution reaction and the oxygen reduction reaction is critical for rechargeable metal-air batteries. Here we present lithium cobalt oxide, synthesized at 400 °C (designated as LT-LiCoO2) that adopts a lithiated spinel structure, as an inexpensive, efficient electrocatalyst for the oxygen evolution reaction. The catalytic activity of LT-LiCoO2 is higher than that of both spinel cobalt oxide and layered lithium cobalt oxide synthesized at 800 °C (designated as HT-LiCoO2) for the oxygen evolution reaction. Although LT-LiCoO2 exhibits poor activity for the oxygen reduction reaction, the chemically delithiated LT-Li1-xCoO2 samples exhibit a combination of high oxygen reduction reaction and oxygen evolution reaction activities, making the spinel-type LT-Li0,5CoO2 a potential bifunctional electrocatalyst for rechargeable metal-air batteries. The high activities of these delithiated compositions are attributed to the Co4O4 cubane subunits and a pinning of the Co(3+/4+):3d energy with the top of the O(2-):2p band.

  3. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties

    NASA Astrophysics Data System (ADS)

    Suo, Chunguang; Zhang, Wenbin; Shi, Xinghua; Ma, Chuxia

    2014-03-01

    The electrocatalysts used in micro direct methanol fuel cell (μDMFC), such as Pt/C and Pt alloy/C, prepared by liquid-phase NaBH4 reduction method have been investigated. XC-72 (Cobalt corp. Company, U.S.A) is chosen as the activated carrier for the electrocatalysts to keep the catalysts powder in the range of several nanometers. The XRD, SEM, EDX analyses indicated that the catalysts had small particle size in several nanometers, in excellent dispersed phase and the molar ratio of the precious metals was found to be optimal. The performances of the DMFCs using cathodic catalyst with Pt percentage of 30wt% and different anodic catalysts (Pt-Ru, Pt-Ru-Mo) were tested. The polarization curves and power density curves of the cells were measured to determine the optimal alloy composition and condition for the electrocatalysts. The results showed that the micro direct methanol fuel cell with 30wt% Pt/C as the cathodic catalyst and n(Pt):n(Ru):n(Mo) = 3:2:2 PtRuMo/C as the anodic catalyst at room temperature using 2.0mol/L methanol solution has the best performances.

  4. Bioreduction of Precious Metals by Microorganism: Efficient Gold@N-Doped Carbon Electrocatalysts for the Hydrogen Evolution Reaction.

    PubMed

    Zhou, Weijia; Xiong, Tanli; Shi, Chaohong; Zhou, Jian; Zhou, Kai; Zhu, Nengwu; Li, Ligui; Tang, Zhenghua; Chen, Shaowei

    2016-07-11

    The uptake of precious metals from electronic waste is of environmental significance and potential commercial value. A facile bioreductive synthesis is described for Au nanoparticles (ca. 20 nm) supported on N-doped carbon (Au@NC), which was derived from Au/Pycnoporus sanguineus cells. The interface and charge transport between Au and N-doped carbon were confirmed by HRTEM and XPS. Au@NC was employed as an electrocatalyst for the hydrogen evolution reaction (HER), exhibiting a small onset potential of -54.1 mV (vs. RHE), a Tafel slope of 76.8 mV dec(-1) , as well as robust stability in acidic medium. Au@NC is a multifunctional electrocatalyst, which demonstrates high catalytic activity in the oxygen reduction reaction (ORR), as evidenced by an onset potential of +0.97 V, excellent tolerance toward methanol, and long-term stability. This work exemplifies dual recovery of precious Au and fabrication of multifunctional electrocatalysts in an environmentally benign and application-oriented manner. PMID:27218302

  5. Nitrogen-doped carbon-embedded TiO2 nanofibers as promising oxygen reduction reaction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Hassen, D.; Shenashen, M. A.; El-Safty, S. A.; Selim, M. M.; Isago, H.; Elmarakbi, A.; El-Safty, A.; Yamaguchi, H.

    2016-10-01

    The development of inexpensive and effective electrocatalysts for oxygen reduction reaction (ORR) as a substitute for commercial Pt/C catalyst is an important issue in fuel cells. In this paper, we report on novel fabrication of self-supported nitrogen-doped carbon-supported titanium nanofibers (Nsbnd TiO2@C) and carbon-supported titanium (TiO2@C) electrocatalysts via a facile electrospinning route. The nitrogen atom integrates physically and homogenously into the entire carbon-titanium structure. We demonstrate the catalytic performance of Nsbnd TiO2@C and TiO2@C for ORR under alkaline conditions in comparison with Pt/C catalyst. The Nsbnd TiO2@C catalyst shows excellent ORR reactivity and durability. Interestingly, among all the catalysts used in this ORR, Nsbnd TiO2@C-0.75 exhibits remarkable competitive oxygen reduction activity in terms of current density and onset potential, as well as superior methanol tolerance. Such tolerance attributes to maximizing the diffusion of trigger pulse electrons during catalytic reactions because of enhanced electronic features. Results indicate that our fabrication strategy can provide an opportunity to produce a simple, efficient, cost-effective, and promising ORR electrocatalyst for practical applications in energy conversion and storage technologies.

  6. High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis

    SciTech Connect

    Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I; Jampani, Prashanth H; Chung, Sung Jae; Poston, James A; Manivannan, Ayyakkannu; Kumta, Prashant N

    2013-01-01

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals, by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.

  7. Electrocatalyst compositions

    DOEpatents

    Mallouk, Thomas E.; Chan, Benny C.; Reddington, Erik; Sapienza, Anthony; Chen, Guoying; Smotkin, Eugene; Gurau, Bogdan; Viswanathan, Rameshkrishnan; Liu, Renxuan

    2001-09-04

    Compositions for use as catalysts in electrochemical reactions are described. The compositions are alloys prepared from two or more elemental metals selected from platinum, molybdenum, osmium, ruthenium, rhodium, and iridium. Also described are electrode compositions including such alloys and electrochemical reaction devices including such catalysts.

  8. Nanofibrous electrocatalysts

    DOEpatents

    Liu, Di Jia; Shui, Jianglan; Chen, Chen

    2016-05-24

    A nanofibrous catalyst and method of manufacture. A precursor solution of a transition metal based material is formed into a plurality of interconnected nanofibers by electro-spinning the precursor solution with the nanofibers converted to a catalytically active material by a heat treatment. Selected subsequent treatments can enhance catalytic activity.

  9. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel

  10. Strategies to Produce Efficient Electrocatalysts and Improve Electrode Designs for Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Burk, Jonathan James

    Proton exchange membrane (PEM) fuel cells are electrochemical devices that convert chemical energy to electrical energy. These devices are attractive alternative power sources due to their compact designs, high efficiencies, low emissions, and low noise but have issues with high cost and low durability. In this thesis, electrochemical and thin-film methods were used to understand the limitations of the electrocatalyst in PEM fuel cells and address the issues that limit PEM fuel cell commercialization. The electrochemical deposition of Pt from a novel plating solution was used to control the proximity of fuel cell electrocatalysts. We found that optimized pulse potential deposition parameters produced a large density of nanoparticles with narrow size distribution (1.36 +/- 0.36 nm) on amorphous carbon supports. This resulted in thin catalyst layers (< 8 microm thick) that contained 93 % less Pt that performed similar to and greater than commercial fuel cells. In addition, pulse potential deposition was used to produce functioning PEM fuel cells by using the Nafion membrane as a template to selectively localize Pt in the three-phase reaction zone. The fuel cell performance of these devices had Pt loadings down to 11 microg cm--2 with a maximum power density of 213 mW cm--2. The catalyst layer was redesigned to improve conventional catalyst layer designs that limited MEA durability. A spin cast thin-film method was developed to produce smoother electrode surfaces that lead to lower resistance, isotropic conductivity, and increased contact area to the Nafion membrane. These fuel cells produced higher power and were resistant to electrode delamination. The catalyst activity and stability was improved by redesigning the support structure via constant potential electrolysis of 4-aminomethylpyridine on carbon electrodes. The Pt nanoparticles that were electrodeposited on carbon electrodes functionalized with 4-aminomethylpyridine had improved size and dispersion compared

  11. Sulfur and Nitrogen Codoped Carbon Tubes as Bifunctional Metal-Free Electrocatalysts for Oxygen Reduction and Hydrogen Evolution in Acidic Media.

    PubMed

    Sun, Tao; Wu, Qiang; Jiang, Yufei; Zhang, Zhiqi; Du, Lingyu; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2016-07-18

    The technological combination of fuel cells with water electrolysis is an ideal approach to address the problems of growing energy needs and environmental pollution, in which exploring cheap and stable electrocatalysts is the main challenge. Sulfur and nitrogen codoped carbon tubes (SNCTs), prepared by annealing the mixture of amorphous carbonaceous tubes and cysteine, are found to be active bifunctional metal-free electrocatalysts for both oxygen reduction and hydrogen evolution in acidic medium. The optimized SNCT catalyst exhibits a record high onset potential of 851 mV (vs. RHE) for oxygen reduction and concurrent a low overpotential of 76 mV for hydrogen evolution, with superior stability and low cost. The SNCT electrocatalyst could have great potential in proton exchange membrane fuel cells and water splitting devices. PMID:27150558

  12. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

    PubMed Central

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-01-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites. PMID:27032372

  13. Supported Core@Shell Electrocatalysts for Fuel Cells: Close Encounter with Reality

    PubMed Central

    Hwang, Seung Jun; Yoo, Sung Jong; Shin, Jungho; Cho, Yong-Hun; Jang, Jong Hyun; Cho, Eunae; Sung, Yung-Eun; Nam, Suk Woo; Lim, Tae-Hoon; Lee, Seung-Cheol; Kim, Soo-Kil

    2013-01-01

    Core@shell electrocatalysts for fuel cells have the advantages of a high utilization of Pt and the modification of its electronic structures toward enhancement of the activities. In this study, we suggest both a theoretical background for the design of highly active and stable core@shell/C and a novel facile synthetic strategy for their preparation. Using density functional theory calculations guided by the oxygen adsorption energy and vacancy formation energy, Pd3Cu1@Pt/C was selected as the most suitable candidate for the oxygen reduction reaction in terms of its activity and stability. These predictions were experimentally verified by the surfactant-free synthesis of Pd3Cu1/C cores and the selective Pt shell formation using a Hantzsch ester as a reducing agent. In a similar fashion, Pd@Pd4Ir6/C catalyst was also designed and synthesized for the hydrogen oxidation reaction. The developed catalysts exhibited high activity, high selectivity, and 4,000 h of long-term durability at the single-cell level. PMID:23419683

  14. Is Ammonium Peroxydisulate Indispensable for Preparation of Aniline-Derived Iron-Nitrogen-Carbon Electrocatalysts?

    PubMed

    Xie, Nan-Hong; Yan, Xiang-Hui; Xu, Bo-Qing

    2016-09-01

    Iron and nitrogen co-doped carbon (Fe-N-C) materials are among the most active non-precious metal catalysts that could replace Pt-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. The synthesis of the Fe-N-C catalysts often involves the use of aniline as the precursor for both N and C and ammonium peroxydisulfate (APS) as an indispensable oxidative initiator for aniline polymerization. Herein, a detailed structure and catalytic ORR performance comparison of aniline-derived Fe-N-C catalysts synthesized with and without the use of APS is reported. The APS-free preparation, which uses Fe(III) ions as the Fe source as well as the aniline polymerization initiator, results in a simple Fe-N-C catalyst with a high activity for the ORR. We show that APS is not necessary for the preparation and even detrimental to the performance of the catalyst. PMID:27514790

  15. A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction.

    PubMed

    Cao, Zhi; Kim, Dohyung; Hong, Dachao; Yu, Yi; Xu, Jun; Lin, Song; Wen, Xiaodong; Nichols, Eva M; Jeong, Keunhong; Reimer, Jeffrey A; Yang, Peidong; Chang, Christopher J

    2016-07-01

    Conversion of the greenhouse gas carbon dioxide (CO2) to value-added products is an important challenge for sustainable energy research, and nanomaterials offer a broad class of heterogeneous catalysts for such transformations. Here we report a molecular surface functionalization approach to tuning gold nanoparticle (Au NP) electrocatalysts for reduction of CO2 to CO. The N-heterocyclic (NHC) carbene-functionalized Au NP catalyst exhibits improved faradaic efficiency (FE = 83%) for reduction of CO2 to CO in water at neutral pH at an overpotential of 0.46 V with a 7.6-fold increase in current density compared to that of the parent Au NP (FE = 53%). Tafel plots of the NHC carbene-functionalized Au NP (72 mV/decade) vs parent Au NP (138 mV/decade) systems further show that the molecular ligand influences mechanistic pathways for CO2 reduction. The results establish molecular surface functionalization as a complementary approach to size, shape, composition, and defect control for nanoparticle catalyst design.

  16. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    PubMed

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles.

  17. Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction

    PubMed Central

    You, Bo; Yin, Peiqun; Zhang, Junli; He, Daping; Chen, Gaoli; Kang, Fei; Wang, Huiqiao; Deng, Zhaoxiang; Li, Yadong

    2015-01-01

    The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co2+ chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials. PMID:26130371

  18. A novel sputtered Pd mesh architecture as an advanced electrocatalyst for highly efficient hydrogen production

    NASA Astrophysics Data System (ADS)

    de Lucas-Consuegra, Antonio; de la Osa, Ana R.; Calcerrada, Ana B.; Linares, José J.; Horwat, David

    2016-07-01

    This study reports the preparation, characterization and testing of a sputtered Pd mesh-like anode as an advanced electrocatalyst for H2 production from alkaline ethanol solutions in an Alkaline Membrane Electrolyzer (AEM). Pd anodic catalyst is prepared by magnetron sputtering technique onto a microfiber carbon paper support. Scanning Electron Microscopy images reveal that the used preparation technique enables to cover the surface of the carbon microfibers exposed to the Pd target, leading to a continuous network that also maintains part of the original carbon paper macroporosity. Such novel anodic architecture (organic binder free) presents an excellent electro-chemical performance, with a maximum current density of 700 mA cm-2 at 1.3 V, and, concomitantly, a large H2 production rate with low energy requirement compared to water electrolysis. Potassium hydroxide emerges as the best electrolyte, whereas temperature exerts the expected promotional effect up to 90 °C. On the other hand, a 1 mol L-1 ethanol solution is enough to guarantee an efficient fuel supply without any mass transfer limitation. The proposed system also demonstrates to remain stable over 150 h of operation along five consecutives cycles, producing highly pure H2 (99.999%) at the cathode and potassium acetate as the main anodic product.

  19. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-04-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites.

  20. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resulting in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.

  1. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination

    NASA Astrophysics Data System (ADS)

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-06-01

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation.

  2. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination.

    PubMed

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-06-10

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation.

  3. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution.

    PubMed

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-04-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites.

  4. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    PubMed Central

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications. PMID:24387682

  5. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    PubMed Central

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; Xiao, John Q.; Jiao, Feng; Chen, Jingguang G.

    2015-01-01

    A robust and efficient non-precious metal catalyst for hydrogen evolution reaction is one of the key components for carbon dioxide-free hydrogen production. Here we report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the-art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. In addition, the hierarchical porosity of the nanoporous copper-titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface. PMID:25910892

  6. An iron complex with pendant amines as a molecular electrocatalyst for oxidation of hydrogen

    SciTech Connect

    Liu, Tianbiao L.; DuBois, Daniel L.; Bullock, R. Morris

    2013-02-17

    Addressing the worldwide problems of escalating energy demand and increasing emissions of CO2 requires an increase in utilization of carbon-neutral, sustainable energy sources. Electrocatalysts are needed for conversion between chemical energy (bonds such as the H-H bond of hydrogen) and electricity in future systems for storage and use of energy. Hydrogen is an attractive energy carrier, but a major barrier to more widespread use of hydrogen is the need for efficient, inexpensive catalysts. Electricity is produced from oxidation of hydrogen in low-temperature fuel cells, but the best catalyst is platinum, a precious metal of low abundance.1 Here we show that a synthetic iron complex is a catalyst for the oxidation of hydrogen. A burgeoning effort by chemists studying many areas of catalysis has focused on "Cheap Metals for Noble Tasks."2 Iron is particularly attractive because of its very high earth-abundance along with its low cost and toxicity, leading Bolm to suggest the advent of a "new iron age."3 Our results demonstrate that rationally designed catalysts based on abundant, inexpensive metals offer substantial promise as alternatives to precious metal catalysts. We thank the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, for support of this research. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  7. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages

    PubMed Central

    Jacques, Pierre-André; Artero, Vincent; Pécaut, Jacques; Fontecave, Marc

    2009-01-01

    Hydrogen production through the reduction of water appears to be a convenient solution for the long-run storage of renewable energies. However, economically viable hydrogen production requests platinum-free catalysts, because this expensive and scarce (only 37 ppb in the Earth's crust) metal is not a sustainable resource [Gordon RB, Bertram M, Graedel TE (2006) Proc Natl Acad Sci USA 103:1209–1214]. Here, we report on a new family of cobalt and nickel diimine-dioxime complexes as efficient and stable electrocatalysts for hydrogen evolution from acidic nonaqueous solutions with slightly lower overvoltages and much larger stabilities towards hydrolysis as compared to previously reported cobaloxime catalysts. A mechanistic study allowed us to determine that hydrogen evolution likely proceeds through a bimetallic homolytic pathway. The presence of a proton-exchanging site in the ligand, furthermore, provides an exquisite mechanism for tuning the electrocatalytic potential for hydrogen evolution of these compounds in response to variations of the acidity of the solution, a feature only reported for native hydrogenase enzymes so far. PMID:19948953

  8. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination.

    PubMed

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-01-01

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation. PMID:26059552

  9. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Barakat, Nasser A. M.; El-Newehy, Mohamed; Al-Deyab, Salem S.; Kim, Hak Yong

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications.

  10. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  11. Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation.

    PubMed

    Konkena, Bharathi; Junge Puring, Kai; Sinev, Ilya; Piontek, Stefan; Khavryuchenko, Oleksiy; Dürholt, Johannes P; Schmid, Rochus; Tüysüz, Harun; Muhler, Martin; Schuhmann, Wolfgang; Apfel, Ulf-Peter

    2016-07-27

    The need for sustainable catalysts for an efficient hydrogen evolution reaction is of significant interest for modern society. Inspired by comparable structural properties of [FeNi]-hydrogenase, here we present the natural ore pentlandite (Fe4.5Ni4.5S8) as a direct 'rock' electrode material for hydrogen evolution under acidic conditions with an overpotential of 280 mV at 10 mA cm(-2). Furthermore, it reaches a value as low as 190 mV after 96 h of electrolysis due to surface sulfur depletion, which may change the electronic structure of the catalytically active nickel-iron centres. The 'rock' material shows an unexpected catalytic activity with comparable overpotential and Tafel slope to some well-developed metallic or nanostructured catalysts. Notably, the 'rock' material offers high current densities (≤650 mA cm(-2)) without any loss in activity for approximately 170 h. The superior hydrogen evolution performance of pentlandites as 'rock' electrode labels this ore as a promising electrocatalyst for future hydrogen-based economy.

  12. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination

    PubMed Central

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-01-01

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon–nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation. PMID:26059552

  13. Carbothermal synthesis of titanium oxycarbide as electrocatalyst support with high oxygen evolution reaction activity

    SciTech Connect

    Huang, K; Li, YF; Xing, YC

    2012-11-09

    Carbothermal reduction of semiconducting TiO2 into highly conductive titanium oxycarbide (TiOxCy) was investigated. The thermally produced uniform carbon layer on TiO2 (Degussa P25) protects the TiO2 nanoparticles from sintering and, at the same time, supplies the carbon source for doping TiO2 with carbon. At low temperatures (e. g., 700 degrees C), carbon only substitutes part of the oxide and distorts the TiO2 lattice to form TiO2-xCx with only substitutional carbon. When the carbon-doped TiO2 is annealed at a higher temperature (1100 degrees C), x-ray diffraction and x-ray photoelectron spectroscopy results showed that TiOxCy, a solid solution of TiO and TiC, was formed, which displays different diffraction peaks and binding energies. It was shown that TiOxCy has much better oxygen revolution reaction activity than TiO2 or TiO2-xCx. Further studies showed that the TiOxCy obtained can be used as a support for metal electrocatalyst, leading to a bifunctional catalyst effective for both oxygen reduction and evolution reactions.

  14. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    PubMed

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles. PMID:23651993

  15. Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Lee, Dong Un; Park, Moon Gyu; Park, Hey Woong; Seo, Min Ho; Wang, Xiaolei; Chen, Zhongwei

    2015-09-21

    A highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C. Furthermore, rechargeable zinc-air battery testing of Co3 O4 NC/N-CNT reveals superior galvanodynamic charge and discharge voltages with a significantly extended cycle life of over 100 h, which suggests its potential as a replacement for precious-metal-based catalysts for electric vehicles and grid energy storage applications. PMID:26373363

  16. Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Lee, Dong Un; Park, Moon Gyu; Park, Hey Woong; Seo, Min Ho; Wang, Xiaolei; Chen, Zhongwei

    2015-09-21

    A highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C. Furthermore, rechargeable zinc-air battery testing of Co3 O4 NC/N-CNT reveals superior galvanodynamic charge and discharge voltages with a significantly extended cycle life of over 100 h, which suggests its potential as a replacement for precious-metal-based catalysts for electric vehicles and grid energy storage applications.

  17. Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support

    SciTech Connect

    Huang, K; Li, YF; Yan, LT; Xing, YC

    2014-01-01

    We report an effective approach to synthesize nanoscale Nb2O5 coated on carbon nanotubes (CNTs) and transform it at low temperatures to the conductive form of NbO2. The latter, when used as a Pt electrocatalyst support, shows significant enhancement in catalyst activity and durability in the oxygen reduction reaction (ORR). Direct phase transformation of Nb2O5 to NbO2 often requires temperatures above 1000 degrees C. Here we show that this can be achieved at a much lower temperature (e.g. 700 degrees C) if the niobium oxide is first activated with carbon. Low temperature processing allows retaining nanostructures of the oxide without sintering, keeping its high surface areas needed for being a catalyst support. We further show that Pt supported on the conductive oxides on CNTs has two times higher mass activity for the ORR than on bare CNTs. The electrochemical stability of Pt was also outstanding, with only ca. 5% loss in electrochemical surface areas and insignificant reduction in half-wave potential in ORR after 5000 potential cycles.

  18. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  19. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    SciTech Connect

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; Xiao, John Q.; Jiao, Feng; Chen, Jingguang G.

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchical porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.

  20. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    DOE PAGES

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; et al

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchicalmore » porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.« less

  1. Cerium(III) Complex Modified Gold Electrode: An Efficient Electrocatalyst for the Oxygen Evolution Reaction.

    PubMed

    Garain, Samiran; Barman, Koushik; Sinha, Tridib Kumar; Jasimuddin, Sk; Haeberle, Jörg; Henkel, Karsten; Schmeisser, Dieter; Mandal, Dipankar

    2016-08-24

    Exploring efficient and inexpensive electrocatalysts for the oxidation of water is of great importance for various electrochemical energy storage and conversion technologies. In the present study, a new water-soluble [Ce(III)(DMF) (HSO4)3] complex was synthesized and characterized by UV-vis, photoluminescence, and high-resolution X-ray photoelectron spectroscopy techniques. Owing to classic 5d → 4f transitions, an intense photoluminescence in the UV region was observed from the water-soluble [Ce(III)(DMF) (HSO4)3] complex. A stacking electrode was designed where self-assembled l-cysteine monolayer modified gold was immobilized with the synthesized cerium complex and was characterized by scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. The resulting electrode, i.e., [Ce(III)(DMF) (HSO4)3]-l-cysteine-Au stacks shows high electrocatalytic water oxidation behavior at an overpotential of η ≈ 0.34 V under neutral pH conditions. We also demonstrated a way where the overpotential is possible to decrease upon irradiation of UV light. PMID:27490440

  2. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    PubMed

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure.

  3. Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction

    NASA Astrophysics Data System (ADS)

    You, Bo; Yin, Peiqun; Zhang, Junli; He, Daping; Chen, Gaoli; Kang, Fei; Wang, Huiqiao; Deng, Zhaoxiang; Li, Yadong

    2015-07-01

    The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co2+ chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials.

  4. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; Xiao, John Q.; Jiao, Feng; Chen, Jingguang G.

    2015-03-01

    A robust and efficient non-precious metal catalyst for hydrogen evolution reaction is one of the key components for carbon dioxide-free hydrogen production. Here we report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the-art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. In addition, the hierarchical porosity of the nanoporous copper-titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.

  5. Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction.

    PubMed

    Bing, Yonghong; Liu, Hansan; Zhang, Lei; Ghosh, Dave; Zhang, Jiujun

    2010-06-01

    In this critical review, we present the current technological advances in proton exchange membrane (PEM) fuel cell catalysis, with a focus on strategies for developing nanostructured Pt-alloys as electrocatalysts for the oxygen reduction reaction (ORR). The achievements are reviewed and the major challenges, including high cost, insufficient activity and low stability, are addressed and discussed. The nanostructured Pt-alloy catalysts can be grouped into different clusters: (i) Pt-alloy nanoparticles, (ii) Pt-alloy nanotextures such as Pt-skins/monolayers on top of base metals, and (iii) branched or anisotropic elongated Pt or Pt-alloy nanostructures. Although some Pt-alloy catalysts with advanced nanostructures have shown remarkable activity levels, the dissolution of metals, including Pt and alloyed base metals, in a fuel cell operating environment could cause catalyst degradation, and still remains an issue. Another concern may be low retention of the nanostructure of the active catalyst during fuel cell operation. To facilitate further efforts in new catalyst development, several research directions are also proposed in this paper (130 references).

  6. Aligned Carbon Nanotube Array Functionalization for Enhanced Atomic Layer Deposition of Platinum Electrocatalysts

    SciTech Connect

    Dameron, A. A.; Pylypenko, S.; Bult, J. B.; Neyerlin, K. C.; Engtrakul, C.; Bochert, C.; Leong, G. J.; Frisco, S. L.; Simpson, L.; Dinh, H. N.; Pivovar, B.

    2012-04-15

    Uniform metal deposition onto high surface area supports is a key challenge of developing successful efficient catalyst materials. Atomic layer deposition (ALD) circumvents permeation difficulties, but relies on gas-surface reactions to initiate growth. Our work demonstrates that modified surfaces within vertically aligned carbon nanotube (CNT) arrays, from plasma and molecular precursor treatments, can lead to improved catalyst deposition. Gas phase functionalization influences the number of ALD nucleation sites and the onset of ALD growth and, in turn, affects the uniformity of the coating along the length of the CNTs within the aligned arrays. The induced chemical changes for each functionalization route are identified by X-ray photoelectron and Raman spectroscopies. The most effective functionalization routes increase the prevalence of oxygen moieties at defect sites on the carbon surfaces. The striking effects of the functionalization are demonstrated with ALD Pt growth as a function of surface treatment and ALD cycles examined by electron microscopy of the arrays and the individual CNTs. Finally, we demonstrate applicability of these materials as fuel cell electrocatalysts and show that surface functionalization affects their performance towards oxygen reduction reaction.

  7. Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Guanjie; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei

    2015-05-01

    To improve the electrochemical activity of polyacrylonitrile (PAN)-based electrospun carbon nanofibers (ECNFs) toward vanadium redox couples, the multi-wall carbon nanotubes (CNTs) and Bi-based compound as electrocatalyst have been embedded in the ECNFs to make composite electrode, respectively. The morphology and electrochemical properties of pristine ECNFs, CNTs/ECNFs and Bi/ECNFs have been characterized. Among the three kinds of electrodes, the CNTs/ECNFs show best electrochemical activity toward VO2+/VO2+ redox couple, while the Bi/ECNFs present the best electrochemical activity toward V2+/V3+ redox couple. Furthermore, the high overpotential of hydrogen evolution on Bi/ECNFs makes the side-reaction suppressed. Because of the large property difference between the two composite electrodes, the CNTs/ECNFs and Bi/ECNFs are designed to act as positive and negative electrode for vanadium redox flow battery (VRFB), respectively. It not only does improve the kinetics of two electrode reactions at the same time, but also reduce the kinetics difference between them. Due to the application of asymmetric electrodes, performance of the cell is improved greatly.

  8. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-01

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h.

  9. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes.

    PubMed

    Li, Yanguang; Zhou, Wu; Wang, Hailiang; Xie, Liming; Liang, Yongye; Wei, Fei; Idrobo, Juan-Carlos; Pennycook, Stephen J; Dai, Hongjie

    2012-06-01

    Oxygen reduction reaction catalysts based on precious metals such as platinum or its alloys are routinely used in fuel cells because of their high activity. Carbon-supported materials containing metals such as iron or cobalt as well as nitrogen impurities have been proposed to increase scalability and reduce costs, but these alternatives usually suffer from low activity and/or gradual deactivation during use. Here, we show that few-walled carbon nanotubes, following outer wall exfoliation via oxidation and high-temperature reaction with ammonia, can act as an oxygen reduction reaction electrocatalyst in both acidic and alkaline solutions. Under a unique oxidation condition, the outer walls of the few-walled carbon nanotubes are partially unzipped, creating nanoscale sheets of graphene attached to the inner tubes. The graphene sheets contain extremely small amounts of irons originated from nanotube growth seeds, and nitrogen impurities, which facilitate the formation of catalytic sites and boost the activity of the catalyst, as revealed by atomic-scale microscopy and electron energy loss spectroscopy. Whereas the graphene sheets formed from the unzipped part of the outer wall of the nanotubes are responsible for the catalytic activity, the inner walls remain intact and retain their electrical conductivity, which facilitates charge transport during electrocatalysis. PMID:22635099

  10. Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Zhang, Geng; Xu, Guangran; Li, Yingjun; Liu, Baocang; Gong, Xia; Zheng, Dafang; Zhang, Jun; Wang, Qin

    2016-12-01

    The promising Pt-based ternary catalyst is crucial for polymer electrolyte membrane fuel cells (PEMFCs) due to improving catalytic activity and durability for both methanol oxidation reaction and oxygen reduction reaction. In this work, a facile strategy is used for the synthesis ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities catalysts. The ternary RuMPt alloys exhibit enhanced specific and mass activity, positive half-wave potential, and long-term stability, compared with binary Pt-based alloy and the commercial Pt/C catalyst, which is attributed to the high electron density and upshifting of the d-band center for Pt atoms, and synergistic catalytic effects among Pt, M, and Ru atoms by introducing a transition metal. Impressively, the ternary RuCoPt catalyst exhibits superior mass activity (801.59 mA mg-1) and positive half-wave potential (0.857 V vs. RHE) towards MOR and ORR, respectively. Thus, the RuMPt nanocomposite is a very promising material to be used as dual electrocatalyst in the application of PEMFCs.

  11. Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation.

    PubMed

    Konkena, Bharathi; Junge Puring, Kai; Sinev, Ilya; Piontek, Stefan; Khavryuchenko, Oleksiy; Dürholt, Johannes P; Schmid, Rochus; Tüysüz, Harun; Muhler, Martin; Schuhmann, Wolfgang; Apfel, Ulf-Peter

    2016-01-01

    The need for sustainable catalysts for an efficient hydrogen evolution reaction is of significant interest for modern society. Inspired by comparable structural properties of [FeNi]-hydrogenase, here we present the natural ore pentlandite (Fe4.5Ni4.5S8) as a direct 'rock' electrode material for hydrogen evolution under acidic conditions with an overpotential of 280 mV at 10 mA cm(-2). Furthermore, it reaches a value as low as 190 mV after 96 h of electrolysis due to surface sulfur depletion, which may change the electronic structure of the catalytically active nickel-iron centres. The 'rock' material shows an unexpected catalytic activity with comparable overpotential and Tafel slope to some well-developed metallic or nanostructured catalysts. Notably, the 'rock' material offers high current densities (≤650 mA cm(-2)) without any loss in activity for approximately 170 h. The superior hydrogen evolution performance of pentlandites as 'rock' electrode labels this ore as a promising electrocatalyst for future hydrogen-based economy. PMID:27461840

  12. Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation

    PubMed Central

    Konkena, Bharathi; junge Puring, Kai; Sinev, Ilya; Piontek, Stefan; Khavryuchenko, Oleksiy; Dürholt, Johannes P.; Schmid, Rochus; Tüysüz, Harun; Muhler, Martin; Schuhmann, Wolfgang; Apfel, Ulf-Peter

    2016-01-01

    The need for sustainable catalysts for an efficient hydrogen evolution reaction is of significant interest for modern society. Inspired by comparable structural properties of [FeNi]-hydrogenase, here we present the natural ore pentlandite (Fe4.5Ni4.5S8) as a direct ‘rock' electrode material for hydrogen evolution under acidic conditions with an overpotential of 280 mV at 10 mA cm−2. Furthermore, it reaches a value as low as 190 mV after 96 h of electrolysis due to surface sulfur depletion, which may change the electronic structure of the catalytically active nickel–iron centres. The ‘rock' material shows an unexpected catalytic activity with comparable overpotential and Tafel slope to some well-developed metallic or nanostructured catalysts. Notably, the ‘rock' material offers high current densities (≤650 mA cm−2) without any loss in activity for approximately 170 h. The superior hydrogen evolution performance of pentlandites as ‘rock' electrode labels this ore as a promising electrocatalyst for future hydrogen-based economy. PMID:27461840

  13. A novel electroless method to prepare a platinum electrocatalyst on diamond for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lyu, Xiao; Hu, Jingping; Foord, John S.; Wang, Qiang

    2013-11-01

    A novel electroless deposition method was demonstrated to prepare a platinum electrocatalyst on boron doped diamond (BDD) substrates without the need for pre-activation. This green method addresses the uniformity and particle size issues associated with electrodeposition and circumvents the pre-activation procedure which is necessary for conventional electroless deposition. The inert BDD substrate formed a galvanic couple with an iron wire, to overcome the activation barrier associated with conventional electroless deposition on diamond, leading to the formation of Pt nanoparticles on the electrode surface in a galvanic process coupled to a chemical process. When sodium hypophosphite was employed as the reducing agent to drive the electroless reaction Pt deposits which were contaminated with iron and phosphorus resulted. In contrast, the reducing agent ascorbic acid gave rise to high purity Pt nanoparticles. Optimal deposition conditions with respect to bath temperature, pH value and stabilizing additives are identified. Using this approach, high purity and uniformly distributed platinum nanoparticles are obtained on the diamond electrode surface, which demonstrate a high electrochemical activity towards methanol oxidation.

  14. A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction.

    PubMed

    Cao, Zhi; Kim, Dohyung; Hong, Dachao; Yu, Yi; Xu, Jun; Lin, Song; Wen, Xiaodong; Nichols, Eva M; Jeong, Keunhong; Reimer, Jeffrey A; Yang, Peidong; Chang, Christopher J

    2016-07-01

    Conversion of the greenhouse gas carbon dioxide (CO2) to value-added products is an important challenge for sustainable energy research, and nanomaterials offer a broad class of heterogeneous catalysts for such transformations. Here we report a molecular surface functionalization approach to tuning gold nanoparticle (Au NP) electrocatalysts for reduction of CO2 to CO. The N-heterocyclic (NHC) carbene-functionalized Au NP catalyst exhibits improved faradaic efficiency (FE = 83%) for reduction of CO2 to CO in water at neutral pH at an overpotential of 0.46 V with a 7.6-fold increase in current density compared to that of the parent Au NP (FE = 53%). Tafel plots of the NHC carbene-functionalized Au NP (72 mV/decade) vs parent Au NP (138 mV/decade) systems further show that the molecular ligand influences mechanistic pathways for CO2 reduction. The results establish molecular surface functionalization as a complementary approach to size, shape, composition, and defect control for nanoparticle catalyst design. PMID:27322487

  15. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-01

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h. PMID:27064172

  16. Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation

    NASA Astrophysics Data System (ADS)

    Konkena, Bharathi; Junge Puring, Kai; Sinev, Ilya; Piontek, Stefan; Khavryuchenko, Oleksiy; Dürholt, Johannes P.; Schmid, Rochus; Tüysüz, Harun; Muhler, Martin; Schuhmann, Wolfgang; Apfel, Ulf-Peter

    2016-07-01

    The need for sustainable catalysts for an efficient hydrogen evolution reaction is of significant interest for modern society. Inspired by comparable structural properties of [FeNi]-hydrogenase, here we present the natural ore pentlandite (Fe4.5Ni4.5S8) as a direct `rock' electrode material for hydrogen evolution under acidic conditions with an overpotential of 280 mV at 10 mA cm-2. Furthermore, it reaches a value as low as 190 mV after 96 h of electrolysis due to surface sulfur depletion, which may change the electronic structure of the catalytically active nickel-iron centres. The `rock' material shows an unexpected catalytic activity with comparable overpotential and Tafel slope to some well-developed metallic or nanostructured catalysts. Notably, the `rock' material offers high current densities (<=650 mA cm-2) without any loss in activity for approximately 170 h. The superior hydrogen evolution performance of pentlandites as `rock' electrode labels this ore as a promising electrocatalyst for future hydrogen-based economy.

  17. Porous Nickel-Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.

    PubMed

    Wang, Zhaoyang; Li, Jiantao; Tian, Xiaocong; Wang, Xuanpeng; Yu, Yang; Owusu, Kwadwo Asare; He, Liang; Mai, Liqiang

    2016-08-01

    Exploring non-noble and high-efficiency electrocatalysts is critical to large-scale industrial applications of electrochemical water splitting. Currently, nickel-based selenide materials are promising candidates for oxygen evolution reaction due to their low cost and excellent performance. In this work, we report the porous nickel-iron bimetallic selenide nanosheets ((Ni0.75Fe0.25)Se2) on carbon fiber cloth (CFC) by selenization of the ultrathin NiFe-based nanosheet precursor. The as-prepared three-dimensional oxygen evolution electrode exhibits a small overpotential of 255 mV at 35 mA cm(-2) and a low Tafel slope of 47.2 mV dec(-1) and keeps high stability during a 28 h measurement in alkaline solution. The outstanding catalytic performance and strong durability, in comparison to the advanced non-noble metal catalysts, are derived from the porous nanostructure fabrication, Fe incorporation, and selenization, which result in fast charge transportation and large electrochemically active surface area and enhance the release of oxygen bubbles from the electrode surface. PMID:27400679

  18. Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions.

    PubMed

    Yadav, Ram Manohar; Wu, Jingjie; Kochandra, Raji; Ma, Lulu; Tiwary, Chandra Sekhar; Ge, Liehui; Ye, Gonglan; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2015-06-10

    Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs. PMID:25970133

  19. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOEpatents

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  20. Rational Design of Efficient Electrocatalysts for Hydrogen Evolution Reaction: Single Layers of WS2 Nanoplates Anchored to Hollow Nitrogen-Doped Carbon Nanofibers.

    PubMed

    Yu, Sunmoon; Kim, Jaehoon; Yoon, Ki Ro; Jung, Ji-Won; Oh, Jihun; Kim, Il-Doo

    2015-12-30

    To exploit the benefits of nanostructuring for enhanced hydrogen evolution reaction (HER), we employed coaxial electrospinning to synthesize single-layered WS2 nanoplates anchored to hollow nitrogen-doped carbon nanofibers (WS2@HNCNFs) as efficient electrocatalysts. For comparison, bulk WS2 powder and single layers of WS2 embedded in nitrogen-doped carbon nanofibers (WS2@NCNFs) were synthesized and electrochemically tested. The distinctive design of the WS2@HNCNFs enables remarkable electrochemical performances showing a low overpotential with reduced charge transfer resistance, a small Tafel slope, and excellent durability. The experimental results highlight the importance of nanostructure engineering in electrocatalysts for enhanced HER. PMID:26654256

  1. Distant protonated pyridine groups in water-soluble iron porphyrin electrocatalysts promote selective oxygen reduction to water

    SciTech Connect

    Matson, Benjamin D.; Carver, Colin T.; Von Ruden, Amber L.; Yang, Jenny Y.; Raugei, Simone; Mayer, James M.

    2012-11-08

    Fe(III)-meso-tetra(pyridyl)porphines are selective electrocatalysts for the reduction of dioxygen to water in aqueous acidic solution. The 2-pyridyl derivatives, both the triflate and chloride salts, are more selective than the isomeric 4-pyridyl complexes. The improved selectivity of is ascribed to the inward-pointing pyridinium groups acting as intramolecular proton relays. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Pt and Pt-Ru/Carbon Nanotube Nanocomposites Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells

    SciTech Connect

    Lin, Yuehe; Cui, Xiaoli; Wang, Jun; Yen, Clive; Wai, Chien M.

    2006-06-01

    In recent years, the use of supercritical fluids (SCFs) for the synthesis and processing of nanomaterials has proven to be a rapid, direct, and clean approach to develop nanomaterials and nanocomposites. The application of supercritical fluid technology can result in products (and processes) that are cleaner, less expensive, and of higher quality than those that are produced using conventional technologies and solvents. In this work, carbon nanotube (CNT)-supported Pt and Pt-Ru nanoparticles catalysts have been synthesized in supercritical carbon dioxide (scCO2). The experimental results demonstrate that Pt, Pt-Ru/CNT nanocomposites synthesized in supercritical carbon dioxide are effective electrocatalysts for low-temperature fuel cells.

  3. Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electrocatalysts with highly exposed active sites

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Wu, Qiang; Zhuo, Ou; Jiang, Yufei; Bu, Yongfeng; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2016-04-01

    Iron/nitrogen/carbon (Fe/N/C) catalyst is so far the most promising non-precious metal electrocatalyst for oxygen reduction reaction (ORR) in acidic medium, whose performance depends closely on the synthesis chemistry. Herein, we report a MnOx-induced strategy to construct the Fe/N/C with highly exposed Fe-Nx active sites, which involves the uniform spreading of polyaniline on hierarchical N-doped carbon nanocages by a reactive-template polymerization, followed by the successive iron incorporation and polyaniline pyrolysis. The resulting Fe/N/C demonstrates an excellent ORR performance, including an onset potential of 0.92 V (vs. RHE), four electron selectivity, superb stability and immunity to methanol crossover. The excellent performance is well correlated with the greatly enhanced surface active sites of the catalyst stemming from the unique MnOx-induced strategy. This study provides an efficient approach for exploring the advanced ORR electrocatalysts by increasing the exposed active sites.Iron/nitrogen/carbon (Fe/N/C) catalyst is so far the most promising non-precious metal electrocatalyst for oxygen reduction reaction (ORR) in acidic medium, whose performance depends closely on the synthesis chemistry. Herein, we report a MnOx-induced strategy to construct the Fe/N/C with highly exposed Fe-Nx active sites, which involves the uniform spreading of polyaniline on hierarchical N-doped carbon nanocages by a reactive-template polymerization, followed by the successive iron incorporation and polyaniline pyrolysis. The resulting Fe/N/C demonstrates an excellent ORR performance, including an onset potential of 0.92 V (vs. RHE), four electron selectivity, superb stability and immunity to methanol crossover. The excellent performance is well correlated with the greatly enhanced surface active sites of the catalyst stemming from the unique MnOx-induced strategy. This study provides an efficient approach for exploring the advanced ORR electrocatalysts by increasing the

  4. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  5. Electrodeposition of nickel-phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Gu, Shuang; Li, Chang Ming

    2015-12-01

    Nickel-phosphorus nanoparticles film on copper foam (Ni-P/CF) was prepared by electrodeposition. This electrocatalyst shows high catalytic activity and durability toward both hydrogen and oxygen evolution reactions in basic electrolytes. The results show that Ni-P/CF can deliver a current density of 10 mA cm-2 at an overpotential of 98 mV for hydrogen production and 325 mV for oxygen generating. A two-electrode water electrolyzer using Ni-P/CF as cathode and anode produces 10 mA cm-2 at a cell voltage of 1.68 V with high stability.

  6. Highly Selective and Stable Reduction of CO2 to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst.

    PubMed

    Lu, Xunyu; Tan, Tze Hao; Ng, Yun Hau; Amal, Rose

    2016-08-16

    A stable and selective electrocatalyst for CO2 reduction was fabricated by covalently attaching graphitic carbon nitride onto multiwall carbon nanotubes (g-C3 N4 /MWCNTs). The as-prepared composite is able to reduce CO2 exclusively to CO with a maximum Faraday efficiency of 60 %, and no decay in the catalytic activity was observed even after 50 h of reaction. The enhanced catalytic activity towards CO2 reduction is attributed to the formation of active carbon-nitrogen bonds, high specific surface area, and improved material conductivity of the g-C3 N4 /MWCNT composite.

  7. Synthesis and Characterization of CO- and H2S- Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2006-12-31

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we have synthesized a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. Co-catalytic activities were found for the elements Mo, Ru, and Ir. Both the ternary (Pt/Ru/Mo/C) and quaternary (Pt/Ru/Mo/Ir/C) metal catalysts in membrane electrode assemblies (MEA) outperformed pure Pt/C catalysts at all levels in presence of CO up to 100 ppm. Preliminary results suggest that by substituting Mo, Ru, and Ir in catalyst formulation, it is possible to reduce Pt-loading and increase CO-tolerance in PEMFC application. Comparison studies showed that the newly developed ternary and quaternary catalysts with lower Pt outperformed pure Pt catalyst in presence of CO-contaminated H{sub 2} fuel. High performance at low Pt loading of less than 0.4 mg/cm{sup 2} was achieved, thus exceeding the initial targets.

  8. Electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications

    NASA Astrophysics Data System (ADS)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1989-12-01

    In most instances separate electrocatalysts are needed to promote the reduction of O2 in the fuel cell mode and to generate O2 in the energy storage-water electrolysis mode in aqueous electrochemical systems operating at low and moderate temperatures (T greater than or equal to 200 C). Interesting exceptions are the lead and bismuth ruthenate pyrochlores in alkaline electrolytes. These catalysts on high area carbon supports have high catalytic activity for both O2 reduction and generation (1,2). Rotating ring-disk electrode measurements provide evidence that the O2 reduction proceeds by a parallel four-electron pathway. The ruthenates can also be used as self-supported catalysts to avoid the problems associated with carbon oxidation, but the electrode performance so far achieved in the research at Case Western Reserve University (CWRU) is considerably less. At the potentials involved in the anodic mode the ruthenate pyrochlores have substantial equilibrium solubility in concentrated alkaline electrolyte. This results in the loss of catalyst into the bulk solution and a decline in catalytic activity. Furthermore, the hydrogen generation counter electrode may become contaminated with reduction products from the pyrochlores (lead, ruthenium). A possible approach to this problem is to immobilize the pyrochlore catalyst within an ionic-conducting solid polymer, which would replace the fluid electrolyte within the porous gas diffusion O2 electrode. For bulk alkaline electrolyte, an anion-exchange polymer is needed with a transference number close to unity for the Oh(-) ion. Preliminary short-term measurements with lead ruthenates using a commercially available partially-fluorinated anion-exchange membrane as an overlayer on the porous gas-fed electrode indicate lower anodic polarization and virtually unchanged cathodic polarization.

  9. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2016-09-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  10. Kinetic Analysis of Competitive Electrocatalytic Pathways: New Insights into Hydrogen Production with Nickel Electrocatalysts.

    PubMed

    Wiedner, Eric S; Brown, Houston J S; Helm, Monte L

    2016-01-20

    The hydrogen production electrocatalyst Ni(P(Ph)2N(Ph)2)2(2+) (1) is capable of traversing multiple electrocatalytic pathways. When using dimethylformamidium, DMF(H)(+), the mechanism of H2 formation by 1 changes from an ECEC to an EECC mechanism as the potential approaches the Ni(I/0) couple. Two electrochemical methods, current-potential analysis and foot-of-the-wave analysis (FOWA), were performed on 1 to measure detailed kinetics of the competing ECEC and EECC pathways. A sensitivity analysis was performed on the methods using digital simulations to understand their strengths and limitations. Chemical rate constants were significantly underestimated when not accounting for electron-transfer kinetics, even when electron transfer was fast enough to afford a reversible noncatalytic wave. The EECC pathway of 1 was faster than the ECEC pathway under all conditions studied. Buffered DMF:DMF(H)(+) mixtures afforded an increase in the catalytic rate constant (k(obs)) of the EECC pathway, but k(obs) for the ECEC pathway did not change when using buffered acid. Further kinetic analysis of the ECEC path revealed that base increases the rate of isomerization from exo-protonated Ni(0) isomers to the catalytically active endo-isomers, but decreases the rate of protonation of Ni(I). FOWA did not provide accurate rate constants, but FOWA was used to estimate the reduction potential of the previously undetected exo-protonated Ni(I) intermediate. Comparison of catalytic Tafel plots for 1 under different conditions reveals substantial inaccuracies in the turnover frequency at zero overpotential when the kinetic and thermodynamic effects of the conjugate base are not accounted for properly.

  11. Relationships between structure and activity of carbon as a multifunctional support for electrocatalysts.

    PubMed

    Stevanović, Sanja I; Panić, Vladimir V; Dekanski, Aleksandar B; Tripković, Amalija V; Jovanović, Vladislava M

    2012-07-14

    We report on new insights into the relationships between structure and activity of glassy carbon (GC), as a model material for electrocatalyst support, during its anodization in acid solution. Our investigation strongly confirms the role of CFGs in promotion of Pt activity by the "spill-over" effect related to CO(ads) for methanol electrooxidation (MEO) on a carbon-supported Pt catalyst. Combined analysis of voltammetric and impedance behaviour as well as changes in GC surface morphology induced by intensification of anodizing conditions reveal an intrinsic influence of the carbon functionalization and the structure of a graphene oxide (GO) layer on the electrical and electrocatalytic properties of activated GC. Although GO continuously grows during anodization, it structurally changes from being a graphite inter-layer within graphite ribbons toward a continuous GO surface layer that deteriorates the native structure of GC. As a consequence of the increased distance between GO-spaced graphite layers, the GC conductivity decreases until the case of profound GO exfoliation under drastic anodizing conditions. This exposes the native, yet abundantly functionalized, GC texture. While GC capacitance continuously increases with intensification of anodizing conditions, the surface nano-roughness and GO resistance reach the highest values at modest anodizing conditions, and then decrease upon drastic anodization due to the onset of GO exfoliation. We found for the first time that the activity of a GC-supported Pt catalyst in MEO, as one of the promising half-reactions in polymer electrolyte fuel cells, strictly follows the changes in GC nano-roughness and GO-induced GC resistance. The highest GC/Pt MEO activity is reached when optimal distance between graphite layers and optimal degree of GC functionalization bring the highest amount of CFGs into intimate contact with the Pt surface. This confirms the promoting role of CFGs in MEO catalysis. PMID:22648036

  12. Electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications

    NASA Technical Reports Server (NTRS)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1989-01-01

    In most instances separate electrocatalysts are needed to promote the reduction of O2 in the fuel cell mode and to generate O2 in the energy storage-water electrolysis mode in aqueous electrochemical systems operating at low and moderate temperatures (T greater than or equal to 200 C). Interesting exceptions are the lead and bismuth ruthenate pyrochlores in alkaline electrolytes. These catalysts on high area carbon supports have high catalytic activity for both O2 reduction and generation (1,2). Rotating ring-disk electrode measurements provide evidence that the O2 reduction proceeds by a parallel four-electron pathway. The ruthenates can also be used as self-supported catalysts to avoid the problems associated with carbon oxidation, but the electrode performance so far achieved in the research at Case Western Reserve University (CWRU) is considerably less. At the potentials involved in the anodic mode the ruthenate pyrochlores have substantial equilibrium solubility in concentrated alkaline electrolyte. This results in the loss of catalyst into the bulk solution and a decline in catalytic activity. Furthermore, the hydrogen generation counter electrode may become contaminated with reduction products from the pyrochlores (lead, ruthenium). A possible approach to this problem is to immobilize the pyrochlore catalyst within an ionic-conducting solid polymer, which would replace the fluid electrolyte within the porous gas diffusion O2 electrode. For bulk alkaline electrolyte, an anion-exchange polymer is needed with a transference number close to unity for the Oh(-) ion. Preliminary short-term measurements with lead ruthenates using a commercially available partially-fluorinated anion-exchange membrane as an overlayer on the porous gas-fed electrode indicate lower anodic polarization and virtually unchanged cathodic polarization.

  13. One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction.

    PubMed

    Wang, Xin; Wang, Jie; Wang, Deli; Dou, Shuo; Ma, Zhaoling; Wu, Jianghong; Tao, Li; Shen, Anli; Ouyang, Canbin; Liu, Qiuhong; Wang, Shuangyin

    2014-05-14

    Novel N, S co-doped graphene (NSG) was prepared by annealing graphene oxide with thiourea as the single N and S precursor. The NSG electrodes, as efficient metal-free electrocatalysts, show a direct four-electron reaction pathway, high onset potential, high current density and high stability for the oxygen reduction reaction.

  14. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene.

    PubMed

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-21

    Ni(2+)Mn(3+) layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni(2+)/Mn(2+) salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery. PMID:27142232

  15. Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Qin, Yong; Li, Juan; Yuan, Jie; Kong, Yong; Tao, Yongxin; Lin, Furong; Li, Shan

    2014-12-01

    Hollow mesoporous carbon nitride nanosphere (HMCN) is firstly prepared via an etching route using hollow mesoporous silica as a sacrificial template. The as-obtained HMCN is a uniform spherical particle with a diameter of ∼300 nm,and possesses a high specific surface area up to 439 m2 g-1. Hollow mesoporous carbon nitride nanosphere/three-dimensional (3D) graphene composite (HMCN-G) is subsequently fabricated via a hydrothermal treatment of HMCN with graphene oxide. As an electrocatalyst for oxygen reduction reaction (ORR), the HMCN-G shows significantly enhanced electrocatalytic activity compared to bulk graphitic carbon nitride (g-C3N4) and HMCN in terms of the electron-transfer number, current density and onset potential. Increased density of catalytically active sites and improved accessibility to electrolyte enabled by the hollow and mesoporous architecture of HMCN, and high conductivity induced from graphene are considered to contribute to the remarkable electrocatalytic performance of the HMCN-G. Furthermore, HMCN-G exhibits superior methanol tolerance to Pt/C catalyst, suggesting that it is a promising metal-free electrocatalyst for polymer electrolyte membrane fuel cell (PEMFC).

  16. A novel electrocatalyst for oxygen evolution reaction based on rational anchoring of cobalt carbonate hydroxide hydrate on multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxia; Xiao, Qingqing; Guo, Xin; Zhang, Xiaoxue; Xue, Yifei; Jing, Lin; Zhai, Xue; Yan, Yi-Ming; Sun, Kening

    2015-03-01

    Cobalt carbonate hydroxide hydrate (CCHH) nanosheets have been densely and strongly anchored onto mildly oxidized multiwalled carbon nanotubes with the assistance of diethylenetriamine (DETA). The resulted hybrid (CCHH/MWCNT) is used as high efficient electrocatalyst for water oxidation with an extremely low onset potential of ∼1.47 V vs. RHE and an overpotential of 285 mV to achieve a current density of 10 mA cm-2 in 1.0 mol L-1 KOH. The CCHH/MWCNT electrode affords a Tafel slope of 51 mV/decade and an exchange current density of 2.5 × 10-7 A cm-2. Moreover, the CCHH/MWCNT catalyst delivers a high faradic efficiency of 95% and possesses remarkable stability for long-term electrolysis of water. By contrast, neither MWCNT nor CCHH exhibits apparent catalytical activity towards water oxidation. Importantly, we demonstrate that DETA plays crucial role in determining the morphology, structure of the CCHH/MWCNT, therefore resulting in an enhanced performance for water oxidation. This work not only provides a novel cobalt-based electrocatalyst for oxygen evolution, but also offers a useful and viable approach to deliberately synthesize functional nanocomposites for applications in energy conversion and storage.

  17. Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine.

    PubMed

    Zare, Hamid R; Hashemi, S Hossein; Benvidi, Ali

    2010-06-01

    For the first time, an electrodeposited nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles), as an excellent bifunctional electrocatalyst, was successfully used for hydrazine and hydroxylamine electrocatalytic oxidation. The results show that, at the present bifunctional modified electrode, two different redox couples of ruthenium oxides serve as electrocatalysts for simultaneous electrocatalytic oxidation of hydrazine and hydroxylamine. At the modified electrode surface, the peaks of differential pulse voltammetry (DPV) for hydrazine and hydroxylamine oxidation were clearly separated from each other when they co-exited in solution. Thus, it was possible to simultaneously determine hydrazine and hydroxylamine in the samples at a ruthenium oxide nanoparticles modified glassy carbon electrode (RuON-GCE). Linear calibration curves were obtained for 2.0-268.3 microM and 268.3-417.3 microM of hydrazine and for 4.0-33.8 microM and 33.8-78.3 microM of hydroxylamine at the modified electrode surface using an amperometric method. The amperometric method also exhibited the detection limits of 0.15 microM and 0.45 microM for hydrazine and hydroxylamine respectively. RuON-GCE was satisfactorily used for determination of spiked hydrazine in two water samples. Moreover, the studied bifunctional modified electrode exhibited high sensitivity, good repeatability, wide linear range and long-term stability.

  18. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    PubMed Central

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-01-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications. PMID:27336795

  19. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-06-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd-Co-Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.

  20. MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst

    NASA Astrophysics Data System (ADS)

    Li, Xin; Jiang, Yimin; Jia, Lingpu; Wang, Chunming

    2016-02-01

    Hydrogen evolution reaction (HER) through low-cost and earth-abundant electrocatalysts at low overpotentials is a crucial project to clean energy. Molybdenum dioxide/reduced graphene oxide/polyimide-carbon nanotube (MoO2/RGO/PI-CNT) film was synthesized by a simple electrodeposition method as an efficient catalyst for HER. MoO2 nanoparticles with a small size of 10-20 nm uniformly disperse on the RGO surface. The large quantity and small size of MoO2 nanoparticles afford large surface area for HER, greatly enhancing the electrocatalytic performance of MoO2/RGO/PI-CNT film. The HER electrocatalytic property of MoO2/RGO/PI-CNT film in acidic solution is evaluated by linear sweep voltammetry (LSV). MoO2/RGO/PI-CNT film exhibit a high electrocatalytic activity for HER at a small onset overpotential (-110 mV vs RHE) with a high current density (10.0 mA cm-2) and a good stability. The low Tafel slope (68 mV dec-1) reveals the Volmer-Heyrovsky mechanism for HER. The comparison between MoO2/RGO/PI-CNT film and other catalysts indicate that the MoO2/RGO/PI-CNT film had a great performance for HER. This work presents a new thought for the synthesis of MoO2/RGO/PI-CNT film as an efficient HER electrocatalyst.

  1. Hollow structured carbon-supported nickel cobaltite nanoparticles as an efficient bifunctional electrocatalyst for the oxygen reduction and evolution reaction

    DOE PAGES

    Wang, Jie; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli; Wu, Zexing

    2016-01-05

    Here, the exploration of efficient electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for fuel cells and metal-air batteries. In this study, we developed 3D hollow-structured NiCo2O4/C nanoparticles with interconnected pores as bifunctional electrocatalysts, which are transformed from solid NiCo2 alloy nanoparticles through the Kirkendall effect. The unique hollow structure of NiCo2O4 nanoparticles increases the number of active sites and improves contact with the electrolyte to result in excellent ORR and OER performances. In addition, the hollow-structured NiCo2O4/C nanoparticles exhibit superior long-term stability for both the ORR and OER compared to commercial Pt/C.more » The template- and surfactant-free synthetic strategy could be used for the low-cost and large-scale synthesis of hollow-structured materials, which would facilitate the screening of high-efficiency catalysts for energy conversion.« less

  2. Highly Active Pt(3)Pb and Core-Shell Pt(3)Pb-Pt Electrocatalysts for Formic Acid Oxidation

    SciTech Connect

    Kang Y.; Stach E.; Qi L.; Li M.; Diaz R.E.; Su D.; Adzic R.R.; Li J.; Murray C.B.

    2012-03-27

    Formic acid is a promising chemical fuel for fuel cell applications. However, due to the dominance of the indirect reaction pathway and strong poisoning effects, the development of direct formic acid fuel cells has been impeded by the low activity of existing electrocatalysts at desirable operating voltage. We report the first synthesis of Pt{sub 3}Pb nanocrystals through solution phase synthesis and show they are highly efficient formic acid oxidation electrocatalysts. The activity can be further improved by manipulating the Pt{sub 3}Pb-Pt core-shell structure. Combined experimental and theoretical studies suggest that the high activity from Pt{sub 3}Pb and the Pt-Pb core-shell nanocrystals results from the elimination of CO poisoning and decreased barriers for the dehydrogenation steps. Therefore, the Pt{sub 3}Pb and Pt-Pb core-shell nanocrystals can improve the performance of direct formic acid fuel cells at desired operating voltage to enable their practical application.

  3. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    DOE PAGES

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; et al

    2016-06-23

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. Themore » uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.« less

  4. N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Lu, Wangting; Cao, Feifei; Xiao, Zhidong; Zheng, Xinsheng

    2016-01-01

    Development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is still a great challenge for the large-scale application of fuel cells and metal-air batteries. Herein, a noble metal-free ORR electrocatalyst in the form of N-doped graphene coupled with part of Co nanoparticles encased in N-doped graphitic shells (named as SUCo-0.03-800) is prepared by facile one-step pyrolysis of the mixture of sucrose, urea and cobalt nitrate. The novel structure is confirmed by High Resolution-TEM, XRD, XPS and Raman spectroscopy. SUCo-0.03-800 presents comparable ORR catalytic activity to commercial Pt/C catalyst with a dominating four-electron pathway under alkaline conditions, and both of its mass activity and volume activity also outperform Co-free N-doped graphene and other Co/N-C hybrids with higher Co content, which may probably be ascribed to the high specific surface area, novel structure and synergistic effect between encased Co nanoparticles and N-doped graphitic shell. Additionally, SUCo-0.03-800 also shows outstanding stability and improved selectivity towards ORR, making it a promising alternative to Pt with potential application in fuel cells and metal-air batteries.

  5. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    DOE PAGES

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; Rodriguez, Mark A.; Brumbach, Michael T.; Coker, Eric N.; Limmer, Steven J.

    2014-07-09

    The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaanmore » axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.« less

  6. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.

    PubMed

    Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying

    2016-12-15

    The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications.

  7. Homogeneous coating of ionomer on electrocatalyst assisted by polybenzimidazole as an adhesive layer and its effect on fuel cell performance

    NASA Astrophysics Data System (ADS)

    Yang, Zehui; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-12-01

    The fabrication of homogeneous ionomer distribution in fuel cell catalyst layers is necessary and important to improve the platinum utilization as well as the power density. Here, we focus on the effect of poly[2,2‧-(2,6-pyridine)-5,5‧-bibenzimidazole] (PyPBI) wrapped on multi-walled carbon nanotubes (MWNTs) for anchoring Nafion ionomer to the electrocatalyst, in which PyPBI functions as the binding sites for platinum nanoparticles (Pt-NPs) used as a catalyst. Based on the result using a control composite without having PyPBI, a strong interaction of the Nafion onto the PyPBI layer is recognized. Importantly, we find that the membrane-electrode assembly (MEA) shows a much higher maximum power density than that of the MEA without PyPBI. A homogeneous coating of Nafion on the electrocatalyst using the PyPBI forms a long-range network of the ionomer, leading to an improved Pt-NP utilization efficiency as well as an enhanced power density of the MEA.

  8. Microwave assisted synthesis of surfactant stabilized platinum/carbon nanotube electrocatalysts for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sakthivel, M.; Schlange, A.; Kunz, U.; Turek, T.

    Platinum electrocatalysts deposited on multi-walled carbon nanotubes (CNT) with high loading were prepared using a microwave-assisted polyol reduction method and employed for direct methanol fuel cells (DMFC). A zwitterionic surfactant was used as a stabilizing agent for the formation of Pt nanoparticles. A uniform and narrow size distribution of highly dispersed Pt nanoparticles could be achieved by adjusting the weight ratio of surfactant to Pt precursor allowing for Pt loadings of up to 60 wt%. The heating time and the temperature for the ethylene glycol (EG) oxidation were found to be the key factors for depositing Pt nanoparticles homogeneously on carbon nanotubes. The smallest average particle diameter of 1.8 nm was obtained through microwave heating to 140 °C in 50 s. The structure, amount and morphology of the electrocatalysts were characterized with XRD, TGA, and TEM, respectively. Single cell DMFC measurements were performed in a membrane-electrode assembly (MEA) with 5 cm 2 active area and very low catalyst loading (0.25 mg cm -2 of noble metal on both anode and cathode). The DMFC performance of the surfactant stabilized cathode catalyst obtained by the new method described here revealed that the power density was three times higher than for a commercial catalyst used for comparison and two times higher than for an unstabilized CNT supported catalyst.

  9. Carbon nanofiber growth optimization for their use as electrocatalyst support in proton exchange membrane (PEM) fuel cells.

    PubMed

    Lázaro, M J; Sebastián, D; Suelves, I; Moliner, R

    2009-07-01

    Carbon nanofiber (CNF) growth by catalytic decomposition of methane in a fixed-bed reactor was studied out to elucidate the influence of some important reaction conditions: temperature, space velocity and reactant partial pressure, in the morphological properties of the carbonaceous material obtained. The main objective is to synthesize a suitable carbonaceous nanomaterial to be used as support in platinum based electrocatalysts for Proton Exchange Membrane Fuel Cells (PEMFC) which improves current carbon blacks. High specific surface area is required in an electrocatalyst support since platinum dispersion is enhanced and so a cost-effective usage and high catalytic activity. Good electrical conductivity of carbon support is also required since the fuel cell power density is improved. With this proposal, characterization was carried out by nitrogen physisorption, XRD, SEM and TPO. The results were analysed by a factorial design and analysis of variance (ANOVA) in order to find an empirical correlation between operating conditions and CNF characteristics. It was found that the highest specific surface area and pore volume were found at 823 K and at a space velocity of 10 L gcat(-1) h(-1). The graphitic character of CNF, which is known to influence the electrical conductivity, presented a maximum value at temperatures between 923 K and 973 K. SEM images showed a narrow size distribution of CNF diameter between 40 and 90 nm and homogeneous appearance.

  10. Active Sites Implanted Carbon Cages in Core-Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Zhang, Huabin; Ma, Zuju; Duan, Jingjing; Liu, Huimin; Liu, Guigao; Wang, Tao; Chang, Kun; Li, Mu; Shi, Li; Meng, Xianguang; Wu, Kechen; Ye, Jinhua

    2016-01-26

    Low efficiency and poor stability are two major challenges we encounter in the exploration of non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) in both acidic and alkaline environment. Herein, the hybrid of cobalt encapsulated by N, B codoped ultrathin carbon cages (Co@BCN) is first introduced as a highly active and durable nonprecious metal electrocatalysts for HER, which is constructed by a bottom-up approach using metal organic frameworks (MOFs) as precursor and self-sacrificing template. The optimized catalyst exhibited remarkable electrocatalytic performance for hydrogen production from both both acidic and alkaline media. Stability investigation reveals the overcoating of carbon cages can effectively avoid the corrosion and oxidation of the catalyst under extreme acidic and alkaline environment. Electrochemical active surface area (EASA) evaluation and density functional theory (DFT) calculations revealed that the synergetic effect between the encapsulated cobalt nanoparticle and the N, B codoped carbon shell played the fundamental role in the superior HER catalytic performance. PMID:26649629

  11. Hierarchical NiCo2 O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Gao, Xuehui; Zhang, Hongxiu; Li, Quanguo; Yu, Xuegong; Hong, Zhanglian; Zhang, Xingwang; Liang, Chengdu; Lin, Zhan

    2016-05-17

    Bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte may improve the efficiency of overall water splitting. Nickel cobaltite (NiCo2 O4 ) has been considered a promising electrode material for the OER. However, NiCo2 O4 that can be used as an electrocatalyst in HER has not been studied yet. Herein, we report self-assembled hierarchical NiCo2 O4 hollow microcuboids for overall water splitting including both the HER and OER reactions. The NiCo2 O4 electrode shows excellent activity toward overall water splitting, with 10 mA cm(-2) water-splitting current reached by applying just 1.65 V and 20 mA cm(-2) by applying just 1.74 V across the two electrodes. The synthesis of NiCo2 O4 microflowers confirms the importance of structural features for high-performance overall water splitting.

  12. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  13. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts.

    PubMed

    Jiang, Hongliang; Yao, Yifan; Zhu, Yihua; Liu, Yanyan; Su, Yunhe; Yang, Xiaoling; Li, Chunzhong

    2015-09-30

    It is highly crucial and challenging to develop bifunctional oxygen electrocatalysts for oxygen reduction reactions (ORRs) and oxygen evolution reactions (OERs) in rechargeable metal-air batteries and unitized regenerative fuel cells (URFCs). Herein, a facile and cost-effective strategy is developed to prepare mesoporous Fe-N-doped graphene-like carbon architectures with uniform Fe3C nanoparticles encapsulated in graphitic layers (Fe3C@NG) via a one-step solid-state thermal reaction. The optimized Fe3C@NG800-0.2 catalyst shows comparable ORR activity with the state-of-the-art Pt/C catalyst and OER activity with the benchmarking RuO2 catalyst. The oxygen electrode activity parameter ΔE (the criteria for judging the overall catalytic activity of bifunctional electrocatalysts) value for Fe3C@NG800-0.2 is 0.780 V, which surpasses those of Pt/C and RuO2 catalysts as well as those of most nonprecious metal catalysts. Significantly, excellent long-term catalytic durability holds great promise in fields of rechargeable metal-air batteries and URFCs. PMID:26371772

  14. SrCo(0.9)Ti(0.1)O(3-δ) As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance.

    PubMed

    Su, Chao; Wang, Wei; Chen, Yubo; Yang, Guangming; Xu, Xiaomin; Tadé, Moses O; Shao, Zongping

    2015-08-19

    The development of efficient, inexpensive, and stable electrocatalysts for the oxygen evolution reaction (OER) is critical for many electrochemical energy conversion technologies. The prohibitive price and insufficient stability of the state-of-the-art IrO2 electrocatalyst for the OER inhibits its use in practical devices. Here, SrM0.9Ti0.1O3-δ (M = Co, Fe) perovskites with different B-site transition metal elements were investigated as potentially cheaper OER electrocatalysts. They were prepared through a typical sol-gel route, and their catalytic activities for the OER in alkaline medium were comparatively studied using rotating disk electrodes. Both materials show high initial intrinsic activities in alkaline electrolyte for the OER, comparable to the benchmark perovskite-type electrocatalyst Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), but SrCo0.9Ti0.1O3-δ (SCT) possessed more operational stability than SrFe0.9Ti0.1O3-δ (SFT), even better than BSCF and IrO2 catalysts. Based on the X-ray photoelectron spectra analysis of the oxidation states of the surface Co/Fe in both SFT and SCT before and after the OER tests, an explanation for their different operational stabilities was proposed by adopting a reported activity descriptor correlated to the eg occupancy of the 3d electron of the surface transition metal cations in the perovskite oxides. The above results indicate that SCT is a promising alternative electrocatalyst for the OER and can be used in electrochemical devices for water oxidation.

  15. SrCo(0.9)Ti(0.1)O(3-δ) As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance.

    PubMed

    Su, Chao; Wang, Wei; Chen, Yubo; Yang, Guangming; Xu, Xiaomin; Tadé, Moses O; Shao, Zongping

    2015-08-19

    The development of efficient, inexpensive, and stable electrocatalysts for the oxygen evolution reaction (OER) is critical for many electrochemical energy conversion technologies. The prohibitive price and insufficient stability of the state-of-the-art IrO2 electrocatalyst for the OER inhibits its use in practical devices. Here, SrM0.9Ti0.1O3-δ (M = Co, Fe) perovskites with different B-site transition metal elements were investigated as potentially cheaper OER electrocatalysts. They were prepared through a typical sol-gel route, and their catalytic activities for the OER in alkaline medium were comparatively studied using rotating disk electrodes. Both materials show high initial intrinsic activities in alkaline electrolyte for the OER, comparable to the benchmark perovskite-type electrocatalyst Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), but SrCo0.9Ti0.1O3-δ (SCT) possessed more operational stability than SrFe0.9Ti0.1O3-δ (SFT), even better than BSCF and IrO2 catalysts. Based on the X-ray photoelectron spectra analysis of the oxidation states of the surface Co/Fe in both SFT and SCT before and after the OER tests, an explanation for their different operational stabilities was proposed by adopting a reported activity descriptor correlated to the eg occupancy of the 3d electron of the surface transition metal cations in the perovskite oxides. The above results indicate that SCT is a promising alternative electrocatalyst for the OER and can be used in electrochemical devices for water oxidation. PMID:26222739

  16. Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO(x) Nanowire.

    PubMed

    Chauhan, Shipra; Mori, Toshiyuki; Masuda, Takuya; Ueda, Shigenori; Richards, Gary J; Hill, Jonathan P; Ariga, Katsuhiko; Isaka, Noriko; Auchterlonie, Graeme; Drennan, John

    2016-04-13

    Pt-CeO(x) nanowire (NW)/C electrocatalysts for the improvement of oxygen reduction reaction (ORR) activity on Pt were prepared by a combined process involving precipitation and coimpregnation. A low, 5 wt % Pt-loaded CeO(x) NW/C electrocatalyst, pretreated by an optimized electrochemical conditioning process, exhibited high ORR activity over a commercially available 20 wt % Pt/C electrocatalyst although the ORR activity observed for a 5 wt % Pt-loaded CeO(x) nanoparticle (NP)/C was similar to that of 20 wt % Pt/C. To investigate the role of a CeO(x) NW promotor on the enhancement of ORR activity on Pt, the Pt-CeO(x) NW interface was characterized by using hard X-ray photoelectron spectroscopy (HXPS), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Microanalytical data obtained by these methods were discussed in relation to atomistic simulation performed on the interface structures. The combined techniques of HXPS, TEM-EELS, and atomistic simulation indicate that the Pt-CeO(x) NW interface in the electrocatalyst contains two different defect clusters: Frenkel defect clusters (i.e., 2Pt(i)(••) - 4O(i)″ - 4V(o)(••) - V(Ce)″″) formed in the surface around the Pt-CeO(x) NW interface and Schottky defect clusters (i.e., (Pt(Ce)″ - 2V(O)(••) - 2Ce(Ce)') and (Pt(Ce)″ - V(O)(••))) which appear in the bulk of the Pt-CeO(x) NW interface similarly to Pt-CeO(x) NP/C. It is concluded that the formation of both Frenkel defect clusters and Schottky defect clusters at the Pt-CeO(x) NW heterointerface contributes to the promotion of ORR activity and permits the use of lower Pt-loadings in these electrocatalysts.

  17. Cobalt Complexes Containing Pendant Amines in the Second Coordination Sphere as Electrocatalysts for H2 Production

    SciTech Connect

    Fang, Ming; Wiedner, Eric S.; Dougherty, William G.; Kassel, W. S.; Liu, Tianbiao L.; DuBois, Daniel L.; Bullock, R. Morris

    2014-10-27

    A series of heteroleptic 17e- cobalt complexes, [CpCoII(PtBu2NPh2)](BF4), [CpC6F5CoII(PtBu2NPh2)](BF4), [CpC5F4NCoII(PtBu2NPh2)](BF4), [where P2tBuN2Ph = 1,5-diphenyl-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane, CpC6F5 = C5H4(C6F5), and CpC5F4N = C5H4(C5F4N)] were synthesized, and structures of all three were determined by X-ray crystallography. Electrochemical studies showed that the CoIII/II couple of [CpC5F4NCoII(PtBu2NPh2)]+ appears 250 mV positive of the CoIII/II couple of [CpCoII(PtBu2NPh2)] as a result of the strongly electron-withdrawing perfluorpyridyl substituent on the Cp ring. Reduction of these paramagnetic CoII complexes by KC8 led to the diamagnetic 18e- complexes CpICo(PtBu2NPh2), CpC6F5CoI(PtBu2NPh2), CpC5F4NCoI(PtBu2NPh2), which were also characterized by crystallography. Protonation of these neutral CoI complexes led to the cobalt hydrides [CpCoIII(PtBu2NPh2)H](BF4), [CpC6F5CoIII(PtBu2NPh2)H](BF4), and [CpC5F4NCoIII(PtBu2NPh2)H](BF4). The cobalt hydride with the most electron-withdrawing Cp ligand, [CpC5F4NCoIII(PtBu2NPh2)H]+ is an electrocatalyst for production of H2 using 4-MeOC6H4NH3BF4 (pKaMeCN = 11.86) with a turnover frequency of 350 s-1 and an overpotential of 0.75 V. Experimental measurement of thermochemical data provided further insights into the thermodynamics of H2 elimination. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  18. Elucidation of adsorption processes at the surface of Pt(331) model electrocatalysts in acidic aqueous media.

    PubMed

    Pohl, Marcus D; Colic, Viktor; Scieszka, Daniel; Bandarenka, Aliaksandr S

    2016-04-28

    The Pt(331) surface has long been known to be the most active pure metal electrocatalyst for the oxygen reduction reaction (ORR) in acidic media. Its activity is often higher than those known for the Pt-based alloys towards ORR, being comparable with the most active Pt3Ni(111), Pt3Y or Pt5Gd, and being more active than e.g. polycrystalline Pt3Ni. Multiple active sites at this surface offer adsorption energies which are close to the optimal binding energy with respect to the main ORR intermediates; nevertheless, the exact location of these sites is still not clear. Taking into account the unique surface geometry of Pt(331), some adsorbates (including some oxygenated ORR-intermediates) should also contribute to the electronic structure of the neighbouring catalytic centres. However, the experimental elucidation of the specific adsorption of oxygenated species at this surface appears to be a non-trivial task. Such information holds the keys to the understanding of the high activity of this material and would enable the rational design of nanostructured ORR catalysts even without alloying. In this work, the electrified Pt(331)/electrolyte interface has been characterised using cyclic voltammetry (CV) combined with potentiodynamic electrochemical impedance spectroscopy (PDEIS) in 0.1 M HClO4 solutions. The systems were studied in the potential region between 0.05 V and 1.0 V vs. RHE, where the adsorption of *H, *OH and *O species is possible in both O2-free and O2-saturated electrolytes. Our CV and PDEIS results support the hypothesis that in contrast to Pt(111), many Pt(331) surface sites are likely blocked by *O species at the polymer electrolyte membrane fuel cell benchmark potential of 0.9 V (RHE). We propose a model illustrated by simplified adsorbate structures at different electrode potentials, which is, however, able to explain the voltammetric and impedance data, and which is in good agreement with previously reported electrocatalytic measurements. PMID

  19. Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1988-01-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  20. Pulse electrodeposited nickel-indium tin oxide nanocomposite as an electrocatalyst for non-enzymatic glucose sensing.

    PubMed

    Sivasakthi, P; Ramesh Bapu, G N K; Chandrasekaran, Maruthai

    2016-01-01

    Nickel and nickel-ITO nanocomposite on mild steel substrate were prepared by pulse electrodeposition method from nickel sulphamate electrolyte and were examined as electrocatalysts for non-enzymatic glucose sensing. The surface morphology, chemical composition, preferred orientation and oxidation states of the nickel metal ion in the deposits were characterized by SEM, EDAX, XRD and XPS. Electrochemical sensing of glucose was studied by cyclic voltammetry and amperometry. The modified Ni-ITO nanocomposite electrode showed higher electrocatalytic activity for the oxidation of glucose in alkaline medium and exhibited a linear range from 0.02 to 3.00 mM with a limit of detection 3.74 μM at a signal-to-noise ratio of 3. The higher selectivity, longer stability and better reproducibility of this electrode compared to nickel in the sensing of glucose are pointers for exploitation in practical clinical applications.

  1. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    PubMed Central

    Kamiya, Kazuhide; Kamai, Ryo; Hashimoto, Kazuhito; Nakanishi, Shuji

    2014-01-01

    Covalent triazine frameworks, which are crosslinked porous polymers with two-dimensional molecular structures, are promising materials for heterogeneous catalysts. However, the application of the frameworks as electrocatalysts has not been achieved to date because of their poor electrical conductivity. Here we report that platinum-modified covalent triazine frameworks hybridized with conductive carbon nanoparticles are successfully synthesized by introducing carbon nanoparticles during the polymerization process of covalent triazine frameworks. The resulting materials exhibit clear electrocatalytic activity for oxygen reduction reactions in acidic solutions. More interestingly, the platinum-modified covalent triazine frameworks show almost no activity for methanol oxidation, in contrast to commercial carbon-supported platinum. Thus, platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles exhibit selective activity for oxygen reduction reactions even in the presence of high concentrations of methanol, which indicates potential utility as a cathode catalyst in direct methanol fuel cells. PMID:25242214

  2. Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte

    PubMed Central

    Gorlin, Yelena; Jaramillo, Thomas F.

    2014-01-01

    The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community. PMID:25357131

  3. Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte.

    PubMed

    Benck, Jesse D; Pinaud, Blaise A; Gorlin, Yelena; Jaramillo, Thomas F

    2014-01-01

    The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.

  4. Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts.

    PubMed

    Ma, Ming; Trześniewski, Bartek J; Xie, Jie; Smith, Wilson A

    2016-08-01

    In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide-derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide-derived Ag was shifted by more than 400 mV towards a lower overpotential compared to that of untreated Ag. Notably, the Ag resulting from Ag oxide is capable of electrochemically reducing CO2 to CO with approximately 80 % catalytic selectivity at a moderate overpotential of 0.49 V, which is much higher than that (ca. 4 %) of untreated Ag under identical conditions. Electrokinetic studies show that the improved catalytic activity is ascribed to the enhanced stabilization of COOH(.) intermediate. Furthermore, highly nanostructured Ag is likely able to create a high local pH near the catalyst surface, which may also facilitate the catalytic activity for the reduction of CO2 with suppressed H2 evolution.

  5. Electrodeposited Co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting.

    PubMed

    Liu, Tingting; Asiri, Abdullah M; Sun, Xuping

    2016-02-21

    In this communication, we report that a Co-doped NiSe2 nanoparticles film electrodeposited on a conductive Ti plate (Co0.13Ni0.87Se2/Ti) behaves as a robust electrocatalyst for both HER and OER in strongly basic media, with good activity over a NiSe2/Ti counterpart. This Co0.13Ni0.87Se2/Ti catalytic electrode delivers 10 mA cm(-2) at an overpotential of 64 mV for HER and 100 mA cm(-2) at an overpotential of 320 mV for OER in 1.0 M KOH. A voltage of only 1.62 V is required to drive 10 mA cm(-2) for the two-electrode alkaline water electrolyzer using Co0.13Ni0.87Se2/Ti as an anode and cathode. PMID:26866797

  6. A hybrid-assembly approach towards nitrogen-doped graphene aerogel supported cobalt nanoparticles as high performance oxygen reduction electrocatalysts.

    PubMed

    Liu, Ruili; Jin, Yeqing; Xu, Peimin; Xing, Xia; Yang, Yuxing; Wu, Dongqing

    2016-02-15

    As a novel electrocatalyst for oxygen reduction reaction (ORR), nitrogen-doped graphene aerogel supported cobalt nanoparticles (Co-NGA) is archived by a hybrid-assembly of graphene oxide (GO), o-phthalonitrile and cobalt acetate and the following thermal treatment. The hybrid-assembly process successfully combines the ionic assembly of GO sheets and Co ions with the coordination between o-phthalonitrile and Co ions, which can be converted to nitrogen doped carbon and Co nanoparticles in the pyrolysis process under nitrogen flow. Remarkable features of Co-NGA including the macroporous graphene scaffolds, high surface area, and N/Co-doping effect can lead to a high catalytic efficiency for ORR. As the results, the composites pyrolyzed at 600°C (Co-NGA600) shows excellent electrocatalytic activities and kinetics for ORR in basic media, which are comparable with those of Pt/C catalyst, together with superior durability.

  7. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Kamiya, Kazuhide; Kamai, Ryo; Hashimoto, Kazuhito; Nakanishi, Shuji

    2014-09-01

    Covalent triazine frameworks, which are crosslinked porous polymers with two-dimensional molecular structures, are promising materials for heterogeneous catalysts. However, the application of the frameworks as electrocatalysts has not been achieved to date because of their poor electrical conductivity. Here we report that platinum-modified covalent triazine frameworks hybridized with conductive carbon nanoparticles are successfully synthesized by introducing carbon nanoparticles during the polymerization process of covalent triazine frameworks. The resulting materials exhibit clear electrocatalytic activity for oxygen reduction reactions in acidic solutions. More interestingly, the platinum-modified covalent triazine frameworks show almost no activity for methanol oxidation, in contrast to commercial carbon-supported platinum. Thus, platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles exhibit selective activity for oxygen reduction reactions even in the presence of high concentrations of methanol, which indicates potential utility as a cathode catalyst in direct methanol fuel cells.

  8. Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell.

    PubMed

    Aravind, S S Jyothirmayee; Ramaprabhu, Sundara

    2012-08-01

    Chemical and electrical synergies between graphite oxide and multiwalled carbon nanotube (MWNT) for processing graphene wrapped-MWNT hybrids has been realized by chemical vapor deposition without any chemical functionalization. Potential of the hybrid composites have been demonstrated by employing them as electrocatalyst supports in proton exchange membrane fuel cells. The defects present in the polyelectrolyte, which have been wrapped over highly dispersed MWNT, act as anchoring sites for the homogeneous deposition of platinum nanoparticles. Single-cell proton exchange membrane fuel cells show that the power density of the hybrid composite-based fuel cells is higher compared to the pure catalyst-support-based fuel cells, because of enhanced electrochemical reactivity and good surface area of the nanocomposites. PMID:22850438

  9. Enzyme Design From the Bottom Up: An Active Nickel Electrocatalyst with a Structured Peptide Outer Coordination Sphere

    SciTech Connect

    Reback, Matthew L.; Buchko, Garry W.; Kier, Brandon L.; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A.; Sorensen, Christina M.; Raugei, Simone; Squier, Thomas C.; Shaw, Wendy J.

    2014-02-03

    Functional, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts via an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well characterized hydrogen production catalyst, Ni(PPh2NPh)2. The incorporated peptide maintains its B-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (~100,000 s-1) is fully retained. The combination of an active molecular catalyst with a structured peptide outer coordination sphere provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with en-hanced functionality.

  10. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts.

    PubMed

    Kamiya, Kazuhide; Kamai, Ryo; Hashimoto, Kazuhito; Nakanishi, Shuji

    2014-01-01

    Covalent triazine frameworks, which are crosslinked porous polymers with two-dimensional molecular structures, are promising materials for heterogeneous catalysts. However, the application of the frameworks as electrocatalysts has not been achieved to date because of their poor electrical conductivity. Here we report that platinum-modified covalent triazine frameworks hybridized with conductive carbon nanoparticles are successfully synthesized by introducing carbon nanoparticles during the polymerization process of covalent triazine frameworks. The resulting materials exhibit clear electrocatalytic activity for oxygen reduction reactions in acidic solutions. More interestingly, the platinum-modified covalent triazine frameworks show almost no activity for methanol oxidation, in contrast to commercial carbon-supported platinum. Thus, platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles exhibit selective activity for oxygen reduction reactions even in the presence of high concentrations of methanol, which indicates potential utility as a cathode catalyst in direct methanol fuel cells. PMID:25242214

  11. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-01

    Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery.Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade

  12. Combined Photoemission Spectroscopy and Electrochemical Study of a Mixture of (Oxy)carbides as Potential Innovative Supports and Electrocatalysts.

    PubMed

    Calvillo, Laura; Valero-Vidal, Carlos; Agnoli, Stefano; Sezen, Hikmet; Rüdiger, Celine; Kunze-Liebhäuser, Julia; Granozzi, Gaetano

    2016-08-01

    Active and stable non-noble metal materials, able to substitute Pt as catalyst or to reduce the Pt amount, are vitally important for the extended commercialization of energy conversion technologies, such as fuel cells and electrolyzers. Here, we report a fundamental study of nonstoichiometric tungsten carbide (WxC) and its interaction with titanium oxycarbide (TiOxCy) under electrochemical working conditions. In particular, the electrochemical activity and stability of the WxC/TiOxCy system toward the ethanol electrooxidation reaction (EOR) and hydrogen evolution reaction (HER) are investigated. The chemical changes caused by the applied potential are established by combining photoemission spectroscopy and electrochemistry. WxC is not active toward the ethanol electrooxidation reaction at room temperature but it is highly stable under these conditions thanks to the formation of a passive thin film on the surface, consisting mainly of WO2 and W2O5, which prevents the full oxidation of WxC. In addition, WxC is able to adsorb ethanol, forming ethoxy groups on the surface, which constitutes the first step for the ethanol oxidation. The interaction between WxC and TiOxCy plays an important role in the electrochemical stability of WxC since specific orientations of the substrate are able to stabilize WxC and prevent its corrosion. The beneficial interaction with the substrate and the specific surface chemistry makes tungsten carbide a good electrocatalyst support or cocatalyst for direct ethanol fuel cells. However, WxC is active toward the HER and chemically stable under hydrogen reduction conditions, since no changes in the chemical composition or dissolution of the film are observed. This makes tungsten carbide a good candidate as electrocatalyst support or cocatalyst for the electrochemical production of hydrogen. PMID:27399154

  13. Electrodeposited Co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Asiri, Abdullah M.; Sun, Xuping

    2016-02-01

    In this communication, we report that a Co-doped NiSe2 nanoparticles film electrodeposited on a conductive Ti plate (Co0.13Ni0.87Se2/Ti) behaves as a robust electrocatalyst for both HER and OER in strongly basic media, with good activity over a NiSe2/Ti counterpart. This Co0.13Ni0.87Se2/Ti catalytic electrode delivers 10 mA cm-2 at an overpotential of 64 mV for HER and 100 mA cm-2 at an overpotential of 320 mV for OER in 1.0 M KOH. A voltage of only 1.62 V is required to drive 10 mA cm-2 for the two-electrode alkaline water electrolyzer using Co0.13Ni0.87Se2/Ti as an anode and cathode.In this communication, we report that a Co-doped NiSe2 nanoparticles film electrodeposited on a conductive Ti plate (Co0.13Ni0.87Se2/Ti) behaves as a robust electrocatalyst for both HER and OER in strongly basic media, with good activity over a NiSe2/Ti counterpart. This Co0.13Ni0.87Se2/Ti catalytic electrode delivers 10 mA cm-2 at an overpotential of 64 mV for HER and 100 mA cm-2 at an overpotential of 320 mV for OER in 1.0 M KOH. A voltage of only 1.62 V is required to drive 10 mA cm-2 for the two-electrode alkaline water electrolyzer using Co0.13Ni0.87Se2/Ti as an anode and cathode. Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c5nr07170d

  14. Shewanella-mediated biosynthesis of manganese oxide micro-/nanocubes as efficient electrocatalysts for the oxygen reduction reaction.

    PubMed

    Jiang, Congcong; Guo, Zhaoyan; Zhu, Ying; Liu, Huan; Wan, Meixiang; Jiang, Lei

    2015-01-01

    Developing efficient electrocatalysts for the oxygen reduction reaction (ORR) is critical for promoting the widespread application of fuel cells and metal-air batteries. Here, we develop a biological low-cost, ecofriendly method for the synthesis of Mn2 O3 micro-/nanocubes by calcination of MnCO3 precursors in an oxygen atmosphere. Microcubic MnCO3 precursors with an edge length of 2.5 μm were fabricated by dissimilatory metal-reducing Shewanella loihica PV-4 in the presence of MnO4 (-) as the sole electron acceptor under anaerobic conditions. After calcining the MnCO3 precursors at 500 and 700 °C, porous Mn2 O3 -500 and Mn2 O3 -700 also showed microcubic morphology, while their edge lengths decreased to 1.8 μm due to thermal decomposition. Moreover, the surfaces of the Mn2 O3 microcubes were covered by granular nanoparticles with average diameters in the range of 18-202 nm, depending on the calcination temperatures. Electrochemical measurements demonstrated that the porous Mn2 O3 -500 micro-/nanocubes exhibit promising catalytic activity towards the ORR in an alkaline medium, which should be due to a synergistic effect of the overlapping molecular orbitals of oxygen/manganese and the hierarchically porous structures that are favorable for oxygen absorption. Moreover, these Mn2 O3 micro-/nanocubes possess better stability than commercial Pt/C catalysts and methanol-tolerance property in alkaline solution. Thus the Shewanella-mediated biosynthesis method we provided here might be a new strategy for the preparation of various transition metal oxides as high-performance ORR electrocatalysts at low cost. PMID:25425435

  15. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst.

    PubMed

    Wu, Zhangxiong; Lv, Yingying; Xia, Yongyao; Webley, Paul A; Zhao, Dongyuan

    2012-02-01

    Highly ordered mesoporous platinum@graphitic carbon (Pt@GC) composites with well-graphitized carbon frameworks and uniformly dispersed Pt nanoparticles embedded within the carbon pore walls have been rationally designed and synthesized. In this facile method, ordered mesoporous silica impregnated with a variable amount of Pt precursor is adopted as the hard template, followed by carbon deposition through a chemical vapor deposition (CVD) process with methane as a carbon precursor. During the CVD process, in situ reduction of Pt precursor, deposition of carbon, and graphitization can be integrated into a single step. The mesostructure, porosity and Pt content in the final mesoporous Pt@GC composites can be conveniently adjusted over a wide range by controlling the initial loading amount of Pt precursor and the CVD temperature and duration. The integration of high surface area, regular mesopores, graphitic nature of the carbon walls as well as highly dispersed and spatially embedded Pt nanoparticles in the mesoporous Pt@GC composites make them excellent as highly active, extremely stable, and methanol-tolerant electrocatalysts toward the oxygen reduction reaction (ORR). A systematic study by comparing the ORR performance among several carbon supported Pt electrocatalysts suggests the overwhelmingly better performance of the mesoporous Pt@GC composites. The structural, textural, and framework properties of the mesoporous Pt@GC composites are extensively studied and strongly related to their excellent ORR performance. These materials are highly promising for fuel cell applications and the synthesis method is quite applicable for constructing mesoporous graphitized carbon materials with various embedded nanophases.

  16. Combined Photoemission Spectroscopy and Electrochemical Study of a Mixture of (Oxy)carbides as Potential Innovative Supports and Electrocatalysts.

    PubMed

    Calvillo, Laura; Valero-Vidal, Carlos; Agnoli, Stefano; Sezen, Hikmet; Rüdiger, Celine; Kunze-Liebhäuser, Julia; Granozzi, Gaetano

    2016-08-01

    Active and stable non-noble metal materials, able to substitute Pt as catalyst or to reduce the Pt amount, are vitally important for the extended commercialization of energy conversion technologies, such as fuel cells and electrolyzers. Here, we report a fundamental study of nonstoichiometric tungsten carbide (WxC) and its interaction with titanium oxycarbide (TiOxCy) under electrochemical working conditions. In particular, the electrochemical activity and stability of the WxC/TiOxCy system toward the ethanol electrooxidation reaction (EOR) and hydrogen evolution reaction (HER) are investigated. The chemical changes caused by the applied potential are established by combining photoemission spectroscopy and electrochemistry. WxC is not active toward the ethanol electrooxidation reaction at room temperature but it is highly stable under these conditions thanks to the formation of a passive thin film on the surface, consisting mainly of WO2 and W2O5, which prevents the full oxidation of WxC. In addition, WxC is able to adsorb ethanol, forming ethoxy groups on the surface, which constitutes the first step for the ethanol oxidation. The interaction between WxC and TiOxCy plays an important role in the electrochemical stability of WxC since specific orientations of the substrate are able to stabilize WxC and prevent its corrosion. The beneficial interaction with the substrate and the specific surface chemistry makes tungsten carbide a good electrocatalyst support or cocatalyst for direct ethanol fuel cells. However, WxC is active toward the HER and chemically stable under hydrogen reduction conditions, since no changes in the chemical composition or dissolution of the film are observed. This makes tungsten carbide a good candidate as electrocatalyst support or cocatalyst for the electrochemical production of hydrogen.

  17. Titanium Dioxide-Grafted Copper Complexes: High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media.

    PubMed

    Wang, Fei-Fei; Wei, Ping-Jie; Yu, Guo-Qiang; Liu, Jin-Gang

    2016-01-01

    The sluggish kinetics of the oxygen reduction reaction (ORR) at the cathodes of fuel cells significantly hampers fuel cell performance. Therefore, the development of high-performance, non-precious-metal catalysts as alternatives to noble metal Pt-based ORR electrocatalysts is highly desirable for the large-scale commercialization of fuel cells. TiO2 -grafted copper complexes deposited on multiwalled carbon nanotubes (CNTs) form stable and efficient electrocatalysts for the ORR. The optimized catalyst composite CNTs@TiO2 -ZA-[Cu(phen${{^{{\\rm NO}{_{2}}}}}$)(BTC)] shows surprisingly high selectivity for the 4 e(-) reduction of O2 to water (approximately 97 %) in alkaline solution with an onset potential of 0.988 V vs. RHE, and demonstrates superior stability and excellent tolerance for the methanol crossover effect in comparison to a commercial Pt/C catalyst. The copper complexes were grafted onto the surface of TiO2 through coordination of an imidazole-containing ligand, zoledronic acid (ZA), which binds to TiO2 through its bis-phosphoric acid anchoring group. Rational optimization of the copper catalyst's ORR performance was achieved by using an electron-deficient ligand, 5-nitro-1,10-phenanthroline (phen${{^{{\\rm NO}{_{2}}}}}$), and bridging benzene-1,3,5-tricarboxylate (BTC). This facile approach to the assembly of copper catalysts on TiO2 with rationally tuned ORR activity will have significant implications for the development of high-performance, non-precious-metal ORR catalysts. PMID:26602327

  18. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction.

    PubMed

    Ma, Zhaoling; Dou, Shuo; Shen, Anli; Tao, Li; Dai, Liming; Wang, Shuangyin

    2015-02-01

    Heteroatom-doped carbon materials have been extensively investigated as metal-free electrocatalysts to replace commercial Pt/C catalysts in oxygen reduction reactions in fuel cells and Li-air batteries. However, the synthesis of such materials usually involves high temperature or complicated equipment. Graphene-based sulfur composites have been recently developed to prolong the cycling life of Li-S batteries, one of the most attractive energy-storage devices. Given the high cost of graphene, there is significant demand to recycle and reuse graphene from Li-S batteries. Herein, we report a green and cost-effective method to prepare sulfur-doped graphene, achieved by the continuous charge/discharge cycling of graphene-sulfur composites in Li-S batteries. This material was used as a metal-free electrocatalyst for the oxygen reduction reaction and shows better electrocatalytic activity than pristine graphene and better methanol tolerance durability than Pt/C.

  19. The Fundamental Role of Nano-Scale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts

    SciTech Connect

    Digby Macdonald

    2005-04-15

    The derivation of successful fuel cell technologies requires the development of more effective, cheaper, and poison-resistant electrocatalysts for both the anode (H{sub 2} oxidation in the presence of small amounts of CO from the reforming of carbonaceous fuels) and the cathode (reduction of oxygen in the presence of carried-over fuel). The proposed work is tightly focused on one specific aspect of electrocatalysis; the fundamental role(s) played by nanoscale (1-2 nm thick) oxide (''passive'') films that form on the electrocatalyst surfaces above substrate-dependent, critical potentials, on charge transfer reactions, particularly at elevated temperatures (25 C < T < 200 C). Once the role(s) of these films is (are) adequately understood, we will then use this information to specify, at the molecular level, optimal properties of the passive layer for the efficient electrocatalysis of the oxygen reduction reaction.

  20. Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application

    NASA Astrophysics Data System (ADS)

    Tian, Jingqi; Liu, Qian; Ge, Chenjiao; Xing, Zhicai; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O.; Sun, Xuping

    2013-09-01

    In this communication, we demonstrate for the first time that ultrathin graphitic carbon nitride (g-C3N4) nanosheets can serve as a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide. We further demonstrate its application for electrochemical glucose biosensing in both buffer solution and human serum medium with a detection limit of 11 μM and 45 μM, respectively.In this communication, we demonstrate for the first time that ultrathin graphitic carbon nitride (g-C3N4) nanosheets can serve as a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide. We further demonstrate its application for electrochemical glucose biosensing in both buffer solution and human serum medium with a detection limit of 11 μM and 45 μM, respectively. Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c3nr02031b

  1. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  2. Amorphous Co(OH)2 nanosheet electrocatalyst and the physical mechanism for its high activity and long-term cycle stability

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Li, H. B.; Yang, G. W.

    2016-01-01

    Good conductivity is conventionally considered as a typical reference standard in terms of selecting water electrolysis catalysts. Cobalt hydroxide (Co(OH)2) has received extensive attention for its exceptional properties as a promising electrocatalysis catalyst. However, research on Co(OH)2 so far prefers to its crystal phase instead of amorphous phase because the former generally exhibits better conductivity. Here, we have demonstrated that the amorphous Co(OH)2 electrocatalyst synthesized via a simple, facile, green, and low-cost electrochemistry technique possesses high activity and long-term cycle stability in the oxygen evolution reaction (OER). The as-synthesized Co(OH)2 electrode was found to be a promising electrocatalyst for mediating OER in alkaline media, as evidenced by the overpotential of 0.38 V at a current density of 10 mA cm-2 and a Tafel slope of 68 mV dec-1. The amorphous Co(OH)2 also presented outstanding durability and its stability was just as well as that of crystalline Co(OH)2. Generally, the integrated electrochemical performances of the amorphous Co(OH)2 in the OER process were much superior to that of the crystalline Co(OH)2 materials. We also established that the short-range order, i.e., nanophase, of amorphous Co(OH)2 creates a lot of active sites for OER which can greatly promote the electrocatalysis performance of amorphous catalysts. These findings showed that the conventional understanding of selecting electrocatalysts with conductivity as a typical reference standard seems out of date for developing new catalysts at the nanometer, which actually open a door to applications of amorphous nanomaterials as an advanced electrocatalyst in the field of water oxidation.

  3. Au-supported Pt-Au mixed atomic monolayer electrocatalyst with ultrahigh specific activity for oxidation of formic acid in acidic solution.

    PubMed

    Huang, Zhao; Liu, Yan; Xie, Fangyun; Fu, Yingchun; He, Yong; Ma, Ming; Xie, Qingji; Yao, Shouzhuo

    2012-12-25

    Au-supported Pt-Au mixed atomic monolayer electrocatalyst was prepared by underpotential deposition of Cu on Au and then redox replacement with noble metal atoms, which shows an ultrahigh Pt-mass (or Pt-area) normalized specific electrocatalytic activity of 102 mA μg(Pt)(-1) (124 mA cm(Pt)(-2)) for oxidation of formic acid in acidic aqueous solution.

  4. N-doped crumpled graphene derived from vapor phase deposition of PPy on graphene aerogel as an efficient oxygen reduction reaction electrocatalyst.

    PubMed

    Wang, Meng; Wang, Jiazhao; Hou, Yuyang; Shi, Dongqi; Wexler, David; Poynton, Simon D; Slade, Robert C T; Zhang, Weimin; Liu, Huakun; Chen, Jun

    2015-04-01

    Nitrogen-doped crumpled graphene (NCG) is successfully synthesized via vapor phase deposition of polypyrrole onto graphene aerogel followed by thermal treatment. The NCG was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable electrocatalytic performance with the commercial Pt/C in alkaline membrane exchange fuel cells because of the well-regulated nitrogen doping and the robust micro-3D crumpled porous nanostructure. PMID:25804889

  5. Sulfur poisoning of emergent and current electrocatalysts: vulnerability of MoS2, and direct correlation to Pt hydrogen evolution reaction kinetics

    NASA Astrophysics Data System (ADS)

    Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-05-01

    The recent surge in interest in the utilisation of transition metal dichalcogenides for the hydrogen evolution reaction (HER), as well as the long-standing problem of sulfur poisoning suffered by the established Pt HER electrocatalyst, motivated us to examine the impacts of sulfur poisoning on both emergent and current electrocatalysts. Through a comparative study between MoS2 and Pt/C on the effects of sulfur poisoning, we demonstrate that MoS2 is not invulnerable to poisoning. Additionally, using X-ray photoelectron spectroscopy, correlations have also been established between the atomic percentages of Pt-S bonds and normalised HER parameters e.g. Tafel slope and potential at -10 mA cm-2. These findings are of high importance for potential hydrogen evolution catalysis.The recent surge in interest in the utilisation of transition metal dichalcogenides for the hydrogen evolution reaction (HER), as well as the long-standing problem of sulfur poisoning suffered by the established Pt HER electrocatalyst, motivated us to examine the impacts of sulfur poisoning on both emergent and current electrocatalysts. Through a comparative study between MoS2 and Pt/C on the effects of sulfur poisoning, we demonstrate that MoS2 is not invulnerable to poisoning. Additionally, using X-ray photoelectron spectroscopy, correlations have also been established between the atomic percentages of Pt-S bonds and normalised HER parameters e.g. Tafel slope and potential at -10 mA cm-2. These findings are of high importance for potential hydrogen evolution catalysis. Electronic supplementary information (ESI) available: Survey scan XPS spectra, HER LSV curves and surface atomic compositions of poisoned and unpoisoned Pt/C and MoS2 nanoparticles. See DOI: 10.1039/c5nr01378j

  6. The influence of the electrochemical stressing (potential step and potential-static holding) on the degradation of polymer electrolyte membrane fuel cell electrocatalysts

    NASA Astrophysics Data System (ADS)

    Shao, Yuyan; Kou, Rong; Wang, Jun; Viswanathan, Vilayanur V.; Kwak, Ja Hun; Liu, Jun; Wang, Yong; Lin, Yuehe

    The understanding of the degradation mechanisms of electrocatalysts is very important for developing durable electrocatalysts for polymer electrolyte membrane (PEM) fuel cells. The degradation of Pt/C electrocatalysts under potential-static holding conditions (at 1.2 V and 1.4 V vs. RHE) and potential step conditions with the upper potential of 1.4 V for 150 s and lower potential limits (0.85 V and 0.60 V) for 30 s in each period [denoted as Pstep(1.4V_150s-0.85V_30s) and Pstep(1.4V_150s-0.60V_30s), respectively] were investigated. The electrocatalysts and support were characterized with electrochemical voltammetry, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Pt/C degrades much faster under Pstep conditions than that under potential-static holding conditions. Pt/C degrades under the Pstep(1.4V_150s-0.85V_30s) condition mainly through the coalescence process of Pt nanoparticles due to the corrosion of carbon support, which is similar to that under the conditions of 1.2 V- and 1.4 V-potential-static holding; however, Pt/C degrades mainly through the dissolution/loss and dissolution/redeposition process if stressed under Pstep(1.4V_150s-0.60V_30s). The difference in the degradation mechanisms is attributed to the chemical states of Pt nanoparticles: Pt dissolution can be alleviated by the protective oxide layer under the Pstep(1.4V_150s-0.85V_30s) condition and the potential-static holding conditions. These findings are very important for understanding PEM fuel cell electrode degradation and are also useful for developing fast test protocol for screening durable catalyst support materials.

  7. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    PubMed Central

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-01-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs. PMID:26876468

  8. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    PubMed

    Vinayan, B P; Ramaprabhu, S

    2013-06-01

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  9. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

  10. Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution.

    PubMed

    Zhang, Youfang; Zuo, Lizeng; Zhang, Longsheng; Huang, Yunpeng; Lu, Hengyi; Fan, Wei; Liu, Tianxi

    2016-03-23

    Recent studies have proven that newly emerging two-dimensional molybdenum diselenide (MoSe2) is a promising noble-metal-free electrocatalyst for hydrogen evolution reaction (HER). Increasing the exposures of the active edges of MoSe2 nanostructures is a key issue to fully realize the excellent electrochemical properties of MoSe2. In this work, a few-layered MoSe2/carbon fiber aerogel (CFA) hybrids have been facilely obtained through the combination of high-temperature carbonization and one-pot solvothermal reaction. CFA derived from cotton wool is used as a three-dimensional conductive network for construction of hierarchical MoSe2/CFA hybrids, where few-layered MoSe2 nanosheets are uniformly and perpendicularly decorated on the surfaces of CFA. In the designed and prepared hybrids, CFA effectively increases the exposures of the active edges of MoSe2 nanosheets as well as provides reduced lengths for both electron transportation and ion diffusion. Therefore, the obtained optimal MoSe2/CFA hybrid exhibits excellent electrochemical activity as HER electrocatalyst with a small onset potential of -0.104 V vs reversible hydrogen electrode and a small Tafel slope of 62 mV per decade, showing its great potential as a next-generation Pt-free electrocatalyst for HER. PMID:26927526

  11. Cu-doped carbon nitride: Bio-inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoxin; Silva, Rafael; Goswami, Anandarup; Asefa, Tewodros

    2015-12-01

    Splitting water effectively to produce hydrogen (H2) requires the development of non-noble-metal electrocatalysts that are able to make this reaction feasible and energy efficient. Herein, we present a novel "structure upgrading" synthetic approach for the design and synthesis of bio-inspired hydrogen-evolving electrocatalysts based on earth-abundant elements. Using g-C3N4 - an inexpensive inorganic polymer material - as a host material for copper ions, novel Cu-doped g-C3N4 materials with supramolecular structure, efficient electrocatalytic activity and modest overpotentials for hydrogen evolution reaction (HER) are synthesized. Compared with most single-molecule analogs of hydrogenases that work only in organic media, the supramolecular Cu-doped g-C3N4 materials can serve as heterogeneous electrocatalysts with greater stability and good catalytic activity for HER in aqueous media. The materials afford a current density as high as 10 mA cm-2 at an overpotential as low as 390 mV, and work well in acidic media for, at least, 43 h.

  12. Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Ru; Hu, Wen-Hui; Li, Xiao; Dong, Bin; Shang, Xiao; Han, Guan-Qun; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2016-10-01

    Ternary hybrid cobalt disulfide-molybdenum disulfides supported on carbon nanotubes (CoS2-MoS2/CNTs) electrocatalysts have been prepared via a simple hydrothermal method. CNTs as support may provide good conductivity and low the agglomeration of layered MoS2 structure. CoS2 with intrinsic metallic conductivity may enhance the activity of the ternary hybrid electrocatalysts for hydrogen evolution reaction (HER). X-ray diffraction (XRD) data confirm the formation of ternary hybrid nanocomposites composed of CNTs, CoS2 and amorphous MoS2. Scanning electron microscopy (SEM) images show that strong combination between MoS2, CNTs and regular orthohexagonal CoS2 has been obtained. The dispersion of each component is good and no obvious agglomeration can be observed. It is found that compared with CoS2/CNTs and MoS2/CNTs, the ternary CoS2-MoS2/CNTs have the better activity for HER with a low onset potential of 70 mV (vs. RHE) and a small Talel slope of 67 mV dec-1, and are extremely stable after 1000 cycles. In addition, the optimal doping ratio of Co to Mo is 2:1, which have better HER activity. It is proved that the introduction of carbon materials and Co atoms could improve the performances of MoS2-based electrocatalysts for HER.

  13. Using nitrogen-rich polymeric network and iron(II) acetate as precursors to synthesize highly efficient electrocatalyst for oxygen reduction reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Chen, Hongbiao; Yang, Duanguang; Gao, Yong; Li, Huaming

    2016-03-01

    Carbon-supported transition metal/nitrogen (M-N/C) materials are considered as one of the most promising electrocatalysts for the oxygen reduction reaction (ORR) owing to their high ORR electrocatalytic activity, long-term stability, and excellent methanol tolerance. So far only a few examples of such catalysts are prepared from N-containing polymers. Herein, we report a novel Fe-N/C catalyst using a nitrogen-rich polymeric network and iron(II) acetate as the precursors. The porous polymeric network is fabricated by one-step Friedel-Crafts reaction of a low-cost cross-linker, formaldehyde dimethyl acetal, with 2,4,6-tripyrrol-1,3,5-triazine. Compared to commercial Pt/C catalyst, the as-prepared Fe-N/C electrocatalyst exhibits superior ORR activity in alkaline electrolyte, and comparable ORR activity in acidic medium. The results obtained are significant for the development of new Fe-N/C electrocatalysts for fuel cells.

  14. Ni nanowire supported 3D flower-like Pd nanostructures as an efficient electrocatalyst for electrooxidation of ethanol in alkaline media

    NASA Astrophysics Data System (ADS)

    Hasan, Maksudul; Newcomb, Simon B.; Rohan, James F.; Razeeb, Kafil M.

    2012-11-01

    A Ni nanowire array (NiNWA) supported three-dimensional flower-like Pd nano-electrocatalyst with high electrocatalytic performance for the electrooxidation of ethanol in alkaline media has been fabricated by borohydride hydrothermal reduction method. This novel hybrid NiNWA/PdNF (nanoflowers) electrocatalyst exhibits large electrochemically active surface area (EASA, 45 m2 g-1(Pd)), excellent electrocatalytic activity (765 mA mg-1(Pd)), and high level of the poisoning tolerance (If/Ib = 1.2) to the carbonaceous oxidative intermediates for the electrooxidation reaction in alkaline media. In addition, the electrochemical stability of NiNWA/PdNF is significantly higher than that of NiNWA/PdNP (nanoparticles) electrocatalyst, as evidenced by chronoamperometry experiments in which the electrooxidation current of nanoflowers is controlled by the diffusion transport of ethanol species rather than the carbonaceous poisoning. This high electrocatalytic activity can be attributed to the more open structure with higher electrochemically active sites and shape of Pd nanoflowers. This is further enhanced by the core support NiNWA with a very large surface area and the open interspaces that ensure easy alcohol access even to remote active sites for fast ion adsorption/desorption.

  15. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  16. Cotton Wool Derived Carbon Fiber Aerogel Supported Few-Layered MoSe2 Nanosheets As Efficient Electrocatalysts for Hydrogen Evolution.

    PubMed

    Zhang, Youfang; Zuo, Lizeng; Zhang, Longsheng; Huang, Yunpeng; Lu, Hengyi; Fan, Wei; Liu, Tianxi

    2016-03-23

    Recent studies have proven that newly emerging two-dimensional molybdenum diselenide (MoSe2) is a promising noble-metal-free electrocatalyst for hydrogen evolution reaction (HER). Increasing the exposures of the active edges of MoSe2 nanostructures is a key issue to fully realize the excellent electrochemical properties of MoSe2. In this work, a few-layered MoSe2/carbon fiber aerogel (CFA) hybrids have been facilely obtained through the combination of high-temperature carbonization and one-pot solvothermal reaction. CFA derived from cotton wool is used as a three-dimensional conductive network for construction of hierarchical MoSe2/CFA hybrids, where few-layered MoSe2 nanosheets are uniformly and perpendicularly decorated on the surfaces of CFA. In the designed and prepared hybrids, CFA effectively increases the exposures of the active edges of MoSe2 nanosheets as well as provides reduced lengths for both electron transportation and ion diffusion. Therefore, the obtained optimal MoSe2/CFA hybrid exhibits excellent electrochemical activity as HER electrocatalyst with a small onset potential of -0.104 V vs reversible hydrogen electrode and a small Tafel slope of 62 mV per decade, showing its great potential as a next-generation Pt-free electrocatalyst for HER.

  17. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    PubMed

    Vinayan, B P; Ramaprabhu, S

    2013-06-01

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications. PMID:23644681

  18. Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions.

    PubMed

    Chen, Binling; Li, Rong; Ma, Guiping; Gou, Xinglong; Zhu, Yanqiu; Xia, Yongde

    2015-12-28

    Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the favourable molecular-like structural features and uniform dispersed active sites in the precursor, the resulting nanocomposites, possessing a unique core-shell structure, high porosity, homogeneous dispersion of active components together with N and S-doping effects, not only show excellent electrocatalytic activity towards ORR with the high onset potential (around -0.04 V vs.-0.02 V for the benchmark Pt/C catalyst) and four-electron pathway and OER with a small overpotential of 0.47 V for 10 mA cm(-2) current density, but also exhibit superior stability (92%) to the commercial Pt/C catalyst (74%) in ORR and promising OER stability (80%) with good methanol tolerance. Our findings suggest that the transition metal sulfide-porous carbon nanocomposites derived from the one-step simultaneous sulfurization and carbonization of zeolitic imidazolate frameworks are excellent alternative bifunctional electrocatalysts towards ORR and OER in the next generation of energy storage and conversion technologies. PMID:26599403

  19. High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Diphosphine Ligands Containing One Pendent Amine

    SciTech Connect

    Stewart, Michael P.; Ho, Ming-Hsun; Wiese, Stefan; Lindstrom, Mary L.; Thogerson, Colleen E.; Raugei, Simone; Bullock, R. Morris; Helm, Monte L.

    2013-04-24

    A series of Ni-based electrocatalysts, [Ni(7PPh2NC6H4X)2](BF4)2, featuring seven-membered cyclic diphosphine ligands incorporating a single amine base, 1-para-X-phenyl-3,6-triphenyl-1-aza-3,6-diphosphacycloheptane (7PPh2NC6H4X where X = OMe, Me, Br, Cl or CF3), have been synthesized and characterized. X-ray diffraction studies have established that the [Ni(7PPh2NC6H4X)2]2+ complexes have a square planar geometry, with bonds to four phosphorus atoms of the two bidentate diphosphine ligands. Coordination of the bidentate phosphine ligands to Ni result in one six-membered ring containing a pendent amine, and one five membered ring. Each of the complexes is an efficient electrocatalyst for hydrogen production at the potential of the Ni(II/I) couple, with turnover frequencies ranging from 2,400 to 27,000 s-1 with [(DMF)H]+ in acetonitrile. Addition of water (up to 1.0 M) accelerates the catalysis, giving turnover frequencies ranging from 4,100 - 96,000 s-1. Computational studies carried out on the [Ni(7PPh2NC6H4X)2]2+ family indicate the catalytic rates reach a maximum when the electron-donating character of X results in the pKa of the pendent amine matching that of the acid used for proton delivery. Additionally, the fast catalytic rates for hydrogen production by the [Ni(7PPh2NC6H4X)2]2+ family relative to the analogous [Ni(PPh2NC6H4X2)2]2+ family are attributed to preferred formation of endo protonated isomers with respect to the metal center in the former, which is essential for the protons to attain suitable proximity to the reduced metal center to generate H2. The results of this work highlight the importance of the necessity for precise pKa matching with the acid for proton delivery to the metal center, and the mechanistic details described herein will be used to guide future catalyst design. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of

  20. Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zuo, Quan; Zhao, Pingping; Luo, Wei; Cheng, Gongzhen

    2016-07-01

    Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the best non-precious catalysts ever reported for ORR.Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the

  1. Semimetallic MoP2: an active and stable hydrogen evolution electrocatalyst over the whole pH range

    NASA Astrophysics Data System (ADS)

    Pu, Zonghua; Saana Amiinu, Ibrahim; Wang, Min; Yang, Yushi; Mu, Shichun

    2016-04-01

    Developing efficient non-precious metal hydrogen evolution reaction (HER) electrocatalysts is a great challenge for sustainable hydrogen production from water. In this communication, for the first time, semimetallic MoP2 nanoparticle films on a metal Mo plate (MoP2 NPs/Mo) are fabricated through a facile two-step strategy. When used as a binder-free hydrogen evolution cathode, the as-prepared MoP2 NPs/Mo electrode exhibits superior HER catalytic activity at all pH values. At a current density of 10 mA cm-2, the catalyst displays overpotentials of 143, 211 and 194 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution and 1.0 M KOH, respectively. Furthermore, it exhibits excellent stability over a wide pH range. Thus, this in situ route opens up a new avenue for the fabrication of highly efficient, cost-effective and binder-free non-precious catalysts for water splitting and other electrochemical devices.Developing efficient non-precious metal hydrogen evolution reaction (HER) electrocatalysts is a great challenge for sustainable hydrogen production from water. In this communication, for the first time, semimetallic MoP2 nanoparticle films on a metal Mo plate (MoP2 NPs/Mo) are fabricated through a facile two-step strategy. When used as a binder-free hydrogen evolution cathode, the as-prepared MoP2 NPs/Mo electrode exhibits superior HER catalytic activity at all pH values. At a current density of 10 mA cm-2, the catalyst displays overpotentials of 143, 211 and 194 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution and 1.0 M KOH, respectively. Furthermore, it exhibits excellent stability over a wide pH range. Thus, this in situ route opens up a new avenue for the fabrication of highly efficient, cost-effective and binder-free non-precious catalysts for water splitting and other electrochemical devices. Electronic supplementary information (ESI) available: Experimental section and figures. See DOI: 10.1039/c6nr00820h

  2. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  3. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity

    NASA Astrophysics Data System (ADS)

    Liu, Danni; Lu, Qun; Luo, Yonglan; Sun, Xuping; Asiri, Abdullah M.

    2015-09-01

    The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability.The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability. Electronic supplementary information (ESI) available: Experimental section and ESI Figures. See DOI: 10.1039/c5nr04064g

  4. Control of the composition of Pt-Ni electrocatalysts in surfactant-free synthesis using neat N-formylpiperidine

    NASA Astrophysics Data System (ADS)

    Zhang, Na; Tsao, Kai-Chieh; Pan, Yung-Tin; Yang, Hong

    2016-01-01

    This paper describes the facile and surfactant-free synthesis of faceted Pt-Ni alloy nanoparticle electrocatalysts using neat N-formylpiperidine as a new type of solvent. Unlike the widely-used colloidal synthesis based on long-carbon chain surfactants, nanoparticles made in neat N-formylpiperidine possess a directly accessible surface for electrocatalytic reactions, making it a very attractive alternative solvent. The area-specific oxygen reduction reaction (ORR) activity is much higher than the commercial Pt/C catalyst reference and reaches a maximum of 1.12 mA cm-2 for the Pt-Ni alloy nanoparticles. We observed that the freshly formed Pt-Ni alloy could have controllable bulk and near surface compositions under the same initial reaction conditions and precursor ratio. The change in the composition could be attributed to the effect of CO on the formation of uniform nuclei at the initial stage, and a different deposition rate between Pt and Ni metals during the growth. The well-defined Pt-Ni nanoparticle catalysts show strong composition-dependent catalytic behavior in ORR, highlighting the important role of controlling the growth kinetics in the preparation of active Pt-Ni ORR catalysts.This paper describes the facile and surfactant-free synthesis of faceted Pt-Ni alloy nanoparticle electrocatalysts using neat N-formylpiperidine as a new type of solvent. Unlike the widely-used colloidal synthesis based on long-carbon chain surfactants, nanoparticles made in neat N-formylpiperidine possess a directly accessible surface for electrocatalytic reactions, making it a very attractive alternative solvent. The area-specific oxygen reduction reaction (ORR) activity is much higher than the commercial Pt/C catalyst reference and reaches a maximum of 1.12 mA cm-2 for the Pt-Ni alloy nanoparticles. We observed that the freshly formed Pt-Ni alloy could have controllable bulk and near surface compositions under the same initial reaction conditions and precursor ratio. The change

  5. Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction

    PubMed Central

    2013-01-01

    A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too. PMID:24229351

  6. Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Li, Ping; Yang, Zhi; Shen, Juanxia; Nie, Huagui; Cai, Qiran; Li, Luhua; Ge, Mengzhan; Gu, Cancan; Chen, Xi'an; Yang, Keqin; Zhang, Lijie; Chen, Ying; Huang, Shaoming

    2016-02-10

    Electrochemically splitting water for hydrogen evolution reaction (HER) has been viewed as a promising approach to produce renewable and clean hydrogen energy. However, searching for cheap and efficient HER electrocatalysts to replace the currently used Pt-based catalysts remains an urgent task. Herein, we develop a one-step carbon nanotube (CNT) assisted synthesis strategy with CNTs' strong adsorbability to mediate the growth of subnanometer-sized MoS(x) on CNTs. The subnanometer MoS(x)-CNT hybrids achieve a low overpotential of 106 mV at 10 mA cm(-2), a small Tafel slope of 37 mV per decade, and an unprecedentedly high turnover frequency value of 18.84 s(-1) at η = 200 mV among all reported non-Pt catalysts in acidic conditions. The superior performance of the hybrid catalysts benefits from the presence of a higher number of active sites and the abundant exposure of unsaturated S atoms rooted in the subnanometer structure, demonstrating a new class of subnanometer-scale catalysts.

  7. Enhancement of Platinum Mass Activity on the Surface of Polymer-wrapped Carbon Nanotube-Based Fuel Cell Electrocatalysts

    PubMed Central

    Hafez, Inas H.; Berber, Mohamed R.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-01-01

    Cost reduction and improved durability are the two major targets for accelerating the commercialization of polymer electrolyte membrane fuel cells (PEFCs). To achieve these goals, the development of a novel method to fabricate platinum (Pt)-based electrocatalysts with a high mass activity, deposited on durable conductive support materials, is necessary. In this study, we describe a facile approach to grow homogeneously dispersed Pt nanoparticles (Pt) with a narrow diameter distribution in a highly controllable fashion on polymer-wrapped carbon nanotubes (CNTs). A PEFC cell employing a composite with the smallest Pt nanoparticle size (2.3 nm diameter) exhibited a ~8 times higher mass activity compared to a cell containing Pt with a 3.7 nm diameter. This is the first example of the diamter control of Pt on polymer-wrapped carbon supporting materials, and the study opens the door for the development of a future-generation of PEFCs using a minimal amount of Pt. PMID:25221915

  8. CO2 Reduction to CO in Water: Carbon Nanotube-Gold Nanohybrid as a Selective and Efficient Electrocatalyst.

    PubMed

    Huan, Tran Ngoc; Prakash, Praveen; Simon, Philippe; Rousse, Gwenaëlle; Xu, X; Artero, Vincent; Gravel, Edmond; Doris, Eric; Fontecave, Marc

    2016-09-01

    A gold-based nanostructure has been demonstrated as promising materials for the selective electroreduction of CO2 to CO in aqueous conditions. In this work, we present a carbon nanotube-gold nanohybrid as a selective and efficient electrocatalyst for the reduction of CO2 in 0.5 m NaHCO3 . The hybrid material exhibits remarkable activity with a current density of 10 mA cm(-2) at -0.55 V versus standard hydrogen electrode with a stable CO production rate (0.52 μmol s(-1) ) after 4 h electrolysis. Monodispersed gold nanoparticles anchored on carbon nanotubes through a layer-by-layer method allows very little Au loading and thus minimization of the cost of electrode fabrication with a mass activity up to 100 A g(-1) at -0.55 V versus reversible hydrogen electrode. It is 33 times higher than a previous report for monodisperse Au nanoparticles (3 A g(-1) ) while ensuring selectivity (70 % faradaic yield of CO) at comparable reduction potential.

  9. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support.

    PubMed

    Youn, Duck Hyun; Han, Suenghoon; Kim, Jae Young; Kim, Jae Yul; Park, Hunmin; Choi, Sun Hee; Lee, Jae Sung

    2014-05-27

    Highly active and stable electrocatalysts for hydrogen evolution have been developed on the basis of molybdenum compounds (Mo2C, Mo2N, and MoS2) on carbon nanotube (CNT)-graphene hybrid support via a modified urea-glass route. By a simple modification of synthetic variables, the final phases are easily controlled from carbide, nitride to sulfide with homogeneous dispersion of nanocrystals on the CNT-graphene support. Among the prepared catalysts, Mo2C/CNT-graphene shows the highest activity for hydrogen evolution reaction with a small onset overpotential of 62 mV and Tafel slope of 58 mV/dec as well as an excellent stability in acid media. Such enhanced catalytic activity may originate from its low hydrogen binding energy and high conductivity. Moreover, the CNT-graphene hybrid support plays crucial roles to enhance the activity of molybdenum compounds by alleviating aggregation of the nanocrystals, providing a large area to contact with electrolyte, and facilitating the electron transfer.

  10. Palladium-platinum core-shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid

    DOE PAGES

    Zhang, Lulu; Su, Dong; Zhu, Shangqian; Chang, Qiaowan; Yue, Jeffrey; Du, Zheng; Shao, Minhua

    2016-04-26

    Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less

  11. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution.

    PubMed

    Bo, Xiangjie; Guo, Liping

    2013-02-21

    Ordered mesoporous boron-doped carbons (BOMCs) were prepared by co-impregnation and carbonization of sucrose and 4-hydroxyphenylboronic acid into SBA-15 silica template. Nitrogen sorption, small angle X-ray diffraction (XRD), and transmission electron microscopy (TEM) reveals that BOMCs possess highly ordered mesoporous structure, uniform pore size distribution, and high surface area. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that B atoms can be successfully doped into the framework of OMCs. Due to the desirable characteristics of BOMCs, BOMCs are highly active, cheap, and selective metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline solution. Although B content is a key factor in determining ORR activity, the ORR activity of BOMCs is also dependent on the surface area. The high surface area of BOMCs facilitates the exposure of the active sites for ORR. BOMCs may be further exploited as potentially efficient and inexpensive metal-free ORR catalysts with good long-term stability in alkaline solution. PMID:23318553

  12. A Synthetic Nickel Electrocatalyst With a Turnover Frequency Above 100,000 s-1 for H2 Production

    SciTech Connect

    Helm, Monte L.; Stewart, Michael P.; Bullock, R. Morris; Rakowski DuBois, Mary; DuBois, Daniel L.

    2011-08-12

    Increased worldwide energy demand will require greater use of carbon-neutral sustainable energy sources. The intermittent nature of solar and wind power requires storage of energy, so electrocatalysts that convert electrical energy to chemical bonds in fuels are needed. Platinum is an excellent catalyst, but it is of low abundance and high cost. Hydrogenase enzymes in Nature catalyze the evolution of H2 and use earth-abundant metals such as nickel and iron. We report that a synthetic nickel catalyst, [Ni(7PPh2NPh)2](BF4)2, (7PPh2NPh = 1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane) catalyzes the production of H2 using [(DMF)H]+OTf as the proton source, with turnover frequencies of 31,000 s-1 in dry acetonitrile and 108,000 s-1 in the presence of H2O (1.2 M), at a potential of -1.13 V (vs. the ferrocenium/ferrocene couple). These turnover frequencies exceed those reported for the [FeFe] hydrogenase enzyme by more than an order of magnitude, and are the fastest reported for any molecular catalyst for H2 production. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  13. Comparative assessment of synthetic strategies toward active platinum-rhodium-tin electrocatalysts for efficient ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Erini, Nina; Krause, Paul; Gliech, Manuel; Yang, Ruizhi; Huang, Yunhui; Strasser, Peter

    2015-10-01

    The present work explores the effect of autoclave-based autogenous-pressure vs. ambient pressure conditions on the synthesis and properties of carbon-supported Pt-Rh-Sn nanoparticle electrocatalysts. The Pt-Rh-Sn nanoparticles were characterized by X-ray spectroscopy, electron microscopy and mass spectroscopy and deployed as catalysts for the electrocatalytic ethanol oxidation reaction. Pt-Rh-Sn catalysts precipitated with carbon already present showed narrow particle size distribution around 7 nm, while catalysts supported on carbon after particle formation showed broader size distribution ranging from 8 to 16 nm, similar metal loadings between 40 and 48 wt.% and similar atomic ratios of Pt:Rh:Sn of 30:10:60. The highest ethanol oxidation activity at low overpotentials associated with exceptionally early ethanol oxidation onset potential was observed for ambient-pressure catalysts with the active ternary alloy phase formed in presence of the carbon supports. In contrast, catalysts prepared under ambient pressure in a two-step approach, involving alloy particle formation followed by particle separation and subsequent deposition on the carbon support, yielded the highest overall mass activities. Based on the observed synthesis-activity correlations, a comparative assessment is provided of the synthetic techniques at high vs. low pressures, and in presence and absence of carbon support. Plausible hypotheses in terms of particle dispersion and interparticle distance accounting for these observed differences are discussed.

  14. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Pan, Fuping; Cao, Zhongyue; Zhao, Qiuping; Liang, Hongyu; Zhang, Junyan

    2014-12-01

    The successful commercialization of fuel cells requires the efficient electrocatalyst to make the oxygen reduction reaction (ORR) fast because of the sluggish nature of ORR and the high cost of the platinum catalysts. In this work, we report the excellent performance of metal-free nitrogen-doped porous carbon nanosheets (NPCN) with hierarchical porous structure and a high surface area of 1436.02 m2 g-1 for catalyzing ORR. The active NPCN is synthesized via facile high-temperature carbonization of natural ginkgo leaves followed by purification and ammonia post-treatment without using additional supporting templates and activation processes. In O2-saturated 0.1 M KOH solution, the resultant NPCN exhibits a high kinetic-limiting current density of 13.57 mA cm-2 at -0.25 V (vs. Ag/AgCl) approaching that of the commercial Pt/C catalyst (14 mA cm-2) and long-term electrochemical stability. Notably, the NPCN shows a slightly negative ORR half-wave potential in comparison with Pt/C (ΔE1/2 = 19 mV). The excellent electrocatalytic properties of NPCN originate from the combined effect of optimal nitrogen doping, high surface area, and porous architecture, which induce the high-density distribution of highly active and stable catalytic sites.

  15. Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction.

    PubMed

    Song, Min Young; Park, Hyean Yeol; Yang, Dae-Soo; Bhattacharjya, Dhrubajyoti; Yu, Jong-Sung

    2014-06-01

    We report the template-free pyrolysis of easily available natural seaweed, Undaria pinnatifida, as a single precursor, which results in "seaweed carbon" (SCup). Interestingly, thus-obtained SCup not only contains heteroatoms such as nitrogen and sulfur in its framework, but it also possesses a well-developed porous structure with high surface area. The heteroatoms in SCup originate from the nitrogen- and sulfur-containing ingredients in seaweed, whereas the porosity is created by removal of salts inherently present in the seaweed. These essential and fundamental properties make seaweed a prime choice as a precursor for heteroatom-containing highly porous carbon as a metal-free efficient electrocatalyst. As-synthesized SCup showed excellent electrocatalytic activity in the oxygen reduction reaction (ORR) in alkaline medium, which can be addressed in terms of the presence of the nitrogen and sulfur heteroatoms, the well-developed porosity, and the electrical conductivity in the carbon framework. The pyrolysis temperature was a key controlling parameter that determined the trade-off between heteroatom doping, surface properties, and electrical conductivity. In particular, SCup prepared at 1000 °C showed the best ORR performance. Additionally, SCup exhibited enhanced durability and methanol tolerance relative to the state of the art commercial Pt catalyst, which demonstrates that SCup is a promising alternative to costly Pt-based catalysts for the ORR.

  16. Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xiao, Chunhui; Chen, Xu; Fan, Zhaoyang; Liang, Jin; Zhang, Bo; Ding, Shujiang

    2016-11-01

    Exploring efficient metal-free electrocatalysts for oxygen reduction reactions (ORR) will have a great impact on the field of fuel cells and metal-air batteries. In this paper, we report a simple and efficient routine to coat ordered mesoporous carbon (CMK-3) with nitrogen-doped carbon via pyrolysis of the surface-self-polymerized polydopamine. The optimized CMK-3 catalyst with a coating of nitrogen-doped carbon demonstrates excellent electrocatalytic activity towards ORR in alkaline media. The coating procedure under optimized conditions lowers the ORR half-wave-potential by 80 mV, giving a genuine metal-free catalyst with an onset ORR potential of 0.96 V (vs reversible hydrogen electrode (RHE)) and half-wave potential of 0.83 V (vs RHE) in 0.1 M KOH, which is much better than other carbon material-based catalysts (such as carbon nanotubes and their composites). The performance of this surface-nitrogen-rich CMK-3 catalyst is also superior to that of N-doped ordered mesoporous carbon synthesized by means of the ‘nanocasting’ technique. Furthermore, the as-prepared catalyst performs comparably in terms of activity, superior durability, and higher tolerance to methanol compared with commercially available Pt/C.

  17. Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst.

    PubMed

    You, Bo; Jiang, Nan; Liu, Xuan; Sun, Yujie

    2016-08-16

    As an environmentally friendly approach to generate H2 , electrocatalytic water splitting has attracted worldwide interest. However, its broad employment has been inhibited by costly catalysts and low energy conversion efficiency, mainly due to the sluggish anodic half reaction, the O2 evolution reaction (OER), whose product O2 is not of significant value. Herein, we report an efficient strategy to replace OER with a thermodynamically more favorable reaction, the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), catalyzed by 3D Ni2 P nanoparticle arrays on nickel foam (Ni2 P NPA/NF). HMF is one of the primary dehydration intermediates of raw biomass and FDCA is of many industrial applications. As a bifunctional electrocatalyst, Ni2 P NPA/NF is not only active for HMF oxidation but also competent for H2 evolution. In fact, a two-electrode electrolyzer employing Ni2 P NPA/NF for simultaneous H2 and FDCA production required a voltage at least 200 mV smaller compared with pure water splitting to achieve the same current density, as well as exhibiting robust stability and nearly unity Faradaic efficiencies.

  18. Realization of Both High-Performance and Enhanced Durability of Fuel Cells: Pt-Exoskeleton Structure Electrocatalysts.

    PubMed

    Kim, Ok-Hee; Cho, Yoon-Hwan; Jeon, Tae-Yeol; Kim, Jung Won; Cho, Yong-Hun; Sung, Yung-Eun

    2015-07-01

    Core-shell structure nanoparticles have been the subject of many studies over the past few years and continue to be studied as electrocatalysts for fuel cells. Therefore, many excellent core-shell catalysts have been fabricated, but few studies have reported the real application of these catalysts in a practical device actual application. In this paper, we demonstrate the use of platinum (Pt)-exoskeleton structure nanoparticles as cathode catalysts with high stability and remarkable Pt mass activity and report the outstanding performance of these materials when used in membrane-electrode assemblies (MEAs) within a polymer electrolyte membrane fuel cell. The stability and degradation characteristics of these materials were also investigated in single cells in an accelerated degradation test using load cycling, which is similar to the drive cycle of a polymer electrolyte membrane fuel cell used in vehicles. The MEAs with Pt-exoskeleton structure catalysts showed enhanced performance throughout the single cell test and exhibited improved degradation ability that differed from that of a commercial Pt/C catalyst.

  19. Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Li, Shuwen; Yang, Honglei; Ren, Ren; Ma, Jianxin; Jin, Jun; Ma, Jiantai

    2015-10-01

    The palladium-ionic liquids-nitrogen-doped graphene nanocomposites are facile fabricated as enhanced electro-catalyst for ethanol oxidation. First, the ionic liquids functionalized nitrogen-doping graphene nanosheets (PDIL-NGS) with few layers is synthesized through a facile and effective one-pot hydrothermal method with graphene oxide as raw material, urea as reducing-doping agents and ionic liquids (ILs) derived from 3,4,9,10-perylene tetracarboxylic acid as functional molecules. The results of systematic characterization reveal that the PDIL molecules not only can functionalize NGS by π-π stacking with no affecting the nitrogen doping but also prevent the agglomeration of NGS. More importantly, the processing performance and the property of electron transfer are remarkably enhanced duo to introducing a large number of ILs groups. Then, the enhanced electrocatalytic Pd nanoparticles are successfully anchored on PDIL-NGS by a facile and surfactant-free synthetic technique. As an anode catalyst, the novel catalyst exhibits better kinetics, more superior electrocatalytic performance, higher tolerance and electrochemical stability than the other catalysts toward ethanol electrooxidation, owing to the role of PDIL molecules. Therefore, the new catalyst is believed to have the potential use for direct alcohol fuel cells in the future and the functionalized NGS is promising useful materials applied in other fields.

  20. Low Pt-Loaded Mesoporous Sodium Germanate as a High-Performance Electrocatalyst for the Oxygen Reduction Reaction.

    PubMed

    Zhou, Xiaoxia; Chen, Lisong; Wan, Gang; Chen, Yu; Kong, Qinglu; Chen, Hangrong; Shi, Jianlin

    2016-09-01

    Although Pt/C catalysts show relatively high activities for the oxygen reduction reaction (ORR) and great potential for use in polymer electrolyte membrane fuel cells, the large amount of Pt required and the poor stability of Pt/C-based catalysts remain big challenges. Herein, mesoporous Na4 Ge9 O20 micro-crystals have been successfully synthesized to serve as a new kind of electrocatalyst support owing to its special structural characteristics and high structural stability. After loading a low amount of Pt (5 wt %) nanoparticles of 2-5 nm in diameter, the obtained mesoporous Pt/Na4 Ge9 O20 composite shows not only high electrocatalytic activity for ORR in both acidic and alkaline electrolyte media, which are comparable to those of conventional 20 wt % Pt/C, but also remarkably enhanced Pt mass-specified ORR current density and durability. Synergetic catalytic effects between loaded Pt and the support for the ORR activity has been proposed. PMID:27539826

  1. Determination of Reaction Mechanisms Occurring at Fuel Cell Electrocatalysts Using Electrochemical Methods, Spectroelectrochemical Measurements and Analytical Techniques

    NASA Astrophysics Data System (ADS)

    Coutanceau, C.; Baranton, S.; Lamy, C.

    There is now a great interest in developing different kinds of fuel cells for several applications (stationary electric power plants, transportation, portable electronic devices). For many applications, hydrogen is the most convenient fuel, but it is not a primary fuel, so that it has to be produced from different sources: water, fossil fuels (natural gas, hydrocarbons, etc.), biomass resources, etc. When produced from fossil fuel and biomass resources, hydrogen gas contains a non negligible amount of CO, which acts as a poisoning species for platinum electrocatalysts. Other fuels, particularly alcohols, which are liquid under ambient temperature and pressure, are more convenient due to the easiness of their handling and distribution and high theoretical energy density (6 to 8 kWh kg-1, for methanol and ethanol, respectively). Direct Methanol Fuel Cells (DMFCs) and Direct Ethanol Fuel Cells (DEFCs) are based on the Proton Exchange Membrane Fuel Cell (PEMFC) system, in which hydrogen is replaced by the alcohol. Moreover, due to the presence of carbon monoxide, the issues for PEMFCs working with reformate gas are close to those met in Direct Alcohol Fuel Cells (DAFCs), where the dissociative adsorption of alcohol leads to the formation of adsorbed CO species.

  2. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts.

    PubMed

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-04-14

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the "I(+)X(-)S(+)" mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries. PMID:25779978

  3. Carbon nanofibers as electrocatalyst support for fuel cells: Effect of hydrogen on their properties in CH 4 decomposition

    NASA Astrophysics Data System (ADS)

    Sebastián, D.; Suelves, I.; Lázaro, M. J.; Moliner, R.

    The influence of low partial pressure of hydrogen on carbon nanofibers (CNFs) properties has been studied in the synthesis by methane catalytic decomposition, with the purpose of using them in polymer electrolyte fuel cells as electrocatalyst support. Using CNFs in this kind of application presents a good perspective to improve the fuel cell overall performance. CNF growth in the catalytic decomposition of methane and the characteristics which are typically required in a carbonaceous support, are influenced by hydrogen concentration, which has been studied at different temperatures. The textural, morphological and structural characteristics of the obtained CNFs have been determined by nitrogen physisorption, X-ray diffraction, electron microscopy and thermogravimetry. Electrical conductivity of CNFs has been measured compressing the powder and using a two-probe method. It was observed that low values of partial pressure of hydrogen in methane influence positively structural ordering of CNFs, and in turn improve electrical conductivity, with a slight influence on textural properties leading to highly mesoporous carbon.

  4. Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction.

    PubMed

    Zuo, Quan; Zhao, Pingping; Luo, Wei; Cheng, Gongzhen

    2016-08-01

    Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the best non-precious catalysts ever reported for ORR.

  5. Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction.

    PubMed

    Xiao, Chunhui; Chen, Xu; Fan, Zhaoyang; Liang, Jin; Zhang, Bo; Ding, Shujiang

    2016-11-01

    Exploring efficient metal-free electrocatalysts for oxygen reduction reactions (ORR) will have a great impact on the field of fuel cells and metal-air batteries. In this paper, we report a simple and efficient routine to coat ordered mesoporous carbon (CMK-3) with nitrogen-doped carbon via pyrolysis of the surface-self-polymerized polydopamine. The optimized CMK-3 catalyst with a coating of nitrogen-doped carbon demonstrates excellent electrocatalytic activity towards ORR in alkaline media. The coating procedure under optimized conditions lowers the ORR half-wave-potential by 80 mV, giving a genuine metal-free catalyst with an onset ORR potential of 0.96 V (vs reversible hydrogen electrode (RHE)) and half-wave potential of 0.83 V (vs RHE) in 0.1 M KOH, which is much better than other carbon material-based catalysts (such as carbon nanotubes and their composites). The performance of this surface-nitrogen-rich CMK-3 catalyst is also superior to that of N-doped ordered mesoporous carbon synthesized by means of the 'nanocasting' technique. Furthermore, the as-prepared catalyst performs comparably in terms of activity, superior durability, and higher tolerance to methanol compared with commercially available Pt/C.

  6. CO2 Reduction to CO in Water: Carbon Nanotube-Gold Nanohybrid as a Selective and Efficient Electrocatalyst.

    PubMed

    Huan, Tran Ngoc; Prakash, Praveen; Simon, Philippe; Rousse, Gwenaëlle; Xu, X; Artero, Vincent; Gravel, Edmond; Doris, Eric; Fontecave, Marc

    2016-09-01

    A gold-based nanostructure has been demonstrated as promising materials for the selective electroreduction of CO2 to CO in aqueous conditions. In this work, we present a carbon nanotube-gold nanohybrid as a selective and efficient electrocatalyst for the reduction of CO2 in 0.5 m NaHCO3 . The hybrid material exhibits remarkable activity with a current density of 10 mA cm(-2) at -0.55 V versus standard hydrogen electrode with a stable CO production rate (0.52 μmol s(-1) ) after 4 h electrolysis. Monodispersed gold nanoparticles anchored on carbon nanotubes through a layer-by-layer method allows very little Au loading and thus minimization of the cost of electrode fabrication with a mass activity up to 100 A g(-1) at -0.55 V versus reversible hydrogen electrode. It is 33 times higher than a previous report for monodisperse Au nanoparticles (3 A g(-1) ) while ensuring selectivity (70 % faradaic yield of CO) at comparable reduction potential. PMID:27492905

  7. Easy synthesis approach of Pt-nanoparticles on polyaniline surface: an efficient electro-catalyst for methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Mondal, Sanjoy; Malik, Sudip

    2016-10-01

    A facile room temperature and surfactant free synthesis of platinum nanoparticles (Pt-NPs) on benzene tetra-carboxylic acid doped polyaniline (BDP) tube has been successfully demonstrated by solution dipping method. Preparation of Pt-NPs has been done through a red-ox reaction between BDP tubes and Pt-salt, as BDP itself acts as nontoxic reducing agent as well as template cum stabilizer for Pt-NPs. In BDP@Pt composites, ∼2.5 ± 0.5 nm spherical shaped Pt-NPs as observed from TEM studies are nicely decorated on the surface of BDP. The population or the loading density of Pt-NPs on BDP tube is greatly controlled by changing the w/w ratio of BDP to H2PtCl6. Synthesized BDP@Pt composites are subsequently employed as an efficient electro-catalyst for methanol oxidation reaction (MOR) in acidic medium. Furthermore, the observed catalytic activity is consequently ∼12 times higher than that of commercially available Pt/C catalyst. Depending on the loading density of Pt-NPs on BDP tubes, the efficiency and carbon monoxide (CO) tolerance ability of composites have been explored.

  8. Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction.

    PubMed

    Yuan, Xianxia; Hu, Xin-Xin; Ding, Xin-Long; Kong, Hai-Chuan; Sha, Hao-Dong; Lin, He; Wen, Wen; Shen, Guangxia; Guo, Zhi; Ma, Zi-Feng; Yang, Yong

    2013-11-14

    A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too.

  9. Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction.

    PubMed

    Xiao, Chunhui; Chen, Xu; Fan, Zhaoyang; Liang, Jin; Zhang, Bo; Ding, Shujiang

    2016-11-01

    Exploring efficient metal-free electrocatalysts for oxygen reduction reactions (ORR) will have a great impact on the field of fuel cells and metal-air batteries. In this paper, we report a simple and efficient routine to coat ordered mesoporous carbon (CMK-3) with nitrogen-doped carbon via pyrolysis of the surface-self-polymerized polydopamine. The optimized CMK-3 catalyst with a coating of nitrogen-doped carbon demonstrates excellent electrocatalytic activity towards ORR in alkaline media. The coating procedure under optimized conditions lowers the ORR half-wave-potential by 80 mV, giving a genuine metal-free catalyst with an onset ORR potential of 0.96 V (vs reversible hydrogen electrode (RHE)) and half-wave potential of 0.83 V (vs RHE) in 0.1 M KOH, which is much better than other carbon material-based catalysts (such as carbon nanotubes and their composites). The performance of this surface-nitrogen-rich CMK-3 catalyst is also superior to that of N-doped ordered mesoporous carbon synthesized by means of the 'nanocasting' technique. Furthermore, the as-prepared catalyst performs comparably in terms of activity, superior durability, and higher tolerance to methanol compared with commercially available Pt/C. PMID:27668508

  10. Enzyme design from the bottom up: an active nickel electrocatalyst with a structured peptide outer coordination sphere.

    PubMed

    Reback, Matthew L; Buchko, Garry W; Kier, Brandon L; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A S; Sorensen, Christina M; Raugei, Simone; Squier, Thomas C; Shaw, Wendy J

    2014-02-01

    Catalytic, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts through an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well-characterized hydrogen production catalyst [Ni(P(Ph)2N(Ph))2](2+) (P(Ph)2N(Ph)=1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane). The incorporated peptide maintains its β-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (≈100,000 s(-1)) is enhanced compared to the parent complex ([Ni(P(Ph)2N(APPA))2](2+); ≈50,500 s(-1)). The combination of an active molecular catalyst with a structured peptide provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with enhanced functionality.

  11. Novel Flower-like Nickel Sulfide as an Efficient Electrocatalyst for Non-aqueous Lithium-Air Batteries

    PubMed Central

    Ma, Zhong; Yuan, Xianxia; Zhang, Zhenlin; Mei, Delong; Li, Lin; Ma, Zi-Feng; Zhang, Lei; Yang, Jun; Zhang, Jiujun

    2015-01-01

    In this paper, metal sulfide materials have been explored for the first time as a new choice of bifunctional cathode electrocatalyst materials for non-aqueous lithium-air batteries (LABs). Nickel sulfides with two different morphologies of flower-like (f-NiS) and rod-like (r-NiS) are successfully synthesized using a hydrothermal method with and without the assistance of cetyltrimethyl ammonium bromide. As LAB cathode catalysts, both f-NiS and r-NiS demonstrate excellent catalytic activities towards the formation and decomposition of Li2O2, resulting in improved specific capacity, reduced overpotentials and enhanced cycling performance when compared to those of pure Super P based electrode. Moreover, the morphology of NiS materials can greatly affect LAB performance. Particularly, the f-NiS is more favorable than r-NiS in terms of their application in LABs. When compared to both r-NiS and pure super P materials as LAB cathode materials, this f-NiS catalyst material can give the highest capacity of 6733 mA h g−1 and the lowest charge voltage of 4.24 V at the current density of 75 mA g−1 and also exhibit an quite stable cycling performance. PMID:26658833

  12. Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems

    PubMed Central

    2015-01-01

    Detailed understanding of the nature of the active centers in non-precious-metal-based electrocatalyst, and their role in oxygen reduction reaction (ORR) mechanistic pathways will have a profound effect on successful commercialization of emission-free energy devices such as fuel cells. Recently, using pyrolyzed model structures of iron porphyrins, we have demonstrated that a covalent integration of the Fe–Nx sites into π-conjugated carbon basal plane modifies electron donating/withdrawing capability of the carbonaceous ligand, consequently improving ORR activity. Here, we employ a combination of in situ X-ray spectroscopy and electrochemical methods to identify the various structural and functional forms of the active centers in non-heme Fe/N/C catalysts. Both methods corroboratively confirm the single site 2e– × 2e– mechanism in alkaline media on the primary Fe2+–N4 centers and the dual-site 2e– × 2e– mechanism in acid media with the significant role of the surface bound coexisting Fe/FexOy nanoparticles (NPs) as the secondary active sites. PMID:24817921

  13. Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction

    PubMed Central

    Wang, Jiacheng; Ma, Ruguang; Zhou, Zhenzhen; Liu, Guanghui; Liu, Qian

    2015-01-01

    Efficient metal-free electrocatalysts for oxygen reduction reaction (ORR) are highly expected in future low-cost energy systems. We have successfully prepared crumpled, sheet-like, sulfur-doped graphene by magnesiothermic reduction of easily available, low-cost, nontoxic CO2 (in the form of Na2CO3) and Na2SO4 as the carbon and sulfur sources, respectively. At high temperature, Mg can reduce not only carbon in the oxidation state of +4 in CO32− to form graphene, but also sulfur in SO42− from its highest (+6) to lowest valence which was hybridized into the carbon sp2 framework. Various characterization results show that sulfur-doped graphene with only few layers has an appropriate sulfur content, hierarchically robust porous structure, large surface area/pore volume, and highly graphitized textures. The S-doped graphene samples exhibit not only a high activity for ORR with a four-electron pathway, but also superior durability and tolerance to MeOH crossover to 40% Pt/C. This is mainly ascribed to the combination of sulfur-related active sites and hierarchical porous textures, facilitating fast diffusion of oxygen molecules and electrolyte to catalytic sites and release of products from the sites. PMID:25790856

  14. Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxuan; Wang, Xuemei; Qin, Dongdong; Xue, Zhonghua; Lu, Xiaoquan

    2014-11-01

    In this work, Fe-doped Co3O4 nanofilms were fabricated by electrodeposition on FTO glass substrates for the first time. The structures of the as-prepared nanofilms were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Characterization results demonstrate that Fe was doped homogeneously in the nanofilms. As the different concentration ratios of Fe2+/Co2+ were explored, nanofilm with the ratio of 1:5 exhibits the optimal performance in electrochemical properties assessments. It is considered that the difference in the catalytic activities for the ORR of the samples may be due to the fact that the joining of iron changed the catalyst surface's electric state and enhanced the acidity of cobalt centers, on the other hand, the doping process probably modified the absorption property of the nanofilms. The experimental results suggest that the Fe-doped Co3O4 nanofilms in this work exhibit favorable electrocatalytic activity toward ORR and appear to be promising cathodic electrocatalyst in alkaline fuel cells.

  15. Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jiacheng; Ma, Ruguang; Zhou, Zhenzhen; Liu, Guanghui; Liu, Qian

    2015-03-01

    Efficient metal-free electrocatalysts for oxygen reduction reaction (ORR) are highly expected in future low-cost energy systems. We have successfully prepared crumpled, sheet-like, sulfur-doped graphene by magnesiothermic reduction of easily available, low-cost, nontoxic CO2 (in the form of Na2CO3) and Na2SO4 as the carbon and sulfur sources, respectively. At high temperature, Mg can reduce not only carbon in the oxidation state of +4 in CO32- to form graphene, but also sulfur in SO42- from its highest (+6) to lowest valence which was hybridized into the carbon sp2 framework. Various characterization results show that sulfur-doped graphene with only few layers has an appropriate sulfur content, hierarchically robust porous structure, large surface area/pore volume, and highly graphitized textures. The S-doped graphene samples exhibit not only a high activity for ORR with a four-electron pathway, but also superior durability and tolerance to MeOH crossover to 40% Pt/C. This is mainly ascribed to the combination of sulfur-related active sites and hierarchical porous textures, facilitating fast diffusion of oxygen molecules and electrolyte to catalytic sites and release of products from the sites.

  16. Self-Supported Cu-Based Nanowire Arrays as Noble-Metal-Free Electrocatalysts for Oxygen Evolution.

    PubMed

    Hou, Chun-Chao; Fu, Wen-Fu; Chen, Yong

    2016-08-23

    Crystalline Cu-based nanowire arrays (NWAs) including Cu(OH)2 , CuO, Cu2 O, and CuOx are facilely grown on Cu foil and are found to act as highly efficient, low-cost, and robust electrocatalysts for the oxygen evolution reaction (OER). Impressively, this noble-metal-free 3 D Cu(OH)2 -NWAs/Cu foil electrode shows the highest catalytic activity with a Tafel slope of 86 mV dec(-1) , an overpotential (η) of about 530 mV at ∼10 mA cm(-2) (controlled-potential electrolysis method without iR correction) and almost 100 % Faradic efficiency, paralleling the performance of the state-of-the-art RuO2 OER catalyst in 0.1 m NaOH solution (pH 12.8). To the best of our knowledge, this work represents one of the best results ever reported on Cu-based OER systems. PMID:27440473

  17. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting.

    PubMed

    Wang, Haotian; Lee, Hyun-Wook; Deng, Yong; Lu, Zhiyi; Hsu, Po-Chun; Liu, Yayuan; Lin, Dingchang; Cui, Yi

    2015-01-01

    Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanoparticles (∼20 nm) are electrochemically transformed into ultra-small diameter (2-5 nm) nanoparticles through lithium-induced conversion reactions. Different from most traditional chemical syntheses, this method maintains excellent electrical interconnection among nanoparticles and results in large surface areas and many catalytically active sites. We demonstrate that lithium-induced ultra-small NiFeOx nanoparticles are active bifunctional catalysts exhibiting high activity and stability for overall water splitting in base. We achieve 10 mA cm(-2) water-splitting current at only 1.51 V for over 200 h without degradation in a two-electrode configuration and 1 M KOH, better than the combination of iridium and platinum as benchmark catalysts. PMID:26099250

  18. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting

    NASA Astrophysics Data System (ADS)

    Wang, Haotian; Lee, Hyun-Wook; Deng, Yong; Lu, Zhiyi; Hsu, Po-Chun; Liu, Yayuan; Lin, Dingchang; Cui, Yi

    2015-06-01

    Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanoparticles (~20 nm) are electrochemically transformed into ultra-small diameter (2-5 nm) nanoparticles through lithium-induced conversion reactions. Different from most traditional chemical syntheses, this method maintains excellent electrical interconnection among nanoparticles and results in large surface areas and many catalytically active sites. We demonstrate that lithium-induced ultra-small NiFeOx nanoparticles are active bifunctional catalysts exhibiting high activity and stability for overall water splitting in base. We achieve 10 mA cm-2 water-splitting current at only 1.51 V for over 200 h without degradation in a two-electrode configuration and 1 M KOH, better than the combination of iridium and platinum as benchmark catalysts.

  19. Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst.

    PubMed

    You, Bo; Jiang, Nan; Liu, Xuan; Sun, Yujie

    2016-08-16

    As an environmentally friendly approach to generate H2 , electrocatalytic water splitting has attracted worldwide interest. However, its broad employment has been inhibited by costly catalysts and low energy conversion efficiency, mainly due to the sluggish anodic half reaction, the O2 evolution reaction (OER), whose product O2 is not of significant value. Herein, we report an efficient strategy to replace OER with a thermodynamically more favorable reaction, the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), catalyzed by 3D Ni2 P nanoparticle arrays on nickel foam (Ni2 P NPA/NF). HMF is one of the primary dehydration intermediates of raw biomass and FDCA is of many industrial applications. As a bifunctional electrocatalyst, Ni2 P NPA/NF is not only active for HMF oxidation but also competent for H2 evolution. In fact, a two-electrode electrolyzer employing Ni2 P NPA/NF for simultaneous H2 and FDCA production required a voltage at least 200 mV smaller compared with pure water splitting to achieve the same current density, as well as exhibiting robust stability and nearly unity Faradaic efficiencies. PMID:27417546

  20. Novel Flower-like Nickel Sulfide as an Efficient Electrocatalyst for Non-aqueous Lithium-Air Batteries

    NASA Astrophysics Data System (ADS)

    Ma, Zhong; Yuan, Xianxia; Zhang, Zhenlin; Mei, Delong; Li, Lin; Ma, Zi-Feng; Zhang, Lei; Yang, Jun; Zhang, Jiujun

    2015-12-01

    In this paper, metal sulfide materials have been explored for the first time as a new choice of bifunctional cathode electrocatalyst materials for non-aqueous lithium-air batteries (LABs). Nickel sulfides with two different morphologies of flower-like (f-NiS) and rod-like (r-NiS) are successfully synthesized using a hydrothermal method with and without the assistance of cetyltrimethyl ammonium bromide. As LAB cathode catalysts, both f-NiS and r-NiS demonstrate excellent catalytic activities towards the formation and decomposition of Li2O2, resulting in improved specific capacity, reduced overpotentials and enhanced cycling performance when compared to those of pure Super P based electrode. Moreover, the morphology of NiS materials can greatly affect LAB performance. Particularly, the f-NiS is more favorable than r-NiS in terms of their application in LABs. When compared to both r-NiS and pure super P materials as LAB cathode materials, this f-NiS catalyst material can give the highest capacity of 6733 mA h g-1 and the lowest charge voltage of 4.24 V at the current density of 75 mA g-1 and also exhibit an quite stable cycling performance.

  1. Novel Flower-like Nickel Sulfide as an Efficient Electrocatalyst for Non-aqueous Lithium-Air Batteries.

    PubMed

    Ma, Zhong; Yuan, Xianxia; Zhang, Zhenlin; Mei, Delong; Li, Lin; Ma, Zi-Feng; Zhang, Lei; Yang, Jun; Zhang, Jiujun

    2015-01-01

    In this paper, metal sulfide materials have been explored for the first time as a new choice of bifunctional cathode electrocatalyst materials for non-aqueous lithium-air batteries (LABs). Nickel sulfides with two different morphologies of flower-like (f-NiS) and rod-like (r-NiS) are successfully synthesized using a hydrothermal method with and without the assistance of cetyltrimethyl ammonium bromide. As LAB cathode catalysts, both f-NiS and r-NiS demonstrate excellent catalytic activities towards the formation and decomposition of Li2O2, resulting in improved specific capacity, reduced overpotentials and enhanced cycling performance when compared to those of pure Super P based electrode. Moreover, the morphology of NiS materials can greatly affect LAB performance. Particularly, the f-NiS is more favorable than r-NiS in terms of their application in LABs. When compared to both r-NiS and pure super P materials as LAB cathode materials, this f-NiS catalyst material can give the highest capacity of 6733 mA h g(-1) and the lowest charge voltage of 4.24 V at the current density of 75 mA g(-1) and also exhibit an quite stable cycling performance. PMID:26658833

  2. Semimetallic MoP2: an active and stable hydrogen evolution electrocatalyst over the whole pH range.

    PubMed

    Pu, Zonghua; Saana Amiinu, Ibrahim; Wang, Min; Yang, Yushi; Mu, Shichun

    2016-04-28

    Developing efficient non-precious metal hydrogen evolution reaction (HER) electrocatalysts is a great challenge for sustainable hydrogen production from water. In this communication, for the first time, semimetallic MoP2 nanoparticle films on a metal Mo plate (MoP2 NPs/Mo) are fabricated through a facile two-step strategy. When used as a binder-free hydrogen evolution cathode, the as-prepared MoP2 NPs/Mo electrode exhibits superior HER catalytic activity at all pH values. At a current density of 10 mA cm(-2), the catalyst displays overpotentials of 143, 211 and 194 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution and 1.0 M KOH, respectively. Furthermore, it exhibits excellent stability over a wide pH range. Thus, this in situ route opens up a new avenue for the fabrication of highly efficient, cost-effective and binder-free non-precious catalysts for water splitting and other electrochemical devices. PMID:27065023

  3. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications

    NASA Astrophysics Data System (ADS)

    Vinayan, B. P.; Ramaprabhu, S.

    2013-05-01

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene

  4. Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Chen, Binling; Li, Rong; Ma, Guiping; Gou, Xinglong; Zhu, Yanqiu; Xia, Yongde

    2015-12-01

    Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the favourable molecular-like structural features and uniform dispersed active sites in the precursor, the resulting nanocomposites, possessing a unique core-shell structure, high porosity, homogeneous dispersion of active components together with N and S-doping effects, not only show excellent electrocatalytic activity towards ORR with the high onset potential (around -0.04 V vs. -0.02 V for the benchmark Pt/C catalyst) and four-electron pathway and OER with a small overpotential of 0.47 V for 10 mA cm-2 current density, but also exhibit superior stability (92%) to the commercial Pt/C catalyst (74%) in ORR and promising OER stability (80%) with good methanol tolerance. Our findings suggest that the transition metal sulfide-porous carbon nanocomposites derived from the one-step simultaneous sulfurization and carbonization of zeolitic imidazolate frameworks are excellent alternative bifunctional electrocatalysts towards ORR and OER in the next generation of energy storage and conversion technologies.Exploring highly-efficient and low-cost bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reactions (OER) in the renewable energy area has gained momentum but still remains a significant challenge. Here we present a simple but efficient method that utilizes ZIF-67 as the precursor and template for the one-step generation of homogeneous dispersed cobalt sulfide/N,S-codoped porous carbon nanocomposites as high-performance electrocatalysts. Due to the

  5. One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Ru; Hu, Wen-Hui; Li, Xiao; Dong, Bin; Shang, Xiao; Han, Guan-Qun; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2016-10-01

    A simple one-pot synthesis method has been used to fabricate novel Ni2P/MoS2 hybrid electrocatalysts for hydrogen evolution reaction (HER). Owing to the weak conductivity and layered structure of MoS2, Ni2P nanoparticles with excellent conductivity and activity have been doped into MoS2 for improving the electrocatalytic performances for HER. The structure and morphology of the as-prepared Ni2P/MoS2 hybrid nanostructures are characterized. XRD and XPS show the elemental composition and valence of Ni2P/MoS2. SEM and TEM confirm that the close interaction of the hybrid materials and good dispersion of Ni2P nanoparticles. The as-synthesized Ni2P/MoS2 hybrid electrocatalysts exhibit excellent activity with onset overpotential of 75 mV and Tafle slope of 76 mV dec-1, which are much better than that of pure MoS2. The enhanced stability of the as-prepared Ni2P/MoS2 for HER has also been observed. The improved performances for HER may be ascribed to the better conductivity and dispersion of MoS2 nanosheets in Ni2P/MoS2 hybrid electrocatalysts. The small size and good dispersion of Ni2P nanoparticles also contributed to the enhancement of HER activity. Compared with mechanically mixed MoS2 and Ni2P (Ni2P-MoS2), Ni2P/MoS2 hybrid materials demonstrate better electrochemical performances for HER, implying the existence of synergistic effect between Ni2P and MoS2 on HER activity.

  6. Exploring the First Steps in Core–Shell Electrocatalyst Preparation: In Situ Characterization of the Underpotential Deposition of Cu on Supported Au Nanoparticles

    PubMed Central

    2011-01-01

    The underpotential deposition (upd) of a Cu shell on a non-Pt nanoparticle core followed by galvanic displacement of the Cu template shell to form core–shell electrocatalyst materials is one means by which the Pt-based mass activity targets required for commercialization of PEM fuel cells may be reached. In situ EXAFS measurements were conducted at both the Au L3 and the Cu K absorption edges during deposition of Cu onto a carbon-supported Au electrocatalyst to study the initial stages of formation of such a core–shell electrocatalyst. The Au L3 EXAFS data obtained in 0.5 mol dm–3 H2SO4 show that the shape of the Au core is potential dependent, from a flattened to a round spherical shape as the Cu upd potential is approached. Following the addition of 2 mmol dm–3 Cu, the structure was also measured as a function of the applied potential. At +0.2 V vs Hg/Hg2SO4, the Cu2+ species was found to be a hydrated octahedron. As the potential was made more negative, single-crystal studies predict an ordered bilayer of sulfate anions and partially discharged Cu ions, followed by a complete/uniform layer of Cu atoms. In contrast, the model obtained by fitting the Au L3 and Cu K EXAFS data corresponds first to partially discharged Cu ions deposited at the defect sites in the outer shell of the Au nanoparticles at −0.42 V, followed by the growth of clusters of Cu atoms at −0.51 V. The absence of a uniform/complete Cu shell, even at the most negative potentials investigated, has implications for the structure, and the activity and/or stability, of the core–shell catalyst that would be subsequently formed following galvanic displacement of the Cu shell. PMID:22032178

  7. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    PubMed Central

    Wang, Meng; Hou, Yuyang; Slade, Robert C. T.; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

  8. A water soluble electro-catalyst for generating hydrogen based on a cobalt(III) complex supported by 1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Peng, Qiu-Xia; Tang, Ling-Zhi; Ren, Shi-Tao; Ye, Li-Ping; Deng, Yuan-Fu; Zhan, Shu-Zhong

    2016-10-01

    As we know, coordinatively unsaturated complexes can catalyze hydrogen generation via an unstable hydride intermediate. In this paper, we report an electrocatalyst based on a water soluble coordinatively saturated complex, [(phen)2Co(CN)2]·NO31 that is formed by the reaction of 1,10-phenanthroline (phen), Co(NO3)2·6H2O and tetracyanoethylene (TCNE). Its structure has been characterized by physics-chemical and spectroscopic methods. Complex 1 can electrocatalyze hydrogen evolution both from acetic acid and aqueous buffer.

  9. Pyrolysis of Animal Bones with Vitamin B12: A Facile Route to Efficient Transition Metal-Nitrogen-Carbon (TM-N-C) Electrocatalysts for Oxygen Reduction.

    PubMed

    Dou, Meiling; He, Duanpeng; Shao, Wenhao; Liu, Haijing; Wang, Feng; Dai, Liming

    2016-02-24

    By pyrolyzing cattle bones, hierarchical porous carbon (HPC) networks with a high surface area (2520 m(2)  g(-1) ) and connected pores were prepared at a low cost and large scale. Subsequent co-pyrolysis of HPC with vitamin B12 resulted in the formation of three-dimensional (3D) hierarchically structured porous cobalt-nitrogen-carbon (Co-N-HPC) electrocatalysts with a surface area as high as 859 m(2)  g(-1) as well as a higher oxygen reduction reaction (ORR) electrocatalytic activity, better operation stability, and higher tolerance to methanol than the commercial Pt/C catalyst in alkaline electrolyte.

  10. CoS2xSe2(1-x) nanowire array: an efficient ternary electrocatalyst for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Liu, Kaili; Wang, Fengmei; Xu, Kai; Shifa, Tofik Ahmed; Cheng, Zhongzhou; Zhan, Xueying; He, Jun

    2016-02-01

    Binary transition metal dichalcogenides (TMDs) have emerged as efficient catalysts for the hydrogen evolution reaction (HER). Co-based TMDs, such as CoS2 and CoSe2, demonstrate promising HER performance due to their intrinsic metallic nature. Recently, the ternary electrocatalysts were widely acknowledged for their prominent efficiency as compared to their binary counterparts due to increased active sites caused by the incorporation of different atoms. Herein, we successfully grew the ternary CoS2xSe2(1-x) (x = 0.67) nanowires (NWs) on a flexible carbon fiber. As a superior electrocatalyst, ternary CoS2xSe2(1-x) NWs arrays demonstrated excellent catalytic activity for electrochemical hydrogen evolution in acidic media, achieving current densities of 10 mA cm-2 and 100 mA cm-2 at overpotentials of 129.5 mV and 174 mV, respectively. Notably, the high stability of CoS2xSe2(1-x) NWs suggested that the ternary CoS2xSe2(1-x) NWs are a scalable catalyst for electrochemical hydrogen evolution.Binary transition metal dichalcogenides (TMDs) have emerged as efficient catalysts for the hydrogen evolution reaction (HER). Co-based TMDs, such as CoS2 and CoSe2, demonstrate promising HER performance due to their intrinsic metallic nature. Recently, the ternary electrocatalysts were widely acknowledged for their prominent efficiency as compared to their binary counterparts due to increased active sites caused by the incorporation of different atoms. Herein, we successfully grew the ternary CoS2xSe2(1-x) (x = 0.67) nanowires (NWs) on a flexible carbon fiber. As a superior electrocatalyst, ternary CoS2xSe2(1-x) NWs arrays demonstrated excellent catalytic activity for electrochemical hydrogen evolution in acidic media, achieving current densities of 10 mA cm-2 and 100 mA cm-2 at overpotentials of 129.5 mV and 174 mV, respectively. Notably, the high stability of CoS2xSe2(1-x) NWs suggested that the ternary CoS2xSe2(1-x) NWs are a scalable catalyst for electrochemical hydrogen evolution

  11. Core-shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Hou, Yuyang; Slade, Robert; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Hua Kun

    2016-08-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped three-dimensional graphene architecture (Co/CoO-NG) were synthesized through a facile hydrothermal method following by heat treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NG to facilitate the catalytic reaction. The synthesized Co/CoO-NG was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

  12. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction

    PubMed Central

    Wang, Meng; Hou, Yuyang; Slade, Robert C. T.; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C. PMID:27597939

  13. Co3O4 NPs Embedded in N-doped Carbon Fibers as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions

    NASA Astrophysics Data System (ADS)

    Guo, Yao-Fang; Liu, Ting; Sun, Ke-Ning

    2016-05-01

    Oxygen reduction and evolution reactions are important and major challenges to Li-air batteries. In this report, a three-dimensional (3D) bifunctional electrocatalyst was prepared by embedding Co3O4 nanoparticles into nitrogen-doped carbon nanofibers (denoted as Co3O4-NCNF) by a facile method. The Co3O4-NCNF possesses a high specific surface area(403.5 m2/g) and porous structure. The Co3O4-NCNF exhibits an excellent catalytic activity and long-time durability for both oxygen reduction and evolution reactions in alkaline solutions.

  14. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction.

    PubMed

    Wang, Meng; Hou, Yuyang; Slade, Robert C T; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C. PMID:27597939

  15. Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction.

    PubMed

    Wang, Meng; Hou, Yuyang; Slade, Robert C T; Wang, Jiazhao; Shi, Dongqi; Wexler, David; Liu, Huakun; Chen, Jun

    2016-01-01

    Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-NGA to facilitate the catalytic reaction. The synthesized Co/CoO-NGA was explored as an electrocatalyst for the oxygen reduction reaction, showing comparable oxygen reduction performance with excellent methanol resistance and better durability compared with Pt/C.

  16. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.

    PubMed

    Bullock, R Morris; Helm, Monte L

    2015-07-21

    Sustainable, carbon-neutral energy is needed to supplant the worldwide reliance on fossil fuels in order to address the persistent problem of increasing emissions of CO2. Solar and wind energy are intermittent, highlighting the need to develop energy storage on a huge scale. Electrocatalysts provide a way to convert between electrical energy generated by renewable energy sources and chemical energy in the form of chemical bonds. Oxidation of hydrogen to give two electrons and two protons is carried out in fuel cells, but the typical catalyst is platinum, a precious metal of low earth abundance and high cost. In nature, hydrogenases based on iron or iron/nickel reversibly oxidize hydrogen with remarkable efficiencies and rates. Functional models of these enzymes have been synthesized with the goal of achieving electrocatalytic H2 oxidation using inexpensive, earth-abundant metals along with a key feature identified in the [FeFe]-hydrogenase: an amine base positioned near the metal. The diphosphine ligands P(R)2N(R')2 (1,5-diaza-3,7-diphosphacyclooctane with alkyl or aryl groups on the P and N atoms) are used as ligands in Ni, Fe, and Mn complexes. The pendant amines facilitate binding and heterolytic cleavage of H2, placing the hydride on the metal and the proton on the amine. The pendant amines also serve as proton relays, accelerating intramolecular and intermolecular proton transfers. Electrochemical oxidations and deprotonations by an exogeneous amine base lead to catalytic cycles for oxidation of H2 (1 atm) at room temperature for catalysts derived from [Ni(P(Cy)2N(R')2)2](2+), Cp(C6F5)Fe(P(tBu)2N(Bn)2)H, and MnH(P(Ph)2N(Bn)2)(bppm)(CO) [bppm = (PAr(F)2)2CH2]. In the oxidation of H2 catalyzed by [Ni(P(Cy)2N(R')2)2](2+), the initial product observed experimentally is a Ni(0) complex in which two of the pendant amines are protonated. Two different pathways can occur from this intermediate; deprotonation followed by oxidation occurs with a lower overpotential than

  17. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.

    PubMed

    Bullock, R Morris; Helm, Monte L

    2015-07-21

    Sustainable, carbon-neutral energy is needed to supplant the worldwide reliance on fossil fuels in order to address the persistent problem of increasing emissions of CO2. Solar and wind energy are intermittent, highlighting the need to develop energy storage on a huge scale. Electrocatalysts provide a way to convert between electrical energy generated by renewable energy sources and chemical energy in the form of chemical bonds. Oxidation of hydrogen to give two electrons and two protons is carried out in fuel cells, but the typical catalyst is platinum, a precious metal of low earth abundance and high cost. In nature, hydrogenases based on iron or iron/nickel reversibly oxidize hydrogen with remarkable efficiencies and rates. Functional models of these enzymes have been synthesized with the goal of achieving electrocatalytic H2 oxidation using inexpensive, earth-abundant metals along with a key feature identified in the [FeFe]-hydrogenase: an amine base positioned near the metal. The diphosphine ligands P(R)2N(R')2 (1,5-diaza-3,7-diphosphacyclooctane with alkyl or aryl groups on the P and N atoms) are used as ligands in Ni, Fe, and Mn complexes. The pendant amines facilitate binding and heterolytic cleavage of H2, placing the hydride on the metal and the proton on the amine. The pendant amines also serve as proton relays, accelerating intramolecular and intermolecular proton transfers. Electrochemical oxidations and deprotonations by an exogeneous amine base lead to catalytic cycles for oxidation of H2 (1 atm) at room temperature for catalysts derived from [Ni(P(Cy)2N(R')2)2](2+), Cp(C6F5)Fe(P(tBu)2N(Bn)2)H, and MnH(P(Ph)2N(Bn)2)(bppm)(CO) [bppm = (PAr(F)2)2CH2]. In the oxidation of H2 catalyzed by [Ni(P(Cy)2N(R')2)2](2+), the initial product observed experimentally is a Ni(0) complex in which two of the pendant amines are protonated. Two different pathways can occur from this intermediate; deprotonation followed by oxidation occurs with a lower overpotential than

  18. CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution.

    PubMed

    Yuan, Weiyong; Wang, Xiaoyan; Zhong, Xiaoling; Li, Chang Ming

    2016-08-17

    The development of efficient and low-cost hydrogen evolution reaction (HER) catalysts is critical for storing energy in hydrogen via water splitting but still presents great challenges. Herein, we report synthesis of three-dimensional (3-D) hierarchical nanoporous carbon (HNC) supported transition metal phosphides (TMPs) for the first time by in situ growth of CoP nanoparticles (NPs) in CaCO3 NP-templated Cinnamomum platyphyllum leaf extract-derived carbon. They were subsequently employed as a HER catalyst, showing an onset potential of 7 mV and an overpotential of 95.8 mV to achieve 10 mA cm(-2), a Tafel plot of 33 mV dec(-1), and an exchange current density of 0.1182 mA cm(-2), of which the onset overpotential and the Tafel plot are the lowest reported for non-noble-metal HER catalysts, and the overpotential to achieve 10 mA cm(-2) and the exchange current density also compare favorably to most reported HER catalysts. In addition, this catalyst exhibits excellent durability with negligible loss in current density after 2000 CV cycles ranging from +0.01 to -0.17 V vs RHE at a scan rate of 100 mV s(-1) or 22 h of chronoamperometric measurement at an overpotential of 96 mV and a high Faraday efficiency of close to 100%. This work not only creates a novel high-performance non-noble-metal HER electrocatalyst and demonstrates the great advantages of the in situ grown 3-D HNC supported TMP NPs for the electrocatalysis of HER but also offers scientific insight into the mechanism for the in situ growth of TMP and their precursor NPs, in which an ultralow reactant concentration and rich functional groups on the 3-D HNC support play critical roles. PMID:27467887

  19. Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen.

    PubMed

    Raugei, Simone; Helm, Monte L; Hammes-Schiffer, Sharon; Appel, Aaron M; O'Hagan, Molly; Wiedner, Eric S; Bullock, R Morris

    2016-01-19

    Understanding how to control the movement of protons and electrons is crucial to the design of fast, efficient electrocatalysts for H2 production and oxidation based on earth-abundant metals. Our work seeks to address fundamental questions about proton movement. We have demonstrated that incorporating a pendant amine functioning as a proton relay in the second coordination sphere of a metal complex helps proton mobility, resulting in faster and more energy-efficient catalysts. Proton-transfer reactions can be rate-limiting and are influenced by several factors, such as pKa values, steric effects, hydrogen bonding, and solvation/desolvation of the exogenous base and acid employed. The presence of multiple protonation sites introduces branching points along the catalytic cycle, making less productive pathways accessible or leading to the formation of stable off-cycle species. Using ligands with only one pendant amine mitigates this problem and results in catalysts with high rates for production of H2, although generally at higher overpotentials. For H2 oxidation catalysts, iron complexes with a high H2 binding affinity were developed. However, these iron complexes had a pKa mismatch between the protonated metal center and the protonated pendant amine, and consequently intramolecular proton movement was slow. Taken altogether, our results demonstrate the necessity of optimizing the entire catalytic cycle because optimization of a specific catalytic step can negatively influence another step and not necessarily lead to a better catalytic performance. We discuss a general procedure, based on thermodynamic arguments, which allows the simultaneous minimization of the free-energy change of each catalytic step, yielding a nearly flat free-energy surface, with no large barriers due to energy mismatches from either high- or low-energy intermediates. PMID:26653114

  20. Catalytic amplification based on hole-transporting materials as efficient metal-free electrocatalysts for non-enzymatic glucose sensing.

    PubMed

    Gu, Yue; Yuan, Rongrong; Yan, Xiaoyi; Li, Cong; Liu, Weilu; Chen, Ruixue; Tang, Liu; Zheng, Bo; Li, Yaru; Zhang, Zhiquan; Yang, Ming

    2015-08-19

    Hole-transporting materials with tunable structures and properties are mainly applied in organic light-emitting diodes as transport layer. But their catalytic properties as signal amplifiers in biological assays are seldom reported. In this paper, a starburst molecule, 4,4,4″-tri(N-carbazolyl)-triphenylamine (TCT), containing a triphenylamine as the central core and three carbazoles as the peripheral functional groups was designed and synthesized. Subsequently, the hole-transporting material based on the TCT polymer, poly(TCT) (PTCT), was achieved via a low-cost electrochemical method and exploited as an efficient metal-free electrocatalyst for non-enzymatic glucose detection. Here, this hole-transporting material served three purposes: electrochemical recognition (owing to hydrogen bonding interaction and the biomimetic microenvironment created by the polymer), electrocatalysis (owing to the hole-transporting capability of triphenylamine and the catalytic property of carbazole), and signal amplification (owing to energy migration along the conductive polymer backbone). The electrocatalytic and sensing performances of the sensor based on PTCT were evaluated in detail. Results revealed that the PTCT film could efficiently catalyze the oxidation of glucose at a less-positive potential (+0.20 V) in the absence of any enzymes. The response to glucose was linear in the concentration range of 1.0-6000 μM, and the detection limit was 0.20 μM. With good stability and selectivity, the proposed sensor could be feasibly applied to detect glucose in practical samples. The encouraging sensing performances suggest that the hole-transporting material is one of the promising biomimetic catalysts for electrocatalysis and relevant fields. PMID:26343433

  1. Evaluation of the Role of Water in the H2 Bond Formation by Ni(II)-based Electrocatalysts

    SciTech Connect

    Ho, Ming-Hsun; Raugei, Simone; Rousseau, Roger J.; Dupuis, Michel; Bullock, R. Morris

    2013-07-17

    We investigate the role of water in the H-H bond formation by a family of nickel molecular catalysts that exhibit high rates for H2 production in acetonitrile solvent. A key feature leading to the high reactivity is the Lewis acidity of the Ni(II) center and pendant amines in the diphosphine ligand that function as Lewis bases, facilitating H-H bond formation or cleavage. Significant increases in the rate of H2 production have been reported in the presence of added water. Our calculations show that molecular water can displace an acetonitrile solvent molecule in the first solvation shell of the metal. One or two water molecules can also participate in shuttling a proton that can combine with a metal hydride to form the H-H bond. However the participation of the water molecules does not lower the barrier to H-H bond formation. Thus these calculations suggest that the rate increase due to water in these electrocatalysts is not associated with the elementary step of H-H bond formation or cleavage, but rather with the proton delivery steps. We attribute the higher barrier in the H-H bond formation in the presence of water to a decrease in direct interaction between the protic and hydridic hydrogen atoms forced by the water molecules. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory - Pacific Northwest National Laboratory, the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory, and the Jaguar supercomputer at Oak Ridge National Laboratory.

  2. A low-cost cementite (Fe3C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction.

    PubMed

    Wu, Tianxing; Zhang, Haimin; Zhang, Xian; Zhang, Yunxia; Zhao, Huijun; Wang, Guozhong

    2015-11-01

    In this work, chitosan whiskers (CWs) were first extracted using low-cost and earth-abundant crab shells as materials by a series of chemical processes, and then assembled into chitosan whisker microspheres (CWMs) via a simple photochemical polymerization approach. Subsequently, a cementite (Fe3C) nanocrystal@N-doped graphitic carbon (Fe3C@NGC) nanocomposite was successfully fabricated by high temperature pyrolysis of CWMs adsorbed with ferric acetylacetonate (Fe(acac)3) at 900 °C. It was found that a suitable growth atmosphere generated inside CWMs during high temperature pyrolysis is critically important to form Fe3C nanocrystal cores, concurrently accompanying a structural transformation from chitosan whiskers to mesoporous graphitic carbon shells with natural nitrogen (N) doping properties, resulting in the formation of a core-shell structure Fe3C@NGC nanocomposite. The resulting samples were evaluated as electrocatalysts for oxygen reduction reaction (ORR). In comparison with sole N-doped graphitic carbon without Fe3C nanocrystals obtained by direct pyrolysis of chitosan whisker microspheres at 900 °C (CWMs-900), Fe3C@NGC showed significantly improved ORR catalytic activity. The tolerance to fuel cell molecules (e.g., methanol) and the durability of Fe3C@NGC are obviously superior to commercial Pt/C catalysts in alkaline media. The high ORR performance of Fe3C@NGC could be due to its large surface area (313.7 m(2) g(-1)), a synergistic role of Fe3C nanocrystals, N doping in graphitic carbon creating more catalytic active sites, and a porous structure of the nanocomposite facilitating mass transfer to efficiently improve the utilization of these catalytic active sites.

  3. A modular, energy-based approach to the development of nickel containing molecular electrocatalysts for hydrogen production and oxidation.

    PubMed

    Shaw, Wendy J; Helm, Monte L; DuBois, Daniel L

    2013-01-01

    This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first, second, and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride donor abilities and other important thermodynamic parameters. The second coordination sphere includes functional groups such as pendent acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and providing a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor ability of the catalysts using the first coordination sphere and the proton donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, oxidation, or bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that is beyond the second coordination sphere. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes, and these simple systems provide insights into enzyme function and reactivity that may be difficult to probe in enzymes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.

  4. Computing Free Energy Landscapes: Application to Ni-based Electrocatalysts with Pendant Amines for H2 Production and Oxidation

    SciTech Connect

    Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris; DuBois, Daniel L.; Dupuis, Michel; Rousseau, Roger J.; Raugei, Simone

    2014-01-03

    A general strategy is reported for computational exploration of catalytic pathways of molecular catalysts. Our results are based on a set of linear free energy relationships derived from extensive electronic structure calculations that permit predicting the thermodynamics of intermediates, with accuracy comparable to experimental data. The approach is exemplified with the catalytic oxidation and production of H2 by [Ni(diphosphine)2]2+ electrocatalysts with pendant amines incorporated in the second coordination sphere of the metal center. The analysis focuses upon prediction of thermodynamic properties including reduction potentials, hydride donor abilities, and pKa values of both the protonated Ni center and pendant amine. It is shown that all of these chemical properties can be estimated from the knowledge of only the two redox potentials for the Ni(II)/Ni(I) and Ni(I)/Ni(0) couples of the non-protonated complex, and the pKa of the parent primary aminium ion. These three quantities are easily accessible either experimentally or theoretically. The proposed correlations reveal intimate details about the nature of the catalytic mechanism and its dependence on chemical structure and thermodynamic conditions such as applied external voltage and species concentration. This computational methodology is applied to exploration of possible catalytic pathways, identifying low and high-energy intermediates and, consequently, possibly avoiding bottlenecks associated with undesirable intermediates in the catalytic reactions. We discuss how to optimize some of the critical reaction steps in order to favor catalytically more efficient intermediates. The results of this study highlight the substantial interplay between the various parameters characterizing the catalytic activity, and form the basis needed to optimize the performance of this class of catalysts.

  5. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.

    PubMed

    Cochell, T; Manthiram, A

    2012-01-17

    A series of carbon-supported core-shell nanoparticles with Pd(x)Cu(y)-rich cores and Pt-rich shells (Pt@Pd(x)Cu(y)/C) has been synthesized by a polyol reduction of the precursors followed by heat treatment to obtain the Pd(x)Cu(y)/C (1 ≤ x ≤ 3 and 0 ≤ y ≤ 5) cores and the galvanic displacement of Pd(x)Cu(y) with [PtCl(4)](2-) to form the Pt shell. The nanoparticles have also been investigated with respect to the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells (PEMFCs). X-ray diffraction (XRD) analysis suggests that the cores are highly alloyed and that the galvanic displacement results in a certain amount of alloying between Pt and the underlying Pd(x)Cu(y) alloy core. Transmission electron microscopy (TEM) images show that the Pt@Pd(x)Cu(y)/C catalysts (where y > 0) have mean particle sizes of <8 nm. Compositional analysis by energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) clearly shows Pt enrichment in the near-surface region of the nanoparticles. Cyclic voltammograms show a positive shift of as much as 40 mV for the onset of Pt-OH formation in the Pt@Pd(x)Cu(y)/C electrocatalysts compared to that in Pt/C. Rotating disk electrode (RDE) measurements of Pt@PdCu(5)/C show an increase in the Pt mass activity by 3.5-fold and noble metal activity by 2.5-fold compared to that of Pt/C. The activity enhancements in RDE and PEMFC measurements are believed to be a result of the delay in the onset of Pt-OH formation.

  6. Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen.

    PubMed

    Raugei, Simone; Helm, Monte L; Hammes-Schiffer, Sharon; Appel, Aaron M; O'Hagan, Molly; Wiedner, Eric S; Bullock, R Morris

    2016-01-19

    Understanding how to control the movement of protons and electrons is crucial to the design of fast, efficient electrocatalysts for H2 production and oxidation based on earth-abundant metals. Our work seeks to address fundamental questions about proton movement. We have demonstrated that incorporating a pendant amine functioning as a proton relay in the second coordination sphere of a metal complex helps proton mobility, resulting in faster and more energy-efficient catalysts. Proton-transfer reactions can be rate-limiting and are influenced by several factors, such as pKa values, steric effects, hydrogen bonding, and solvation/desolvation of the exogenous base and acid employed. The presence of multiple protonation sites introduces branching points along the catalytic cycle, making less productive pathways accessible or leading to the formation of stable off-cycle species. Using ligands with only one pendant amine mitigates this problem and results in catalysts with high rates for production of H2, although generally at higher overpotentials. For H2 oxidation catalysts, iron complexes with a high H2 binding affinity were developed. However, these iron complexes had a pKa mismatch between the protonated metal center and the protonated pendant amine, and consequently intramolecular proton movement was slow. Taken altogether, our results demonstrate the necessity of optimizing the entire catalytic cycle because optimization of a specific catalytic step can negatively influence another step and not necessarily lead to a better catalytic performance. We discuss a general procedure, based on thermodynamic arguments, which allows the simultaneous minimization of the free-energy change of each catalytic step, yielding a nearly flat free-energy surface, with no large barriers due to energy mismatches from either high- or low-energy intermediates.

  7. A Modular, Energy-Based Approach to the Development of Nickel Containing Molecular Electrocatalysts for Hydrogen Production and Oxidation

    SciTech Connect

    Shaw, Wendy J.; Helm, Monte L.; DuBois, Daniel L.

    2013-08-01

    This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first second and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride acceptor abilities and other important thermodynamic parameters. The second coordination sphere is defined as functional groups such as pendant acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and provide a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor/acceptor ability of the catalysts using the first coordination sphere and the proton acceptor/donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, H2 oxidation, or that are bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that are not in the first and second coordination spheres. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes and they provide the opportunity to probe certain aspects of catalysis that may be difficult in enzymes themselves, but that can provide insights into enzyme function and reactivity.

  8. A low-cost cementite (Fe3C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction.

    PubMed

    Wu, Tianxing; Zhang, Haimin; Zhang, Xian; Zhang, Yunxia; Zhao, Huijun; Wang, Guozhong

    2015-11-01

    In this work, chitosan whiskers (CWs) were first extracted using low-cost and earth-abundant crab shells as materials by a series of chemical processes, and then assembled into chitosan whisker microspheres (CWMs) via a simple photochemical polymerization approach. Subsequently, a cementite (Fe3C) nanocrystal@N-doped graphitic carbon (Fe3C@NGC) nanocomposite was successfully fabricated by high temperature pyrolysis of CWMs adsorbed with ferric acetylacetonate (Fe(acac)3) at 900 °C. It was found that a suitable growth atmosphere generated inside CWMs during high temperature pyrolysis is critically important to form Fe3C nanocrystal cores, concurrently accompanying a structural transformation from chitosan whiskers to mesoporous graphitic carbon shells with natural nitrogen (N) doping properties, resulting in the formation of a core-shell structure Fe3C@NGC nanocomposite. The resulting samples were evaluated as electrocatalysts for oxygen reduction reaction (ORR). In comparison with sole N-doped graphitic carbon without Fe3C nanocrystals obtained by direct pyrolysis of chitosan whisker microspheres at 900 °C (CWMs-900), Fe3C@NGC showed significantly improved ORR catalytic activity. The tolerance to fuel cell molecules (e.g., methanol) and the durability of Fe3C@NGC are obviously superior to commercial Pt/C catalysts in alkaline media. The high ORR performance of Fe3C@NGC could be due to its large surface area (313.7 m(2) g(-1)), a synergistic role of Fe3C nanocrystals, N doping in graphitic carbon creating more catalytic active sites, and a porous structure of the nanocomposite facilitating mass transfer to efficiently improve the utilization of these catalytic active sites. PMID:26426862

  9. Carbon-Coated Core-Shell Fe-Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn-Air Battery.

    PubMed

    Nam, Gyutae; Park, Joohyuk; Choi, Min; Oh, Pilgun; Park, Suhyeon; Kim, Min Gyu; Park, Noejung; Cho, Jaephil; Lee, Jang-Soo

    2015-06-23

    Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal-air batteries and fuel cells. Alloying has been studied to finely tune the catalysts' electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH(-), thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn-air battery.

  10. Preparation of onion-like Pt-terminated Pt-Cu bimetallic nano-sized electrocatalysts for oxygen reduction reaction in fuel cells

    NASA Astrophysics Data System (ADS)

    Lim, Taeho; Kim, Ok-Hee; Sung, Yung-Eun; Kim, Hyun-Jong; Lee, Ho-Nyun; Cho, Yong-Hun; Kwon, Oh Joong

    2016-06-01

    Onion-like Pt-terminated Pt-Cu bimetallic nano-sized electrocatalysts (Pt/Cu/Pt/C) were synthesized by using an electroless deposition method. The synthesized Pt/Cu/Pt/C consisted of a Pt-enriched shell, a sandwiched Pt-Cu alloy layer, and a Pt core. The Pt/Cu/Pt/C showed higher electrocatalytic activity toward oxygen reduction reaction in half-cell test than that of commercial Pt/C due to an electronic structure change in the Pt-enriched shell, resulting from the sandwiched Pt-Cu alloy layer underneath. The stability of the Pt/Cu/Pt/C was examined by using both half-cell and single-cell degradation tests. In both tests, the Pt/Cu/Pt/C exhibited stronger resistance to catalyst degradation than that of the commercial Pt/C. It is notable that cell performance with the Pt/Cu/Pt/C was fully recovered by N2 purging after single-cell degradation testing, indicating there was no permanent damage to the electrocatalyst during the test. It is suggested that thermodynamically-stable structure of the Pt/Cu/Pt/C contributed to the improved stability.

  11. How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favor of H2 Production and CO2 Reduction

    PubMed Central

    2013-01-01

    The most efficient catalysts for solar fuel production should operate close to reversible potentials, yet possess a bias for the fuel-forming direction. Protein film electrochemical studies of Ni-containing carbon monoxide dehydrogenase and [NiFeSe]-hydrogenase, each a reversible electrocatalyst, show that the electronic state of the electrode strongly biases the direction of electrocatalysis of CO2/CO and H+/H2 interconversions. Attached to graphite electrodes, these enzymes show high activities for both oxidation and reduction, but there is a marked shift in bias, in favor of CO2 or H+ reduction, when the respective enzymes are attached instead to n-type semiconductor electrodes constructed from CdS and TiO2 nanoparticles. This catalytic rectification effect can arise for a reversible electrocatalyst attached to a semiconductor electrode if the electrode transforms between semiconductor- and metallic-like behavior across the same narrow potential range (<0.25 V) that the electrocatalytic current switches between oxidation and reduction. PMID:24070184

  12. Carbon-Coated Core-Shell Fe-Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn-Air Battery.

    PubMed

    Nam, Gyutae; Park, Joohyuk; Choi, Min; Oh, Pilgun; Park, Suhyeon; Kim, Min Gyu; Park, Noejung; Cho, Jaephil; Lee, Jang-Soo

    2015-06-23

    Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal-air batteries and fuel cells. Alloying has been studied to finely tune the catalysts' electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH(-), thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn-air battery. PMID:25967866

  13. Co@Co3 O4 @PPD Core@bishell Nanoparticle-Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction.

    PubMed

    Wang, Zhijuan; Li, Bing; Ge, Xiaoming; Goh, F W Thomas; Zhang, Xiao; Du, Guojun; Wuu, Delvin; Liu, Zhaolin; Andy Hor, T S; Zhang, Hua; Zong, Yun

    2016-05-01

    Durable electrocatalysts with high catalytic activity toward oxygen reduction reaction (ORR) are crucial to high-performance primary zinc-air batteries (ZnABs) and direct methanol fuel cells (DMFCs). An efficient composite electrocatalyst, Co@Co3 O4 core@shell nanoparticles (NPs) embedded in pyrolyzed polydopamine (PPD) is reported, i.e., in Co@Co3 O4 @PPD core@bishell structure, obtained via a three-step sequential process involving hydrothermal synthesis, high temperature calcination under nitrogen atmosphere, and gentle heating in air. With Co@Co3 O4 NPs encapsulated by ultrathin highly graphitized N-doped carbon, the catalyst exhibits excellent stability in aqueous alkaline solution over extended period and good tolerance to methanol crossover effect. The integration of N-doped graphitic carbon outer shell and ultrathin nanocrystalline Co3 O4 inner shell enable high ORR activity of the core@bishell NPs, as evidenced by ZnABs using catalyst of Co@Co3 O4 @PPD in air-cathode which delivers a stable voltage profile over 40 h at a discharge current density of as high as 20 mA cm(-2) . PMID:27031907

  14. Porous Core-Shell Fe3C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction.

    PubMed

    Ren, Guangyuan; Lu, Xianyong; Li, Yunan; Zhu, Ying; Dai, Liming; Jiang, Lei

    2016-02-17

    The development of nonprecious-metal-based electrocatalysts with high oxygen reduction reaction (ORR) activity, low cost, and good durability in both alkaline and acidic media is very important for application of full cells. Herein, we developed a facile and economical strategy to obtain porous core-shell Fe3C embedded nitrogen-doped carbon nanofibers (Fe3C@NCNF-X, where X denotes pyrolysis temperature) by electrospinning of polyvinylidene fluoride (PVDF) and FeCl3 mixture, chemical vapor phase polymerization of pyrrole, and followed by pyrolysis of composite nanofibers at high temperatures. Note that the FeCl3 and polypyrrole acts as precursor for Fe3C core and N-doped carbon shell, respectively. Moreover, PVDF not only plays a role as carbon resources, but also provides porous structures due to hydrogen fluoride exposure originated from thermal decomposition of PVDF. The resultant Fe3C@NCNF-X catalysts, particularly Fe3C@NCNF-900, showed efficient electrocatalytic performance for ORR in both alkaline and acidic solutions, which are attributed to the synergistic effect between Fe3C and N-doped carbon as catalytic active sites, and carbon shell protects Fe3C from leaching out. In addition, the Fe3C@NCNF-X catalyst displayed a better long-term stability, free from methanol crossover and CO-poisoning effects than those of Pt/C, which is of great significance for the design and development of advanced electrocatalysts based on nonprecious metals. PMID:26808226

  15. Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders

    NASA Astrophysics Data System (ADS)

    Chanda, Debabrata; Hnát, Jaromír; Paidar, Martin; Schauer, Jan; Bouzek, Karel

    2015-07-01

    NiFe2O4 electrocatalyst for the hydrogen evolution reaction (HER) has been synthesized using the co-precipitation method of the respective metal ions from water solution. After calcination of the precipitate, the resulting electrocatalyst was characterized by a broad range of techniques to obtain information on its crystallographic structure, specific surface area, morphology and chemical composition. The electrocatalytic activity towards HER in alkaline water electrolysis was investigated by means of linear sweep voltammetry. The catalyst showed promising electrocatalytic properties. Subsequently three types of binders were used to prepare a cathode catalytic layer based on a catalyst synthesized on top of a nickel foam support, namely an anion-selective quaternized poly(phenylene oxide) (qPPO) ionomer, an electroneutral polymer polytetrafluoroethylene and cation-selective Nafion®. The resulting membrane-electrode assemblies (MEAs), based on an anion-selective membrane, were tested in an alkaline water electrolyzer. In a single-cell test the MEA with a qPPO ionomer exhibited higher HER activity compared to the remaining binders tested. The current density obtained using a MEA containing qPPO binder attained a value of 125 mA cm-2 at a cell voltage of 1.85 V. The stability of the MEA containing qPPO binder was examined by continuous operation for 143 h, followed by 55 h intermittent electrolysis.

  16. Activity of dealloyed PtCo 3 and PtCu 3 nanoparticle electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Oezaslan, Mehtap; Strasser, Peter

    We report a comparative study of the alloy formation and electrochemical activity of dealloyed PtCo 3 and PtCu 3 nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). For the Pt-Co system the maximum annealing temperatures were 650 °C, 800 °C and 900 °C for 7 h to drive the Pt-Co alloy formation and the particle growth. EDS and XRD were employed for the characterization of catalyst powders. The RDE and RRDE experiments were conducted in 0.1 M HClO 4 at room temperature. We demonstrate that the mass and surface area specific ORR activities of Pt-Co and Pt-Cu alloys after voltammetric activation exhibit a considerable improvement compared to those of pure Pt/C. The dealloyed PtCo 3 (800 °C/7 h) electrocatalyst performs 3 times higher in terms of Pt-based mass activity and 4-5 times higher in terms of ECSA-based specific activity than a 28.2 wt.% Pt/C. Dealloyed Pt-Co catalysts (800 °C/7 h) show the most favorable balance between mass and specific ORR activity with a particle size of 2.2 ± 0.1 nm. We hypothesize that geometric strain effects of the dealloyed Pt-Co nanoparticles, similar to those found in dealloyed PtCu 3 nanoparticles, are responsible for the improvement in ORR activity [1].

  17. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    SciTech Connect

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng -Chang; Wang, Di -Yan; Yang, Jiang; Hwang, Bing -Joe; Dai, Hongjie

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm–2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.

  18. Iron-embedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (ORR): A density functional theory (DFT) study

    NASA Astrophysics Data System (ADS)

    Feng, Li-yan; Liu, Yue-jie; Zhao, Jing-xiang

    2015-08-01

    We performed comprehensive density functional theory (DFT) calculations to explore the possibility of the Fe-embedded hexagonal boron nitride (h-BN) sheet as a novel electrocatalyst for ORR. Our results show that Fe atom can strongly bind with defective BN sheet and thus ensure its high stability. Moreover, O2 molecule is found to be strongly chemisorbed on Fe-embedded BN sheet with the adsorption energy of -1.76 eV, which can server as precursors for ORR, followed by its hydrogenation into OOH species rather than direct breakage of the O-O bond. Further, the HOOH species in the process of OOH reduction is shown to be unstable and dissociates into two OH group, suggesting that ORR catalyzed by Fe-embedded BN sheet is a direct four-electron pathway. Finally, on the basis of the calculations on the free energy change and activate energy of each step in ORR, we expect that Fe-embedded BN sheet exhibits good catalytic activity for ORR. Our results provide an useful guidance for the design and fabrication of novel and nonprecious BN sheet-based electrocatalyst for ORR as the alternative of expensive Pt catalysts.

  19. Direct Transformation from Graphitic C3N4 to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction.

    PubMed

    Li, Jiajie; Zhang, Yumin; Zhang, Xinghong; Han, Jiecai; Wang, Yi; Gu, Lin; Zhang, Zhihua; Wang, Xianjie; Jian, Jikang; Xu, Ping; Song, Bo

    2015-09-01

    Carbon-based nanomaterials provide an attractive perspective to replace precious Pt-based electrocatalysts for oxygen reduction reaction (ORR) to enhance the practical applications of fuel cells. Herein, we demonstrate a one-pot direct transformation from graphitic-phase C3N4 (g-C3N4) to nitrogen-doped graphene. g-C3N4, containing only C and N elements, acts as a self-sacrificing template to construct the framework of nitrogen-doped graphene. The relative contents of graphitic and pyridinic-N can be well-tuned by the controlled annealing process. The resulting nitrogen-doped graphene materials show excellent electrocatalytic activity toward ORR, and much enhanced durability and tolerance to methanol in contrast to the conventional Pt/C electrocatalyst in alkaline medium. It is determined that a higher content of N does not necessarily lead to enhanced electrocatalytic activity; rather, at a relatively low N content and a high ratio of graphitic-N/pyridinic-N, the nitrogen-doped graphene obtained by annealing at 900 °C (NGA900) provides the most promising activity for ORR. This study may provide further useful insights on the nature of ORR catalysis of carbon-based materials.

  20. Nitrogen-doped hierarchical lamellar porous carbon synthesized from the fish scale as support material for platinum nanoparticle electrocatalyst toward the oxygen reduction reaction.

    PubMed

    Liu, Haijing; Cao, Yinliang; Wang, Feng; Huang, Yaqin

    2014-01-22

    Novel hierarchical lamellar porous carbon (HLPC) with high BET specific surface area of 2730 m(2) g(-1) and doped by nitrogen atoms has been synthesized from the fish scale without any post-synthesis treatment, and applied to support the platinum (Pt) nanoparticle (NP) catalysts (Pt/HLPC). The Pt NPs could be highly dispersed on the porous surface of HLPC with a narrow size distribution centered at ca. 2.0 nm. The results of the electrochemical analysis reveal that the electrochemical active surface area (ECSA) of Pt/HLPC is larger than the Pt NP electrocatalyst supported on the carbon black (Pt/Vulcan XC-72). Compared with the Pt/Vulcan XC-72, the Pt/HLPC exhibits larger current density, lower overpotential, and enhanced catalytic activity toward the oxygen reduction reaction (ORR) through the direct four-electron pathway. The improved catalytic activity is mainly attributed to the high BET specific surface area, hierarchical porous structures and the nitrogen-doped surface property of HLPC, indicating the superiority of HLPC as a promising support material for the ORR electrocatalysts.

  1. Universal Strategy to Fabricate a Two-Dimensional Layered Mesoporous Mo2C Electrocatalyst Hybridized on Graphene Sheets with High Activity and Durability for Hydrogen Generation.

    PubMed

    Huo, Lili; Liu, Baocang; Zhang, Geng; Zhang, Jun

    2016-07-20

    A universal strategy was developed for fabrication of a highly active and durable precious-metal-free mesoporous Mo2C/graphene (m-Mo2C/G) electrocatalyst with a two-dimensional layered structural feature via a nanocasting method using glucose as a carbon source and an in-stiu assembled mesoporous KIT-6/graphene (KIT-6/G) as a template. The m-Mo2C/G catalyst exhibits high catalytic activity and excellent durability for hydrogen evolution reaction (HER) over a wide pH range, which displays a small onset potential of 8 mV, owerpotential (η10) for driving a cathodic current density of 10 mA·cm(-2) of 135 mV, a Tafel slope of 58 mV·dec(-1), and an exchange current density of 6.31 × 10(-2) mA·cm(-2) in acidic media and an onset potential of of 41 mV, η10 of 128 mV, Tafel slope of 56 mV·dec(-1), and an exchange current density of 4.09 × 10(-2) mA·cm(-2) in alkaline media, respectively. Furthermore, such an m-Mo2C/G electrocatalyst also gives about 100% Faradaic yield and shows excellent durability during 3000 cycles of a long-term test, and the catalytic current remains stable over 20 h at fixed overpotentials, making it a great potential application prospect for energy issues.

  2. Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts.

    PubMed

    Asefa, Tewodros

    2016-09-20

    The large-scale deployment of many types of fuel cells and electrolyzers is currently constrained by the lack of sustainable and efficient catalysts that can replace the less earth-abundant, noble metal-based catalysts, which are commonly used in these renewable energy systems. This burgeoning issue has led to explosive research efforts worldwide to find alternative, metal-free and noble metal-free catalysts that are composed of inexpensive and earth-abundant elements. Hence, the recent discoveries that doping carbon nanomaterials with heteroatoms (such as N, S, B, etc.) can give sustainable materials with good electrocatalytic activity for reactions carried out in fuel cells and electrolyzers have been not only quite exciting but also very promising to address these challenging issues. Interestingly, even though they contain no metals or involve only the inexpensive, more earth-abundant ones, the catalytic activity of some of these materials fares well with those of the commercially used noble metal-based electrocatalysts, such as Pt/C. However, research efforts to improve the catalytic activity, selectivity, and stability of some of these materials for various reactions are still necessary and thus continuing. While some of these efforts have focused on finding synthetic methods that can tune the structures and compositions of already known materials and thereby improve their catalytic properties (activity, selectivity, stability, etc.), others have focused on developing entirely new materials that can exhibit better or superior catalytic properties. In these efforts, additional considerations are also being paid to find facile synthetic routes or renewable and inexpensive precursors that can lead to such types of catalysts in order to make the entire process highly sustainable and widely applicable. In this Account, notable heteroatom-doped carbon catalysts that have been developed for reactions in fuel cells and water electrolyzers, the various synthetic

  3. Highly Active Iridium/Iridium Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction

    SciTech Connect

    Du W.; Su D.; Wang Q.; Saxner D.; Deskins N.A.; Krzanowski J.E.; Frenkel A.I.; Teng X.

    2011-08-03

    Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir{sub 71}Sn{sub 29} catalysts with an average diameter of 2.7 {+-} 0.6 nm through a 'surfactant-free' wet chemistry approach. The complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the 'real' heterogeneous structure of Ir{sub 71}Sn{sub 29}/C particles as Ir/Ir-Sn/SnO{sub 2}, which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO{sub 2} present on the surface. The Ir{sub 71}Sn{sub 29}/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO{sub 2} on surface. Our cross-disciplinary work, from novel 'surfactant-free' synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of 'real' heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative impact on the commercialization of DEFC

  4. pH-Dependent Reduction Potentials and Proton-Coupled Electron Transfer Mechanisms in Hydrogen-Producing Nickel Molecular Electrocatalysts

    SciTech Connect

    Horvath, Samantha; Fernandez, Laura; Appel, Aaron M.; Hammes-Schiffer, Sharon

    2013-04-01

    The nickel-based Ph Bz 2 2 P N electrocatalysts, which are comprised of a nickel atom and two 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane ligands, have been shown to effectively catalyze H2 production in acetonitrile. Recent electrochemical experiments revealed a linear dependence of the NiII/I reduction potential on pH, suggesting a proton-coupled electron transfer (PCET) reaction. In the proposed mechanism, the catalytic cycle begins with a PCET process involving electrochemical electron transfer to the nickel center and intermolecular proton transfer from an acid to the pendant amine ligand. This paper presents quantum mechanical calculations of this PCET process to examine the thermodynamics of the sequential mechanisms, in which either the electron or the proton transfers first (ET–PT and PT–ET, respectively), and the concerted mechanism (EPT). The favored mechanism depends on a balance among many factors, including the acid strength, association free energy for the acid–catalyst complex, PT free energy barrier, and ET reduction potential. The ET reduction potential is less negative after PT, favoring the PT–ET mechanism, and the association free energy is less positive after reduction, favoring the ET–PT mechanism. The calculations, along with analysis of the experimental data, indicate that the sequential ET–PT mechanism is favored for weak acids because of the substantial decrease in the association free energy after reduction. For strong acids, however, the PT–ET mechanism may be favored because the association free energy is somewhat smaller and PT is more thermodynamically favorable. The concerted mechanism could also occur, particularly for intermediate acid strengths. In the context of the entire catalytic cycle for H2 production, the initial PCET process involving intermolecular PT has a more negative reduction potential than the subsequent PCET process involving intramolecular PT. As a result, the second PCET should

  5. Iron Complexes Bearing Diphosphine Ligands with Positioned Pendant Amines as Electrocatalysts for the Oxidation of H2

    SciTech Connect

    Liu, Tianbiao L.; Liao, Qian; O'Hagan, Molly J.; Hulley, Elliott; DuBois, Daniel L.; Bullock, R. Morris

    2015-06-22

    The synthesis and spectroscopic characterization of CpC5F4NFe(PtBu2NBn2)Cl, [3-Cl] (where C5F4N is the tetrafluorpyridyl substituent and PtBu2NBn2 = 1,5-di(tert-butyl)-3,7-di(benzyl)-1,5-diaza-3,7-diphosphacyclooctane) are reported. Complex 3-Cl and previously reported [CpC5F4NFe(PtBu2NtBu2)Cl], 4-Cl, are precursors to intermediates in the catalytic oxidation of H2, including CpC5F4NFe(PtBu2NBn2)H (3-H), CpC5F4NFe(PtBu2NtBu2)H (4-H), [CpC5F4NFe(PtBu2NBn2)]BArF4 ([3](BArF4), [CpC5F4NFe(PtBu2NtBu2)]BArF4 ([4](BArF4), [CpC5F4NFe(PtBu2NBn2)(H2)]BArF4 ([3-H2]BArF4), and [CpC5F4NFe(PtBu2NtBu2H)H]BArF4 ([4-FeH(NH)]BArF4). All of these complexes were characterized by spectroscopic and electrochemical studies; 3-Cl, 3-H and 4-Cl were also characterized by single crystal diffraction studies. 3-H and 4-H are electrocatalysts for H2 (1.0 atm) oxidation in the presence of a excess of the amine base N-methylpyrrolidine, with turnover frequencies at 22 °C of 2.5 s-1 and 0.5 s-1, and overpotentials at Ecat/2 of 235 mV and 95 mV, respectively. Studies of individual chemical and/or electrochemical reactions of the various intermediates provide important insights into the factors governing the overall catalytic activity for H2 oxidation, and provide important insights into the role of the pendant base of the [FeFe] hydrogenase active site. This work was supported by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  6. Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts.

    PubMed

    Asefa, Tewodros

    2016-09-20

    The large-scale deployment of many types of fuel cells and electrolyzers is currently constrained by the lack of sustainable and efficient catalysts that can replace the less earth-abundant, noble metal-based catalysts, which are commonly used in these renewable energy systems. This burgeoning issue has led to explosive research efforts worldwide to find alternative, metal-free and noble metal-free catalysts that are composed of inexpensive and earth-abundant elements. Hence, the recent discoveries that doping carbon nanomaterials with heteroatoms (such as N, S, B, etc.) can give sustainable materials with good electrocatalytic activity for reactions carried out in fuel cells and electrolyzers have been not only quite exciting but also very promising to address these challenging issues. Interestingly, even though they contain no metals or involve only the inexpensive, more earth-abundant ones, the catalytic activity of some of these materials fares well with those of the commercially used noble metal-based electrocatalysts, such as Pt/C. However, research efforts to improve the catalytic activity, selectivity, and stability of some of these materials for various reactions are still necessary and thus continuing. While some of these efforts have focused on finding synthetic methods that can tune the structures and compositions of already known materials and thereby improve their catalytic properties (activity, selectivity, stability, etc.), others have focused on developing entirely new materials that can exhibit better or superior catalytic properties. In these efforts, additional considerations are also being paid to find facile synthetic routes or renewable and inexpensive precursors that can lead to such types of catalysts in order to make the entire process highly sustainable and widely applicable. In this Account, notable heteroatom-doped carbon catalysts that have been developed for reactions in fuel cells and water electrolyzers, the various synthetic

  7. Vertically Aligned Carbon Nanotube Arrays Co-doped with Phosphorus and Nitrogen as Efficient Metal-Free Electrocatalysts for Oxygen Reduction.

    PubMed

    Yu, Dingshan; Xue, Yuhua; Dai, Liming

    2012-10-01

    Using a mixture of ferrocene, pyridine, and triphenylphosphine as precursors for injection-assisted chemical vapor deposition (CVD), we prepared the first vertically aligned multiwalled carbon nanotube array co-doped with phosphorus (P) and nitrogen (N) with a relatively high P-doping level (designated as PN-ACNT). We have also demonstrated the potential applications of the resultant PN-ACNTs as high-performance electrocatalysts for the oxygen reduction reaction (ORR). PN-ACNT arrays were shown to exhibit a high ORR electrocatalytic activity, superb long-term durability, and good tolerance to methanol and carbon monoxide, significantly outperforming their counterparts doped with P (P-ACNT) or N (N-ACNT) only and even comparable to the commercially available Pt-C catalyst (45 wt % Pt on Vulcan XC-72R; E-TEK) due to a demonstrated synergetic effect arising from the co-doping of CNTs with both P and N.

  8. Research on oxidation by air and tempering of Raney nickel electrocatalysts for the H2 anodes of alkali combustion materials cells. Thesis - Braunschweig Technische Univ., 1982

    NASA Technical Reports Server (NTRS)

    Selbach, H. J.

    1984-01-01

    The controlled oxidation in air of Raney nickel electrocatalysts was studied, with special attention paid to the quantitative analysis of nickel hydroxide. The content of the latter was determined through X-ray studies, thermogravimetric measurements, and spectral photometric examinations. The dependence of the content on the drying of activated catalyst is determined. The influence of nickel hydroxide on the electrochemical parameters of the catalyst, such as diffusion polarization, is studied, including a measurement of the exchange current density using the potential drop method. Conservation by oxidation in air with ancillary stabilization of the oxide in an H2 flow at 300 C is explored, including reduction by H2, the influence of tempering time, and structural studies on conserved and stabilized catalyst, long term research on the catalyst, including the influence of aging on the reduced catalyst, and the results of impedance measurements are presented.

  9. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions.

    PubMed

    Liu, Tingting; Liu, Qian; Asiri, Abdullah M; Luo, Yonglan; Sun, Xuping

    2015-12-01

    It is attractive but still remains a big challenge to develop non-noble metal bifunctional electrocatalysts efficient for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) under alkaline conditions. Herein, an amorphous CoSe film electrodeposited on a Ti mesh (a-CoSe/Ti) is demonstrated to exhibit high electrocatalytic activity and stability for both reactions in 1.0 M KOH. It needs overpotentials of 292 and 121 mV to drive 10 mA cm(-2) for OER and HER, respectively. The two-electrode alkaline water electrolyzer affords a water-splitting current of 10 mA cm(-2) at a cell voltage of 1.65 V. This work offers an attractive cost-effective catalytic material toward full water splitting applications.

  10. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    PubMed

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-01

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.

  11. Pt loaded two-dimensional TaC-nanosheet/graphene hybrid as an efficient and durable electrocatalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    He, Chunyong; Tao, Juzhou

    2016-08-01

    Poor electrocatalytic activity, insufficient operation durability and low carbon monoxide (CO) tolerance of the Pt-based catalysts are key challenges facing the direct methanol fuel cells (DMFCs) as promising electrochemical energy conversion device. We here present a new effort to catalyst designed by depositing Pt nanoparticles on two-dimensional (2D) TaC-nanosheet/graphene hybird (Pt/TaC-G) to obtain notable improvement in electrocatalytic performance over the commercial Pt/C. Experiment results from both X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) support that a strong synergetic chemical coupling interaction between the Pt nanoparticles and the 2D TaC-G significantly enhanced electrocatalytic activity for methanol oxidation reaction (MOR). This process can improve the CO tolerance as well as durability of MOR catalysts simultaneously, making it a promising general approach to design and optimize the next generation electrocatalysts in DMFCs.

  12. Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wu, Yijin; Zhao, Shenlong; Zhao, Kun; Tu, Tengxiu; Zheng, Jianzhong; Chen, Jie; Zhou, Haifeng; Chen, Dejian; Li, Shunxing

    2016-04-01

    A simple, low-cost and large-scale synthesis method for the carbonized porous cubes (CPCs) containing Fe and N co-doped porous carbon hybrid (Fe-Nx/C) with controlled-morphology, uniform elemental distribution and well-defined pore size is developed by pyrolyzing bimetallic FeIII-modified IRMOF-3 cubes in Argon atmosphere at 800 °C. Furtherly, the CPCs are used as the electrocatalyst for oxygen reduction reaction in alkaline solution. Impressively, the CPCs hybrid exhibits a superior electrocatalytic activity with high onset potential (0.93 V) and half-wave potential (0.78 V), and excellent stability, which is attributed to the synergistic effect of its high the surface to volume ratio, well-defined pore size, multi-active composition and high exposed catalytic active sites. We believe the materials based on earth-abundant elements have a huge potential to apply in catalysis, energy, and environment.

  13. General Self-Assembly Route toward Sparsely Studded Noble-Metal Nanocrystals inside Graphene Hollow Sphere Network for Ultrastable Electrocatalyst Utilization.

    PubMed

    Lou, Xinyuan; Wu, Ping; Zhang, Anping; Zhang, Ruoqing; Tang, Yawen

    2015-09-16

    Herein, we rationally design and construct a novel type of sparsely studded noble-metal nanocrystals inside graphene hollow sphere network (abbreviated as noble-metal@G HSN) through an electrostatic-attraction-directed self-assembly approach. The formation of Pt@G and Pd@G hollow sphere networks have been illustrated as examples using SiO2 spheres as templates. Moreover, the electrocatalytic performance of the Pt@G HSN for methanol oxidation reaction has been examined as a proof-of-concept demonstration of the compositional and structural superiorities of noble-metal@G HSN toward electrocatalyst utilization. The as-prepared Pt@G HSN manifests higher catalytic activity and markedly enhanced long-term durability in comparison with commercial Pt/C catalyst. PMID:26305582

  14. Cost-effective counter electrode electrocatalysts from iron@palladium and iron@platinum alloy nanospheres for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tang, Qunwei; Liu, Juan; Zhang, Huihui; He, Benlin; Yu, Liangmin

    2015-11-01

    Pursuit of cost-effective counter electrode (CE) electrocatalysts with no sacrifice of photovoltaic performances has been a persistent objective for dye-sensitized solar cells (DSSCs). Here we demonstrate the galvanic replacement realization of cost-effective CEs from Fe@M (M = Pd, Pt) nanospheres for DSSCs. Due to the enhanced catalytic activity originated from compressive strain and extended surface in tuning the electronic structure of Pd (or Pt) shell along with competitive dissolution reaction of Fe with electrolyte, the cells with high durability display efficiencies of 8.74% and 7.22%. The impressive results along with simple synthesis highlight the potential application of Fe@M nanospheres in robust DSSCs.

  15. Novel As-doped, As and N-codoped carbon nanotubes as highly active and durable electrocatalysts for O2 reduction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Liu, Ziwu; Li, Meng; Wang, Fang; Wang, Quan-De

    2016-02-01

    To develop more efficient metal-free cathode electrocatalysts for fuel cells, novel arsenic (As)-doped, As and N-codoped carbon nanotubes are synthesized by chemical vapor deposition in this work. The as-prepared As-containing carbon nanotubes exhibit significantly enhanced activity and long-term durability for the oxygen reduction reaction (ORR) in alkaline medium, indicating that the doping of As or codoping As with other heteroatoms into carbon matrix could improve the ORR activity of carbon materials due to the changes in electronic and physical properties of carbon nanotubes evidenced by density functional theory calculations. Moreover, As-containing carbon nanotubes also display much better methanol tolerance, showing a good potential application for future fuel cells.

  16. Urchin-like CoP Nanocrystals as Hydrogen Evolution Reaction and Oxygen Reduction Reaction Dual-Electrocatalyst with Superior Stability.

    PubMed

    Yang, Hongchao; Zhang, Yejun; Hu, Feng; Wang, Qiangbin

    2015-11-11

    High-performance electrocatalysts with superior stability are critically important for their practical applications in hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). Herein, we report a facile method to fabricate urchin-like CoP nanocrystals (NCs) as catalyst for both HER and ORR with desirable electrocatalytic activities and long-term stability. The urchin-like CoP NCs with a diameter of 5 μm were successfully prepared by a hydrothermal reaction following a phosphidation treatment in N2 atmosphere and present excellent HER catalytic performance with a low onset overpotential of 50 mV, a small Tafel slope of 46 mV/decade, and an exceptional low overpotential of ~180 mV at a current density of 100 mA cm(-2) with a mass loading density of 0.28 mg/cm(2). Meanwhile, a remarkable ORR catalytic activity was observed with a half-potential of 0.7 V and an onset potential of 0.8 V at 1600 rpm and a scan rate of 5 mV s(-1). More importantly, the urchin-like CoP NCs present superior stability and keep their catalytic activity for at least 10 000 CV cycles for HER in 0.5 M H2SO4 and over 30 000 s for ORR in 0.1 M KOH, which is ascribed to their robust three-dimensional structure. This urchin-like CoP NCs might be a promising replacement to the Pt-based electrocatalysts in water splitting and fuel cells. PMID:26474359

  17. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.

    PubMed

    Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar

    2015-09-30

    The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.

  18. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.

    PubMed

    Görlin, Mikaela; Chernev, Petko; Ferreira de Araújo, Jorge; Reier, Tobias; Dresp, Sören; Paul, Benjamin; Krähnert, Ralph; Dau, Holger; Strasser, Peter

    2016-05-01

    Mixed Ni-Fe oxides are attractive anode catalysts for efficient water splitting in solar fuels reactors. Because of conflicting past reports, the catalytically active metal redox state of the catalyst has remained under debate. Here, we report an in operando quantitative deconvolution of the charge injected into the nanostructured Ni-Fe oxyhydroxide OER catalysts or into reaction product molecules. To achieve this, we explore the oxygen evolution reaction dynamics and the individual faradaic charge efficiencies using operando differential electrochemical mass spectrometry (DEMS). We further use X-ray absorption spectroscopy (XAS) under OER conditions at the Ni and Fe K-edges of the electrocatalysts to evaluate oxidation states and local atomic structure motifs. DEMS and XAS data consistently reveal that up to 75% of the Ni centers increase their oxidation state from +2 to +3, while up to 25% arrive in the +4 state for the NiOOH catalyst under OER catalysis. The Fe centers consistently remain in the +3 state, regardless of potential and composition. For mixed Ni100-xFex catalysts, where x exceeds 9 atomic %, the faradaic efficiency of O2 sharply increases from ∼30% to 90%, suggesting that Ni atoms largely remain in the oxidation state +2 under catalytic conditions. To reconcile the apparent low level of oxidized Ni in mixed Ni-Fe catalysts, we hypothesize that a kinetic competition between the (i) metal oxidation process and the (ii) metal reduction step during O2 release may account for an insignificant accumulation of detectable high-valent metal states if the reaction rate of process (ii) outweighs that of (i). We conclude that a discussion of the superior catalytic OER activity of Ni-FeOOH electrocatalysts in terms of surface catalysis and redox-inactive metal sites likely represents an oversimplification that fails to capture essential aspects of the synergisms at highly active Ni-Fe sites.

  19. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.

    PubMed

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-04-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g(-1), and a peak power density of 65 mW cm(-2), which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance. PMID:27152333

  20. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    SciTech Connect

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; Rodriguez, Mark A.; Brumbach, Michael T.; Coker, Eric N.; Limmer, Steven J.

    2014-07-09

    The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaan axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.

  1. Gaseous trichloroethylene removal using an electrochemically generated homogeneous low-valent ligand-free Co(I) electrocatalyst by electro-scrubbing.

    PubMed

    Muthuraman, G; Ramu, A G; Moon, I S

    2016-07-01

    The interest in heterogeneous Co(OH)2 electrocatalysts for energy applications has increased steadily. This study focused on a ligand-free homogeneous electrocatalyst for the degradation of gaseous trichloroethylene (TCE) in NaOH in a divided electrolytic cell. The initial electrolysis results revealed a change in the oxidation reduction potential (ORP) of [Co(II)(OH)4](2-) (Co(II)) from -267 mV to -800 mV on anodized Ti during electrolytic reduction identifies low-valent homogeneous [Co(I)(OH)4](3-)(Co(I)) formation in 10 M NaOH. Cyclic voltammetry analysis of Co(II) at different anodized electrodes, Ag, carbon and Ti, in a 10 M NaOH solution, showed no stripping like peak in the reverse scan only the Ti electrode, supporting the formation of low-valent Co(I). UV-vis spectral analysis of the electrolyzed solution showed an enhanced peak corresponding to metal-to-ligand transition, demonstrates Co(I) formation. Co(II) reduction reached a maximum yield of 18% at 30 mA cm(-2) on an anodized Ti cathode. For gaseous TCE removal, continuous mode electro-scrubbing was adopted and degradation was monitored using an online FTIR gas analyzer that showed 99.75% degradation of TCE in the presence of homogeneous Co(I). Three consecutive regenerations of Co(I) and degradation steps of TCE confirmed the possibility of industrial applications in a sustainable manner. PMID:26985874

  2. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst

    PubMed Central

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g−1, and a peak power density of 65 mW cm−2, which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance. PMID:27152333

  3. Electrocatalyst for oxygen reduction

    NASA Technical Reports Server (NTRS)

    Swette, L. L. (Inventor)

    1971-01-01

    The performance and costs of an electrochemical catalyst as compared to a pure platinum catalyst is evaluated. The catalysts are used to reduce oxygen in low temperature alkaline fuel cells. The electrochemical catalyst is composed of silver and platinum and is dispersed in a resinous inert binder to provide a cell electrode. The results indicate the electrochemical catalyst is superior structurally to the platinum one for high current density operation, and is at least as active as the platinum catalyst in other operations.

  4. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Chen, Xi'an; Chen, Xiaohua; Xu, Xin; Yang, Zhi; Liu, Zheng; Zhang, Lijie; Xu, Xiangju; Chen, Ying; Huang, Shaoming

    2014-10-01

    Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g-1, good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and

  5. Theoretical Analysis of the Sequential Proton-Coupled Electron Transfer Mechanisms for H₂ Oxidation and Production Pathways Catalyzed by Nickel Molecular Electrocatalysts

    SciTech Connect

    Fernandez, Laura E.; Horvath, Samantha; Hammes-Schiffer, Sharon

    2011-12-22

    The design of electrocatalysts for the oxidation and production of H2 is important for the development of alternative energy sources. This Article focuses on the [Ni(P2RN2R')2]2+ electrocatalysts, where P2RN2R' denotes 1,5-diaza-3,7-diphosphacyclooctane ligands with substituent groups R and R' covalently bound to the phosphorus and nitrogen atoms, respectively. Theoretical methods are used to investigate the mechanism of the step in the catalytic cycle corresponding to [HNiII(P2N2)2]+ – e → [NiI(P2HN2)(P2N2)]2+ for H2 oxidation and the reverse reaction for H2 production. This step involves electron transfer (ET) between the Ni complex and the electrode as well as proton transfer (PT) between the Ni and the N. The sequential mechanisms, PT–ET and ET–PT, are investigated for the following (R,R') substituents: (Me,Me), (Ph,Ph), and (Ph,Bz), where Me, Ph, and Bz denote methyl, phenyl, and benzyl substituents. Density functional theory is used to calculate reduction potentials, pKa values, and PT pathways, and the inner- and outer-sphere reorganization energies for electrochemical ET are calculated within the framework of Marcus theory. For the (Ph,Ph) and (Ph,Bz) systems, the sequential PT–ET mechanism for H2 production would require surmounting a large free energy barrier for the initial PT step, followed by thermodynamically favorable ET. The sequential ET–PT mechanism for these systems would require a moderate initial applied overpotential, followed by a PT reaction with a relatively low free energy barrier. Consistent with experimental data, the calculated overpotential required for the initial reduction in the ET–PT mechanism is lower for the (Ph,Bz) system than for the (Ph,Ph) system for

  6. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.

    PubMed

    Singh, Santosh K; Dhavale, Vishal M; Kurungot, Sreekumar

    2015-09-30

    The most vital component of the fuel cells and metal-air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of ~590 mAh/g-Zn and ~840 Wh/kg-Zn, respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries. PMID:26376490

  7. Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution

    NASA Astrophysics Data System (ADS)

    Lai, Qingxue; Gao, Qingwen; Su, Qi; Liang, Yanyu; Wang, Yuxi; Yang, Zhi

    2015-08-01

    Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition metal phthalocyanine (TMPc) in the two-dimensional confined space of in situ generated g-C3N4 and a subsequent pyrolysis. Such a space-confined bottom-up synthesis route successfully constructs a strongly-coupled triple junction of transition metal-graphitic carbon-nitrogen-doped graphene (TM-GC-NG) with extensive controllability over the specific surface area, nitrogen content/types as well as the states of metal. As a result, the optimized N-Fe/G materials have promising potential as high-performance NPMCs towards ORR both in alkaline and acidic solution.Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition

  8. Cobalt-polypyrrole-carbon black (Co-PPY-CB) Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Fuel Cells: Composition and Kinetic Activity

    SciTech Connect

    D Nguyen-Thanh; A Frenkel; J Wang; S OBrien; D Akins

    2011-12-31

    Electrocatalysts consisting of polypyrrole (PPY) and Co deposited on carbon black (CB) at several compositions were prepared and tested for the oxygen reduction reaction (ORR) in a HClO4 buffer (pH = 1) using a rotating ring-disk electrode (RRDE). It was determined that the most favorable catalyst composition (prior to calcination) had a CB:PPY weight ratio of 2 and a pyrrole:Co (i.e., PY:Co) molar ratio of 4. This catalyst had an onset potential of 0.785 V (vs. RHE) and a mass activity of ca. 1 A/g{sub cata} at the fuel cell relevant voltage of 0.65 V. Furthermore, it was found that the number of electrons exchanged during the ORR with the catalyst was ca. 3.5 and resulted in 28% yield of H{sub 2}O{sub 2} at 0.65 V, which hints to an indirect 4e{sup -} reduction of O{sub 2} to H{sub 2}O, with H{sub 2}O{sub 2} as an intermdiate. From energy dispersive spectroscopy (EDS) and extended X-ray absorption fine structure (EXAFS) analysis, it is proposed that a PY:Co ratio of 4 favors the formation, prior to calcination, in the catalyst precursor of Co-N complexes in which Co is coordinated to 3 or 4 N atoms, resulting in strong Co-N interactions that limit the formation upon calcination of low ORR activity Co nanoparticles. These Co-N complexes give rise upon calcination to CoN{sub x-2} sites in which the coordination of Co could favor the adsorption on them of O{sub 2}, which would make those sites particularly active and selective. At the same mass acitivity of 1 A/g{sub cata}, the voltage yielded by the catalyst was 200 mV lower than that for a state-of-the-art Pt (10 wt.%) catalyst, whoch H{sub 2}O{sub 2} output at 0.85 V was 39% and involves the exchange of 3.2 e{sup -}, overall making our material an attractive substitute to noble metal ORR electrocatalysts.

  9. Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells.

    PubMed

    Sa, Young Jin; Park, Chiyoung; Jeong, Hu Young; Park, Seok-Hee; Lee, Zonghoon; Kim, Kyoung Taek; Park, Gu-Gon; Joo, Sang Hoon

    2014-04-14

    A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom-doped carbon (CNT/HDC) core-sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom-containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom-containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom-doped nanocarbon catalysts in terms of half-wave potential and kinetic current density. The four-electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long-term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.

  10. Efficient NiSe-Ni3Se2/Graphene Electrocatalyst in Dye-Sensitized Solar Cells: The Role of Hollow Hybrid Nanostructure.

    PubMed

    Zhang, Xiao; Zhen, Mengmeng; Bai, Jinwu; Jin, Shaowei; Liu, Lu

    2016-07-13

    Hollow and hybrid nanomaterials are excellent electrocatalysts on account of their novel electrocatalytic properties compared with homogeneous solid nanostructures. In this report, NiSe-Ni3Se2 hybrid nanostructure with morphology of hollow hexagonal nanodisk was synthesized in situ on graphene. A series of NiSe-Ni3Se2/RGO with different phase constitutions and nanostructures were obtained by controlling the durations of solvothermal treatment. Because of their unique hollow and hybrid structure, NiSe-Ni3Se2/RGO hollow nanodisks exhibited higher electrocatalytic performance than NiSe/RGO and solid NiSe-Ni3Se2/RGO nanostructure for reducing I3(-) as counter cell (CE) of dye-sensitized solar cells (DSSCs). Additionally, NiSe-Ni3Se2/RGO hollow nanodisks achieved much lower charge transfer resistance (Rct = 0.68 Ω) and higher power conversion efficiency (PCE) (7.87%) than those of Pt (Rct = 1.41 Ω, PCE = 7.28%).

  11. Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction.

    PubMed

    Zhou, Dan; Yang, Liping; Yu, Linghui; Kong, Junhua; Yao, Xiayin; Liu, Wanshuang; Xu, Zhichuan; Lu, Xuehong

    2015-01-28

    In this work, a series of hollow carbon nanospheres simultaneously doped with N and Fe-containing species are prepared by Fe(3+)-mediated polymerization of dopamine on SiO2 nanospheres, carbonization and subsequent KOH etching of the SiO2 template. The electrochemical properties of the hollow nanospheres as nonprecious-metal electrocatalysts for oxygen reduction reaction (ORR) are characterized. The results show that the hollow nanospheres with mesoporous N-doped carbon shells of ∼10 nm thickness and well-dispersed Fe3O4 nanoparticles prepared by annealing at 750 °C (Fe/N/C HNSs-750) exhibit remarkable ORR catalytic activity comparable to that of a commercial 20 wt% Pt/C catalyst, and high selectivity towards 4-electron reduction of O2 to H2O. Moreover, it displays better electrochemical durability and tolerance to methanol crossover effect in an alkaline medium than the Pt/C. The excellent catalytic performance of Fe/N/C HNSs-750 towards ORR can be ascribed to their high specific surface area, mesoporous morphology, homogeneous distribution of abundant active sites, high pyridinic nitrogen content, graphitic nitrogen and graphitic carbon, as well as the synergistic effect of nitrogen and iron species for catalyzing ORR.

  12. Free MoS2 Nanoflowers Grown on Graphene by Microwave-Assisted Synthesis as Highly Efficient Non-Noble-Metal Electrocatalysts for the Hydrogen Evolution Reaction.

    PubMed

    Cao, Jiamu; Zhang, Xuelin; Zhang, Yufeng; Zhou, Jing; Chen, Yinuo; Liu, Xiaowei

    2016-01-01

    Advanced approaches to preparing non-noble-metal electrocatalysts for the hydrogen evolution reaction (HER) are considered to be a significant breakthrough in promoting the exploration of renewable resources. In this work, a hybrid material of MoS2 nanoflowers (NFs) on reduced graphene oxide (rGO) was synthesized as a HER catalyst via an environmentally friendly, efficient approach that is also suitable for mass production. Small-sized MoS2 NFs with a diameter of ca. 190 nm and an abundance of exposed edges were prepared by a hydrothermal method and were subsequently supported on rGO by microwave-assisted synthesis. The results show that MoS2 NFs were distributed uniformly on the remarkably reduced GO and preserved the outstanding original structural features perfectly. Electrochemical tests show that the as-prepared hybrid material exhibited excellent HER activity, with a small Tafel slope of 80 mV/decade and a low overpotential of 170 mV. PMID:27556402

  13. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: I. Impact of Impurities, Measurement Protocols and Applied Corrections

    DOE PAGES

    Shinozaki, Kazuma; Zack, Jason W.; Richards, Ryan M.; Pivovar, Bryan S.; Kocha, Shyam S.

    2015-07-22

    The rotating disk electrode (RDE) technique is being extensively used as a screening tool to estimate the activity of novel PEMFC electrocatalysts synthesized in lab-scale (mg) quantities. Discrepancies in measured activity attributable to glassware and electrolyte impurity levels, as well as conditioning, protocols and corrections are prevalent in the literature. Moreover, the electrochemical response to a broad spectrum of commercially sourced perchloric acid and the effect of acid molarity on impurity levels and solution resistance were also assessed. Our findings reveal that an area specific activity (SA) exceeding 2.0 mA/cm2 (20 mV/s, 25°C, 100 kPa, 0.1 M HClO4) for polishedmore » poly-Pt is an indicator of impurity levels that do not impede the accurate measurement of the ORR activity of Pt based catalysts. After exploring various conditioning protocols to approach maximum utilization of the electrochemical area (ECA) and peak ORR activity without introducing catalyst degradation, an investigation of measurement protocols for ECA and ORR activity was conducted. Down-selected protocols were based on the criteria of reproducibility, duration of experiments, impurity effects and magnitude of pseudo-capacitive background correction. In sum, statistical reproducibility of ORR activity for poly-Pt and Pt supported on high surface area carbon was demonstrated.« less

  14. An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0·95Sn0·05O3-δ

    NASA Astrophysics Data System (ADS)

    Dong, Feifei; Ni, Meng; He, Wei; Chen, Yubo; Yang, Guangming; Chen, Dengjie; Shao, Zongping

    2016-09-01

    The B-site substitution with the minor amount of tin in BaFeO3-δ parent oxide is expected to stabilize a single perovskite lattice structure. In this study, a composition of BaFe0·95Sn0·05O3-δ (BFS) as a new cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs) is synthesized and characterized. Special attention is paid to the exploration of some basic properties including phase structure, oxygen non-stoichiometry, electrical conductivity, oxygen bulk diffusion coefficient, and surface exchange coefficient, which are of significant importance to the electrochemical activity of cathode materials. BFS holds a single cubic perovskite structure over temperature range of cell operation, determined by in-situ X-ray diffraction and scanning transmission electron microscope. A high oxygen vacancy concentration at cell operating temperatures is observed by combining thermo-gravimetric data and iodometric titration result. Furthermore, electrical conductivity relaxation measurement illustrates the fast oxygen bulk diffusion and surface exchange kinetics. Accordingly, testing cells based on BFS cathode material demonstrate the low polarization resistance of 0.033 Ω cm2 and high peak power density of 1033 mW cm-2 at 700 °C, as well as a relatively stable long-term operation for ∼300 h. The results obtained suggest that BFS perovskite oxide holds a great promise as an oxygen reduction electrocatalyst for IT-SOFCs.

  15. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: I. Impact of Impurities, Measurement Protocols and Applied Corrections

    SciTech Connect

    Shinozaki, Kazuma; Zack, Jason W.; Richards, Ryan M.; Pivovar, Bryan S.; Kocha, Shyam S.

    2015-07-22

    The rotating disk electrode (RDE) technique is being extensively used as a screening tool to estimate the activity of novel PEMFC electrocatalysts synthesized in lab-scale (mg) quantities. Discrepancies in measured activity attributable to glassware and electrolyte impurity levels, as well as conditioning, protocols and corrections are prevalent in the literature. Moreover, the electrochemical response to a broad spectrum of commercially sourced perchloric acid and the effect of acid molarity on impurity levels and solution resistance were also assessed. Our findings reveal that an area specific activity (SA) exceeding 2.0 mA/cm2 (20 mV/s, 25°C, 100 kPa, 0.1 M HClO4) for polished poly-Pt is an indicator of impurity levels that do not impede the accurate measurement of the ORR activity of Pt based catalysts. After exploring various conditioning protocols to approach maximum utilization of the electrochemical area (ECA) and peak ORR activity without introducing catalyst degradation, an investigation of measurement protocols for ECA and ORR activity was conducted. Down-selected protocols were based on the criteria of reproducibility, duration of experiments, impurity effects and magnitude of pseudo-capacitive background correction. In sum, statistical reproducibility of ORR activity for poly-Pt and Pt supported on high surface area carbon was demonstrated.

  16. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass.

    PubMed

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-12-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

  17. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass

    NASA Astrophysics Data System (ADS)

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-05-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

  18. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst.

    PubMed

    Lassalle-Kaiser, Benedikt; Merki, Daniel; Vrubel, Heron; Gul, Sheraz; Yachandra, Vittal K; Hu, Xile; Yano, Junko

    2015-01-14

    The reduction of protons into dihydrogen is important because of its potential use in a wide range of energy applications. The preparation of efficient and cheap catalysts for this reaction is one of the issues that need to be tackled to allow the widespread use of hydrogen as an energy carrier. In this paper, we report the study of an amorphous molybdenum sulfide (MoSx) proton reducing electrocatalyst under functional conditions, using in situ X-ray absorption spectroscopy. We probed the local and electronic structures of both the molybdenum and sulfur elements for the as prepared material as well as the precatalytic and catalytic states. The as prepared material is very similar to MoS3 and remains unmodified under functional conditions (pH = 2 aqueous HNO3) in the precatalytic state (+0.3 V vs RHE). In its catalytic state (-0.3 V vs RHE), the film is reduced to an amorphous form of MoS2 and shows spectroscopic features that indicate the presence of terminal disulfide units. These units are formed concomitantly with the release of hydrogen, and we suggest that the rate-limiting step of the HER is the reduction and protonation of these disulfide units. These results show the implication of terminal disulfide chemical motifs into HER driven by transition-metal sulfides and provide insight into their reaction mechanism.

  19. Effect of pretreatment atmosphere on the particle size and oxygen reduction activity of low-loading platinum impregnated titanium carbide powder electrocatalysts

    NASA Astrophysics Data System (ADS)

    Yang, Leerang; Kimmel, Yannick C.; Lu, Qi; Chen, Jingguang G.

    2015-08-01

    Low-loading Pt supported on TiC powder catalysts were synthesized by an impregnation method. After the Pt(NH3)4(NO3)2 precursor was impregnated onto the TiC support, different pretreatment atmospheres were used to study the influence on Pt dispersion, surface composition, and catalytic activity towards oxygen reduction reaction (ORR). Direct reduction of the Pt precursor in hydrogen led to small Pt particles with an average size of ∼2.2 nm and superior ORR activity at low overpotential compared to commercial Pt/C. However, calcination of the Pt precursor in air resulted in larger Pt particles with an average size of ∼6.7 nm and lower ORR specific activity. The decrease in ORR activity was primarily attributed to the surface oxidation of the TiC support during calcination. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) confirmed that the TiC powder was oxidized when the catalyst was calcined in air. The finding reported here demonstrates the importance of pretreatment atmosphere for synthesizing Pt-modified transition metal carbides as highly active electrocatalysts.

  20. In situ photo-assisted deposition of MoS₂ electrocatalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation.

    PubMed

    Nguyen, Mai; Tran, Phong D; Pramana, Stevin S; Lee, Rui Lin; Batabyal, Sudip K; Mathews, Nripan; Wong, Lydia H; Graetzel, Michael

    2013-02-21

    We reported herein a facile and scalable preparation process for MoS(2)-decorated Zn(x)Cd(1-x)S hybrid photocatalysts for hydrogen generation. Zn(x)Cd(1-x)S nanopowder was first prepared from commercially available precursors employing a solution based process. MoS(2) hydrogen evolution reaction catalyst was then loaded onto the Zn(x)Cd(1-x)S nanopowder via a photo-assisted deposition process which employed mild conditions (room temperature, atmospheric pressure and visible light illumination). Thus, this process represents an important advantage in the large scale production of semiconductor/MoS(2) hybrid photocatalysts in comparison to the conventional method relying on thermal decomposition of (NH(4))(2)[MoS(4)] precursor at high temperature and under H(2)S pressure. The best Zn(0.2)Cd(0.8)S/MoS(2) 3% showed two hundred-and-ten times (210 times) faster hydrogen generation rate on visible light illumination compared with that obtained for un-treated Zn(0.2)Cd(0.8)S. That was the most impressive catalytic enhancement ever recorded for a semiconductor photocatalyst decorated with a noble metal free electrocatalyst. PMID:23334494

  1. Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst

    PubMed Central

    2015-01-01

    The reduction of protons into dihydrogen is important because of its potential use in a wide range of energy applications. The preparation of efficient and cheap catalysts for this reaction is one of the issues that need to be tackled to allow the widespread use of hydrogen as an energy carrier. In this paper, we report the study of an amorphous molybdenum sulfide (MoSx) proton reducing electrocatalyst under functional conditions, using in situ X-ray absorption spectroscopy. We probed the local and electronic structures of both the molybdenum and sulfur elements for the as prepared material as well as the precatalytic and catalytic states. The as prepared material is very similar to MoS3 and remains unmodified under functional conditions (pH = 2 aqueous HNO3) in the precatalytic state (+0.3 V vs RHE). In its catalytic state (−0.3 V vs RHE), the film is reduced to an amorphous form of MoS2 and shows spectroscopic features that indicate the presence of terminal disulfide units. These units are formed concomitantly with the release of hydrogen, and we suggest that the rate-limiting step of the HER is the reduction and protonation of these disulfide units. These results show the implication of terminal disulfide chemical motifs into HER driven by transition-metal sulfides and provide insight into their reaction mechanism. PMID:25427231

  2. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    NASA Astrophysics Data System (ADS)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  3. Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution.

    PubMed

    Lai, Qingxue; Gao, Qingwen; Su, Qi; Liang, Yanyu; Wang, Yuxi; Yang, Zhi

    2015-09-21

    Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition metal phthalocyanine (TMPc) in the two-dimensional confined space of in situ generated g-C3N4 and a subsequent pyrolysis. Such a space-confined bottom-up synthesis route successfully constructs a strongly-coupled triple junction of transition metal-graphitic carbon-nitrogen-doped graphene (TM-GC-NG) with extensive controllability over the specific surface area, nitrogen content/types as well as the states of metal. As a result, the optimized N-Fe/G materials have promising potential as high-performance NPMCs towards ORR both in alkaline and acidic solution. PMID:26282404

  4. Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(1 0 0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Vidal-Iglesias, F. J.; Solla-Gullón, J.; Montiel, V.; Feliu, J. M.; Aldaz, A.

    Ammonia has attracted attention as a possible fuel for direct fuel cells since it is easy to handle and to transport as liquid or as concentrated aqueous solution. However, on noble metal electrodes ammonia oxidation is a sluggish reaction and the electrocatalyst needs to be improved for developing efficient ammonia fuel cells. In this work, ammonia electrooxidation reaction on 3-4-nm bimetallic PtMe (Ir, Rh, Pd, Ru) and on preferentially oriented Pt(1 0 0) nanoparticles is reported. PtMe nanoparticles have been prepared by using water-in-oil microemulsions to obtain a narrow size distribution whereas preferentially oriented Pt nanoparticles have been prepared through colloidal routes. Among all the bimetallic samples tested, only Pt 75Ir 25 and Pt 75Rh 25 nanoparticles show, at the low potential range, an enhancement of the oxidation density current with respect to the behaviour found for pure platinum nanoparticles prepared by the same method. In addition, two Pt(1 0 0) preferentially oriented nanoparticles of different particle size (4 and 9 nm) have been also studied. These oriented nanoparticles show higher current densities than polycrystalline Pt nanoparticles due to the sensitivity of ammonia oxidation toward the presence of surface sites with square symmetry. The reactivity of the different 4-nm nanoparticles parallels well with that expected from bulk PtMe alloys and Pt single crystal electrodes.

  5. N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-10-01

    An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.

  6. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions.

    PubMed

    Shen, Mengxia; Ruan, Changping; Chen, Yan; Jiang, Chunhuan; Ai, Kelong; Lu, Lehui

    2015-01-21

    To alleviate the kinetic barriers associated with ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) in electrochemical systems, efficient nonprecious electrocatalysts are urgently required. Here we report a facile soft-template mediated approach for fabrication of nanostructured cobalt-iron double sulfides that are covalently entrapped in nitrogen-doped mesoporous graphitic carbon (Co0.5Fe0.5S@N-MC). Notably, with a positive half-wave potential (0.808 V) and a high diffusion-limiting current density, the composite material delivers unprecedentedly striking ORR electrocatalytic activity among recently reported nonprecious late transition metal chalcogenide materials in alkaline medium. Various characterization techniques, including X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, are conducted to elucidate the correlation between structural features and catalytic activities of the composite. Moderate substitution and well-dispersion of iron in bimetallic sulfide composites are believed to have positive effect on the adsorption and activation of oxygen-containing species, thus leading to conspicuous ORR and OER catalytic enhancement compared to their monometallic counterparts. Besides, the covalent bridge between active sulfide particles and mesoporous carbon shells provides facile pathways for electron and mass transport. Beneficially, the intimate coupling interaction renders prolonged electrocatalytic performances to the composite. Our results may possibly lend a new impetus to the rational design of bi- or multimetallic sulfides encapsulated in porous carbon with improved performance for electrocatalysis and energy storage applications.

  7. Free MoS2 Nanoflowers Grown on Graphene by Microwave-Assisted Synthesis as Highly Efficient Non-Noble-Metal Electrocatalysts for the Hydrogen Evolution Reaction

    PubMed Central

    Cao, Jiamu; Zhang, Xuelin; Zhang, Yufeng; Zhou, Jing; Chen, Yinuo; Liu, Xiaowei

    2016-01-01

    Advanced approaches to preparing non-noble-metal electrocatalysts for the hydrogen evolution reaction (HER) are considered to be a significant breakthrough in promoting the exploration of renewable resources. In this work, a hybrid material of MoS2 nanoflowers (NFs) on reduced graphene oxide (rGO) was synthesized as a HER catalyst via an environmentally friendly, efficient approach that is also suitable for mass production. Small-sized MoS2 NFs with a diameter of ca. 190 nm and an abundance of exposed edges were prepared by a hydrothermal method and were subsequently supported on rGO by microwave-assisted synthesis. The results show that MoS2 NFs were distributed uniformly on the remarkably reduced GO and preserved the outstanding original structural features perfectly. Electrochemical tests show that the as-prepared hybrid material exhibited excellent HER activity, with a small Tafel slope of 80 mV/decade and a low overpotential of 170 mV. PMID:27556402

  8. Nanoporous PdZr surface alloy as highly active non-platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol-tolerance

    NASA Astrophysics Data System (ADS)

    Duan, Huimei; Xu, Caixia

    2016-06-01

    Nanoporous (NP) PdZr alloy with controllable bimetallic ratio is successfully fabricated by a simple dealloying method. By leaching out the more reactive Al from PdZrAl precursor alloy, NP-PdZr alloy with smaller ligament size was generated, characterized by the nanoscaled interconnected network skeleton and hollow channels extending in all three dimensions. Upon voltammetric scan in acid solution, the dissolution of surface Zr atoms generates the highly active Pd-Zr surface alloy with a nearly pure Pd surface and Pd-Zr alloy core. The NP-Pd80Zr20 surface alloy exhibits markedly enhanced specific and mass activities as well as higher catalytic stability toward oxygen reduction reaction (ORR) compared with NP-Pd and the state-of-the-art Pt/C catalysts. In addition, the NP-Pd80Zr20 surface alloy shows a better selectivity for ORR than methanol in the 0.1 M HClO4 and 0.1 M methanol mixed solution. X-ray photoelectron spectroscopy and density functional theory calculations both demonstrate that the weakened Pd-O bond and improved ORR performances in turn depend on the downshifted d-band center of Pd due to the alloying Pd with Zr (20 at.%). The as-made NP-PdZr alloy holds prospective applications as a cathode electrocatalyst in fuel-cell-related technologies with the advantages of superior overall ORR performances, unique structure stability, and easy preparation.

  9. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass.

    PubMed

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-12-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors. PMID:27225424

  10. RuO2 nanoparticles decorated MnOOH/C as effective bifunctional electrocatalysts for lithium-air battery cathodes with long-cycling stability

    NASA Astrophysics Data System (ADS)

    Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon

    2016-08-01

    Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).

  11. TiO2 nanotube array photoelectrocatalyst and Ni-Sb-SnO2 electrocatalyst bifacial electrodes: a new type of bifunctional hybrid platform for water treatment.

    PubMed

    Yang, So Young; Choi, Wonyong; Park, Hyunwoong

    2015-01-28

    Bifunctional hybrid electrodes capable of generating various reactive oxygen species (ROS) over a wide range of potentials were developed by coupling electrocatalysts and photoelectrocatalysts. To achieve this, Ni-doped Sb-SnO2 (NSS) was deposited on one side of a titanium (Ti) foil while the other side was anodized to grow a TiO2 nanotube array (TNA) for electrochemical ozone generation and photoelectrochemical hydroxyl radical generation, respectively. Surface characterization indicated that NSS and TNA were formed and spatially separated yet electrically connected through the Ti substrate. While each catalyst possessed unique electrochemical properties, the coupling of both catalysts resulted in mixed electrochemical properties that drove electrocatalysis at high potentials and photoelectrocatalysis at low potentials. The performance of the NSS/TNA electrode for phenol decomposition was ∼3 times greater than that of single-layer catalysts and ∼1.5 times greater than the combined catalytic performances of the individual NSS and TNA catalysts. This synergistic effect was attributed partly to the simultaneous generation of hydroxyl radicals and ozone, followed by the production of other ROS. A mechanism for the generation of ROS was discussed.

  12. Facile synthesis of N-rich carbon quantum dots by spontaneous polymerization and incision of solvents as efficient bioimaging probes and advanced electrocatalysts for oxygen reduction reaction.

    PubMed

    Lei, Zhouyue; Xu, Shengjie; Wan, Jiaxun; Wu, Peiyi

    2016-01-28

    In this study, uniform nitrogen-doped carbon quantum dots (N-CDs) were synthesized through a one-step solvothermal process of cyclic and nitrogen-rich solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethyl-imidazolidinone (DMEU), under mild conditions. The products exhibited strong light blue fluorescence, good cell permeability and low cytotoxicity. Moreover, after a facile post-thermal treatment, it developed a lotus seedpod surface-like structure of seed-like N-CDs decorating on the surface of carbon layers with a high proportion of quaternary nitrogen moieties that exhibited excellent electrocatalytic activity and long-term durability towards the oxygen reduction reaction (ORR). The peak potential was -160 mV, which was comparable to or even lower than commercial Pt/C catalysts. Therefore, this study provides an alternative facile approach to the synthesis of versatile carbon quantum dots (CDs) with widespread commercial application prospects, not only as bioimaging probes but also as promising electrocatalysts for the metal-free ORR.

  13. Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction.

    PubMed

    Zhou, Dan; Yang, Liping; Yu, Linghui; Kong, Junhua; Yao, Xiayin; Liu, Wanshuang; Xu, Zhichuan; Lu, Xuehong

    2015-01-28

    In this work, a series of hollow carbon nanospheres simultaneously doped with N and Fe-containing species are prepared by Fe(3+)-mediated polymerization of dopamine on SiO2 nanospheres, carbonization and subsequent KOH etching of the SiO2 template. The electrochemical properties of the hollow nanospheres as nonprecious-metal electrocatalysts for oxygen reduction reaction (ORR) are characterized. The results show that the hollow nanospheres with mesoporous N-doped carbon shells of ∼10 nm thickness and well-dispersed Fe3O4 nanoparticles prepared by annealing at 750 °C (Fe/N/C HNSs-750) exhibit remarkable ORR catalytic activity comparable to that of a commercial 20 wt% Pt/C catalyst, and high selectivity towards 4-electron reduction of O2 to H2O. Moreover, it displays better electrochemical durability and tolerance to methanol crossover effect in an alkaline medium than the Pt/C. The excellent catalytic performance of Fe/N/C HNSs-750 towards ORR can be ascribed to their high specific surface area, mesoporous morphology, homogeneous distribution of abundant active sites, high pyridinic nitrogen content, graphitic nitrogen and graphitic carbon, as well as the synergistic effect of nitrogen and iron species for catalyzing ORR. PMID:25500995

  14. In situ growth of NixSy controlled by surface treatment of nickel foam as efficient electrocatalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Shang, Xiao; Li, Xiao; Hu, Wen-Hui; Dong, Bin; Liu, Yan-Ru; Han, Guan-Qun; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2016-08-01

    In situ growth of NixSy with different crystal phases supported on different surface-treated (acidification or oxidation) nickel foam (NF) has been successfully achieved by a facile solvothermal process. XRD and SEM results show that crystal phase and morphology of NixSy have been greatly affected by the surface treatment of NF. XRD results show that the mixture crystal phases of NixSy have been obtained on both acid-treated NF (NF(a)) and oxidant treated NF (NF(o)). NixSy/NF(a) contains Ni3S2 and NiS, whereas NixSy/NF(o) has Ni3S2 and NiS2, implying different crystal phases derived from different surface treatment of NF. SEM images also reveal the different morphology of two samples based on pre-treatment support. NixSy/NF(a) displays unique conical agglomeration surrounded by porous structure. NixSy/NF(o) has the disorder stacking structure of nanosheets. Electrochemical measurements for oxygen evolution reaction (OER) show the enhanced performances of NixSy/NF(a) than NixSy/NF(o) and pure Ni3S2/NF as contrast samples, implying that NiS outperforms other types of NixSy. The mechanisms of sulfurization path of different surface-treated NF have been discussed. The facile surface treatment of NF may provide a new strategy to prepare excellent electrocatalysts for OER.

  15. TiO2 nanotube array photoelectrocatalyst and Ni-Sb-SnO2 electrocatalyst bifacial electrodes: a new type of bifunctional hybrid platform for water treatment.

    PubMed

    Yang, So Young; Choi, Wonyong; Park, Hyunwoong

    2015-01-28

    Bifunctional hybrid electrodes capable of generating various reactive oxygen species (ROS) over a wide range of potentials were developed by coupling electrocatalysts and photoelectrocatalysts. To achieve this, Ni-doped Sb-SnO2 (NSS) was deposited on one side of a titanium (Ti) foil while the other side was anodized to grow a TiO2 nanotube array (TNA) for electrochemical ozone generation and photoelectrochemical hydroxyl radical generation, respectively. Surface characterization indicated that NSS and TNA were formed and spatially separated yet electrically connected through the Ti substrate. While each catalyst possessed unique electrochemical properties, the coupling of both catalysts resulted in mixed electrochemical properties that drove electrocatalysis at high potentials and photoelectrocatalysis at low potentials. The performance of the NSS/TNA electrode for phenol decomposition was ∼3 times greater than that of single-layer catalysts and ∼1.5 times greater than the combined catalytic performances of the individual NSS and TNA catalysts. This synergistic effect was attributed partly to the simultaneous generation of hydroxyl radicals and ozone, followed by the production of other ROS. A mechanism for the generation of ROS was discussed. PMID:25561436

  16. Facile synthesis of N-rich carbon quantum dots by spontaneous polymerization and incision of solvents as efficient bioimaging probes and advanced electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Lei, Zhouyue; Xu, Shengjie; Wan, Jiaxun; Wu, Peiyi

    2016-01-01

    In this study, uniform nitrogen-doped carbon quantum dots (N-CDs) were synthesized through a one-step solvothermal process of cyclic and nitrogen-rich solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethyl-imidazolidinone (DMEU), under mild conditions. The products exhibited strong light blue fluorescence, good cell permeability and low cytotoxicity. Moreover, after a facile post-thermal treatment, it developed a lotus seedpod surface-like structure of seed-like N-CDs decorating on the surface of carbon layers with a high proportion of quaternary nitrogen moieties that exhibited excellent electrocatalytic activity and long-term durability towards the oxygen reduction reaction (ORR). The peak potential was -160 mV, which was comparable to or even lower than commercial Pt/C catalysts. Therefore, this study provides an alternative facile approach to the synthesis of versatile carbon quantum dots (CDs) with widespread commercial application prospects, not only as bioimaging probes but also as promising electrocatalysts for the metal-free ORR.In this study, uniform nitrogen-doped carbon quantum dots (N-CDs) were synthesized through a one-step solvothermal process of cyclic and nitrogen-rich solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethyl-imidazolidinone (DMEU), under mild conditions. The products exhibited strong light blue fluorescence, good cell permeability and low cytotoxicity. Moreover, after a facile post-thermal treatment, it developed a lotus seedpod surface-like structure of seed-like N-CDs decorating on the surface of carbon layers with a high proportion of quaternary nitrogen moieties that exhibited excellent electrocatalytic activity and long-term durability towards the oxygen reduction reaction (ORR). The peak potential was -160 mV, which was comparable to or even lower than commercial Pt/C catalysts. Therefore, this study provides an alternative facile approach to the synthesis of versatile carbon quantum dots (CDs) with widespread

  17. Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Yang, Liping; Yu, Linghui; Kong, Junhua; Yao, Xiayin; Liu, Wanshuang; Xu, Zhichuan; Lu, Xuehong

    2015-01-01

    In this work, a series of hollow carbon nanospheres simultaneously doped with N and Fe-containing species are prepared by Fe3+-mediated polymerization of dopamine on SiO2 nanospheres, carbonization and subsequent KOH etching of the SiO2 template. The electrochemical properties of the hollow nanospheres as nonprecious-metal electrocatalysts for oxygen reduction reaction (ORR) are characterized. The results show that the hollow nanospheres with mesoporous N-doped carbon shells of ~10 nm thickness and well-dispersed Fe3O4 nanoparticles prepared by annealing at 750 °C (Fe/N/C HNSs-750) exhibit remarkable ORR catalytic activity comparable to that of a commercial 20 wt% Pt/C catalyst, and high selectivity towards 4-electron reduction of O2 to H2O. Moreover, it displays better electrochemical durability and tolerance to methanol crossover effect in an alkaline medium than the Pt/C. The excellent catalytic performance of Fe/N/C HNSs-750 towards ORR can be ascribed to their high specific surface area, mesoporous morphology, homogeneous distribution of abundant active sites, high pyridinic nitrogen content, graphitic nitrogen and graphitic carbon, as well as the synergistic effect of nitrogen and iron species for catalyzing ORR.In this work, a series of hollow carbon nanospheres simultaneously doped with N and Fe-containing species are prepared by Fe3+-mediated polymerization of dopamine on SiO2 nanospheres, carbonization and subsequent KOH etching of the SiO2 template. The electrochemical properties of the hollow nanospheres as nonprecious-metal electrocatalysts for oxygen reduction reaction (ORR) are characterized. The results show that the hollow nanospheres with mesoporous N-doped carbon shells of ~10 nm thickness and well-dispersed Fe3O4 nanoparticles prepared by annealing at 750 °C (Fe/N/C HNSs-750) exhibit remarkable ORR catalytic activity comparable to that of a commercial 20 wt% Pt/C catalyst, and high selectivity towards 4-electron reduction of O2 to H2O

  18. Effect of heat treatment on the activity and stability of carbon supported PtMo alloy electrocatalysts for hydrogen oxidation in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Hassan, Ayaz; Carreras, Alejo; Trincavelli, Jorge; Ticianelli, Edson Antonio

    2014-02-01

    The effect of heat treatment on the activity, stability and CO tolerance of PtMo/C catalysts was studied, due to their applicability in the anode of proton exchange membrane fuel cells (PEMFCs). To this purpose, a carbon supported PtMo (60:40) alloy electrocatalyst was synthesized by the formic acid reduction method, and samples of this catalyst were heat-treated at various temperatures ranging between 400 and 700 °C. The samples were characterized by temperature programmed reduction (TPR), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), cyclic voltammetry (CV), scanning electron microscopy (SEM) and wavelength dispersive X-ray spectroscopy (WDS). Cyclic voltammetry was used to study the stability, and polarization curves were used to investigate the performance of all materials as CO tolerant anode on a PEM single cell text fixture. The catalyst treated at 600 °C, for which the average crystallite size was 16.7 nm, showed the highest hydrogen oxidation activity in the presence of CO, giving an overpotential induced by CO contamination of 100 mV at 1 Acm-2. This catalyst also showed a better stability up to 5000 potential cycles of cyclic voltammetry, as compared to the untreated catalyst. CV, SEM and WDS results indicated that a partial dissolution of Mo and its migration/diffusion from the anode to the cathode occurs during the single cell cycling. Polarization results showed that the catalytic activity and the stability can be improved by a heat treatment, in spite of a growth of the catalyst particles.

  19. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness

    DOE PAGES

    Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana; Pivovar, Bryan S.; Kocha, Shyam S.

    2015-09-17

    Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm2 Pt when measured in 0.1 M HClO4,more » 20 mV/s, 100 kPa O2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.« less

  20. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness

    SciTech Connect

    Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana; Pivovar, Bryan S.; Kocha, Shyam S.

    2015-09-17

    Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm2 Pt when measured in 0.1 M HClO4, 20 mV/s, 100 kPa O2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.

  1. Pomegranate-like N,P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution.

    PubMed

    Chen, Yu-Yun; Zhang, Yun; Jiang, Wen-Jie; Zhang, Xing; Dai, Zhihui; Wan, Li-Jun; Hu, Jin-Song

    2016-09-27

    Well-defined pomegranate-like N,P-doped Mo2C@C nanospheres were prepared by simply using phosphomolybdic acid (PMo12) to initiate the polymerization of polypyrrole (PPy) and as a single source for Mo and P to produce N,P-doped Mo2C nanocrystals. The existence of PMo12 at the molecular scale in the polymer network allows the formation of pomegranate-like Mo2C@C nanospheres with a porous carbon shell as peel and Mo2C nanocrystals well-dispersed in the N-doped carbon matrix as seeds. This nanostructure provides several favorable features for hydrogen evolution application: (1) the conductive carbon shell and matrix effectively prevent the aggregation of Mo2C nanocrystals and facilitate electron transportation; (2) the uniform N,P-doping in the carbon shell/matrix and plenty of Mo2C nanocrystals provide abundant catalytically highly active sites; and (3) nanoporous structure allows the effective exposure of active sites and mass transfer. Moreover, the uniform distribution of P and Mo from the single source of PMo12 and N from PPy in the polymeric PPy-PMo12 precursor guarantees the uniform N- and P-co-doping in both the graphitic carbon matrix and Mo2C nanocrystals, which contributes to the enhancement of electrocatalytic performance. As a result, the pomegranate-like Mo2C@C nanospheres exhibit extraordinary electrocatalytic activity for the hydrogen evolution reaction (HER) in terms of an extremely low overpotential of 47 mV at 10 mA cm(-2) in 1 M KOH, which is one of the best Mo-based HER catalysts. The strategy for preparing such nanostructures may open up opportunities for exploring low-cost high-performance electrocatalysts for various applications. PMID:27617483

  2. Synthesis of an efficient heteroatom-doped carbon electro-catalyst for oxygen reduction reaction by pyrolysis of protein-rich pulse flour cooked with SiO2 nanoparticles.

    PubMed

    Gokhale, Rohan; Unni, Sreekuttan M; Puthusseri, Dhanya; Kurungot, Sreekumar; Ogale, Satishchandra

    2014-03-01

    Development of a highly durable, fuel-tolerant, metal-free electro-catalyst for oxygen reduction reaction (ORR) is essential for robust and cost-effective Anion Exchange Membrane Fuel Cells (AEMFCs). Herein, we report the development of a nitrogen-doped (N-doped) hierarchically porous carbon-based efficient ORR electrocatalyst from protein-rich pulses. The process involves 3D silica nanoparticle templating of the pulse flour(s) followed by their double pyrolysis. The detailed experiments are performed on gram flour (derived from chickpeas) without any in situ/ex situ addition of dopants. The N-doped porous carbon thus generated shows remarkable electrocatalytic activity towards ORR in the alkaline medium. The oxygen reduction on this material follows the desired 4-electron transfer mechanism involving the direct reduction pathway. Additionally, the synthesized carbon catalyst also exhibits good electrochemical stability and fuel tolerance. The results are also obtained and compared with the case of soybean flour having higher nitrogen content to highlight the significance of different parameters in the ORR catalyst performance.

  3. Alternative quaternary chalcopyrite sulfides (Cu2FeSnS4 and Cu2CoSnS4) as electrocatalyst materials for counter electrodes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mokurala, Krishnaiah; Mallick, Sudhanshu; Bhargava, Parag

    2016-02-01

    Quaternary chalcopyrite sulfides are attracting considerable interest as electrocatalysts for triiodide reduction in dye-sensitized solar cells (DSSCs). Conventionally, the much expensive platinum (Pt) is being used as an electrocatalyst material for counter electrodes (CEs) in DSSCs. The present study reports the synthesis of quaternary chalcopyrite sulfides (Cu2FeSnS4 (CFTS) and Cu2CoSnS4 (CCTS) nanoparticles for their application as alternative CE materials in DSSCs. For the first time, CCTS is being explored as a CE material for DSSCs. Physical properties such as crystal structure, elemental composition and morphological characteristics of the as synthesized nanoparticles and the sulfurized films are studied. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements demonstrated that the CCTS CE is more effective for tri-iodide reduction as compared to CFTS CE. The photo conversion efficiencies (PCEs) of DSSCs fabricated using CCTS and CFTS as CEs are found to be 7.4% and 7.1% respectively, while DSSC fabricated with Pt as the CE showed an efficiency of 8.2%. This indicates that they both can potentially be used as alternative CE materials in DSSCs in place of the more expensive Pt.

  4. Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell

    SciTech Connect

    Amani, Mitra; Kazemeini, Mohammad; Hamedanian, Mahboobeh; Pahlavanzadeh, Hassan; Gharibi, Hussein

    2015-08-15

    Highlights: • PtSn/C-PANI performed superior in the MOR compared with a commercial PtRu/C. • Catalytic activity of PtRu/C was highly reduced during the accelerated durability test. • Anode of the PtSn/C-PANI in a passive DMFC lowered methanol crossover by 30%. - Abstract: Polyaniline fiber (PANI) was synthesized and utilized to fabricate a vulcan–polyaniline (C-PANI) composite. Pt/C-PANI and PtSn/C-PANI electro-catalysts with different Pt:Sn atomic ratios were prepared by the impregnation method. These electro-catalysts, along with commercial PtRu/C (Electrochem), were characterized with respect to their structural and electrochemical properties in methanol oxidation reaction (MOR). PtSn(70:30)/C-PANI showed excellent performance in MOR, the obtained maximum current density being about 40% and 50% higher than that for PtRu/C and Pt/C-PANI, respectively. It was also found that the CO tolerance and stability of PtSn(70:30)/C-PANI was considerably higher than that of PtRu/C. Finally, the performance of these two materials was compared in a passive direct methanol fuel cell (DMFC). The DMFC test results demonstrated that the membrane electrode assembly (MEA) prepared using PtSn(70:30)/C-PANI anode catalyst performed more satisfactorily in terms of maximum power density and lower methanol crossover.

  5. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.

    PubMed

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela C; Calle-Vallejo, Federico; Nørskov, Jens K; Jaramillo, Thomas F; Rossmeisl, Jan

    2012-10-28

    used to design and develop improved electrocatalysts for the ORR and the OER and other important reactions of technological interest. PMID:22990481

  6. A computational and experimental study of alternative energy technologies: Constructing photochemical electron-transfer cascades and the development of computational methods for understanding fuel cell electrocatalysts

    NASA Astrophysics Data System (ADS)

    Waraksa, Chad C.

    Producing viable, vertically-integrated alternative energy systems requires solving chemical and engineering problems at many levels. This work presents experimental results seeking to make visible light driven water splitting more feasible, computational efforts aiding in the combinatorial screening of fuel cell catalysts, and a physically-realistic model of the electrochemistry at porous electrode surfaces to understand and improve the porous electrodes used in fuel cells. Combinatorial chemistry is a valuable technique for developing and screening large quantities of candidate catalysts. Data obtained from such experiments can be difficult to analyze and communicate. We implement a system to identify catalytically-active clusters within data sets and to compactly visualize four and five-metal catalytic compositions graphically as tetrahedra or animations. Combinatorially-determined catalysts are often deposited on porous electrodes providing high surface area supports for many reactions, but the influences of electrode preparation conditions on electrocatalysts are not always well understood. Electrochemical impedance spectroscopy (EIS) can provide extensive information about an electrode, but idealized models describing spectra limit the ability to draw useful conclusions. We describe a new model based on an array of parallel, non-uniform transmission lines for predicting the response of porous electrodes. The model incorporates physically realistic elements, such as discrete particles of variable size and adjustable multi-layer stacking geometries. Resistance parameters were derived from experimental data for Pt4Ru4Ir coated Ti0.9Nb0.1O 2 and Ebonex electrodes prepared under varying degrees of oxidative conditioning. The results, which indicate a high degree of impedance at the support-solution interface and consequently low catalyst utilization, suggest several strategies for improved electrode design. Fuel cells' popularity, however, is limited by the cost

  7. A Hydrogen-Evolving Ni(P2N2)2 Electrocatalyst Covalently Attached to a Glassy Carbon Electrode: Preparation, Characterization, and Catalysis. Comparisons With the Homogeneous Analog

    SciTech Connect

    Das, Atanu K.; Engelhard, Mark H.; Bullock, R. Morris; Roberts, John A.

    2014-07-07

    A hydrogen-evolving homogeneous Ni(P2N2)2 electrocatalyst with peripheral ester groups has been covalently attached to a 1,2,3-triazolyllithium-terminated glassy carbon electrode. The surface-confined complex is an electroctalyst for hydrogen evolution, showing onset of catalytic current at the same potential as the soluble parent complex. X-ray photoemission spectra show excellent agreement between the coupled and homogeneous species. Coverage approaches a dense monolayer. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. The XPS measurements were performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  8. Homogeneous Pt-bimetallic Electrocatalysts

    SciTech Connect

    Wang, Chao; Chi, Miaofang; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav

    2011-01-01

    Alloying has shown enormous potential for tailoring the atomic and electronic structures, and improving the performance of catalytic materials. Systematic studies of alloy catalysts are, however, often compromised by inhomogeneous distribution of alloying components. Here we introduce a general approach for the synthesis of monodispersed and highly homogeneous Pt-bimetallic alloy nanocatalysts. Pt{sub 3}M (where M = Fe, Ni, or Co) nanoparticles were prepared by an organic solvothermal method and then supported on high surface area carbon. These catalysts attained a homogeneous distribution of elements, as demonstrated by atomic-scale elemental analysis using scanning transmission electron microscopy. They also exhibited high catalytic activities for the oxygen reduction reaction (ORR), with improvement factors of 2-3 versus conventional Pt/carbon catalysts. The measured ORR catalytic activities for Pt{sub 3}M nanocatalysts validated the volcano curve established on extended surfaces, with Pt{sub 3}Co being the most active alloy.

  9. NiCo2O4@La0.8Sr0.2MnO3 core-shell structured nanorods as efficient electrocatalyst for Lisbnd O2 battery with enhanced performances

    NASA Astrophysics Data System (ADS)

    Luo, Yong; Lu, Fanliang; Jin, Chao; Wang, Yarong; Yang, Ruizhi; Yang, Chenghao

    2016-07-01

    La1-xSrxMnO3 perovskite oxides are promising electrocatalysts for Lisbnd O2 batteries because of their excellent intrinsic catalytic activity for oxygen reduction reaction (ORR). However, the relatively inert catalytic activity for oxygen evolution reaction (OER) suppresses their practical applications in Lisbnd O2 battery. Here, nanoscale NiCo2O4 (NCO) layer with high OER catalytic activity has been homogenously incorporated into the surface of La0.8Sr0.2MnO3 (LSM) nanorods to form a core-shell structure. In this typical structure, the ORR mainly occurred on the LSM core, while the OER mainly occurred on the nanoscale NCO shell, and structure damage of catalysts coming from gas evolution can be greatly avoided. The synergy of high catalytic activity and core-shell structure results in the Lisbnd O2 battery with good rate capability and excellent cycle stability, which sustains 80 cycles without capacity attenuation at a high current density of 200 mA g-1.

  10. Activity and Stability of Ruddlesden-Popper-Type La(n+1) Ni(n) O(3n+1) (n=1, 2, 3, and ∞) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media.

    PubMed

    Yu, Jie; Sunarso, Jaka; Zhu, Yinlong; Xu, Xiaomin; Ran, Ran; Zhou, Wei; Shao, Zongping

    2016-02-18

    Increasing energy demands have stimulated intense research activity on cleaner energy conversion such as regenerative fuel cells and reversible metal-air batteries. It is highly challenging but desirable to develop low-cost bifunctional catalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), the lack of which is currently one of the major limiting components towards commercialization of these technologies. Here, we have conducted a systematic study on the OER and ORR performances of the Ruddlesden-Popper family of La(n+1)Ni(n) O(3n+1) (n=1, 2, 3, and ∞) in an alkaline medium for the first time. It is apparent that the Ni-O bond lengths and the hyperstoichiometric oxides in the rock-salt layers correlate with the ORR activities, whereas the OER activities appear to be influenced by the OH(-) content on the surface of the compounds. In our case, the electronic configuration fails to predict the electrocatalytic activity of these compounds. This work provides guidelines to develop new electrocatalysts with improved performances. PMID:26788934

  11. A hydrogen-evolving Ni(P2N2)2 electrocatalyst covalently attached to a glassy carbon electrode: preparation, characterization, and catalysis. comparisons with the homogeneous analogue.

    PubMed

    Das, Atanu K; Engelhard, Mark H; Bullock, R Morris; Roberts, John A S

    2014-07-01

    A hydrogen-evolving homogeneous Ni(P2N2)2 electrocatalyst with peripheral ester groups has been covalently attached to a 1,2,3-triazolyllithium-terminated planar glassy carbon electrode surface. Coupling proceeds with both the Ni(0) and the Ni(II) complexes. X-ray photoemission spectra show excellent agreement between the Ni(0) coupling product and its parent complex, and voltammetry of the surface-confined system shows that a single species predominates with a surface density of 1.3 × 10(-10) mol cm(-2), approaching the value estimated for a densely packed monolayer. With the Ni(II) system, both photoemission and voltammetric data show speciation to unidentified products on coupling, and the surface density is 6.7 × 10(-11) mol cm(-2). The surface-confined Ni(0) complex is an electroctalyst for hydrogen evolution, showing the onset of catalytic current at the same potential as the soluble parent complex. Decomposition of the surface-confined species is observed in acidic acetonitrile. This is interpreted to reflect the lability of the Ni(II)-phosphine interaction and the basicity of the free phosphine and bears on concurrent efforts to implement surface-confined Ni(P2N2)2 complexes in electrochemical or photoelectrochemical devices.

  12. Activity and Stability of Ruddlesden-Popper-Type La(n+1) Ni(n) O(3n+1) (n=1, 2, 3, and ∞) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media.

    PubMed

    Yu, Jie; Sunarso, Jaka; Zhu, Yinlong; Xu, Xiaomin; Ran, Ran; Zhou, Wei; Shao, Zongping

    2016-02-18

    Increasing energy demands have stimulated intense research activity on cleaner energy conversion such as regenerative fuel cells and reversible metal-air batteries. It is highly challenging but desirable to develop low-cost bifunctional catalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), the lack of which is currently one of the major limiting components towards commercialization of these technologies. Here, we have conducted a systematic study on the OER and ORR performances of the Ruddlesden-Popper family of La(n+1)Ni(n) O(3n+1) (n=1, 2, 3, and ∞) in an alkaline medium for the first time. It is apparent that the Ni-O bond lengths and the hyperstoichiometric oxides in the rock-salt layers correlate with the ORR activities, whereas the OER activities appear to be influenced by the OH(-) content on the surface of the compounds. In our case, the electronic configuration fails to predict the electrocatalytic activity of these compounds. This work provides guidelines to develop new electrocatalysts with improved performances.

  13. Nitrogen-induced surface area and conductivity modulation of carbon nanohorn and its function as an efficient metal-free oxygen reduction electrocatalyst for anion-exchange membrane fuel cells.

    PubMed

    Unni, Sreekuttan M; Bhange, Siddheshwar N; Illathvalappil, Rajith; Mutneja, Nisha; Patil, Kasinath R; Kurungot, Sreekumar

    2015-01-21

    Nitrogen-doped carbon morphologies have been proven to be better alternatives to Pt in polymer-electrolyte membrane (PEM) fuel cells. However, efficient modulation of the active sites by the simultaneous escalation of the porosity and nitrogen doping, without affecting the intrinsic electrical conductivity, still remains to be solved. Here, a simple strategy is reported to solve this issue by treating single-walled carbon nanohorn (SWCNH) with urea at 800 °C. The resulting nitrogen-doped carbon nanohorn shows a high surface area of 1836 m2 g(-1) along with an increased electron conductivity, which are the pre-requisites of an electrocatalyst. The nitrogen-doped nanohorn annealed at 800 °C (N-800) also shows a high oxygen reduction activity (ORR). Because of the high weight percentage of pyridinic nitrogen coordination in N-800, the present catalyst shows a clear 4-electron reduction pathway at only 50 mV overpotential and 16 mV negative shift in the half-wave potential for ORR compared to Pt/C along with a high fuel selectivity and electrochemical stability. More importantly, a membrane electrode assembly (MEA) based on N-800 provides a maximum power density of 30 mW cm(-2) under anion-exchange membrane fuel cell (AEMFC) testing conditions. Thus, with its remarkable set of physical and electrochemical properties, this material has the potential to perform as an efficient Pt-free electrode for AEMFCs.

  14. N,N‧-Bis(salicylidene)ethylenediamine as a nitrogen-rich precursor to synthesize electrocatalysts with high methanol-tolerance for polymer electrolyte membrane fuel cell oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhou, Xuejun; Xu, Pan; Xu, Li; Bai, Zhengyu; Chen, Zhongwei; Qiao, Jinli; Zhang, Jiujun

    2014-08-01

    A cost-effective chemical, N,N‧-bis(salicylidene)ethylenediamine (salen), is used as a ligand to form a carbon-supported Co-salen complex (Co-salen/C) by a simple solid-sate reaction. The Co-salen/C is then pyrolyzed at 600, 700, 800, 900, and 1000 °C to form carbon-supported Co-N-S/C catalysts for the oxygen reduction reaction (ORR). XRD, EDX, TEM, and XPS are used to characterize the catalysts' composition, crystalline nature, morphology, and possible surface groups induced by heat-treatment. Investigation of the catalytic activity and the ORR mechanisms using rotating disk electrode and rotating ring-disk electrode techniques demonstrates that all of these Co-N-S/C catalysts are highly active for the ORR in an O2-saturated 0.1 M KOH solution, but the catalyst heat treated at 700 °C gives the best ORR activity. The overall electron transfer number for the catalyzed ORR was determined to be 3.6-3.9, with 3.7-19.9% H2O2 production over the potential range of -0.05 to -0.60 V, suggesting that the ORR catalyzed by Co-N-S/C catalysts is dominated by a 4-electron transfer pathway from O2 to H2O. In addition, these catalysts exhibit superior methanol tolerance to commercial 40% Pt/C catalyst, thus the Co-N-S/C catalysts are promising for use as electrocatalysts in alkaline polymer electrolyte membrane fuel cells.

  15. Copper oxide as a synergistic catalyst for the oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3-δ perovskite structured electrocatalyst

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Brinkman, Kyle; Xia, Changrong

    2016-10-01

    This work presents the effect of dispersed copper oxide (CuO) nanoparticles on the oxygen reduction reaction (ORR) on a typical solid oxide fuel cell (SOFC) electrocatalyst, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF). The ORR kinetics were enhanced by a factor up to 4 at 750 °C as demonstrated by electrical conductivity relaxation measurements used to determine the chemical surface exchange coefficient, kchem. The value of kchem increased from 2.6 × 10-5 cm s-1 to 9.3 × 10-5 cm s-1 at 750 °C when the LSCF surface was coated with submicron CuO particles. The enhanced kchem was attributed to additional reactions that occur on the CuO surface and at the LSCF-CuO-gas three-phase boundaries (3PBs) as suggested by the kchem dependence on CuO coverage and 3PB length. This enhancement was further demonstrated by the introduction of CuO nanoparticles into LSCF electrodes. CuO infiltrated electrodes reduced the interfacial polarization resistance from 2.27 Ω cm2 to 1.5 Ω cm2 at 600 °C and increased the peak power density from 0.54 W cm-2 to 0.72 W cm-2 at 650 °C. Electrochemical impedance spectroscopy indicated that the reduced resistance was due to the shrinkage of the low frequency arc, which is associated with the electrochemical surface exchange reaction.

  16. Improving Electrocatalysts for O2 Reduction by Fine-Tuning the Pt-Support Interaction: Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy

    SciTech Connect

    Zhou, W.P.; Yang, X.; Vukmirovic, M.B.; Koel, B.E.; Jiao, J.; Peng, G.; Mavrikakis, M.; Adzic, R.R.

    2009-09-09

    We improved the effectiveness of Pt monolayer electrocatalysts for the oxygen-reduction reaction (ORR) using a novel approach to fine-tuning the Pt monolayer interaction with its support, exemplified by an annealed Pd{sub 3}Fe(111) single-crystal alloy support having a segregated Pd layer. Low-energy ion scattering and low-energy electron diffraction studies revealed that a segregated Pd layer, with the same structure as Pd (111), is formed on the surface of high-temperature-annealed Pd{sub 3}Fe(111). This Pd layer is considerably more active than Pd(111); its ORR kinetics is comparable to that of a Pt(111) surface. The enhanced catalytic activity of the segregated Pd layer compared to that of bulk Pd apparently reflects the modification of Pd surface's electronic properties by underlying Fe. The Pd{sub 3}Fe(111) suffers a large loss in ORR activity when the subsurface Fe is depleted by potential cycling (i.e., repeated excursions to high potentials in acid solutions). The Pd{sub 3}Fe(111) surface is an excellent substrate for a Pt monolayer ORR catalyst, as verified by its enhanced ORR kinetics on PT{sub ML}/Pd/Pd{sub 3}Fe(111). Our density functional theory studies suggest that the observed enhancement of ORR activity originates mainly from the destabilization of OH binding and the decreased Pt-OH coverage on the Pt/Pd/Pd{sub 3}Fe(111) surface. The activity of Pt{sub ML}/Pd(111) and Pt(111) is limited by OH removal, whereas the activity of Pt{sub ML}/Pd/Pd{sub 3}Fe(111) is limited by the O-O bond scission, which places these two surfaces on the two sides of the volcano plot.

  17. Improving Electrocatalysts for O2 Reduction by Fine-Tuning the Pt-Support Interaction: Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy

    SciTech Connect

    Zhou, Wei-Ping; Yang, Xiaofang; Vukmirovic, Miomir B.; Koel, Bruce E.; Jiao, Jiao; Peng, Guowen; Mavrikakis, Manos; Adzic, Radoslav R.

    2009-09-09

    We improved the effectiveness of Pt monolayer electrocatalysts for the oxygen-reduction reaction (ORR) using a novel approach to fine-tuning the Pt monolayer interaction with its support, exemplified by an annealed Pd3Fe(111) single-crystal alloy support having a segregated Pd layer. Low-energy ion scattering and low-energy electron diffraction studies revealed that a segregated Pd layer, with the same structure as Pd (111), is formed on the surface of high-temperature-annealed Pd3Fe(111). This Pd layer is considerably more active than Pd(111); its ORR kinetics is comparable to that of a Pt(111) surface. The enhanced catalytic activity of the segregated Pd layer compared to that of bulk Pd apparently reflects the modification of Pd surface’s electronic properties by underlying Fe. The Pd3Fe(111) suffers a large loss in ORR activity when the subsurface Fe is depleted by potential cycling (i.e., repeated excursions to high potentials in acid solutions). The Pd3Fe(111) surface is an excellent substrate for a Pt monolayer ORR catalyst, as verified by its enhanced ORR kinetics on PTML/Pd/Pd3Fe(111). Our density functional theory studies suggest that the observed enhancement of ORR activity originates mainly from the destabilization of OH binding and the decreased Pt-OH coverage on the Pt/Pd/Pd3Fe(111) surface. The activity of PtML/Pd(111) and Pt(111) is limited by OH removal, whereas the activity of PtML/Pd/Pd3Fe(111) is limited by the O-O bond scission, which places these two surfaces on the two sides of the volcano plot.

  18. Co(II)1-xCo(0)x/3Mn(III)2x/3S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries.

    PubMed

    Wang, Zilong; Xiao, Shuang; An, Yiming; Long, Xia; Zheng, Xiaoli; Lu, Xihong; Tong, Yexiang; Yang, Shihe

    2016-06-01

    Rechargeable Zn-air battery is an ideal type of energy storage device due to its high energy and power density, high safety, and economic viability. Its large-scale application rests upon the availability of active, durable, low-cost electrocatalysts for the oxygen reduction reaction (ORR) in the discharge process and oxygen evolution reaction (OER) in the charge process. Herein we developed a novel ORR/OER bifunctional electrocatalyst for rechargeable Zn-air batteries based on the codoping and hybridization strategies. The B/N-codoped mesoporous nanocarbon supported Co(II)1-xCo(0)x/3Mn(III)2x/3S nanoparticles exhibit a superior OER performance compared to that of IrO2 catalyst and comparable Zn-air battery performance to that of the Pt-based battery. The rechargeable Zn-air battery shows high discharge peak power density (over 250 mW cm(-2)) and current density (180 mA cm(-2) at 1 V), specific capacity (∼550 mAh g(-1)), small charge-discharge voltage gap of ∼0.72 V at 20 mA cm(-2) and even higher stability than the Pt-based battery. The advanced performance of the bifunctional catalysts highlights the beneficial role of the simultaneous formation of Mn(III) and Co(0) as well as the dispersed hybridization with the codoped nanocarbon support.

  19. Co(II)1-xCo(0)x/3Mn(III)2x/3S Nanoparticles Supported on B/N-Codoped Mesoporous Nanocarbon as a Bifunctional Electrocatalyst of Oxygen Reduction/Evolution for High-Performance Zinc-Air Batteries.

    PubMed

    Wang, Zilong; Xiao, Shuang; An, Yiming; Long, Xia; Zheng, Xiaoli; Lu, Xihong; Tong, Yexiang; Yang, Shihe

    2016-06-01

    Rechargeable Zn-air battery is an ideal type of energy storage device due to its high energy and power density, high safety, and economic viability. Its large-scale application rests upon the availability of active, durable, low-cost electrocatalysts for the oxygen reduction reaction (ORR) in the discharge process and oxygen evolution reaction (OER) in the charge process. Herein we developed a novel ORR/OER bifunctional electrocatalyst for rechargeable Zn-air batteries based on the codoping and hybridization strategies. The B/N-codoped mesoporous nanocarbon supported Co(II)1-xCo(0)x/3Mn(III)2x/3S nanoparticles exhibit a superior OER performance compared to that of IrO2 catalyst and comparable Zn-air battery performance to that of the Pt-based battery. The rechargeable Zn-air battery shows high discharge peak power density (over 250 mW cm(-2)) and current density (180 mA cm(-2) at 1 V), specific capacity (∼550 mAh g(-1)), small charge-discharge voltage gap of ∼0.72 V at 20 mA cm(-2) and even higher stability than the Pt-based battery. The advanced performance of the bifunctional catalysts highlights the beneficial role of the simultaneous formation of Mn(III) and Co(0) as well as the dispersed hybridization with the codoped nanocarbon support. PMID:27163673

  20. Studies of a Series of [Ni(PR2NPh2)2(CH3CN)]2+ Complexes as Electrocatalysts for H2 Production: Substituent Variation at the Phosphorus Atom of the P2N2 Ligand

    SciTech Connect

    Kilgore, Uriah J.; Stewart, Michael P.; Helm, Monte L.; Dougherty, William G.; Kassel, W. S.; Rakowski DuBois, Mary; DuBois, Daniel L.; Bullock, R. Morris

    2011-11-07

    A series of [Ni(PR2NPh2)2(CH3CN)](BF4)2 complexes containing the cyclic diphosphine ligands (PR2NPh2 = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)) have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(PBn2NPh2)2(CH3CN)](BF4)2 and [Ni(Pn-Bu2NPh2)2(CH3CN)](BF4)2 have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(PBn2NPh2)2 (CH3CN)] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(PCy2NPh2)2(CH3CN)](BF4)2, all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H2 in acidic acetonitrile solutions. The heterolytic cleavage of H2 by [Ni(PR2NPh2)2(CH3CN)](BF4)2 complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(PR2NPh2)2](BF4) complexes. However, the failure to observe a strong correlation between the turnover frequencies for H2 production and the hydride donor abilities, along with structural features of [Ni(PBn2NPh2)2(CH3CN)], suggest that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  1. Layer-separated MoS2 bearing reduced graphene oxide formed by an in situ intercalation-cum-anchoring route mediated by Co(OH)2 as a Pt-free electrocatalyst for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Illathvalappil, Rajith; Unni, Sreekuttan M.; Kurungot, Sreekumar

    2015-10-01

    A significant improvement in the electrochemical oxygen reduction reaction (ORR) activity of molybdenum sulphide (MoS2) could be accomplished by its layer separated dispersion on graphene mediated by cobalt hydroxide (Co(OH)2) through a hydrothermal process (Co(OH)2-MoS2/rGO). The activity makeover in this case is found to be originated from a controlled interplay of the favourable modulations achieved in terms of electrical conductivity, more exposure of the edge planes of MoS2 and a promotional role played by the coexistence of Co(OH)2 in the proximity of MoS2. Co(OH)2-MoS2/rGO displays an oxygen reduction onset potential of 0.855 V and a half wave potential (E1/2) of 0.731 V vs. RHE in 0.1 M KOH solution, which are much higher than those of the corresponding values (0.708 and 0.349 V, respectively) displayed by the as synthesized pristine MoS2 (P-MoS2) under identical experimental conditions. The Tafel slope corresponding to oxygen reduction for Co(OH)2-MoS2/rGO is estimated to be 63 mV dec-1 compared to 68 mV dec-1 displayed by the state-of-the-art Pt/C catalyst. The estimated number of electrons transferred during oxygen reduction for Co(OH)2-MoS2/rGO is in the range of 3.2-3.6 in the potential range of 0.77 V to 0.07 V, which again stands out as valid evidence on the much favourable mode of oxygen reduction accomplished by the system compared to its pristine counterpart. Overall, the present study, thus, demonstrates a viable strategy of tackling the inherent limitations, such as low electrical conductivity and limited access to the active sites, faced by the layered structures like MoS2 to position them among the group of potential Pt-free electrocatalysts for oxygen reduction.A significant improvement in the electrochemical oxygen reduction reaction (ORR) activity of molybdenum sulphide (MoS2) could be accomplished by its layer separated dispersion on graphene mediated by cobalt hydroxide (Co(OH)2) through a hydrothermal process (Co(OH)2-MoS2/rGO). The

  2. Platinum-ruthenium-nickel fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2005-07-26

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum, ruthenium, and nickel, wherein the nickel is at a concentration that is less than about 10 atomic percent.

  3. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    SciTech Connect

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activity 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.

  4. Structural Characterization of Bimetallic Nanocrystal Electrocatalysts

    SciTech Connect

    Cullen, David A

    2016-01-01

    Late transition metal nanocrystals find applications in heterogeneous catalysis such as plasmon-enhanced catalysis and as electrode materials for fuel cells, a zero-emission and sustainable energy technology. Their commercial viability for automotive transportation has steadily increased in recent years, almost exclusively due to the discovery of more efficient bimetallic nanocatalysts for the oxygen reduction reaction (ORR) at the cathode. Despite improvements to catalyst design, achieving high activity while maintaining durability is essential to further enhance their performance for this and other important applications in catalysis. Electronic effects arising from the generation of metal-metal interfaces, from plasmonic metals, and from lattice distortions, can vastly improve sorption properties at catalytic surfaces, while increasing durability.[1] Multimetallic lattice-strained nanoparticles are thus an interesting opportunity for fundamental research.[2,3] A colloidal synthesis approach is demonstrated to produce AuPd alloy and Pd@Au core-shell nanoicosahedra as catalysts for electro-oxidations. The nanoparticles are characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and large solid angle energy dispersive X-ray spectroscopy (EDS) on an FEI Talos 4-detector STEM/EDS system. Figure 1 shows bright-field (BF) and high-angle annular dark-field (HAADF) ac-STEM images of the alloy and core-shell nanoicosahedra together with EDS line-scans and elemental maps. These structures are unique in that the presence of twin boundaries, alloying, and core-shell morphology could create highly strained surfaces and interfaces. The shell thickness of the core-shell structures observed in HAADF-STEM images is tuned by adjusting the ratio between metal precursors (Figure 2a-f) to produce shells ranging from a few to several monolayers. Specific activity was measured in ethanol electro-oxidation to examine the effect of shell thickness on catalytic activity. A volcano relationship was observed for the core-shell nanoicosahedra having different Pd-shell thicknesses as Pd content is increased (Figure 2g). Durability tests are ongoing for the AuPd system; however, promising ORR materials and morphologies have also been synthesized for a more cost-effective Cu-based system of Cu-CuM (M = Pd, Rh, Pt) core-alloy-shell nanocrystals. The synthesis, characterization, and catalytic behavior of different high-index faceted morphologies of Cu-based materials towards ORR and methanol oxidation catalysis will be discussed, where we show how they exceed the performance of commercial Pd- and Pt- based catalysts. The development of new materials and their characterization is critical to understanding the effects of structure and composition on catalysis. Future efforts are directed at resolving these structures and more industrially relevant fuel cell catalysts in 3D through electron tomography.[4] References: [1] X. Huang, et al., Science 348 (2015) p. 1230. [2] P. Strasser, et al., Nat. Chem. 2 (2010) p. 454. [3] C. Chen, et al., Science 343 (2014) p. 1339. [4] Microscopy performed as part of a user project through ORNL s Center for Nanophase Materials Sciences, which is a U.S. DOE Office of Science User Facility, and instrumentation provided by the U.S. DOE Office of Nuclear Energy, Fuel Cycle R&D Program, and the Nuclear Science User Facilities.

  5. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    DOE PAGES

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activitymore » 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.« less

  6. Determining the Overpotential for a Molecular Electrocatalyst

    SciTech Connect

    Appel, Aaron M.; Helm, Monte L.

    2014-02-07

    “The additional potential (beyond the thermodynamic requirement) needed to drive a reaction at a certain rate is called the overpotential.”1 Over the last decade there has been considerable interest in the design and testing of molecular electrocatalysis for the interconversion of renewable energy and chemical fuels.2-5 One of the primary motivations for such research is the replacement of expensive and rare precious metal catalysts, such as platinum, with cheaper, more abundant metals.2,6-8 To become competitive with current electrocatalytic energy conversion technologies, new catalysts must be robust, fast, and energy-efficient. This last feature, the energy-efficiency, is dependent upon the overpotential. For molecular catalysts, the determination and reporting of overpotentials can be complicated by the frequent dependence on assumptions, especially when working in nonaqueous solvents. As overpotentials become lower, the meaningful comparison of molecular catalysts will require improved accuracy and precision. The intended purpose of this viewpoint is to provide a clear and concise description of overpotential and recommendation for its determination in molecular electrocatalysis. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  7. Platinum-ruthenium-palladium fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2006-02-07

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum at a concentration that is between about 20 and about 60 atomic percent, ruthenium at a concentration that is between about 20 and about 60 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having an atomic ratio of platinum to ruthenium that is between about 0.7 and about 1.2. Alternatively, the catalyst may contain platinum at a concentration that is between about 25 and about 50 atomic percent, ruthenium at a concentration that is between about 25 and about 55 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having a difference between the concentrations of ruthenium and platinum that is no greater than about 20 atomic percent.

  8. Nafion-stabilised bimetallic Pt–Cr nanoparticles as electrocatalysts for proton exchange membrane fuel cells (PEMFCs)† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ra16025e Click here for additional data file.

    PubMed Central

    Gupta, G.; Sharma, S.

    2016-01-01

    The current study investigated the unique combination of alloying (Pt with Cr) and Nafion stabilisation to reap the benefits of catalyst systems with enhanced catalytic activity and improved durability in PEMFCs. Pt–Cr alloy nanoparticles stabilised with Nafion were chosen in the current study owing to their higher stability in acidic and oxidising media at high temperatures compared to other Pt-transition metal alloys (e.g. Pt–Ni, Pt–Co). Two different precursor : reducing agent (1 : 10 and 1 : 20) ratios were used in order to prepare two different alloys, denoted as Pt–Cr 10 and Pt–Cr 20. The Pt–Cr 20 alloy system (with composition Pt80Cr20) demonstrated higher electrocatalytic activity for the oxygen reduction reaction compared to commercial Pt/C (TKK) catalysts. Accelerated stress tests and single cell tests revealed that Nafion stabilised alloy catalyst systems displayed significantly enhanced durability (only ∼20% loss of ECSA) compared with Pt/C (50% loss of ECSA) due to improved catalyst–ionomer interaction. Furthermore, the Pt–Cr 20 alloy system demonstrated a current density comparable to that of Pt/C making them promising potential electrocatalysts for proton exchange membrane fuel cells. PMID:27774145

  9. Studies of a Series of [Ni(P R₂N{sup Ph}₂)₂(CH₃CN)]2+ Complexes as Electrocatalysts for H₂ Production. Substituent Variation at the Phosphorus Atom of the P₂N₂ Ligand

    SciTech Connect

    Kilgore, Uriah J.; Stewart, Michael P.; Helm, Monte L.; Dougherty, William G.; Kassel, W. Scott; DuBois, M. Rakowski; DuBois, Daniel L.; Bullock, R. Morris

    2011-10-14

    A series of [Ni(P{sup R}₂N{sup Ph}₂)₂(CH₃CN)](BF₄)₂ complexes containing the cyclic diphosphine ligands [PR₂NPh₂ = 1,5-diaza-3,7-diphosphacyclooctane; R = benzyl (Bn), n-butyl (n-Bu), 2-phenylethyl (PE), 2,4,4-trimethylpentyl (TP), and cyclohexyl (Cy)] have been synthesized and characterized. X-ray diffraction studies reveal that the cations of [Ni(PBn₂NPh₂)₂(CH₃CN)](BF₄)₂ and [Ni(Pn-Bu₂NPh₂)₂(CH₃CN)](BF₄)₂ have distorted trigonal bipyramidal geometries. The Ni(0) complex [Ni(P Bn₂N{sup Ph}₂)₂] was also synthesized and characterized by X-ray diffraction studies and shown to have a distorted tetrahedral structure. These complexes, with the exception of [Ni(PCy₂NPh₂)₂(CH₃CN)](BF₄)₂, all exhibit reversible electron transfer processes for both the Ni(II/I) and Ni(I/0) couples and are electrocatalysts for the production of H₂ in acidic acetonitrile solutions. The heterolytic cleavage of H₂ by [Ni(PR₂NPh₂)₂(CH₃CN)](BF₄)₂ complexes in the presence of p-anisidine or p-bromoaniline was used to determine the hydride donor abilities of the corresponding [HNi(PR₂NPh₂)₂](BF₄) complexes. However, for the catalysts with the most bulky R groups, the turnover frequencies do not parallel the driving force for elimination of H₂, suggesting that steric interactions between the alkyl substituents on phosphorus and the nitrogen atom of the pendant amines play an important role in determining the overall catalytic rate.

  10. Application of XPS to study electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Corcoran, C. J.; Tavassol, H.; Rigsby, M. A.; Bagus, P. S.; Wieckowski, A.

    Analysis of the surface is paramount to understanding the reactivity, selectivity, and catalytic ability of substances. In particular, this understanding is required to make an efficient use of the catalytic surfaces in fuel cells. X-ray photoelectron spectroscopy (XPS) allows determination of changes in the electronic structure for different surface preparation and composition based, mainly, on shifts of the binding energies of core-level electrons. It is also an ideal method that allows identification of the surface or near surface species in relation to fuel cell catalysis. However, the fundamental theoretical concepts, which are used to analyze and interpret XPS spectra are sometimes not correctly understood or correctly applied. In this review, we not only report on XPS operational parameters in use for fuel cell electrocatalysis, but, more significantly, we review and provide rigorous definitions of fundamental concepts used to understand XPS spectra, including the separation of initial and final state effects and the relaxation of valence electrons to screen core-holes. An additional direction of our review is to show the relationships between XPS binding energy shifts and XPS satellite structure with chemical bonding and chemical interactions. However, our primary concern is to provide reviews of representative cases of the application of XPS to solving fuel cell and electrocatalysis-related problems, highlighting progress in this laboratory. We begin with descriptions of essential issues in fuel cell science and with a review of key concepts of XPS. Then, we briefly report on the XPS instrumentation, after which, studies of fundamental importance to electrochemical processes are reviewed. This review includes an overview of complex organic and biological systems in relation to fuel cell electrocatalysis (probed via XPS). We conclude with a discussion of modern developments in XPS methodology.

  11. Graphite-Conjugated Pyrazines as Molecularly Tunable Heterogeneous Electrocatalysts.

    PubMed

    Fukushima, Tomohiro; Drisdell, Walter; Yano, Junko; Surendranath, Yogesh

    2015-09-01

    Condensation of ortho-phenylenediamine derivatives with ortho-quinone moieties at edge planes of graphitic carbon generates graphite-conjugated pyrazines (GCPs) that are active for oxygen reduction electrocatalysis in alkaline aqueous electrolyte. Catalytic rates of oxygen reduction are positively correlated with the electrophilicity of the active site pyrazine unit and can be tuned by over 70-fold by appending electron-withdrawing substituents to the phenylenediamine precursors. Discrete molecular analogs containing pyrazine moieties display no activity above background under identical conditions. This simple bottom up method for constructing molecularly well-defined active sites on ubiquitous graphitic solids enables the rational design of tunable heterogeneous catalysts.

  12. New electrocatalysts for hydrogen-oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Cattabriga, R. A.; Giner, J.; Parry, J.; Swette, L. L.

    1970-01-01

    Platinum-silver, palladium-gold, and platinum-gold alloys serve as oxygen reduction catalysts in high-current-density cells. Catalysts were tested on polytetrafluoroethylene-bonded cathodes and a hydrogen anode at an operating cell temperature of 80 degrees C.

  13. Non-noble electrocatalysts for alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Manoukian, M.; Giner, J.

    1989-01-01

    The doping of solid phase precursors followed by pyrolysis or the copyrolysis of gas phase precursors has allowed us to produce catalysts with good activity toward oxygen reduction. Efforts are currently underway to better understand the reasons for the catalytic activity of the bulk doped catalysts with a view toward further improving their activity.

  14. Electrocatalysts by atomic layer deposition for fuel cell applications

    DOE PAGES

    Cheng, Niancai; Shao, Yuyan; Liu, Jun; Sun, Xueliang

    2016-01-22

    Here, fuel cells are a promising technology solution for reliable and clean energy because they offer high energy conversion efficiency and low emission of pollutants. However, high cost and insufficient durability are considerable challenges for widespread adoption of polymer electrolyte membrane fuel cells (PEMFCs) in practical applications. Current PEMFCs catalysts have been identified as major contributors to both the high cost and limited durability. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other methods. In this review, we summarize recent developments of ALD in PEMFCs with a focusmore » on design of materials for improved catalyst activity and durability. New research directions and future trends have also been discussed.« less

  15. Ternary dendritic nanowires as highly active and stable multifunctional electrocatalysts.

    PubMed

    Yang, Yoojin; Jin, Haneul; Kim, Ho Young; Yoon, Jisun; Park, Jongsik; Baik, Hionsuck; Joo, Sang Hoon; Lee, Kwangyeol

    2016-08-18

    Multimetallic nanocatalysts with a controlled structure can provide enhanced catalytic activity and durability by exploiting electronic, geometric, and strain effects. Herein, we report the synthesis of a novel ternary nanocatalyst based on Mo doped PtNi dendritic nanowires (Mo-PtNi DNW) and its bifunctional application in the methanol oxidation reaction (MOR) at the anode and the oxygen reduction reaction (ORR) at the cathode for direct methanol fuel cells. An unprecedented Mo-PtNi DNW structure can combine multiple structural attributes of the 1D nanowire morphology and dendritic surfaces. In the MOR, Mo-PtNi DNW exhibits superior activity to Pt/C and Mo doped Pt dendritic nanowires (Mo-Pt DNW), and excellent durability. Furthermore, Mo-PtNi DNW demonstrates excellent activity and durability for the ORR. This work highlights the important role of compositional and structural control in nanocatalysts for boosting catalytic performances. PMID:27507777

  16. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    DOEpatents

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  17. Metallated porphyrin based porous organic polymers as efficient electrocatalysts.

    PubMed

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-11-21

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(II) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ∼100% constant ORR current over 50,000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm(-2)) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm(-2)). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e(-) pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system. PMID:26486413

  18. Mixed-Metal Pt Monolayer Electrocatalysts with Improved CO Tolerance

    SciTech Connect

    Nilekar, Anand U.; Sasaki, Kotaro; Farberow, Carrie A.; Adzic, Radoslav R.; Mavrikakis, Manos

    2011-11-23

    Using a combination of periodic, self-consistent, density functional theory (DFT) calculations and COstripping voltammetry experiments, we have designed a new class of Pt-M bimetallic monolayer catalysts supported on a non-Pt metal, which exhibit improved stability against CO poisoning and might be suitable for proton-exchange membrane fuel cell anodes. These surfaces help in reducing the overpotential associated with anodic CO oxidation and minimize the amount of Pt used, thereby reducing materials cost. DFT calculations predict highly repulsive interactions between adsorbed CO molecules on these surfaces, leading to weaker binding and lower coverage of CO than on pure Pt, which in turn facilitates oxidative removal of CO from these catalytic surfaces.

  19. Mixed-Metal Pt Monolayer Electrocatalysts with Improved CO Tolerance

    SciTech Connect

    Sasaki K.; Nilekar A.U.; Farberow C.A.; Adzic R.R.; Mavrikakis M.

    2011-11-23

    Using a combination of periodic, self-consistent, density functional theory (DFT) calculations and CO-stripping voltammetry experiments, we have designed a new class of Pt-M bimetallic monolayer catalysts supported on a non-Pt metal, which exhibit improved stability against CO poisoning and might be suitable for proton-exchange membrane fuel cell anodes. These surfaces help in reducing the overpotential associated with anodic CO oxidation and minimize the amount of Pt used, thereby reducing materials cost. DFT calculations predict highly repulsive interactions between adsorbed CO molecules on these surfaces, leading to weaker binding and lower coverage of CO than on pure Pt, which in turn facilitates oxidative removal of CO from these catalytic surfaces.

  20. Platinum-Coated Nickel Nanowires as Oxygen-Reducing Electrocatalysts

    SciTech Connect

    Alia, Shaun M; Larsen, Brian A; Pylypenko, Svitlana; Cullen, David A; Diercks, David R; Neyerlin, Kenneth C; Kocha, Shyam S; Pivovar, Bryan

    2014-01-01

    Platinum (Pt)-coated nickel (Ni) nanowires (PtNiNWs) are synthesized by the partial spontaneous galvanic displacement of NiNWs, with a diameter of 150 250 nm and a length of 100 200 m. PtNiNWs are electrochemically characterized for oxygen reduction (ORR) in rotating disk electrode half-cells with an acidic electrolyte and compared to carbon-supported Pt (Pt/HSC) and a polycrystalline Pt electrode. Like other extended surface catalysts, the nanowire morphology yields significant gains in ORR specific activity compared to Pt/HSC. Unlike other extended surface approaches, the resultant materials have yielded exceptionally high surface areas, greater than 90 m2 gPt 1. These studies have found that reducing the level of Pt displacement increases Pt surface area and ORR mass activity. PtNiNWs produce a peak mass activity of 917 mA mgPt 1, 3.0 times greater than Pt/HSC and 2.1 times greater than the U.S. Department of Energy target for proton-exchange membrane fuel cell activity.