Science.gov

Sample records for electrocatalysts

  1. Electrocatalysts for oxygen electrodes

    SciTech Connect

    Yeager, E.B. )

    1991-10-01

    The objectives of the research were: to develop further understanding of the factors controlling O{sub 2} reduction and generation on various electrocatalysts, including transition metal macrocycles and oxides: to use this understanding to identify and develop much higher activity catalysts, both monofunction and bifunction; and to establish how catalytic activity for a given O{sub 2} electrocatalyst depends on catalyst-support interactions and to identify stable catalyst supports for bifunctional electrodes.

  2. Palladium-based electrocatalysts and fuel cells employing such electrocatalysts

    DOEpatents

    Masel; Richard I. , Zhu; Yimin , Larsen; Robert T.

    2010-08-31

    A direct organic fuel cell includes a fluid fuel comprising formic acid, an anode having an electrocatalyst comprising palladium nanoparticles, a fluid oxidant, a cathode electrically connected to the anode, and an electrolyte interposed between the anode and the cathode.

  3. Single-Atom Electrocatalysts.

    PubMed

    Zhu, Chengzhou; Fu, Shaofang; Shi, Qiurong; Du, Dan; Lin, Yuehe

    2017-05-23

    Recent years have witnessed the increasing production of the sustainable and renewable energy. The limitations of electrochemical performances are closely associated with the search for highly efficient electrocatalysts with more rational control of size, shape, composition and structure. Specifically, the rapidly emerging studies on single-atom catalysts (SACs) have sparked new interests in electrocatalysis because of the unique properties such as high catalytic activity, selectivity and 100% atom utilization. In this review, we introduce the innovative synthesis and advanced characterizations of SACs and primarily focus on their electrochemical applications in oxygen reduction/evolution reaction, hydrogen evolution reaction, hydrocarbon conversion reactions for fuel cells (methanol, ethanol and formic acid electrooxidation) and other related fields. Significantly, this unique single atom-depended electrocatalytic performance together with the underlying mechanism will also be discussed. Furthermore, future research directions and challenges are proposed to further realize the ultimate goal of tailoring single-atoms for electrochemical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrocatalysts for carbon dioxide conversion

    DOEpatents

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  5. Electrocatalysts using porous polymers and method of preparation

    DOEpatents

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2016-08-02

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  6. Electrocatalysts using porous polymers and method of preparation

    DOEpatents

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2015-04-21

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  7. Photocatalytic methods for preparation of electrocatalyst materials

    DOEpatents

    Nwoga, Tochi Tudor; Kawahara, Kazuo; Li, Wen; Song, Yujiang; Shelnutt, John A; Miller, James E; Medforth, Craig John; Ueno, Yukiyoshi; Kawamura, Tetsuo

    2013-12-17

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in proton exchange membrane fuel cells (PEM-FCs).

  8. Photocatalytic methods for preparation of electrocatalyst materials

    DOEpatents

    Li, Wen; Kawamura, Tetsuo; Nagami, Tetsuo; Takahashi, Hiroaki; Muldoon, John; Shelnutt, John A; Song, Yujiang; Miller, James E; Hickner, Michael A; Medforth, Craig

    2013-09-24

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).

  9. Lead-ruthenium pyrochlores as oxygen electrocatalysts

    NASA Technical Reports Server (NTRS)

    Anderson, E. B.; Taylor, E. J.; Moniz, G. A.

    1990-01-01

    An investigation of lead-ruthenium pyrochlores of the structure Pb2(Ru/2-x/Pb/x/) O7-y for use as oxygen electrocatalysts in alkaline media is discussed. Lead-ruthenium pyrochlore mixed metal oxides were prepared and characterized by X-ray diffraction, BET surface area, dry powder conductivity, and chemical stability. Gas diffusion electrodes were developed specifically for the lead-ruthenium pyrochlore materials. Also investigated were the effects of varying electrode fabrication parameters on the oxygen reduction performance of the lead-ruthenium pyrochlore electrocatalyst. Long-term stability performance was also evaluated. The oxygen reduction performance of the pyrochlore electrocatalyst is considerably higher than that of the state-of-the-art gold-platinum alloy electrocatalyst currently used by NASA. Furthermore, the pyrochlore electrocatalysts are attractive candidates for high-performance pressurized alkaline fuel cells.

  10. Lead-ruthenium pyrochlores as oxygen electrocatalysts

    NASA Technical Reports Server (NTRS)

    Anderson, E. B.; Taylor, E. J.; Moniz, G. A.

    1990-01-01

    An investigation of lead-ruthenium pyrochlores of the structure Pb2(Ru/2-x/Pb/x/) O7-y for use as oxygen electrocatalysts in alkaline media is discussed. Lead-ruthenium pyrochlore mixed metal oxides were prepared and characterized by X-ray diffraction, BET surface area, dry powder conductivity, and chemical stability. Gas diffusion electrodes were developed specifically for the lead-ruthenium pyrochlore materials. Also investigated were the effects of varying electrode fabrication parameters on the oxygen reduction performance of the lead-ruthenium pyrochlore electrocatalyst. Long-term stability performance was also evaluated. The oxygen reduction performance of the pyrochlore electrocatalyst is considerably higher than that of the state-of-the-art gold-platinum alloy electrocatalyst currently used by NASA. Furthermore, the pyrochlore electrocatalysts are attractive candidates for high-performance pressurized alkaline fuel cells.

  11. Electrocatalyst for alcohol oxidation in fuel cells

    DOEpatents

    Adzic, Radoslav R.; Marinkovic, Nebojsa S.

    2001-01-01

    Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO.sub.4 or CoWO.sub.4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.

  12. Electrocatalysts for oxygen electrodes. Final report

    SciTech Connect

    Yeager, E.B.

    1991-10-01

    The objectives of the research were: to develop further understanding of the factors controlling O{sub 2} reduction and generation on various electrocatalysts, including transition metal macrocycles and oxides: to use this understanding to identify and develop much higher activity catalysts, both monofunction and bifunction; and to establish how catalytic activity for a given O{sub 2} electrocatalyst depends on catalyst-support interactions and to identify stable catalyst supports for bifunctional electrodes.

  13. Electrocatalyst for alcohol oxidation at fuel cell anodes

    DOEpatents

    Adzic, Radoslav [East Setauket, NY; Kowal, Andrzej [Cracow, PL

    2011-11-02

    In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

  14. Electrocatalysts for oxygen electrodes. Final report

    SciTech Connect

    Yeager, E.

    1993-02-01

    Object was to understand factors controlling the activity of O{sub 2} reduction and generation electrocatalysts, in order to attain higher activity and longer-term stability. Two broad classes of catalysts were developed: transition metal macrocycles in monomeric and polymeric forms, and transition metal oxides including perovskites and pyrochlores. 20 refs., 14 figs.

  15. Electrocatalyst advances for hydrogen oxidation in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.

    1984-01-01

    The important considerations that presently exist for achieving commercial acceptance of fuel cells are centered on cost (which translates to efficiency) and lifetime. This paper addresses the questions of electrocatalyst utilization within porous electrode structures and the preparation of low-cost noble metal electrocatalyst combinations with extreme dispersions of the metal. Now that electrocatalyst particles can be prepared with dimensions of 10 A, either singly or in alloy combinations, a very large percentage of the noble metal atoms in a crystallite are available for reaction. The cost savings for such electrocatalysts in the present commercially driven environment are considerable.

  16. Electrocatalyst advances for hydrogen oxidation in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.

    1984-01-01

    The important considerations that presently exist for achieving commercial acceptance of fuel cells are centered on cost (which translates to efficiency) and lifetime. This paper addresses the questions of electrocatalyst utilization within porous electrode structures and the preparation of low-cost noble metal electrocatalyst combinations with extreme dispersions of the metal. Now that electrocatalyst particles can be prepared with dimensions of 10 A, either singly or in alloy combinations, a very large percentage of the noble metal atoms in a crystallite are available for reaction. The cost savings for such electrocatalysts in the present commercially driven environment are considerable.

  17. Recent Progress in Nanostructured Electrocatalysts for PEM Fuel Cells

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Yin, Geping; Lin, Yuehe

    2013-03-30

    Polymer electrolyte membrane (PEM) fuel cells are attracting much attention as promising clean power sources and an alternative to conventional internal combustion engines, secondary batteries, and other power sources. Much effort from government laboratories, industry, and academia has been devoted to developing PEM fuel cells, and great advances have been achieved. Although prototype cars powered by fuel cells have been delivered, successful commercialization requires fuel cell electrocatalysts, which are crucial components at the heart of fuel cells, meet exacting performance targets. In this review, we present a brief overview of the recent progress in fuel cell electrocatalysts, which involves catalyst supports, Pt and Pt-based electrocatalysts, and non-Pt electrocatalysts.

  18. Evaluation of homogeneous electrocatalysts by cyclic voltammetry.

    PubMed

    Rountree, Eric S; McCarthy, Brian D; Eisenhart, Thomas T; Dempsey, Jillian L

    2014-10-06

    The pursuit of solar fuels has motivated extensive research on molecular electrocatalysts capable of evolving hydrogen from protic solutions, reducing CO2, and oxidizing water. Determining accurate figures of merit for these catalysts requires the careful and appropriate application of electroanalytical techniques. This Viewpoint first briefly presents the fundamentals of cyclic voltammetry and highlights practical experimental considerations before focusing on the application of cyclic voltammetry for the characterization of electrocatalysts. Key metrics for comparing catalysts, including the overpotential (η), potential for catalysis (E(cat)), observed rate constant (k(obs)), and potential-dependent turnover frequency, are discussed. The cyclic voltammetric responses for a general electrocatalytic one-electron reduction of a substrate are presented along with methods to extract figures of merit from these data. The extension of this analysis to more complex electrocatalytic schemes, such as those responsible for H2 evolution and CO2 reduction, is then discussed.

  19. Development of molecular electrocatalysts for energy storage.

    PubMed

    DuBois, Daniel L

    2014-04-21

    Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high- and low-energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition-metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition-metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intra- and intermolecular proton-transfer steps, and coupling of proton- and electron-transfer steps. Studies also indicate an important role for the outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton-transfer reactions and their associated energy barriers is key to the design of faster and

  20. Development and performance characterisation of new electrocatalysts for PEMFC

    NASA Astrophysics Data System (ADS)

    Escudero, M. J.; Hontañón, E.; Schwartz, S.; Boutonnet, M.; Daza, L.

    New electrocatalysts based on Pt, Pt-Ru and Pt-Pd have been prepared by the microemulsion method. This method allows the production of a very narrow size distribution of metal particles, with an average size smaller than that of conventional electrocatalysts prepared by impregnation. Eight membrane electrode assemblies (MEAs) with an active surface area of 50 cm 2 were characterised in a single fuel cell. The MEAs consist of Nafion 117 as membrane and a commercial electrocatalyst (40% Pt/C from E-TEK) on the cathode side. Four MEAs have electrocatalysts prepared by the microemulsion technique and the other four have commercial electrocatalysts on the anode side. The performance of the eight MEAs was evaluated by measuring the fuel cell polarisation curves and the internal resistance with H 2/O 2 and H 2/air, at 60 °C and pressure in the range from 1 to 3 bar. The MEAs with the electrocatalysts prepared by microemulsion showed a performance comparable to that of the MEAs with commercial electrocatalysts. The satisfactory results obtained show that microemulsion is a promising method for the preparation of electrocatalysts for fuel cells. Further effort will be devoted to the optimisation of the method, mainly, the deposition of the metal particles on the carbon support, which it is expected to enhance the fuel cell performance.

  1. Development of advanced kocite electrocatalysts for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Welsh, L. S.; Leyerle, R. W.; Scarlata, D. S.; Vanek, M. A.

    1981-01-01

    These improved electrocatalysts should demonstrate a larger initial catalytic metal surface area, and a better catalytic metal surface area retention during fuel cell operation than present state-of-the-art phosphoric acid electrocatalysts. Kocite electrocatalysts impregnated with platinum and platinum-vanadium alloys were tested. The Kocite electrocatalysts were aged in electrodes potentiostated in H3PO4 half cells, and were then analyzed for catalytic metals surface area retention. Compared with the state-of-the-art platinum electrocatalysts, as represented by a standard Kocite electrocatalyst, the Kocite electrocatalysts impregnated by the techniques used in this study have a better initial platinum surface area. This initial surface area difference appeared to be maintained when the catalysts are aged at 700 mV, but was not maintained when the catalysts were aged at 800 mV. Variations of the alumina substrate and of the post-treatment of the leached Kocite catalyst support did not produce any catalysts with better platinum surface area retention than the standard catalyst. Alloying of vanadium with the platinum did produce Kocite electrocatalysts which maintained their alloy surface area better than the standard catalyst maintained its platinum surface area.

  2. Development of Molecular Electrocatalysts for Energy Storage

    SciTech Connect

    DuBois, Daniel L.

    2014-02-20

    Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high energy and low energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is the control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intramolecular and intermolecular proton transfer steps, and the coupling of proton and electron transfer steps. Studies also indicate an important role for outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton transfer reactions and their

  3. Surface Immobilization of Molecular Electrocatalysts for Energy Conversions.

    PubMed

    Bullock, Morris; Das, Atanu K; Appel, Aaron M

    2017-02-08

    Electrocatalysts are critically important for a secure energy future, as they facilitate the conversion between electrical and chemical energy. Molecular catalysts offer precise control of structure that enables understanding of structure-reactivity relationships, which can be difficult to achieve with heterogeneous catalysts. Molecular electrocatalysts can be immobilized on surfaces by covalent bonds or through non-covalent interactions. Advantages of surface immobilization include the need for less catalyst, avoidance of bimolecular decomposition pathways, and easier determination of catalyst lifetime. This mini-review highlights surface immobilization of molecular electrocatalysts for reduction of O2, oxidation of H2O, production of H2, and reduction of CO2.

  4. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Rhodes, Christopher P. (Inventor); Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  5. A metal-organic framework-derived bifunctional oxygen electrocatalyst

    NASA Astrophysics Data System (ADS)

    Xia, Bao Yu; Yan, Ya; Li, Nan; Wu, Hao Bin; Lou, Xiong Wen (David); Wang, Xin

    2016-01-01

    Oxygen electrocatalysis is of great importance for many energy storage and conversion technologies, including fuel cells, metal-air batteries and water electrolysis. Replacing noble metal-based electrocatalysts with highly efficient and inexpensive non-noble metal-based oxygen electrocatalysts is critical for the practical applications of these technologies. Here we report a general approach for the synthesis of hollow frameworks of nitrogen-doped carbon nanotubes derived from metal-organic frameworks, which exhibit higher electrocatalytic activity and stability for oxygen reduction and evolution than commercial Pt/C electrocatalysts. The remarkable electrochemical properties are mainly attributed to the synergistic effect from chemical compositions and the robust hollow structure composed of interconnected crystalline nitrogen-doped carbon nanotubes. The presented strategy for controlled design and synthesis of metal-organic framework-derived functional nanomaterials offers prospects in developing highly active electrocatalysts in electrochemical energy devices.

  6. Fuel cell with Pt/Pd electrocatalyst electrode

    DOEpatents

    Stonehart, Paul

    1983-01-01

    An electrode for use in a phosphoric acid fuel cell comprising a graphitized or partially graphitized carbon support having a platinum/palladium electrocatalyst thereon. Preferably, the platinum/palladium catalyst comprises 20 to 65 weight percent palladium.

  7. Nanostructured electrocatalysts with tunable activity and selectivity

    NASA Astrophysics Data System (ADS)

    Mistry, Hemma; Varela, Ana Sofia; Kühl, Stefanie; Strasser, Peter; Cuenya, Beatriz Roldan

    2016-04-01

    The field of electrocatalysis has undergone tremendous advancement in the past few decades, in part owing to improvements in catalyst design at the nanoscale. These developments have been crucial for the realization of and improvement in alternative energy technologies based on electrochemical reactions such as fuel cells. Through the development of novel synthesis methods, characterization techniques and theoretical methods, rationally designed nanoscale electrocatalysts with tunable activity and selectivity have been achieved. This Review explores how nanostructures can be used to control electrochemical reactivity, focusing on three model reactions: O2 electroreduction, CO2 electroreduction and ethanol electrooxidation. The mechanisms behind nanoscale control of reactivity are discussed, such as the presence of low-coordinated sites or facets, strain, ligand effects and bifunctional effects in multimetallic materials. In particular, studies of how particle size, shape and composition in nanostructures can be used to tune reactivity are highlighted.

  8. Rational Development of Ternary Alloy Electrocatalysts

    SciTech Connect

    Wang, Chao; Li, Dongguo; Chi, Miaofang; Pearson, John; Rankin, Rees; Greeley, Jeff; Duan, Zhiyao; Wang, Guofeng; Van der Vliet, Dennis; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav

    2012-01-01

    Improving the efficiency of electrocatalytic reduction of oxygen represents one of the main challenges for the development of renewable energy technologies. Here, we report the systematic evaluation of Pt-ternary alloys (Pt{sub 3}(MN){sub 1} with M, N = Fe, Co, or Ni) as electrocatalysts for the oxygen reduction reaction (ORR). We first studied the ternary systems on extended surfaces of polycrystalline thin films to establish the trend of electrocatalytic activities and then applied this knowledge to synthesize ternary alloy nanocatalysts by a solvothermal approach. This study demonstrates that the ternary alloy catalysts can be compelling systems for further advancement of ORR electrocatalysis, reaching higher catalytic activities than bimetallic Pt alloys and improvement factors of up to 4 versus monometallic Pt.

  9. Simple model to study heterogeneous electrocatalysts

    NASA Astrophysics Data System (ADS)

    Franco-Junior, Edison; Lopes, Ana Carolina G.; Suffredini, Hugo B.; Homem-de-Mello, Paula

    2015-01-01

    New electrocatalyst materials have been proposed to increase the performance of fuel cells. Experimental studies show that Pt and Pb metallic and oxide materials are quite efficient in the oxidation of alcohols and small organic molecules such as formic acid in advanced fuel cells. This work proposes a model for studying morphologically heterogeneous catalysts through quantum chemistry methods such as density functional calculations. For testing the model, we have experimentally studied the adsorption of small organic molecules, namely formic acid and methanol, on Pt and Pb electrodes. All methodologies we have tested can be employed for this kind of study, but M06 functional results correlate best with previous simulations of homogeneous catalysts and with experimental data obtained for homogeneous and heterogeneous electrodes. Our model indicates that the presence of a Pt-Pb interface is responsible for higher adsorption energies of these molecules, most likely due to the orientation of the organic molecules that should facilitate the oxidation process.

  10. Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks.

    PubMed

    Zhao, Dan; Shui, Jiang-Lan; Grabstanowicz, Lauren R; Chen, Chen; Commet, Sean M; Xu, Tao; Lu, Jun; Liu, Di-Jia

    2014-02-01

    A facile synthesis of non-PGM ORR electrocatalysts through thermolysis of one-pot synthesized ZIF is demonstrated. The electrocatalysts exhibit excellent activity, with a maximum volumetric current density of 88.1 A cm(-3) measured at 0.8 V in PEFC tests. This approach not only makes ZIFs-based electrocatalysts easy to scale up, but also paves the way for the tailored synthesis of electrocatalysts.

  11. Nanoscale limitations in metal oxide electrocatalysts for oxygen evolution.

    PubMed

    Viswanathan, Venkatasubramanian; Pickrahn, Katie L; Luntz, Alan C; Bent, Stacey F; Nørskov, Jens K

    2014-10-08

    Metal oxides are attractive candidates for low cost, earth-abundant electrocatalysts. However, owing to their insulating nature, their widespread application has been limited. Nanostructuring allows the use of insulating materials by enabling tunneling as a possible charge transport mechanism. We demonstrate this using TiO2 as a model system identifying a critical thickness, based on theoretical analysis, of about ∼4 nm for tunneling at a current density of ∼1 mA/cm(2). This is corroborated by electrochemical measurements on conformal thin films synthesized using atomic layer deposition (ALD) identifying a similar critical thickness. We generalize the theoretical analysis deriving a relation between the critical thickness and the location of valence band maximum relative to the limiting potential of the electrochemical surface process. The critical thickness sets the optimum size of the nanoparticle oxide electrocatalyst and this provides an important nanostructuring requirement for metal oxide electrocatalyst design.

  12. Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts

    SciTech Connect

    Kang, Yijin; Snyder, Joshua; Chi, Miaofang; Li, Dongguo; More, Karren L.; Markovic, Nenad M.; Stamenkovic, Vojislav R.

    2014-11-12

    The fine balance between activity and durability is crucial for the development of high performance electrocatalysts. The importance of atomic structure and compositional gradients is a guiding principle in exploiting the knowledge from well-defined materials in the design of novel electrocatalysts with a Ni core, Au interlayer and PtNi shell nanostructure (Ni@Au@PtNi). This multimetallic system is found to have the optimal balance of activity and durability due to the synergy between stabilizing effect of subsurface Au and modified electronic structure of surface Pt through interaction with subsurface Ni atoms. The electrocatalysts with Ni@Au@PtNi core-interlayer-shell structure exhibit high intrinsic and mass activities as well as superior durability for the oxygen reduction reaction with less than 10% activity loss after 10,000 potential cycles between 0.6 and 1.1 V vs. the reversible hydrogen electrode.

  13. Rational Design of Competitive Electrocatalysts for Hydrogen Fuel Cells.

    PubMed

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2012-02-16

    The large-scale application of one of the most promising clean and renewable sources of energy, hydrogen fuel cells, still awaits efficient and cost-effective electrocatalysts for the oxygen reduction reaction (ORR) occurring on the cathode. We demonstrate that truly rational design renders electrocatalysts possessing both qualities. By unifying the knowledge on surface morphology, composition, electronic structure, and reactivity, we solve that trimetallic sandwich-like structures are an excellent choice for optimization. Their constituting species are expected to couple synergistically yielding reaction-environment stability, cost-effectiveness, and tunable reactivity. This cooperative-action concept enabled us to predict two advantageous ORR electrocatalysts: Pd/Fe/W(110) and Au/Ru/W(110). Density functional theory calculations of the reaction free-energy diagrams suggest that these materials are more active toward ORR than the so-far best Pt-based catalysts. Our designing concept advances also a general approach for engineering advanced materials.

  14. Turning Indium Oxide into a Superior Electrocatalyst: Deterministic Heteroatoms

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhang, Nan Nan; Chen, Jian Fu; Hou, Yu; Yang, Shuang; Guo, Jian Wei; Yang, Xiao Hua; Zhong, Ju Hua; Wang, Hai Feng; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui

    2013-10-01

    The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future.

  15. Turning indium oxide into a superior electrocatalyst: deterministic heteroatoms.

    PubMed

    Zhang, Bo; Zhang, Nan Nan; Chen, Jian Fu; Hou, Yu; Yang, Shuang; Guo, Jian Wei; Yang, Xiao Hua; Zhong, Ju Hua; Wang, Hai Feng; Hu, P; Zhao, Hui Jun; Yang, Hua Gui

    2013-10-31

    The efficient electrocatalysts for many heterogeneous catalytic processes in energy conversion and storage systems must possess necessary surface active sites. Here we identify, from X-ray photoelectron spectroscopy and density functional theory calculations, that controlling charge density redistribution via the atomic-scale incorporation of heteroatoms is paramount to import surface active sites. We engineer the deterministic nitrogen atoms inserting the bulk material to preferentially expose active sites to turn the inactive material into a sufficient electrocatalyst. The excellent electrocatalytic activity of N-In2O3 nanocrystals leads to higher performance of dye-sensitized solar cells (DSCs) than the DSCs fabricated with Pt. The successful strategy provides the rational design of transforming abundant materials into high-efficient electrocatalysts. More importantly, the exciting discovery of turning the commonly used transparent conductive oxide (TCO) in DSCs into counter electrode material means that except for decreasing the cost, the device structure and processing techniques of DSCs can be simplified in future.

  16. Platinum monolayer electrocatalysts for oxygen reduction in fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Junliang

    Fuel cells are expected to be one of the major clean energy sources in the near future. However, the slow kinetics of electrocatalytic oxygen reduction reaction (ORR) and the high loading of Pt for the cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this study, a new approach was developed for designing electrocatalysts for the ORR in fuel cells. These electrocatalysts consist of only one Pt monolayer, or mixed transition metal-Pt monolayer, on suitable carbon-supported metal, or alloy nanoparticles. The synthesis involved depositing a monolayer of Cu on a suitable transition metal or metal alloy surface at underpotentials, followed by galvanic displacement of the Cu monolayer with Pt or mixed metal-Pt. It was found that the electronic properties of Pt monolayer could be fine-tuned by the electronic and geometric effects introduced by the substrate metal (or alloy) and the lateral effects of the neighboring metal atoms. The role of substrates was found reflected in a "volcano" plot of the monolayer activity for the ORR as a function of their calculated d-band centers. The Pt mass-specific activity of the new Pt monolayer electrocatalysts was up to twenty times higher than the state-of-the-art commercial Pt/C catalysts. The enhancement of the activity is caused mainly by decreased formation of PtOH (the blocking species for ORR), and to a lesser degree by the electronic effects. Fuel cell tests showed a very good long term stability of the new electrocatalysts. Our results demonstrated a viable way to designing the electrocatalysts which could successfully alleviate two issues facing the commercialization of fuel cells---the costs of electrocatalysts and their efficiency.

  17. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  18. Highly methanol-tolerant platinum electrocatalyst derived from poly(vinylpoyrrolidone) coating

    NASA Astrophysics Data System (ADS)

    Yang, Zehui; Ling, Ying; Zhang, Yunfeng; Yang, Ming

    2017-02-01

    The design and fabrication of a methanol-tolerant electrocatalyst is still one of the most important issues in direct methanol fuel cells (DMFCs). Here, we focus on the design of a cathodic electrocatalyst in DMFCs and describe a new methanol-tolerant electrocatalyst fabricated from poly(vinylpyrrolidone) (PVP) coating on platinum nanoparticles assisted by hydrogen bonding between PVP and polybenzimidazole (PBI). The PVP layer has a negligible effect on the oxygen reduction reaction (ORR) activity, while the methanol oxidation reaction is retarded by the PVP layer. The PVP-coated electrocatalyst shows higher ORR activity under various methanol concentrations in the electrolyte, suggesting that the PVP-coated electrocatalyst has a higher methanol tolerance. Also, the PVP-coated electrocatalyst loses only 14% of the electrochemical surface area after 5000 potential cycles from 0.6-1.0 V versus the reversible hydrogen electrode, indicating better Pt stability than non-coated (27%) and commercial (38%) electrocatalysts due to the unique sandwich structure formed by the PVP and PBI. The power density of the PVP-coated electrocatalyst is four to five times higher compared to non-coated and commercial electrocatalysts with 12 M methanol feeding to the anode side, respectively. PVP coating is important for the enhancement of Pt stability and methanol tolerance. This study offers a new method for preparing a low-cost and high-methanol-tolerant Pt electrocatalyst, and useful information for real DMFC application to eliminate the methanol crossover problem in the cathode side.

  19. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    DOEpatents

    Adzic, Radoslav; Huang, Tao

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  20. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    NASA Astrophysics Data System (ADS)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  1. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.

    1981-01-01

    Two cooperative phenomena are required the development of highly efficient porous electrocatalysts: (1) is an increase in the electrocatalytic activity of the catalyst particle; and (2) is the availability of that electrocatalyst particle for the electromechanical reaction. The two processes interact with each other so that improvements in the electrochemical activity must be coupled with improvements in the availability of the electrocatalyst for reaction. Cost effective and highly reactive electrocatalysts were developed. The utilization of the electrocatalyst particles in the porous electrode structures was analyzed. It is shown that a large percentage of the electrocatalyst in anode structures is not utilized. This low utilization translates directly into a noble metal cost penalty for the fuel cell.

  2. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Stonehart, P.; Baris, J.; Pagliaro, P.

    1980-09-01

    Results are presented for hydrogen oxidation and hydrogen oxidation poisoned by carbon monoxide at levels between 0 and 30%. Due to the high activities that are now being observed for our platinum based electrocatalysts, the hydrogen concentrations were reduced to 10% levels in the gas supplies. Perturbation techniques were used to determine that a mechanism for the efficient operation of our porous gas diffusion electrodes is diffusion of the carbon monoxide out of the electrode structure through the electrolyte film on the electro-catalyst. A survey of the literature on platinum group materials (PGM) was carried out so that an identification of successful electrocatalysts could be made. Two PGM electrocatalysts were prepared and performance data for hydrogen oxidation in hot phosphoric acid in the presence of high carbon monoxide concentrations showed that they matched the best platinum on carbon electrocatalysts but with an electrocatalyst cost that was half of the platinum catalyst cost.

  3. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Pagliaro, P.

    1980-01-01

    Results are presented for hydrogen oxidation and hydrogen oxidation poisoned by carbon monoxide at levels between 0 and 30%. Due to the high activities that are now being observed for our platinum based electrocatalysts, the hydrogen concentrations were reduced to 10% levels in the gas supplies. Perturbation techniques were used to determine that a mechanism for the efficient operation of our porous gas diffusion electrodes is diffusion of the carbon monoxide out of the electrode structure through the electrolyte film on the electro-catalyst. A survey of the literature on platinum group materials (PGM) was carried out so that an identification of successful electrocatalysts could be made. Two PGM electrocatalysts were prepared and performance data for hydrogen oxidation in hot phosphoric acid in the presence of high carbon monoxide concentrations showed that they matched the best platinum on carbon electrocatalysts but with an electrocatalyst cost that was half of the platinum catalyst cost.

  4. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Stonehart, P.; Baris, J.; Hochmutt, J.; Pagliaro, P.

    1980-12-01

    Alloy electrocatalysts on carbon supports were developed for hydrogen oxidation in the presence of carbon monoxide. These electrocatalysts match the best platinum on carbon catalysts for performance yet cost half as much. The results demonstrate that a significant reduction in anode electrocatalyst material cost can be achieved by replacing the platinum. Since surface characterization of this catalyst is important to explain its performance, several approaches and pitfalls to the elucidation of the surface characterization are presented.

  5. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hochmutt, J.; Pagliaro, P.

    1980-01-01

    Alloy electrocatalysts on carbon supports were developed for hydrogen oxidation in the presence of carbon monoxide. These electrocatalysts match the best platinum on carbon catalysts for performance yet cost half as much. The results demonstrate that a significant reduction in anode electrocatalyst material cost can be achieved by replacing the platinum. Since surface characterization of this catalyst is important to explain its performance, several approaches and pitfalls to the elucidation of the surface characterization are presented.

  6. High-surface-area, dual-function oxygen electrocatalysts for space power applications

    NASA Technical Reports Server (NTRS)

    Ham, David O.; Moniz, Gary; Taylor, E. Jennings

    1987-01-01

    The processes of hydration/dehydration and carbonation/decarbonation are investigated as an approach to provide higher surface area mixed metal oxides that are more active electrochemically. These materials are candidates for use as electrocatalysts and electrocatalyst supports for alkaline electrolyzers and fuel cells. For the case of the perovskite, LaCoO3 , higher surface areas were achieved with no change in structure and a more active oxygen electrocatalyst.

  7. Co(OH)2 @PANI Hybrid Nanosheets with 3D Networks as High-Performance Electrocatalysts for Hydrogen Evolution Reaction.

    PubMed

    Feng, Jin-Xian; Ding, Liang-Xin; Ye, Sheng-Hua; He, Xu-Jun; Xu, Han; Tong, Ye-Xiang; Li, Gao-Ren

    2015-11-25

    Hybrid electrocatalysts with excellent electrocatalytic activity for hydrogen reduction are fabricated using an efficient and facile electrochemical route. The electronic and synergistic effects between Co(OH)2 and polyaniline (PANI) in the composite structure are the key factors that generate the high electrocatalytic activity and excellent stability. A highly efficient, non-precious metal-based flexible electrocatalyst for high-performance electrocatalysts is shown, which reveals a novel route for the design and synthesis of electrocatalysts.

  8. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    PubMed Central

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  9. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications.

    PubMed

    Xia, Chuan; Jiang, Qiu; Zhao, Chao; Hedhili, Mohamed N; Alshareef, Husam N

    2016-01-06

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max-imum current density of 97.5 mA cm(-2) at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec(-1) are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  10. New Electrocatalysts for Direct Oxidation of Organic Fuels

    DTIC Science & Technology

    2009-06-12

    in our labs . We find that methanol electro-oxidation is not as simple as the case for CO. In this study, we find there are some important...the electrocatalytic interface. In our labs , we have developed a unique electrochemical method and apparatus that allow us to tune the... labs .[32] These materials are high surface area electrocatalyst powders, as seen by BET and TEM studies. The crystal structures of the two alloys are

  11. Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes

    DOEpatents

    Wu, Gang; Zelenay, Piotr

    2013-08-27

    A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.

  12. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts

    PubMed Central

    Wei, Wei; Tao, Ying; Lv, Wei; Su, Fang-Yuan; Ke, Lei; Li, Jia; Wang, Da-Wei; Li, Baohua; Kang, Feiyu; Yang, Quan-Hong

    2014-01-01

    Carbon-based electrocatalysts are more durable and cost-effective than noble materials for the oxygen reduction reaction (ORR), which is an important process in energy conversion technologies. Heteroatoms are considered responsible for the excellent ORR performance in many carbon-based electrocatalysts. But whether an all-carbon electrocatalyst can effectively reduce oxygen is unknown. We subtly engineered the interfaces between planar graphene sheets and curved carbon nanotubes (G-CNT) and gained a remarkable activity/selectivity for ORR (larger current, and n = 3.86, ~93% hydroxide + ~7% peroxide). This performance is close to that of Pt; and the durability is much better than Pt. We further demonstrate the application of this G-CNT hybrid as an all-carbon cathode catalyst for lithium oxygen batteries.We speculate that the high ORR activity of this G-CNT hybrid stems from the localized charge separation at the interface of the graphene and carbon nanotube, which results from the tunneling electron transfer due to the Fermi level mismatch on the planar and curved sp2 surfaces. Our result represents a conceptual breakthrough and pioneers the new avenues towards practical all-carbon electrocatalysis. PMID:25189141

  13. Determination of internal resistance and electrocatalyst utilization of fuel cells

    NASA Astrophysics Data System (ADS)

    Garcia, José A.; Ward, C. A.; Venter, R. D.; Ho, S.

    Analytical methods have been proposed recently for determining both the internal resistance of fuel cell electrodes and the fraction of the electrocatalyst that is completely utilized. To apply these methods requires that the Tafel slope and the equilibrium exchange current for the electrolyte-electrocatalyst combination to be known when this combination is exposed to O 2 and when it is exposed to H 2. The Tafel parameters have been previously reported for O 2 and their measurement for H 2 is reported herein. Also, to apply one of these analytical methods maximum power method — requires that the current and potential to be measured when a fuel cell is operating at steady state and at maximum power. To apply the second method — approximate maximum power method — requires that the cell potential and slope of the potential versus current curve be measured at a current that is less than that corresponding to maximum power. To evaluate these methods, a series of porous carbon electrodes were constructed, and to give them different resistances nickel was electro-deposited on the one side of each. These electrodes were then assembled into fuel cells and tested. Their internal resistance was determined by the current-interrupt technique, and by using the analytical methods. These results agree to within the experimental error, 12%. Electro-depositing nickel on the gas side of the electrodes was found to decrease their internal resistance by an order of magnitude and increase the electrocatalyst utilization by a factor of three.

  14. Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting.

    PubMed

    Li, Jun; Wang, Yongcheng; Zhou, Tong; Zhang, Hui; Sun, Xuhui; Tang, Jing; Zhang, Lijuan; Al-Enizi, Abdullah M; Yang, Zhongqin; Zheng, Gengfeng

    2015-11-18

    The solar-driven water splitting process is highly attractive for alternative energy utilization, while developing efficient, earth-abundant, bifunctional catalysts for both oxygen evolution reaction and hydrogen evolution reaction has remained as a major challenge. Herein, we develop an ordered CoMnO@CN superlattice structure as an efficient bifunctional water-splitting electrocatalyst, in which uniform Co-Mn oxide (CoMnO) nanoparticles are coated with a thin, continuous nitrogen-doped carbon (CN) framework. The CoMnO nanoparticles enable optimized OER activity with effective electronic structure configuration, and the CN framework serves as an excellent HER catalyst. Importantly, the ordered superlattice structure is beneficial for enhanced reactive sites, efficient charge transfer, and structural stability. This bifunctional superlattice catalyst manifests optimized current densities and electrochemical stability in overall water splitting, outperforming most of the previously reported single- or bifunctional electrocatalysts. Combining with a silicon photovoltaic cell, this CoMnO@CN superlattice bifunctional catalyst enables unassisted solar water splitting continuously for ∼5 days with a solar-to-hydrogen conversion efficiency of ∼8.0%. Our discovery suggests that these transition metal oxide-based superlattices may serve as a unique structure modality for efficient bifunctional water splitting electrocatalysts with scale-up potentials.

  15. Surface science studies of model fuel cell electrocatalysts

    NASA Astrophysics Data System (ADS)

    Marković, N. M.; Ross, P. N.

    2002-04-01

    The purpose of this review is to discuss progress in the understanding of electrocatalytic reactions through the study of model systems with surface spectroscopies. Pure metal single crystals and well-characterized bulk alloys have been used quite successfully as models for real (commercial) electrocatalysts. Given the sheer volume of all work in electrocatalysis that is on fuel cell reactions, we will focus on electrocatalysts for fuel cells. Since Pt is the model fuel cell electrocatalyst, we will focus entirely on studies of pure Pt and Pt bimetallic alloys. The electrode reactions discussed include hydrogen oxidation/evolution, oxygen reduction, and the electrooxidation of carbon monoxide, formic acid, and methanol. Surface spectroscopies emphasized are FTIR, STM/AFM and surface X-ray scattering (SXS). The discussion focuses on the relation between the energetics of adsorption of intermediates and the reaction pathway and kinetics, and how the energetics and kinetics relate to the extrinsic properties of the model system, e.g. surface structure and/or composition. Finally, we conclude by discussing the limitations that are reached by using pure metal single crystals and well-characterized bulk alloys as models for real catalysts, and suggest some directions for developing more realistic systems.

  16. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    PubMed Central

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-01-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm−2 at 80 °C with a low platinum loading of 0.09 mgPt cm−2, corresponding to a platinum utilization of 0.13 gPt kW−1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction. PMID:28737170

  17. Copper as a robust and transparent electrocatalyst for water oxidation.

    PubMed

    Du, Jialei; Chen, Zuofeng; Ye, Shengrong; Wiley, Benjamin J; Meyer, Thomas J

    2015-02-09

    Copper metal is in theory a viable oxidative electrocatalyst based on surface oxidation to Cu(III) and/or Cu(IV) , but its use in water oxidation has been impeded by anodic corrosion. The in situ formation of an efficient interfacial oxygen-evolving Cu catalyst from Cu(II) in concentrated carbonate solutions is presented. The catalyst necessitates use of dissolved Cu(II) and accesses the higher oxidation states prior to decompostion to form an active surface film, which is limited by solution conditions. This observation and restriction led to the exploration of ways to use surface-protected Cu metal as a robust electrocatalyst for water oxidation. Formation of a compact film of CuO on Cu surface prevents anodic corrosion and results in sustained catalytic water oxidation. The Cu/CuO surface stabilization was also applied to Cu nanowire films, which are transparent and flexible electrocatalysts for water oxidation and are an attractive alternative to ITO-supported catalysts for photoelectrochemical applications.

  18. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  19. High performance platinum single atom electrocatalyst for oxygen reduction reaction.

    PubMed

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-24

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm(-2) at 80 °C with a low platinum loading of 0.09 mgPt cm(-2), corresponding to a platinum utilization of 0.13 gPt kW(-1) in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  20. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Tao, Ying; Lv, Wei; Su, Fang-Yuan; Ke, Lei; Li, Jia; Wang, Da-Wei; Li, Baohua; Kang, Feiyu; Yang, Quan-Hong

    2014-09-01

    Carbon-based electrocatalysts are more durable and cost-effective than noble materials for the oxygen reduction reaction (ORR), which is an important process in energy conversion technologies. Heteroatoms are considered responsible for the excellent ORR performance in many carbon-based electrocatalysts. But whether an all-carbon electrocatalyst can effectively reduce oxygen is unknown. We subtly engineered the interfaces between planar graphene sheets and curved carbon nanotubes (G-CNT) and gained a remarkable activity/selectivity for ORR (larger current, and n = 3.86, ~93% hydroxide + ~7% peroxide). This performance is close to that of Pt; and the durability is much better than Pt. We further demonstrate the application of this G-CNT hybrid as an all-carbon cathode catalyst for lithium oxygen batteries.We speculate that the high ORR activity of this G-CNT hybrid stems from the localized charge separation at the interface of the graphene and carbon nanotube, which results from the tunneling electron transfer due to the Fermi level mismatch on the planar and curved sp2 surfaces. Our result represents a conceptual breakthrough and pioneers the new avenues towards practical all-carbon electrocatalysis.

  1. High-performance supported Ir-oxohydroxide water oxidation electrocatalysts.

    PubMed

    Massue, Cyriac; Pfeifer, Verena; Huang, Xing; Noack, Johannes; Tarasov, Andrey; Cap, Sebastien; Schlögl, Robert

    2017-02-05

    The synthesis of a highly active and yet stable electrocatalyst for the anodic oxygen evolution reaction (OER) remains a major challenge for acidic water splitting on an industrial scale. Addressing this challenge, we obtained an outstanding high-performance OER-electrocatalyst by loading Ir on conductive antimony-doped tin oxide (ATO)-nanoparticles via a microwave (MW)-supported hydrothermal route. The obtained Ir-phase was identified as an XRD-amorphous, highly hydrated Ir(III/IV)-oxohydroxide. In order to identify chemical and structural features responsible for the high activity and exceptional stability under acidic OER-conditions at loadings as low as 20 μg(Ir) cm-2, we used stepwise thermal treatment to gradually alter the XRD-amorphous Ir-phase via dehydroxylation and crystallization of IrO2. This resulted in dramatic depletion of OER-performance, indicating that the outstanding electrocatalytic properties of the MW-produced Ir(III/IV)-oxohydroxide are prominently linked to the nature of the produced Ir-phase. This finding is in contrast with the often reported stable but poor OER-performance of crystalline IrO2-based compounds produced via more classical calcination routes. Our investigation demonstrates the immense potential of Ir-oxohydroxide-based OER electrocatalysts for stable high-current water electrolysis under acidic conditions.

  2. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.

    1981-01-01

    A number of electrocatalyst combinations were prepared and characterized. These electrocatalysts were formulated to contain platinum combined with transition metal carbide forming elements (W, Mo, V) for cathodes and platinum combined with palladium for anodes. High resolution electron microscopy was used to determine the crystallite size and dispersion of platinum-palladium alloy electrocatalysts in order to provide analytical support for the electrochemical determinations of the particle dispersions. An equation was derived which correlates palladium crystallite size with electrochemical hydrogen adsorption. Based on comparisons of electrocatalyst performances in the presence of pure hydrogen and hydrogen containing carbon monoxide, it was shown that the apparent poisoning of the electrocatalyst by carbon monoxide is influenced by the electrode structure.

  3. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.

    1981-09-01

    A number of electrocatalyst combinations were prepared and characterized. These electrocatalysts were formulated to contain platinum combined with transition metal carbide forming elements (W, Mo, V) for cathodes and platinum combined with palladium for anodes. High resolution electron microscopy was used to determine the crystallite size and dispersion of platinum-palladium alloy electrocatalysts in order to provide analytical support for the electrochemical determinations of the particle dispersions. An equation was derived which correlates palladium crystallite size with electrochemical hydrogen adsorption. Based on comparisons of electrocatalyst performances in the presence of pure hydrogen and hydrogen containing carbon monoxide, it was shown that the apparent poisoning of the electrocatalyst by carbon monoxide is influenced by the electrode structure.

  4. Proton exchange membrane fuel cells with chromium nitridenanocrystals as electrocatalysts

    SciTech Connect

    Zhong, Hexiang; Chen, Xiaobo; Zhang, Huamin; Wang, Meiri; Mao,Samuel S.

    2007-07-01

    Polymer electrolyte membrane fuel cells (PEMFCs) are energy conversion devices that produce electricity from a supply of fuel, such as hydrogen. One of the major challenges in achieving efficient energy conversion is the development of cost-effective materials that can act as electrocatalysts for PEMFCs. In this letter, we demonstrate that, instead of conventional noble metals, such as platinum, chromium nitride nanocrystals of fcc structure exhibit attractive catalytic activity for PEMFCs. Device testing indicates good stability of nitride nanocrystals in low temperature fuel cell operational environment.

  5. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts.

    PubMed

    Liu, Wei; Herrmann, Anne-Kristin; Bigall, Nadja C; Rodriguez, Paramaconi; Wen, Dan; Oezaslan, Mehtap; Schmidt, Thomas J; Gaponik, Nikolai; Eychmüller, Alexander

    2015-02-17

    CONSPECTUS: Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this

  6. Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts

    PubMed Central

    2015-01-01

    Conspectus Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this

  7. Electrocatalyst approaches and challenges for automotive fuel cells.

    PubMed

    Debe, Mark K

    2012-06-06

    Fuel cells powered by hydrogen from secure and renewable sources are the ideal solution for non-polluting vehicles, and extensive research and development on all aspects of this technology over the past fifteen years has delivered prototype cars with impressive performances. But taking the step towards successful commercialization requires oxygen reduction electrocatalysts--crucial components at the heart of fuel cells--that meet exacting performance targets. In addition, these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality. Not all the catalyst approaches currently being pursued will meet those demands.

  8. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wang, Tao; Liu, Pan; Liao, Zhongquan; Liu, Shaohua; Zhuang, Xiaodong; Chen, Mingwei; Zschech, Ehrenfried; Feng, Xinliang

    2017-05-01

    Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which is constructed by controlling the outward diffusion of nickel atoms on annealing precursor NiMoO4 cuboids on nickel foam. Experimental and theoretical results confirm that a rapid Tafel-step-decided hydrogen evolution proceeds on MoNi4 electrocatalyst. As a result, the MoNi4 electrocatalyst exhibits zero onset overpotential, an overpotential of 15 mV at 10 mA cm-2 and a low Tafel slope of 30 mV per decade in 1 M potassium hydroxide electrolyte, which are comparable to the results for platinum and superior to those for state-of-the-art platinum-free electrocatalysts. Benefiting from its scalable preparation and stability, the MoNi4 electrocatalyst is promising for practical water-alkali electrolysers.

  9. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction.

    PubMed

    Garsany, Yannick; Baturina, Olga A; Swider-Lyons, Karen E; Kocha, Shyam S

    2010-08-01

    A tutorial is provided for methods to accurately and reproducibly determine the activity of Pt-based electrocatalysts for the oxygen reduction reaction in proton exchange membrane fuel cells and other applications. The impact of various experimental parameters on electrocatalyst activity is demonstrated, and explicit experimental procedures and measurement protocols are given for comparison of electrocatalyst activity to fuel cell standards. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

  10. Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Nabil, Y.; Cavaliere, S.; Harkness, I. A.; Sharman, J. D. B.; Jones, D. J.; Rozière, J.

    2017-09-01

    Niobium carbide/carbon nanotubular porous structures have been prepared using electrospinning and used as electrocatalyst supports for proton exchange membrane fuel cells. They were functionalised with 3.1 nm Pt particles synthesised by a microwave-assisted polyol method and characterised for their electrochemical properties. The novel NbC-based electrocatalyst demonstrated electroactivity towards the oxygen reduction reaction as well as greater stability over high potential cycling than a commercial carbon-based electrocatalyst. Pt/NbC/C was integrated at the cathode of a membrane electrode assembly and characterised in a single fuel cell showing promising activity and power density.

  11. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective

    SciTech Connect

    Shao, Yuyan; Park, Seh Kyu; Xiao, Jie; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2012-05-04

    Li-air battery has recently emerged as a potentially transformational energy storage technology for both transportation and stationary energy storage applications due to its very high specific energy. However, its practical application is currently limited by the poor power capability, poor cyclability and low energy efficiency, all of which are largely determined by interfacial reactions on oxygen electrocatalysts in air electrode. In this article, we review the fundamental understanding of oxygen electrocatalysis in nonaqueous electrolytes, the status and challenges of oxygen electrocatalysts, and provide a perspective on new electrocatalysts design and development.

  12. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting.

    PubMed

    Xu, You; Kraft, Markus; Xu, Rong

    2016-05-31

    Water splitting driven by sunlight or renewable resource-derived electricity has attracted great attention for sustainable production of hydrogen from water. Current research interest in this field is focused on the development of earth-abundant photo- or electrocatalytic materials with high activity and long-term stability for hydrogen and/or oxygen evolution reactions. Due to their unique properties and characteristics, carbon and related carbon-based materials show great potential to replace some of the existing precious metal catalysts in water splitting technology. This tutorial review summarizes the recent significant progress in the fabrication and application of metal-free carbonaceous materials as photo- or electrocatalysts for water splitting. Synthetic strategies and applications of various carbonaceous materials, including graphitic carbon nitride (g-C3N4), graphene, carbon nanotubes (CNTs) as well as other forms of carbon-containing materials, for electrochemical or photochemical water splitting are presented, accompanied by a discussion of the key scientific issues and prospects for the future development of metal-free photo- and electrocatalysts.

  13. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.

    1981-01-01

    The highest performance fuel cell cathode electrocatalyst combination ever observed gives 755 mV vs hydrogen at 100 ASF on air at 180 C and shows a potential improvement to 775 mV vs hydrogen for better electrode structures. A pressurized fuel cell (UTC at 5 atm) would then give 805 mV at 320 ASF and 180 C. Another activity diagnostic is the performance of this electrocatalyst on oxygen at 900 mV vs hydrogen. The value for electrocatalyst is 44 mA per milligram of platinum and is projected to reach 60 mA per milligram of platinum with improved electrode structures. Since the electrocatalyst surface area and the electrode structure are not yet optimized there is considerable room for performance enhancement beyond these values, especially at higher temperatures.

  14. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.

    1981-06-01

    The highest performance fuel cell cathode electrocatalyst combination ever observed gives 755 mV vs hydrogen at 100 ASF on air at 180 C and shows a potential improvement to 775 mV vs hydrogen for better electrode structures. A pressurized fuel cell (UTC at 5 atm) would then give 805 mV at 320 ASF and 180 C. Another activity diagnostic is the performance of this electrocatalyst on oxygen at 900 mV vs hydrogen. The value for electrocatalyst is 44 mA per milligram of platinum and is projected to reach 60 mA per milligram of platinum with improved electrode structures. Since the electrocatalyst surface area and the electrode structure are not yet optimized there is considerable room for performance enhancement beyond these values, especially at higher temperatures.

  15. Nanocrystaline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Nie, Ming; Shen, Pei Kang; Wei, Zidong

    Au-Pd nanobimetallic particles supported on nanocrystaline tungsten carbide as electrocatalysts for oxygen reduction were prepared by an intermittent microwave heating (IMH) method. XRD measurement revealed that AuPd alloy formed during the IMH process. We showed these novel electrocatalysts could offer the activities that surpass that of the state-of-the-art Pt-based electrocatalysts for oxygen reduction reaction. The AuPd-WC/C electrode showed an over 70 mV shift towards more positive potentials compared to Pt/C electrode for ORR. The advantage seemed to come from the novel support of tungsten carbide which itself has the catalytic activity to enhance the catalytic activity of the metal electrocatalysts.

  16. Robust electrocatalysts from metal doped W18O49 nanofibers for hydrogen evolution.

    PubMed

    Zhao, Yuanyuan; Tang, Qunwei; Yang, Peizhi; He, Benlin

    2017-04-03

    We report here robust electrocatalysts from metal doped W18O49 nanofibers (NFs) for high-efficiency hydrogen evolution. By tuning Pd dosages, the optimal 5 at% Pd doped W18O49 NFs yield an onset overpotential of only 65 mV and exchange current densities up to 2.36 × 10(-3) mA cm(-2). Moreover, the resultant electrocatalyst is relatively stable during persistent operation.

  17. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2012-11-13

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  18. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOEpatents

    Adzic, Radoslav [East Setauket, NY; Zhang, Junliang [Stony Brook, NY; Vukmirovic, Miomir [Port Jefferson Station, NY

    2011-11-22

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  19. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  20. A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Ding, Yanjun; Niu, Yuchen; Yang, Jia; Ma, Liang; Liu, Jianguo; Xiong, Yujie; Xu, Hangxun

    2016-10-01

    Bifunctional oxygen electrocatalyst: A metal-amino acid complex is developed to prepare high-performance mesoporous carbon electrocatalyst for both oxygen reduction and oxygen evolution reactions. Such prepared catalyst can be used to assemble rechargeable zinc-air batteries with excellent durability. This work represents a new route toward low-cost, highly active, and durable bifunctional electrocatalysts for cutting-edge energy conversion devices.

  1. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  2. Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective

    SciTech Connect

    Park, Seh Kyu; Shao, Yuyan; Liu, Jun; Wang, Yong

    2012-11-01

    Hydrogen production by electrochemical water electrolysis has received great attention as an alternative technology for energy conversion and storage. The oxygen electrode has a substantial effect on the performance and durability in water electrolyzers and reversible fuel cells because of its intrinsically slow kinetics for oxygen evolution/reduction and poor durability under harsh operating environments. To improve oxygen kinetics and durability of the electrode, extensive studies for highly active and stable oxygen electrocatalyst have been performed. However, due to the thermodynamic instability of transition metals in acidic media, noble metal compounds have been primarily utilized as electrocatalysts in water electrolyzers and reversible fuel cells. For water electrolyzer applications, single noble metal oxides such as ruthenium oxide and iridium oxide have been studied, and binary or ternary metal oxides have been developed to take synergestic effects of each component. On the other hand, a variety of bifunctional electrocatalysts with a combination of monofunctional electrocatalysts such as platinum for oxygen reduction and iridium oxide for oxygen evolution for reversible fuel cell applications have been mainly proposed. Practically, supported iridium oxide-on-platinum, its reverse type, and non-precious metal-supported platinum and iridium bifunctional electrocatalysts have been developed. Recent theoretical calculations and experimental studies in terms of water electrolysis and fuel cell technology suggest effective ways to cope with current major challenges of cost and durability of oxygen electrocatalysts for technical applications.

  3. Evaluation of perovskites as electrocatalysts for the oxygen evolution reaction.

    PubMed

    Rincón, Rosalba A; Ventosa, Edgar; Tietz, Frank; Masa, Justus; Seisel, Sabine; Kuznetsov, Volodymyr; Schuhmann, Wolfgang

    2014-09-15

    The oxygen evolution reaction (OER) is an enabling process for technologies in the area of energy conversion and storage, but its slow kinetics limits its efficiency. We performed an electrochemical evaluation of 14 different perovskites of variable composition and stoichiometry as OER electrocatalysts in alkaline media. We particularly focused on improved methods for a reliable comparison of catalyst activity. From initial electrochemical results we selected the most active samples for further optimization of electrode preparation and testing. An inverted cell configuration facilitated gas bubble detachment and thus minimized blockage of the active surface area. We describe parameters, such as the presence of specific cations, stoichiometry, and conductivity, that are important for obtaining electroactive perovskites for OER. Conductive additives enhanced the current and decreased the apparent overpotential of OER for one of the most active samples (La(0.58)Sr(0.4)Fe(0.8)Co(0.2)O(3)).

  4. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters.

    PubMed

    Zhang, J; Sasaki, K; Sutter, E; Adzic, R R

    2007-01-12

    We demonstrated that platinum (Pt) oxygen-reduction fuel-cell electrocatalysts can be stabilized against dissolution under potential cycling regimes (a continuing problem in vehicle applications) by modifying Pt nanoparticles with gold (Au) clusters. This behavior was observed under the oxidizing conditions of the O2 reduction reaction and potential cycling between 0.6 and 1.1 volts in over 30,000 cycles. There were insignificant changes in the activity and surface area of Au-modified Pt over the course of cycling, in contrast to sizable losses observed with the pure Pt catalyst under the same conditions. In situ x-ray absorption near-edge spectroscopy and voltammetry data suggest that the Au clusters confer stability by raising the Pt oxidation potential.

  5. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters

    SciTech Connect

    Zhang,J.; Sasaki, K.; Sutter, E.; Adzic, R.

    2007-01-01

    We demonstrated that platinum (Pt) oxygen-reduction fuel-cell electrocatalysts can be stabilized against dissolution under potential cycling regimes (a continuing problem in vehicle applications) by modifying Pt nanoparticles with gold (Au) clusters. This behavior was observed under the oxidizing conditions of the O{sub 2} reduction reaction and potential cycling between 0.6 and 1.1 volts in over 30,000 cycles. There were insignificant changes in the activity and surface area of Au-modified Pt over the course of cycling, in contrast to sizable losses observed with the pure Pt catalyst under the same conditions. In situ x-ray absorption near-edge spectroscopy and voltammetry data suggest that the Au clusters confer stability by raising the Pt oxidation potential.

  6. Carbon-based electrocatalysts for advanced energy conversion and storage

    PubMed Central

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  7. High Performance Rh2P Electrocatalyst for Efficient Water Splitting.

    PubMed

    Duan, Haohong; Li, Dongguo; Tang, Yan; He, Yang; Fang, Ji Shu; Wang, Rongyue; Lv, Haifeng; Lopes, Pietro P; Paulikas, Arvydas P; Li, Haoyi; Mao, Scott X; Wang, Chong-Min; Markovic, Nenad M; Li, Jun; Stamenkovic, Vojislav R; Li, Yadong

    2017-03-26

    Search for active, stable and cost-efficient electrocataltysts for hydrogen production via water splitting could make substantial impact to the energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high surface area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C exhibit remarkable performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) compared to Rh/C and Pt/C catalysts. The atomic structure of the Rh2P NCs was directly observed by annular dark-field scanning transmission electron microscopy (ADF-STEM), which revealed phosphorous-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorous plays crucial role in determining the robust catalyst properties.

  8. Electrosynthesis of trifluorochloroethylene on porous hydrophobized electrodes with different electrocatalysts

    SciTech Connect

    Kolyagin, G.A.; Kornienko, V.L.

    1988-08-10

    The promising perspectives for the production of trifluorochloroethylene by the electrochemical dechlorination of 1,1,2-trifluorotrichloroethane (khladon 113, Freon-113) have been pointed out. Trifluorochloroethylene was obtained with high current and substance yields on zinc electrodes; however, destruction of the electrodes takes place, due to interaction of zinc with the freon. In the present study they have investigated other electrocatalysts which are chemically resistant to the freon and which give to the electrodes the necessary mechanical strength. Cadmium, lead, copper, BAU carbon, and acetylene carbon black (Technical specification TU-14-7-24-80) were selected from the materials recommended in the literature. The most promising for the electrochemical dechlorination of Freon-113 the electrodes with a catalyst-carrier and the carbon black electrodes.

  9. Carbon-based electrocatalysts for advanced energy conversion and storage.

    PubMed

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-08-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance.

  10. Degradation of Bimetallic Model Electrocatalysts ___ an in situ XAS Study

    SciTech Connect

    Friebel, Daniel

    2011-06-22

    One of the major challenges in the development of clean energy fuel cells is the performance degradation of the electrocatalyst, which, apart from poisoning effects, can suffer from corrosion due to its exposure to a harsh environment under high potentials. In this communication, we demonstrate how interactions of Pt with a transition metal support affect not only, as commonly intended, the catalytic activity, but also the reactivity of Pt towards oxide formation or dissolution. We use two well-defined single-crystal model systems, Pt/Rh(111) and Pt/Au(111) and a unique x-ray spectroscopy technique with enhanced energy resolution to monitor the potential-dependent oxidation state of Pt, and find two markedly different oxidation mechanisms on the two different substrates. This information can be of great significance for future design of more active and more stable catalysts. We have studied the potential-induced degradation of Pt monolayer model electrocatalysts on Rh(111) and Au(111) single-crystal substrates. The anodic formation of Pt oxides was monitored using in situ high energy resolution fluorescence detection x-ray absorption spectroscopy (HERFD XAS). Although Pt was deposited on both substrates in a three-dimensional island growth mode, we observed remarkable differences during oxide formation that can only be understood in terms of strong Pt-substrate interactions throughout the Pt islands. Anodic polarization of Pt/Rh(111) up to +1.6 V vs. RHE (reversible hydrogen electrode) leads to formation an incompletely oxidized passive layer, whereas formation of PtO2 and partial Pt dissolution is observed for Pt/Au(111).

  11. Model electrode structures for studies of electrocatalyst degradation.

    SciTech Connect

    St. Pierre, Jean; Atanassov, Plamen Borissov; Datye, Abhaya K.; Goeke, Ronald S.

    2010-10-01

    Proton exchange membrane fuel cells are being extensively studied as power sources because of their technological advantages such as high energy efficiency and environmental friendliness. The most effective catalyst in these systems consists of nanoparticles of Pt or Pt-based alloys on carbon supports. Understanding the role of the nanoparticle size and structure on the catalytic activity and degradation is needed to optimize the fuel cell performance and reduce the noble metal loading. One of the more significant causes of fuel cell performance degradation is the cathode catalyst deactivation. There are four mechanisms considered relevant to the loss of electrochemically active surface area of Pt in the fuel cell electrodes that contribute to cathode catalyst degradation including: catalyst particle sintering such as Ostwald ripening, migration and coalescence, carbon corrosion and catalyst dissolution. Most approaches to study this catalyst degradation utilize membrane electrode assemblies (MEAs), which results in a complex system where it is difficult to deconvolute the effects of the metal nanoparticles. Our research addresses catalyst degradation by taking a fundamental approach to study electrocatalyst using model supports. Nanostructured particle arrays are engineered directly onto planar glassy carbon electrodes. These model electrocatalyst structures are applied to electrochemical activity measurements using a rotating disk electrode and surface characterization by scanning electron microscopy. Sample transfer between these measurement techniques enables examination of the same catalyst area before and after electrochemical cycling. This is useful to probe relationships between electrochemical activity and catalyst structure such as particle size and spacing. These model systems are applied to accelerated aging studies of activity degradation. We will present our work demonstrating the mechanistic aspects of catalyst degradation using this simplified

  12. Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting.

    PubMed

    Chaudhari, Nitin K; Jin, Haneul; Kim, Byeongyoon; Lee, Kwangyeol

    2017-08-31

    Highly efficient and low-cost electrocatalysts are essential for water spitting via electrolysis in an economically viable fashion. However, the best catalytic performance is found with noble metal-based electrocatalysts, which presents a formidable obstacle for the commercial success of electrolytic water splitting-based H2 production due to their relatively high cost and scarcity. Therefore, the development of alternative inexpensive earth-abundant electrode materials with excellent electrocatalytic properties is of great urgency. In general, efficient electrocatalysts must possess several key characteristics such as low overpotential, good electrocatalytic activity, high stability, and low production costs. Direct synthesis of nanostructured catalysts on a conducting substrate may potentially improve the performance of the resultant electrocatalysts because of their high catalytic surface areas and the synergistic effect between the electrocatalyst and the conductive substrate. In this regard, three dimensional (3D) nickel foams have been advantageously utilized as electrode substrates as they offer a large active surface area and a highly conductive continuous porous 3D network. In this review, we discuss the most recent developments in nanostructured materials directly synthesized on 3D nickel foam as potential electrode candidates for electrochemical water electrolysis, namely, the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). We also provide perspectives and outlooks for catalysts grown directly on 3D conducting substrates for future sustainable energy technologies.

  13. A Class of High Performance Metal-Free Oxygen Reduction Electrocatalysts based on Cheap Carbon Blacks

    PubMed Central

    Sun, Xiujuan; Song, Ping; Zhang, Yuwei; Liu, Changpeng; Xu, Weilin; Xing, Wei

    2013-01-01

    For the goal of practical industrial development of fuel cells, cheap, sustainable and high performance electrocatalysts for oxygen reduction reactions (ORR) which rival those based on platinum (Pt) and other rare materials are highly desirable. In this work, we report a class of cheap and high-performance metal-free oxygen reduction electrocatalysts obtained by co-doping carbon blacks with nitrogen and fluorine (CB-NF).The CB-NF electrocatalysts are highly active and exhibit long-term operation stability and tolerance to poisons during oxygen reduction process in alkaline medium. The alkaline direct methanol fuel cell with the best CB-NF as cathode (3 mg/cm2) outperforms the one with commercial platinum-based cathode (3 mg Pt/cm2). To the best of our knowledge, these are among the most efficient non-Pt based electrocatalysts. Since carbon blacks are 10,000 times cheaper than Pt, these CB-NF electrocatalysts possess the best price/performance ratio for ORR, and are the most promising alternatives to Pt-based ones to date. PMID:23974295

  14. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution

    PubMed Central

    Tung, Ching-Wei; Hsu, Ying-Ya; Shen, Yen-Ping; Zheng, Yixin; Chan, Ting-Shan; Sheu, Hwo-Shuenn; Cheng, Yuan-Chung; Chen, Hao Ming

    2015-01-01

    Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer. PMID:26315066

  15. Enhanced ethanol electro-oxidation reaction on carbon supported Pd-metal oxide electrocatalysts.

    PubMed

    Abdel Hameed, R M

    2017-11-01

    Various Pd-metal oxide/C electrocatalysts were fabricated using ethylene glycol as a reducing agent in modified microwave-assisted polyol process. The crystal structure and surface morphology were studied using X-ray diffraction and transmission electron microscopy. All prepared Pd-metal oxide/C electrocatalysts exhibited a shift of Pd diffraction planes in the positive direction in relation to that of Pd/C. Highly dispersed palladium nanoparticles were formed on different metal oxide/C supports. The electrocatalytic performance of these electrocatalysts for ethanol oxidation was examined in NaOH solution using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. An improvement in electrochemical parameters including onset potential, oxidation current density and If/Ib values was recorded at different Pd-metal oxide/C electrocatalysts, especially Pd-NiO/C. Three folds increment in steady state oxidation current density value was also displayed by investigated Pd-metal oxide/C electrocatalysts when contrasted to that of Pd/C to reflect their enhanced stability behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.

    PubMed

    Sasaki, K; Zhang, L; Adzic, R R

    2008-01-07

    We demonstrate a new approach to synthesizing high-activity electrocatalysts for the O(2) reduction reaction with ultra low Pt content. The synthesis involves placing a small amount of Pt, the equivalent of a monolayer, on carbon-supported niobium oxide nanoparticles (NbO(2) or Nb(2)O(5)). Rotating disk electrode measurements show that the Pt/NbO(2)/C electrocatalyst has three times higher Pt mass activity for the O(2) reduction reaction than a commercial Pt/C electrocatalyst. The observed high activity of the Pt deposit is attributed to the reduced OH adsorption caused by lateral repulsion between PtOH and oxide surface species. The new electrocatalyst also exhibits improved stability against Pt dissolution under a potential cycling regime (30,000 cycles from 0.6 V to 1.1 V). These findings demonstrate that niobium-oxide (NbO(2)) nanoparticles can be adequate supports for Pt and facilitate further reducing the noble metal content in electrocatalysts for the oxygen reduction reaction.

  17. Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing

    2017-08-01

    Robust electrocatalyst is a prerequisite to realize high-efficiency hydrogen evolution by water splitting. Expensive platinum (Pt) is a preferred electrode catalyst for state-of-the-art hydrogen evolution reaction (HER). We present here a category of alloyed PtNix electrocatalysts by a facile green chemical reduction method, which are used to catalyze HER during seawater splitting. The catalytic performances are optimized by tuning stoichiometric Pt/Ni ratio, yielding a maximized catalytic behavior for PtNi5 electrode. The minimized onset potential is as low as -0.38 V and the corresponding Tafel slope is 119 mV dec-1. Moreover, the launched alloy electrodes have remarkable stability at -1.2 V over 12 h. The high efficiency as well as good durability demonstrates the PtNix electrocatalysts to be promising in practical applications.

  18. A novel nitrogen-containing electrocatalyst for oxygen reduction reaction from blood protein pyrolysis

    NASA Astrophysics Data System (ADS)

    Guo, Chao-Zhong; Chen, Chang-Guo; Luo, Zhong-Li

    2014-01-01

    We report a new strategy to design carbon-based electrocatalysts containing nitrogen through the co-pyrolysis of blood protein and carbon black support. The results show that the nitrogen in electrocatalysts is primarily in the form of pyridinic- and pyrrolic-type nitrogen species. High-temperature pyrolysis processes can transfer a significant amount of pyridinic-N to pyrrolic-N. The electrocatalyst containing a higher amount of the pyrrolic-N configuration exhibits better electrocatalytic activity towards oxygen reduction reaction in terms of onset potential, half-wave potential, and limited current density. It is suggested that the pyrrolic-N configuration may be the electrocatalytically active site and may be responsible for the enhanced ORR performance in alkaline media. The carbon black support also plays an important role in the pyrolysis process, improving the ORR catalytic activity.

  19. Recent Advances in Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction: Scale-up Synthesis Structure and Activity of Pt Shells on Pd Cores

    SciTech Connect

    Sasaki K.; Wang J.X.; Naohara H.; Marinkovic N.; More K.; Inada H.; Adzic R.R.

    2010-03-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts inadequate activity and high Pt content.

  20. Highly efficient and durable TiN nanofiber electrocatalyst supports.

    PubMed

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young

    2015-11-28

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.

  1. Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.

    PubMed

    Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng

    2017-09-14

    Climate change, caused by heavy CO2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO2 reduction. In order to achieve high selectivity for CO2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A novel bifunctional electrocatalyst for unitized regenerative fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Yining; Zhang, Huamin; Ma, Yuanwei; Cheng, Jinbin; Zhong, Hexiang; Song, Shidong; Ma, Haipeng

    5 wt.% of platinum (Pt) nanoparticles are highly dispersed on the surface of IrO 2 by chemical reduction, and the catalyst is mixed with Pt black to be used as a novel bifunctional oxygen electrocatalyst for the unitized regenerative fuel cell (URFC). The novel cell has been evaluated in the hydrogen and oxygen fuel cell and water electrolysis modes, and compared to a similar cell with an oxygen electrode using conventional mixed Pt black and IrO 2 catalyst. With the novel oxygen electrode catalyst, the highest fuel cell power density is 1160 mW cm -2 at 2600 mA cm -2; the overall performance is close to that with the commercial Pt supported on carbon catalyst and about 1.8 times higher than that with the conventional mixed Pt black and IrO 2 catalyst. Additionally, the cell performance for water electrolysis is also slightly improved, which is probably the result of lower interparticle catalyst resistance with 5 wt.% Pt on IrO 2 compared to no Pt on IrO 2.

  3. SiO₂-RuO₂: a stable electrocatalyst support.

    PubMed

    Lo, Chih-Ping; Ramani, Vijay

    2012-11-01

    High surface area SiO₂-RuO₂ (SRO) supports with various SiO₂: RuO₂ ratios were synthesized using a wet chemical method. The supports were catalyzed by depositing platinum nanoparticles on their surface. The synthesized materials were characterized by XRD, TEM, BET, and linear sweep voltammetry to study microstructure and properties. The electrochemical stability, electrochemical surface area, electrocatalytic activity and fuel cell performance were also measured. The optimal 1:1 mol ratio of SiO₂-RuO₂ (SRO-1) possessed a BET surface area of 305 m²/g and an electrical conductivity of 24 S/cm. This SRO support demonstrated 10-fold higher electrochemical stability than Vulcan XC-72R carbon when subjected to an aggressive accelerated stability test (AST) involving 10,000 potential cycles between 1 and 1.5 V. The mass activity of Pt-doped SRO-1 was 54 mA/mg(Pt), whereas its specific activity was 115 μA cm(Pt)⁻². The fuel cell performance obtained with this catalyst was lower, but compared favorably against a commercial Pt/C baseline. Analysis of fuel cell performance data confirmed that the lower fuel cell performance resulted largely from ohmic and mass transport losses within the unoptimized electrocatalyst layer.

  4. A soluble copper-bipyridine water-oxidation electrocatalyst.

    PubMed

    Barnett, Shoshanna M; Goldberg, Karen I; Mayer, James M

    2012-05-06

    The oxidation of water to O(2) is a key challenge in the production of chemical fuels from electricity. Although several catalysts have been developed for this reaction, substantial challenges remain towards the ultimate goal of an efficient, inexpensive and robust electrocatalyst. Reported here is the first copper-based catalyst for electrolytic water oxidation. Copper-bipyridine-hydroxo complexes rapidly form in situ from simple commercially available copper salts and bipyridine at high pH. Cyclic voltammetry of these solutions at pH 11.8-13.3 shows large, irreversible currents, indicative of catalysis. The production of O(2) is demonstrated both electrochemically and with a fluorescence probe. Catalysis occurs at about 750 mV overpotential. Electrochemical, electron paramagnetic resonance and other studies indicate that the catalyst is a soluble molecular species, that the dominant species in the catalytically active solutions is (2,2'-bipyridine)Cu(OH)(2) and that this is among the most rapid homogeneous water-oxidation catalysts, with a turnover frequency of ~100 s(-1).

  5. Pt/Pd electrocatalyst electrons for fuel cells

    DOEpatents

    Stonehart, P.

    1981-11-03

    This invention relates to improved electrochemical cells and to novel electrodes for use therein. In particular, the present invention comprises a fuel cell used primarily for the consumption of impure hydrogen fuels containing carbon monoxide or carbonaceous fuels where the electrode in contact with the fuel is not substantially poisoned by carbon monoxide. The anode of the fuel cell comprises a Pd/Pt alloy supported on a graphitized or partially graphitized carbon material. Fuel cells which comprise as essential elements a fuel electrode, an oxidizing electrode, and an electrolyte between said electrodes are devices for the direct production of electricity through the electrochemical combustion of a fuel and oxidant. These devices are recognized for their high efficiency as energy conversion units, since unlike conventional combustion engines, they are not subject to the limitations of the Carnot heat cycle. It is the primary object of the present invention to provide an electrode having high electrochemical activity for an electrochemical cell. It is another object of the present invention to provide an electrode having an electro-catalyst which is highly resistant to the corrosive environment of an electrochemical cell.

  6. Palladium modified gold nanoparticles as electrocatalysts for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Chen, Huimei; Xing, Zelong; Zhu, Shangqiang; Zhang, Lulu; Chang, Qiaowan; Huang, Jiale; Cai, Wen-Bin; Kang, Ning; Zhong, Chuan-Jian; Shao, Minhua

    2016-07-01

    Resemblin, g core-shell electrocatalysts consisting of a Au core and Pd shell (Au@Pd) are synthesized via a Cu underpotential deposition (UPD)-Pd-displacement method. The Pd shell is non-uniform consisting of tiny Pd clusters with a coverage of 0.5-0.6. The ethanol oxidation reaction (EOR) activity of this kind of structure is much higher than Pd/C in an alkaline solution. The forward peak current density of Au@Pd is 5.4 times higher than that of Pd/C. Furthermore, the onset potential for EOR of the former is ∼100 mV more negative. An interesting particle size dependent EOR activity is also observed. With increasing the Au particle size (2.9, 5.8 and 6.5 nm), the EOR activity increases. The strain and ligand effects from the Au core, together with the bifunctional reaction mechanism in the Au-Pd system may be reasons for the enhanced activity in Au@Pd catalysts.

  7. Single crystalline thin films as a novel class of electrocatalysts

    DOE PAGES

    Snyder, Joshua; Markovic, Nenad; Stamenkovic, Vojislav

    2013-01-01

    The ubiquitous use of single crystal metal electrodes has garnered invaluable insight into the relationship between surface atomic structure and functional electrochemical properties. But, the sensitivity of their electrochemical response to surface orientation and the amount of precious metal required can limit their use. We present here a generally applicable procedure for producing thin metal films with a large proportion of atomically flat (111) terraces without the use of an epitaxial template. Thermal annealing in a controlled atmosphere induces long-range ordering of magnetron sputtered thin metal films deposited on an amorphous substrate. The ordering transition in these thin metal filmsmore » yields characteristic (111) electrochemical signatures with minimal amount of material and provides an adequate replacement for oriented bulk single crystals. Our procedure can be generalized towards a novel class of practical multimetallic thin film based electrocatalysts with tunable near-surface compositional profile and morphology. Annealing of atomically corrugated sputtered thin film Pt-alloy catalysts yields an atomically smooth structure with highly crystalline, (111)-like ordered and Pt segregated surface that displays superior functional properties, bridging the gap between extended/bulk surfaces and nanoscale systems.« less

  8. Single crystalline thin films as a novel class of electrocatalysts

    SciTech Connect

    Snyder, Joshua; Markovic, Nenad; Stamenkovic, Vojislav

    2013-01-01

    The ubiquitous use of single crystal metal electrodes has garnered invaluable insight into the relationship between surface atomic structure and functional electrochemical properties. But, the sensitivity of their electrochemical response to surface orientation and the amount of precious metal required can limit their use. We present here a generally applicable procedure for producing thin metal films with a large proportion of atomically flat (111) terraces without the use of an epitaxial template. Thermal annealing in a controlled atmosphere induces long-range ordering of magnetron sputtered thin metal films deposited on an amorphous substrate. The ordering transition in these thin metal films yields characteristic (111) electrochemical signatures with minimal amount of material and provides an adequate replacement for oriented bulk single crystals. Our procedure can be generalized towards a novel class of practical multimetallic thin film based electrocatalysts with tunable near-surface compositional profile and morphology. Annealing of atomically corrugated sputtered thin film Pt-alloy catalysts yields an atomically smooth structure with highly crystalline, (111)-like ordered and Pt segregated surface that displays superior functional properties, bridging the gap between extended/bulk surfaces and nanoscale systems.

  9. An NMR determination of CO diffusion on platinum electrocatalysts.

    PubMed

    Kobayashi, Takeshi; Babu, Panakkattu K; Gancs, Lajos; Chung, Jong Ho; Oldfield, Eric; Wieckowski, Andrzej

    2005-10-19

    We report the first direct measurement of CO diffusion on nanoparticle Pt electrocatalysts at the solid/liquid interface, carried out using 13C nuclear magnetic resonance (NMR) with a spin-labeling pulse sequence. Diffusion parameters were measured in the temperature range of 253-293 K for CO adsorbed on commercial Pt-black under saturation coverage. 2H NMR of the same system indicates that the electrolyte remains in the liquid state at temperatures where the CO diffusion experiments were performed. The CO diffusion parameters follow typical Arrhenius behavior with an activation energy of 6.0 +/- 0.4 kcal/mol and a pre-exponential factor of (1.1 +/- 0.6) x 10-8 cm2/s. Exchange between different CO populations, driven by a chemical potential gradient, is suggested to be the main mechanism for CO diffusion. The presence of the electrolyte medium considerably slows down the diffusion of CO as compared to that seen on surfaces of bulk metals under UHV conditions. This work opens up a new approach to the study of surface diffusion of adsorbed molecules on nanoparticle electrode catalysts, including the possibility of correlating diffusion parameters to catalytic activity in real world applications of broad general interest.

  10. Pt/C/MnO 2 hybrid electrocatalysts for degradation mitigation in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Trogadas, Panagiotis; Ramani, Vijay

    Pt/C/MnO 2 hybrid catalysts were prepared by a wet chemical method. Pt/C electrocatalysts were treated with manganese sulfate monohydrate (MnSO 4·H 2O) and sodium persulfate (Na 2S 2O 8) to produce MnO 2. The presence of MnO 2 was confirmed by FTIR spectroscopy. Rotating ring-disk electrode (RRDE) experiments were performed on electrodes prepared using the hybrid electrocatalysts to estimate the amount of hydrogen peroxide (H 2O 2) formed during the oxygen reduction reaction (ORR) as a function of MnO 2 content. Pt/C/MnO 2 (5% by weight of MnO 2) hybrid electrocatalysts produced 50% less hydrogen peroxide than the baseline Pt/C electrocatalyst. The hybrid electrocatalysts were used to prepare membrane electrode assemblies that were tested at 90 °C and 50% RH at open circuit with pure hydrogen as fuel and air as the oxidant. The fluoride ion concentration was measured using an ion selective electrode. The concentration of F - in the anode condensate over 24 h was found to be reduced by a factor of 3-4 when Pt/C/MnO 2 replaced Pt/C as the catalyst. Through cyclic voltammetry and RRDE kinetic studies, the lower ORR activity of the acid treated hybrid electrocatalysts was attributed to catalyst treatment with acid during MnO 2 introduction. The activity of the hybrid catalyst was improved by switching to a water-based synthesis.

  11. Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation

    DOEpatents

    Adzic, Radoslav; Brankovic, Stanko; Wang, Jia

    2003-12-30

    An electrocatalyst is provided for use in a fuel cell that has low platinum loading and a high tolerance to carbon monoxide poisoning. The fuel cell anode includes an electrocatalyst that has a conductive support material, ruthenium nanoparticles reduced in H.sub.2 and a Group VIII noble metal in an amount of between about 0.1 and 25 wt % of the ruthenium nanoparticles, preferably between about 0.5 and 15 wt %. The preferred Group VIII noble metal is platinum. In one embodiment, the anode can also have a perfluorinated polymer membrane on its surface.

  12. Synthesis, characterization and performance testing of platinum-based electrocatalysts for low temperature PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Gong, Yanming

    2008-10-01

    The oxygen reduction reaction (ORR) activity on the cathode plays a significant role in deciding the overall performance of proton exchange membrane (PEM) fuel cells. Dramatic effort has been devoted to the attempt to enhance the catalytic activity and reduce the overpotential caused by the irreversible oxygen reduction reaction on the cathode side of PEM fuel cell. To reduce the electrode overpotential and increase cell performance, the exploration of new catalytic materials as substitutes for the traditionally preferred platinum-only catalyst has been extensively carried out in recent decades. Appling transition metal modified Pt bimetal electrocatalyst instead of Pt is one of the main approaches for this purpose. The objectives of this research are to identify potential Pt-modified electrocatalysts for the cathode in hydrogen and methanol PEM fuel cells and provide better understanding of the promoting effect of the synthesized electrocatalysts as a function of material atomic ratio, particle distribution and alloying composition. The physical properties and ORR activity of carbon supported PtFe and PtCr electrocatalysts were studied extensively. All the electrocatalysts were prepared by colloidal method and subsequent catalytic properties and performance were studied. Catalyst surface area was determined by BET nitrogen adsorption and electrochemical methods. Particle size and their distribution were studied by transmission electron microscopy (TEM). X-ray diffraction characterization (XRD) measurements were conducted to determine the crystallite structure. Electrocatalyst activity was evaluated by rotating disc electrode (RDE) and single cell measurements. It can be concluded from the experiment results that PtFe/C and PtCr/C electrocalysts could be better replacements for conventional Pt/C as the cathode of PEM fuel cell. The Pt9Fe1/C and Pt4Cr 1/C gave the best catalytic activity which was demonstrated both on RDE and single cell measurements. For H2 PEM

  13. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide.

    PubMed

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-10

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm(-2) at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm(-2) at 1.64 V.

  14. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  15. Highly efficient and durable TiN nanofiber electrocatalyst supports

    NASA Astrophysics Data System (ADS)

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, Eunae; Lee, Kwan-Young; Kim, Jin Young

    2015-11-01

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via

  16. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    SciTech Connect

    He, Ting

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinary collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the

  17. Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen

    SciTech Connect

    Hulley, Elliott; Kumar, Neeraj; Raugei, Simone; Bullock, R. Morris

    2015-10-05

    Oxidation of H2 (1 atm) is catalyzed by the manganese electrocatalysts [(P2N2)MnI(CO)(bppm)]+ and [(PNP)MnI(CO)(bppm)]+ (P2N2= 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; PNP = (Ph2PCH2)2NMe); bppm = (PArF2)2CH2, and ArF = 3,5-(CF3)2C6H3). In fluorobenzene solvent using 2,6-lutidine as the exogeneous base, the turnover frequency for [(P2N2)MnI(CO)(bppm)]+ is 3.5 s-1 with an estimated overpotential of 590 mV. For [(PNP)MnI(CO)(bppm)], in fluorobenzene solvent using N-methylpyrrolidine as the exogeneous base, the turnover frequency is 1.4 s-1 with an estimated overpotential of 700 mV. Density functional theory calculations suggest that the slow step in the catalytic cycle is proton transfer from the oxidized 17-electron manganese hydride, e.g., [(P2N2)MnIIH(CO)(bppm)]+ to the pendant amine. The computed activation barrier for intramolecular proton transfer from the metal to the pendant amine is 20.4 kcal/mol in [(P2N2)MnIIH(CO)(bppm)]+ and 21.3 kcal/mol in [(PNP)MnI(CO)(bppm)]. The high barrier appears to result from both the unfavorability of metal-to-nitrogen proton transfer (thermodynamically uphill by 6.6 pKa units, 9 kcal/mol), as well as the relatively long manganese-nitrogen separation in the MnIIH complexes.

  18. Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen

    SciTech Connect

    Hulley, Elliott B.; Kumar, Neeraj; Raugei, Simone; Bullock, R. Morris

    2015-11-06

    Oxidation of H2 (1 atm) is catalyzed by the manganese electrocatalysts [(P2N2)MnI(CO)(bppm)]+ and [(PNP)MnI(CO)(bppm)]+ (P2N2 = 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; PNP = (Ph2PCH2)2NMe); bppm = (PArF2)2CH2; ArF = 3,5-(CF3)2C6H3). In fluorobenzene solvent using 2,6-lutidine as the exogeneous base, the turnover frequency for [(P2N2)MnI(CO)(bppm)]+ is 3.5 s–1, with an estimated overpotential of 700 mV. For [(PNP)MnI(CO)(bppm)]+ in fluorobenzene solvent using N-methylpyrrolidine as the exogeneous base, the turnover frequency is 1.4 s–1, with an estimated overpotential of 880 mV. Density functional theory calculations suggest that the slow step in the catalytic cycle is proton transfer from the oxidized 17-electron manganese hydride [(P2N2)MnIIH(CO)(bppm)]+ to the pendant amine. The computed activation barrier for intramolecular proton transfer from the metal to the pendant amine is 20.4 kcal/mol for [(P2N2)MnIIH(CO)(bppm)]+ and 21.3 kcal/mol for [(PNP)MnIIH(CO)(bppm)]+. The high barrier appears to result from both the unfavorability of the metal to nitrogen proton transfer (thermodynamically uphill by 9 kcal/mol for [(P2N2)MnIIH(CO)(bppm)]+ due to a mismatch of 6.6 pKa units) and the relatively long manganese–nitrogen separation in the MnIIH complexes.

  19. Robust Platinum-Based Electrocatalysts for Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Coleman, Eric James

    Polymer electrolyte fuel cells (PEMFCs) are energy conversion devices that exploit the energetics of the reaction between hydrogen fuel and O 2 to generate electricity with water as the only byproduct. PEMFCs have attracted substantial attention due to their high conversion efficiency, high energy density, and low carbon footprint. However, PEMFC performance is hindered by the high activation barrier and slow reaction rates at the cathode where O2 undergoes an overall 4-electron reduction to water. The most efficient oxygen reduction reaction (ORR) catalyst materials to date are Pt group metals due to their high catalytic activity and stability in a wide range of operating conditions. Before fuel cells can become economically viable, efforts must be taken to decrease Pt content while maintaining a high level of ORR activity. This work describes the design and synthesis of a Pt-Cu electrocatalyst with ORR activity exceeding that of polycrystalline Pt. Production of this novel catalyst is quite simple and begins with synthesis of a porous Cu substrate, formed by etching Al from a Cu-Al alloy. The porous Cu substrate is then coated with a Pt layer via a spontaneous electrochemical process known as galvanic replacement. The Pt layer enhances the ORR activity (as measured by a rotating ring-disk electrode (RRDE)) and acts as a barrier towards corrosion of the Cu understructure. Growth of the Pt layer can be manipulated by time, temperature, concentration of Pt precursor, and convection rate during galvanic replacement. Data from analytical and electrochemical techniques confirm multiple Pt loadings have been achieved via the galvanic replacement process. The boost in ORR activity for the PtCu catalyst was determined to be a result of its lower affinity towards (site-blocking) OH adsorption. A unique catalyst degradation study explains the mechanism of initial catalyst ORR deactivation for both monometallic and bimetallic Pt-based catalysts. Finally, a rigorous and

  20. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes

    PubMed Central

    Berber, Mohamed R.; Hafez, Inas H.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-01-01

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm2 (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs. PMID:26594045

  1. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    PubMed Central

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  2. Electrochemical and Morphological Investigations of Ga Addition to Pt Electrocatalyst Supported on Carbon

    PubMed Central

    Paganoto, Giordano T.; Santos, Deise M.; Guimarães, Marco C. C.; Carneiro, Maria Tereza W. D.

    2017-01-01

    This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L−1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C. PMID:28466065

  3. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.

    PubMed

    Berber, Mohamed R; Hafez, Inas H; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-11-23

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm(2) (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs.

  4. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    NASA Astrophysics Data System (ADS)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  5. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    K Sasaki; H Naohara; Y Cai; Y Choi; P Liu; M Vukmirovic; J Wang; R Adzic

    2011-12-31

    Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200,000 potential cycles, whereas loss of palladium was significant.

  6. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    Adzic, R.R.; Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y.M.; Liu, P.; Vukmirovic, M.B.; Wang, J.X.

    2010-11-08

    More than skin deep: Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200?000 potential cycles, whereas loss of palladium was significant.

  7. Anionic Regulated NiFe (Oxy)Sulfide Electrocatalysts for Water Oxidation.

    PubMed

    Li, Bo-Quan; Zhang, Shu-Yuan; Tang, Cheng; Cui, Xiaoyang; Zhang, Qiang

    2017-07-01

    The construction of active sites with intrinsic oxygen evolution reaction (OER) is of great significance to overcome the limited efficiency of abundant sustainable energy devices such as fuel cells, rechargeable metal-air batteries, and in water splitting. Anionic regulation of electrocatalysts by modulating the electronic structure of active sites significantly promotes OER performance. To prove the concept, NiFeS electrocatalysts are fabricated with gradual variation of atomic ratio of S:O. With the rise of S content, the overpotential for water oxidation exhibits a volcano plot under anionic regulation. The optimized NiFeS-2 electrocatalyst under anionic regulation possesses the lowest OER overpotential of 286 mV at 10 mA cm(-2) and the fastest kinetics being 56.3 mV dec(-1) to date. The anionic regulation methodology not only serves as an effective strategy to construct superb OER electrocatalysts, but also enlightens a new point of view for the in-depth understanding of electrocatalysis at the electronic and atomic level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A universal method to synthesize nanoscale carbides as electrocatalyst supports towards oxygen reduction reaction.

    PubMed

    He, Guoqiang; Yan, Zaoxue; Ma, Xueming; Meng, Hui; Shen, Pei Kang; Wang, Chengxin

    2011-09-01

    We have developed a general ion-exchange method of preparing a composite of low nanometre size carbide particles with controllable size less than 10 nm on carbon foams. The nanoarchitectures of the carbide nanoparticles on carbon foam are used to load Pt nanoparticles as electrocatalysts which show enhanced activity for the oxygen reduction reaction.

  9. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    SciTech Connect

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  10. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    DOE PAGES

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; ...

    2016-07-06

    We report that identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Furthermore, we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM basedmore » systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.« less

  11. From melamine sponge towards 3D sulfur-doping carbon nitride as metal-free electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xu, Jingjing; Li, Bin; Li, Songmei; Liu, Jianhua

    2017-07-01

    Development of new and efficient metal-free electrocatalysts for replacing Pt to improve the sluggish kinetics of oxygen reduction reaction (ORR) is of great importance to emerging renewable energy technologies such as metal-air batteries and polymer electrolyte fuel cells. Herein, 3D sulfur-doping carbon nitride (S-CN) as a novel metal-free ORR electrocatalyst was synthesized by exploiting commercial melamine sponge as raw material. The sulfur atoms were doping on CN networks uniformly through numerous S-C bonds which can provide additional active sites. And it was found that the S-CN exhibited high catalytic activity for ORR in term of more positive onset potential, higher electron transfer number and higher cathodic density. This work provides a novel choice of metal-free ORR electrocatalysts and highlights the importance of sulfur-doping CN in metal-free ORR electrocatalysts.

  12. Applications of x-ray synchrotron radiation techniques to the study of dispersed electrocatalysts in high area materials

    SciTech Connect

    McBreen, J.

    1991-12-31

    This report discusses work demonstrating that X-Ray Absorption Spectroscopy is a very powerful technique for the study of electrocatalysts. Results for a prototech catalyst, and platinum are presented. (JL)

  13. Applications of x-ray synchrotron radiation techniques to the study of dispersed electrocatalysts in high area materials

    SciTech Connect

    McBreen, J.

    1991-01-01

    This report discusses work demonstrating that X-Ray Absorption Spectroscopy is a very powerful technique for the study of electrocatalysts. Results for a prototech catalyst, and platinum are presented. (JL)

  14. Photoelectrocatalytic hydrogen production using nanoparticulate titania and a novel Pt/carbon electrocatalyst: The concept of the "Photoelectrocatalytic Leaf"

    NASA Astrophysics Data System (ADS)

    Pop, Lucian-Cristian; Dracopoulos, Vassilios; Lianos, Panagiotis

    2015-04-01

    Photoelectrocatalytic hydrogen production was realized my means of a double electrode carrying photocatalyst and electrocatalyst, deposited side by side on an FTO electrode, acting as a "Photoelectrocatalytic Leaf". As photocatalyst we used plain commercial nanoparticulate titania and as electrocatalyst a conductive carbon film made by a commercial carbon paste enriched with a small quantity of Pt nanoparticles (0.0134 mg/cm2). This quantity of Pt is much smaller than used in other applications and it may be further optimized. Hydrogen was produced in an alkaline environment in the presence of ethanol acting as sacrificial agent. A few variants of electrode geometry were studied in order to set the basic terms for efficient hydrogen production. It was found that optimal electrode geometry necessitates a much larger area for photocatalyst coverage than electrocatalyst and that it is preferable to divide photocatalyst and electrocatalyst areas in alternating zones.

  15. Nano-structured electrocatalysts for high performance lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Mosavati, Negar

    Ni nanoparticles has been investigated as a carbon-free cathode material for dissolved polysulfide Li-S battery. A series of Ni nanoparticles with nominal particle size of 20, 40, and 100 nm have been used as electrocatalysts, and the effect of particle size on Li-S battery performance has been investigated. In addition, graphene has been chosen as a support to anchor the Ni nanoparticles, and the synergetic effect of carbon material and Ni nanoparticles on Li-S battery electrochemical performance has been studied. The results indicated there is a strong particle size effect. Ni/graphene electrode exhibits a capacity of 753 mAh g-1 sulfur after 40 cycles due to its high conductivity and electrocatalytic activity toward polysulfide reduction reaction. This capacity is significantly higher than similar studies. Based on the understanding of the electrocathalytic effect of Ni and capacity fading mechanism, transition metal nitrides has been investigated as a new class of cathode materials. Titanium nitride (TiN) nanoparticle was studied as a novel cathode material for Li/dissolved polysulfide batteries. In addition, X-ray photoelectron spectroscopy (XPS) analysis was used to obtain a deeper understanding of the mechanism underlying polysulfide conversion reactions with TiN cathode, and during charge and discharge processes. TiN exhibited a superior performance in a Li/dissolved polysulfide battery configuration. Knowing the superior performance of TiN, the study was expanded to different transition metal nitrides to investigate the role of surface composition and morphology in enhancing the electrochemical performance of Li-S batteries. WN, Mo2N, and VN were synthesized and the electrochemical performance, surface composition, and oxidation/reduction mechanism of these cathodes electrodes were studied for lithium sulfur batteries. Understanding the fading mechanisms of dissolved polysulfide system for metal nitride cathodes, It was tried to enhance Li-S battery

  16. Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lubers, Alia Marie

    successful hydrogen pumping catalysts, comparable to a commercial Pt/C catalyst. Synthesized Pt/C materials were also used as PEMFC catalysts. We found the ALD catalysts with lower platinum loading to be competitive with a commercial fuel cell catalyst, especially when exhibiting similar platinum particle characteristics. The functionalized carbon helped produce smaller and more dispersed platinum particles; however, it encouraged carbon corrosion within an electrode, severing electrical connections and lowering energy production. The most suitable chemistry for competitive Pt/C catalysts was produced by platinum ALD on unmodified carbon using hydrogen as a reactant. ALD is a promising method for fabricating electrocatalysts, which could help fuel cells become an economically viable alternative to fossil fuels.

  17. Non-noble electrocatalysts for alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Manoukian, M.; Giner, J.

    1989-01-01

    Carbons activated with macrocyclics have attracted increasing attention as alternative electrocatalysts for oxygen reduction. Initial activity of these catalysts is good, but performance declines rapidly. Pyrolyzing the macrocyclic on the carbon support leads to enhanced stability and the catalysts retain good activity. The approach described is designed to develop bulk doped catalysts with similar structures to pyrolyzed macrocyclic catalysts. The transition metal and coordinated ligands are dispersed throughout the bulk of the conductive carbon skeleton. Two approaches to realizing this concept are being pursued, both involving the doping of carbon precursors. In one approach, the precursor is a solid phase carbon-containing ion-exchange resin. The precursor is doped with a transition metal and/or nitrogen, and the resulting mixture is pyrolyzed. In the other approach, the precursor is a gas-phase hydrocarbon. This is introduced with a transition metal species and nitrogen species into a reactor and pyrolyzed. Several studies have been conducted to determine if there is a synergistic effect between the transition metal and nitrogen and the effect of different methods of introducing the metal-nitrogen (M-N) coordination on performance. One approach was to introduce the metal and nitrogen separately, for example, by sequentially doping FeCl3 and NH4OH into the resin. Catalysts were prepared from an undoped ion-exchange resin, a resin doped only with N, a resin doped only with Fe, and a resin doped with both Fe and N. Introduction of nitrogen alone has no beneficial effect on the performance of the catalysts. The introduction of the Fe alone significantly improves the performance in both the high and low current density regions. When both Fe and N are introduced, the performance at lower current densities (catalytic activity) is increased beyond that of the Fe-doped carbon, but the performance at higher current densities is similar to the carbon containing only Fe

  18. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    DOEpatents

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  19. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates.

    PubMed

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N; Vajtai, Robert; Yu, Aaron Z; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J A; Ajayan, Pulickel M

    2016-12-13

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  20. Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction

    DOE PAGES

    Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan; ...

    2016-12-16

    Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stable undermore » the strongly reducing conditions found in CO2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.« less

  1. Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction

    SciTech Connect

    Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan; Osterwalder, Jurg; Liu, Chang; Favaro, Marco; Crumlin, Ethan J.; Ogasawara, Hirohito; Friebel, Daniel; Pettersson, Lars G. M.; Nilsson, Anders

    2016-12-16

    Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stable under the strongly reducing conditions found in CO2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.

  2. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water.

    PubMed

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-19

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  3. An ex-situ and in-situ evaluation of carbides as potential electrocatalysts

    NASA Astrophysics Data System (ADS)

    Weigert, Erich

    One of the most prominent challenges facing the commercialization of the direct methanol fuel cell (DMFC) is the high cost of its electrocatalyst components, particularly the anode. The anode typically requires a high loading of precious metal electrocatalyst (Pt-Ru) to obtain a useful amount of electrical energy from the electrooxidation of methanol (CH3OH). The complete electrooxidation of methanol on these catalysts produces strongly adsorbed CO on the surface, which reduces the activity of Pt. The presence of Ru in these electrocatalysts assists with the decomposition of H2O to more efficiently remove the poisoning CO species as CO2(g). The primary disadvantage of these electrocatalyst components is the scarcity and consequently high price of both Pt and Ru. A series of surface science studies ultrahigh vacuum (UHV) have identified molybdenum and tungsten carbide materials as potential alternative DMFC anode electrocatalysts. Both of these materials demonstrated activity towards the decomposition of methanol and water molecules. The purpose of this research was to extend these investigations by the synthesis and characterization of more realistic carbide materials. This was accomplished by a combination of surface science and electrochemical experiments. The electrochemical studies were performed both in-situ and ex-situ in order to better address the "materials gap" and "pressure gap" that often separate findings in UHV studies from results in more realistic environments. Thin film surfaces of molybdenum carbide could be produced on various carbon substrates in a vacuum system by physical vapor deposition (PVD). When modified with low coverages of Pt, MoC phase molybdenum carbides were found to be more active towards the electrooxidation of hydrogen in an acidic electrolyte than Ptmodified carbon substrates in cyclic voltammetry (CV) studies. These surfaces demonstrated a limited range of electrochemical stability in this acid solution. Mo2C surfaces have

  4. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting.

    PubMed

    Zhu, Wenxin; Yue, Xiaoyue; Zhang, Wentao; Yu, Shaoxuan; Zhang, Yuhuan; Wang, Jing; Wang, Jianlong

    2016-01-25

    Developing low-cost, efficient, and bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an appealing yet challenging task. Herein, for the first time, a NiS microsphere film was grown in situ on Ni foam (NiS/Ni foam) via a sulfurization reaction as an efficient bifunctional electrocatalyst for overall water splitting with superior activity and good durability. This NiS/Ni foam electrode delivers 20 mA cm(-2) at an overpotential of 158 mV for the HER and 50 mA cm(-2) at an overpotential of 335 mV for the OER in 1.0 M KOH. This bifunctional electrode also enables a high-efficiency alkaline water electrolyzer with 10 mA cm(-2) at a cell voltage of only 1.64 V, which could be promising in water splitting devices for large-scale hydrogen production.

  5. Engineering of Carbon-Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality.

    PubMed

    Zheng, Yao; Jiao, Yan; Qiao, Shi Zhang

    2015-09-23

    Over the past decade, developing advanced catalysts for clean and sustainable energy conversion has been subject to extensive study. Driven by great advances achieved in computational quantum chemistry, synthetic chemistry, and material characterization techniques, the preferential design of a most-appropriate catalyst for a specific electrochemical reaction is possible. Here a universal process for the design of high-performance carbon-based electrocatalysts, by engineering their intrinsic electronic structures and physical structures to promote their extrinsic activities for different energy conversion reactions, is presented and summarized. How such a powerful strategy may aid the discovery of more electrocatalysts for a sustainable and clean energy infrastructure is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Efficient and durable hydrogen evolution electrocatalyst based on nonmetallic nitrogen doped hexagonal carbon

    NASA Astrophysics Data System (ADS)

    Liu, Yanming; Yu, Hongtao; Quan, Xie; Chen, Shuo; Zhao, Huimin; Zhang, Yaobin

    2014-10-01

    The feasibility of renewable energy technology, hydrogen production by water electrolysis, depends on the design of efficient and durable electrocatalyst composed of earth-abundant elements. Herein, a highly active and stable nonmetallic electrocatalyst, nitrogen doped hexagonal carbon (NHC), was developed for hydrogen production. It exhibited high activity for hydrogen evolution with a low overpotential of only 65 mV, an apparent exchange current density of 5.7 × 10-2 mA cm-2 and a high hydrogen production rate of 20.8 mL cm-2 h-1 at -0.35 V. The superior hydrogen evolution activity of NHC stemmed from the intrinsic electrocatalytic property of hexagonal nanodiamond, the rapid charge transfer and abundance of electrocatalytic sites after nitrogen doping. Moreover, NHC was stable in a corrosive acidic solution during electrolysis under high current density.

  7. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water

    PubMed Central

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P.; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-01-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry. PMID:26286479

  8. Durability Enhancement of Intermetallics Electrocatalysts via N-anchor Effect for Fuel Cells

    PubMed Central

    Li, Xiang; An, Li; Chen, Xin; Zhang, Nanlin; Xia, Dingguo; Huang, Weifeng; Chu, Wangsheng; Wu, Ziyu

    2013-01-01

    Insufficient durability and catalytic activity of oxygen reduction reaction (ORR) electrocatalyst are key issues that have to be solved for the practical application of low temperature fuel cell. This paper introduces a new catalyst design strategy using N-anchor to promote the corrosion resistance of electrocatalyst. The as-synthesized N-Pt3Fe1/C shows a high electrocatalytic activity and a superior durability towards ORR. The kinetic current density of N-Pt3Fe1/C as normalized by ECSA is still as high as 0.145 mA cm−2 and only 7% loss after 20000 potential cycles from 0.6 to 1.2 V (vs. NHE) in O2-bubbling perchloric acid solution, whereas Pt3Fe1/C shows 49% loss under the same tests. The N-anchor approach offers novel opportunities for the development of ORR catalyst with excellent electrochemical properties. PMID:24240982

  9. Durability enhancement of intermetallics electrocatalysts via N-anchor effect for fuel cells.

    PubMed

    Li, Xiang; An, Li; Chen, Xin; Zhang, Nanlin; Xia, Dingguo; Huang, Weifeng; Chu, Wangsheng; Wu, Ziyu

    2013-11-18

    Insufficient durability and catalytic activity of oxygen reduction reaction (ORR) electrocatalyst are key issues that have to be solved for the practical application of low temperature fuel cell. This paper introduces a new catalyst design strategy using N-anchor to promote the corrosion resistance of electrocatalyst. The as-synthesized N-Pt3Fe1/C shows a high electrocatalytic activity and a superior durability towards ORR. The kinetic current density of N-Pt3Fe1/C as normalized by ECSA is still as high as 0.145 mA cm(-2) and only 7% loss after 20,000 potential cycles from 0.6 to 1.2 V (vs. NHE) in O2-bubbling perchloric acid solution, whereas Pt3Fe1/C shows 49% loss under the same tests. The N-anchor approach offers novel opportunities for the development of ORR catalyst with excellent electrochemical properties.

  10. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water

    NASA Astrophysics Data System (ADS)

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P.; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  11. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    NASA Astrophysics Data System (ADS)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  12. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    PubMed Central

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  13. Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2005-07-20

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized several tri-metallic electrocatalysts catalysts (Pt/Ru/Mo, Pt/Ru/Ir, Pt/Ru/W, Ptr/Ru/Co, and Pt/Ru/Se on Vulcan XG72 Carbon) by ultrasonication method. These catalysts were tested in MEAs for CO tolerance at 20 and 100 ppm CO concentrations. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/Mo/C > Pt/Ru/Ir/C > Pt/Ru/W/C > Ptr/Ru/Co/C > and Pt/Ru/Se. The catalysts performed very well at 20 ppm CO but at 100 ppm CO performance dropped significantly.

  14. Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2006-09-30

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. In this work binary, ternary, and quaternary platinum-based electrocatalysts were synthesized for the purpose of lowering the cost and increasing the CO tolerance of the membrane electrode assembly (MEA) in the fuel cell. The metals Ru, Mo, W, Ir, Co and Se were alloyed with platinum on a carbon support using a modified reduction method. These catalysts were fabricated into MEAs and evaluated for electrical performance and CO tolerance with polarization experiments. The quaternary system Pt/Ru/Mo/Ir system is the most CO tolerant in the PEMFC and has a low total metal loading of 0.4 mg/cm{sup 2} in the electrode of the cell.

  15. Synthesis and Characterization of CO- and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2006-05-18

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we used four Pt-based electrocatalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) in MEAs and these were evaluated for CO-tolerance with 20 and 100 ppm CO concentration in H{sub 2}-fuel. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. From preliminary cost analysis it appears that could of the catalyst metal loading can reduced by 40% to 60% depending on the selection of metal combinations without compromising the fuel cell performance.

  16. Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana Napoleão; da Silva, Dionisio Furtunato; e Silva, Leonardo Gondim de Andrade; Spinacé, Estevam Vitório; Neto, Almir Oliveira; dos Santos, Mauro Coelho

    2015-10-01

    Pd/C, PdAu/C 50:50, PdSn/C 50:50, PdAuSn/C 50:40:10 and PdAuSn/C 50:10:40 electrocatalysts are prepared using an electron beam irradiation reduction method and tested for glycerol electro-oxidation in alkaline medium. X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV) are used to characterize the resulting materials. The activity for glycerol electro-oxidation is tested in alkaline medium at room temperature using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct glycerol fuel cell (ADGFC) at temperature range of 60-90 °C. EDX analysis demonstrate that Pd:Au:Sn atomic ratios are very similar to the nominal ones. X-ray diffractograms of PdAuSn/C electrocatalysts evidence the presence of Pd (fcc), Au (fcc) and SnO2 phases. TEM analysis demonstrates a good dispersion of the nanoparticles on the carbon support with some agglomerates. Cyclic Voltammetry experiments suggest that PdAuSn/C electrocatalysts demonstrate better results. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 glycerol in 2.0 mol L-1 KOH solutions, the electrocatalyst PdAuSn/C 50:40:10 demonstrate highest power density (51 mW cm-2) and the 120 h durability tests demonstrate a 210 μV h-1 degradation rate.

  17. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry.

    PubMed

    Goldsmith, Zachary K; Harshan, Aparna K; Gerken, James B; Vörös, Márton; Galli, Giulia; Stahl, Shannon S; Hammes-Schiffer, Sharon

    2017-03-21

    NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni(2+) to Ni(3+), followed by oxidation to a mixed Ni(3+/4+) state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe(4+) and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts.

  18. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells.

    PubMed

    Xia, Bao Yu; Ng, Wan Theng; Wu, Hao Bin; Wang, Xin; Lou, Xiong Wen David

    2012-07-16

    In it for the long haul: Clusters of Pt nanowires (3D Pt nanoassemblies, Pt NA) serve as an electrocatalyst for low-temperature fuel cells. These Pt nanoassemblies exhibit remarkably high stability following thousands of voltage cycles and good catalytic activity, when compared with a commercial Pt catalyst and 20 % wt Pt catalyst supported on carbon black (20 % Pt/CB).

  19. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry

    PubMed Central

    Goldsmith, Zachary K.; Harshan, Aparna K.; Gerken, James B.; Galli, Giulia; Stahl, Shannon S.

    2017-01-01

    NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts. PMID:28265083

  20. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices.

    PubMed

    McCrory, Charles C L; Jung, Suho; Ferrer, Ivonne M; Chatman, Shawn M; Peters, Jonas C; Jaramillo, Thomas F

    2015-04-08

    Objective comparisons of electrocatalyst activity and stability using standard methods under identical conditions are necessary to evaluate the viability of existing electrocatalysts for integration into solar-fuel devices as well as to help inform the development of new catalytic systems. Herein, we use a standard protocol as a primary screen for evaluating the activity, short-term (2 h) stability, and electrochemically active surface area (ECSA) of 18 electrocatalysts for the hydrogen evolution reaction (HER) and 26 electrocatalysts for the oxygen evolution reaction (OER) under conditions relevant to an integrated solar water-splitting device in aqueous acidic or alkaline solution. Our primary figure of merit is the overpotential necessary to achieve a magnitude current density of 10 mA cm(-2) per geometric area, the approximate current density expected for a 10% efficient solar-to-fuels conversion device under 1 sun illumination. The specific activity per ECSA of each material is also reported. Among HER catalysts, several could operate at 10 mA cm(-2) with overpotentials <0.1 V in acidic and/or alkaline solutions. Among OER catalysts in acidic solution, no non-noble metal based materials showed promising activity and stability, whereas in alkaline solution many OER catalysts performed with similar activity achieving 10 mA cm(-2) current densities at overpotentials of ~0.33-0.5 V. Most OER catalysts showed comparable or better specific activity per ECSA when compared to Ir and Ru catalysts in alkaline solutions, while most HER catalysts showed much lower specific activity than Pt in both acidic and alkaline solutions. For select catalysts, additional secondary screening measurements were conducted including Faradaic efficiency and extended stability measurements.

  1. Electrocatalysts Derived from Metal-Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media.

    PubMed

    Qian, Yuhong; Khan, Inayat Ali; Zhao, Dan

    2017-10-01

    Electrochemical energy conversion and storage devices such as fuel cells and metal-air batteries have been extensively studied in recent decades for their excellent conversion efficiency, high energy capacity, and low environmental impact. However, sluggish kinetics of the oxygen-related reactions at air cathodes, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are still worth improving. Noble metals such as platinum (Pt), iridium (Ir), ruthenium (Ru) and their oxides are considered as the benchmark ORR and OER electrocatalysts, but they are expensive and prone to be poisoned due to the fuel crossover effect, and may suffer from agglomeration and leaching after long-term usage. To mitigate these limits, it is highly desirable to design alternative ORR/OER electrocatalysts with prominent performance. Metal-organic frameworks (MOFs) are a class of porous crystalline materials consisting metal ions/clusters coordinated by organic ligands. Their crystalline structure, tunable pore size and high surface area afford them wide opportunities as catalytic materials. This Review covers MOF-derived ORR/OER catalysts in electrochemical energy conversion, with a focus on the different strategies of material design and preparation, such as composition control and nanostructure fabrication, to improve the activity and durability of MOF-derived electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Strongly Coupled Molybdenum Carbide on Carbon Sheets as a Bifunctional Electrocatalyst for Overall Water Splitting.

    PubMed

    Wang, Hao; Cao, Yingjie; Sun, Cheng; Zou, Guifu; Huang, Jianwen; Kuai, Xiaoxiao; Zhao, Jianqing; Gao, Lijun

    2017-09-22

    High-performance and affordable electrocatalysts from earth-abundant elements are desirably pursued for water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, a bifunctional electrocatalyst of highly crystalline Mo2 C nanoparticles supported on carbon sheets (Mo2 C/CS) was designed toward overall water splitting. Owing to the highly active catalytic nature of Mo2 C nanoparticles, the high surface area of carbon sheets and efficient charge transfer in the strongly coupled composite, the designed catalysts show excellent bifunctional behavior with an onset potential of -60 mV for HER and an overpotential of 320 mV to achieve a current density of 10 mA cm(-2) for OER in 1 m KOH while maintaining robust stability. Moreover, the electrolysis cell using the catalyst only requires a low cell voltage of 1.73 V to achieve a current density of 10 mA cm(-2) and maintains the activity for more than 100 h when employing the Mo2 C/CS catalyst as both anode and cathode electrodes. Such high performance makes Mo2 C/CS a promising electrocatalyst for practical hydrogen production from water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Inhibition of tafel kinetics for electrolytic hydrogen evolution on isolated micron scale electrocatalysts on semiconductor interfaces

    DOE PAGES

    Coridan, Robert H.; Schichtl, Zebulon G.; Sun, Tao; ...

    2016-08-30

    Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches for solar-to-fuels energy conversion. Electrocatalysts are added to the interface to improve catalytic efficiency, but they can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. This balance is more complicated when gas products are evolved, like hydrogen on water splitting electrodes. Discrete catalysts can be blocked by the gas liquid-solid boundary of a bubble stuck to the surface. Here, we study the kinetics of hydrogen evolution on semiconductor electrodes fabricated with an isolated, micronscale platinum electrocatalyst pad. Movies of in operando bubblemore » evolution were recorded with synchrotron-based high-speed x-ray phase-contrast imaging in a compatible electrochemical cell. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary through the sequence of images in the movie. As a result, the effect of pad size on the catalytic currents and the issues with reactant transport can be inferred from these dynamics.« less

  4. Inhibition of tafel kinetics for electrolytic hydrogen evolution on isolated micron scale electrocatalysts on semiconductor interfaces

    SciTech Connect

    Coridan, Robert H.; Schichtl, Zebulon G.; Sun, Tao; Fezzaa, Kamel

    2016-08-30

    Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches for solar-to-fuels energy conversion. Electrocatalysts are added to the interface to improve catalytic efficiency, but they can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. This balance is more complicated when gas products are evolved, like hydrogen on water splitting electrodes. Discrete catalysts can be blocked by the gas liquid-solid boundary of a bubble stuck to the surface. Here, we study the kinetics of hydrogen evolution on semiconductor electrodes fabricated with an isolated, micronscale platinum electrocatalyst pad. Movies of in operando bubble evolution were recorded with synchrotron-based high-speed x-ray phase-contrast imaging in a compatible electrochemical cell. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary through the sequence of images in the movie. As a result, the effect of pad size on the catalytic currents and the issues with reactant transport can be inferred from these dynamics.

  5. Comparison of electropolymerized thiazine dyes as an electrocatalyst in enzymatic biofuel cells and self powered sensors.

    PubMed

    Blackwell, Anne E; Moehlenbrock, Michael J; Worsham, Jacob R; Minteer, Shelley D

    2009-03-01

    This paper details the comparison of different electropolymerized thiazine electrocatalysts for NADH oxidation. Electropolymerized thiazines have been shown to be electrocatalysts for NADH, but no comprehensive comparison of their properties in the same environment has been performed. The electropolymerization and electrocatalysis is very dependent on chemical and electrochemical environment, so the thiazines (methylene green, methylene blue, toluidine blue, azure a, azure b, and azure c) were all electropolymerized in the same chemical and electrochemical environment and tested for NADH electrocatalysis. All of the thiazines can be electropolymerized to form stable polymer modified electrodes on glassy carbon electrodes and all shown electrocatalytic activity toward NADH. However, each polymer has different properties and therefore would be employed in different applications, depending on whether open circuit potential, current density, or lifetime is the most important condition of the biofuel cell. This paper further compares NAD-dependent glucose dehydrogenase bioelectrocatalysis with poly(methylene green) and poly(methylene blue) electrocatalysts in terms of sensitivity to glucose and biofuel cell performance.

  6. Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells.

    PubMed

    Su, Liang; Jia, Wenzhao; Li, Chang-Ming; Lei, Yu

    2014-02-01

    As a new generation of power sources, fuel cells have shown great promise for application in transportation. However, the expensive catalyst materials, especially the cathode catalysts for oxygen reduction reaction (ORR), severely limit the widespread commercialization of fuel cells. Therefore, this review article focuses on platinum (Pt)-based electrocatalysts for ORR with better catalytic performance and lower cost. Major breakthroughs in the improvement of activity and durability of electrocatalysts are discussed. Specifically, on one hand, the enhanced activity of Pt has been achieved through crystallographic control, ligand effect, or geometric effect; on the other hand, improved durability of Pt-based cathode catalysts has been realized by means of the incorporation of another noble metal or the morphological control of nanostructures. Furthermore, based on these improvement mechanisms, rationally designed Pt-based nanoparticles are summarized in terms of different synthetic strategies such as wet-chemical synthesis, Pt-skin catalysts, electrochemically dealloyed nanomaterials, and Pt-monolayer deposition. These nanoparticulate electrocatalysts show greatly enhanced catalytic performance towards ORR, aiming not only to outperform the commercial Pt/C, but also to exceed the US Department of Energy 2015 technical target ($30/kW and 5000 h). Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Interconnected Copper Cobaltite Nanochains as Efficient Electrocatalysts for Water Oxidation in Alkaline Medium.

    PubMed

    Karmakar, Ayon; Srivastava, Suneel Kumar

    2017-07-12

    The present work is focused on the protective-agent-free synthesis of interconnected copper cobaltite (Cu0.3Co2.7O4) nanochains by temperature-controlled solvothermal method followed by post-thermal treatment of the precursors. Furthermore, Cu0.3Co2.7O4 interconnected nanochains are employed as electrocatalyst for water oxidation in alkaline medium for the first time. Extensive studies of physiochemical properties showed the formation of interconnected 1D nanochains of Cu0.3Co2.7O4 exhibiting a larger specific surface area (139.5 m(2) g(-1)) and enhanced electrochemical water oxidation ability. It delivered excellent mass activity (∼50.0 A g(-1)), high anodic current density (∼124.9 mA cm(-2) at 1.75 V versus reversible hydrogen electrode), and turnover frequency (∼4.26 × 10(-2) s(-1)) in 1.0 M KOH. These Cu0.3Co2.7O4 nanochains also demonstrated low overpotential (∼351 mV) and good cycling stability (1000 cycles) in strong alkaline media. The fabricated Cu0.3Co2.7O4 nanochains could be a good alternative to the commercial OER electrocatalysts (RuO2 and IrO2) and also advantageous to the development of efficient, cost-effective, and durable electrocatalysts for electrochemical water splitting.

  8. B-site Cation Ordered Double Perovskites as Efficient and Stable Electrocatalysts for Oxygen Evolution Reaction.

    PubMed

    Sun, Hainan; Chen, Gao; Zhu, Yinlong; Liu, Bo; Zhou, Wei; Shao, Zongping

    2017-03-02

    Simple disordered perovskite oxides have been intensively exploited as promising electrocatalysts for catalysing the oxygen evolution reaction (OER) towards its application in water splitting, reversible fuel cells, and rechargeable metal-air batteries. Here, we demonstrated that B-site cation-ordered double perovskite Ba2BixSc0.2Co1.8-xO6-δ with two types of cobalt local environments are superior electrocatalysts for OER in alkaline solutions, demonstrating ultrahigh catalytic activity. In addition, no obvious performance degradation was observed for the Ba2Bi0.1Sc0.2Co1.7O6-δ sample after a continuous chronopotentiometry test. The critical role of the ordered [Co2+] and [Sc3+, Bi5+, Co3+] dual environments in improving OER activity was exhibited. The aforementioned results indicate that B-site cation-ordered double perovskite oxides may represent a new class of promising electrocatalysts for the OER in sustainable energy storage and conversion systems.

  9. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface.

    PubMed

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun

    2015-04-04

    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts.

  10. Preparation and evaluation of advanced electro-catalysts for phosphoric acid fuel cells. Eighth quarterly report, October-December 1981. [Platinum

    SciTech Connect

    Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.

    1981-12-31

    In the development of new and highly efficient porous electrocatalysts, two cooperative phenomena are required. The first is an increase in the electrocatalytic activity of the catalyst particle, and the second is the availability of that electrocatalyst particle for the electrochemical reaction. These two processes interact with each other in such a way that improvements in the electrochemical activity must be coupled with improvements in the availability of the electrocatalyst for reaction. Since cost effective and highly reactive electrocatalysts have been developed under this program, the utilization of the electrocatalyst particles in the porous electrode structures is addressed. Based on the performance of the electrocatalysts in porous electrode structures, it is shown that a large percentage of the electrocatalyst in anode structures is not utilized. This low utilization translates directly and dramatically into a noble metal cost penalty for the fuel cell. Dramatic improvements in the cost effectiveness of the fuel cell will be achieved by improvements in electrocatalyst catalyzation technology and electrode structure technology.

  11. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Seo, Bora; Joo, Sang Hoon

    2017-07-01

    Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technology, the development of highly active and durable electrocatalysts based on Earth-abundant elements is of prime importance. In this context, nanostructured molybdenum sulfides (MoS x ) have received a great deal of attention as promising alternatives to precious metal-based catalysts. In this focus review, we summarize recent efforts towards identification of the active sites in MoS x -based electrocatalysts for the hydrogen evolution reaction (HER). We also discuss recent synthetic strategies for the engineering of catalyst structures to achieve high active site densities. Finally, we suggest ongoing and future research challenges in the design of advanced MoS x -based HER electrocatalysts.

  12. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Colbow, Vesna; Dutta, Monica; Harvey, Davie; Wessel, Silvia

    2011-12-01

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  13. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect

    A. Patel; K. Artyushkova; P. Atanassov; V. Colbow; M. Dutta; D. Harvey; S. Wessel

    2012-04-30

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  14. Pomegranate-Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries.

    PubMed

    Li, Ge; Wang, Xiaolei; Fu, Jing; Li, Jingde; Park, Moon Gyu; Zhang, Yining; Lui, Gregory; Chen, Zhongwei

    2016-04-11

    Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal-air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen-doped, partially graphitized carbon framework. Benefiting from the unique pomegranate-like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4-based composite electrocatalyst exhibited a high half-wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm(-2) for OER. A single-cell zinc-air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal-air batteries.

  15. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene

    PubMed Central

    Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N.; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie

    2015-01-01

    Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum–nickel hydroxide–graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts. PMID:26602295

  16. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production.

    PubMed

    Lin, Chun-Yu; Zhang, Lipeng; Zhao, Zhenghang; Xia, Zhenhai

    2017-05-01

    Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H2 O2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution

    PubMed Central

    Wang, F. Z.; Zheng, M. J.; Zhang, B.; Zhu, C. Q.; Li, Q.; Ma, L.; Shen, W. Z.

    2016-01-01

    Ammonia intercalated flower-like MoS2 electrocatalyst film assembled by vertical orientated ultrathin nanosheet on graphite sheethas been successfully synthesized using one-step hydrothermal method. In this strategy, ammonia can effectively insert into the parallel plane of the MoS2 nanosheets, leading to the expansion of lattice and phase transfer from 2H to 1T, generating more active unsaturated sulfur atoms. The flower-like ammoniated MoS2 electrocatalysts with more active sites and large surface area exhibited excellent HER activity with a small Tafel slope and low onset overpotential, resulting a great enhancement in hydrogen evolution. The high efficient activity and recyclable utilization, as well as large-scale, indicate that it is a very promising electrocatalyst to replace Pt in industry application. PMID:27538812

  18. Bioinspired synthesis of nitrogen/sulfur co-doped graphene as an efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Huanhuan; Liu, Xiangqian; He, Guangli; Zhang, Xiaoxing; Bao, Shujuan; Hu, Weihua

    2015-04-01

    Efficient electrocatalyst of oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications and heteroatom-doped carbon materials have demonstrated promising catalytic performance towards ORR. In this paper we report a bioinspired method to synthesize nitrogen/sulfur (N/S) co-doped graphene as an efficient ORR electrocatalyst via self-polymerization of polydopamine (PDA) thin layer on graphene oxide sheets, followed by reacting with cysteine and finally thermal annealing in Argon (Ar) atmosphere. As-prepared N/S co-doped graphene exhibits significantly enhanced ORR catalytic activity in alkaline solution compared with pristine graphene or N-doped graphene. It also displays long-term operation stability and strong tolerance to methanol poison effect, indicating it a promising ORR electrocatalyst.

  19. SYNTHESIS AND CHARACTERIZATION OF CO-AND H2S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect

    Shamsuddin Ilias

    2005-03-29

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several bi-metallic electrocatalysts were synthesized using ultra-sonication. These catalysts (Pt/Ru, Pt/Mo and Pt/Ir) were tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/C > Pt/Mo/C > Pt/Ir/C. It appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC and identify potential candidate metals for synthesis of tri-metallic electrocatalysts.

  20. Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting

    NASA Astrophysics Data System (ADS)

    Govindhan, Maduraiveeran; Mao, Brennan; Chen, Aicheng

    2016-01-01

    A cost-effective, non-noble metal based high-performance electrocatalyst for the oxygen evolution reaction (OER) is critical to energy conversion and storage processes. Here, we report on a facile and effective in situ strategy for the synthesis of an advanced nanocomposite material that is comprised of cobalt quantum dots (Co QDs, ~3.2 nm), uniformly dispersed on reduced graphene oxide (rGO) as a highly efficient OER electrocatalyst platform. This nanocomposite electrocatalyst afforded a mass activity of 1250 A g-1 at a low overpotential (η) of 0.37 V, a small Tafel slope of ~37 mV dec-1 and a turnover frequency (TOF) of 0.188 s-1 in 0.1 M KOH, comparing favorably with state-of-the-art RuO2, IrO2 and Pt/C catalysts. The synergy between abundant catalytically active sites through the fine dispersion of Co QDs, and enhanced electron transfer generated from the graphene resulted in first-rate electrocatalytic properties toward the OER. These merits coupled with the higher stability of the nanocomposite hold great promise for triggering breakthroughs in electrocatalysis for water splitting.A cost-effective, non-noble metal based high-performance electrocatalyst for the oxygen evolution reaction (OER) is critical to energy conversion and storage processes. Here, we report on a facile and effective in situ strategy for the synthesis of an advanced nanocomposite material that is comprised of cobalt quantum dots (Co QDs, ~3.2 nm), uniformly dispersed on reduced graphene oxide (rGO) as a highly efficient OER electrocatalyst platform. This nanocomposite electrocatalyst afforded a mass activity of 1250 A g-1 at a low overpotential (η) of 0.37 V, a small Tafel slope of ~37 mV dec-1 and a turnover frequency (TOF) of 0.188 s-1 in 0.1 M KOH, comparing favorably with state-of-the-art RuO2, IrO2 and Pt/C catalysts. The synergy between abundant catalytically active sites through the fine dispersion of Co QDs, and enhanced electron transfer generated from the graphene resulted in

  1. Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation

    NASA Astrophysics Data System (ADS)

    Joya, Khurram S.; Sinatra, Lutfan; Abdulhalim, Lina G.; Joshi, Chakra P.; Hedhili, M. N.; Bakr, Osman M.; Hussain, Irshad

    2016-05-01

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 which initiate oxygen evolution at an amazingly low overpotential of ~1.51 V (vs. RHE; η ~ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm-2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec-1 is observed using Ni4(PET)8. These results are comparable to the state-of-the-art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm-2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these

  2. Triblock polymer mediated synthesis of Ir-Sn oxide electrocatalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Li, Guangfu; Yu, Hongmei; Wang, Xunying; Yang, Donglei; Li, Yongkun; Shao, Zhigang; Yi, Baolian

    2014-03-01

    Over the past several decades, tremendous effort has been put into developing cost-effective, highly active and durable electrocatalysts for oxygen evolution reaction (OER) in the proton exchange membrane water electrolyzer. This report explores an advanced and effective "soft" material-assistant method to fabricate Ir0.6Sn0.4O2 electrocatalysts with a 0.6/0.4 ratio of Ir/Sn in precursors. Adopting a series of characterization methods, the collective results suggest that the surfactant-material F127 content, as an important factor, can efficiently control the formation of Ir-Sn oxides with varying surface properties and morphologies, such as the grainy and rod-shaped structures. Associating with the half-cell and single electrolyzer, it is affirmed that the optimal ratio of (Ir + Sn)/F127 is 100 for the preparation of S100-Ir0.6Sn0.4O2 with obviously enhanced activity and sufficient durability under the electrolysis circumstances. The lowest cell voltages obtained at 80 °C are 1.631 V at 1000 mA cm-2, and 1.820 V at 2000 mA cm-2, when applying S100-Ir0.6Sn0.4O2 OER catalyst and Ti-material diffusion layer on the anode side and Nafion® 115 membrane. Furthermore, the noble-metal Ir loading in the same cell decreases to 0.77 mg cm-2. These results highlight that Ir-Sn oxide synthesized by the soft-material method is a promising OER electrocatalyst.

  3. Semiconductor-electrocatalyst contacts: theory, experiment, and applications to solar water photoelectrolysis

    SciTech Connect

    Boettcher, Shannon W.

    2015-10-21

    Semiconductor photoelectrodes coated with electrocatalysts are key components of photoelectrochemical (PEC) energy conversion and storage systems. Such systems could provide a way to convert the energy in sunlight directly into energy stored in a fuel like hydrogen gas to power our modern society without using fossil fuels. Despite an intense effort aimed at optimizing these materials, there has been little systematic work focused on the semiconductor-electrocatalyst (SC|EC) interface. The SC|EC interface is important because it is responsible for collecting the photoexcited electron-hole pairs generated in the semiconductor. During the performance period we initiated a fundamental effort to understand interfacial electron transfer between electrocatalysts and bulk semiconductors. We developed an experimental technique, dual-working-electrode (DWE) photoelectrochemistry, allowing for direct electrical measurement of the SC-EC interface in situ. We also developed the first theory of the SC|EC interface and applied the theory through numerical simulation to explain the measured interfacial charge transfer properties of the SC|EC junction. We discovered that porous, ion-permeable, redox-active catalysts such as Ni-(Fe) oxyhydroxides form so-called “adaptive” junctions where the effective interfacial barrier height for electron transfer depends on the charge state of the catalyst. This is in sharp contrast to interface properties of dense ion-impermeable catalysts, which we found form buried junctions that could be described by simple equivalent electrical circuits. These results elucidated a design principle for catalyzed photoelectrodes - high-performance photoelectrodes with direct SC|EC junctions use soft deposition techniques that yield ion-permeable catalysts. This work thus provides a foundation for the development of improved photoelectrodes that are practically relevant because they provide a mechanism to directly convert and store solar energy in the form

  4. La2O3 Promoted Pd/rGO Electro-catalysts for Formic Acid Oxidation.

    PubMed

    Ali, Hassan; Kanodarwala, Fehmida K; Majeed, Imran; Stride, John Arron; Nadeem, Muhammad Arif

    2016-11-30

    High activity, a low rate of CO poisoning, and long-term stability of Pd electro-catalysts are necessary for practical use as an anode material in direct formic acid fuel cells. Achieving a high degree of Pd nanoparticle dispersion on a carbon support, without agglomeration, while maintaining a facile electron transfer through the catalyst surface are two challenging tasks to be overcome in fulfilling this aim. Herein, we report the effect of addition of La/La-oxides on the efficiency of Pd nanoparticles supported on reduced graphene oxide (rGO) for formic acid electro-oxidation reaction. A series of electro-catalysts with different Pd-La molar ratios were successfully synthesized and characterized using a range of techniques including PXRD, XPS, TEM, FTIR, and Raman spectroscopy and then tested as anode materials for direct formic acid fuel cells. We explore that the lanthanum species (La/La-oxide) significantly promote the activity and stability of Pd catalyst toward electrocatalytic oxidation of formic acid. The metallic ratio is found to be critical, and the activity order of various catalysts is observed as follows; Pd30La70/rGO > Pd80La20/rGO > Pd70La30 rGO. The obtained mass specific activity for Pd30La70/rGO (986.42 A/g) is 2.18 times higher than that for Pd/rGO (451 A/g) and 16 times higher than that for Pd/C (61.5 A/g) at given onset peak potentials. The high activity and stability of the electro-catalysts are attributed to the uniform dispersion of Pd nanoparticles over the rGO support, as evidenced from TEM images. It is believed that the role of La species in promoting the catalyst activity is to disperse the catalyst particles during synthesis and to facilitate the electron transfer via providing a suitable pathway during electrochemical testing.

  5. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    SciTech Connect

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present

  6. Bimetallic platinum-iron electrocatalyst supported on carbon fibers for coal electrolysis

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Botte, Gerardine G.

    2015-01-01

    A novel bimetallic Pt-Fe electrode supported on carbon fibers (CFs) was prepared by chemical impregnation/reduction and evaluated for the electrolysis of coal to produce hydrogen. Characterization of the electrocatalyst was performed using X-ray Diffraction, Scanning Electron Microscopy, and Energy Dispersive Spectroscopy. The synthesized Pt-Fe particles were well dispersed on the surface of the CFs. The addition of Fe to the catalyst enhanced the electrooxidation of coal when compared to Pt alone. PtFe (1:1) supported on carbon fibers exhibited superior catalytic activity towards the conversion of coal than PtFe (7:3) and PtFe (3:7).

  7. The effect of carbon support treatment on the stability of Pt/C electrocatalysts

    NASA Astrophysics Data System (ADS)

    Chen, Weimin; Xin, Qin; Sun, Gongquan; Wang, Qi; Mao, Qing; Su, Huidong

    A potential cycling test was conducted to evaluate the effect of carbon support treatment on the stability of Pt/C electrocatalysts. The FTIR spectra show that after oxidative treatments, the carbon support became rich in oxygen-containing functional groups. Oxidative treatments of the carbon support increase the interaction between the metal particle and the support, resulting in an improved electrochemical stability of Pt/C catalysts. The Pt/C catalyst prepared from the H 2O 2-treated carbon support exhibits a higher stability than that prepared from the HNO 3-treated carbon support.

  8. Development of ruthenium-based bimetallic electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Lingyun; Lee, Jong-Won; Popov, Branko N.

    Ruthenium-based bimetallic electrocatalysts with non-noble metals such as Ti, Cr, Fe, Co and Pb were synthesized on a porous carbon support using a chelation process. Rotating ring disk electrode measurements indicated that RuFeN x/C showed the catalytic activity and selectivity toward the four-electron reduction of oxygen to water comparable to those of the conventional Pt/C catalysts. The performance of the membrane-electrode assembly prepared with the RuFeN x/C cathode catalyst was evaluated for 150 h of continuous operation.

  9. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes.

    PubMed

    Seley, David; Ayers, Katherine; Parkinson, B A

    2013-02-11

    A library of electrocatalysts for water electrolysis under acidic conditions was created by ink jet printing metal oxide precursors followed by pyrolysis in air to produce mixed metal oxides. The compositions were then screened in acidic electrolytes using a pH sensitive fluorescence indicator that became fluorescent due to the pH change at the electrode surface because of the release of protons from water oxidation. The most promising materials were further characterized by measuring polarization curves and Tafel slopes as anodes for water oxidation. Mixed metal oxides that perform better than the iridium oxide standard were identified.

  10. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction.

    PubMed

    Popczun, Eric J; McKone, James R; Read, Carlos G; Biacchi, Adam J; Wiltrout, Alex M; Lewis, Nathan S; Schaak, Raymond E

    2013-06-26

    Nanoparticles of nickel phosphide (Ni2P) have been investigated for electrocatalytic activity and stability for the hydrogen evolution reaction (HER) in acidic solutions, under which proton exchange membrane-based electrolysis is operational. The catalytically active Ni2P nanoparticles were hollow and faceted to expose a high density of the Ni2P(001) surface, which has previously been predicted based on theory to be an active HER catalyst. The Ni2P nanoparticles had among the highest HER activity of any non-noble metal electrocatalyst reported to date, producing H2(g) with nearly quantitative faradaic yield, while also affording stability in aqueous acidic media.

  11. Highly active MoS2/carbon electrocatalysts for the hydrogen evolution reaction - insight into the effect of the internal resistance and roughness factor on the Tafel slope.

    PubMed

    Murthy, Arun Prasad; Theerthagiri, Jayaraman; Madhavan, Jagannathan; Murugan, Kadarkarai

    2017-01-18

    Molybdenum disulphide (MoS2) nanomaterials are promising non-precious-metal electrocatalysts for the hydrogen evolution reaction. MoS2/carbon electrocatalysts have been synthesized with the carbon component serving the purpose of enhancing electron transport. The impedance method of Tafel analysis has been employed to evaluate the efficiency of various carbon supports in aiding facile electron transport. A MoS2/carbon nanofiber electrocatalyst has been found to be the most active towards hydrogen evolution with the lowest Tafel slope among the investigated electrocatalysts. Tafel analysis indicates that the hydrogen evolution reaction occurs through the Volmer-Heyrovsky mechanism with a rate determining Heyrovsky step in the MoS2 and MoS2/carbon electrocatalysts. Orderly variation of the Tafel slope with the mass loading has been observed in MoS2/Vulcan carbon and the cause for this has been investigated based on roughness factor measurements. A linear dependence of the Tafel slope on the roughness factor points to a concomitant increase in the limitations on mass transport. The results show that the benefit of increasing the roughness factor of the electrocatalyst is counterbalanced by increasing the Tafel slope, and hence the need for designing an optimal HER electrocatalyst balancing the roughness factor and Tafel slope is deduced.

  12. Metal-Carbon Hybrid Electrocatalysts Derived from Ion-Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction.

    PubMed

    Zhou, Yucheng; Zhou, Weijia; Hou, Dongman; Li, Guoqiang; Wan, Jinquan; Feng, Chunhua; Tang, Zhenghua; Chen, Shaowei

    2016-05-01

    Transition metal-carbon hybrids have been proposed as efficient electrocatalysts for hydrogen evolution reaction (HER) in acidic media. Herein, effective HER electrocatalysts based on metal-carbon composites are prepared by controlled pyrolysis of resin containing a variety of heavy metals. For the first time, Cr2 O3 nanoparticles of 3-6 nm in diameter homogeneously dispersed in the resulting porous carbon framework (Cr-C hybrid) is synthesized as efficient HER electrocatalyst. Electrochemical measurements show that Cr-C hybrids display a high HER activity with an onset potential of -49 mV (vs reversible hydrogen electrode), a Tafel slope of 90 mV dec(-1) , a large catalytic current density of 10 mA cm(-2) at -123 mV, and the prominent electrochemical durability. X-ray photoelectron spectroscopic measurements confirm that electron transfer occurs from Cr2 O3 into carbon, which is consistent with the reported metal@carbon systems. The obtained correlation between metals and HER activities may be exploited as a rational guideline in the design and engineering of HER electrocatalysts.

  13. Molybdenum Carbide-Embedded Nitrogen-Doped Porous Carbon Nanosheets as Electrocatalysts for Water Splitting in Alkaline Media.

    PubMed

    Lu, Chenbao; Tranca, Diana; Zhang, Jian; Rodrı Guez Hernández, Fermı N; Su, Yuezeng; Zhuang, Xiaodong; Zhang, Fan; Seifert, Gotthard; Feng, Xinliang

    2017-03-20

    Molybdenum carbide (Mo2C) based catalysts were found to be one of the most promising electrocatalysts for hydrogen evolution reaction (HER) in acid media in comparison with Pt-based catalysts but were seldom investigated in alkaline media, probably due to the limited active sites, poor conductivity, and high energy barrier for water dissociation. In this work, Mo2C-embedded nitrogen-doped porous carbon nanosheets (Mo2C@2D-NPCs) were successfully achieved with the help of a convenient interfacial strategy. As a HER electrocatalyst in alkaline solution, Mo2C@2D-NPC exhibited an extremely low onset potential of ∼0 mV and a current density of 10 mA cm(-2) at an overpotential of ∼45 mV, which is much lower than the values of most reported HER electrocatalysts and comparable to the noble metal catalyst Pt. In addition, the Tafel slope and the exchange current density of Mo2C@2D-NPC were 46 mV decade(-1) and 1.14 × 10(-3) A cm(-2), respectively, outperforming the state-of-the-art metal-carbide-based electrocatalysts in alkaline media. Such excellent HER activity was attributed to the rich Mo2C/NPC heterostructures and synergistic contribution of nitrogen doping, outstanding conductivity of graphene, and abundant active sites at the heterostructures.

  14. SYNTHESIS AND CHARACTERIZATION OF CO-AND H{sub 2}S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect

    Shamsuddin Ilias

    2003-03-30

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period, we have obtained base-line performance data of commercially available Pt-catalyst in our modified PEMFC Testing set-up. Synthesis of Pt-based bimetallic and tri-metallic electrocatalysts is in progress.

  15. Immobilization of a molecular cobalt electrocatalyst by hydrophobic interaction with a hematite photoanode for highly stable oxygen evolution.

    PubMed

    Joya, Khurram S; Morlanés, Natalia; Maloney, Edward; Rodionov, Valentin; Takanabe, Kazuhiro

    2015-09-11

    A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst - a hematite photoanode hybrid material showed a significant onset shift and high stability for the photoelectrochemical oxidation evolution reaction (OER).

  16. An Operando Investigation of (Ni–Fe–Co–Ce)Ox System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction

    DOE PAGES

    Favaro, Marco; Drisdell, Walter S.; Marcus, Matthew A.; ...

    2016-12-27

    The oxygen evolution reaction (OER) is a critical component of industrial processes such as electrowinning of metals and the chlor-alkali process. It also plays a central role in the development of a renewable energy field for generation a solar fuels by providing both the protons and electrons needed to generate fuels such as H2 or reduced hydrocarbons from CO2. To improve these processes, it is necessary to expand the fundamental understanding of catalytically active species at low overpotential, which will further the development of electrocatalysts with high activity and durability. In this context, performing experimental investigations of the electrocatalysts undermore » realistic working regimes (i.e., under operando conditions) is of crucial importance. In this paper, we study a highly active quinary transition-metal-oxide-based OER electrocatalyst by means of operando ambient-pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy performed at the solid/liquid interface. We observe that the catalyst undergoes a clear chemical-structural evolution as a function of the applied potential with Ni, Fe, and Co oxyhydroxides comprising the active catalytic species. Finally, while CeO2 is redox inactive under catalytic conditions, its influence on the redox processes of the transition metals boosts the catalytic activity at low overpotentials, introducing an important design principle for the optimization of electrocatalysts and tailoring of high-performance materials.« less

  17. Ion-exchanged route synthesis of Fe2N-N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst.

    PubMed

    Wang, Lei; Yin, Jie; Zhao, Lu; Tian, Chungui; Yu, Peng; Wang, Jianqiang; Fu, Honggang

    2013-04-14

    Fe2N nanoparticles and nitrogen-doped graphitic nanosheet composites (Fe2N-NGC) have been synthesized by an ion-exchanged route, which can serve as an efficient non-precious metal electrocatalyst with a 4e(-) reaction pathway for oxygen reduction reactions (ORR).

  18. Ternary NiCo2 Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction.

    PubMed

    Zhang, Rui; Wang, Xiangxue; Yu, Shujun; Wen, Tao; Zhu, Xiangwei; Yang, Fangxu; Sun, Xiangnan; Wang, Xiangke; Hu, Wenping

    2017-03-01

    A bimetallic-structured ternary phosphide (NiCo2 Px ) as a novel pH-universal electrocatalyst for hydrogen evolution reaction is presented. It exhibits both high activity and long-term stability in all the tested alkaline, neutral, and acidic media. The excellent catalytic performance endows it with a bright future in the large-scale electrochemical water splitting industry.

  19. Metallic WO2-Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction.

    PubMed

    Wu, Rui; Zhang, Jingfang; Shi, Yanmei; Liu, Dali; Zhang, Bin

    2015-06-10

    The development of electrocatalysts to generate hydrogen, with good activity and stability, is a great challenge in the fields of chemistry and energy. Here we demonstrate a "hitting three birds with one stone" method to synthesize less toxic metallic WO2-carbon mesoporous nanowires with high concentration of oxygen vacancies (OVs) via calcination of inorganic/organic WO3-ethylenediamine hybrid precursors. The products exhibit excellent performance for H2 generation: the onset overpotential is only 35 mV, the required overpotentials for 10 and 20 mA/cm(2) are 58 and 78 mV, the Tafel slope is 46 mV/decade, the exchange current density is 0.64 mA/cm(2), and the stability is over 10 h. Further studies, in combination with density functional theory, demonstrate that the unusual electronic structure and the large amount of active sites, generated by the high concentration of OVs, as well as the closely attached carbon materials, were key factors for excellent performance. Our results experimentally and theoretically establish metallic transition metal oxides (TMOs) as intriguing novel electrocatalysts for H2 generation. Such TMOs with OVs might be promising candidates for other energy storage and conversion applications.

  20. Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe

    2016-09-01

    Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal‑air batteries. Herein, we report the novel system of nickel‑aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles.

  1. An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance

    PubMed Central

    Li, Bo-Quan; Tang, Cheng; Wang, Hao-Fan; Zhu, Xiao-Lin; Zhang, Qiang

    2016-01-01

    Perovskite oxides with poor conductivity call for three-dimensional (3D) conductive scaffolds to demonstrate their superb reactivities for oxygen evolution reaction (OER). However, perovskite formation usually requires high-temperature annealing at 600° to 900°C in air, under which most of the used conductive frameworks (for example, carbon and metal current collectors) are reductive and cannot survive. We propose a preoxidization coupled electrodeposition strategy in which Co2+ is preoxidized to Co3+ through cobalt Fenton reaction in aqueous solution, whereas the reductive nickel framework is well maintained during the sequential annealing under nonoxidative atmosphere. The in situ–generated Co3+ is inherited into oxidized perovskites deposited on 3D nickel foam, rendering the monolithic perovskite electrocatalysts with extraordinary OER performance with an ultralow overpotential of 350 mV required for 10 mA cm−2, a very small Tafel slope of 59 mV dec−1, and superb stability in 0.10 M KOH. Therefore, we inaugurate a unique strategy for in situ hybridization of oxidative active phase with reductive framework, affording superb reactivity of perovskite electrocatalyst for efficient water oxidation. PMID:27819040

  2. Enhanced Hydrogen Evolution Reactions on Nanostructured Cu2ZnSnS4 (CZTS) Electrocatalyst

    NASA Astrophysics Data System (ADS)

    Digraskar, Renuka V.; Mulik, Balaji B.; Walke, Pravin S.; Ghule, Anil V.; Sathe, Bhaskar R.

    2017-08-01

    A novel and facile one-step sonochemical method is used to synthesize Cu2ZnSnS4 (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer-Emmett-Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density -130 mA/cm2, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm2, excellent stability (> 500 cycles) and lower charge transfer resistance. This sonochemically fabricated CZTSs nanoparticles are leading to significantly reduce cell cost and simplification of preparation process over existing high efficiency Pt and other nobel metal-free cathode electrocatalyst.

  3. One‐Dimensional Earth‐Abundant Nanomaterials for Water‐Splitting Electrocatalysts

    PubMed Central

    Li, Jun

    2016-01-01

    Hydrogen fuel acquisition based on electrochemical or photoelectrochemical water splitting represents one of the most promising means for the fast increase of global energy need, capable of offering a clean and sustainable energy resource with zero carbon footprints in the environment. The key to the success of this goal is the realization of robust earth‐abundant materials and cost‐effective reaction processes that can catalyze both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with high efficiency and stability. In the past decade, one‐dimensional (1D) nanomaterials and nanostructures have been substantially investigated for their potential in serving as these electrocatalysts for reducing overpotentials and increasing catalytic activity, due to their high electrochemically active surface area, fast charge transport, efficient mass transport of reactant species, and effective release of gas produced. In this review, we summarize the recent progress in developing new 1D nanomaterials as catalysts for HER, OER, as well as bifunctional electrocatalysts for both half reactions. Different categories of earth‐abundant materials including metal‐based and metal‐free catalysts are introduced, with their representative results presented. The challenges and perspectives in this field are also discussed. PMID:28331791

  4. Synchrotron-Based In Situ Characterization of Carbon-Supported Platinum and Platinum Monolayer Electrocatalysts

    DOE PAGES

    Sasaki, Kotaro; Marinkovic, Nebojsa; Isaacs, Hugh S.; ...

    2015-11-17

    Understanding oxidation/dissolution mechanisms of Pt is critical in designing durable catalysts for the oxygen reduction reaction (ORR), but exact mechanisms remain unclear. Our present work explores the oxidation/dissolution of Pt and Pt monolayer (ML) electrocatalysts over a wide range of applied potentials using cells that facilitate in situ measurements by combining X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) measurements. Furthermore, the X-ray absorption near edge structure (XANES) measurement demonstrated that Pt nanoparticle surfaces were oxidized from metallic Pt to α-PtO2-type oxide during the potential sweep from 0.41 to 1.5 V, and the transition state of O or OH adsorptionmore » on Pt and the onset of the place exchange process were revealed by the delta mu (Δμ) method. Only the top layers of Pt nanoparticles were oxidized, while the inner Pt atoms remained intact. At a higher potential over 1.9 V, α-PtO2-type surface oxides dissolve due to local acidification caused by the oxygen evolution reaction and carbon corrosion. Pt oxidation of PtML on the Pd nanoparticle electrocatalyst is considerably hampered compared with the Pt/C catalyst, presumably because preferential Pd oxidation proceeds at the defects in Pt MLs up to 0.91 V and through O penetrated through the Pt MLs by the place exchange process above 1.11 V.« less

  5. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction.

    PubMed

    Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus

    2014-09-17

    Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm(-2)) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst.

  6. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus

    2014-09-01

    Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm-2) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst.

  7. Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting.

    PubMed

    Wang, Pengyan; Pu, Zonghua; Li, Yanhui; Wu, Lin; Tu, Zhengkai; Jiang, Min; Kou, Zongkui; Amiinu, Ibrahim Saana; Mu, Shichun

    2017-08-09

    Exploring efficient and earth-abundant electrocatalysts for water splitting is crucial for various renewable energy technologies. In this work, iron (Fe)-doped nickel phosphide (Ni2P) nanosheet arrays supported on nickel foam (Ni1.85Fe0.15P NSAs/NF) are fabricated through a facile hydrothermal method, followed by phosphorization. The electrochemical analysis demonstrates that the Ni1.85Fe0.15P NSAs/NF electrode possesses high electrocatalytic activity for water splitting. In 1.0 M KOH, the Ni1.85Fe0.15P NSAs/NF electrode only needs overpotentials of 106 mV at 10 mA cm(-2) and 270 mV at 20 mA cm(-2) to drive the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Furthermore, the assembled two-electrode (Ni1.85Fe0.15P NSAs/NF∥Ni1.85Fe0.15P NSAs/NF) alkaline water electrolyzer can produce a current density of 10 mA cm(-2) at 1.61 V. Remarkably, it can maintain stable electrolysis over 20 h. Thus, this work undoubtedly offers a promising electrocatalyst for water splitting.

  8. Al-Doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity.

    PubMed

    Zhang, Rong; Tang, Chun; Kong, Rongmei; Du, Gu; Asiri, Abdullah M; Chen, Liang; Sun, Xuping

    2017-04-06

    The scalable production of hydrogen fuel through electrochemical water reduction needs efficient Earth-abundant electrocatalysts to make the whole water-splitting process more energy efficient. In this Article, we report that an Al-doped CoP nanoarray on carbon cloth (Al-CoP/CC) behaves as a durable hydrogen evolution electrocatalyst with superhigh activity in 0.5 M H2SO4. It demands a pretty low overpotential of 23 mV to drive a geometrical catalytic current density of 10 mA cm(-2), outperforming all reported non-precious metal catalysts. Density functional theory calculations reveal that Al-CoP has a more thermo-neutral hydrogen adsorption free energy than CoP. Notably, this Al-CoP/CC is also superior in activity and durability as a bifunctional catalyst for alkaline water electrolysis, and its two-electrode water electrolyser delivers 10 mA cm(-2) water-splitting current at a cell voltage of 1.56 V in 1.0 M KOH. This work offers us an attractive cost-effective catalyst electrode in water-splitting devices for large-scale production of hydrogen fuels.

  9. One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts.

    PubMed

    Li, Jun; Zheng, Gengfeng

    2017-03-01

    Hydrogen fuel acquisition based on electrochemical or photoelectrochemical water splitting represents one of the most promising means for the fast increase of global energy need, capable of offering a clean and sustainable energy resource with zero carbon footprints in the environment. The key to the success of this goal is the realization of robust earth-abundant materials and cost-effective reaction processes that can catalyze both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with high efficiency and stability. In the past decade, one-dimensional (1D) nanomaterials and nanostructures have been substantially investigated for their potential in serving as these electrocatalysts for reducing overpotentials and increasing catalytic activity, due to their high electrochemically active surface area, fast charge transport, efficient mass transport of reactant species, and effective release of gas produced. In this review, we summarize the recent progress in developing new 1D nanomaterials as catalysts for HER, OER, as well as bifunctional electrocatalysts for both half reactions. Different categories of earth-abundant materials including metal-based and metal-free catalysts are introduced, with their representative results presented. The challenges and perspectives in this field are also discussed.

  10. Enhanced Pt utilization in electrocatalysts by covering of colloidal silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Jianhuang; Chen, Jianjun; Lee, Jim Yang

    This work aims at enhancing Pt utilization in electrocatalysts by covering of preformed silica nanoparticles. Pt/C electrocatalysts were prepared by reductive deposition of Pt by citrate at moderate temperatures on silica nanoparticles with varying atomic silica to Pt ratios (1.7:1 and 3.3:1) to study the effects of silica to Pt ratio. Considerable voidages were created by inter-situated 10-20 nm silica nanoparticles between support carbon particulates to facilitate mass transfer of reactants and products. This particular method of catalyst preparation increases the Pt metal utilization, and generates a large amount of accessible voidage in the interpenetrating particle network of carbon and silica to support the facile transport of reactants and products. Electrochemical hydrogen adsorption/desorption has shown an increase in electrochemically active surface area by this approach. Methanol electro-oxidation was used as a test reaction to evaluate the catalytic activity. It was found that the Pt catalyst modified with silica at silica:Pt = 1.7:1 atomic ratio was more active than a catalyst prepared when silica to Pt ratio increased to 3.3:1.

  11. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE PAGES

    Gong, Ming; Zhou, Wu; Kenney, Michael James; ...

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20more » mA cm–2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  12. Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering.

    PubMed

    Liao, Hanbin; Fisher, Adrian; Xu, Zhichuan J

    2015-07-15

    Bimetallic nanoparticles are a class of important electrocatalyst. They exhibit a synergistic effect that critically depends on the surface composition, which determines the surface properties and the adsorption/desorption behavior of the reactants and intermediates during catalysis. The surface composition can be varied, as nanoparticles are exposed to certain environments through surface segregation. Thermodynamically, this is caused by a difference in surface energy between the two metals. It may lead to the enrichment of one metal on the surface and the other in the core. The external conditions that influence the surface energy may lead to the variation of the thermodynamic steady state of the particle surface and, thus, offer a chance to vary the surface composition. In this review, the most recent and important progress in surface segregation of bimetallic nanoparticles and its impact in electrocatalysis are introduced. Typical segregation inducements and surface characterization techniques are discussed in detail. It is concluded that surface segregation is a critical issue when designing bimetallic catalysts. It is necessary to explore methods to control it and utilize it as a way towards producing robust, bimetallic electrocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Carbon-Free Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions.

    PubMed

    Yang, Yang; Fei, Huilong; Ruan, Gedeng; Li, Lei; Wang, Gunuk; Kim, Nam Dong; Tour, James M

    2015-09-23

    A nanoporous Ag-embedded SnO2 thin film was fabricated by anodic treatment of electrodeposited Ag-Sn alloy layers. The ordered nanoporous structure formed by anodization played a key role in enhancing the electrocatalytic performance of the Ag-embedded SnO2 layer in several ways: (1) the roughness factor of the thin film is greatly increased from 23 in the compact layer to 145 in the nanoporous layer, creating additional active sites that are involved in oxygen electrochemical reactions; (2) a trace amount of Ag (∼1.7 at %, corresponding to a Ag loading of ∼3.8 μg cm(-2)) embedded in the self-organized SnO2 nanoporous matrix avoids the agglomeration of nanoparticles, which is a common problem leading to the electrocatalyst deactivation; (3) the fabricated nanoporous thin film is active without additional additives or porous carbon that is usually necessary to support and stabilize the electrocatalyst. More importantly, the Ag-embedded SnO2 nanoporous thin film shows outstanding bifunctional oxygen electrochemical performance (oxygen reduction and evolution reactions) that is considered a promising candidate for use in metal-air batteries. The present technique has a wide range of applications for the preparation of other carbon-free electrocatalytic nanoporous films that could be useful for renewable energy production and storage applications.

  14. Advanced Evaluation of the Long-Term Stability of Oxygen Evolution Electrocatalysts.

    PubMed

    Maljusch, Artjom; Conradi, Oliver; Hoch, Sascha; Blug, Matthias; Schuhmann, Wolfgang

    2016-08-02

    Evaluation of the long-term stability of electrocatalysts is typically performed using galvanostatic polarization at a predefined current density. A stable or insignificant increase in the applied potential is usually interpreted as high long-term stability of the tested catalyst. However, effects such as (i) electrochemical degradation of a catalyst due to its oxidation, (ii) blocking of the catalyst surface by evolved gas bubbles, and (iii) detachment of the catalyst from the electrode surface may lead to a decrease of the catalyst's active surface area being exposed to the electrolyte. In order to separate these effects and to evaluate the true electrochemical degradation of electrocatalysts, an advanced evaluation protocol based on subsequently performed electrochemical impedance, double layer capacitance, cyclic voltammetry, and galvanostatic polarization measurements was developed and used to evaluate the degradation of IrO2 particles drop-coated on glassy carbon rotating disk electrode using Nafion as a binder. A flow-through electrochemical cell was developed enabling circulation of the electrolyte leading to an efficient removal of evolved oxygen bubbles even at high current densities of up to 250 mA/cm(2). The degradation rate of IrO2 was evaluated over 225 test cycles (0.733 ± 0.022 mV/h) with a total duration of galvanostatic polarization measurements of over 55 h.

  15. Iron-doped NiCoO2 nanoplates as efficient electrocatalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Duan, Xiaojing; Yang, Yang; Liu, Chunli; Zhou, Ming; Yang, Lin; He, Huichao; Zhang, Yunhuai; Xiao, Peng

    2017-06-01

    Electrocatalysts play a vital role to overcome the slow kinetics of the oxygen evolution reaction (OER). Herein, we developed iron-doped (Fe-doped) NiCoO2 nanoplates with NaCl-type structure as an efficient electrocatalyst to speed up OER. NiCoO2 nanoplates doping with different concentration of Fe were optimized. Specifically, the catalytic properties of 10 mol% Fe-doped NiCoO2 (denoted as FNC0.1) showed outstanding OER catalytic activity, with an overpotential of 302 mV and a low Tafel slope of 42 mV dec-1 at 10 mA cm-2 in 0.1 M KOH. More importantly, the activity of FNC0.1 was only about 3% loss after 10 h of stability measurements at 1.53 V vs. RHE. The dramatically enhanced OER performance of the FNC0.1 might derive from the synergistic interplay of Co, Ni and Fe, a certain level of amorphization and easily hydroxylation after doping Fe. This work demonstrated that doping Fe would be beneficial to improve the OER activities and the stabilities of the catalysts.

  16. Synchrotron-Based In Situ Characterization of Carbon-Supported Platinum and Platinum Monolayer Electrocatalysts

    SciTech Connect

    Sasaki, Kotaro; Marinkovic, Nebojsa; Isaacs, Hugh S.; Adzic, Radoslav R.

    2015-11-17

    Understanding oxidation/dissolution mechanisms of Pt is critical in designing durable catalysts for the oxygen reduction reaction (ORR), but exact mechanisms remain unclear. Our present work explores the oxidation/dissolution of Pt and Pt monolayer (ML) electrocatalysts over a wide range of applied potentials using cells that facilitate in situ measurements by combining X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) measurements. Furthermore, the X-ray absorption near edge structure (XANES) measurement demonstrated that Pt nanoparticle surfaces were oxidized from metallic Pt to α-PtO2-type oxide during the potential sweep from 0.41 to 1.5 V, and the transition state of O or OH adsorption on Pt and the onset of the place exchange process were revealed by the delta mu (Δμ) method. Only the top layers of Pt nanoparticles were oxidized, while the inner Pt atoms remained intact. At a higher potential over 1.9 V, α-PtO2-type surface oxides dissolve due to local acidification caused by the oxygen evolution reaction and carbon corrosion. Pt oxidation of PtML on the Pd nanoparticle electrocatalyst is considerably hampered compared with the Pt/C catalyst, presumably because preferential Pd oxidation proceeds at the defects in Pt MLs up to 0.91 V and through O penetrated through the Pt MLs by the place exchange process above 1.11 V.

  17. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting.

    PubMed

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng-Chang; Wang, Di-Yan; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-10-05

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2 O3 -blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2 O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2 O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm(-2) at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. The non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.

  18. A selective electrocatalyst-based direct methanol fuel cell operated at high concentrations of methanol.

    PubMed

    Feng, Yan; Liu, Hui; Yang, Jun

    2017-06-01

    Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm(-2) at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

  19. Ternary Porous Cobalt Phosphoselenide Nanosheets: An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting.

    PubMed

    Hou, Yang; Qiu, Ming; Zhang, Tao; Zhuang, Xiaodong; Kim, Chang-Soo; Yuan, Chris; Feng, Xinliang

    2017-09-01

    Exploring efficient and earth-abundant electrocatalysts is of great importance for electrocatalytic and photoelectrochemical hydrogen production. This study demonstrates a novel ternary electrocatalyst of porous cobalt phosphoselenide nanosheets prepared by a combined hydrogenation and phosphation strategy. Benefiting from the enhanced electric conductivity and large surface area, the ternary nanosheets supported on electrochemically exfoliated graphene electrodes exhibit excellent catalytic activity and durability toward hydrogen evolution in alkali, achieving current densities of 10 and 20 mA cm(-2) at overpotentials of 150 and 180 mV, respectively, outperforming those reported for transition metal dichalcogenides and first-row transition metal pyrites catalysts. Theoretical calculations reveal that the synergistic effects of Se vacancies and subsequent P displacements of Se atoms around the vacancies in the resulting cobalt phosphoselenide favorably change the electronic structure of cobalt selenide, assuring a rapid charge transfer and optimal energy barrier of hydrogen desorption, and thus promoting the proton kinetics. The overall-water-splitting with 10 mA cm(-2) at a low voltage of 1.64 V is achieved using the ternary electrode as both the anode and cathode, and the performance surpasses that of the Ir/C-Pt/C couple for sufficiently high overpotentials. Moreover, the integration of ternary nanosheets with macroporous silicon enables highly efficient solar-driven photoelectrochemical hydrogen production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction.

    PubMed

    Mukherjee, Sohini; Mukherjee, Arnab; Bhagi-Damodaran, Ambika; Mukherjee, Manjistha; Lu, Yi; Dey, Abhishek

    2015-10-12

    Creating an artificial functional mimic of the mitochondrial enzyme cytochrome c oxidase (CcO) has been a long-term goal of the scientific community as such a mimic will not only add to our fundamental understanding of how CcO works but may also pave the way for efficient electrocatalysts for oxygen reduction in hydrogen/oxygen fuel cells. Here we develop an electrocatalyst for reducing oxygen to water under ambient conditions. We use site-directed mutants of myoglobin, where both the distal Cu and the redox-active tyrosine residue present in CcO are modelled. In situ Raman spectroscopy shows that this catalyst features very fast electron transfer rates, facile oxygen binding and O-O bond lysis. An electron transfer shunt from the electrode circumvents the slow dissociation of a ferric hydroxide species, which slows down native CcO (bovine 500 s(-1)), allowing electrocatalytic oxygen reduction rates of 5,000 s(-1) for these biosynthetic models.

  1. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.

    PubMed

    Liu, Mengjia; Li, Jinghong

    2016-01-27

    The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations.

  2. A novel electrocatalyst support with proton conductive properties for polymer electrolyte membrane fuel cell applications

    NASA Astrophysics Data System (ADS)

    Carmo, Marcelo; Roepke, Thorsten; Roth, Christina; dos Santos, Amilton M.; Poco, Joao G. R.; Linardi, Marcelo

    The objective of this study is to graft the surface of carbon black, by chemically introducing polymeric chains (Nafion ® like) with proton-conducting properties. This procedure aims for a better interaction of the proton-conducting phase with the metallic catalyst particles, as well as hinders posterior support particle agglomeration. Also loss of active surface can be prevented. The proton conduction between the active electrocatalyst site and the Nafion ® ionomer membrane should be enhanced, thus diminishing the ohmic drop in the polymer electrolyte membrane fuel cell (PEMFC). PtRu nanoparticles were supported on different carbon materials by the impregnation method and direct reduction with ethylene glycol and characterized using amongst others FTIR, XRD and TEM. The screen printing technique was used to produce membrane electrode assemblies (MEA) for single cell tests in H 2/air (PEMFC) and methanol operation (DMFC). In the PEMFC experiments, PtRu supported on grafted carbon shows 550 mW cm -2 gmetal -1 power density, which represents at least 78% improvement in performance, compared to the power density of commercial PtRu/C ETEK. The DMFC results of the grafted electrocatalyst achieve around 100% improvement. The polarization curves results clearly show that the main cause of the observed effect is the reduction in ohmic drop, caused by the grafted polymer.

  3. Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting.

    PubMed

    Tang, Yanqun; Fang, Xiaoyu; Zhang, Xin; Fernandes, Gina; Yan, Yong; Yan, Dongpeng; Xiang, Xu; He, Jing

    2017-10-12

    Hydrogen generation from water splitting could be an alternative way to meet increasing energy demands while also balancing the impact of energy being supplied by fossil-based fuels. The efficacy of water splitting strongly depends on the performance of electrocatalysts. Herein, we report a unique space-confined earth-abundant electrocatalyst having the bifunctionality of simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), leading to high-efficiency water splitting. Outperforming Pt/C or RuO2 catalysts, this mesoscopic, space-confined, bifunctional configuration is constructed from a monolithic zeolitic imidazolate framework@layered double hydroxide (ZIF@LDH) precursor on Ni foam. Such a confinement leads to a high dispersion of ultrafine Co3O4 nanoparticles within the N-doped carbon matrix by temperature-dependent calcination of the ZIF@LDH. We demonstrate that the OER has an overpotential of 318 mV at a current density of 10 mA cm(-2), while that of HER is -106 mV @ -10 mA cm(-2). The voltage applied to a two-electrode cell for overall water splitting is 1.59 V to achieve a stable current density of 10 mA cm(-2) while using the monolithic catalyst as both the anode and the cathode. It is anticipated that our space-confined method, which focuses on earth-abundant elements with structural integrity, may provide a novel and economically sound strategy for practical energy conversion applications.

  4. Carbon monoxide tolerant platinum electrocatalysts on niobium doped titania and carbon nanotube composite supports

    NASA Astrophysics Data System (ADS)

    Rigdon, William A.; Huang, Xinyu

    2014-12-01

    In the anode of electrochemical cells operating at low temperature, the hydrogen oxidation reaction is susceptible to poisoning from carbon monoxide (CO) which strongly adsorbs on platinum (Pt) catalysts and increases activation overpotential. Adsorbed CO is removed by oxidative processes such as electrochemical stripping, though cleaning can also cause corrosion. One approach to improve the tolerance of Pt is through alloying with less-noble metals, but the durability of alloyed electrocatalysts is a critical concern. Without sacrificing stability, tolerance can be improved by careful design of the support composition using metal oxides. The bifunctional mechanism is promoted at junctions of the catalyst and metal oxides used in the support. Stable metal oxides can also form strong interactions with catalysts, as is the case for platinum on titania (TiOx). In this study, niobium (Nb) serves as an electron donor dopant in titania. The transition metal oxides are joined to functionalized multi-wall carbon nanotube (CNT) supports in order to synthesize composite supports. Pt is then deposited to form electrocatalysts which are characterized before fabrication into anodes for tests as an electrochemical hydrogen pump. Comparisons are made between the control from Pt-CNT to Pt-TiOx-CNT and Pt-Ti0.9Nb0.1Ox-CNT in order to demonstrate advantages.

  5. Preparation of a platinum electrocatalyst by coaxial pulse arc plasma deposition

    PubMed Central

    Agawa, Yoshiaki; Tanaka, Hiroyuki; Torisu, Shigemitsu; Endo, Satoshi; Tsujimoto, Akihiro; Gonohe, Narishi; Malgras, Victor; Aldalbahi, Ali; Alshehri, Saad M; Kamachi, Yuichiro; Li, Cuiling; Yamauchi, Yusuke

    2015-01-01

    We have developed a new method of preparing Pt electrocatalysts through a dry process. By coaxial pulse arc plasma deposition (CAPD), highly ionized metal plasma can be generated from a target rod without any discharged gases, and Pt nanoparticles can be deposited on a carbon support. The small-sized Pt nanoparticles are distributed over the entire carbon surface. From transmission electron microscopy (TEM), the average size of the deposited Pt nanoparticles is estimated to be 2.5 nm, and their size distribution is narrow. Our electrocatalyst shows considerably improved catalytic activity and stability toward methanol oxidation reaction (MOR) compared with commercially available Pt catalysts such as Pt black and Pt/carbon (PtC). Inspired by its very high efficiency toward MOR, we also measured the catalytic performance for oxygen reduction reaction (ORR). Our PtC catalyst shows a better performance with half-wave potential of 0.87 V, which is higher than those of commercially available Pt catalysts. The higher performance is also supported by a right-shifted onset potential. Our preparation is simple and could be applied to other metallic nanocrystals as a novel platform in catalysis, fuel cells and biosensors. PMID:27877765

  6. Efficient Dual-Site Carbon Monoxide Electro-Catalysts via Interfacial Nano-Engineering

    PubMed Central

    Liu, Zhen; Huang, Zhongyuan; Cheng, Feifei; Guo, Zhanhu; Wang, Guangdi; Chen, Xu; Wang, Zhe

    2016-01-01

    Durable, highly efficient, and economic sound electrocatalysts for CO electrooxidation (COE) are the emerging key for wide variety of energy solutions, especially fuel cells and rechargeable metal−air batteries. Herein, we report the novel system of nickel−aluminum double layered hydroxide (NiAl-LDH) nanoplates on carbon nanotubes (CNTs) network. The formulation of such complexes system was to be induced through the assistance of gold nanoparticles in order to form dual-metal active sites so as to create a extended Au/NiO two phase zone. Bis (trifluoromethylsulfonyl)imide (NTf2) anion of ionic liquid electrolyte was selected to enhance the CO/O2 adsorption and to facilitate electro-catalyzed oxidation of Ni (OH)2 to NiOOH by increasing the electrophilicity of catalytic interface. The resulting neutral catalytic system exhibited ultra-high electrocatalytic activity and stability for CO electrooxidation than commercial and other reported precious metal catalysts. The turnover frequency (TOF) of the LDH-Au/CNTs COE catalyst was much higher than the previous reported other similar electrocatalysts, even close to the activity of solid-gas chemical catalysts at high temperature. Moreover, in the long-term durability testing, the negligible variation of current density remains exsisting after 1000 electrochemistry cycles. PMID:27650532

  7. A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction

    PubMed Central

    Mukherjee, Sohini; Mukherjee, Arnab; Bhagi-Damodaran, Ambika; Mukherjee, Manjistha; Lu, Yi; Dey, Abhishek

    2015-01-01

    Creating an artificial functional mimic of the mitochondrial enzyme cytochrome c oxidase (CcO) has been a long-term goal of the scientific community as such a mimic will not only add to our fundamental understanding of how CcO works but may also pave the way for efficient electrocatalysts for oxygen reduction in hydrogen/oxygen fuel cells. Here we develop an electrocatalyst for reducing oxygen to water under ambient conditions. We use site-directed mutants of myoglobin, where both the distal Cu and the redox-active tyrosine residue present in CcO are modelled. In situ Raman spectroscopy shows that this catalyst features very fast electron transfer rates, facile oxygen binding and O–O bond lysis. An electron transfer shunt from the electrode circumvents the slow dissociation of a ferric hydroxide species, which slows down native CcO (bovine 500 s−1), allowing electrocatalytic oxygen reduction rates of 5,000 s−1 for these biosynthetic models. PMID:26455726

  8. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.

    PubMed

    Zhu, Yun Pei; Guo, Chunxian; Zheng, Yao; Qiao, Shi-Zhang

    2017-04-18

    Developing cost-effective and high-performance electrocatalysts for renewable energy conversion and storage is motivated by increasing concerns regarding global energy security and creating sustainable technologies dependent on inexpensive and abundant resources. Recent achievements in the design and synthesis of efficient non-precious-metal and even non-metal electrocatalysts make the replacement of noble metal counterparts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) with earth-abundant elements, for example, C, N, Fe, Mn, and Co, a realistic possibility. It has been found that surface atomic engineering (e.g., heteroatom-doping) and interface atomic or molecular engineering (e.g., interfacial bonding) can induce novel physicochemical properties and strong synergistic effects for electrocatalysts, providing new and efficient strategies to greatly enhance the catalytic activities. In this Account, we discuss recent progress in the design and fabrication of efficient electrocatalysts based on carbon materials, graphitic carbon nitride, and transition metal oxides or hydroxides for efficient ORR, OER, and HER through surface and interfacial atomic and molecular engineering. Atomic and molecular engineering of carbon materials through heteroatom doping with one or more elements of noticeably different electronegativities can maximally tailor their electronic structures and induce a synergistic effect to increase electrochemical activity. Nonetheless, the electrocatalytic performance of chemically modified carbonaceous materials remains inferior to that of their metallic counterparts, which is mainly due to the relatively limited amount of electrocatalytic active sites induced by heteroatom doping. Accordingly, coupling carbon substrates with other active electrocatalysts to produce composite structures can impart novel physicochemical properties, thereby boosting the electroactivity even further

  9. SYNTHESIS AND CHARACTERIZATION OF CO- AND H{sub 2}S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect

    Shamsuddin Ilias

    2005-04-05

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several tri-metallic electrocatalysts were synthesized using both ultra-sonication and conventional method. These catalysts (Pt/Ru/Mo, Pt/Ru/Ir, Pt/Ru/W, Ptr/Ru/Co, and Pt/Ru/Se on carbon) were tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/Mo/C > Pt/Ru/Ir/C > Pt/Ru/W/C > Ptr/Ru/Co/C > and Pt/Ru/Se. It appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC.

  10. SYNTHESIS AND CHARACTERIZATION OF CO-AND H2S-TOLERANT ELECTROCATALYSTS FOR PEM FUEL CELL

    SciTech Connect

    Shamsuddin Ilias

    2004-03-31

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period several bi-metallic electrocatalysts were synthesized and tested in MEAs. From Galvonstatic study the catalytic activity was found in the order of: Pt/Ru/C > Pt/Mo/C > Pt/Ir/C > Pt/Ni/C > Pt/Cr/C. Work in progress to further study these catalysts for CO-tolerance in PEMFC and identify potential candidate metals for synthesis of trimetallic electrocatalysts.

  11. Understanding the Effects of Surface Chemistry and Microstructure on the Activity and Stability of Pt Electrocatalysts on Non-Carbon Supports

    SciTech Connect

    Mustain, William

    2015-02-12

    The objective of this project is to elucidate the effects of the chemical composition and microstructure of the electrocatalyst support on the activity, stability and utilization of supported Pt clusters.

  12. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media

    NASA Astrophysics Data System (ADS)

    Jamesh, Mohammed Ibrahim

    2016-11-01

    Electrochemical water-splitting is one of the promising ways for producing clean chemical fuel (Hydrogen) while cheap-earth-abundant-bifunctional-electrocatalyst is one of the possible way for improving the overall cost efficiency of water-splitting. This paper reviews the chemical state, hydrogen and oxygen evolution reaction activity in alkaline media, overall water-splitting performance in alkaline media, stability, and possible-factors for improving its efficiency of various kinds of recently reported electrocatalyst such as Ni-P, Co-P, Ni-Co-P, graphene-Co-P, O/N/C-Co/Ni, Ni-S, B-Ni/Co, Ni-Co, Mo, Se, Fe, Mn/Zn/Ti, and metal-free based earth-abundant-bifunctional-electrocatalyst. This paper also reviews and highlights the remarkable water splitting performance of the earth-abundant-bifunctional-electrocatalyst those exhibit better or well comparable with Pt/C//RuO2.

  13. Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction.

    PubMed

    Ping, Jianfeng; Wang, Yixian; Lu, Qipeng; Chen, Bo; Chen, Junze; Huang, Ying; Ma, Qinglang; Tan, Chaoliang; Yang, Jian; Cao, Xiehong; Wang, Zhijuan; Wu, Jian; Ying, Yibin; Zhang, Hua

    2016-09-01

    A non-noble metal based 3D porous electrocatalyst is prepared by self-assembly of the liquid-exfoliated single-layer CoAl-layered double hydroxide nanosheets (CoAl-NSs) onto 3D graphene network, which exhibits higher catalytic activity and better stability for electrochemical oxygen evolution reaction compared to the commercial IrO2 nanoparticle-based 3D porous electrocatalyst.

  14. A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum

    PubMed Central

    Yang, Zehui; Nakashima, Naotoshi

    2015-01-01

    The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2′-(2,6-pyridine)-5,5′-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance. PMID:26192397

  15. Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance

    NASA Astrophysics Data System (ADS)

    Tang, Yongfu; Chen, Teng; Guo, Wenfeng; Chen, Shunji; Li, Yanshuai; Song, Jianzheng; Chang, Limin; Mu, Shichun; Zhao, Yufeng; Gao, Faming

    2017-09-01

    Electronic structure of Mn cations, electric conductivity of active materials and three dimensional structure for mass transport play vital roles in the electrocatalytic activity of Mn-based electrocatalysts for oxygen reduction reaction (ORR). To construct efficient and robust Mn-based electrocatalysts, MnS nanotubes anchored on reduced graphene oxide (MnS-NT@rGO) hybrid was synthesized and used as a novel non-precious metal electrocatalyst for ORR. The formation of nano-tubular structure, which offers more active sites and suitable channels for mass transport to enhance the electrocatalytic activity towards ORR, are carefully illustrated based on the core-dissolution/shell-recrystallization type Ostwald ripening effect. Tuned electronic structure of Mn cations, enhanced electric conductivity and suitable nano-tubular structure endow MnS-NT@rGO electrocatalyst comparative catalytic activity to commercial 20 wt % Pt/C in alkaline electrolyte. The MnS-NT@rGO electrocatalyst exhibits higher catalytic activity than rGO supported MnS nanoparticles (MnS-NP@rGO) and MnS nanotubes without rGO substrate (MnS-NT), as well as rGO supported Mn(OH)2 (Mn(OH)2@rGO) and rGO supported MnO (MnO@rGO). Moreover, the MnS-NT@rGO electrocatalyst shows superior durability and methanol tolerance to commercial Pt/C.

  16. Bipolar Electrochemistry for Concurrently Evaluating the Stability of Anode and Cathode Electrocatalysts and the Overall Cell Performance during Long-Term Water Electrolysis.

    PubMed

    Eßmann, Vera; Barwe, Stefan; Masa, Justus; Schuhmann, Wolfgang

    2016-09-06

    Electrochemical efficiency and stability are among the most important characteristics of electrocatalysts. These parameters are usually evaluated separately for the anodic and cathodic half-cell reactions in a three-electrode system or by measuring the overall cell voltage between the anode and cathode as a function of current or time. Here, we demonstrate how bipolar electrochemistry can be exploited to evaluate the efficiency of electrocatalysts for full electrochemical water splitting while simultaneously and independently monitoring the individual performance and stability of the half-cell electrocatalysts. Using a closed bipolar electrochemistry setup, all important parameters such as overvoltage, half-cell potential, and catalyst stability can be derived from a single galvanostatic experiment. In the proposed experiment, none of the half-reactions is limiting on the other, making it possible to precisely monitor the contribution of the individual half-cell reactions on the durability of the cell performance. The proposed approach was successfully employed to investigate the long-term performance of a bifunctional water splitting catalyst, specifically amorphous cobalt boride (Co2B), and the durability of the electrocatalyst at the anode and cathode during water electrolysis. Additionally, by periodically alternating the polarization applied to the bipolar electrode (BE) modified with a bifunctional oxygen electrocatalyst, it was possible to explicitly follow the contributions of the oxygen reduction (ORR) and the oxygen evolution (OER) half-reactions on the overall long-term durability of the bifunctional OER/ORR electrocatalyst.

  17. Investigation of titanium nitride as catalyst support material and development of durable electrocatalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Avasarala, Bharat K.

    The impending energy and climatic crisis makes it imperative for human society to seek non-fossil based alternative sources for our energy needs. Although many alternative energy technologies are currently being developed, fuel cell technology provides energy solutions, which satisfy a wide range of applications. But the current fuel cell technology is far from its target of large scale commercialization mainly because of its high cost and poor durability. Considerable work has been done in reducing the cost but its durability still needs significant improvement. Of the various materials in a PEM fuel cell, the degradation of electrocatalyst affects its durability the most, leading to performance loss. Carbon black (C) support corrosion plays a significant role in the electrocatalyst degradation and its severe affects due to potential cycling has been identified through my research. Through my resaerch, I introduce titanium nitride nanoparticles (TiN NP) as alternative catalyst supports replacing carbon black. TiN NP has higher electrical conductivity and corrosion resistance compared to that of C. The physical and electrochemical properties of TiN NP were studied and the Pt/TiN electrocatalyst was synthesized using polyol process. Upon optimizing using DOE, for desired catalyst particle size and activity, Pt/TiN is shown to have higher catalytic performance than conventional Pt/C. TiN NP are significantly influenced by the electrochemical conditions and show 'active' or 'passive' nature depending on the temperature and acidic concentration; and a temperature dependence model is proposed to understand the active/passive nature of TiN NP. A one-to-one comparison between TiN NP and C electrodes under similar electrochemical conditions show a superior performance of TiN NP as a catalyst support. The durability of the Pt/TiN electrocatalyst is also tested and it agrees well with the proposed model of active/passive nature of the TiN NP. Through theoretical calculation

  18. Nickel-doped nanobelt structured molybdenum oxides as electrocatalysts for electrochemical hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Kalasapurayil Kunhiraman, Aruna; Ramasamy, Manoharan

    2017-06-01

    In this work, nickel has been doped into α-MoO3 and the resulting Ni x Mo1 - x O3 nanostructured materials was examined as electrocatalysts for the cathodic hydrogen evolution reaction (HER). X-ray diffraction (XRD) analysis of the synthesized materials indicated that Ni go into the orthorhombic structure of α-MoO3 up to x = 0.2. Above x = 0.2, NiMoO4 (monoclinic) phase was formed along with the formation of trace quantities of MoO3. Nanobelt (NB) morphologies were observed for oxides with x ≤ 0.2 in transmission electron microscope (TEM) analysis and with the increase in the Ni concentration above 0.2, presence of broken belts along with few spherical particles were observed. The hydrogen evolving rates for various concentrations of Ni in MoO3 has been compared from the linear sweep voltammograms (LSVs) recorded at 500th cycle.

  19. Characterization of the Ternary Compound Pd5Pt3Ni2 for PEMFC Cathode Electrocatalysts

    SciTech Connect

    Jarvis, Karalee; Zhao, J; Allard Jr, Lawrence Frederick; Manthiram, A.; Ferreira, Prof Paulo

    2010-01-01

    Research on proton exchange membrane fuel cells (PEMFC) has increased over the last decade due to an increasing demand for alternative energy solutions. Most PEMFCs use Pt on carbon support as electrocatalysts for oxygen reduction reactions (ORR) [1]. Due to the high cost of Pt, there is a strong drive to develop less expensive catalysts that meet or exceed the performance of Pt. Binary and ternary Pt alloys with less expensive metals are a possible route [1]. In this work, a ternary alloy with composition Pd5Pt3Ni2 was studied as a potential cathode material. Preliminary results showed similar catalytic performance to pure Pt in single-cell tests. However, to enhance its performance, it is necessary to understand how this ternary catalyst behaves during fuel cell operation. Various electron microscopy techniques were used to characterize the ternary Pd5Pt3Ni2 catalysts within the membrane-electrode assembly (MEA) both before and after fuel cell operation.

  20. Theoretical studies of Pt-Ti nanoparticles for potential use as PEMFC electrocatalysts.

    PubMed

    Jennings, Paul C; Pollet, Bruno G; Johnston, Roy L

    2012-03-07

    A theoretical investigation is presented of alloying platinum with titanium to form binary Pt-Ti nanoalloys as an alternative to the expensive pure platinum catalysts commonly used for Proton Exchange Membrane Fuel Cell cathode electrocatalysts. Density Functional Theory calculations are performed to investigate compositional effects on structural properties as well as Oxygen Reduction Reaction kinetics and poisoning effects. High symmetry A(32)-B(6) clusters are studied to investigate structural properties. From these structures binding energies of hydroxyl and carbon monoxide are studied on a range of sites on the surface of the clusters. Promising results are obtained suggesting that the bimetallic Pt-Ti nanoalloys may exhibit enhanced properties compared to pure platinum catalysts.

  1. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

    PubMed Central

    Panas, Itai

    2014-01-01

    Summary Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE), where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions. PMID:24605286

  2. Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction

    SciTech Connect

    Raciti, David; Kubal, Joseph; Ma, Cheng; Barclay, Michael; Gonzalez, Matthew; Chi, Miaofang; Greeley, Jeffrey; More, Karren L.; Wang, Chao

    2015-12-25

    Development of renewable energy technologies requires advanced catalysts for efficient electrical-chemical energy conversion reactions. Here in this paper, we report the study of Pt-Re alloy nanoparticles as an electrocatalyst for the oxygen reduction reaction (ORR). An organic solution approach is developed to synthesize monodisperse and homogeneous Pt3Re alloy nanoparticles. Electrochemical studies show that these nanoparticles exhibit an improvement factor of 4 in catalytic activity for the ORR compared to commercial Pt catalysts of similar particle sizes. Fundamental understanding of the structure-property relationship is established by combining material characterization using X-ray spectroscopy and atomically resolved electron microscopy, as well as Density Functional Theory (DFT) calculations. Lastly, our work revealed that an electronic modification of the surface properties of Pt by subsurface Re (ligand effect) accounts for the catalytic enhancement.

  3. Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction

    DOE PAGES

    Raciti, David; Kubal, Joseph; Ma, Cheng; ...

    2015-12-25

    Development of renewable energy technologies requires advanced catalysts for efficient electrical-chemical energy conversion reactions. Here in this paper, we report the study of Pt-Re alloy nanoparticles as an electrocatalyst for the oxygen reduction reaction (ORR). An organic solution approach is developed to synthesize monodisperse and homogeneous Pt3Re alloy nanoparticles. Electrochemical studies show that these nanoparticles exhibit an improvement factor of 4 in catalytic activity for the ORR compared to commercial Pt catalysts of similar particle sizes. Fundamental understanding of the structure-property relationship is established by combining material characterization using X-ray spectroscopy and atomically resolved electron microscopy, as well as Densitymore » Functional Theory (DFT) calculations. Lastly, our work revealed that an electronic modification of the surface properties of Pt by subsurface Re (ligand effect) accounts for the catalytic enhancement.« less

  4. Dual-Functional Electrocatalyst Derived from Iron-Porphyrin-Encapsulated Metal-Organic Frameworks.

    PubMed

    Park, Jungwon; Lee, Hyunjoon; Bae, Young Eun; Park, Kyoung Chul; Ji, Hoon; Jeong, Nak Cheon; Lee, Min Hyung; Kwon, Oh Joong; Lee, Chang Yeon

    2017-08-30

    Active, stable electrocatalysts based on non-precious metals for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) are critical for the development of cost-effective, efficient renewable energy technologies. Here, Fe/Fe3C-embedded nitrogen-doped carbon was fabricated via pyrolysis of iron-porphyrin-encapsulated mesoporous metal-organic frameworks [PCN-333 (Fe), where "PCN" stands for "porous coordination network"] at 700 °C. The various characterization techniques confirmed that Fe- and Fe3C-containing Fe-N-C material (FeP-P333-700) was successfully prepared by pyrolysis of porphyrin-encapsulated PCN-333 (Fe). FeP-P333-700 exhibited superior electrocatalytic performance for the ORR and HER owing to the synergistic effect of Fe/Fe3C and Fe-N-C active sites.

  5. Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction

    PubMed Central

    Chen, Minghua; Liu, Jilei; Zhou, Weijiang; Lin, Jianyi; Shen, Zexiang

    2015-01-01

    A novel and facile two-step strategy has been designed to prepare high performance bi-transition-metals (Fe- and Mo-) carbide supported on nitrogen-doped graphene (FeMo-NG) as electrocatalysts for oxygen reduction reactions (ORR). The as-synthesized FeMo carbide -NG catalysts exhibit excellent electrocatalytic activities for ORR in alkaline solution, with high onset potential (−0.09 V vs. saturated KCl Ag/AgCl), nearly four electron transfer number (nearly 4) and high kinetic-limiting current density (up to 3.5 mA cm−2 at −0.8 V vs. Ag/AgCl). Furthermore, FeMo carbide -NG composites show good cycle stability and much better toxicity tolerance durability than the commercial Pt/C catalyst, paving their application in high-performance fuel cell and lithium-air batteries. PMID:25997590

  6. Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction

    PubMed Central

    Chung, Hoon T.; Won, Jong H.; Zelenay, Piotr

    2013-01-01

    Nanostructured carbon-based materials, such as nitrogen-doped carbon nanotube arrays, Co3O4/nitrogen-doped graphene hybrids and carbon nanotube–graphene complexes have shown respectable oxygen reduction reaction activity in alkaline media. Although certainly promising, the performance of these materials does not yet warrant implementation in the energy conversion/storage devices utilizing basic electrolytes, for example, alkaline fuel cells, metal-air batteries and certain electrolysers. Here we demonstrate a new type of nitrogen-doped carbon nanotube/nanoparticle composite oxygen reduction reaction electrocatalyst obtained from iron acetate as an iron precursor and from cyanamide as a nitrogen and carbon nanotube precursor in a simple, scalable and single-step method. The composite has the highest oxygen reduction reaction activity in alkaline media of any non-precious metal catalysts. When used at a sufficiently high loading, this catalyst also outperforms the most active platinum-based catalysts. PMID:23715281

  7. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting.

    PubMed

    Lindgren, Mikaela; Panas, Itai

    2014-01-01

    Density functional theory is utilized to articulate a particular generic deconstruction of the electrode/electro-catalyst assembly for the cathode process during water splitting. A computational model was designed to determine how alloying elements control the fraction of H2 released during zirconium oxidation by water relative to the amount of hydrogen picked up by the corroding alloy. This model is utilized to determine the efficiencies of transition metals decorated with hydroxide interfaces in facilitating the electro-catalytic hydrogen evolution reaction. A computational strategy is developed to select an electro-catalyst for hydrogen evolution (HE), where the choice of a transition metal catalyst is guided by the confining environment. The latter may be recast into a nominal pressure experienced by the evolving H2 molecule. We arrived at a novel perspective on the uniqueness of oxide supported atomic Pt as a HE catalyst under ambient conditions.

  8. Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wu, Renbing; Xue, Yanhong; Liu, Bo; Zhou, Kun; Wei, Jun; Chan, Siew Hwa

    2016-10-01

    Highly efficient and cost-effective electrocatalyst for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications. Herein, strongly coupled hybrid composites composed of cobalt diselenide (CoSe2) nanoparticles embedded within graphitic carbon polyhedra (GCP) as high-performance ORR catalyst have been rationally designed and synthesized. The catalyst is fabricated by a convenient method, which involves the simultaneous pyrolysis and selenization of preformed Co-based zeolitic imidazolate framework (ZIF-67). Benefiting from the unique structural features, the resulting CoSe2/GCP hybrid catalyst shows high stability and excellent electrocatalytic activity towards ORR (the onset and half-wave potentials are 0.935 and 0.806 V vs. RHE, respectively), which is superior to the state-of-the-art commercial Pt/C catalyst (0.912 and 0.781 V vs. RHE, respectively).

  9. Electrochemical Reconstitution of Biomolecules for Applications as Electrocatalysts for the Bionanofuel Cell

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; King, Glen C.; Watt, Gerald D.; Chu, Sang-Hyon; Park, Yeonjoon; Thibeault, Sheila

    2004-01-01

    Platinum-cored ferritins were synthesized as electrocatalysts by electrochemical biomineralization of immobilized apoferritin with platinum. The platinum cored ferritin was fabricated by exposing the immobilized apoferritin to platinum ions at a reduction potential. On the platinum-cored ferritin, oxygen is reduced to water with four protons and four electrons generated from the anode. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This results in a smaller catalyst loading of the electrodes for fuel cells or other electrochemical devices. In addition, the catalytic activity of the ferritin-stabilized platinum nanoparticles is enhanced by the large surface area and particle size phenomena. The work presented herein details the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritin with different inorganic cores, and the fabrication of self-assembled 2-D arrays with thiolated ferritin.

  10. Is Ammonium Peroxydisulate Indispensable for Preparation of Aniline-Derived Iron-Nitrogen-Carbon Electrocatalysts?

    PubMed

    Xie, Nan-Hong; Yan, Xiang-Hui; Xu, Bo-Qing

    2016-09-08

    Iron and nitrogen co-doped carbon (Fe-N-C) materials are among the most active non-precious metal catalysts that could replace Pt-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. The synthesis of the Fe-N-C catalysts often involves the use of aniline as the precursor for both N and C and ammonium peroxydisulfate (APS) as an indispensable oxidative initiator for aniline polymerization. Herein, a detailed structure and catalytic ORR performance comparison of aniline-derived Fe-N-C catalysts synthesized with and without the use of APS is reported. The APS-free preparation, which uses Fe(III) ions as the Fe source as well as the aniline polymerization initiator, results in a simple Fe-N-C catalyst with a high activity for the ORR. We show that APS is not necessary for the preparation and even detrimental to the performance of the catalyst.

  11. On the chemical state of Co oxide electrocatalysts during alkaline water splitting.

    PubMed

    Friebel, Daniel; Bajdich, Michal; Yeo, Boon Siang; Louie, Mary W; Miller, Daniel J; Sanchez Casalongue, Hernan; Mbuga, Felix; Weng, Tsu-Chien; Nordlund, Dennis; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Bell, Alexis T; Nilsson, Anders

    2013-10-28

    Resonant inelastic X-ray scattering and high-resolution X-ray absorption spectroscopy were used to identify the chemical state of a Co electrocatalyst in situ during the oxygen evolution reaction. After anodic electrodeposition onto Au(111) from a Co(2+)-containing electrolyte, the chemical environment of Co can be identified to be almost identical to CoOOH. With increasing potentials, a subtle increase of the Co oxidation state is observed, indicating a non-stoichiometric composition of the working OER catalyst containing a small fraction of Co(4+) sites. In order to confirm this interpretation, we used density functional theory with a Hubbard-U correction approach to compute X-ray absorption spectra of model compounds, which agree well with the experimental spectra. In situ monitoring of catalyst local structure and bonding is essential in the development of structure-activity relationships that can guide the discovery of efficient and earth abundant water splitting catalysts.

  12. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    PubMed

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst.

  13. Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Chen, Minghua; Liu, Jilei; Zhou, Weijiang; Lin, Jianyi; Shen, Zexiang

    2015-05-01

    A novel and facile two-step strategy has been designed to prepare high performance bi-transition-metals (Fe- and Mo-) carbide supported on nitrogen-doped graphene (FeMo-NG) as electrocatalysts for oxygen reduction reactions (ORR). The as-synthesized FeMo carbide -NG catalysts exhibit excellent electrocatalytic activities for ORR in alkaline solution, with high onset potential (-0.09 V vs. saturated KCl Ag/AgCl), nearly four electron transfer number (nearly 4) and high kinetic-limiting current density (up to 3.5 mA cm-2 at -0.8 V vs. Ag/AgCl). Furthermore, FeMo carbide -NG composites show good cycle stability and much better toxicity tolerance durability than the commercial Pt/C catalyst, paving their application in high-performance fuel cell and lithium-air batteries.

  14. Modified Graphene as Electrocatalyst towards Oxygen Reduction Reaction for Fuel Cells

    NASA Astrophysics Data System (ADS)

    Qazzazie, D.; Beckert, M.; Mülhaupt, R.; Yurchenko, O.; Urban, G.

    2014-11-01

    This paper reports modified graphene-based materials as metal-free electrocatalysts for oxygen reduction reaction (ORR) with outstanding electrocatalytic activity in alkaline conditions. Nitrogen-doped graphene samples are synthesized by a novel procedure. The defect density in the structure of the prepared materials is investigated by Raman spectroscopy. Further structural characterization by X-ray photoelectron spectroscopy reveals the successful nitrogen doping of graphene. The electrochemical characterization of graphene and nitrogen-doped graphene in 0.1 M KOH solution demonstrates the material's electrocatalytic activity towards ORR. For graphene an onset potential of - 0.175 V vs. Ag/AgCl reference electrode is determined, while for nitrogen-doped graphene the determined onset potential is - 0.160 V. Thus, the electrocatalytic activity of nitrogen-doped graphene towards ORR is enhanced which can be ascribed to the effect of nitrogen doping.

  15. Heteroatom-Doped Carbon Nanotube and Graphene-Based Electrocatalysts for Oxygen Reduction Reaction.

    PubMed

    Li, Jin-Cheng; Hou, Peng-Xiang; Liu, Chang

    2017-09-29

    Oxygen reduction reaction (ORR) is a key step that determines the performance of a variety of energy storage and conversion devices, such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanotubes (CNTs) and graphenes have attracted increasing interest and hold great promise as efficient ORR catalysts to replace noble-metal-based catalysts, owing to their unique structure characteristics, excellent physicochemical properties, low cost, and rich resources. In this review, recent progress on the design, fabrication, and performance of heteroatom-doped CNT- and graphene-based catalysts is summarized, aiming to provide insights into the working mechanism of these heteroatom-doped nanocarbons in ORR. The advantages, challenges that remain, and possible solutions of these nanocarbon-based electrocatalysts are discussed. Finally, future developing trends of the CNT- and graphene-based ORR catalysts are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy

    DOE PAGES

    Lassalle-Kaiser, Benedikt; Gul, Sheraz; Kern, Jan; ...

    2017-05-02

    This review focuses on the use of X-ray absorption and emission spectroscopy techniques using hard X-rays to study electrocatalysts under in situ/operando conditions. The importance and the versatility of methods in the study of electrodes in contact with the electrolytes are described, when they are being cycled through the catalytic potentials during the progress of the oxygen-evolution, oxygen reduction and hydrogen evolution reactions. The catalytic oxygen evolution reaction is illustrated with examples using three oxides, Co, Ni and Mn, and two sulfides, Mo and Co. These are used as examples for the hydrogen evolution reaction. A bimetallic, bifunctional oxygen evolvingmore » and oxygen reducing Ni/Mn oxide is also presented. The various advantages and constraints in the use of these techniques and the future outlook are discussed.« less

  17. Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review

    SciTech Connect

    Shao, Yuyan; Cheng, Yingwen; Duan, Wentao; Wang, Wei; Lin, Yuehe; Wang, Yong; Liu, Jun

    2015-12-04

    PEM fuel cells and redox flow batteries are two very similar technologies which share common component materials and device design. Electrocatalysts are the key components in these two devices. In this Review, we discuss recent progress of electrocatalytic materials for these two technologies with a focus on our research activities at Pacific Northwest National Laboratory (PNNL) in the past years. This includes (1) nondestructive functionalization of graphitic carbon as Pt support to improve its electrocatalytic performance, (2) triple-junction of metal–carbon–metal oxides to promote Pt performance, (3) nitrogen-doped carbon and metal-doped carbon (i.e., metal oxides) to improve redox reactions in flow batteries. A perspective on future research and the synergy between the two technologies are also discussed.

  18. Electrochemical Reconstitution of Biomolecules for Applications as Electrocatalysts for the Bionanofuel Cell

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; King, Glen C.; Watt, Gerald D.; Chu, Sang-Hyon; Park, Yeonjoon; Thibeault, Sheila

    2004-01-01

    Platinum-cored ferritins were synthesized as electrocatalysts by electrochemical biomineralization of immobilized apoferritin with platinum. The platinum cored ferritin was fabricated by exposing the immobilized apoferritin to platinum ions at a reduction potential. On the platinum-cored ferritin, oxygen is reduced to water with four protons and four electrons generated from the anode. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This results in a smaller catalyst loading of the electrodes for fuel cells or other electrochemical devices. In addition, the catalytic activity of the ferritin-stabilized platinum nanoparticles is enhanced by the large surface area and particle size phenomena. The work presented herein details the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritin with different inorganic cores, and the fabrication of self-assembled 2-D arrays with thiolated ferritin.

  19. A molecular molybdenum electrocatalyst for generating hydrogen from acetic acid or water

    NASA Astrophysics Data System (ADS)

    Cao, Jie-Ping; Zhou, Ling-Ling; Fu, Ling-Zhi; Zhan, Shuzhong

    2014-12-01

    The reaction of 2-pyridylamino-N,N-bis(2-methylene-4,6-difluorophenol) (H2L‧) and MoCl5 affords a molybdenum(VI) complex [MoL‧(O)2] 1, a new molecular electrocatalyst, which has been determined by X-ray crystallography. Electrochemical studies show that a molybdenum(IV) intermediate is responsible for the reductive proton to generate H2, and 1 can catalyze hydrogen evolution from acetic acid or aqueous buffer. Turnover frequency (TOF) reaches a maximum of 50.6 (in DMF) and 756 (in buffer, pH 6.0) moles of hydrogen per mole of catalyst per hour, respectively. Sustained proton reduction catalysis occurs at glassy carbon (GC) electrode to give H2 over a 72 h electrolysis period and no observable decomposition of the catalyst.

  20. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

    PubMed

    Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-06-12

    Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

  1. Pd nanocrystals on WC as a synergistic electrocatalyst for hydrogen oxidation reactions.

    PubMed

    Park, Hee-Young; Park, In-Su; Choi, Baeck; Lee, Kug-Seung; Jeon, Tae-Yeol; Sung, Yung-Eun; Yoo, Sung Jong

    2013-02-14

    Electrocatalysts for hydrogen oxidation reactions (HORs) are the key to renewable-energy technologies including fuel cells, hydrogen pumps, and water splitting. Despite the significant technological interest and tremendous efforts that have been made, development of hydrogen electrode catalysts with high activity at low cost remains a great challenge. Here, we report the preparation, characterization, and electrochemical properties of a hybrid material composed of Pd nanocrystals grown on spontaneously oxidized WC as a high-performance catalyst for the HOR. The Pd/WC hybrid exhibits enhanced catalytic activity compared to a carbon supported Pd (Pd/C) catalyst, making it a Pt-free, effective catalyst for the HOR. The remarkable catalytic activity arises from synergistic ligand effects between Pd and WC.

  2. Enabling direct H2O2 production through rational electrocatalyst design

    NASA Astrophysics Data System (ADS)

    Siahrostami, Samira; Verdaguer-Casadevall, Arnau; Karamad, Mohammadreza; Deiana, Davide; Malacrida, Paolo; Wickman, Björn; Escudero-Escribano, María; Paoli, Elisa A.; Frydendal, Rasmus; Hansen, Thomas W.; Chorkendorff, Ib; Stephens, Ifan E. L.; Rossmeisl, Jan

    2013-12-01

    Future generations require more efficient and localized processes for energy conversion and chemical synthesis. The continuous on-site production of hydrogen peroxide would provide an attractive alternative to the present state-of-the-art, which is based on the complex anthraquinone process. The electrochemical reduction of oxygen to hydrogen peroxide is a particularly promising means of achieving this aim. However, it would require active, selective and stable materials to catalyse the reaction. Although progress has been made in this respect, further improvements through the development of new electrocatalysts are needed. Using density functional theory calculations, we identify Pt-Hg as a promising candidate. Electrochemical measurements on Pt-Hg nanoparticles show more than an order of magnitude improvement in mass activity, that is, A g-1 precious metal, for H2O2 production, over the best performing catalysts in the literature.

  3. Spray-drying of milk for oxygen evolution electrocatalyst and solar water splitting.

    PubMed

    Cai, Chenyi; Kuang, Min; Chen, Xiling; Wu, Hao; Ge, Hongtao; Zheng, Gengfeng

    2017-02-01

    The development of efficient and robust electrocatalyst has been the central of the solar water splitting-based hydrogen fuel acquisition. In this work, we reported the use of cow milk, with addition of tetraethyl orthosilicate (TEOS) and melamine, for the synthesis of nitrogen-doped mesoporous carbon microspheres. Due to the large surface and enhanced charge transport behavior, the obtained samples enabled low overpotentials and a small Tafel slope toward oxygen evolution reaction, which were close or comparable to the best OER catalysts of carbon materials reported previously. Further incorporation of this catalyst and a Pt wire to a commercial solar cell, the direct solar-to-hydrogen conversion was realized, with a stability of over 30h.

  4. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces.

    SciTech Connect

    Wang, C.; Chi, M.; Li, D.; Strmcnik, D.; van der Vliet, D.; Wang, G.; Komanicky, V.; Chang, K.-C.; Paulikas, A. P.; Tripkovic, D.; Pearson, J.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R.

    2011-01-01

    Advancement in heterogeneous catalysis relies on the capability of altering material structures at the nanoscale, and that is particularly important for the development of highly active electrocatalysts with uncompromised durability. Here, we report the design and synthesis of a Pt-bimetallic catalyst with multilayered Pt-skin surface, which shows superior electrocatalytic performance for the oxygen reduction reaction (ORR). This novel structure was first established on thin film extended surfaces with tailored composition profiles and then implemented in nanocatalysts by organic solution synthesis. Electrochemical studies for the ORR demonstrated that after prolonged exposure to reaction conditions, the Pt-bimetallic catalyst with multilayered Pt-skin surface exhibited an improvement factor of more than 1 order of magnitude in activity versus conventional Pt catalysts. The substantially enhanced catalytic activity and durability indicate great potential for improving the material properties by fine-tuning of the nanoscale architecture.

  5. Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces

    SciTech Connect

    Wang, Chao; Chi, Miaofang; Li, Dongguo; Strmcnik, Dusan; Van der Vliet, Dennis; Wang, Guofeng; Komanicky, Vladimir; Chang, Kee-Chul; Paulikas, Arvydas; Tripkovic, Dusan; Pearson, John; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav

    2011-01-01

    Advancement in heterogeneous catalysis relies on the capability of altering material structures at the nanoscale, and that is particularly important for the development of highly active electrocatalysts with uncompromised durability. Here, we report the design and synthesis of a Pt-bimetallic catalyst with multilayered Pt-skin surface, which shows superior electrocatalytic performance for the oxygen reduction reaction (ORR). This novel structure was first established on thin film extended surfaces with tailored composition profiles and then implemented in nanocatalysts by organic solution synthesis. Electrochemical studies for the ORR demonstrated that after prolonged exposure to reaction conditions, the Pt-bimetallic catalyst with multilayered Pt-skin surface exhibited an improvement factor of more than 1 order of magnitude in activity versus conventional Pt catalysts. The substantially enhanced catalytic activity and durability indicate great potential for improving the material properties by fine-tuning of the nanoscale architecture.

  6. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst.

    PubMed

    Gao, Minrui; Sheng, Wenchao; Zhuang, Zhongbin; Fang, Qianrong; Gu, Shuang; Jiang, Jun; Yan, Yushan

    2014-05-14

    Electrochemical water splitting is a clean technology that can store the intermittent renewable wind and solar energy in H2 fuels. However, large-scale H2 production is greatly hindered by the sluggish oxygen evolution reaction (OER) kinetics at the anode of a water electrolyzer. Although many OER electrocatalysts have been developed to negotiate this difficult reaction, substantial progresses in the design of cheap, robust, and efficient catalysts are still required and have been considered a huge challenge. Herein, we report the simple synthesis and use of α-Ni(OH)2 nanocrystals as a remarkably active and stable OER catalyst in alkaline media. We found the highly nanostructured α-Ni(OH)2 catalyst afforded a current density of 10 mA cm(-2) at a small overpotential of a mere 0.331 V and a small Tafel slope of ~42 mV/decade, comparing favorably with the state-of-the-art RuO2 catalyst. This α-Ni(OH)2 catalyst also presents outstanding durability under harsh OER cycling conditions, and its stability is much better than that of RuO2. Additionally, by comparing the performance of α-Ni(OH)2 with two kinds of β-Ni(OH)2, all synthesized in the same system, we experimentally demonstrate that α-Ni(OH)2 effects more efficient OER catalysis. These results suggest the possibility for the development of effective and robust OER electrocatalysts by using cheap and easily prepared α-Ni(OH)2 to replace the expensive commercial catalysts such as RuO2 or IrO2.

  7. Bridgehead isomer effects in bis(phosphido)-bridged diiron hexacarbonyl proton reduction electrocatalysts.

    PubMed

    Rahaman, Ahibur; Gimbert-Suriñach, Carolina; Ficks, Arne; Ball, Graham E; Bhadbhade, Mohan; Haukka, Matti; Higham, Lee; Nordlander, Ebbe; Colbran, Stephen B

    2017-03-07

    The influence of the substitution, orientation and structure of the phosphido bridges in [Fe2(CO)6(μ-PR2)2] electrocatalysts of proton reduction has been studied. The isomers e,a-[Fe2(CO)6{μ-P(Ar)H}2] (1a(Ar): Ar = Ph, 2'-methoxy-1,1'-binaphthyl (bn')), e,e-[Fe2(CO)6{μ-P(Ar)H}2] (1b(Ar): Ar = Ph, bn') were isolated from reactions of iron pentacarbonyl and the corresponding primary phosphine, syntheses that also afforded the phosphinidene-capped tri-iron clusters, [Fe3(CO)9(μ-CO)(μ3-Pbn')] (2) and [Fe3(CO)9(μ3-PAr)2] (3(Ar), Ar = Ph, bn'). A ferrocenyl (Fc)-substituted dimer [Fe2(CO)6{μ:μ'-1,2-(P(CH2Fc)CH2)2C6H4}] (4), in which the two phosphido bridges are linked by an o-xylyl group, was also prepared. The molecular structures of complexes 1a(Ph), 1b(Ph), 1b(bn'), 2 and 4 were established by X-ray crystallography. All complexes have been examined as electrocatalysts for proton reduction using p-toluene sulfonic acid in tetrahydrofuran. Cyclic voltammograms of the dimers with acid exhibit two catalysis waves for proton reduction. The first wave, which appears at the potential of the primary reduction, reaches maximum current (turnover) at moderate acid concentrations and is rapidly overtaken by the second wave, which appears at more negative potential. Both of these reductive waves show an initial first order dependence on acid. The electrochemistry and electrocatalyses of the [Fe2(CO)6(μ-PR2)2] dimers show subtle variations with the nature of the bridging phosphido group(s), including the orientation of bridgehead hydrogen atoms.

  8. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    NASA Astrophysics Data System (ADS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-04-01

    The electro-catalytic behavior of Pt-CoOx/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH4 as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoOx, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of COads on Pt active sites by the participation of CoOx. Compared to Pt/MWCNTs, Pt-CoOx/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoOx/MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups controls the total rate of MOR process.

  9. Amorphous Bimetallic Oxide-Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries.

    PubMed

    Wei, Li; Karahan, H Enis; Zhai, Shengli; Liu, Hongwei; Chen, Xuncai; Zhou, Zheng; Lei, Yaojie; Liu, Zongwen; Chen, Yuan

    2017-10-01

    Metal oxides of earth-abundant elements are promising electrocatalysts to overcome the sluggish oxygen evolution and oxygen reduction reaction (OER/ORR) in many electrochemical energy-conversion devices. However, it is difficult to control their catalytic activity precisely. Here, a general three-stage synthesis strategy is described to produce a family of hybrid materials comprising amorphous bimetallic oxide nanoparticles anchored on N-doped reduced graphene oxide with simultaneous control of nanoparticle elemental composition, size, and crystallinity. Amorphous Fe0.5 Co0.5 Ox is obtained from Prussian blue analog nanocrystals, showing excellent OER activity with a Tafel slope of 30.1 mV dec(-1) and an overpotential of 257 mV for 10 mA cm(-2) and superior ORR activity with a large limiting current density of -5.25 mA cm(-2) at 0.6 V. A fabricated Zn-air battery delivers a specific capacity of 756 mA h gZn(-1) (corresponding to an energy density of 904 W h kgZn(-1) ), a peak power density of 86 mW cm(-2) and can be cycled over 120 h at 10 mA cm(-2) . Other two amorphous bimetallic, Ni0.4 Fe0.6 Ox and Ni0.33 Co0.67 Ox , are also produced to demonstrate the general applicability of this method for synthesizing binary metal oxides with controllable structures as electrocatalysts for energy conversion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting.

    PubMed

    Xiang, Chengxiang; Suram, Santosh K; Haber, Joel A; Guevarra, Dan W; Soedarmadji, Ed; Jin, Jian; Gregoire, John M

    2014-02-10

    Combinatorial synthesis and screening for discovery of electrocatalysts has received increasing attention, particularly for energy-related technologies. High-throughput discovery strategies typically employ a fast, reliable initial screening technique that is able to identify active catalyst composition regions. Traditional electrochemical characterization via current-voltage measurements is inherently throughput-limited, as such measurements are most readily performed by serial screening. Parallel screening methods can yield much higher throughput and generally require the use of an indirect measurement of catalytic activity. In a water-splitting reaction, the change of local pH or the presence of oxygen and hydrogen in the solution can be utilized for parallel screening of active electrocatalysts. Previously reported techniques for measuring these signals typically function in a narrow pH range and are not suitable for both strong acidic and basic environments. A simple approach to screen the electrocatalytic activities by imaging the oxygen and hydrogen bubbles produced by the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is reported here. A custom built electrochemical cell was employed to record the bubble evolution during the screening, where the testing materials were subject to desired electrochemical potentials. The transient of the bubble intensity obtained from the screening was quantitatively analyzed to yield a bubble figure of merit (FOM) that represents the reaction rate. Active catalysts in a pseudoternary material library, (Ni-Fe-Co)Ox, which contains 231 unique compositions, were identified in less than one minute using the bubble screening method. An independent, serial screening method on the same material library exhibited excellent agreement with the parallel bubble screening. This general approach is highly parallel and is independent of solution pH.

  11. High-Performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal–Organic Frameworks

    SciTech Connect

    You, Bo; Jiang, Nan; Sheng, Meili; Gul, Sheraz; Yano, Junko; Sun, Yujie

    2015-11-05

    The design of active, robust, and nonprecious electrocatalysts with both H2 and O2 evolution reaction (HER and OER) activities for overall water splitting is highly desirable but remains a grand challenge. Here in this article, we report a facile two-step method to synthesize porous Co-P/NC nanopolyhedrons composed of CoPx (a mixture of CoP and Co2P) nanoparticles embedded in N-doped carbon matrices as electrocatalysts for overall water splitting. The Co-P/NC catalysts were prepared by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Benefiting from the large specific surface area, controllable pore texture, and high nitrogen content of ZIF (a subclass of metal–organic frameworks), the optimal Co-P/NC showed high specific surface area of 183 m2 g-1 and large mesopores, and exhibited remarkable catalytic performance for both HER and OER in 1.0 M KOH, affording a current density of 10 mA cm-2 at low overpotentials of -154 mV for HER and 319 mV for OER, respectively. Furthermore, a Co-P/NC-based alkaline electrolyzer approached 165 mA cm-2 at 2.0 V, superior to that of Pt/IrO2 couple, along with strong stability. Various characterization techniques including X-ray absorption spectroscopy (XAS) revealed that the superior activity and strong stability of Co-P/NC originated from its 3D interconnected mesoporosity with high specific surface area, high conductivity, and synergistic effect of CoPx encapsulated within N-doped carbon matrices.

  12. Hydrogen Production Using Nickel Electrocatalysts with Pendant Amines: Ligand Effects on Rates and Overpotentials

    SciTech Connect

    Wiese, Stefan; Kilgore, Uriah J.; Ho, Ming-Hsun; Raugei, Simone; DuBois, Daniel L.; Bullock, R. Morris; Helm, Monte L.

    2013-11-01

    A Ni-based electrocatalyst for H2 production, [Ni(8PPh2NC6H4Br)2](BF4)2, featuring eight-membered cyclic diphosphine ligands incorporating a single amine base, 1-para-bromo-phenyl-3,7-triphenyl-1-aza-3,7-diphosphacycloheptane (8PPh2NC6H4Br) has been synthesized and characterized. X-ray diffraction studies reveal that the cation of [Ni(8PPh2NC6H4Br)2(CH3CN)](BF4)2 has a distorted trigonal bipyramidal geometry. In CH3CN [Ni(8PPh2NC6H4Br)2]2+ is an electrocatalyst for reduction of protons, and it has a maximum turnover frequency for H2 production of 800 s-1 with a 700 mV overpotential (at Ecat/2) when using [(DMF)H]OTf as the acid. Addition of H2O to acidic CH3CN solutions of [Ni(8PPh2NC6H4Br)2]2+ results in an increase of the turnover frequency for H2 production to a maximum of 3,300 s-1 with an overpotential of 760 mV at Ecat/2. Computational studies carried out on [Ni(8PPh2NC6H4Br)2]2+ indicate the observed catalytic rate is limited by formation of non-productive protonated isomers, diverting active catalyst from the catalytic cycle. The results of this research show that proton delivery from the exogenous acid to the correct position on the proton relay of the metal complex is essential for fast H2 production. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  13. A cobalt-nitrogen complex on N-doped three-dimensional graphene framework as a highly efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanyuan; Lu, Yizhong; Wang, Xiaodan; Bao, Yu; Chen, Wei; Niu, Li

    2014-11-01

    The high cost and limited natural abundance of platinum hinder its widespread applications as the oxygen reduction reaction (ORR) electrocatalyst for fuel cells. Carbon-supported materials containing metals such as Fe or Co as well as nitrogen have been proposed to reduce the cost without obvious lowering the performance compared to Pt-based electrocatalysts. In this work, based on the pyrolyzed corrin structure of vitamin B12 on the simultaneously reduced graphene support (g-VB12), we construct an efficient oxygen reduction electrocatalyst with very positive half-wave potential (only ~30 mV deviation from Pt/C), high selectivity (electron transfer number close to 4) and excellent durability (only 11 mV shift of the half-wave potential after 10 000 potential cycles). The admirable performance of this electrocatalyst can be attributed to the homogeneous distribution of abundant Co-Nx active sites, and a well-defined three-dimensional mesoporous structure of the N-doped graphene support. The high activity and long-term stability of the low cost g-VB12 make it a promising ORR electrocatalyst in alkaline fuel cells.The high cost and limited natural abundance of platinum hinder its widespread applications as the oxygen reduction reaction (ORR) electrocatalyst for fuel cells. Carbon-supported materials containing metals such as Fe or Co as well as nitrogen have been proposed to reduce the cost without obvious lowering the performance compared to Pt-based electrocatalysts. In this work, based on the pyrolyzed corrin structure of vitamin B12 on the simultaneously reduced graphene support (g-VB12), we construct an efficient oxygen reduction electrocatalyst with very positive half-wave potential (only ~30 mV deviation from Pt/C), high selectivity (electron transfer number close to 4) and excellent durability (only 11 mV shift of the half-wave potential after 10 000 potential cycles). The admirable performance of this electrocatalyst can be attributed to the homogeneous

  14. Nitrogen and sulfur co-doping of partially exfoliated MWCNTs as 3-D structured electrocatalysts for the oxygen reduction reaction

    SciTech Connect

    Wang, Jie; Wu, Zexing; Han, Lili; Lin, Ruoqian; Xiao, Weiping; Xuan, Cuijuan; Xin, Huolin. L.; Wang, Deli

    2016-03-14

    Preventing the stacking of graphene sheets is of vital importance for highly efficient and stable fuel cell electrocatalysts. Here, we report a 3-D structured carbon nanotube intercalated graphene nanoribbon with N/S co-doping. The nanocomposite is obtained by using high temperature heat-treated thiourea with partially unzipped multi-walled carbon nanotubes. This unique structure preserves both the properties of carbon nanotubes and graphene, exhibiting excellent catalytic performance for the ORR with similar onset and half-wave potentials to those of Pt/C electrocatalysts. Furthermore, the stereo structured composite exhibits distinct advantages in long-term stability and methanol poisoning tolerance in comparison to Pt/C.

  15. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials

    PubMed Central

    Zhu, Lili; Lin, Haiping; Li, Youyong; Liao, Fan; Lifshitz, Yeshayahu; Sheng, Minqi; Lee, Shuit-Tong; Shao, Mingwang

    2016-01-01

    Currently, platinum-based electrocatalysts show the best performance for hydrogen evolution. All hydrogen evolution reaction catalysts should however obey Sabatier's principle, that is, the adsorption energy of hydrogen to the catalyst surface should be neither too high nor too low to balance between hydrogen adsorption and desorption. To overcome the limitation of this principle, here we choose a composite (rhodium/silicon nanowire) catalyst, in which hydrogen adsorption occurs on rhodium with a large adsorption energy while hydrogen evolution occurs on silicon with a small adsorption energy. We show that the composite is stable with better hydrogen evolution activity than rhodium nanoparticles and even exceeding those of commercial platinum/carbon at high overpotentials. The results reveal that silicon plays a key role in the electrocatalysis. This work may thus open the door for the design and fabrication of electrocatalysts for high-efficiency electric energy to hydrogen energy conversion. PMID:27447292

  16. A Molecular Ni-complex Containing Tetrahedral Nickel Selenide Core as Highly Efficient Electrocatalyst for Water Oxidation.

    PubMed

    Masud, Jahangir; Ioannou, Polydoros-Chrysovalantis; Levesanos, Nikolaos; Kyritsis, Panayotis; Nath, Manashi

    2016-11-23

    We report the highly efficient catalytic activity of a transition metal selenide-based coordination complex, [Ni{(SeP(i) Pr2 )2 N}2 ], (1) for oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solution. Very low overpotentials of 200 mV and 310 mV were required to achieve 10 mA cm(-2) for OER and HER, respectively. The overpotential for OER is one of the lowest that has been reported up to now, making this one of the best OER electrocatalysts. In addition, this molecular complex exhibits an exceptionally high mass activity (111.02 A g(-1) ) and a much higher TOF value (0.26 s(-1) ) at a overpotential of 300 mV. This bifunctional electrocatalyst enables water electrolysis in alkaline solutions at a cell voltage of 1.54 V.

  17. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media

    NASA Astrophysics Data System (ADS)

    Su, Jianwei; Yang, Yang; Xia, Guoliang; Chen, Jitang; Jiang, Peng; Chen, Qianwang

    2017-04-01

    The scalable production of hydrogen could conveniently be realized by alkaline water electrolysis. Currently, the major challenge confronting hydrogen evolution reaction (HER) is lacking inexpensive alternatives to platinum-based electrocatalysts. Here we report a high-efficient and stable electrocatalyst composed of ruthenium and cobalt bimetallic nanoalloy encapsulated in nitrogen-doped graphene layers. The catalysts display remarkable performance with low overpotentials of only 28 and 218 mV at 10 and 100 mA cm-2, respectively, and excellent stability of 10,000 cycles. Ruthenium is the cheapest platinum-group metal and its amount in the catalyst is only 3.58 wt.%, showing the catalyst high activity at a very competitive price. Density functional theory calculations reveal that the introduction of ruthenium atoms into cobalt core can improve the efficiency of electron transfer from alloy core to graphene shell, beneficial for enhancing carbon-hydrogen bond, thereby lowing ΔGH* of HER.

  18. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO.

    PubMed

    Rasul, Shahid; Anjum, Dalaver H; Jedidi, Abdesslem; Minenkov, Yury; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-02-09

    The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy-efficient, and non-precious-metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous CO2 conversion. A non-noble metal electrocatalyst based on a copper-indium (Cu-In) alloy that selectively converts CO2 to CO with a low overpotential is reported. The electrochemical deposition of In on rough Cu surfaces led to Cu-In alloy surfaces. DFT calculations showed that the In preferentially located on the edge sites rather than on the corner or flat sites and that the d-electron nature of Cu remained almost intact, but adsorption properties of neighboring Cu was perturbed by the presence of In. This preparation of non-noble metal alloy electrodes for the reduction of CO2 provides guidelines for further improving electrocatalysis.

  19. Evaluation of the performance degradation at PAFC investigation of dealloying process of electrocatalysts with in-situ XRD

    SciTech Connect

    Nakajima, Noriyuki; Uchida, Hiroyuki; Watanabe, Masahiro

    1996-12-31

    As a complementary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. This work has been performed in the Basic Research Project, as part of that project on PAFC`s, selecting four subjects (Electrocatalysts degradation, Electrolyte fill-level, Cell material corrosion, Electrolyte loss) as the essential factors relating to the life-time. In this study, the effect of temperature and potential on the dealloying process of electrocatalysts was examined in H{sub 3}PO{sub 4} electrolyte with X-ray diffraction measurement.

  20. A facile approach to synthesize stable CNTs@MnO electrocatalyst for high energy lithium oxygen batteries

    PubMed Central

    Luo, Wen-Bin; Chou, Shu-Lei; Jia-Zhao Wang; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-01-01

    A composite of manganese monoxide loaded onto carbon nanotubes (CNTs@MnO) has been synthesized by a facile approach, in which the CNTs form a continuous conductive network connecting the electrocatalyst MnO nanoparticles together to facilitate good electrochemical performance. The electrocatalyst MnO shows favourable rechargeability, and good phase and morphology stability in lithium oxygen batteries. Excellent cycling performance is also demonstrated, in which the terminal voltage is higher than 2.4 V after 100 cycles at 0.4 mA cm−2, with 1000 mAh g−1(composite) capacity. Therefore, this hybrid material is promising for use as a cathode material for lithium oxygen batteries. PMID:25634100

  1. Facile preparation of Pd-metal oxide/C electrocatalysts and their application in the electrocatalytic oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Abdel Hameed, R. M.

    2017-07-01

    Palladium nanoparticles were deposited on different metal oxide/C supports using a mixture of ethylene glycol and sodium borohydride during the reduction step. The electrocatalytic activity of Pd-based electrocatalysts was investigated for ethanol oxidation in alkaline medium. More negative onset potential and peak potential values for ethanol oxidation were shown at Pd-metal oxide/C electrocatalysts when compared to those at Pd/C. The oxidation current density recorded decay percentage of 84.44% at Pd-SnO2/C compared to 48% at Pd/C during the stability test. Adding MnO2, V2O5, RuO2 or SnO2 to Pd/C enhanced its charge transfer properties by 1.91, 4.77, 5.05 or 6.23 times.

  2. Nitrogen and sulfur co-doping of partially exfoliated MWCNTs as 3-D structured electrocatalysts for the oxygen reduction reaction

    DOE PAGES

    Wang, Jie; Wu, Zexing; Han, Lili; ...

    2016-03-14

    Preventing the stacking of graphene sheets is of vital importance for highly efficient and stable fuel cell electrocatalysts. Here, we report a 3-D structured carbon nanotube intercalated graphene nanoribbon with N/S co-doping. The nanocomposite is obtained by using high temperature heat-treated thiourea with partially unzipped multi-walled carbon nanotubes. This unique structure preserves both the properties of carbon nanotubes and graphene, exhibiting excellent catalytic performance for the ORR with similar onset and half-wave potentials to those of Pt/C electrocatalysts. Furthermore, the stereo structured composite exhibits distinct advantages in long-term stability and methanol poisoning tolerance in comparison to Pt/C.

  3. Highly active Pt3Pb and core-shell Pt3Pb-Pt electrocatalysts for formic acid oxidation.

    PubMed

    Kang, Yijin; Qi, Liang; Li, Meng; Diaz, Rosa E; Su, Dong; Adzic, Radoslav R; Stach, Eric; Li, Ju; Murray, Christopher B

    2012-03-27

    Formic acid is a promising chemical fuel for fuel cell applications. However, due to the dominance of the indirect reaction pathway and strong poisoning effects, the development of direct formic acid fuel cells has been impeded by the low activity of existing electrocatalysts at desirable operating voltage. We report the first synthesis of Pt(3)Pb nanocrystals through solution phase synthesis and show they are highly efficient formic acid oxidation electrocatalysts. The activity can be further improved by manipulating the Pt(3)Pb-Pt core-shell structure. Combined experimental and theoretical studies suggest that the high activity from Pt(3)Pb and the Pt-Pb core-shell nanocrystals results from the elimination of CO poisoning and decreased barriers for the dehydrogenation steps. Therefore, the Pt(3)Pb and Pt-Pb core-shell nanocrystals can improve the performance of direct formic acid fuel cells at desired operating voltage to enable their practical application. © 2012 American Chemical Society

  4. Carbon-coated MoS2 nanosheets as highly efficient electrocatalysts for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Dou, Shuo; Wu, Jianghong; Tao, Li; Shen, Anli; Huo, Jia; Wang, Shuangyin

    2016-01-01

    As a green and highly efficient energy resource, hydrogen (H2) has attracted much attention in recent years. Electrochemical water splitting is an economic process to generate H2. MoS2 is a promising candidate to replace traditional Pt-based electrocatalysts for the hydrogen evolution reaction (HER) under acidic conditions. But low electrical conductivity is one of bottlenecks for the large-scale application of MoS2. In this work, a carbon-coated MoS2 hybrid electrocatalyst was prepared with a chemical vapour deposition (CVD) approach to improve the electrical conductivity of MoS2. In addition to the surface-coating carbon, a small graphene-like layer could also be inserted into the interlayers of MoS2 during the CVD process which resulted in more active sites being exposed in MoS2. Enhanced electrical conductivity and more exposed active sites lead to excellent HER activity.

  5. Sonochemical preparation of stable porous MnO2 and its application as an efficient electrocatalyst for oxygen reduction reaction.

    PubMed

    Zuo, Ling-Xia; Jiang, Li-Ping; Abdel-Halim, E S; Zhu, Jun-Jie

    2017-03-01

    Porous MnO2 as a non-noble metal oxygen reduction reaction (ORR) electrocatalyst was prepared by a simple sonochemical route. The as-prepared porous MnO2 exhibited higher electrocatalytic activity, superior stability and better methanol tolerance than commercial Pt/C catalyst in alkaline media. Furthermore, the ORR proceeded via a nearly four-electron pathway. Cyclic voltammetry (CV) and rotating-disk electrode (RDE) measurements verified that the ORR enhancement was attributed to the porous structure and good dispersity, which facilitated sufficient transport of ions, electrons, O2 and other reactants in the process of ORR. The results indicated that a facile and feasible sonochemical route could be used to prepare highly active porous MnO2 electrocatalyst for ORR, which might be promising for direct methanol fuel cells.

  6. Interacting ZnCo2O4 and Au nanodots on carbon nanotubes as highly efficient water oxidation electrocatalyst

    NASA Astrophysics Data System (ADS)

    Cheng, Hui; Su, Chang-Yuan; Tan, Zhi-Yun; Tai, Su-Zhen; Liu, Zhao-Qing

    2017-07-01

    An advanced hybrid electrocatalyst consisting of ZnCo2O4 nanodots and Au decorated carbon nanotubes is developed for oxygen evolution reaction (OER). In the catalyst system, carbon nanotubes are served as the support substrate to enhance the conductivity of ZnCo2O4 and provide a high specific area; meanwhile, Au species accelerate the electron-stripping from cobalt ions during the catalytic process, leading to a fast promotion of cobalt ions with high valence state which possess a highly electrocatalytic efficiency. With the well synergistic effect between the components, ZnCo2O4/Au/CNTs exhibits low potential of 1.67 V at j = 10 mA cm-2, large current density of 97.8 mA cm-2 at high operating potential (1.8 V), and prominent durability in alkaline. This finding will pave a new avenue to search highly efficient and stable electrocatalysts for water splitting devices.

  7. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate

    NASA Astrophysics Data System (ADS)

    Lv, Weixin; Zhou, Jing; Bei, Jingjing; Zhang, Rui; Wang, Lei; Xu, Qi; Wang, Wei

    2017-01-01

    Electrochemical reduction of carbon dioxide (CO2) to formate is energetically inefficient because high overpotential is required for reduction of CO2 to formate on most traditional catalysts. In this paper, a novel nano-sized Bi-based electrocatalyst deposited on a Cu foil has been synthesized, which can be used as a cathode for electrochemical reduction of CO2 to formate with a low overpotential (0.69 V) and a high selectivity (91.3%). The electrocatalyst can show excellent catalytic performance toward reduction of CO2 which can probably be attributed to the nano-sized structure and the surface oxide layer. The energy efficiency for reduction of CO2 to formate can reach to 50% when an IrxSnyRuzO2/Ti electrode is used as anode, it is one of the highest values found in the literatures and very practicable for sustainable fuel synthesis.

  8. Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Meng, Hui; Xie, Fangyan; Yuan, Xiaoli; Yu, Wendan; Lin, Worong; Ouyang, Wenpeng; Yuan, Dingsheng

    2014-01-01

    Nitrogen-doped hollow mesoporous carbon spheres has been synthesized from mesoporous silica spheres using glycine as carbon and nitrogen precursor. The wall of the spheres is composed by broken graphene. The metal free nitrogen-doped hollow mesoporous carbon spheres are proven to be active electrocatalyst for the oxygen reduction reaction in alkaline solution. A unique advantage of the nitrogen-doped hollow mesoporous carbon sphere is its methanol-tolerant property because of the absence of active metal. The catalytic activity is ascribed to the pyridinic-nitrogen formed during pyrolysis and the graphene-like structure. To the best of our knowledge this is the first report on the nitrogen-doped hollow mesoporous carbon sphere as a metal-free electrocatalyst for the oxygen reduction reaction which is an important reaction in fuel cell. The prepared mesoporous carbon material can also be used as catalyst support and find application both in the anode and cathode of fuel cell.

  9. Synthesis and Characterization of CO-and H2S-Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2005-12-22

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized four Pt-based electrocatalysts catalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) on Vulcan XG72 Carbon support by both conventional and ultra-sonication method. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. Sonication method appears to provide better dispersion of catalysts on carbon support.

  10. PtMo Alloy and MoOx@Pt Core-Shell Nanoparticles as Highly CO-Tolerant Electrocatalysts

    SciTech Connect

    Liu, Z.; Hu, J; Wang, Q; Gaskell, K; Frenkel, A; Jackson, G; Eichhorm, B

    2009-01-01

    PtMo alloy and MoOx Pt core-shell nanoparticles (NPs) were successfully synthesized by a chemical coreduction and sequential chemical reduction method, respectively. Both the carbon-supported alloy and core-shell NPs show substantially higher CO tolerance, compared to the commercialized E-TEK PtRu alloy and Pt catalyst. These novel nanocatalysts can be potentially used as highly CO-tolerant anode electrocatalysts in proton exchange membrane fuel cells.

  11. A highly active Pd-P nanoparticle electrocatalyst for enhanced formic acid oxidation synthesized via stepwise electroless deposition.

    PubMed

    Poon, Kee Chun; Khezri, Bahareh; Li, Yao; Webster, Richard D; Su, Haibin; Sato, Hirotaka

    2016-02-28

    A highly active Pd-P nanoparticle electrocatalyst for formic acid oxidation was synthesized using NaH2PO2 as the reducing agent. The Pd-P nanoparticles were amorphous and exhibited higher specific and mass activity values compared to commercial Pd/C electrocatalyts and reported literature values. Furthermore, the Pd-P nanoparticles were found to be more durable than Pd/C electrocatalyts.

  12. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Zheng, Binjie; Chen, Yuanfu; Qi, Fei; Wang, Xinqiang; Zhang, Wanli; Li, Yanrong; Li, Xuesong

    2017-06-01

    Clean hydrogen split from water by hydrogen evolution reaction (HER) is significant for sustainability, environmental emissions, and energy security. So far, it is still a big challenge to develop highly efficient noble metal-free electrocatalysts with comparable HER efficiency to platinum-based catalysts, which are mainly hindered by the intrinsic electrocatalytic property and particularly the reasonable nanostructure design of the electrocatalyst. Here we report a newly-designed three-dimensional hierarchical MoSe2 nanoarchitecture (3D-MoSe2) with outstanding HER performance. The 3D-MoSe2 is grown by chemical vapor deposition method with using perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt as a seeding promoter. The as-grown 3D-MoSe2 nanoarchitecture is highly crystalline and constructed with curly few-layered vertical nanosheets onto the horizontal layer, which has much larger (~12 times) electrochemically active area and much smaller (only 2%) charge transfer resistance compared to conventional horizontal MoSe2 layer. With these advantages, the Tafel slope of 3D-MoSe2 can be as small as 47.3 mV/dev, which is the smallest record ever reported for pure MoSe2, even for pure two-dimensional transition metal dichalcogenides (2D-TMDs) catalysts. Furthermore, when 3D-MoSe2 is grown on the multiwall carbon nanotube film, its Tafel slope can be further reduced down to 32.5 mV/dec, which is close to the theoretical limit (29 mV/dec) of HER, and comparable to platinum-based electrocatalysts, making it promising as a highly efficient electrocatalyst for hydrogen evolution.

  13. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond

    SciTech Connect

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, N.; More, Karren Leslie; Adzic, Radoslav R.

    2013-01-01

    Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

  14. Synthesis and Characterization of Bimetallic Core-Shell-Supported Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Kuttiyiel, Kurian Abraham

    Fuel cells are expected to be one of the major clean energy sources in the near future. However, the slow kinetics of electrocatalytic oxygen reduction reaction (ORR) and the high loading of Platinum (Pt) for the cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this study, a new approach was developed for designing electrocatalysts for the ORR in fuel cells. These electrocatalysts consist of only one Pt monolayer on suitable carbon-supported Iridium-Nickel (IrNi) core-shell nanoparticles. The synthesis involved depositing a monolayer of Copper (Cu) on IrNi metal alloy surface at under-potentials, followed by galvanic displacement of the Cu monolayer with Pt. It was found that the electronic properties of Pt monolayer could be fine-tuned by the electronic and geometric effects introduced by the substrate metal. The Pt mass activity of the new Pt monolayer IrNi electrocatalysts was up to six times higher than the state-of-the-art commercial Pt/C catalysts. The structure and composition of the core-shell nanoparticles were verified using transmission electron microscopy and in situ X-ray absorption spectroscopy, while potential cycling test was employed to confirm the stability of the electrocatalyst. The formation of Ir shell on IrNi alloy during annealing due to thermal segregation was monitored by time-resolved synchrotron XRD measurements. Our experimental results, supported by computations, demonstrated an effective way of using Pt that can resolve key ORR problems which include inadequate activity and durability while minimizing the Pt loading.

  15. An electrochemical impedance spectroscopy study of polymer electrolyte membrane fuel cells electrocatalyst single wall carbon nanohorns-supported.

    PubMed

    Brandão, Lúcia; Boaventura, Marta; Passeira, Carolina; Gattia, Daniele Mirabile; Marazzi, Renzo; Antisari, Marco Vittori; Mendes, Adélio

    2011-10-01

    Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.

  16. Research Strategies for Development of an Efficient and Effective Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells and Progress Summary

    SciTech Connect

    Payne, Terry L; Benjamin, Tom; Garland, Nancy; Kopasz, John

    2008-01-01

    The current electrocatalyst formulation for the polymer electrolyte membrane fuel cell (PEMFC), platinum supported on carbon (Pt/C), is known to be an effective promoter of redox reactions in fuel cells. However, the cost of Pt (currently ~$2,000/troy ounce) hinders its use as a practical catalyst in commercial fuel cell-powered vehicles at current platinum loading. Another issue with respect to adoption of any electrocatalyst for vehicle applications is durability, especially in light of transportation drive cycle operation with start/stop, start-up/shut-down, and transient requirements. Thus, a robust alternative to current Pt/C technology is needed as the PEMFC electrocatalyst for the oxygen reduction reaction (ORR) on the cathode. The U.S. Department of Energy is funding cathode catalyst research on low-platinum group metal (PGM) catalysts, including alloys and core-shell systems, and on non-PGM catalysts. This paper provides an overview of the issues, approaches, and status of the research.

  17. Best Practices and Testing Protocols for Benchmarking ORR Activities of Fuel Cell Electrocatalysts Using Rotating Disk Electrode

    DOE PAGES

    Kocha, Shyam S.; Shinozaki, Kazuma; Zack, Jason W.; ...

    2017-05-02

    Thin-film-rotating disk electrodes (TF-RDEs) are the half-cell electrochemical system of choice for rapid screening of oxygen reduction reaction (ORR) activity of novel Pt supported on carbon black supports (Pt/C) electrocatalysts. It has been shown that the magnitude of the measured ORR activity and reproducibility are highly dependent on the system cleanliness, evaluation protocols, and operating conditions as well as ink formulation, composition, film drying, and the resultant film thickness and uniformity. Accurate benchmarks of baseline Pt/C catalysts evaluated using standardized protocols and best practices are necessary to expedite ultra-low-platinum group metal (PGM) catalyst development that is crucial for the imminentmore » commercialization of fuel cell vehicles. We report results of evaluation in three independent laboratories of Pt/C electrocatalysts provided by commercial fuel cell catalyst manufacturers (Johnson Matthey, Umicore, Tanaka Kikinzoku Kogyo - TKK). The studies were conducted using identical evaluation protocols/ink formulation/film fabrication albeit employing unique electrochemical cell designs specific to each laboratory. Furthermore, the ORR activities reported in this work provide a baseline and criteria for selection and scale-up of novel high activity ORR electrocatalysts for implementation in proton exchange membrane fuel cells (PEMFCs).« less

  18. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions.

    PubMed

    Maiyalagan, Thandavarayan; Jarvis, Karalee A; Therese, Soosairaj; Ferreira, Paulo J; Manthiram, Arumugam

    2014-05-27

    Development of efficient, affordable electrocatalysts for the oxygen evolution reaction and the oxygen reduction reaction is critical for rechargeable metal-air batteries. Here we present lithium cobalt oxide, synthesized at 400 °C (designated as LT-LiCoO2) that adopts a lithiated spinel structure, as an inexpensive, efficient electrocatalyst for the oxygen evolution reaction. The catalytic activity of LT-LiCoO2 is higher than that of both spinel cobalt oxide and layered lithium cobalt oxide synthesized at 800 °C (designated as HT-LiCoO2) for the oxygen evolution reaction. Although LT-LiCoO2 exhibits poor activity for the oxygen reduction reaction, the chemically delithiated LT-Li1-xCoO2 samples exhibit a combination of high oxygen reduction reaction and oxygen evolution reaction activities, making the spinel-type LT-Li0,5CoO2 a potential bifunctional electrocatalyst for rechargeable metal-air batteries. The high activities of these delithiated compositions are attributed to the Co4O4 cubane subunits and a pinning of the Co(3+/4+):3d energy with the top of the O(2-):2p band.

  19. Three-dimensional Porous Nickel-Cobalt Nitrides Supported on Ni Foam as Efficient Electrocatalysts for Overall Water Splitting.

    PubMed

    Zhang, Jintao; Wang, Yueqing; Zhang, Baohua; Pan, Wei; Ma, Houyi

    2017-08-30

    Exploring highly efficient and durable bifunctional electrocatalyst from the earth-abundant low-cost transition metals is central to obtain clean hydrogen energy via the large scale electrolytic water splitting. Herein, we demonstrate in-situ synthesis of porous nickel-cobalt nitride nanosheets on macroporous Ni foam (NF) via a facile electro-deposition process followed by one-step annealing process in NH3 atmosphere. The transformation from metal hydroxide to metal nitride could efficiently enhance the electrocatalytic performance for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Interestingly, we found that the incorporation of nickel could further boost the catalytic activity of cobalt nitride. Typically, when used as bifunctional electrocatalysts, the obtained nickel-cobalt nitride electrocatalyst shows superior catalytic performance toward both HER and OER with a low overpotential of 0.29 and 0.18 V to achieve a current density of 10 mA cm-2, respectively and good stabilities. The good electrocatalytic performance was also evidenced by the as-fabricated electrolyzer for overall water splitting, exhibiting a high gas generation rate for hydrogen and oxygen with the excellent stability in the prolonged alkaline water electrolysis. The present work provides an efficient approach to preparing 3D interconnected porous nickel-cobalt nitride network with exposed inner active sites for overall water splitting. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nitrogen-doped carbon-embedded TiO2 nanofibers as promising oxygen reduction reaction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Hassen, D.; Shenashen, M. A.; El-Safty, S. A.; Selim, M. M.; Isago, H.; Elmarakbi, A.; El-Safty, A.; Yamaguchi, H.

    2016-10-01

    The development of inexpensive and effective electrocatalysts for oxygen reduction reaction (ORR) as a substitute for commercial Pt/C catalyst is an important issue in fuel cells. In this paper, we report on novel fabrication of self-supported nitrogen-doped carbon-supported titanium nanofibers (Nsbnd TiO2@C) and carbon-supported titanium (TiO2@C) electrocatalysts via a facile electrospinning route. The nitrogen atom integrates physically and homogenously into the entire carbon-titanium structure. We demonstrate the catalytic performance of Nsbnd TiO2@C and TiO2@C for ORR under alkaline conditions in comparison with Pt/C catalyst. The Nsbnd TiO2@C catalyst shows excellent ORR reactivity and durability. Interestingly, among all the catalysts used in this ORR, Nsbnd TiO2@C-0.75 exhibits remarkable competitive oxygen reduction activity in terms of current density and onset potential, as well as superior methanol tolerance. Such tolerance attributes to maximizing the diffusion of trigger pulse electrons during catalytic reactions because of enhanced electronic features. Results indicate that our fabrication strategy can provide an opportunity to produce a simple, efficient, cost-effective, and promising ORR electrocatalyst for practical applications in energy conversion and storage technologies.

  1. Nitrogen and carbon doped titanium oxide as an alternative and durable electrocatalyst support in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, P.; Vinod Selvaganesh, S.; Bhat, Santoshkumar D.

    2016-02-01

    Nitrogen and carbon doped titanium oxide as an alternative and ultra-stable support to platinum catalysts is prepared and its efficiency is determined by polymer electrolyte fuel cell. Nitrogen and carbon doped titanium oxide is prepared by varying the melamine ratio followed by calcination at 900 °C. Platinum nanoparticles are deposited onto doped and undoped titanium oxide by colloidal method. The doping effect, surface morphology, chemical oxidation state and metal/metal oxide interfacial contact are studied by X-ray diffraction, Raman spectroscopy, high resolution transmission electron microscopy and X-ray photo electron spectroscopy. The nitrogen and carbon doping changes both electronic and structural properties of titanium oxide resulting in enhanced oxygen reduction reaction activity. The platinum deposited on optimum level of nitrogen and carbon doped titanium oxide exhibits improved cell performance in relation to platinum on titanium oxide electrocatalysts. The effect of metal loading on cathode electrocatalyst is investigated by steady-state cell polarization. Accelerated durability test over 50,000 cycles for these electrocatalysts suggested the improved interaction between platinum and nitrogen and carbon doped titanium oxide, retaining the electrochemical surface area and oxygen reduction performance as comparable to platinum on carbon support.

  2. High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis

    SciTech Connect

    Datta, Moni Kanchan; Kadakia, Karan; Velikokhatnyi, Oleg I; Jampani, Prashanth H; Chung, Sung Jae; Poston, James A; Manivannan, Ayyakkannu; Kumta, Prashant N

    2013-01-01

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals, by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.

  3. Metal-organic-framework-derived bi-metallic sulfide on N, S-codoped porous carbon nanocomposites as multifunctional electrocatalysts

    NASA Astrophysics Data System (ADS)

    Chen, Binling; Ma, Guiping; Zhu, Yanqiu; Wang, Jinbo; Xiong, Wei; Xia, Yongde

    2016-12-01

    A novel type of composite, consisting of a bi-metallic sulfide/carbon nanocomposite system, was developed as a multifunctional electrocatalyst. The nanocomposite system was facilely generated via a one-step simultaneous carbonization and sulfurization of a selected metal-organic framework. Sample Ni1Co4S@C-1000 is one of the most efficient electrocatalysts and exhibited superior activity and stability in oxygen evolution reaction (OER) due to the Ni substitution, the high porosity, the homogeneous dispersion of active components and the effect of N, S-codoping. This novel material showed a low onset potential of 1.43 V (vs reversible hydrogen electrode) and a stable current density of 10 mA cm-2 at 1.51 V in a 0.1 M KOH alkaline solution over a long-term operation, which is better than IrO2/C and other composites synthesized under the same conditions. The Ni1Co4S@C-1000 sample can also efficiently catalyse oxygen reduction reaction (ORR), with a four-electron pathway for reversible oxygen evolution and reduction. Furthermore, Ni1Co4S@C-800 showed enhanced electrocatalytic activity for hydrogen evolution reaction (HER) in water splitting. These findings pave a way to develop effective and promising alternative electrocatalysts towards OER, ORR and HER in the next generation of energy storage and conversion technologies.

  4. Bioreduction of Precious Metals by Microorganism: Efficient Gold@N-Doped Carbon Electrocatalysts for the Hydrogen Evolution Reaction.

    PubMed

    Zhou, Weijia; Xiong, Tanli; Shi, Chaohong; Zhou, Jian; Zhou, Kai; Zhu, Nengwu; Li, Ligui; Tang, Zhenghua; Chen, Shaowei

    2016-07-11

    The uptake of precious metals from electronic waste is of environmental significance and potential commercial value. A facile bioreductive synthesis is described for Au nanoparticles (ca. 20 nm) supported on N-doped carbon (Au@NC), which was derived from Au/Pycnoporus sanguineus cells. The interface and charge transport between Au and N-doped carbon were confirmed by HRTEM and XPS. Au@NC was employed as an electrocatalyst for the hydrogen evolution reaction (HER), exhibiting a small onset potential of -54.1 mV (vs. RHE), a Tafel slope of 76.8 mV dec(-1) , as well as robust stability in acidic medium. Au@NC is a multifunctional electrocatalyst, which demonstrates high catalytic activity in the oxygen reduction reaction (ORR), as evidenced by an onset potential of +0.97 V, excellent tolerance toward methanol, and long-term stability. This work exemplifies dual recovery of precious Au and fabrication of multifunctional electrocatalysts in an environmentally benign and application-oriented manner.

  5. Nanofaceted C/Re(1121): fabrication, structure, and template for synthesizing nanostructured model Pt electrocatalyst for hydrogen evolution reaction.

    PubMed

    Yang, Xiaofang; Koel, Bruce E; Wang, Hao; Chen, Wenhua; Bartynski, Robert A

    2012-02-28

    We report the first observation of carbon-induced nanofaceting of a Re single crystal and its application in synthesizing a nanostructured model Pt electrocatalyst investigated using multiple surface science techniques, including low-energy electron diffraction, Auger electron spectroscopy, X-ray photoelectron spectroscopy, low-energy ion scattering, and scanning tunneling microscopy, combined with electrochemical reaction measurements. Upon annealing in acetylene at 700 K followed by annealing in vacuum at 1100 K, an initially planar Re(112̅1) surface becomes completely faceted and covered with three-sided nanopyramids exposing (011̅1), (101̅1), and (112̅0) faces. Using the faceted C/Re(112̅1) surface as a template, we have successfully fabricated a nanostructured Pt monolayer (ML) electrocatalyst. The Pt ML supported on the C/Re nanotemplate exhibits higher activity for the hydrogen evolution reaction than Pt(111). This is the first application of faceted metal surfaces as templates for synthesis of nanoscale model electrocatalyst with well-defined (facet) surface structure and controlled (facet) size on the nanometer scale, illustrating the potential for future studies of nanostructured bimetallic systems relevant to electrocatalytic reactions.

  6. A new method to synthesize sulfur-doped graphene as effective metal-free electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhai, Chunyang; Sun, Mingjuan; Zhu, Mingshan; Song, Shaoqing; Jiang, Shujuan

    2017-06-01

    The exploration of a metal-free catalyst with highly efficient yet low-cost for the oxygen-reduction reaction (ORR) is under wide spread investigation. In this paper, by using dimethyl sulfoxide (DMSO) as S source as well as solvent, we report a new, low-cost, and facile solvothermal route to synthesize S-doped reduced graphene oxide (S-RGO). The existence of S element in the framework of RGO was solidly confirmed by energy-dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The as-synthesized S-RGO can be worked as an efficient metal-free electrocatalyst for ORR. Moreover, compared to commercial Pt/C electrocatalyst, the S-RGO displays superior resistance to crossover effect and stability by evaluating the addition of methanol and CO poisoning experiment. This result not only shows S-RGO as a promising candidate instead of Pt-based catalyst for ORR, but also provides a new approach for the preparation of metal-free electrocatalyst in future.

  7. The influence of mass-transport conditions on the ethanol oxidation reaction (EOR) mechanism of Pt/C electrocatalysts.

    PubMed

    Bach Delpeuch, Antoine; Jacquot, Marjorie; Chatenet, Marian; Cremers, Carsten

    2016-09-14

    This study aims to provide further understanding of the influence of different parameters that control mass-transport (the revolution rate of the rotating disk electrode and the potential scan rate) on the ethanol oxidation reaction (EOR). The experiments were conducted on a home-made carbon-supported 20 wt% Pt/C electrocatalyst, synthesized using a modified polyol method, and characterized in terms of physicochemical properties by thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The EOR at the thin active layer of this electrocatalyst was characterized using both differential electrochemical mass spectrometry (DEMS) in a flow cell configuration and the rotating disc electrode (RDE). The results demonstrate that operating under stationary conditions (low scan rate and high RDE speed) hinders complete ethanol electrooxidation into CO2 and favors the poisoning of the electrocatalyst surface by hydroxide and strong ethanol adsorbates. As such, the EOR appears to be more efficient and faster under dynamic conditions than in near steady-state.

  8. Electrocatalyst compositions

    DOEpatents

    Mallouk, Thomas E.; Chan, Benny C.; Reddington, Erik; Sapienza, Anthony; Chen, Guoying; Smotkin, Eugene; Gurau, Bogdan; Viswanathan, Rameshkrishnan; Liu, Renxuan

    2001-09-04

    Compositions for use as catalysts in electrochemical reactions are described. The compositions are alloys prepared from two or more elemental metals selected from platinum, molybdenum, osmium, ruthenium, rhodium, and iridium. Also described are electrode compositions including such alloys and electrochemical reaction devices including such catalysts.

  9. Nanofibrous electrocatalysts

    DOEpatents

    Liu, Di Jia; Shui, Jianglan; Chen, Chen

    2016-05-24

    A nanofibrous catalyst and method of manufacture. A precursor solution of a transition metal based material is formed into a plurality of interconnected nanofibers by electro-spinning the precursor solution with the nanofibers converted to a catalytically active material by a heat treatment. Selected subsequent treatments can enhance catalytic activity.

  10. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel

  11. A combinatorial study of platinum-based oxygen reduction electrocatalysts for hydrogen fuel cells

    NASA Astrophysics Data System (ADS)

    Bonakdarpour, Arman

    This thesis presents measurements of the stability and activities of Pt-based oxygen reduction reaction (ORR) electrocatalysts for proton exchange membrane fuel cells (PEMFC). Because more than 70% of electrochemical losses originate from the cathodic reduction of oxygen, research on ORR catalysts remains very active. Numerous combinatorial libraries of Pt1-xMx (M = Fe, Ni, Mn; 0 ≤ x ≤ 1) and Pt1-x-yMxMy ' (M, M' = Co, Ni, Mn, Fe) were prepared by magnetron sputtering using high surface area nano-structured thin film (NSTF) supports as substrates. The libraries were studied for the corrosion stability of the transition metal elements by acid leaching experiments. The results show that after exposing these libraries to 0.5M H2SO4 (or HClO4) at 80°C for several days, significant amounts of transition metals leach off. When the transition metal content was about 60% or less mostly surface leaching occurred and for more than 60% surface and bulk leaching were observed. The composition of these libraries after acid treatment was very close to the electrocatalysts tested in hydrogen fuel cells, thus showing that acid treatment can mimic the fuel cell environment very well. Alloys of Pt-Ta, on the other hand, showed no dissolution of Ta. However, the presence of more than 10% Ta in the alloy, significantly reduces the ORR activity. The rotating ring-disk electrode technique was used to measure the ORR activity of sputtered Pt1-xCox (0 < x < 0.5) films. After heat treatment a 1.7x gain in the specific current densities were observed. There are claims in the literature that very high activities (about 10x) can be achieved by Pt alloys such as Pt-Co with similar preparation methods. Poor experimental setups are most likely the sources of these observations. High surface area Pt and Pt-Co-Mn catalysts, sputtered onto NSTF supports were studied using the RRDE technique. The Pt-Co-Mn alloy showed a kinetic gain of about 20 mV over Pt for ORR. This is in agreement with the

  12. Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Pi, Mingyu; Wu, Tianli; Guo, Weimeng; Wang, Xiaodeng; Zhang, Dingke; Wang, Shuxia; Chen, Shijian

    2017-05-01

    The design and development of high-efficiency and non-noble-metal hydrogen evolution reaction (HER) electrocatalysts for future clean and renewable energy system has excited significant research interests over the recent years. In this communication, the polymorphic tungsten diphosphide (p-WP2) nanoparticles with mixed monoclinic (α-) and orthorhombic (β-) phases are synthesized by phase-controlled phosphidation route via vacuum capsulation and explored as a novel efficient electrocatalyst towards HER. The p-WP2 catalyst delivers superior performance with excellent stability under both acidic and alkaline conditions over its single phases of α-WP2 and β-WP2. This finding demonstrates that a highly efficient hybrid electrocatalyst can be achieved via precise composition controlling and may open up exciting opportunities for their practical applications toward energy conversion.

  13. A facile lyophilization synthesis of MoS2 QDs@graphene as a highly active electrocatalyst for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Li, Wenzhu; Li, Feng; Wang, Xiang; Tang, Yu; Yang, Yuanyuan; Gao, Wenbin; Li, Rong

    2017-04-01

    The development of robust, active and nonprecious electrocatalysts for hydrogen evolution reaction is quite urgent but still challenging. Here MoS2 QDs@Graphene is prepared via a facile lyophilization method, which leads to a better dispersion of MoS2 QDs on the graphene and optimizes the electronic mobility between the MoS2 layers. Impressively, the electrocatalyst MoS2 QDs@Graphene demonstrates the remarkable activity for HER in 0.5 M H2SO4 solution, with a current density of 10 mA cm-2 at a low overpotential of 140 mV and strong stability in acid condition. The achieved excellent performance is attributed to its morphology with large amount of active sites fabricated by the lyophilization method. This new method opens new pathway for the fabrication of non-precious metal electrocatalysts achieving high activity.

  14. The effect of thermal treatment on the atomic structure of core-shell PtCu nanoparticles in PtCu/C electrocatalysts

    NASA Astrophysics Data System (ADS)

    Pryadchenko, V. V.; Belenov, S. V.; Shemet, D. B.; Volochaev, V. A.; Srabionyan, V. V.; Avakyan, L. A.; Tabachkova, N. Yu.; Guterman, V. E.; Bugaev, L. A.

    2017-08-01

    PtCu/C electrocatalysts with bimetallic PtCu nanoparticles were synthesized by successive chemical reduction of Cu2+ and Pt(IV) in a carbon suspension prepared based on an aqueous ethylene glycol solution. The atomic structure of as-prepared PtCu nanoparticles and nanoparticles subjected to thermal treatment at 350°C was examined using Pt L 3 and Cu K EXAFS spectra, transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). The results of joint analysis of TEM microphotographs, XRD profiles, and EXAFS spectra suggest that the synthesized electrocatalysts contain PtCu nanoparticles with a Cu core-Pt shell structure and copper oxides Cu2O and CuO. Thermal treatment of electrocatalysts at 350°C results in partial reduction of copper oxides and fusion of bimetallic nanoparticles with the formation of both homogeneous and ordered PtCu solid solutions.

  15. Porous Nickel-Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.

    PubMed

    Wang, Zhaoyang; Li, Jiantao; Tian, Xiaocong; Wang, Xuanpeng; Yu, Yang; Owusu, Kwadwo Asare; He, Liang; Mai, Liqiang

    2016-08-03

    Exploring non-noble and high-efficiency electrocatalysts is critical to large-scale industrial applications of electrochemical water splitting. Currently, nickel-based selenide materials are promising candidates for oxygen evolution reaction due to their low cost and excellent performance. In this work, we report the porous nickel-iron bimetallic selenide nanosheets ((Ni0.75Fe0.25)Se2) on carbon fiber cloth (CFC) by selenization of the ultrathin NiFe-based nanosheet precursor. The as-prepared three-dimensional oxygen evolution electrode exhibits a small overpotential of 255 mV at 35 mA cm(-2) and a low Tafel slope of 47.2 mV dec(-1) and keeps high stability during a 28 h measurement in alkaline solution. The outstanding catalytic performance and strong durability, in comparison to the advanced non-noble metal catalysts, are derived from the porous nanostructure fabrication, Fe incorporation, and selenization, which result in fast charge transportation and large electrochemically active surface area and enhance the release of oxygen bubbles from the electrode surface.

  16. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    SciTech Connect

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; Neumman, Anica; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show that all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.

  17. A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO₂ reduction.

    PubMed

    Lysgaard, Steen; Mýrdal, Jón S G; Hansen, Heine A; Vegge, Tejs

    2015-11-14

    Using a DFT-based genetic algorithm (GA) approach, we have determined the most stable structure and stoichiometry of a 309-atom icosahedral AuCu nanoalloy, for potential use as an electrocatalyst for CO2 reduction. The identified core-shell nano-particle consists of a copper core interspersed with gold atoms having only copper neighbors and a gold surface with a few copper atoms in the terraces. We also present an adsorbate-dependent correction scheme, which enables an accurate determination of adsorption energies using a computationally fast, localized LCAO-basis set. These show that it is possible to use the LCAO mode to obtain a realistic estimate of the molecular chemisorption energy for systems where the computation in normal grid mode is not computationally feasible. These corrections are employed when calculating adsorption energies on the Cu, Au and most stable mixed particles. This shows that the mixed Cu135@Au174 core-shell nanoalloy has a similar adsorption energy, for the most favorable site, as a pure gold nano-particle. Cu, however, has the effect of stabilizing the icosahedral structure because Au particles are easily distorted when adding adsorbates.

  18. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.

    PubMed

    Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L

    2017-09-06

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

  19. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE PAGES

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle; ...

    2017-02-21

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO2, CdS, and Ni3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon source and amore » morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties (E1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  20. Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Lee, Dong Un; Park, Moon Gyu; Park, Hey Woong; Seo, Min Ho; Wang, Xiaolei; Chen, Zhongwei

    2015-09-21

    A highly active and durable bifunctional electrocatalyst that consists of cobalt oxide nanocrystals (Co3 O4 NC) decorated on the surface of N-doped carbon nanotubes (N-CNT) is introduced as effective electrode material for electrically rechargeable zinc-air batteries. This active hybrid catalyst is synthesized by a facile surfactant-assisted method to produce Co3 O4 NC that are then decorated on the surface of N-CNT through hydrophobic attraction. Confirmed by half-cell testing, Co3 O4 NC/N-CNT demonstrates superior oxygen reduction and oxygen evolution catalytic activities and has a superior electrochemical stability compared to Pt/C and Ir/C. Furthermore, rechargeable zinc-air battery testing of Co3 O4 NC/N-CNT reveals superior galvanodynamic charge and discharge voltages with a significantly extended cycle life of over 100 h, which suggests its potential as a replacement for precious-metal-based catalysts for electric vehicles and grid energy storage applications.

  1. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

    PubMed

    Li, Yanguang; Gong, Ming; Liang, Yongye; Feng, Ju; Kim, Ji-Eun; Wang, Hailiang; Hong, Guosong; Zhang, Bo; Dai, Hongjie

    2013-01-01

    Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles.

  2. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    DOE PAGES

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less

  3. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination

    PubMed Central

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-01-01

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon–nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation. PMID:26059552

  4. Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction.

    PubMed

    Lv, Xiaoming; Zhu, Yihua; Jiang, Hongliang; Yang, Xiaoling; Liu, Yanyan; Su, Yunhe; Huang, Jianfei; Yao, Yifan; Li, Chunzhong

    2015-03-07

    The design and fabrication of efficient and inexpensive electrodes for oxygen evolution reaction (OER) is essential for energy-conversion technologies. Herein, high OER activity is achieved using hollow mesoporous NiCo2O4 nanocages synthesized via a Cu2O-templated strategy combined with coordination reaction. The NiCo2O4 nanostructures with a hollow cavity, large roughness and high porosity show only a small overpotential of ∼0.34 V at the current density of 10 mA cm(-2) and a Tafel slope of 75 mV per decade, which is comparable with the performance of the best reported transition metal oxide based OER catalysts in the literature. Meanwhile, the positive impacts of the nanocage structure and the Ni incorporation on the electrocatalytic performance are also demonstrated by comparing the OER activities of NiCo2O4 nanocages with Co3O4 nanocages, NiCo2O4 nanoparticles and 20 wt% Pt/C. Moreover, the NiCo2O4 nanocages also manifest superior stability to other materials. All these merits indicate that the hollow mesoporous NiCo2O4 nanocages are promising electrocatalysts for water oxidation.

  5. Synthesis of grape-like carbon nanospheres and their application as photocatalyst and electrocatalyst

    SciTech Connect

    Mahajan, Mani Singla, Gourav Singh, K. Pandey, O.P.

    2015-12-15

    Carbon nanospheres of grape-like structure (CNS) with diameter ranging from 40 to 50 nm and wall thickness of 6–8 nm were synthesized by solvothermal route. The phase structure, morphology, microstructure, thermal stability, disorder and optical properties of synthesized CNS were investigated by various characterization techniques. The possible formation and growth mechanism for CNS were discussed on the basis of the in-build reaction conditions. The degradation study of organic pollutants (methylene blue) in UV light in the presence of synthesized CNS was done. The stability of the CNS in electrochemical performance was also discussed at the different potential window and compared its electrocatalytic activity with platinum supported on CNS which shows the better response for oxygen reduction reactions (ORR) at an optimized potential window (–0.2 to 1.0 V vs SCE). - Graphical abstract: A representative synthesis mechanism of carbon nano sphere (CNS) showing spherical morphology with its photo as well as electrocatalyst properties. - Highlights: • Carbon nanospheres (CNS) have been synthesized using in situ chemical-reduction route. • The bare CNS shows good luminescence and photocatalytic applications. • The Pt/CNS shows better electrochemical performance than the reported Pt/C.

  6. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

    SciTech Connect

    Lambert, Timothy N.; Vigil, Julian A.; Christensen, Ben

    2016-08-22

    Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co3O4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co3O4 nanoplatelet morphology while the spherical/cubic Co3O4 and Ni0.15Co2.85O4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctional electrocatalysts for both the HER and the OER and compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.

  7. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.; Christensen, Ben

    2016-08-22

    Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co3O4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co3O4 nanoplatelet morphology while the spherical/cubic Co3O4 and Ni0.15Co2.85O4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctional electrocatalysts for both the HER and the OER andmore » compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.« less

  8. N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts.

    PubMed

    Xu, Lei; Wang, Zhimin; Wang, Jialu; Xiao, Zhaohui; Huang, Xiaobing; Liu, Zhigang; Wang, Shuangyin

    2017-04-21

    Developing highly active electrocatalysts for the oxygen evolution reaction (OER) with a high surface area, high catalytic activity, low cost and high conductivity is a big challenge for various energy technologies. Herein, for the first time, we realized the simultaneous nitrogen doping and etching of Co3O4 nanosheets to produce N-doped nanoporous Co3O4 nanosheets with oxygen vacancies by N2 plasma. The increase in active sites in N-doped Co3O4 nanosheets and improved electronic conductivity with N doping and oxygen vacancies results in excellent electrocatalytic activity for the OER. Compared with pristine Co3O4 nanosheets, the N-doped Co3O4 nanosheets with oxygen vacancies have a much lower required potential of 1.54 V versus a reversible hydrogen electrode than the pristine Co3O4 nanosheets (1.79 V) to reach the current density of 10 mA cm(-2). The N-doped and etched Co3O4 nanosheets have a much lower Tafel slope of 59 mV dec(-1) than pristine Co3O4 nanosheets (234 mV dec(-1)). The enhanced electrocatalytic activity for the OER is caused by the increased surface area, N doping and the produced oxygen vacancies.

  9. Osmium-ruthenium carbonyl clusters as methanol tolerant electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Borja-Arco, E.; Castellanos, R. H.; Uribe-Godínez, J.; Altamirano-Gutiérrez, A.; Jiménez-Sandoval, O.

    This work presents the synthesis and the structural and electrochemical characterization of novel mixed Os xRu y(CO) n electrocatalysts for oxygen reduction in 0.5 mol L -1 H 2SO 4; their monometallic Os x(CO) n and Ru y(CO) n counterparts were synthesized as well, for comparison purposes. The catalysts were obtained by thermolysis of Ru 3(CO) 12 and Os 3(CO) 12 (either alone or mixed) in three organic solvents: 1,2-dichlorobenzene (b.p. 178-180 °C), n-nonane (b.p. 150-151 °C) and o-xylene (b.p. 143-145 °C), under reflux conditions. The products were characterized by FT-IR spectroscopy and scanning electronic microscopy, and their chemical composition obtained by energy-dispersive X-ray spectroscopy. The electrocatalytic activity of the new materials was evaluated by room temperature RDE measurements, using the cyclic and linear sweep voltammetry techniques; all of them are methanol tolerant ORR catalysts, however, the bimetallic clusters, in general, show more favorable characteristics to perform this reaction than their monometallic analogues. On this basis, the novel catalysts can be considered as potential candidates to be used as cathodes in PEMFCs and DMFCs.

  10. Novel osmium-based electrocatalysts for oxygen reduction and hydrogen oxidation in acid conditions

    NASA Astrophysics Data System (ADS)

    Uribe-Godínez, J.; Castellanos, R. H.; Borja-Arco, E.; Altamirano-Gutiérrez, A.; Jiménez-Sandoval, O.

    In this work, novel osmium electrocatalysts for oxygen reduction and hydrogen oxidation in 0.5 M H 2SO 4, have been developed. The syntheses were performed by thermolysis of Os 3(CO) 12 and Os 3(CO) 12/Vulcan ®, in two reaction media, N 2 (in the absence of solvents) and n-octane, in order to evaluate the effect of these parameters on the electrocatalytic activity of the new materials. In the solvent-free pathway, different reaction temperatures (in the 120-320 °C range) and times (5, 7 and 10 h) were explored; the syntheses in n-octane were done at reflux temperature, for 30 and 72 h. The products were characterized structurally by FT-IR spectroscopy, X-ray diffraction and scanning electron microscopy, and electrochemically by room temperature rotating disk electrode measurements, using cyclic and linear sweep voltammetry. Some materials prepared in both reaction media can efficiently perform the hydrogen oxidation and/or oxygen reduction reaction, i.e. those prepared by pyrolysis of Os 3(CO) 12/Vulcan ® in N 2, at 180 °C/7 h, 320 °C/5 h, 320 °C/7 h and 320 °C/10 h, as well as the materials synthesized in n-octane (from both Os precursors); the latter, in addition, have the important property of being tolerant to carbon monoxide to some extent, in contrast to platinum, which is easily deactivated even by traces of CO.

  11. Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation.

    PubMed

    Pu, Zonghua; Amiinu, Ibrahim Saana; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-10-06

    There is a crucial demand for cost-effective hydrogen evolution reaction (HER) catalysts towards future renewable energy systems, and the development of such catalysts operating under all pH conditions still remains a challenging task. In this work, a one-step facile approach to synthesizing nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles (MoP NPs@NC) is introduced by using ammonium molybdate, ammonium dihydrogen phosphate and melamine as precursor. Benefitting from structural advantages, including ultrasmall nanoparticles, large exposed surface area and fast charge transfer, MoP NPs@NC exhibits excellent HER catalytic activities with small overpotentials at all pH values (j = 10 mA cm(-2) at η = 115, 136 and 80 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution and 1.0 M KOH, respectively.). Meanwhile, the high catalytic activities of MoP NPs@NC under both neutral and basic conditions have never been achieved before for molybdenum phosphide-based catalysts. Additionally, the encapsulation by N-doped carbon effectively prevents the MoP NPs from corrosion, exhibiting nearly unfading stability after 100 h testing in 0.5 M H2SO4. Thus, our work could pave a new avenue for unprecedented design and fabrication of novel low-cost metal phosphide electrocatalysts encapsulated by N-doped carbon.

  12. A novel sputtered Pd mesh architecture as an advanced electrocatalyst for highly efficient hydrogen production

    NASA Astrophysics Data System (ADS)

    de Lucas-Consuegra, Antonio; de la Osa, Ana R.; Calcerrada, Ana B.; Linares, José J.; Horwat, David

    2016-07-01

    This study reports the preparation, characterization and testing of a sputtered Pd mesh-like anode as an advanced electrocatalyst for H2 production from alkaline ethanol solutions in an Alkaline Membrane Electrolyzer (AEM). Pd anodic catalyst is prepared by magnetron sputtering technique onto a microfiber carbon paper support. Scanning Electron Microscopy images reveal that the used preparation technique enables to cover the surface of the carbon microfibers exposed to the Pd target, leading to a continuous network that also maintains part of the original carbon paper macroporosity. Such novel anodic architecture (organic binder free) presents an excellent electro-chemical performance, with a maximum current density of 700 mA cm-2 at 1.3 V, and, concomitantly, a large H2 production rate with low energy requirement compared to water electrolysis. Potassium hydroxide emerges as the best electrolyte, whereas temperature exerts the expected promotional effect up to 90 °C. On the other hand, a 1 mol L-1 ethanol solution is enough to guarantee an efficient fuel supply without any mass transfer limitation. The proposed system also demonstrates to remain stable over 150 h of operation along five consecutives cycles, producing highly pure H2 (99.999%) at the cathode and potassium acetate as the main anodic product.

  13. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resulting in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.

  14. Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction

    PubMed Central

    Zhao, Yufei; Chen, Shuangqiang; Sun, Bing; Su, Dawei; Huang, Xiaodan; Liu, Hao; Yan, Yiming; Sun, Kening; Wang, Guoxiu

    2015-01-01

    Graphene-Co3O4 composite with a unique sandwich-architecture was successfully synthesized and applied as an efficient electrocatalyst for oxygen evolution reaction. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses confirmed that Co3O4 nanocrystals were homogeneously distributed on both sides of graphene nanosheets. The obtained composite shows enhanced catalytic activities in both alkaline and neutral electrolytes. The onset potential towards the oxygen evolution reaction is 0.406 V (vs. Ag/AgCl) in 1 M KOH solution, and 0.858 V (vs. Ag/AgCl) in neutral phosphate buffer solution (PBS), respectively. The current density of 10 mA/cm2 has been achieved at the overpotential of 313 mV in 1 M KOH and 498 mV in PBS. The graphene-Co3O4 composite also exhibited an excellent stability in both alkaline and neutral electrolytes. In particular, no obvious current density decay was observed after 10 hours testing in alkaline solution and the morphology of the material was well maintained, which could be ascribed to the synergistic effect of combining Co3O4 and graphene. PMID:25559459

  15. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    PubMed

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure.

  16. Reactive electrophilic OI--species evidenced in high-performance Ir-oxohydroxide water oxidation electrocatalysts.

    PubMed

    Massué, Cyriac; Pfeifer, Verena; Van Gastel, Maurice; Noack, Johannes; Algara-Siller, Gerardo; Cap, Sebastien; Schlögl, Robert

    2017-09-21

    Although quasi-amorphous Ir-oxohydroxides have repeatedly been identified as superior oxygen evolution reaction (OER) electrocatalysts, an exact description of the performance relevant species has so far remained a challenge. In this context, we report on the characterization of hydrothermally prepared IrIII/IV oxohydroxides exhibiting exceptional OER-performance. It was found that holes in the O2p states of IrIII/IV-oxohydroxides result in reactive OI--species identified by characteristic NEXAFS-features. A prototypical titration reaction based on CO as a probe molecule shows that these OI--species are highly susceptible to nucleophilic attack at room temperature. Similarly to pre-activated oxygen involved in the biological OER in Photosystem II, the electrophilic OI--species evidenced in IrIII/IV-oxohydroxides are suggested to be precursors to species involved in the O-O bond formation during electrocatalytic OER. CO-titration also highlights a link between OER-performance and the surface/sub-surface mobility of OI--species. The superior electrocatalytic properties of IrIII/IV-oxohydroxides are thus explained by their ability to accommodate pre-activated electrophilic OI--species able to migrate within the lattice. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Strong Surface Hydrophilicity in Co-Based Electrocatalysts for Water Oxidation.

    PubMed

    Tang, Fumin; Cheng, Weiren; Huang, Yuanyuan; Su, Hui; Yao, Tao; Liu, Qinghua; Liu, Jinkun; Hu, Fengchun; Jiang, Yong; Sun, Zhihu; Wei, Shiqiang

    2017-08-16

    Developing efficient and durable oxygen evolution electrocatalyst is of paramount importance for the large-scale supply of renewable energy sources. Herein, we report the design of significant surface hydrophilicity based on cobalt oxyhydroxide (CoOOH) nanosheets to greatly improve the surface hydroxyl species adsorption and reaction kinetics at the Helmholtz double layer for high-efficiency water oxidation activity. The as-designed CoOOH-graphene nanosheets achieve a small surface water contact angle of ∼23° and a large double-layer capacitance (Cdl) of 8.44 mF/cm(2) and thus could evidently strengthen surface species adsorption and trigger electrochemical oxygen evolution reaction (OER) under a quite low onset potential of 200 mV with an excellent Tafel slope of 32 mV/dec. X-ray absorption spectroscopy and first-principles calculations demonstrate that the strong interface electron coupling between CoOOH and graphene extracts partial electrons from the active sties and increases the electron state density around the Fermi level and effectively promotes the surface intermediates formation for efficient OER.

  18. Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions.

    PubMed

    Yadav, Ram Manohar; Wu, Jingjie; Kochandra, Raji; Ma, Lulu; Tiwary, Chandra Sekhar; Ge, Liehui; Ye, Gonglan; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2015-06-10

    Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs.

  19. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells.

    PubMed

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-22

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm(2)) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  20. Photochemically modified ATO NPs as conductive support of Pt electrocatalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ostrovsky, Stella; Larsen, Mikkel Juul; Peled, Anna; Lellouche, Jean-Paul

    2015-06-01

    Antimony-doped tin oxide (ATO) nanoparticles (NPs) were covalently modified with a benzophenone-silicate photoreactive organic molecule to enable the UV-mediated photoreduction of Pt(IV) on the surface of the ATO NPs to give Pt(0) NPs. The successfully synthesized Pt/ATO nanocomposites (NCs) that were based on these novel hybrid photoreactive ATO NPs showed a much better Pt dispersion than Pt/ATO NCs prepared by traditional methods. The size of the Pt NPs was below 2.8 nm for all the NCs. The prepared NCs were studied with respect to their properties as durable and active electrocatalysts for proton exchange membrane fuel cells. They were subjected to fuel-cell-relevant electrochemical characterization by rotating disc electrode cyclic voltammetry. The electrochemically active surface area was found to be significantly lower for the novel NCs than for the standard Pt/C catalyst, while on the other hand, their specific electrocatalytic activity towards the oxygen reduction reaction (ORR) was found to exceed that of the reference Pt/C by several times. The ORR activity in terms of the mass of Pt was comparable to, or greater than, that of the Pt/C. The stability towards electrochemical ageing was greatly improved for Pt/ATO NCs relative to Pt/C.

  1. Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction

    PubMed Central

    You, Bo; Yin, Peiqun; Zhang, Junli; He, Daping; Chen, Gaoli; Kang, Fei; Wang, Huiqiao; Deng, Zhaoxiang; Li, Yadong

    2015-01-01

    The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co2+ chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials. PMID:26130371

  2. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination.

    PubMed

    Strickland, Kara; Miner, Elise; Jia, Qingying; Tylus, Urszula; Ramaswamy, Nagappan; Liang, Wentao; Sougrati, Moulay-Tahar; Jaouen, Frédéric; Mukerjee, Sanjeev

    2015-06-10

    Replacement of noble metals in catalysts for cathodic oxygen reduction reaction with transition metals mostly create active sites based on a composite of nitrogen-coordinated transition metal in close concert with non-nitrogen-coordinated carbon-embedded metal atom clusters. Here we report a non-platinum group metal electrocatalyst with an active site devoid of any direct nitrogen coordination to iron that outperforms the benchmark platinum-based catalyst in alkaline media and is comparable to its best contemporaries in acidic media. In situ X-ray absorption spectroscopy in conjunction with ex situ microscopy clearly shows nitrided carbon fibres with embedded iron particles that are not directly involved in the oxygen reduction pathway. Instead, the reaction occurs primarily on the carbon-nitrogen structure in the outer skin of the nitrided carbon fibres. Implications include the potential of creating greater active site density and the potential elimination of any Fenton-type process involving exposed iron ions culminating in peroxide initiated free-radical formation.

  3. In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst.

    PubMed

    Zhao, Yong; Kamiya, Kazuhide; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-01-14

    We reported a novel protocol to efficiently synthesize molybdenum carbonitride (MoCN) nanomaterials with dense active sites and high surface area. The key step in this protocol is the preparation of the catalyst precursor, which was obtained by polymerizing diaminopyridine in the presence of hydrogen carbonate. The abundant amino groups in the poly diaminopyridine bound numerous Mo species via coordination bonds, resulting in the formation of dense Mo active sites. The addition of hydrogen carbonate to the synthesis mixture resulted in CO2 gas evolution as the local pH decreased during polymerization. The in situ evolved CO2 bubbles mechanically broke down the precursor into MoCN nanomaterials with a high surface area. The synthesized MoCN materials were demonstrated as an electrocatalyst for hydrogen evolution reaction (HER). It exhibited an HER onset potential of -0.05 V (vs RHE) and a high hydrogen production rate (at -0.14 V vs RHE, -10 mA cm(-2)) and is therefore one of the most efficient, low-cost HER catalysts reported to date.

  4. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells

    NASA Astrophysics Data System (ADS)

    Demirci, Umit B.

    The present paper reviews the best anode electrocatalysts, mainly the alloys, which have been tested in direct liquid-feed fuel cells fed with methanol, ethanol or formic acid. It attempts to interpret the alloys catalytic behaviours by using the Nørskov and co-workers' theoretical work [A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver, J.K. Nørskov, J. Mol. Catal. A 115 (1997) 421; B. Hammer, J.K. Nørskov, Adv. Catal. 45 (2000) 71; J. Greeley, J.K. Nørskov, M. Maurikakis, Annu. Rev. Phys. Chem. 53 (2002) 319], who proposed surface theories and databases about the metals d-band centre shift and the segregation. It also attempts to suggest new alloys combinations. For example, for the methanol oxidation, the best catalyst is Pt-Ru and the following features make this catalyst stand out: the d-band centre of Pt shifts down what supposes weaker molecules adsorption and Pt strongly segregates. From this analysis, it is suggested that the Pd-Ni alloy may be a potentially good catalyst. Similar interpretations are given for the three fuel cell systems regarded in the present paper.

  5. N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Wang, Zhimin; Wang, Jialu; Xiao, Zhaohui; Huang, Xiaobing; Liu, Zhigang; Wang, Shuangyin

    2017-04-01

    Developing highly active electrocatalysts for the oxygen evolution reaction (OER) with a high surface area, high catalytic activity, low cost and high conductivity is a big challenge for various energy technologies. Herein, for the first time, we realized the simultaneous nitrogen doping and etching of Co3O4 nanosheets to produce N-doped nanoporous Co3O4 nanosheets with oxygen vacancies by N2 plasma. The increase in active sites in N-doped Co3O4 nanosheets and improved electronic conductivity with N doping and oxygen vacancies results in excellent electrocatalytic activity for the OER. Compared with pristine Co3O4 nanosheets, the N-doped Co3O4 nanosheets with oxygen vacancies have a much lower required potential of 1.54 V versus a reversible hydrogen electrode than the pristine Co3O4 nanosheets (1.79 V) to reach the current density of 10 mA cm‑2. The N-doped and etched Co3O4 nanosheets have a much lower Tafel slope of 59 mV dec‑1 than pristine Co3O4 nanosheets (234 mV dec‑1). The enhanced electrocatalytic activity for the OER is caused by the increased surface area, N doping and the produced oxygen vacancies.

  6. Synthesis of highly active and dual-functional electrocatalysts for methanol oxidation and oxygen reduction reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Zhang, Geng; Xu, Guangran; Li, Yingjun; Liu, Baocang; Gong, Xia; Zheng, Dafang; Zhang, Jun; Wang, Qin

    2016-12-01

    The promising Pt-based ternary catalyst is crucial for polymer electrolyte membrane fuel cells (PEMFCs) due to improving catalytic activity and durability for both methanol oxidation reaction and oxygen reduction reaction. In this work, a facile strategy is used for the synthesis ternary RuMPt (M = Fe, Co, Ni, and Cu) nanodendrities catalysts. The ternary RuMPt alloys exhibit enhanced specific and mass activity, positive half-wave potential, and long-term stability, compared with binary Pt-based alloy and the commercial Pt/C catalyst, which is attributed to the high electron density and upshifting of the d-band center for Pt atoms, and synergistic catalytic effects among Pt, M, and Ru atoms by introducing a transition metal. Impressively, the ternary RuCoPt catalyst exhibits superior mass activity (801.59 mA mg-1) and positive half-wave potential (0.857 V vs. RHE) towards MOR and ORR, respectively. Thus, the RuMPt nanocomposite is a very promising material to be used as dual electrocatalyst in the application of PEMFCs.

  7. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Barakat, Nasser A. M.; El-Newehy, Mohamed; Al-Deyab, Salem S.; Kim, Hak Yong

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications.

  8. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation.

    PubMed

    Barakat, Nasser A M; El-Newehy, Mohamed; Al-Deyab, Salem S; Kim, Hak Yong

    2014-01-03

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications.

  9. Cobalt/copper-decorated carbon nanofibers as novel non-precious electrocatalyst for methanol electrooxidation

    PubMed Central

    2014-01-01

    In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications. PMID:24387682

  10. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    PubMed Central

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5–3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications. PMID:25241800

  11. Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes.

    PubMed

    Fu, Gengtao; Chen, Yifan; Cui, Zhiming; Li, Yutao; Zhou, Weidong; Xin, Sen; Tang, Yawen; Goodenough, John B

    2016-10-12

    The commercialization of Zn-air batteries has been impeded by the lack of low-cost, highly active, and durable catalysts that act independently for oxygen electrochemical reduction and evolution. Here, we demonstrate excellent performance of NiCo nanoparticles anchored on porous fibrous carbon aerogels (NiCo/PFC aerogels) as bifunctional catalysts toward the Zn-air battery. This material is designed and synthesized by a novel K2Ni(CN)4/K3Co(CN)6-chitosan hydrogel-derived method. The outstanding performance of NiCo/PFC aerogels is confirmed as a superior air-cathode catalyst for a rechargeable Zn-air battery. At a discharge-charge current density of 10 mA cm(-2), the NiCo/PFC aerogels enable a Zn-air battery to cycle steadily up to 300 cycles for 600 h with only a small increase in the round-trip overpotential, notably outperforming the more costly Pt/C+IrO2 mixture catalysts (60 cycles for 120 h). With the simplicity of the synthetic method and the outstanding electrocatalytic performance, the NiCo/PFC aerogels are promising electrocatalysts for Zn-air batteries.

  12. Supported Core@Shell Electrocatalysts for Fuel Cells: Close Encounter with Reality

    PubMed Central

    Hwang, Seung Jun; Yoo, Sung Jong; Shin, Jungho; Cho, Yong-Hun; Jang, Jong Hyun; Cho, Eunae; Sung, Yung-Eun; Nam, Suk Woo; Lim, Tae-Hoon; Lee, Seung-Cheol; Kim, Soo-Kil

    2013-01-01

    Core@shell electrocatalysts for fuel cells have the advantages of a high utilization of Pt and the modification of its electronic structures toward enhancement of the activities. In this study, we suggest both a theoretical background for the design of highly active and stable core@shell/C and a novel facile synthetic strategy for their preparation. Using density functional theory calculations guided by the oxygen adsorption energy and vacancy formation energy, Pd3Cu1@Pt/C was selected as the most suitable candidate for the oxygen reduction reaction in terms of its activity and stability. These predictions were experimentally verified by the surfactant-free synthesis of Pd3Cu1/C cores and the selective Pt shell formation using a Hantzsch ester as a reducing agent. In a similar fashion, Pd@Pd4Ir6/C catalyst was also designed and synthesized for the hydrogen oxidation reaction. The developed catalysts exhibited high activity, high selectivity, and 4,000 h of long-term durability at the single-cell level. PMID:23419683

  13. Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction

    NASA Astrophysics Data System (ADS)

    You, Bo; Yin, Peiqun; Zhang, Junli; He, Daping; Chen, Gaoli; Kang, Fei; Wang, Huiqiao; Deng, Zhaoxiang; Li, Yadong

    2015-07-01

    The development of highly active, cheap and robust oxygen reduction reaction (ORR) electrocatalysts to replace precious metal platinum is extremely urgent and challenging for renewable energy devices. Herein we report a novel, green and especially facile hydrogel strategy to construct N and B co-doped nanocarbon embedded with Co-based nanoparticles as an efficient non-precious ORR catalyst. The agarose hydrogel provides a general host matrix to achieve a homogeneous distribution of key precursory components including cobalt (II) acetate and buffer salts, which, upon freeze-drying and carbonization, produces the highly active ORR catalyst. The gel buffer containing Tris base, boric acid and ethylenediaminetetraacetic acid, commonly adopted for pH and ionic strength control, plays distinctively different roles here. These include a green precursor for N- and B-doping, a salt porogen and a Co2+ chelating agent, all contributing to the excellent ORR activity. This hydrogel-based process is potentially generalizable for many other catalytic materials.

  14. Sulfur-Modified Graphitic Carbon Nitride Nanostructures as an Efficient Electrocatalyst for Water Oxidation.

    PubMed

    Kale, Vinayak S; Sim, Uk; Yang, Jiwoong; Jin, Kyoungsuk; Chae, Sue In; Chang, Woo Je; Sinha, Arun Kumar; Ha, Heonjin; Hwang, Chan-Cuk; An, Junghyun; Hong, Hyo-Ki; Lee, Zonghoon; Nam, Ki Tae; Hyeon, Taeghwan

    2017-05-01

    There is an urgent need to develop metal-free, low cost, durable, and highly efficient catalysts for industrially important oxygen evolution reactions. Inspired by natural geodes, unique melamine nanogeodes are successfully synthesized using hydrothermal process. Sulfur-modified graphitic carbon nitride (S-modified g-CN x ) electrocatalysts are obtained by annealing these melamine nanogeodes in situ with sulfur. The sulfur modification in the g-CN x structure leads to excellent oxygen evolution reaction activity by lowering the overpotential. Compared with the previously reported nonmetallic systems and well-established metallic catalysts, the S-modified g-CN x nanostructures show superior performance, requiring a lower overpotential (290 mV) to achieve a current density of 10 mA cm(-2) and a Tafel slope of 120 mV dec(-1) with long-term durability of 91.2% retention for 18 h. These inexpensive, environmentally friendly, and easy-to-synthesize catalysts with extraordinary performance will have a high impact in the field of oxygen evolution reaction electrocatalysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; ...

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  16. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-04

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h.

  17. Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Zhao, Yufei; Chen, Shuangqiang; Sun, Bing; Su, Dawei; Huang, Xiaodan; Liu, Hao; Yan, Yiming; Sun, Kening; Wang, Guoxiu

    2015-01-01

    Graphene-Co3O4 composite with a unique sandwich-architecture was successfully synthesized and applied as an efficient electrocatalyst for oxygen evolution reaction. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses confirmed that Co3O4 nanocrystals were homogeneously distributed on both sides of graphene nanosheets. The obtained composite shows enhanced catalytic activities in both alkaline and neutral electrolytes. The onset potential towards the oxygen evolution reaction is 0.406 V (vs. Ag/AgCl) in 1 M KOH solution, and 0.858 V (vs. Ag/AgCl) in neutral phosphate buffer solution (PBS), respectively. The current density of 10 mA/cm2 has been achieved at the overpotential of 313 mV in 1 M KOH and 498 mV in PBS. The graphene-Co3O4 composite also exhibited an excellent stability in both alkaline and neutral electrolytes. In particular, no obvious current density decay was observed after 10 hours testing in alkaline solution and the morphology of the material was well maintained, which could be ascribed to the synergistic effect of combining Co3O4 and graphene.

  18. Pentlandite rocks as sustainable and stable efficient electrocatalysts for hydrogen generation

    PubMed Central

    Konkena, Bharathi; junge Puring, Kai; Sinev, Ilya; Piontek, Stefan; Khavryuchenko, Oleksiy; Dürholt, Johannes P.; Schmid, Rochus; Tüysüz, Harun; Muhler, Martin; Schuhmann, Wolfgang; Apfel, Ulf-Peter

    2016-01-01

    The need for sustainable catalysts for an efficient hydrogen evolution reaction is of significant interest for modern society. Inspired by comparable structural properties of [FeNi]-hydrogenase, here we present the natural ore pentlandite (Fe4.5Ni4.5S8) as a direct ‘rock' electrode material for hydrogen evolution under acidic conditions with an overpotential of 280 mV at 10 mA cm−2. Furthermore, it reaches a value as low as 190 mV after 96 h of electrolysis due to surface sulfur depletion, which may change the electronic structure of the catalytically active nickel–iron centres. The ‘rock' material shows an unexpected catalytic activity with comparable overpotential and Tafel slope to some well-developed metallic or nanostructured catalysts. Notably, the ‘rock' material offers high current densities (≤650 mA cm−2) without any loss in activity for approximately 170 h. The superior hydrogen evolution performance of pentlandites as ‘rock' electrode labels this ore as a promising electrocatalyst for future hydrogen-based economy. PMID:27461840

  19. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-04-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites.

  20. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution

    PubMed Central

    Li, Ji-Sen; Wang, Yu; Liu, Chun-Hui; Li, Shun-Li; Wang, Yu-Guang; Dong, Long-Zhang; Dai, Zhi-Hui; Li, Ya-Fei; Lan, Ya-Qian

    2016-01-01

    Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyrrole/reduced graphene oxide nanocomposite as a precursor. The hybrid exhibits outstanding electrocatalytic activity for the hydrogen evolution reaction and excellent stability in acidic media, which is, to the best of our knowledge, the best among these reported non-noble-metal catalysts. Theoretical calculations on the basis of density functional theory reveal that the active sites for hydrogen evolution stem from the pyridinic nitrogens, as well as the carbon atoms, in the graphene. In a proof-of-concept trial, an electrocatalyst for hydrogen evolution is fabricated, which may open new avenues for the design of nanomaterials utilizing POMs/conducting polymer/reduced-graphene oxide nanocomposites. PMID:27032372

  1. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    SciTech Connect

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; Xiao, John Q.; Jiao, Feng; Chen, Jingguang G.

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchical porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.

  2. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    DOE PAGES

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; ...

    2015-03-16

    One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchicalmore » porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.« less

  3. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

    SciTech Connect

    Lambert, Timothy N.; Vigil, Julian A.; Christensen, Ben

    2016-08-22

    Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co3O4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co3O4 nanoplatelet morphology while the spherical/cubic Co3O4 and Ni0.15Co2.85O4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctional electrocatalysts for both the HER and the OER and compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.

  4. Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support

    SciTech Connect

    Huang, K; Li, YF; Yan, LT; Xing, YC

    2014-01-01

    We report an effective approach to synthesize nanoscale Nb2O5 coated on carbon nanotubes (CNTs) and transform it at low temperatures to the conductive form of NbO2. The latter, when used as a Pt electrocatalyst support, shows significant enhancement in catalyst activity and durability in the oxygen reduction reaction (ORR). Direct phase transformation of Nb2O5 to NbO2 often requires temperatures above 1000 degrees C. Here we show that this can be achieved at a much lower temperature (e.g. 700 degrees C) if the niobium oxide is first activated with carbon. Low temperature processing allows retaining nanostructures of the oxide without sintering, keeping its high surface areas needed for being a catalyst support. We further show that Pt supported on the conductive oxides on CNTs has two times higher mass activity for the ORR than on bare CNTs. The electrochemical stability of Pt was also outstanding, with only ca. 5% loss in electrochemical surface areas and insignificant reduction in half-wave potential in ORR after 5000 potential cycles.

  5. A novel electroless method to prepare a platinum electrocatalyst on diamond for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lyu, Xiao; Hu, Jingping; Foord, John S.; Wang, Qiang

    2013-11-01

    A novel electroless deposition method was demonstrated to prepare a platinum electrocatalyst on boron doped diamond (BDD) substrates without the need for pre-activation. This green method addresses the uniformity and particle size issues associated with electrodeposition and circumvents the pre-activation procedure which is necessary for conventional electroless deposition. The inert BDD substrate formed a galvanic couple with an iron wire, to overcome the activation barrier associated with conventional electroless deposition on diamond, leading to the formation of Pt nanoparticles on the electrode surface in a galvanic process coupled to a chemical process. When sodium hypophosphite was employed as the reducing agent to drive the electroless reaction Pt deposits which were contaminated with iron and phosphorus resulted. In contrast, the reducing agent ascorbic acid gave rise to high purity Pt nanoparticles. Optimal deposition conditions with respect to bath temperature, pH value and stabilizing additives are identified. Using this approach, high purity and uniformly distributed platinum nanoparticles are obtained on the diamond electrode surface, which demonstrate a high electrochemical activity towards methanol oxidation.

  6. A dinuclear copper(II) electrocatalyst both water reduction and oxidation

    NASA Astrophysics Data System (ADS)

    Zhou, Ling-Ling; Fang, Ting; Cao, Jie-Ping; Zhu, Zhi-Hong; Su, Xiao-Ting; Zhan, Shu-Zhong

    2015-01-01

    Splitting water is a key challenge in the production of chemical fuels from electricity. Although several catalysts have been developed for these reactions, substantial challenges remain towards the ultimate goal of an efficient, inexpensive and robust electrocatalyst. Until now, there is as yet no report on both water oxidation and reduction by identical catalyst. Reported here is the first soluble copper-based catalyst, Cu(Me2oxpn)Cu(OH)2] 1 (Me2oxpn: N,N‧-bis(2,2‧-dimethyl-3-aminopropyl)oxamido) for both electrolytic water oxidation and reduction. Water oxidation occurs at an overpotential of 636 mV vs SHE to give O2 with a turnover frequency (TOF) of ∼2.14 s-1. Electrochemical studies also indicate that 1 is a soluble molecular species, that is among the most rapid homogeneous water reduction catalysts, with a TOF of 654 mol of hydrogen per mole of catalyst per hour at an overpotential of 789 mV vs SHE (pH 7.0). Sustained water reduction catalysis occurs at glassy carbon (GC) to give H2 over a 32 h electrolysis period with 95% Faradaic yield and no observable decomposition of the catalyst.

  7. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution

    PubMed Central

    Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; Zhou, Yang; Forest, Robert V.; Tao, Runzhe; Rosen, Jonathan; Yonemoto, Bryan T.; Cao, Zeyuan; Zheng, Haimei; Xiao, John Q.; Jiao, Feng; Chen, Jingguang G.

    2015-01-01

    A robust and efficient non-precious metal catalyst for hydrogen evolution reaction is one of the key components for carbon dioxide-free hydrogen production. Here we report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the-art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. In addition, the hierarchical porosity of the nanoporous copper-titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface. PMID:25910892

  8. LDRD Final Report - In Operando Liquid Cell TEM Characterization of Nickel-Based Electrocatalyst

    SciTech Connect

    Nielsen, M. H.

    2016-11-07

    A commercial electrochemistry stage for transmission electron microscopy (TEM) was tested to determine whether to purchase one for the microscopes at Lawrence Livermore National Lab (LLNL). Deposition of a nickel-based electrocatalyst was pursued as a material system for the purpose of testing the stage. The stage was found to be problematic with recurring issues in the electrical connections and vacuum sealing, which has thus far precluded a systematic investigation of the original material system. However, the electrochemical cells purchased through this FS will allow the Lawrence Fellow (Nielsen) to continue testing the stage. Furthermore, discussions with a second vendor, which released a similar electrochemical TEM stage during the course of this FS, have resulted in an upcoming longterm loan of their stage at Lawrence Berkeley National Lab (LBNL) for testing. In addition, low-loss electron energy-loss spectroscopy (EELS) measurements on nickel-bearing electrolyte solutions led to a broader EELS investigation of solvents and salt solutions. These measurements form the basis of a manuscript in preparation on EELS measurements of the liquid phase.

  9. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  10. Highly exposed Fe-N4 active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode.

    PubMed

    Anandhababu, Ganesan; Abbas, Syed Comail; Lv, Jiangquan; Ding, Kui; Liu, Qin; Babu, Dickson D; Huang, Yiyin; Xie, Jiafang; Wu, Maoxiang; Wang, Yaobing

    2017-02-14

    Progress in the development of efficient electrocatalysts for oxygen reduction reactions is imperative for various energy systems such as metal-air batteries and fuel cells. In this paper, an innovative porous two-dimensional (2D) poly-iron-phthalocyanine (PFe-Pc) based oxygen reduction electrocatalyst created with a simple solid-state chemical reaction without pyrolysis is reported. In this strategy, silicon dioxide nanoparticles play a pivotal role in preserving the Fe-N4 structure during the polymerization process and thereby assist in the development of a porous structure. The new polymerized phthalocyanine electrocatalyst with tuned porous structure, improved specific surface area and more exposed catalytic active sites via the 2D structure shows an excellent performance towards an oxygen reduction reaction in alkaline media. The onset potential (E = 1.033 V) and limiting current density (I = 5.58 mA cm(-2)) are much better than those obtained with the commercial 20% platinum/carbon electrocatalyst (1.046 V and 4.89 mA cm(-2)) and also show better stability and tolerance to methanol crossover. For practical applications, a zinc-air (Zn-air) battery and methanol fuel cell equipped with the PFe-Pc electrocatalyst as an air cathode reveal a high open circuit voltage and maximum power output (1.0 V and 23.6 mW cm(-2) for a methanol fuel cell, and 1.6 V and 192 mW cm(-2) for the liquid Zn-air battery). In addition, using the PFe-Pc electrocatalyst as an air cathode in a flexible cable-type Zn-air battery exhibits excellent performance with an open-circuit voltage of 1.409 V. This novel porous 2D PFe-Pc has been designed logically using a new, simple strategy with ultrahigh electrochemical performances in Zn-air batteries and methanol fuel cell applications.

  11. Development of cathodic electrocatalysts for low temperature H2 fuel cell applications: Improving oxygen reduction activity through the manipulation of size, shape, and composition

    NASA Astrophysics Data System (ADS)

    Van Cleve, Timothy Blair

    In this dissertation, the oxygen reduction activity of metal nanoparticle electrocatalysts is improved through the manipulation of their size, shape, and composition. The design of superior catalysts first requires identifying processes that limit overall performance. On both silver and platinum electrodes, the rate of oxygen reduction is limited by the initial proton/electron transfer to O2, however the limited site availability also limits ORR activity of platinum at high electrochemical potentials. Different approaches must employed to improve the activity of platinum and silver electrocatalysts. The first project in this thesis describes the development of Pt alloy electrocatalysts with enhanced ORR activity compared to Pt/C standards. The design of Pt monolayer electrocatalysts is informed by quantum chemical calculations. By understanding how alloying impacts the reactivity of surface atoms, we are able to prepare a special class of catalysts with finely tunable activity dependent upon the composition of their nanoparticle core. The best performing materials have specific activities up to four times higher than Pt/C electrocatalysts. Rigorous characterization and electrochemical testing confirm these enhancements and the observed trends in activity result from the alloy structure rather than size and shape effects. The second project focuses on controlling the morphology of Ag electrocatalysts in order to improve their alkaline ORR activity. In this study, the rates on Ag nanospheres and Ag nanocubes are compared over a wide range of metal loadings. Contrary to our original hypothesis, nanospheres are found to be slightly more active than nanocubes. Rigorous experimental work confirms the reported shape dependence effects are consistent with the relative abundance of 111 and 100 sites on Ag nanoparticles.

  12. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    DOEpatents

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  13. Reduced graphene oxide (RGO)-supported NiCo2O4 nanoparticles: an electrocatalyst for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Das, Ashok Kumar; Layek, Rama K.; Kim, Nam Hoon; Jung, Daeseung; Lee, Joong Hee

    2014-08-01

    The design and development of cheap, highly active, and durable non-platinum (Pt)-based electrocatalysts for methanol electrooxidation is highly desirable, but is a challenging task. In this paper, we demonstrate the application of a hydrothermally synthesized NiCo2O4-reduced graphene oxide (RGO) composite as an electrocatalyst for the electrochemical oxidation of methanol in alkaline pH. The physicochemical properties of the NiCo2O4-RGO composite were investigated via Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The physical characterization methods confirm the deposition of NiCo2O4 nanoparticles on the RGO surface. The TEM image shows that the NiCo2O4 nanoparticles with an average size of ~10 nm are distributed over the RGO surface. Compared to RGO and NiCo2O4 nanoparticles, the NiCo2O4-RGO-based electrode shows excellent electrocatalytic activity for the oxidation of methanol in alkaline pH. On the NiCo2O4-RGO-based electrode, the oxidation of methanol occurs at ~0.6 V with a higher catalytic current density, and the response is highly stable. The excellent electrocatalytic activity of the NiCo2O4-RGO composite is attributed to the synergistic effects between the NiCo2O4 nanoparticles and RGO. Since the NiCo2O4-RGO composite shows a highly stable response during methanol oxidation reaction, it is a very promising material to be used as an electrocatalyst in the development of high performance non-Pt based alkaline fuel cells.The design and development of cheap, highly active, and durable non-platinum (Pt)-based electrocatalysts for methanol electrooxidation is highly desirable, but is a challenging task. In this paper, we demonstrate the application of a hydrothermally synthesized NiCo2O4-reduced graphene oxide (RGO) composite as an electrocatalyst for the electrochemical

  14. A Metal-Organic Framework Derived Porous Cobalt Manganese Oxide Bifunctional Electrocatalyst for Hybrid Na-Air/Seawater Batteries.

    PubMed

    Abirami, Mari; Hwang, Soo Min; Yang, Juchan; Senthilkumar, Sirugaloor Thangavel; Kim, Junsoo; Go, Woo-Seok; Senthilkumar, Baskar; Song, Hyun-Kon; Kim, Youngsik

    2016-12-07

    Spinel-structured transition metal oxides are promising non-precious-metal electrocatalysts for oxygen electrocatalysis in rechargeable metal-air batteries. We applied porous cobalt manganese oxide (CMO) nanocubes as the cathode electrocatalyst in rechargeable seawater batteries, which are a hybrid-type Na-air battery with an open-structured cathode and a seawater catholyte. The porous CMO nanocubes were synthesized by the pyrolysis of a Prussian blue analogue, Mn3[Co(CN)6]2·nH2O, during air-annealing, which generated numerous pores between the final spinel-type CMO nanoparticles. The porous CMO electrocatalyst improved the redox reactions, such as the oxygen evolution/reduction reactions, at the cathode in the seawater batteries. The battery that used CMO displayed a voltage gap of ∼0.53 V, relatively small compared to that of the batteries employing commercial Pt/C (∼0.64 V) and Ir/C (∼0.73 V) nanoparticles and without any catalyst (∼1.05 V) at the initial cycle. This improved performance was due to the large surface area (catalytically active sites) and the high oxidation states of the randomly distributed Co and Mn cations in the CMO. Using a hard carbon anode, the Na-metal-free seawater battery exhibited a good cycle performance with an average discharge voltage of ∼2.7 V and a discharge capacity of ∼190 mAh g(-1)hard carbon during 100 cycles (energy efficiencies of 74-79%).

  15. Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yan, Kai-Li; Shang, Xiao; Li, Zhen; Dong, Bin; Li, Xiao; Gao, Wen-Kun; Chi, Jing-Qi; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Designing mixed metal oxides with unique nanostructures as efficient electrocatalysts for water electrolysis has been an attractive approach for the storage of renewable energies. The ternary mixed metal spinel oxides FexNi1-xCo2O4 (x = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1) have been synthesized by a facile hydrothermal approach and calcination treatment using nickel foam as substrate. Fe/Ni ratios have been proved to affect the nanostructures of FexNi1-xCo2O, which imply different intrinsic activity for oxygen evolution reaction (OER). SEM images show that Fe0.5Ni0.5Co2O4 has the uniform nanowires morphology with about 30 nm of the diameter and 200-300 nm of the length. The OER measurements show that Fe0.5Ni0.5Co2O4 exhibits the better electrocatalytic performances with lower overpotential of 350 mV at J = 10 mA cm-2. In addition, the smaller Tafel slope of 27 mV dec-1 than other samples with different Fe/Ni ratios for Fe0.5Ni0.5Co2O4 is obtained. The improved OER activity of Fe0.5Ni0.5Co2O4 may be attributed to the synergistic effects from ternary mixed metals especially Fe-doping and the uniform nanowires supported on NF. Therefore, synthesizing Fe-doped multi-metal oxides with novel nanostructures may be a promising strategy for excellent OER electrocatalysts and it also provides a facile way for the fabrication of high-activity ternary mixed metal oxides electrocatalysts.

  16. Regenerating Pt-3d-Pt model electrocatalysts through oxidation-reduction cycles monitored at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Menning, Carl A.; Chen, Jingguang G.

    The interchange between the Pt-Ni-Pt and Ni-Pt-Pt bimetallic configurations in O 2 and H 2 is confirmed experimentally at atmospheric pressure using in situ X-ray absorption spectroscopy (XAS). The subsurface Pt-3d-Pt structure, a desirable configuration as cathode electrocatalysts for PEM fuel cells, is found to be preferred in the reducing environment of H 2 whereas the surface 3d-Pt-Pt configuration is preferred in O 2. This process has been found to be reversible, providing useful insights into the maintenance and regeneration of the desirable subsurface structure.

  17. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-11-01

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those

  18. Distant protonated pyridine groups in water-soluble iron porphyrin electrocatalysts promote selective oxygen reduction to water

    SciTech Connect

    Matson, Benjamin D.; Carver, Colin T.; Von Ruden, Amber L.; Yang, Jenny Y.; Raugei, Simone; Mayer, James M.

    2012-11-08

    Fe(III)-meso-tetra(pyridyl)porphines are selective electrocatalysts for the reduction of dioxygen to water in aqueous acidic solution. The 2-pyridyl derivatives, both the triflate and chloride salts, are more selective than the isomeric 4-pyridyl complexes. The improved selectivity of is ascribed to the inward-pointing pyridinium groups acting as intramolecular proton relays. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electrocatalysts with highly exposed active sites

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Wu, Qiang; Zhuo, Ou; Jiang, Yufei; Bu, Yongfeng; Yang, Lijun; Wang, Xizhang; Hu, Zheng

    2016-04-01

    Iron/nitrogen/carbon (Fe/N/C) catalyst is so far the most promising non-precious metal electrocatalyst for oxygen reduction reaction (ORR) in acidic medium, whose performance depends closely on the synthesis chemistry. Herein, we report a MnOx-induced strategy to construct the Fe/N/C with highly exposed Fe-Nx active sites, which involves the uniform spreading of polyaniline on hierarchical N-doped carbon nanocages by a reactive-template polymerization, followed by the successive iron incorporation and polyaniline pyrolysis. The resulting Fe/N/C demonstrates an excellent ORR performance, including an onset potential of 0.92 V (vs. RHE), four electron selectivity, superb stability and immunity to methanol crossover. The excellent performance is well correlated with the greatly enhanced surface active sites of the catalyst stemming from the unique MnOx-induced strategy. This study provides an efficient approach for exploring the advanced ORR electrocatalysts by increasing the exposed active sites.Iron/nitrogen/carbon (Fe/N/C) catalyst is so far the most promising non-precious metal electrocatalyst for oxygen reduction reaction (ORR) in acidic medium, whose performance depends closely on the synthesis chemistry. Herein, we report a MnOx-induced strategy to construct the Fe/N/C with highly exposed Fe-Nx active sites, which involves the uniform spreading of polyaniline on hierarchical N-doped carbon nanocages by a reactive-template polymerization, followed by the successive iron incorporation and polyaniline pyrolysis. The resulting Fe/N/C demonstrates an excellent ORR performance, including an onset potential of 0.92 V (vs. RHE), four electron selectivity, superb stability and immunity to methanol crossover. The excellent performance is well correlated with the greatly enhanced surface active sites of the catalyst stemming from the unique MnOx-induced strategy. This study provides an efficient approach for exploring the advanced ORR electrocatalysts by increasing the

  20. Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Park, Minju; Lee, Taemin; Kim, Byeong-Su

    2013-11-01

    Oxygen reduction reaction (ORR) is an important reaction in energy conversion systems such as fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive materials for use as electrocatalysts by virtue of their excellent electrocatalytic activity, high conductivity, and large surface area. This study reports the synthesis of highly efficient electrocatalysts based on heteroatom-doped graphene nanosheets prepared through covalent functionalization using various small organic molecules and a subsequent thermal treatment. A series of nitrogen-doped reduced graphene oxide (NRGOn) nanosheets exhibited varying degrees and configurations of nitrogen atoms within the graphitic framework depending on the type of precursors used. On the basis of the rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) experiments, NRGO3, with a high degree of pyridinic-N content, displayed the desired one-step, quasi-four-electron transfer pathway during ORR, similar to commercial Pt/C. We also demonstrated the potential of covalent functionalization of sulfur and boron-doped graphene nanosheets.Oxygen reduction reaction (ORR) is an important reaction in energy conversion systems such as fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive materials for use as electrocatalysts by virtue of their excellent electrocatalytic activity, high conductivity, and large surface area. This study reports the synthesis of highly efficient electrocatalysts based on heteroatom-doped graphene nanosheets prepared through covalent functionalization using various small organic molecules and a subsequent thermal treatment. A series of nitrogen-doped reduced graphene oxide (NRGOn) nanosheets exhibited varying degrees and configurations of nitrogen atoms within the graphitic framework depending on the type of precursors used. On the basis of the rotating disk electrode (RDE) and rotating ring-disk electrode

  1. Electrodeposition of nickel-phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Gu, Shuang; Li, Chang Ming

    2015-12-01

    Nickel-phosphorus nanoparticles film on copper foam (Ni-P/CF) was prepared by electrodeposition. This electrocatalyst shows high catalytic activity and durability toward both hydrogen and oxygen evolution reactions in basic electrolytes. The results show that Ni-P/CF can deliver a current density of 10 mA cm-2 at an overpotential of 98 mV for hydrogen production and 325 mV for oxygen generating. A two-electrode water electrolyzer using Ni-P/CF as cathode and anode produces 10 mA cm-2 at a cell voltage of 1.68 V with high stability.

  2. Cerium carbide embedded in nitrogen-doped carbon as a highly active electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Xue, Shouyuan; Li, Jinmei; Wang, Fengxia; Kang, Yumao; Lei, Ziqiang

    2017-08-01

    In this study, cerium carbide embedded in nitrogen-doped carbon (CeCx-NC) has been prepared by a facile pyrolysis of melamine formaldehyde resin containing rare-earth element. The as-prepared CeCx-NC catalyst shows high electrocatalytic activity towards oxygen reduction reaction (ORR) in alkaline electrolyte, with the half wave potential being almost equal to commercial Pt/C, nearly four electron transfer number, good toxicity tolerance durability and cycle stability. This rare-earth metal carbide opens a novel avenue for advanced electrocatalyst.

  3. Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction

    SciTech Connect

    Lee, Cheol-Ho; Yun, Jin-Mun; Lee, Sungho; Jo, Seong Mu; Yoo, Sung Jong; Cho, Eun Ae; Khil, Myung-Seob; Joh, Han-Ik

    2014-11-15

    Nitrogen doped graphene oxide (Nr-GO) with properties suitable for electrocatalysts is easily synthesized using phenylhydrazine as a reductant at relatively low temperature. The reducing agent removes various oxygen functional groups bonded to graphene oxide and simultaneously dope the nitrogen atoms bonded with phenyl group all over the basal planes and edge sites of the graphene. The Nr-GO exhibits remarkable electrocatalytic activities for oxygen reduction reaction compared to the commercial carbon black and graphene oxide due to the electronic modification of the graphene structure. In addition, Nr-GO shows excellent dispersibility in various solvent due to the dopant molecules.

  4. Pt and Pt-Ru/Carbon Nanotube Nanocomposites Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells

    SciTech Connect

    Lin, Yuehe; Cui, Xiaoli; Wang, Jun; Yen, Clive; Wai, Chien M.

    2006-06-01

    In recent years, the use of supercritical fluids (SCFs) for the synthesis and processing of nanomaterials has proven to be a rapid, direct, and clean approach to develop nanomaterials and nanocomposites. The application of supercritical fluid technology can result in products (and processes) that are cleaner, less expensive, and of higher quality than those that are produced using conventional technologies and solvents. In this work, carbon nanotube (CNT)-supported Pt and Pt-Ru nanoparticles catalysts have been synthesized in supercritical carbon dioxide (scCO2). The experimental results demonstrate that Pt, Pt-Ru/CNT nanocomposites synthesized in supercritical carbon dioxide are effective electrocatalysts for low-temperature fuel cells.

  5. Synthesis of cubic PtPd alloy nanoparticles as anode electrocatalysts for methanol and formic acid oxidation reactions.

    PubMed

    Lee, Jin-Yeon; Kwak, Da-Hee; Lee, Young-Woo; Lee, Seul; Park, Kyung-Won

    2015-04-14

    The electrocatalytic properties for electro-oxidation reactions of shape-controlled Pt-based catalysts have been improved by alloying with 2nd elements. In this study, we demonstrate cubic PtPd alloy nanoparticles synthesized using a thermal decomposition method. The cubic PtPd nanoparticles exhibit a homogeneous distribution of alloy nanostructures in the presence of Pt and Pd metallic phases. The improved electrocatalytic activity for the electro-oxidation reactions of methanol and formic acid as chemical fuels might be attributed to the cubic alloy nanostructures. Furthermore, the cubic PtPd alloy nanoparticles as electrocatalysts exhibit excellent stability for electro-oxidation reactions.

  6. Highly Selective and Stable Reduction of CO2 to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst.

    PubMed

    Lu, Xunyu; Tan, Tze Hao; Ng, Yun Hau; Amal, Rose

    2016-08-16

    A stable and selective electrocatalyst for CO2 reduction was fabricated by covalently attaching graphitic carbon nitride onto multiwall carbon nanotubes (g-C3 N4 /MWCNTs). The as-prepared composite is able to reduce CO2 exclusively to CO with a maximum Faraday efficiency of 60 %, and no decay in the catalytic activity was observed even after 50 h of reaction. The enhanced catalytic activity towards CO2 reduction is attributed to the formation of active carbon-nitrogen bonds, high specific surface area, and improved material conductivity of the g-C3 N4 /MWCNT composite.

  7. Selective deposition of Pt onto supported metal clusters for fuel cell electrocatalysts

    NASA Astrophysics Data System (ADS)

    Jeon, Tae-Yeol; Pinna, Nicola; Yoo, Sung Jong; Ahn, Docheon; Choi, Sun Hee; Willinger, Marc-Georg; Cho, Yong-Hun; Lee, Kug-Seung; Park, Hee-Young; Yu, Seung-Ho; Sung, Yung-Eun

    2012-09-01

    We report a new method for deposition of Pt on a metal core to develop real electrocatalysts with significantly reduced amounts of expensive Pt as well as enhanced activity for oxygen reduction reaction. Ru and Pd have different crystal structures and modify the electronic structure of Pt to a different extent (shifts in d-band center). They were chosen as core materials to examine whether hydroquinone dissolved in ethanol can be used to deposit additional Pt atoms onto preformed core nanoparticles, and whether the modified d-character of Pt on different host metals can result in the enhanced ORR activity. The physicochemical characteristics of Pd-Pt and Ru-Pt core-shell nanoparticles are investigated. The core-shell structure was identified through a combination of experimental methods, employing electron microscopy, electrochemical measurements, and synchrotron X-ray measurements such as powder X-ray diffraction, X-ray absorption fine structure, and X-ray photoelectron spectroscopy. The hydroquinone reduction method proved to be an excellent route for the epitaxial growth of a Pt shell on the metal cores, leading to enhanced ORR activities.We report a new method for deposition of Pt on a metal core to develop real electrocatalysts with significantly reduced amounts of expensive Pt as well as enhanced activity for oxygen reduction reaction. Ru and Pd have different crystal structures and modify the electronic structure of Pt to a different extent (shifts in d-band center). They were chosen as core materials to examine whether hydroquinone dissolved in ethanol can be used to deposit additional Pt atoms onto preformed core nanoparticles, and whether the modified d-character of Pt on different host metals can result in the enhanced ORR activity. The physicochemical characteristics of Pd-Pt and Ru-Pt core-shell nanoparticles are investigated. The core-shell structure was identified through a combination of experimental methods, employing electron microscopy

  8. Synthesis and Characterization of CO- and H2S- Tolerant Electrocatalysts for PEM Fuel Cell

    SciTech Connect

    Shamsuddin Ilias

    2006-12-31

    The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we have synthesized a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. Co-catalytic activities were found for the elements Mo, Ru, and Ir. Both the ternary (Pt/Ru/Mo/C) and quaternary (Pt/Ru/Mo/Ir/C) metal catalysts in membrane electrode assemblies (MEA) outperformed pure Pt/C catalysts at all levels in presence of CO up to 100 ppm. Preliminary results suggest that by substituting Mo, Ru, and Ir in catalyst formulation, it is possible to reduce Pt-loading and increase CO-tolerance in PEMFC application. Comparison studies showed that the newly developed ternary and quaternary catalysts with lower Pt outperformed pure Pt catalyst in presence of CO-contaminated H{sub 2} fuel. High performance at low Pt loading of less than 0.4 mg/cm{sup 2} was achieved, thus exceeding the initial targets.

  9. Electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications

    NASA Astrophysics Data System (ADS)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1989-12-01

    In most instances separate electrocatalysts are needed to promote the reduction of O2 in the fuel cell mode and to generate O2 in the energy storage-water electrolysis mode in aqueous electrochemical systems operating at low and moderate temperatures (T greater than or equal to 200 C). Interesting exceptions are the lead and bismuth ruthenate pyrochlores in alkaline electrolytes. These catalysts on high area carbon supports have high catalytic activity for both O2 reduction and generation (1,2). Rotating ring-disk electrode measurements provide evidence that the O2 reduction proceeds by a parallel four-electron pathway. The ruthenates can also be used as self-supported catalysts to avoid the problems associated with carbon oxidation, but the electrode performance so far achieved in the research at Case Western Reserve University (CWRU) is considerably less. At the potentials involved in the anodic mode the ruthenate pyrochlores have substantial equilibrium solubility in concentrated alkaline electrolyte. This results in the loss of catalyst into the bulk solution and a decline in catalytic activity. Furthermore, the hydrogen generation counter electrode may become contaminated with reduction products from the pyrochlores (lead, ruthenium). A possible approach to this problem is to immobilize the pyrochlore catalyst within an ionic-conducting solid polymer, which would replace the fluid electrolyte within the porous gas diffusion O2 electrode. For bulk alkaline electrolyte, an anion-exchange polymer is needed with a transference number close to unity for the Oh(-) ion. Preliminary short-term measurements with lead ruthenates using a commercially available partially-fluorinated anion-exchange membrane as an overlayer on the porous gas-fed electrode indicate lower anodic polarization and virtually unchanged cathodic polarization.

  10. Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Bo; Yin, Ge-Ping; Lin, Yong-Ge

    This research aims at enhancement of the performance of anodic catalysts for the direct ethanol fuel cell (DEFC). Two distinct DEFC nanoparticle electrocatalysts, PtRuMo/C and PtRu/C, were prepared and characterized, and one glassy carbon working electrode for each was employed to evaluate the catalytic performance. The cyclic-voltammetric, chronoamperometric, and amperometric current-time measurements were done in the solution 0.5 mol L -1 CH 3CH 2OH and 0.5 mol L -1 H 2SO 4. The composition, particle sizes, lattice parameters, morphology, and the oxidation states of the metals on nanoparticle catalyst surfaces were determined by energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), transmission electron micrographs (TEM) and X-ray photoelectron spectrometer (XPS), respectively. The results of XRD analysis showed that both PtRuMo/C and PtRu/C had a face-centered cubic (fcc) structure with smaller lattice parameters than that of pure platinum. The typical particle sizes were only about 2.5 nm. Both electrodes showed essentially the same onset potential as shown in the CV for ethanol electrooxidation. Despite their comparable active specific areas, PtRuMo/C was superior to PtRu/C in respect of the catalytic activity, durability and CO-tolerance. The effect of Mo in the PtRuMo/C nanoparticle catalyst was illustrated with a bifunctional mechanism, hydrogen-spillover effect and the modification on the Pt electronic states.

  11. Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer

    NASA Astrophysics Data System (ADS)

    Cruz, J. C.; Baglio, V.; Siracusano, S.; Ornelas, R.; Ortiz-Frade, L.; Arriaga, L. G.; Antonucci, V.; Aricò, A. S.

    2011-04-01

    Nanosized IrO2 electrocatalysts ( d 7-9 nm) with specific surface area up to 100 m2 g-1 were synthesized and characterized for the oxygen evolution reaction in a solid polymer electrolyte (SPE) electrolyzer. The catalysts were prepared by a colloidal method in aqueous solution and a subsequent thermal treatment. An iridium hydroxide hydrate precursor was obtained at 100 °C, which was, successively, calcined at different temperatures from 200 to 500 °C. The physico-chemical characterization was carried out by X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC) and transmission electron microscopy (TEM). IrO2 catalysts were sprayed onto a Nafion 115 membrane up to a loading of 3 mg cm-2. A Pt catalyst was used at the cathode compartment with a loading of 0.6 mg cm-2. The electrochemical activity for water electrolysis of the membrane-electrode assemblies (MEAs) was investigated in a single cell SPE electrolyzer by steady-state polarization curves, impedance spectroscopy and chrono-amperometric measurements. A maximum current density of 1.3 A cm-2 was obtained at 1.8 V and 80 °C for the IrO2 catalyst calcined at 400 °C for 1 h. A stable performance was recorded in single cell for this anode catalyst at 80 °C. The suitable catalytic activity and stability of the most performing catalyst were interpreted in terms of proper combination between nanostructure and suitable morphology.

  12. Electrocatalysts for oxygen electrodes in fuel cells and water electrolyzers for space applications

    NASA Technical Reports Server (NTRS)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1989-01-01

    In most instances separate electrocatalysts are needed to promote the reduction of O2 in the fuel cell mode and to generate O2 in the energy storage-water electrolysis mode in aqueous electrochemical systems operating at low and moderate temperatures (T greater than or equal to 200 C). Interesting exceptions are the lead and bismuth ruthenate pyrochlores in alkaline electrolytes. These catalysts on high area carbon supports have high catalytic activity for both O2 reduction and generation (1,2). Rotating ring-disk electrode measurements provide evidence that the O2 reduction proceeds by a parallel four-electron pathway. The ruthenates can also be used as self-supported catalysts to avoid the problems associated with carbon oxidation, but the electrode performance so far achieved in the research at Case Western Reserve University (CWRU) is considerably less. At the potentials involved in the anodic mode the ruthenate pyrochlores have substantial equilibrium solubility in concentrated alkaline electrolyte. This results in the loss of catalyst into the bulk solution and a decline in catalytic activity. Furthermore, the hydrogen generation counter electrode may become contaminated with reduction products from the pyrochlores (lead, ruthenium). A possible approach to this problem is to immobilize the pyrochlore catalyst within an ionic-conducting solid polymer, which would replace the fluid electrolyte within the porous gas diffusion O2 electrode. For bulk alkaline electrolyte, an anion-exchange polymer is needed with a transference number close to unity for the Oh(-) ion. Preliminary short-term measurements with lead ruthenates using a commercially available partially-fluorinated anion-exchange membrane as an overlayer on the porous gas-fed electrode indicate lower anodic polarization and virtually unchanged cathodic polarization.

  13. Triarylphosphine-stabilized platinum nanoparticles in three-dimensional nanostructured films as active electrocatalysts.

    PubMed

    Kostelansky, Cynthia N; Pietron, Jeremy J; Chen, Mu-San; Dressick, Walter J; Swider-Lyons, Karen E; Ramaker, David E; Stroud, Rhonda M; Klug, Christopher A; Zelakiewicz, Brian S; Schull, Terence L

    2006-11-02

    Ligand-stabilized platinum nanoparticles (Pt NPs) can be used to build well-defined three-dimensional (3-D) nanostructured electrodes for better control of the catalyst architecture in proton exchange membrane fuel cells (PEMFCs). Platinum NPs of 1.7 +/- 0.5 nm diameter stabilized by the water-soluble phosphine ligand, tris(4-phosphonatophenyl)phosphine (TPPTP, P(4-C6H4PO3H2)3), were prepared by ethylene glycol reduction of chloroplatinic acid and subsequent treatment of the isolated nanoparticles with TPPTP. The isolated TPPTP-stabilized Pt NPs were characterized by multinuclear magnetic resonance spectroscopy (31P and 195Pt NMR), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). The negatively charged TPPTP-Pt NPs were electrostatically deposited onto a glassy carbon electrode (GCE) modified with protonated 4-aminophenyl functional groups (APh). Multilayers were assembled via electrostatic layer-by-layer deposition with cationic poly(allylamine HCl) (PAH). These multilayer films are active for the key hydrogen fuel cell reactions, hydrogen oxidation (anode) and oxygen reduction (cathode). Using a rotating disk electrode configuration, fully mass-transport limited kinetics for hydrogen oxidation was obtained after 3 layers of TPPTP-Pt NPs with a total Pt loading of 4.2 microg/cm2. Complete reduction of oxygen by four electrons was achieved with 4 layers of TPPTP-Pt NPs and a total Pt loading of 5.6 microg/cm2. A maximum current density for oxygen reduction was reached with these films after 5 layers resulting in a mass-specific activity, i(m), of 0.11 A/mg(Pt) at 0.9 V. These films feature a high electrocatalytic activity and can be used to create systematic changes in the catalyst chemistry and architecture to provide insight for building better electrocatalysts.

  14. Catalysts and electrocatalysts for the selective oxidation of propylene. Annual report

    SciTech Connect

    1995-02-14

    This paper presents a summary of the status of the work on three topics: synthesis and characterization of the Mn doped bismuth vanadates; electrode studies; and oxygen permeation. The authors have made a detailed study of manganese doped bismuth vanadates with the general composition Bi{sub 2}V{sub 1{minus}x}Mn{sub x}O{sub 5.5{minus}{delta}}. The phase diagram of Bi{sub 2}V{sub 1{minus}x}Mn{sub x}O{sub 5.5{minus}{delta}} has been investigated by diffraction and thermal analysis and they have found that the tetragonal phase can be stabilized in the composition range 0.1 {le} x {le} 0.25. The have used ac impedance techniques to study the properties of some electrocatalysts. The objective was to investigate the utility of the technique for obtaining mechanistic information relevant to an electrocatalytic reactor. Initial studies were of oxygen activation on silver electrodes. Finally, they have constructed an apparatus for high temperature permeation measurements and studied one system, the defect perovskite oxide SrCo{sub 0.8}Fe{sub 0.2}O{sub 3{minus}{delta}} (SCFO), in detail. Important conclusions of the work are to confirm the high permeation rates at high temperature (a flux of 10{sup {minus}6} mol/sec cm{sup 2} is equivalent to 1 cm{sup 3}/min cm{sup 2}) and to demonstrate that the surface exchange kinetics were rate limiting for this material.

  15. Kinetic Analysis of Competitive Electrocatalytic Pathways: New Insights into Hydrogen Production with Nickel Electrocatalysts

    SciTech Connect

    Wiedner, Eric S.; Brown, Houston J.; Helm, Monte L.

    2016-01-20

    The hydrogen production electrocatalyst Ni(PPh2NPh2)22+ (1) is capable of traversing multiple electrocatalytic pathways. When using dimethylformamidium, DMF(H)+, the mechanism of formation of H2 catalyzed by 1 changes from an ECEC to an EECC mechanism as the potential approaches the Ni(I/0) couple. Two recent electrochemical methods, current-potential analysis and foot-of-the-wave analysis (FOWA), were performed on 1 to measure the detailed chemical kinetics of the competing ECEC and EECC pathways. A sensitivity analysis was performed on the electrochemical methods using digital simulations to gain a better understanding of their strengths and limitations. Notably, chemical rate constants were significantly underestimated when not accounting for electron transfer kinetics, even when electron transfer was fast enough to afford a reversible non-catalytic wave. The EECC pathway of 1 was found to be faster than the ECEC pathway under all conditions studied. Using buffered DMF: DMF(H)+ mixtures led to an increase in the catalytic rate constant (kobs) of the EECC pathway, but kobs for the ECEC pathway did not change when using buffered acid. Further kinetic analysis of the ECEC path revealed that added base increases the rate of isomerization of the exo-protonated Ni(0) isomers to the catalytically active endo-isomers, but decreases the net rate of protonation of Ni(I). FOWA on 1 did not provide accurate rate constants due to incomplete reduction of the exo-protonated Ni(I) intermediate at the foot of the wave, but FOWA could be used to estimate the reduction potential of this previously undetected intermediate. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  16. Nano/micro-patterning the membrane-electrocatalyst layer for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Omosebi, Ayokunle O.

    Polymer electrolyte membrane fuel cells (PEMFCs) are high energy density electrochemical devices capable of directly converting stored chemical potential into electricity. Their many attributes, including low emissions, quiet operation, scalability, modularity and efficiency make them attractive alternatives to conventional portable and stationary power sources. The emergence of the PEMFC as a dominant technology for electrical power generation is however currently limited by performance losses and the cost of the membrane electrode assembly (MEA). The basic architecture of the MEA, which has remained largely unchanged for over four decades, consists of ink-based platinum supported on carbon catalyst layers dispersed on either side of a Nafion membrane. In order to generate power from the electrochemical reaction, protons, electrons, and oxidant must be available at the catalyst layer-Nafion ionomer interface. As such, to improve performance, the availability of this interface should be maximized without increasing the transport resistance for reactants accessing the reaction plane. To achieve this objective, the membrane-electrode interface could be restructured to possess a larger interfacial area by creating nano/microfeatures on the Nafion membrane. This work introduces electron beam lithography coupled with dry etching and sputtering strategies for creating membrane-electrode structures with over-potential suppression characteristics in PEMFCs. Electron beam lithography provides the ability to fabricate nano/microfeatures in an electron beam sensitive material, while pattern transfer and aspect-ratio control is achieved with dry etching. Conventional and ultra-thin catalyst layers were fabricated by spraying and sputter deposition, and methanol and hydrogen were tested as fuels. Experiments involving the patterned MEA elucidate improved properties that lead to PEMFC performance enhancement. The ability to directly pattern a Nafion membrane-electrocatalyst

  17. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Lee, Jang Yeol; Kim, Na Young; Shin, Dong Yun; Park, Hee-Young; Lee, Sang-Soo; Joon Kwon, S.; Lim, Dong-Hee; Bong, Ki Wan; Son, Jeong Gon; Kim, Jin Young

    2017-03-01

    Transition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe2O3) microparticles with melamine. The heat treatment leads to transformation of Fe2O3 microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E1/2 of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm-2 indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.

  18. K1.33Mn8O16 as an electrocatalyst and a cathode

    NASA Astrophysics Data System (ADS)

    Jalili, Seifollah; Moharramzadeh Goliaei, Elham; Schofield, Jeremy

    2017-02-01

    Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K1.33Mn8O16 materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K1.33Mn8O16 that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn4+ ions to Mn3+, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-band center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K1.33Mn8O16 structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of 1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K1.33Mn8O16 nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries.

  19. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2017-01-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  20. [MoO(S2)2L]1- (L = picolinate or pyrimidine-2-carboxylate) Complexes as MoSx Inspired Electrocatalysts for Hydrogen Production in Aqueous Solution.

    PubMed

    Garrett, Benjamin R; Click, Kevin A; Durr, Christopher B; Hadad, Christopher M; Wu, Yiying

    2016-10-03

    Crystalline and amorphous molybdenum sulfide (Mo-S) catalysts are leaders as earth abundant materials for electrocatalytic hydrogen production. The development of a molecular motif inspired by the Mo-S catalytic materials and their active sites is of interest, as molecular species possess a great degree of tunable electronic prop-erties. Furthermore, these molecular mimics may be important for providing mechanistic insights towards the hydrogen evolution reaction (HER) with Mo-S electrocatalysts. Herein is presented two water soluble Mo-S complexes based around the [MoO(S2)2L2]1- motif. We present 1H-NMR spectra that reveal (NEt4)[MoO(S2)2picolinate] (Mo-pic) is stable in a d6-DMSO solution after heating at 100 °C, in air, revealing unprecedented thermal and aerobic stability of the homogenous electrocatalyst. Both Mo-pic and (NEt4)[MoO(S2)2pyrimidine-2-carboxylate] (Mo-pym) are shown to be homogenous electrocatalysts for the HER. The TOF of 27-34 s-1 and 42-48 s-1 for Mo-pic and Mo-pym and onset potentials of 240 mV and 175 mV for Mo-pic and Mo-pym respectively reveal these complexes as promising electrocatalysts for the HER.

  1. An Efficient Bifunctional Electrocatalyst for a Zinc-Air Battery Derived from Fe/N/C and Bimetallic Metal-Organic Framework Composites.

    PubMed

    Wang, Mengfan; Qian, Tao; Zhou, Jinqiu; Yan, Chenglin

    2017-02-15

    Efficient bifunctional electrocatalysts with desirable oxygen activities are closely related to practical applications of renewable energy systems including metal-air batteries, fuel cells, and water splitting. Here a composite material derived from a combination of bimetallic zeolitic imidazolate frameworks (denoted as BMZIFs) and Fe/N/C framework was reported as an efficient bifunctional catalyst. Although BMZIF or Fe/N/C alone exhibits undesirable oxygen reaction activity, a combination of these materials shows unprecedented ORR (half-wave potential of 0.85 V as well as comparatively superior OER activities (potential@10 mA cm(-2) of 1.64 V), outperforming not only a commercial Pt/C electrocatalyst but also most reported bifunctional electrocatalysts. We then tested its practical application in Zn-air batteries. The primary batteries exhibit a high peak power density of 235 mW cm(-2), and the batteries are able to be operated smoothly for 100 cycles at a curent density of 10 mA cm(-2). The unprecedented catalytic activity can be attritued to chemical coupling effects between Fe/N/C and BMZIF and will aid the development of highly active electrocatalysts and applications for electrochemical energy devices.

  2. An Operando Investigation of (Ni–Fe–Co–Ce)Ox System as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction

    SciTech Connect

    Favaro, Marco; Drisdell, Walter S.; Marcus, Matthew A.; Gregoire, John M.; Crumlin, Ethan J.; Haber, Joel A.; Yano, Junko

    2016-12-27

    The oxygen evolution reaction (OER) is a critical component of industrial processes such as electrowinning of metals and the chlor-alkali process. It also plays a central role in the development of a renewable energy field for generation a solar fuels by providing both the protons and electrons needed to generate fuels such as H2 or reduced hydrocarbons from CO2. To improve these processes, it is necessary to expand the fundamental understanding of catalytically active species at low overpotential, which will further the development of electrocatalysts with high activity and durability. In this context, performing experimental investigations of the electrocatalysts under realistic working regimes (i.e., under operando conditions) is of crucial importance. In this paper, we study a highly active quinary transition-metal-oxide-based OER electrocatalyst by means of operando ambient-pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy performed at the solid/liquid interface. We observe that the catalyst undergoes a clear chemical-structural evolution as a function of the applied potential with Ni, Fe, and Co oxyhydroxides comprising the active catalytic species. Finally, while CeO2 is redox inactive under catalytic conditions, its influence on the redox processes of the transition metals boosts the catalytic activity at low overpotentials, introducing an important design principle for the optimization of electrocatalysts and tailoring of high-performance materials.

  3. Ternary Pd-Ni-P hybrid electrocatalysts derived from Pd-Ni core-shell nanoparticles with enhanced formic acid oxidation activity.

    PubMed

    Liang, Xin; Liu, Bo; Zhang, Juntao; Lu, Siqi; Zhuang, Zhongbin

    2016-09-25

    Ternary Pd-Ni-P hybrid electrocatalysts were synthesized through low temperature phosphidation of Pd-Ni core-shell nanoparticles. They show enhanced formic acid electro-oxidation activity compared to Pd, Pd-Ni and Pd-P nanoparticles, which is ascribed to the synergistic effect of the Ni and P components with Pd.

  4. Preparation and characterization of Pt-CeO2/C and Pt-TiO2/C electrocatalysts with improved electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Hameed, R. M. Abdel; Amin, R. S.; El-Khatib, K. M.; Fetohi, Amani E.

    2016-03-01

    Pt-TiO2/C and Pt-CeO2/C electrocatalysts were synthesized by solid state reaction of TiO2/C and CeO2/C powders using intermittent microwave heating, followed by chemical reduction of platinum ions using mixed reducing agents of ethylene glycol and sodium borohydride. The crystal structure, surface morphology and chemical composition of prepared electrocatalysts were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). The phase angle values of different Pt diffraction planes in Pt-TiO2/C and Pt-CeO2/C were shifted in the positive direction relative to those in Pt/C. Pt particles with diameter values of 3.06 and 2.78 nm were formed in Pt-TiO2/C and Pt-CeO2/C, respectively. The electrochemical performance of prepared electrocatalysts was examined using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Pt-CeO2/C showed an enhanced oxidation current density when compared to Pt/C. Long time oxidation test at Pt-TiO2/C and Pt-CeO2/C revealed their improved stability. Lower charge transfer resistance values were estimated at Pt-metal oxide/C electrocatalysts.

  5. Characterization of Au and Bimetallic PtAu Nanoparticles on PDDA-Graphene Sheets as Electrocatalysts for Formic Acid Oxidation.

    PubMed

    Yung, Tung-Yuan; Liu, Ting-Yu; Huang, Li-Ying; Wang, Kuan-Syun; Tzou, Huei-Ming; Chen, Po-Tuan; Chao, Chi-Yang; Liu, Ling-Kang

    2015-12-01

    Nanocomposite materials of the Au nanoparticles (Au/PDDA-G) and the bimetallic PtAu nanoparticles on poly-(diallyldimethylammonium chloride) (PDDA)-modified graphene sheets (PtAu/PDDA-G) were prepared with hydrothermal method at 90 °C for 24 h. The composite materials Au/PDDA-G and PtAu/PDDA-G were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) for exploring the structural characterization for the electrochemical catalysis. According to TEM results, the diameter of Au and bimetallic PtAu nanoparticles is about 20-50 and 5-10 nm, respectively. X-ray diffraction (XRD) results indicate that both of PtAu and Au nanoparticles exhibit the crystalline plane of (111), (200), (210), and (311). Furthermore, XRD data also show the 2°-3° difference between pristine graphene sheets and the PDDA-modified graphene sheets. For the catalytic activity tests of Au/PDDA-G and PtAu/PDDA-G, the mixture of 0.5 M aqueous H2SO4 and 0.5 M aqueous formic acid was used as model to evaluate the electrochemical characterizations. The catalytic activities of the novel bimetallic PtAu/graphene electrocatalyst would be anticipated to be superior to the previous electrocatalyst of the cubic Pt/graphene.

  6. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts.

    PubMed

    Jiang, Hongliang; Yao, Yifan; Zhu, Yihua; Liu, Yanyan; Su, Yunhe; Yang, Xiaoling; Li, Chunzhong

    2015-09-30

    It is highly crucial and challenging to develop bifunctional oxygen electrocatalysts for oxygen reduction reactions (ORRs) and oxygen evolution reactions (OERs) in rechargeable metal-air batteries and unitized regenerative fuel cells (URFCs). Herein, a facile and cost-effective strategy is developed to prepare mesoporous Fe-N-doped graphene-like carbon architectures with uniform Fe3C nanoparticles encapsulated in graphitic layers (Fe3C@NG) via a one-step solid-state thermal reaction. The optimized Fe3C@NG800-0.2 catalyst shows comparable ORR activity with the state-of-the-art Pt/C catalyst and OER activity with the benchmarking RuO2 catalyst. The oxygen electrode activity parameter ΔE (the criteria for judging the overall catalytic activity of bifunctional electrocatalysts) value for Fe3C@NG800-0.2 is 0.780 V, which surpasses those of Pt/C and RuO2 catalysts as well as those of most nonprecious metal catalysts. Significantly, excellent long-term catalytic durability holds great promise in fields of rechargeable metal-air batteries and URFCs.

  7. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions.

    PubMed

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-12-21

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.

  8. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures.

    PubMed

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-03-08

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm(-2) and a turnover frequency of 4.1 s(-1) at the overpotential of 0.52 V in a near-neutral aqueous solution.

  9. Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Lu, Lu; Xu, Kongliang; Wang, Heming; Jin, Yinghua; Jason Ren, Zhiyong; Liu, Zhenning; Zhang, Wei

    2016-05-01

    Developing efficient, readily available, and sustainable electrocatalysts for oxygen reduction reaction (ORR) in neutral medium is of great importance to practical applications of microbial fuel cells (MFCs). Herein, a porous nitrogen-doped carbon material with encapsulated Fe-based nanoparticles (Fe-Nx/C) has been developed and utilized as an efficient ORR catalyst in MFCs. The material was obtained through pyrolysis of a highly porous organic polymer containing iron(II) porphyrins. The characterizations of morphology, crystalline structure and elemental composition reveal that Fe-Nx/C consists of well-dispersed Fe-based nanoparticles coated by N-doped graphitic carbon layer. ORR catalytic performance of Fe-Nx/C has been evaluated through cyclic voltammetry and rotating ring-disk electrode measurements, and its application as a cathode electrocatalyst in an air-cathode single-chamber MFC has been investigated. Fe-Nx/C exhibits comparable or better performance in MFCs than 20% Pt/C, displaying higher cell voltage (601 mV vs. 591 mV), maximum power density (1227 mW m-2 vs. 1031 mW m-2) and Coulombic efficiency (50% vs. 31%). These findings indicate that Fe-Nx/C is more tolerant and durable than Pt/C in a system with bacteria metabolism and thus holds great potential for practical MFC applications.

  10. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    PubMed Central

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-01-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications. PMID:27336795

  11. Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie

    2017-09-01

    Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.

  12. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.

    PubMed

    Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying

    2016-12-15

    The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Shang, Xiao; Yan, Kai-Li; Lu, Shan-Shan; Dong, Bin; Gao, Wen-Kun; Chi, Jing-Qi; Liu, Zi-Zhang; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Developing cost-effective electrocatalysts with both high activity and stability remains challenging for oxygen evolution reaction (OER) in water electrolysis. Herein, based on V-doped nickel sulfide nanowire on nickel foam (NiVS/NF), we further conduct controllable electrodeposition of Fe hydroxides film on NiVS/NF (eFe/NiVS/NF) to further improve OER performance and stability. For comparison, ultrafast chemical deposition of Fe hydroxides on NiVS/NF (uFe/NiVS/NF) is also utilized. V-doping of NiVS/NF may introduce more active sites for OER, and nanowire structure can expose abundant active sites and facilitate mass transport. Both of the two depositions generate amorphous Fe hydroxides film covering on the surface of nanowires and lead to enhanced OER activities. Furthermore, electrodeposition strategy realizes uniform Fe hydroxides film on eFe/NiVS/NF confirmed by superior OER activity of eFe/NiVS/NF than uFe/NiVS/NF with relatively enhanced stability. The OER activity of eFe/NiVS/NF depends on various electrodepositon time, and the optimal time (15 s) is obtained with maximum OER activity. Therefore, the controllable electrodeposition of Fe may provide an efficient and simple strategy to enhance the OER properties of electrocatalysts.

  14. Large-area snow-like MoSe2 monolayers: synthesis, growth mechanism, and efficient electrocatalyst application

    NASA Astrophysics Data System (ADS)

    Huang, Jingwen; Liu, Huiqiang; Jin, Bo; Liu, Min; Zhang, Qingchun; Luo, Liqiong; Chu, Shijin; Chu, Sheng; Peng, Rufang

    2017-07-01

    This study explores the large-area synthesis of controllable morphology, uniform, and high-quality monolayer. MoSe2 is essential for its potential application in optoelectronics, photocatalysis, and renewable energy sources. In this study, we successfully synthesized snow-like MoSe2 monolayers using a simple chemical vapor deposition method. Results reveal that snow-like MoSe2 is a single crystal with a hexagonal structure, a thickness of ∼0.9 nm, and a lateral dimension of up to 20 μm. The peak position of the photoluminescence spectra is ∼1.52 eV corresponding to MoSe2 monolayer. The growth mechanism of the snow-like MoSe2 monolayer was investigated and comprised a four-step process during growth. Finally, we demonstrate that the snow-like MoSe2 monolayers are ideal electrocatalysts for hydrogen evolution reactions (HERs), reflected by a low Tafel slope of ∼68 mV/decade. Compared with the triangular-shaped MoSe2 monolayer, the hexangular snow-like shape with plentiful edges is superior for perfect electrocatalysts for HERs or transmission devices of optoelectronic signals.

  15. A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst

    NASA Astrophysics Data System (ADS)

    Lin, Ye; Su, Chao; Huang, Cheng; Kim, Ju Sik; Kwak, Chan; Shao, Zongping

    2012-01-01

    A new symmetric SOFC with an SDC framework and a silver-infiltrated electrocatalyst is presented for the first time in this paper. A three-electrode polarization test shows that the Ag-SDC has a low area specific resistance of 1.07 Ω cm2 at 600 °C, a low activation energy of 85 kJ mol-1 and high exchange current densities of 428.2 and 129.0 mA cm-2 at 750 and 650 °C, respectively, when it is used as an oxygen reduction electrode. It also exhibits low polarization resistance in a humidified hydrogen atmosphere. A symmetric single cell is used in real fuel cell conditions to deliver peak power densities of 200 and 84 mW cm-2 at 750 and 650 °C, respectively, when humidified hydrogen is used as a fuel and ambient air is used as the cathode atmosphere. The cell still reaches a peak power density of 81 mW cm-2 at 750 °C when operating on CO. O2-TPO analysis demonstrates that the Ag-SDC electrode has even better coking resistance than the pure SDC scaffold. The results indicate that Ag-SDC|SDC|Ag-SDC symmetric cells with an infiltrated silver electrocatalyst are a promising new type of fuel cell for use with both hydrogen fuel and carbon-containing fuels.

  16. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    DOE PAGES

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; ...

    2014-07-09

    The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaanmore » axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.« less

  17. Characterization of Au and Bimetallic PtAu Nanoparticles on PDDA-Graphene Sheets as Electrocatalysts for Formic Acid Oxidation

    NASA Astrophysics Data System (ADS)

    Yung, Tung-Yuan; Liu, Ting-Yu; Huang, Li-Ying; Wang, Kuan-Syun; Tzou, Huei-Ming; Chen, Po-Tuan; Chao, Chi-Yang; Liu, Ling-Kang

    2015-09-01

    Nanocomposite materials of the Au nanoparticles (Au/PDDA-G) and the bimetallic PtAu nanoparticles on poly-(diallyldimethylammonium chloride) (PDDA)-modified graphene sheets (PtAu/PDDA-G) were prepared with hydrothermal method at 90 °C for 24 h. The composite materials Au/PDDA-G and PtAu/PDDA-G were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) for exploring the structural characterization for the electrochemical catalysis. According to TEM results, the diameter of Au and bimetallic PtAu nanoparticles is about 20-50 and 5-10 nm, respectively. X-ray diffraction (XRD) results indicate that both of PtAu and Au nanoparticles exhibit the crystalline plane of (111), (200), (210), and (311). Furthermore, XRD data also show the 2°-3° difference between pristine graphene sheets and the PDDA-modified graphene sheets. For the catalytic activity tests of Au/PDDA-G and PtAu/PDDA-G, the mixture of 0.5 M aqueous H2SO4 and 0.5 M aqueous formic acid was used as model to evaluate the electrochemical characterizations. The catalytic activities of the novel bimetallic PtAu/graphene electrocatalyst would be anticipated to be superior to the previous electrocatalyst of the cubic Pt/graphene.

  18. MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst

    NASA Astrophysics Data System (ADS)

    Li, Xin; Jiang, Yimin; Jia, Lingpu; Wang, Chunming

    2016-02-01

    Hydrogen evolution reaction (HER) through low-cost and earth-abundant electrocatalysts at low overpotentials is a crucial project to clean energy. Molybdenum dioxide/reduced graphene oxide/polyimide-carbon nanotube (MoO2/RGO/PI-CNT) film was synthesized by a simple electrodeposition method as an efficient catalyst for HER. MoO2 nanoparticles with a small size of 10-20 nm uniformly disperse on the RGO surface. The large quantity and small size of MoO2 nanoparticles afford large surface area for HER, greatly enhancing the electrocatalytic performance of MoO2/RGO/PI-CNT film. The HER electrocatalytic property of MoO2/RGO/PI-CNT film in acidic solution is evaluated by linear sweep voltammetry (LSV). MoO2/RGO/PI-CNT film exhibit a high electrocatalytic activity for HER at a small onset overpotential (-110 mV vs RHE) with a high current density (10.0 mA cm-2) and a good stability. The low Tafel slope (68 mV dec-1) reveals the Volmer-Heyrovsky mechanism for HER. The comparison between MoO2/RGO/PI-CNT film and other catalysts indicate that the MoO2/RGO/PI-CNT film had a great performance for HER. This work presents a new thought for the synthesis of MoO2/RGO/PI-CNT film as an efficient HER electrocatalyst.

  19. Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction

    PubMed Central

    Li, Ji-Sen; Li, Shun-Li; Tang, Yu-Jia; Li, Kui; Zhou, Lei; Kong, Ning; Lan, Ya-Qian; Bao, Jian-Chun; Dai, Zhi-Hui

    2014-01-01

    The nitrogen (N), phosphorus (P) and sulphur (S) ternary-doped metal-free porous carbon materials have been successfully synthesized using MOFs as templates (denoted as NPS-C-MOF-5) for oxygen reduction reaction (ORR) for the first time. The influences of porous carbons from carbonizing different MOFs and carbonization temperature on ORR have been systematically investigated. Due to the synergistic effect of N, P and S ternary-doping, the NPS-C-MOF-5 catalyst shows a higher onset potential as a metal-free electrocatalyst for ORR among the currently reported metal-free electrocatalysts, very close to the commercial Pt-C catalyst. In particular, the kinetic limiting current density of NPS-C-MOF-5 catalyst at −0.6 V is up to approximate −11.6 mA cm−2, which is 1.2 times higher than that of the commercial Pt-C catalyst. Furthermore, the outstanding methanol tolerance and excellent long-term stability of NPS-C-MOF-5 are superior to those of the commercial Pt-C catalyst for ORR in alkaline media. PMID:24875253

  20. Hierarchical NiCo2 O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Gao, Xuehui; Zhang, Hongxiu; Li, Quanguo; Yu, Xuegong; Hong, Zhanglian; Zhang, Xingwang; Liang, Chengdu; Lin, Zhan

    2016-05-17

    Bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte may improve the efficiency of overall water splitting. Nickel cobaltite (NiCo2 O4 ) has been considered a promising electrode material for the OER. However, NiCo2 O4 that can be used as an electrocatalyst in HER has not been studied yet. Herein, we report self-assembled hierarchical NiCo2 O4 hollow microcuboids for overall water splitting including both the HER and OER reactions. The NiCo2 O4 electrode shows excellent activity toward overall water splitting, with 10 mA cm(-2) water-splitting current reached by applying just 1.65 V and 20 mA cm(-2) by applying just 1.74 V across the two electrodes. The synthesis of NiCo2 O4 microflowers confirms the importance of structural features for high-performance overall water splitting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity.

    PubMed

    Dutta, Soumen; Indra, Arindam; Feng, Yi; Song, Taeseup; Paik, Ungyu

    2017-09-19

    The design of efficient, low-cost, and stable electrocatalyst systems toward energy conversion is highly demanding for their practical use. Large scale electrolytic water splitting is considered as a promising strategy for clean and sustainable energy production. Herein, we report a self-supported NiFe layered double hydroxide (LDH)-NiSe electrocatalyst by stepwise surface-redox-etching of Ni foam (NF) through a hydrothermal process. The as-prepared NiFe LDH-NiSe/NF catalyst exhibits far better performance in alkaline water oxidation, proton reduction, and overall water splitting compared to NiSex/NF or NiFe LDH/NF. Only 240 mV overpotential is required to obtain a water oxidation current density of 100 mA cm(-2), whereas the same for the hydrogen evolution reaction is 276 mV in 1.0 M KOH. The synergistic effect from NiSe and NiFe LDH leads to the evolution of a highly efficient catalyst system for water splitting by achieving 10 mA cm(-2) current density at only 1.53 V in a two-electrode alkaline electrolyzer. In addition, the designed electrode produces stable performance for a long time even at higher current density to demonstrate its robustness and prospective as a real-life energy conversion system.

  2. Textured NiSe2 Film: Bifunctional Electrocatalyst for Full Water Splitting at Remarkably Low Overpotential with High Energy Efficiency.

    PubMed

    Swesi, Abdurazag T; Masud, Jahangir; Liyanage, Wipula P R; Umapathi, Siddesh; Bohannan, Eric; Medvedeva, Julia; Nath, Manashi

    2017-05-25

    Herein we have shown that electrodeposited NiSe2 can be used as a bifunctional electrocatalyst under alkaline conditions to split water at very low potential by catalyzing both oxygen evolution and hydrogen evolution reactions at anode and cathode, respectively, achieving a very high electrolysis energy efficiency exceeding 80% at considerably high current densities (100 mA cm(-2)). The OER catalytic activity as well as electrolysis energy efficiency surpasses any previously reported OER electrocatalyst in alkaline medium and energy efficiency of an electrolyzer using state-of-the-art Pt and RuO2 as the HER and OER catalyst, respectively. Through detailed electrochemical and structural characterization, we have shown that the enhanced catalytic activity is attributed to directional growth of the electrodeposited film that exposes a Ni-rich lattice plane as the terminating plane, as well as increased covalency of the selenide lattice which decreases the Ni(II) to Ni(III) oxidation potential. Thereby, the high efficiency along with extended stability makes NiSe2 as the most efficient water electrolyzer known to-date.

  3. Large-area snow-like MoSe2 monolayers: synthesis, growth mechanism, and efficient electrocatalyst application.

    PubMed

    Huang, Jingwen; Liu, Huiqiang; Jin, Bo; Liu, Min; Zhang, Qingchun; Luo, Liqiong; Chu, Shijin; Chu, Sheng; Peng, Rufang

    2017-07-07

    This study explores the large-area synthesis of controllable morphology, uniform, and high-quality monolayer. MoSe2 is essential for its potential application in optoelectronics, photocatalysis, and renewable energy sources. In this study, we successfully synthesized snow-like MoSe2 monolayers using a simple chemical vapor deposition method. Results reveal that snow-like MoSe2 is a single crystal with a hexagonal structure, a thickness of ∼0.9 nm, and a lateral dimension of up to 20 μm. The peak position of the photoluminescence spectra is ∼1.52 eV corresponding to MoSe2 monolayer. The growth mechanism of the snow-like MoSe2 monolayer was investigated and comprised a four-step process during growth. Finally, we demonstrate that the snow-like MoSe2 monolayers are ideal electrocatalysts for hydrogen evolution reactions (HERs), reflected by a low Tafel slope of ∼68 mV/decade. Compared with the triangular-shaped MoSe2 monolayer, the hexangular snow-like shape with plentiful edges is superior for perfect electrocatalysts for HERs or transmission devices of optoelectronic signals.

  4. The Se effect on the oxygen reduction reaction on the Se/Ru electro-catalysts. Insight from first principles.

    NASA Astrophysics Data System (ADS)

    Stolbov, Sergey

    2011-03-01

    Rational search for new efficient low-cost electrocatalysts for oxygen reduction reaction (ORR) on the hydrogen fuel cell cathodes focuses on varying the material composition to modify the local densities of electronic states (LDOS) of the surface atoms, in order to tune the surface-adsorbate electronic state hybridization and hence binding energies of the ORR intermediates. My calculation results for the Se/Ru electrocatalysts suggest an alternative way of tuning the binding energies. The Se atoms deposited on the Ru surface are found not to change Ru LDOS noticeably, however, Se atoms are negatively charged due to ionic Se-Ru bonding. As a result, they repeal electrostatically the adsorbed negatively charged O and OH intermediates, and this way reduce their binding energies. Since for the Ru case, reduction of the O and OH binding energies makes ORR energetically favorable, Se deposition dramatically improve the ORR rate on Ru. The ORR rate can thus be enhanced by changing coverage of the deposited halchogen atoms or by tuning the charge transfer to those by modifying the substrate composition.

  5. Improved Durability of Electrocatalyst Based on Coating of Carbon Black with Polybenzimidazole and their Application in Polymer Electrolyte Fuel Cells.

    PubMed

    Fujigaya, Tsuyohiko; Hirata, Shinsuke; Berber, Mohamed R; Nakashima, Naotoshi

    2016-06-15

    Improvement of durability of the electrocatalyst has been the key issue to be solved for the practical application of polymer electrolyte membrane fuel cells. One of the promising strategies to improve the durability is to enhance the oxidation stability of the carbon-supporting materials. In this report, we describe in detail the mechanism of the stability improvement of carbon blacks (CBs; Vulcan and Ketjen) by coating with polybenzimidazole (PBI). Nitrogen adsorption experiments reveal that the PBI coating of CBs results in the capping of the gates of the CB-micropores by the PBI. Since the surface of the micropores inside the CBs are inherently highly oxidized, the capping of such pores effectively prevents the penetration of the electrolyte into the pore and works to avoid the further oxidation of interior of the micropore, which is proved by cyclic voltammogram measurements. Above mechanism agrees very well with the dramatic enhancement of the durability of the membrane electrode assembly fabricated using Pt on the PBI-coated CBs as an electrocatalyst compared to the conventional Pt/CB (PBI-non coated) catalyst.

  6. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Chen, Jinwei; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin

    2016-12-01

    This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe3C and Co3C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe3C, and Co3C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  7. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    SciTech Connect

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-06-23

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.

  8. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures

    PubMed Central

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-01-01

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm−2 and a turnover frequency of 4.1 s−1 at the overpotential of 0.52 V in a near-neutral aqueous solution. PMID:28272403

  9. Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Yi, Lanhua; Wei, Wei; Zhao, Caixian; Tian, Li; Liu, Jing; Wang, Xianyou

    2015-07-01

    Carbon supported Au-Fe bimetallic nanocatalysts (Au-Fe/C) are facilely prepared via a modified NaBH4 reduction method in aqueous solution at room temperature, and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the Au-Fe/C electrocatalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), rotating disc electrode (RDE) voltammetry, chronoamperometry (CA), chronopotentiometry (CP), and fuel cell test. The results show that Au-Fe/C catalysts display higher catalytic activity for the direct electrooxidation of BH4- than carbon supported pure Au nanocatalyst (Au/C), especially Au50Fe50/C catalyst presents the highest catalytic activity among all as-prepared catalysts. Besides, the single DBHFC with Au50Fe50/C anode and Au/C cathode obtains the maximum power density as high as 34.9 mW cm-2 at 25 °C.

  10. Highly alloyed PtRu nanoparticles confined in porous carbon structure as a durable electrocatalyst for methanol oxidation.

    PubMed

    Yang, Chunzhen; Zhou, Ming; Gao, Liang

    2014-11-12

    The state-of-the-art carbon-supported PtRu catalysts are widely used as the anode catalysts in polymer electrolyte fuel cells (PEMFCs) but suffer from instability issues. Severe ruthenium dissolution occurring at potentials higher than 0.5 V vs NHE would result in a loss of catalytic activity of PtRu hence a worse performance of the fuel cell. In this work, we report an ultrastable PtRu electrocatalyst for methanol oxidation by confining highly alloyed PtRu nanoparticles in a hierarchical porous carbon structure. The structural characteristics, e.g., the surface composition and the morphology evolution, of the catalyst during the accelerated degradation test were characterized by the Cu-stripping voltammetry and the TEM/SEM observations. From the various characterization results, it is revealed that both the high alloying degree and the pore confinement of PtRu nanoalloys play significant roles in suppressing the degradation processes, including Ru dissolution and particle agglomeration/migration. This report provides an opportunity for efficient design and fabrication of highly stable bimetallic or trimetallic electrocatalysts in a large variety of applications.

  11. The durability dependence of Pt/CNT electrocatalysts on the nanostructures of carbon nanotubes: hollow- and bamboo-CNTs.

    PubMed

    Shao, Yuyan; Kou, Rong; Wang, Jun; Wang, Chongmin; Viswanathan, Vish; Liu, Jun; Wang, Yong; Lin, Yuehe

    2009-10-01

    The electrochemical durability of Pt/CNT with hollow- and bamboo-structured carbon nanotubes (H-CNT and B-CNT) as the support for PEM fuel cells was investigated. Both Pt/CNT electrocatalysts were degraded under cyclic voltammetry (CV, 0.6-1.1 V) accelerated degradation test method. Pt/CNT electrocatalysts were characterized with cyclic voltammograms, rotating disk electrodes, and TEM images. The changes in the electrochemical surface area of Pt and the activity toward oxygen reduction reaction (ORR) before and after the degradation indicate that Pt/B-CNT catalyst exhibited much higher durability than Pt/H-CNT. TEM images indicate that the sintering of Pt nanoparticles was much less for Pt/B-CNT. Pt/B-CNT also exhibited a little higher activity toward ORR than Pt/ H-CNT. These are attributed to the specific bamboo-like nanostructures which provide more "bamboo-knot" defects and edge plane-like defects. Pt-support interaction was therefore enhanced and the durability and activity were improved.

  12. Hollow structured carbon-supported nickel cobaltite nanoparticles as an efficient bifunctional electrocatalyst for the oxygen reduction and evolution reaction

    SciTech Connect

    Wang, Jie; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wang, Deli; Wu, Zexing

    2016-01-05

    Here, the exploration of efficient electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for fuel cells and metal-air batteries. In this study, we developed 3D hollow-structured NiCo2O4/C nanoparticles with interconnected pores as bifunctional electrocatalysts, which are transformed from solid NiCo2 alloy nanoparticles through the Kirkendall effect. The unique hollow structure of NiCo2O4 nanoparticles increases the number of active sites and improves contact with the electrolyte to result in excellent ORR and OER performances. In addition, the hollow-structured NiCo2O4/C nanoparticles exhibit superior long-term stability for both the ORR and OER compared to commercial Pt/C. The template- and surfactant-free synthetic strategy could be used for the low-cost and large-scale synthesis of hollow-structured materials, which would facilitate the screening of high-efficiency catalysts for energy conversion.

  13. Hollow structured carbon-supported nickel cobaltite nanoparticles as an efficient bifunctional electrocatalyst for the oxygen reduction and evolution reaction

    DOE PAGES

    Wang, Jie; Han, Lili; Lin, Ruoqian; ...

    2016-01-05

    Here, the exploration of efficient electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is essential for fuel cells and metal-air batteries. In this study, we developed 3D hollow-structured NiCo2O4/C nanoparticles with interconnected pores as bifunctional electrocatalysts, which are transformed from solid NiCo2 alloy nanoparticles through the Kirkendall effect. The unique hollow structure of NiCo2O4 nanoparticles increases the number of active sites and improves contact with the electrolyte to result in excellent ORR and OER performances. In addition, the hollow-structured NiCo2O4/C nanoparticles exhibit superior long-term stability for both the ORR and OER compared to commercial Pt/C.more » The template- and surfactant-free synthetic strategy could be used for the low-cost and large-scale synthesis of hollow-structured materials, which would facilitate the screening of high-efficiency catalysts for energy conversion.« less

  14. Homogeneous coating of ionomer on electrocatalyst assisted by polybenzimidazole as an adhesive layer and its effect on fuel cell performance

    NASA Astrophysics Data System (ADS)

    Yang, Zehui; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-12-01

    The fabrication of homogeneous ionomer distribution in fuel cell catalyst layers is necessary and important to improve the platinum utilization as well as the power density. Here, we focus on the effect of poly[2,2‧-(2,6-pyridine)-5,5‧-bibenzimidazole] (PyPBI) wrapped on multi-walled carbon nanotubes (MWNTs) for anchoring Nafion ionomer to the electrocatalyst, in which PyPBI functions as the binding sites for platinum nanoparticles (Pt-NPs) used as a catalyst. Based on the result using a control composite without having PyPBI, a strong interaction of the Nafion onto the PyPBI layer is recognized. Importantly, we find that the membrane-electrode assembly (MEA) shows a much higher maximum power density than that of the MEA without PyPBI. A homogeneous coating of Nafion on the electrocatalyst using the PyPBI forms a long-range network of the ionomer, leading to an improved Pt-NP utilization efficiency as well as an enhanced power density of the MEA.

  15. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-03-01

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm-2 and a turnover frequency of 4.1 s-1 at the overpotential of 0.52 V in a near-neutral aqueous solution.

  16. A Highly Active and Robust Copper-Based Electrocatalyst toward Hydrogen Evolution Reaction with Low Overpotential in Neutral Solution.

    PubMed

    Du, Jialei; Wang, Jianying; Ji, Lvlv; Xu, Xiaoxiang; Chen, Zuofeng

    2016-11-09

    Although significant progress has been made recently, copper-based materials have long been considered to be ineffective catalysts toward the hydrogen evolution reaction (HER), in most cases, requiring high overpotentials more than 300 mV. We report here that a Cu(0)-based nanoparticle film electrodeposited in situ from a Cu(II) oxime complex can act as a highly active and robust HER electrocatalyst in neutral phosphate buffer solution. The as-prepared nanoparticle film is of poor crystallization, which incorporates significant amounts of oxime ligand residues and buffer anions PO4(3-). The proposed mechanism suggests that the Cu(0)-based nanoparticle film is activated with incorporated or adsorbed PO4(3-) anions and the PO4(3-) anions-anchored sites might serve as the actual catalytic active sites with efficient proton transport mediators. Catalysis occurs with a low onset overpotential (η) of 65 mV, and a current density of 1 mA/cm(2) can be achieved with η = 120 mV. The nanoparticle film shows an excellent catalytic durability with slightly rising current density during electrolysis, presumably due to further incorporation or adsorption of PO4(3-) anions in the process. This electrocatalyst not only forms in situ from earth-abundant materials but also operates in neutral water with low overpotential and high stability.

  17. Counter electrode electrocatalysts from one-dimensional coaxial alloy nanowires for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Duan, Jialong; Tang, Qunwei; Zhang, Huihui; Meng, Yuanyuan; Yu, Liangmin; Yang, Peizhi

    2016-01-01

    Pursuit of cost-effective counter electrode (CE) electrocatalysts with no sacrifice of photovoltaic performances has been a persistent objective for advanced dye-sensitized solar cell (DSSC) platforms. Here we demonstrate the experimental realization of CE electrocatalysts from Cu@M@Pt (M = Fe, Co, Ni) coaxial alloy nanowires for efficient DSSCs. The reasonable electrocatalytic activity is attributed to work function matching of alloy CEs to potential of I- /I3- and redistribute the electronic structure on the Pt surface. In comparison with 8.48% for the Pt nanotube CE based DSSC, the solar cells yield power conversion efficiencies up to 8.21%, 7.85%, and 7.30% using Cu@Fe@Pt, Cu@Co@Pt, and Cu@Ni@Pt NWs, respectively. This work represents an important step forward, as it demonstrates how to make the CE catalyst active and to accelerate the electron transport from CE to electrolyte for high-efficiency but cost-effective DSSC platforms.

  18. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    DOE PAGES

    Wang, Deli; Liu, Sufen; Wang, Jie; ...

    2016-06-23

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. Themore » uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.« less

  19. Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Qin, Yong; Li, Juan; Yuan, Jie; Kong, Yong; Tao, Yongxin; Lin, Furong; Li, Shan

    2014-12-01

    Hollow mesoporous carbon nitride nanosphere (HMCN) is firstly prepared via an etching route using hollow mesoporous silica as a sacrificial template. The as-obtained HMCN is a uniform spherical particle with a diameter of ∼300 nm,and possesses a high specific surface area up to 439 m2 g-1. Hollow mesoporous carbon nitride nanosphere/three-dimensional (3D) graphene composite (HMCN-G) is subsequently fabricated via a hydrothermal treatment of HMCN with graphene oxide. As an electrocatalyst for oxygen reduction reaction (ORR), the HMCN-G shows significantly enhanced electrocatalytic activity compared to bulk graphitic carbon nitride (g-C3N4) and HMCN in terms of the electron-transfer number, current density and onset potential. Increased density of catalytically active sites and improved accessibility to electrolyte enabled by the hollow and mesoporous architecture of HMCN, and high conductivity induced from graphene are considered to contribute to the remarkable electrocatalytic performance of the HMCN-G. Furthermore, HMCN-G exhibits superior methanol tolerance to Pt/C catalyst, suggesting that it is a promising metal-free electrocatalyst for polymer electrolyte membrane fuel cell (PEMFC).

  20. Deep-Eutectic Solvents Derived Nitrogen-Doped Graphitic Carbon as a Superior Electrocatalyst for Oxygen Reduction.

    PubMed

    Luo, Rui; Liu, Chao; Li, Jiansheng; Wang, Chaohai; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2017-09-18

    The activity and stability of electrocatalyst for oxygen reduction reaction (ORR) essentially depends on its structural and compositional properties. Herein, we report the facile preparation of nitrogen-doped graphitic carbon (NGC) via the pyrolysis of deep-eutectic solvents (DESs) as a superior electrocatalyst for ORR. The resulting NGCs possess high surface areas, rich nitrogen content, and favorable graphitization degree, all of which are highly desired for the ORR catalysts. The effects of the pyrolysis temperature on the ORR performance of the final products are explored. The results implied that the material fabricated at 900 °C (NGC900) is identified as the best ORR catalyst in the series of samples. Specifically, NGC900 shows efficient performance toward ORR with an onset potential of 0.97 V and a half potential of 0.84 V, which bears comparison with the commercial Pt/C catalyst with enhanced stability in the alkaline media. The superior ORR performance of NGC900 may be ascribed to the balance between the surface area, pyridinic nitrogen, and defect of NGCs. The rational design of NGCs with an efficient ORR activity and stability based on the low-cost DESs implies adequate support for the development of energy devices in practical application.

  1. Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction.

    PubMed

    Li, Ji-Sen; Li, Shun-Li; Tang, Yu-Jia; Li, Kui; Zhou, Lei; Kong, Ning; Lan, Ya-Qian; Bao, Jian-Chun; Dai, Zhi-Hui

    2014-05-30

    The nitrogen (N), phosphorus (P) and sulphur (S) ternary-doped metal-free porous carbon materials have been successfully synthesized using MOFs as templates (denoted as NPS-C-MOF-5) for oxygen reduction reaction (ORR) for the first time. The influences of porous carbons from carbonizing different MOFs and carbonization temperature on ORR have been systematically investigated. Due to the synergistic effect of N, P and S ternary-doping, the NPS-C-MOF-5 catalyst shows a higher onset potential as a metal-free electrocatalyst for ORR among the currently reported metal-free electrocatalysts, very close to the commercial Pt-C catalyst. In particular, the kinetic limiting current density of NPS-C-MOF-5 catalyst at -0.6 V is up to approximate -11.6 mA cm(-2), which is 1.2 times higher than that of the commercial Pt-C catalyst. Furthermore, the outstanding methanol tolerance and excellent long-term stability of NPS-C-MOF-5 are superior to those of the commercial Pt-C catalyst for ORR in alkaline media.

  2. Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Li, Ji-Sen; Li, Shun-Li; Tang, Yu-Jia; Li, Kui; Zhou, Lei; Kong, Ning; Lan, Ya-Qian; Bao, Jian-Chun; Dai, Zhi-Hui

    2014-05-01

    The nitrogen (N), phosphorus (P) and sulphur (S) ternary-doped metal-free porous carbon materials have been successfully synthesized using MOFs as templates (denoted as NPS-C-MOF-5) for oxygen reduction reaction (ORR) for the first time. The influences of porous carbons from carbonizing different MOFs and carbonization temperature on ORR have been systematically investigated. Due to the synergistic effect of N, P and S ternary-doping, the NPS-C-MOF-5 catalyst shows a higher onset potential as a metal-free electrocatalyst for ORR among the currently reported metal-free electrocatalysts, very close to the commercial Pt-C catalyst. In particular, the kinetic limiting current density of NPS-C-MOF-5 catalyst at -0.6 V is up to approximate -11.6 mA cm-2, which is 1.2 times higher than that of the commercial Pt-C catalyst. Furthermore, the outstanding methanol tolerance and excellent long-term stability of NPS-C-MOF-5 are superior to those of the commercial Pt-C catalyst for ORR in alkaline media.

  3. N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Lu, Wangting; Cao, Feifei; Xiao, Zhidong; Zheng, Xinsheng

    2016-01-01

    Development of low-cost and highly efficient electrocatalysts for oxygen reduction reaction (ORR) is still a great challenge for the large-scale application of fuel cells and metal-air batteries. Herein, a noble metal-free ORR electrocatalyst in the form of N-doped graphene coupled with part of Co nanoparticles encased in N-doped graphitic shells (named as SUCo-0.03-800) is prepared by facile one-step pyrolysis of the mixture of sucrose, urea and cobalt nitrate. The novel structure is confirmed by High Resolution-TEM, XRD, XPS and Raman spectroscopy. SUCo-0.03-800 presents comparable ORR catalytic activity to commercial Pt/C catalyst with a dominating four-electron pathway under alkaline conditions, and both of its mass activity and volume activity also outperform Co-free N-doped graphene and other Co/N-C hybrids with higher Co content, which may probably be ascribed to the high specific surface area, novel structure and synergistic effect between encased Co nanoparticles and N-doped graphitic shell. Additionally, SUCo-0.03-800 also shows outstanding stability and improved selectivity towards ORR, making it a promising alternative to Pt with potential application in fuel cells and metal-air batteries.

  4. One-pot hydrothermal synthesis of Zinc ferrite/reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.

    PubMed

    Hong, Wei; Li, Lingzhi; Xue, Ruinan; Xu, Xiaoyang; Wang, Huan; Zhou, Jingkuo; Zhao, Huilin; Song, Yahui; Liu, Yu; Gao, Jianping

    2017-01-01

    Fabrication of low-cost and efficient electrocatalyst for oxygen reduction reaction (ORR) is highly desirable. Herein, Zinc ferrite/reduced graphene oxide (ZnFe2O4/rGO) is prepared by a quite simple and environmentally benign approach and applied as a high performance ORR electrocatalyst for the first time. The surface morphology and chemical composition of ZnFe2O4/rGO are characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy. Cyclic voltammetry, linear sweep voltammetry and chronoamperometry are used to evaluate the electrochemical activities and stabilities of ZnFe2O4/rGO catalysts in alkaline media. Among ZnFe2O4/rGO with different mass ratios, the catalyst with 69.8wt% ZnFe2O4 (called ZnFe2O4/rGO (3)) has the best catalytic activities and it shows much superior methanol tolerance and better durability than the commercial Pt/C catalyst. Due to the synergistic effect, the ZnFe2O4/rGO (3) nanohybrid exhibits high ORR catalytic performance and durability, which follows a desirable four electron transfer mechanism in alkaline media. Therefore, it may be a highly competitive catalyst for fuel cells and metal-air batteries.

  5. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; Liu, Hongfang; Muller, David A.; Xin, Huolin L.; Abruña, Héctor D.

    2016-06-01

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd-Co-Cu lattice and distributes uniformly within the particles. The uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.

  6. Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO(x) Nanowire.

    PubMed

    Chauhan, Shipra; Mori, Toshiyuki; Masuda, Takuya; Ueda, Shigenori; Richards, Gary J; Hill, Jonathan P; Ariga, Katsuhiko; Isaka, Noriko; Auchterlonie, Graeme; Drennan, John

    2016-04-13

    Pt-CeO(x) nanowire (NW)/C electrocatalysts for the improvement of oxygen reduction reaction (ORR) activity on Pt were prepared by a combined process involving precipitation and coimpregnation. A low, 5 wt % Pt-loaded CeO(x) NW/C electrocatalyst, pretreated by an optimized electrochemical conditioning process, exhibited high ORR activity over a commercially available 20 wt % Pt/C electrocatalyst although the ORR activity observed for a 5 wt % Pt-loaded CeO(x) nanoparticle (NP)/C was similar to that of 20 wt % Pt/C. To investigate the role of a CeO(x) NW promotor on the enhancement of ORR activity on Pt, the Pt-CeO(x) NW interface was characterized by using hard X-ray photoelectron spectroscopy (HXPS), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Microanalytical data obtained by these methods were discussed in relation to atomistic simulation performed on the interface structures. The combined techniques of HXPS, TEM-EELS, and atomistic simulation indicate that the Pt-CeO(x) NW interface in the electrocatalyst contains two different defect clusters: Frenkel defect clusters (i.e., 2Pt(i)(••) - 4O(i)″ - 4V(o)(••) - V(Ce)″″) formed in the surface around the Pt-CeO(x) NW interface and Schottky defect clusters (i.e., (Pt(Ce)″ - 2V(O)(••) - 2Ce(Ce)') and (Pt(Ce)″ - V(O)(••))) which appear in the bulk of the Pt-CeO(x) NW interface similarly to Pt-CeO(x) NP/C. It is concluded that the formation of both Frenkel defect clusters and Schottky defect clusters at the Pt-CeO(x) NW heterointerface contributes to the promotion of ORR activity and permits the use of lower Pt-loadings in these electrocatalysts.

  7. Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1988-01-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  8. Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel

    NASA Astrophysics Data System (ADS)

    Fielder, William L.; Singer, Joseph

    1988-09-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  9. Cobalt Complexes Containing Pendant Amines in the Second Coordination Sphere as Electrocatalysts for H2 Production

    SciTech Connect

    Fang, Ming; Wiedner, Eric S.; Dougherty, William G.; Kassel, W. S.; Liu, Tianbiao L.; DuBois, Daniel L.; Bullock, R. Morris

    2014-10-27

    A series of heteroleptic 17e- cobalt complexes, [CpCoII(PtBu2NPh2)](BF4), [CpC6F5CoII(PtBu2NPh2)](BF4), [CpC5F4NCoII(PtBu2NPh2)](BF4), [where P2tBuN2Ph = 1,5-diphenyl-3,7-di(tert-butyl)-1,5-diaza-3,7-diphosphacyclooctane, CpC6F5 = C5H4(C6F5), and CpC5F4N = C5H4(C5F4N)] were synthesized, and structures of all three were determined by X-ray crystallography. Electrochemical studies showed that the CoIII/II couple of [CpC5F4NCoII(PtBu2NPh2)]+ appears 250 mV positive of the CoIII/II couple of [CpCoII(PtBu2NPh2)] as a result of the strongly electron-withdrawing perfluorpyridyl substituent on the Cp ring. Reduction of these paramagnetic CoII complexes by KC8 led to the diamagnetic 18e- complexes CpICo(PtBu2NPh2), CpC6F5CoI(PtBu2NPh2), CpC5F4NCoI(PtBu2NPh2), which were also characterized by crystallography. Protonation of these neutral CoI complexes led to the cobalt hydrides [CpCoIII(PtBu2NPh2)H](BF4), [CpC6F5CoIII(PtBu2NPh2)H](BF4), and [CpC5F4NCoIII(PtBu2NPh2)H](BF4). The cobalt hydride with the most electron-withdrawing Cp ligand, [CpC5F4NCoIII(PtBu2NPh2)H]+ is an electrocatalyst for production of H2 using 4-MeOC6H4NH3BF4 (pKaMeCN = 11.86) with a turnover frequency of 350 s-1 and an overpotential of 0.75 V. Experimental measurement of thermochemical data provided further insights into the thermodynamics of H2 elimination. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  10. Tuning nondoped carbon nanotubes to an efficient metal-free electrocatalyst for oxygen reduction reaction by localizing the orbital of the nanotubes with topological defects

    NASA Astrophysics Data System (ADS)

    Jiang, Shujuan; Li, Zhe; Wang, Huayu; Wang, Yun; Meng, Lina; Song, Shaoqing

    2014-11-01

    Breaking the electron delocalization of sp2 carbon materials by heteroatom doping is a practical strategy to produce metal-free electrocatalysts of oxygen reduction reaction (ORR) for fuel cells. Whether carbon nanotubes (CNTs) can be efficiently tuned into ORR electrocatalysts only by intrinsic defects rather than heteroatom doping has not been well studied yet in experiment and theory. Here we introduce topological defects of nonhexagon carbon rings into CNTs to break the delocalization of their orbitals and make such type of CNTs to be a high-performance ORR catalyst. The electrochemical tests and theoretical studies indicate that the O2 chemisorption and the following electrocatalytic activity are promoted by the introduced topological defects and show a strong dependence on the defect amount. Such topological-defect CNTs (TCNTs) have an excellent ORR performance owing to a 3.8-electron-transferring process, ~4 times higher current density and ~120 mV more positive peak potential than normally straight CNTs. Moreover, TCNTs show a higher steady-state diffusion current density and much better stability and immunity to crossover effect as compared with commercial Pt/C catalyst. Hence, our results strongly suggest that tuning the surface structure of CNTs with nonhexagon carbon rings is a novel strategy for designing advanced ORR electrocatalysts for fuel cells.Breaking the electron delocalization of sp2 carbon materials by heteroatom doping is a practical strategy to produce metal-free electrocatalysts of oxygen reduction reaction (ORR) for fuel cells. Whether carbon nanotubes (CNTs) can be efficiently tuned into ORR electrocatalysts only by intrinsic defects rather than heteroatom doping has not been well studied yet in experiment and theory. Here we introduce topological defects of nonhexagon carbon rings into CNTs to break the delocalization of their orbitals and make such type of CNTs to be a high-performance ORR catalyst. The electrochemical tests and

  11. Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Ma, Renzhi; Wu, Jinghua; Sun, Pengzhan; Liu, Xiaohe; Zhou, Kechao; Sasaki, Takayoshi

    2016-05-01

    Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade, which is much superior to as-exfoliated nanosheets. The analyses of electrochemical activity surface area (ECSA) and impedance spectra clearly indicated that the superlattice structure was ideal in facilitating the migration/transfer of the charge and reactants, revealing the electrochemical energetics and mechanism behind the synergistic effect arising from molecular hybridization. The proof of concept toward total water splitting using the newly developed hybrid electrocatalyst was demonstrated by an electrolysis cell powered by a single AA battery.Ni2+Mn3+ layered double hydroxide (LDH) nanoplatelets have been hydrothermally synthesized in a homogeneous precipitation of mixed Ni2+/Mn2+ salts at a molar ratio of 2 : 1 via the hydrolysis of hexamethylenetetramine (HMT) and in situ oxidation with H2O2. After anion-exchange, NiMn LDH was exfoliated into unilamellar nanosheets. Subsequent flocculation of NiMn LDH nanosheets with (reduced) graphene oxide (GO/rGO) into superlattice composites was achieved and further tested as electrocatalysts for oxygen evolution reaction (OER). The face-to-face heteroassembly of NiMn LDH nanosheets with conductive rGO at an alternating sequence resulted in a small overpotential of 0.26 V and a Tafel slope of 46 mV per decade

  12. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    DOEpatents

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  13. In Situ Spectroscopic Identification of μ-OO Bridging on Spinel Co3O4 Water Oxidation Electrocatalyst.

    PubMed

    Wang, Hsin-Yi; Hung, Sung-Fu; Hsu, Ying-Ya; Zhang, Lulu; Miao, Jianwei; Chan, Ting-Shan; Xiong, Qihua; Liu, Bin

    2016-12-01

    The formation of μ-OO peroxide (Co-OO-Co) moieties on spinel Co3O4 electrocatalyst prior to the rise of the electrochemical oxygen evolution reaction (OER) current was identified by in situ spectroscopic methods. Through a combination of independent in situ X-ray absorption, grazing-angle X-ray diffraction, and Raman analysis, we observed a clear coincidence between the formation of μ-OO peroxide moieties and the rise of the anodic peak during OER. This finding implies that a chemical reaction step could be generally ignored before the onset of OER current. More importantly, the tetrahedral Co(2+) ions in the spinel Co3O4 could be the vital species to initiate the formation of the μ-OO peroxide moieties.

  14. Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks.

    PubMed

    Chaikittisilp, Watcharop; Torad, Nagy L; Li, Cuiling; Imura, Masataka; Suzuki, Norihiro; Ishihara, Shinsuke; Ariga, Katsuhiko; Yamauchi, Yusuke

    2014-04-07

    Nanoporous carbon-cobalt-oxide hybrid materials are prepared by a simple, two-step, thermal conversion of a cobalt-based metal-organic framework (zeolitic imidazolate framework-9, ZIF-9). ZIF-9 is carbonized in an inert atmosphere to form nanoporous carbon-metallic-cobalt materials, followed by the subsequent thermal oxidation in air, yielding nanoporous carbon-cobalt-oxide hybrids. The resulting hybrid materials are evaluated as electrocatalysts for the oxygen-reduction reaction (ORR) and the oxygen-evolution reaction (OER) in a KOH electrolyte solution. The hybrid materials exhibit similar catalytic activity in the ORR to the benchmark, commercial, Pt/carbon black catalyst, and show better catalytic activity for the OER than the Pt-based catalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte

    PubMed Central

    Gorlin, Yelena; Jaramillo, Thomas F.

    2014-01-01

    The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community. PMID:25357131

  16. Synthesis of Ultrathin PdCu Alloy Nanosheets Used as a Highly Efficient Electrocatalyst for Formic Acid Oxidation.

    PubMed

    Yang, Nailiang; Zhang, Zhicheng; Chen, Bo; Huang, Ying; Chen, Junze; Lai, Zhuangchai; Chen, Ye; Sindoro, Melinda; Wang, An-Liang; Cheng, Hongfei; Fan, Zhanxi; Liu, Xiaozhi; Li, Bing; Zong, Yun; Gu, Lin; Zhang, Hua

    2017-08-01

    Inspired by the unique properties of ultrathin 2D nanomaterials and excellent catalytic activities of noble metal nanostructures for renewable fuel cells, a facile method is reported for the high-yield synthesis of ultrathin 2D PdCu alloy nanosheets under mild conditions. Impressively, the obtained PdCu alloy nanosheet after being treated with ethylenediamine can be used as a highly efficient electrocatalyst for formic acid oxidation. The study implicates that the rational design and controlled synthesis of an ultrathin 2D noble metal alloy may open up new opportunities for enhancing catalytic activities of noble metal nanostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. PdCu alloy nanoparticle-decorated copper nanotubes as enhanced electrocatalysts: DFT prediction validated by experiment

    NASA Astrophysics Data System (ADS)

    Wu, Dengfeng; Xu, Haoxiang; Cao, Dapeng; Fisher, Adrian; Gao, Yi; Cheng, Daojian

    2016-12-01

    In order to combine the advantages of both 0D and 1D nanostructured materials into a single catalyst, density functional theory (DFT) calculations have been used to study the PdCu alloy NP-decorated Cu nanotubes (PdCu@CuNTs). These present a significant improvement of the electrocatalytic activity of formic acid oxidation (FAO). Motivated by our theoretical work, we adopted the seed-mediated growth method to successfully synthesize the nanostructured PdCu@CuNTs. The new catalysts triple the catalytic activity for FAO, compared with commercial Pd/C. In summary, our work provides a new strategy for the DFT prediction and experimental synthesis of novel metal NP-decorated 1D nanostructures as electrocatalysts for fuel cells.

  18. PdCu alloy nanoparticle-decorated copper nanotubes as enhanced electrocatalysts: DFT prediction validated by experiment.

    PubMed

    Wu, Dengfeng; Xu, Haoxiang; Cao, Dapeng; Fisher, Adrian; Gao, Yi; Cheng, Daojian

    2016-12-09

    In order to combine the advantages of both 0D and 1D nanostructured materials into a single catalyst, density functional theory (DFT) calculations have been used to study the PdCu alloy NP-decorated Cu nanotubes (PdCu@CuNTs). These present a significant improvement of the electrocatalytic activity of formic acid oxidation (FAO). Motivated by our theoretical work, we adopted the seed-mediated growth method to successfully synthesize the nanostructured PdCu@CuNTs. The new catalysts triple the catalytic activity for FAO, compared with commercial Pd/C. In summary, our work provides a new strategy for the DFT prediction and experimental synthesis of novel metal NP-decorated 1D nanostructures as electrocatalysts for fuel cells.

  19. In-situ potentiostatic activation to optimize electrodeposited cobalt-phosphide electrocatalyst for highly efficient hydrogen evolution in alkaline media

    NASA Astrophysics Data System (ADS)

    Wei, Mengmeng; Yang, Liming; Wang, Longlu; Liu, Tian; Liu, Chengbin; Tang, Yanhong; Luo, Shenglian

    2017-08-01

    We first report a novel cobalt-phosphide (Co-P) hybrid with flake-like structure by a facile one-step electrodeposition combined with in-situ potentiostatic activation technique. Exotic microstructure transformation of Co-P hybrid from microspheres to nanosheets has been noted during the activation process. The Co-P catalyst exhibits striking kinetic metrics with an overpotential of 85 mV (at 10 mA cm-2) and Tafel slope of 37 mV dec-1, performing among the best of all the HER catalysts in strong alkaline media (at pH 14). This study offers a new in-situ approach to optimize catalytic materials for high-performance electrocatalysts towards energy-related applications.

  20. Hierarchical β-Mo2 C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production.

    PubMed

    Ma, Fei-Xiang; Wu, Hao Bin; Xia, Bao Yu; Xu, Cheng-Yan; Lou, Xiong Wen David

    2015-12-14

    Production of hydrogen by electrochemical water splitting has been hindered by the high cost of precious metal catalysts, such as Pt, for the hydrogen evolution reaction (HER). In this work, novel hierarchical β-Mo2 C nanotubes constructed from porous nanosheets have been fabricated and investigated as a high-performance and low-cost electrocatalyst for HER. An unusual template-engaged strategy has been utilized to controllably synthesize Mo-polydopamine nanotubes, which are further converted into hierarchical β-Mo2 C nanotubes by direct carburization at high temperature. Benefitting from several structural advantages including ultrafine primary nanocrystallites, large exposed surface, fast charge transfer, and unique tubular structure, the as-prepared hierarchical β-Mo2 C nanotubes exhibit excellent electrocatalytic performance for HER with small overpotential in both acidic and basic conditions, as well as remarkable stability.

  1. Stability and spinodal decomposition of the solid-solution phase in the ruthenium-cerium-oxide electro-catalyst.

    PubMed

    Li, Yanmei; Wang, Xin; Shao, Yanqun; Tang, Dian; Wu, Bo; Tang, Zhongzhi; Lin, Wei

    2015-01-14

    The phase diagram of Ru-Ce-O was calculated by a combination of ab initio density functional theory and thermodynamic calculations. The phase diagram indicates that the solubility between ruthenium oxide and cerium oxide is very low at temperatures below 1100 K. Solid solution phases, if existing under normal experimental conditions, are metastable and subject to a quasi-spinodal decomposition to form a mixture of a Ru-rich rutile oxide phase and a Ce-rich fluorite oxide phase. To study the spinodal decomposition of Ru-Ce-O, Ru0.6Ce0.4O2 samples were prepared at 280 °C and 450 °C. XRD and in situ TEM characterization provide proof of the quasi-spinodal decomposition of Ru0.6Ce0.4O2. The present study provides a fundamental reference for the phase design of the Ru-Ce-O electro-catalyst.

  2. Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts.

    PubMed

    Ma, Ming; Trześniewski, Bartek J; Xie, Jie; Smith, Wilson A

    2016-08-08

    In this work, the selective electrocatalytic reduction of carbon dioxide to carbon monoxide on oxide-derived silver electrocatalysts is presented. By a simple synthesis technique, the overall high faradaic efficiency for CO production on the oxide-derived Ag was shifted by more than 400 mV towards a lower overpotential compared to that of untreated Ag. Notably, the Ag resulting from Ag oxide is capable of electrochemically reducing CO2 to CO with approximately 80 % catalytic selectivity at a moderate overpotential of 0.49 V, which is much higher than that (ca. 4 %) of untreated Ag under identical conditions. Electrokinetic studies show that the improved catalytic activity is ascribed to the enhanced stabilization of COOH(.) intermediate. Furthermore, highly nanostructured Ag is likely able to create a high local pH near the catalyst surface, which may also facilitate the catalytic activity for the reduction of CO2 with suppressed H2 evolution.

  3. Pulse electrodeposited nickel-indium tin oxide nanocomposite as an electrocatalyst for non-enzymatic glucose sensing.

    PubMed

    Sivasakthi, P; Ramesh Bapu, G N K; Chandrasekaran, Maruthai

    2016-01-01

    Nickel and nickel-ITO nanocomposite on mild steel substrate were prepared by pulse electrodeposition method from nickel sulphamate electrolyte and were examined as electrocatalysts for non-enzymatic glucose sensing. The surface morphology, chemical composition, preferred orientation and oxidation states of the nickel metal ion in the deposits were characterized by SEM, EDAX, XRD and XPS. Electrochemical sensing of glucose was studied by cyclic voltammetry and amperometry. The modified Ni-ITO nanocomposite electrode showed higher electrocatalytic activity for the oxidation of glucose in alkaline medium and exhibited a linear range from 0.02 to 3.00 mM with a limit of detection 3.74 μM at a signal-to-noise ratio of 3. The higher selectivity, longer stability and better reproducibility of this electrode compared to nickel in the sensing of glucose are pointers for exploitation in practical clinical applications.

  4. Hydrothermal transformation of dried grass into graphitic carbon-based high performance electrocatalyst for oxygen reduction reaction.

    PubMed

    Zhang, Haimin; Wang, Yun; Wang, Dan; Li, Yibing; Liu, Xiaolu; Liu, Porun; Yang, Huagui; An, Taicheng; Tang, Zhiyong; Zhao, Huijun

    2014-08-27

    In this work, we present a low cost and environmentally benign hydrothermal method using dried grass as the sole starting material without any synthetic chemicals to directly produce high quality nitrogen-doped carbon nanodot/nanosheet aggregates (N-CNAs), achieving a high yield of 25.2%. The fabricated N-CNAs possess an N/C atomic ratio of 3.41%, consist of three typed of doped N at a ratio of 2.6 (pyridinic):1.7 (pyrrolic):1 (graphitic). The experimental results reveal that for oxygen reduction reaction (ORR), the performance of N-CNAs, in terms of electrocatalytic activity, stability and resistance to crossover effects, is better or comparable to the commercial Pt/C electrocatalyst. The theoretical studies further indicate that the doped pyridinic-N plays a key role for N-CNAs' excellent four-electron ORR electrocatalytic activity.

  5. Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell.

    PubMed

    Aravind, S S Jyothirmayee; Ramaprabhu, Sundara

    2012-08-01

    Chemical and electrical synergies between graphite oxide and multiwalled carbon nanotube (MWNT) for processing graphene wrapped-MWNT hybrids has been realized by chemical vapor deposition without any chemical functionalization. Potential of the hybrid composites have been demonstrated by employing them as electrocatalyst supports in proton exchange membrane fuel cells. The defects present in the polyelectrolyte, which have been wrapped over highly dispersed MWNT, act as anchoring sites for the homogeneous deposition of platinum nanoparticles. Single-cell proton exchange membrane fuel cells show that the power density of the hybrid composite-based fuel cells is higher compared to the pure catalyst-support-based fuel cells, because of enhanced electrochemical reactivity and good surface area of the nanocomposites.

  6. Enzyme Design From the Bottom Up: An Active Nickel Electrocatalyst with a Structured Peptide Outer Coordination Sphere

    SciTech Connect

    Reback, Matthew L.; Buchko, Garry W.; Kier, Brandon L.; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A.; Sorensen, Christina M.; Raugei, Simone; Squier, Thomas C.; Shaw, Wendy J.

    2014-02-03

    Functional, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts via an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well characterized hydrogen production catalyst, Ni(PPh2NPh)2. The incorporated peptide maintains its B-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (~100,000 s-1) is fully retained. The combination of an active molecular catalyst with a structured peptide outer coordination sphere provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with en-hanced functionality.

  7. Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte.

    PubMed

    Benck, Jesse D; Pinaud, Blaise A; Gorlin, Yelena; Jaramillo, Thomas F

    2014-01-01

    The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.

  8. Density functional theory study of oxygen reduction reaction on Pt/Pd3Al(111) alloy electrocatalyst.

    PubMed

    Xiao, B B; Jiang, X B; Jiang, Q

    2016-05-25

    Developing efficient catalysts for the oxygen reduction reaction (ORR) to reduce cathode Pt loading without sacrificing the performance has been under intensive research. Herein, by using density functional theory calculations, the activity and stability of a Pt monolayer supported on Pd3Al(111) as the ORR catalyst have been systematically studied. The simulations demonstrate that due to alloying, the ORR intermediates bind weakly on Pt/Pd3Al(111) with optimal adsorption energy of O and OH. By considering the elemental ORR steps, the ORR mechanism is predicted to be an OOH dissociation mechanism. The rate determining step is OOH dissociation with a reaction barrier of 0.37 eV, lower than the corresponding value on Pt/Pt3Al(111) and Pt(111), indicating the superior activity of Pt/Pd3Al(111). Even considering the unfeasible H adsorption under high potential, the ORR mechanism on Pt/Pd3Al(111) would proceed via O2 hydration, OOH hydration, H2O formation, and H2O desorption, indicating a good ORR electrocatalyst. Furthermore, stability was evaluated by calculating the alloy formation energy and the electrochemical potential shift of surface Pt dissolution. The exceptionally negative alloy formation energy of Pd3Al and the positive dissolution potential shift of the surface Pt atoms show the enhanced durability of Pt/Pd3Al(111). The improved activity, in combination with its enhanced stability, makes the novel ternary alloy electrocatalyst very promising for development of new cathode catalysts for fuel cells.

  9. Nanosized IrxRu1-xO2 electrocatalysts for oxygen evolution reaction in proton exchange membrane water electrolyzer

    NASA Astrophysics Data System (ADS)

    Hanh Pham, Hong; Nguyen, Ngoc Phong; Linh Do, Chi; Thang Le, Ba

    2015-01-01

    Normally in proton exchange membrane water electrolysis (PEMWE), the anode has the largest overpotential at typical operating current densities. By development of the electrocatalytic material used for the oxygen evolving electrode, great improvements in efficiency can be performed. In electrochemistry, rare metallic oxides RuO2 and IrO2 exhibit the best catalytic properties for the oxygen evolution reaction (OER) in acid electrolytes compared to other noble metals. RuO2 is the most active catalyst and IrO2 is the most stable catalyst. An oxide containing both elements is therefore expected to be a good catalyst for the OER. In this study IrxRu1-xO2 nanosized powder electrocatalysts for oxygen evolution reaction is synthesized by hydrolysis method. Cyclic voltammetry, anodic polarization and galvanostatic measurements were conducted in solution of 0.5 M H2SO4 to investigate electrocatalytic behavior and stability of the electrocatalyst. The mechanisms of the thermal decomposition process of RuCl3.nH2O and IrCl3.mH2O precursors to form oxide powders were studied by means of thermal gravity analysis (TGA). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used analysis for determination of the crystallographic structure, morphology and catalysts particle size. Based on the given results, the IrxRu1-xO2 (x = 0.5 0.7) compounds were found to be more active than pure IrO2 and more stable than pure RuO2.

  10. Electrodeposited Co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Asiri, Abdullah M.; Sun, Xuping

    2016-02-01

    In this communication, we report that a Co-doped NiSe2 nanoparticles film electrodeposited on a conductive Ti plate (Co0.13Ni0.87Se2/Ti) behaves as a robust electrocatalyst for both HER and OER in strongly basic media, with good activity over a NiSe2/Ti counterpart. This Co0.13Ni0.87Se2/Ti catalytic electrode delivers 10 mA cm-2 at an overpotential of 64 mV for HER and 100 mA cm-2 at an overpotential of 320 mV for OER in 1.0 M KOH. A voltage of only 1.62 V is required to drive 10 mA cm-2 for the two-electrode alkaline water electrolyzer using Co0.13Ni0.87Se2/Ti as an anode and cathode.In this communication, we report that a Co-doped NiSe2 nanoparticles film electrodeposited on a conductive Ti plate (Co0.13Ni0.87Se2/Ti) behaves as a robust electrocatalyst for both HER and OER in strongly basic media, with good activity over a NiSe2/Ti counterpart. This Co0.13Ni0.87Se2/Ti catalytic electrode delivers 10 mA cm-2 at an overpotential of 64 mV for HER and 100 mA cm-2 at an overpotential of 320 mV for OER in 1.0 M KOH. A voltage of only 1.62 V is required to drive 10 mA cm-2 for the two-electrode alkaline water electrolyzer using Co0.13Ni0.87Se2/Ti as an anode and cathode. Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c5nr07170d

  11. Macroscale cobalt-MOFs derived metallic Co nanoparticles embedded in N-doped porous carbon layers as efficient oxygen electrocatalysts

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Sheng; Zhang, Haimin; Liu, Rongrong; Zhang, Xian; Zhao, Huijun; Wang, Guozhong

    2017-01-01

    Metal-organic frameworks (MOFs) materials have aroused great research interest in different areas owing to their unique properties, such as high surface area, various composition, well-organized framework and controllable porous structure. Controllable fabrication of MOFs materials at macro-scale may be more promising for their large-scale practical applications. Here we report the synthesis of macro-scale Co-MOFs crystals using 1,3,5-benzenetricarboxylic acid (H3BTC) linker in the presence of Co2+, triethylamine (TEA) and nonanoic acid by a facile solvothermal reaction. Further, the as-fabricated Co-MOFs as precursor was pyrolytically treated at different temperatures in N2 atmosphere to obtain metallic Co nanoparticles embedded in N-doped porous carbon layers (denoted as Co@NPC). The results demonstrate that the Co-MOFs derived sample obtained at 900 °C (Co@NPC-900) shows a porous structure (including micropore and mesopore) with a surface area of 110.8 m2 g-1 and an N doping level of 1.62 at.% resulted from TEA in the pyrolysis process. As electrocatalyst, the Co@NPC-900 exhibits bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media which are key reactions in some renewable energy technologies such as fuel cells and rechargeable metal-air batteries. The results indicate that the Co@NPC-900 can afford an onset potential of 1.50 V (vs. RHE) and a potential value of 1.61 V (vs. RHE) at a current density of 10 mA cm-2 for ORR and OER with high applicable stability, respectively. The efficient catalytic activity of Co@NPC-900 as bifunctional oxygen electrocatalyst can be ascribed to N doping and embedded metallic Co nanoparticles in carbon structure providing catalytic active sites and porous structure favourable for electrocatalysis-related mass transport.

  12. MnO2 Nanofilms on Nitrogen-Doped Hollow Graphene Spheres as a High-Performance Electrocatalyst for Oxygen Reduction Reaction.

    PubMed

    Yu, Qiangmin; Xu, Jiaoxing; Wu, Chuxin; Zhang, Jianshuo; Guan, Lunhui

    2016-12-28

    Platinum is commonly chosen as an electrocatalyst used for oxygen reduction reaction (ORR). In this study, we report an active catalyst composed of MnO2 nanofilms grown directly on nitrogen-doped hollow graphene spheres, which exhibits high activity toward ORR with positive onset potential (0.94 V vs RHE), large current density (5.2 mA cm(-2)), and perfect stability. Significantly, when it was used as catalyst for air electrode, a zinc-air battery exhibited a high power density (82 mW cm(-2)) and specific capacities (744 mA h g(-1)) comparable to that with Pt/C (20 wt %) as air cathode. The enhanced activity is ascribed to the synergistic interaction between MnO2 and the doped hollow carbon nanomaterials. This easy and cheap method paves a way of synthesizing high-performance electrocatalysts for ORR.

  13. Electrochemical properties of lithium air batteries with Pt100-xRux (0 ≤ x ≤ 100) electrocatalysts for air electrodes

    NASA Astrophysics Data System (ADS)

    Yui, Yuhki; Sakamoto, Shuhei; Nohara, Masaya; Hayashi, Masahiko; Nakamura, Jiro; Komatsu, Takeshi

    2017-02-01

    Electrochemical properties of lithium air secondary battery cells with Pt100-xRux (0 ≤ x ≤ 100) electrocatalysts, prepared by the formic acid reduction method and loaded into air electrodes were examined in 1 mol/l LiTFSA/TEGDME electrolyte solution. Among the cells, the one with the Pt10Ru90 (x = 90)/carbon sample showed the largest discharge capacity of 1014 mAh/g and the lowest average charge voltage of 3.74 V. In addition, the x = 90 sample showed comparatively good cycle stability with discharge capacity of over 800 mAh/g at the 8th cycle. As a result, x = 90 was confirmed to be the optimized composition as the electrocatalyst for the air electrode.

  14. The Fundamental Role of Nano-Scale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts

    SciTech Connect

    Digby Macdonald

    2005-04-15

    The derivation of successful fuel cell technologies requires the development of more effective, cheaper, and poison-resistant electrocatalysts for both the anode (H{sub 2} oxidation in the presence of small amounts of CO from the reforming of carbonaceous fuels) and the cathode (reduction of oxygen in the presence of carried-over fuel). The proposed work is tightly focused on one specific aspect of electrocatalysis; the fundamental role(s) played by nanoscale (1-2 nm thick) oxide (''passive'') films that form on the electrocatalyst surfaces above substrate-dependent, critical potentials, on charge transfer reactions, particularly at elevated temperatures (25 C < T < 200 C). Once the role(s) of these films is (are) adequately understood, we will then use this information to specify, at the molecular level, optimal properties of the passive layer for the efficient electrocatalysis of the oxygen reduction reaction.

  15. Coral-Shaped MoS2 Decorated with Graphene Quantum Dots Performing as a Highly Active Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Guo, Bangjun; Yu, Ke; Li, Honglin; Qi, Ruijuan; Zhang, Yuanyuan; Song, Haili; Tang, Zheng; Zhu, Ziqiang; Chen, Mingwei

    2017-02-01

    We report a new CVD method to prepare coral-shaped monolayer MoS2 with a large amount of exposed edge sites for catalyzing hydrogen evolution reaction. The electrocatalytic activities of the coral-shaped MoS2 can be further enhanced by electronic band engineering via decorated with graphene quantum dot (GQD) decoration. Generally, GQDs improve the electrical conductivity of the MoS2 electrocatalyst. First-principles calculations suggest that the coral MoS2@GQD is a zero-gap material. The high electric conductivity and pronounced catalytically active sites give the hybrid catalyst outstanding electrocatalytic performance with a small onset overpotential of 95 mV and a low Tafel slope of 40 mV/dec as well as excellent long-term electrocatalytic stability. The present work provides a potential way to design two-dimensional hydrogen evolution reaction (HER) electrocatalysts through controlling the shape and modulating the electric conductivity.

  16. Three-Dimensional Crystalline/Amorphous Co/Co3O4 Core/Shell Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction.

    PubMed

    Yan, Xiaodong; Tian, Lihong; He, Min; Chen, Xiaobo

    2015-09-09

    Earth-abundant, low-cost electrocatalysts with outstanding catalytic activity in the electrochemical hydrogen evolution reaction (HER) are critical in realizing the hydrogen economy to lift our future welfare and civilization. Here we report that excellent HER activity has been achieved with three-dimensional core/shell Co/Co3O4 nanosheets composed of a metallic cobalt core and an amorphous cobalt oxide shell. A benchmark HER current density of 10 mA cm(-2) has been achieved at an overpotential of ∼90 mV in 1 M KOH. The excellent activity is enabled with the unique metal/oxide core/shell structure, which allows high electrical conductivity in the core and high catalytic activity on the shell. This finding may open a door to the design and fabrication of earth-abundant, low-cost metal oxide electrocatalysts with satisfactory hydrogen evolution reaction activities.

  17. Sulfur poisoning of emergent and current electrocatalysts: vulnerability of MoS2, and direct correlation to Pt hydrogen evolution reaction kinetics.

    PubMed

    Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-05-21

    The recent surge in interest in the utilisation of transition metal dichalcogenides for the hydrogen evolution reaction (HER), as well as the long-standing problem of sulfur poisoning suffered by the established Pt HER electrocatalyst, motivated us to examine the impacts of sulfur poisoning on both emergent and current electrocatalysts. Through a comparative study between MoS2 and Pt/C on the effects of sulfur poisoning, we demonstrate that MoS2 is not invulnerable to poisoning. Additionally, using X-ray photoelectron spectroscopy, correlations have also been established between the atomic percentages of Pt-S bonds and normalised HER parameters e.g. Tafel slope and potential at -10 mA cm(-2). These findings are of high importance for potential hydrogen evolution catalysis.

  18. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  19. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction.

    PubMed

    Ma, Zhaoling; Dou, Shuo; Shen, Anli; Tao, Li; Dai, Liming; Wang, Shuangyin

    2015-02-02

    Heteroatom-doped carbon materials have been extensively investigated as metal-free electrocatalysts to replace commercial Pt/C catalysts in oxygen reduction reactions in fuel cells and Li-air batteries. However, the synthesis of such materials usually involves high temperature or complicated equipment. Graphene-based sulfur composites have been recently developed to prolong the cycling life of Li-S batteries, one of the most attractive energy-storage devices. Given the high cost of graphene, there is significant demand to recycle and reuse graphene from Li-S batteries. Herein, we report a green and cost-effective method to prepare sulfur-doped graphene, achieved by the continuous charge/discharge cycling of graphene-sulfur composites in Li-S batteries. This material was used as a metal-free electrocatalyst for the oxygen reduction reaction and shows better electrocatalytic activity than pristine graphene and better methanol tolerance durability than Pt/C.

  20. Comparative study of oxygen reduction reaction on Ru xM ySe z (M = Cr, Mo, W) electrocatalysts for polymer exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Suárez-Alcántara, K.; Solorza-Feria, O.

    Electrochemical evaluation of the Ru xM ySe z (M = Cr, Mo, W) type electrocatalysts towards the oxygen reduction reaction (ORR) is presented. The electrocatalysts were synthesized by reacting the corresponding transition metal carbonyl compounds and elemental selenium in 1,6-hexanediol under refluxing conditions for 3 h. The powder electrocatalysts were characterized by scanning electron microscopy (SEM), and X-ray diffraction (XRD). Results indicate the formation of agglomerates of crystalline particles with nanometric size embedded in an amorphous phase. The particle size decreased according to the following trend: Ru xCr ySe z > Ru xW ySe z > Ru xMo ySe z. Electrochemical studies were performed by rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) techniques. Kinetic parameters exhibited Tafel slopes of 120 mV dec -1; exchange current density of around 1 × 10 -5 mA cm -2 and apparent activation energies between 40 and 55 kJ mol -1. A four-electron reduction was found in all three cases. The catalytic activity towards the ORR decreases according to the following trend: Ru xMo ySe z > Ru xW ySe z > Ru xCr ySe z. However this trend was not maintained when the materials were tested as cathode electrodes in a single polymer exchange membrane fuel cell, PEMFC. The Ru xW ySe z electrocatalyst showed poor activity compared to Ru xMo ySe z and Ru xCr ySe z which were considered suitable candidates to be used as cathode in PEMFCs.

  1. The influence of the electrochemical stressing (potential step and potential-static holding) on the degradation of polymer electrolyte membrane fuel cell electrocatalysts

    NASA Astrophysics Data System (ADS)

    Shao, Yuyan; Kou, Rong; Wang, Jun; Viswanathan, Vilayanur V.; Kwak, Ja Hun; Liu, Jun; Wang, Yong; Lin, Yuehe

    The understanding of the degradation mechanisms of electrocatalysts is very important for developing durable electrocatalysts for polymer electrolyte membrane (PEM) fuel cells. The degradation of Pt/C electrocatalysts under potential-static holding conditions (at 1.2 V and 1.4 V vs. RHE) and potential step conditions with the upper potential of 1.4 V for 150 s and lower potential limits (0.85 V and 0.60 V) for 30 s in each period [denoted as Pstep(1.4V_150s-0.85V_30s) and Pstep(1.4V_150s-0.60V_30s), respectively] were investigated. The electrocatalysts and support were characterized with electrochemical voltammetry, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Pt/C degrades much faster under Pstep conditions than that under potential-static holding conditions. Pt/C degrades under the Pstep(1.4V_150s-0.85V_30s) condition mainly through the coalescence process of Pt nanoparticles due to the corrosion of carbon support, which is similar to that under the conditions of 1.2 V- and 1.4 V-potential-static holding; however, Pt/C degrades mainly through the dissolution/loss and dissolution/redeposition process if stressed under Pstep(1.4V_150s-0.60V_30s). The difference in the degradation mechanisms is attributed to the chemical states of Pt nanoparticles: Pt dissolution can be alleviated by the protective oxide layer under the Pstep(1.4V_150s-0.85V_30s) condition and the potential-static holding conditions. These findings are very important for understanding PEM fuel cell electrode degradation and are also useful for developing fast test protocol for screening durable catalyst support materials.

  2. Amorphous Co(OH)2 nanosheet electrocatalyst and the physical mechanism for its high activity and long-term cycle stability

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Li, H. B.; Yang, G. W.

    2016-01-01

    Good conductivity is conventionally considered as a typical reference standard in terms of selecting water electrolysis catalysts. Cobalt hydroxide (Co(OH)2) has received extensive attention for its exceptional properties as a promising electrocatalysis catalyst. However, research on Co(OH)2 so far prefers to its crystal phase instead of amorphous phase because the former generally exhibits better conductivity. Here, we have demonstrated that the amorphous Co(OH)2 electrocatalyst synthesized via a simple, facile, green, and low-cost electrochemistry technique possesses high activity and long-term cycle stability in the oxygen evolution reaction (OER). The as-synthesized Co(OH)2 electrode was found to be a promising electrocatalyst for mediating OER in alkaline media, as evidenced by the overpotential of 0.38 V at a current density of 10 mA cm-2 and a Tafel slope of 68 mV dec-1. The amorphous Co(OH)2 also presented outstanding durability and its stability was just as well as that of crystalline Co(OH)2. Generally, the integrated electrochemical performances of the amorphous Co(OH)2 in the OER process were much superior to that of the crystalline Co(OH)2 materials. We also established that the short-range order, i.e., nanophase, of amorphous Co(OH)2 creates a lot of active sites for OER which can greatly promote the electrocatalysis performance of amorphous catalysts. These findings showed that the conventional understanding of selecting electrocatalysts with conductivity as a typical reference standard seems out of date for developing new catalysts at the nanometer, which actually open a door to applications of amorphous nanomaterials as an advanced electrocatalyst in the field of water oxidation.

  3. Au-supported Pt-Au mixed atomic monolayer electrocatalyst with ultrahigh specific activity for oxidation of formic acid in acidic solution.

    PubMed

    Huang, Zhao; Liu, Yan; Xie, Fangyun; Fu, Yingchun; He, Yong; Ma, Ming; Xie, Qingji; Yao, Shouzhuo

    2012-12-25

    Au-supported Pt-Au mixed atomic monolayer electrocatalyst was prepared by underpotential deposition of Cu on Au and then redox replacement with noble metal atoms, which shows an ultrahigh Pt-mass (or Pt-area) normalized specific electrocatalytic activity of 102 mA μg(Pt)(-1) (124 mA cm(Pt)(-2)) for oxidation of formic acid in acidic aqueous solution.

  4. In Situ Polymer Graphenization Ingrained with Nanoporosity in a Nitrogenous Electrocatalyst Boosting the Performance of Polymer-Electrolyte-Membrane Fuel Cells.

    PubMed

    Fu, Xiaogang; Zamani, Pouyan; Choi, Ja-Yeon; Hassan, Fathy M; Jiang, Gaopeng; Higgins, Drew C; Zhang, Yining; Hoque, Md Ariful; Chen, Zhongwei

    2017-02-01

    Rich, porous graphene frameworks decorated with uniformly dispersed active sites are prepared by using polyaniline as a graphene precursor and introducing phenanthroline as a pore-forming agent. The unprecedented fuel-cell performance of this electrocatalyst is linked to the graphene frameworks with vast distribution of pore sizes, which maximizes the active-sites accessibility, facilitates mass-transport properties, and improves the carbon corrosion resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chrysanthemum flower-like NiCo2O4-nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium-oxygen and zinc-air batteries.

    PubMed

    Moni, Prabu; Hyun, Suyeon; Vignesh, Ahilan; Shanmugam, Sangaraju

    2017-07-06

    Chrysanthemum flower-like NiCo2O4-nitrogen doped graphene oxide composite material has been explored as a bifunctional cathode electrocatalyst for aqueous zinc-air and non-aqueous lithium-oxygen batteries. This cathode exhibits maximum discharge capacities of 712 and 15 046 mA h g(-1) for zinc-air and lithium-oxygen batteries, respectively, with stable cycling over 50 cycles.

  6. Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution.

    PubMed

    Liu, Bin; Zhao, Yu-Fei; Peng, Hui-Qing; Zhang, Zhen-Yu; Sit, Chun-Kit; Yuen, Muk-Fung; Zhang, Tie-Rui; Lee, Chun-Sing; Zhang, Wen-Jun

    2017-05-01

    Novel 3D Ni1-x Cox Se2 mesoporous nanosheet networks with tunable stoichiometry are successfully synthesized on Ni foam (Ni1-x Cox Se2 MNSN/NF with x ranging from 0 to 0.35). The collective effects of special morphological design and electronic structure engineering enable the integrated electrocatalyst to have very high activity for hydrogen evolution reaction (HER) and excellent stability in a wide pH range. Ni0.89 Co0.11 Se2 MNSN/NF is revealed to exhibit an overpotential (η10 ) of 85 mV at -10 mA cm(-2) in alkaline medium (pH 14) and η10 of 52 mV in acidic solution (pH 0), which are the best among all selenide-based electrocatalysts reported thus far. In particular, it is shown for the first time that the catalyst can work efficiently in neutral solution (pH 7) with a record η10 of 82 mV for all noble metal-free electrocatalysts ever reported. Based on theoretical calculations, it is further verified that the advanced all-pH HER activity of Ni0.89 Co0.11 Se2 is originated from the enhanced adsorption of both H(+) and H2 O induced by the substitutional doping of cobalt at an optimal level. It is believed that the present work provides a valuable route for the design and synthesis of inexpensive and efficient all-pH HER electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sulfur poisoning of emergent and current electrocatalysts: vulnerability of MoS2, and direct correlation to Pt hydrogen evolution reaction kinetics

    NASA Astrophysics Data System (ADS)

    Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-05-01

    The recent surge in interest in the utilisation of transition metal dichalcogenides for the hydrogen evolution reaction (HER), as well as the long-standing problem of sulfur poisoning suffered by the established Pt HER electrocatalyst, motivated us to examine the impacts of sulfur poisoning on both emergent and current electrocatalysts. Through a comparative study between MoS2 and Pt/C on the effects of sulfur poisoning, we demonstrate that MoS2 is not invulnerable to poisoning. Additionally, using X-ray photoelectron spectroscopy, correlations have also been established between the atomic percentages of Pt-S bonds and normalised HER parameters e.g. Tafel slope and potential at -10 mA cm-2. These findings are of high importance for potential hydrogen evolution catalysis.The recent surge in interest in the utilisation of transition metal dichalcogenides for the hydrogen evolution reaction (HER), as well as the long-standing problem of sulfur poisoning suffered by the established Pt HER electrocatalyst, motivated us to examine the impacts of sulfur poisoning on both emergent and current electrocatalysts. Through a comparative study between MoS2 and Pt/C on the effects of sulfur poisoning, we demonstrate that MoS2 is not invulnerable to poisoning. Additionally, using X-ray photoelectron spectroscopy, correlations have also been established between the atomic percentages of Pt-S bonds and normalised HER parameters e.g. Tafel slope and potential at -10 mA cm-2. These findings are of high importance for potential hydrogen evolution catalysis. Electronic supplementary information (ESI) available: Survey scan XPS spectra, HER LSV curves and surface atomic compositions of poisoned and unpoisoned Pt/C and MoS2 nanoparticles. See DOI: 10.1039/c5nr01378j

  8. TiC supported Pt-Ir electrocatalyst prepared by a plasma process for the oxygen electrode in unitized regenerative fuel cells

    NASA Astrophysics Data System (ADS)

    Sui, Sheng; Ma, Lirong; Zhai, Yuchun

    Unitized regenerative fuel cells (URFCs) have become more attractive for some time due to its potentially wide energy storage application such as in fields of space and renewable energy. In this study, TiC supported Pt-Ir electrocatalysts (Pt-Ir/TiC) for oxygen electrode in URFCs were synthesized, respectively, by chemical reduction process and plasma reduction process. Their physical and electrochemical properties are characterized and compared using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), cyclic voltammogram (CV), potentiostatic technique, and electrochemical impedance spectroscopy (EIS). The results from XRD, XPS and TEM demonstrate that the plasma process gives a finer metal crystals and higher metal dispersion on the TiC support. The CV, polarization, potentiostatic and EIS results show that the Pt-Ir/TiC electrocatalyst prepared by the plasma reduction process is obviously more active than that by the chemical reduction process, in agreement with the above metal-dispersion observations. The plasma process is a promising way for the preparation of supported electrocatalysts.

  9. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    PubMed

    Vinayan, B P; Ramaprabhu, S

    2013-06-07

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  10. Using nitrogen-rich polymeric network and iron(II) acetate as precursors to synthesize highly efficient electrocatalyst for oxygen reduction reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Chen, Hongbiao; Yang, Duanguang; Gao, Yong; Li, Huaming

    2016-03-01

    Carbon-supported transition metal/nitrogen (M-N/C) materials are considered as one of the most promising electrocatalysts for the oxygen reduction reaction (ORR) owing to their high ORR electrocatalytic activity, long-term stability, and excellent methanol tolerance. So far only a few examples of such catalysts are prepared from N-containing polymers. Herein, we report a novel Fe-N/C catalyst using a nitrogen-rich polymeric network and iron(II) acetate as the precursors. The porous polymeric network is fabricated by one-step Friedel-Crafts reaction of a low-cost cross-linker, formaldehyde dimethyl acetal, with 2,4,6-tripyrrol-1,3,5-triazine. Compared to commercial Pt/C catalyst, the as-prepared Fe-N/C electrocatalyst exhibits superior ORR activity in alkaline electrolyte, and comparable ORR activity in acidic medium. The results obtained are significant for the development of new Fe-N/C electrocatalysts for fuel cells.

  11. A new Pt-Rh carbon nitride electrocatalyst for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Synthesis, characterization and single-cell performance

    NASA Astrophysics Data System (ADS)

    Di Noto, Vito; Negro, Enrico

    In this paper the preparation of a new bimetal electrocatalyst for the oxygen reduction reaction (ORR), which is one of the most important bottlenecks in the operation of polymer electrolyte membrane fuel cells (PEMFCs), is described. This material was synthesized through a pyrolysis process of a zeolitic inorganic-organic polymer electrolyte (Z-IOPE-like) precursor, followed by suitable washing and activation procedures of the product. The electrocatalyst, whose active sites consist of platinum and rhodium, was: (a) extensively characterized from the chemical, structural, morphological and electrochemical points of view and (b) used to prepare a membrane-electrode assembly (MEA) which was tested under operative conditions in a single-cell configuration. It was observed that, with respect to a reference material based on supported platinum, rhodium did not compromise the performance of the electrocatalyst in the ORR. This behaviour was interpreted in the framework of a general model concerning the enhancement of ORR performance in bimetal systems supported on carbon nitrides. Finally, the material shows a slightly better tolerance toward a few common contaminants for the ORR such as methanol and chloride anions, typical of direct methanol fuel cells (DMFCs) and vehicular applications, respectively.

  12. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  13. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    PubMed Central

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-01-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs. PMID:26876468

  14. Facile one-pot synthesis of CoS2-MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Ru; Hu, Wen-Hui; Li, Xiao; Dong, Bin; Shang, Xiao; Han, Guan-Qun; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2016-10-01

    Ternary hybrid cobalt disulfide-molybdenum disulfides supported on carbon nanotubes (CoS2-MoS2/CNTs) electrocatalysts have been prepared via a simple hydrothermal method. CNTs as support may provide good conductivity and low the agglomeration of layered MoS2 structure. CoS2 with intrinsic metallic conductivity may enhance the activity of the ternary hybrid electrocatalysts for hydrogen evolution reaction (HER). X-ray diffraction (XRD) data confirm the formation of ternary hybrid nanocomposites composed of CNTs, CoS2 and amorphous MoS2. Scanning electron microscopy (SEM) images show that strong combination between MoS2, CNTs and regular orthohexagonal CoS2 has been obtained. The dispersion of each component is good and no obvious agglomeration can be observed. It is found that compared with CoS2/CNTs and MoS2/CNTs, the ternary CoS2-MoS2/CNTs have the better activity for HER with a low onset potential of 70 mV (vs. RHE) and a small Talel slope of 67 mV dec-1, and are extremely stable after 1000 cycles. In addition, the optimal doping ratio of Co to Mo is 2:1, which have better HER activity. It is proved that the introduction of carbon materials and Co atoms could improve the performances of MoS2-based electrocatalysts for HER.

  15. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.

    2016-08-01

    Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.

  16. Three-dimensional metal-organic framework derived porous CoP3 concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen.

    PubMed

    Wu, Tianli; Pi, Mingyu; Wang, Xiaodeng; Zhang, Dingke; Chen, Shijian

    2017-01-18

    Developing low-cost and highly-efficient non-precious metal bifunctional electrocatalysts towards the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an attractively alternative strategy to solve the environmental pollution problems and energy demands. In this study, metal-organic framework (MOF) derived porous cobalt poly-phosphide (CoP3) concave polyhedrons are prepared and explored as superior bifunctional electrocatalysts for the HER and OER. The prepared MOF derived CoP3 concave polyhedrons show excellent electrocatalytic activity and stability towards the HER and OER in both acidic and alkaline media, with the Tafel slopes of 53 mV dec(-1) and 76 mV dec(-1) and a current density of 10 mA cm(-2) at the overpotentials of -78 and 343 mV for the HER and OER, respectively, which are remarkably superior to those of the transition metal phosphides (TMPs) and comparable to those of the commercial precious metal catalysts. In addition, they also offer efficient catalytic activities and durabilities under neutral and basic conditions for the HER. The results of our study may shed light on the direction towards highly efficient bifunctional TMP electrocatalysts with high phosphorous component.

  17. Low content of Pt supported on Ni-MoCx/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui

    2017-08-01

    Nickel and molybdenum carbide modified carbon black (Ni-MoCx/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoCx/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoCx/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoCx/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoCx/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoCx/C reached 68.4 m2 g-1, which was higher than that of 20Pt/C (63.2 m2 g-1). The enhanced stability and activity of 10Pt/Ni-MoCx/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoCx formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoOx and MoCx. These findings indicated that 10Pt/Ni-MoCx/C was a promising electrocatalyst for direct methanol fuel cells.

  18. Directed surfaces structures and interfaces for enhanced electrocatalyst activity, selectivity, and stability for energy conversion reactions

    SciTech Connect

    Jaramillo, Thomas F.

    2016-04-20

    IrO3/IrOx catalyst significantly outperforms rutile IrO2 and RuO2, the only other OER catalysts to have reasonable stability and activity in acidic electrolyte, and in fact demonstrates the best activity for any known OER catalyst measured in either acidic or in alkaline electrolyte. For alkaline conditions we have demonstrated that the combined effect of cerium as a dopant and gold as a metal support, significantly enhances the OER activity of electrodeposited NiOx films. This NiCeOx-Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts reported to date (Nature Energy, accepted 2016). These studies of new catalysts for the OER, both in acid and in base, are fundamental to enabling new technologies of interest for the DOE, including the production of sustainable fuels and chemicals. ORR: One method to significantly reduce the Pt loading in fuel cell devices is to increase the ORR activity of Pt based systems. To this end we have synthesized a high surface area supported meso-structured PtxNi alloy thin film with a double gyroid morphology that both exhibits high activity and stability for the ORR (submitted, 2016). We have furthermore developed a Ru-core, Pt-shell system that improves the per Pt site activity by more than a factor of 2 (ChemElectroChem, 2014). Further refinement, optimizing Pt-shell thickness and reducing particle sintering during processing, enabled us to obtain a mass activity that is 2 times higher than commercial Pt/C from TKK. These are important contributions to the DOE goal of reducing Pt loading since an improved understanding of how to increase mass activity and stability helps enable low Pt content fuel cells.

  19. Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zuo, Quan; Zhao, Pingping; Luo, Wei; Cheng, Gongzhen

    2016-07-01

    Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the best non-precious catalysts ever reported for ORR.Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the

  20. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions