Enhanced and Facet-specific Electrocatalytic Properties of Ag/Bi2Fe4O9 Composite Nanoparticles.
Wang, Kai; Xu, Xiaoguang; Lu, Liying; Wang, Haicheng; Li, Yan; Wu, Yong; Miao, Jun; Zhang, Jin Zhong; Jiang, Yong
2018-04-18
Ag/Bi 2 Fe 4 O 9 nanoparticles (BFO NPs) have been synthesized using a two-step approach involving glycine combustion and visible light irradiation. Their structures were characterized in detail using X-ray diffraction, transmission electron microscope, scanning electron microscopy, and scanning transmission electron microscopy techniques. Their electrocatalytic properties were studied through enzymatic glucose detection with an amperometric biosensor. The Ag deposited on selective crystal facets of BFO NPs significantly enhanced their electrocatalytic activity. To gain insights into the origin of the enhanced electrocatalytic activities, we have carried out studies of Ag + reduction and Mn 2+ oxidation reaction at the {200} and {001} facets, respectively. The results suggest effective charge separation on the BFO NP surfaces, which is likely responsible for the enhanced electrocatalytic properties. Furthermore, enhanced ferromagnetism was observed after the Ag deposition on BFO NPs, which may be related to the improved electrocatalytic properties through spin-dependent charge transport. The facet-specific electrocatalytic properties are highly interesting and desired for chemical reactions. This study demonstrates that Ag/BFO NPs are potentially useful for electrocatalytic applications including biosensing and chemical synthesis with high product selectivity.
In situ Visualization of Electrocatalytic Reaction Activity at Quantum Dots for Water Oxidation.
Chen, Ying; Fu, Jiaju; Cui, Chen; Jiang, Dechen; Chen, Zixuan; Chen, Hong-Yuan; Zhu, Jun-Jie
2018-06-11
Exploring electrocatalytic reactions on nanomaterial surface can give crucial information for the development of robust catalysts. Here, electrocatalytic reaction activity at single quantum dots (QDs) loaded silica micro-particles involved in water oxidation is visualized using electrochemiluminescence (ECL) microscopy. Under positive potential, the active redox centers at QDs induce the generation of hydroperoxide surface intermediates as coreactant to remarkably enhance ECL emission from luminol derivative for imaging. For the first time, in situ visualization of catalytic activity in water oxidation at QDs catalyst was achieved, supported by a linear relation between ECL intensity and turn over frequency. A very slight diffusion trend attributed to only luminol species proved in situ capture of hydroperoxide surface intermediates at catalytic active sites of QDs. This work provides tremendous potential in on-line imaging of electrocatalytic reaction and visual evaluation of catalyst performance.
Sensitive Nonenzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO
NASA Astrophysics Data System (ADS)
He, Gege; Tian, Liangliang; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Pu, Wanrong; Zhang, Jinkun; Li, Lu
2018-01-01
Transition metal oxides (TMOs) have attracted extensive research attentions as promising electrocatalytic materials. Despite low cost and high stability, the electrocatalytic activity of TMOs still cannot satisfy the requirements of applications. Inspired by kinetics, the design of hollow porous structure is considered as a promising strategy to achieve superior electrocatalytic performance. In this work, cubic NiO hollow porous architecture (NiO HPA) was constructed through coordinating etching and precipitating (CEP) principle followed by post calcination. Being employed to detect glucose, NiO HPA electrode exhibits outstanding electrocatalytic activity in terms of high sensitivity (1323 μA mM-1 cm-2) and low detection limit (0.32 μM). The excellent electrocatalytic activity can be ascribed to large specific surface area (SSA), ordered diffusion channels, and accelerated electron transfer rate derived from the unique hollow porous features. The results demonstrate that the NiO HPA could have practical applications in the design of nonenzymatic glucose sensors. The construction of hollow porous architecture provides an effective nanoengineering strategy for high-performance electrocatalysts.
Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability
NASA Astrophysics Data System (ADS)
Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida
2017-02-01
Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.
De Wael, Karolien; Adriaens, Annemie
2008-02-15
This work reports on the electrocatalytic oxidation of hydroxide using different central metal ion phthalocyanines and porphyrins immobilized on gold electrodes. The apparent electrocatalytic activity of cobalt phthalocyanine or porphyrin modified electrodes was found to be the greatest among the present series of metal ion macrocycles investigated. Copper and unmetallated phthalocyanine or porphyrin modified electrodes show no electrocatalytic behaviour towards hydroxide, such as bare gold. A possible mechanism for the enhanced reactivity of cobalt ion macrocycles towards the oxygen evolution is given. It is also stated that the electrocatalytic activity towards an adsorbate involves several aspects, such as the coordination state of the central metal ion, the nature of the ligand, the stability of the complexes, the number of d electrons, the energy of orbitals and the strength of the bonding between the central metal ion and the axial ligand.
Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Sujuan; Shi, Binbin; Yao, Guoxing
2011-10-15
Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: {yields} Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. {yields} Activity is related to the structure, crystal phase and chemical component of the nanocomposite. {yields} The property of electrolyte affects the electrocatalytic activity. {yields} A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide andmore » titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.« less
Electro-catalytic degradation of sulfisoxazole by using graphene anode.
Wang, Yanyan; Liu, Shuan; Li, Ruiping; Huang, Yingping; Chen, Chuncheng
2016-05-01
Graphite and graphene electrodes were prepared by using pure graphite as precursor. The electrode materials were characterized by a scanning electron microscope (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV) measurements. The electro-catalytic activity for degradation of sulfisoxazole (SIZ) was investigated by using prepared graphene or graphite anode. The results showed that the degradation of SIZ was much more rapid on the graphene than that on the graphite electrode. Moreover, the graphene electrode exhibited good stability and recyclability. The analysis on the intermediate products and the measurement of active species during the SIZ degradation demonstrated that indirect oxidation is the dominant mechanism, involving the electro-catalytic generation of OH and O2(-) as the main active oxygen species. This study implies that graphene is a promising potential electrode material for long-term application to electro-catalytic degradation of organic pollutants. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ting, Chao-Cheng; Chao, Chih-Hsuan; Tsai, Cheng Yu; Cheng, I.-Kai; Pan, Fu-Ming
2017-09-01
We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium-tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies.
Chen, Xingxing; Eckhard, Kathrin; Zhou, Min; Bron, Michael; Schuhmann, Wolfgang
2009-09-15
A strategy for the screening of the electrocatalytic activity of electrocatalysts for possible application in fuel cells and other devices is presented. In this approach, metal nanoclusters (Pt, Au, Ru, and Rh and their codeposits) were prepared using a capillary-based droplet-cell by pulsed electrodeposition in a diffusion-restricted viscous solution. A glassy carbon surface was modified with carbon nanotubes (CNTs) by electrophoretic accumulation and was used as substrate for metal nanoparticle deposition. The formed catalyst spots on the CNT-modified glassy carbon surface were investigated toward their catalytic activity for oxygen reduction as a test reaction employing the redox competition mode of scanning electrochemical microscopy (RC-SECM). Qualitative information on the electrocatalytic activity of the catalysts was obtained by varying the potential applied to the substrate; semiquantitative evaluation was based on the determination of the electrochemically deposited catalyst loading by means of the charge transferred during the metal nanoparticle deposition. Qualitatively, Au showed the highest electrocatalytic activity toward the oxygen reduction reaction (ORR) in phosphate buffer among all investigated single metal catalysts which was attributed to the much higher loading of Au achieved during electrodeposition. Coelectrodeposited Au-Pt catalysts showed a more positive onset potential (-150 mV in RC-SECM experiments) of the ORR in phosphate buffer at pH 6.7. After normalizing the SECM image by the charge during the metal nanocluster deposition which represents the mass loading of the catalyst, Ru showed a higher electrocatalytic activity toward the ORR than Au.
Zhang, Xiahong; Wu, Genghuang; Cai, Zhixiong; Chen, Xi
2015-03-01
In this study, a facile hydrothermal method was developed to synthesize Pt-on-Pd supported on reduced graphene oxide (Pt-on-Pd/RGO) hybrids. Because of the synergistic effect between Pt-on-Pd and RGO, the obtained Pt-on-Pd/RGO had superior peroxidase-mimic activities in H2O2 reduction and TMB oxidation. The reaction medium was optimized and a sensing approach for H2O2 was developed with a linear range from 0.98 to 130.7 μM of H2O2. In addition, the characteristic of electrocatalytic oxidation of methanol was investigated. The peak current density value, j(f), for the Pt-on-Pd/RGO hybrid (328 mA mg(Pt)(-1)) was about 1.85 fold higher than that of commercial Pt black (177 mA mg(Pt)(-1)) and, also, more durable electrocatalytic activity could be obtained. For the first time, the dual-functional Pt-on-Pd/RGO with peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic was reported. Copyright © 2014 Elsevier B.V. All rights reserved.
2013-01-01
In this study, the influence of the morphology on the electrocatalytic activity of nickel oxide nanostructures toward methanol oxidation is investigated. Two nanostructures were utilized: nanoparticles and nanofibers. NiO nanofibers have been synthesized by using the electrospinning technique. Briefly, electrospun nanofiber mats composed of polyvinylpyrolidine and nickel acetate were calcined at 700°C for 1 h. Interestingly, compared to nanoparticles, the nanofibrous morphology strongly enhanced the electrocatalytic performance. The corresponding current densities for the NiO nanofibers and nanoparticles were 25 and 6 mA/cm2, respectively. Moreover, the optimum methanol concentration increased to 1 M in case of the nanofibrous morphology while it was 0.1 M for the NiO nanoparticles. Actually, the one-dimensional feature of the nanofibrous morphology facilitates electrons' motion which enhances the electrocatalytic activity. Overall, this study emphasizes the distinct positive impact of the nanofibrous morphology on the electrocatalytic activity which will open a new avenue for modification of the electrocatalysts. PMID:24074313
NASA Astrophysics Data System (ADS)
Jana, Rajkumar; Subbarao, Udumula; Peter, Sebastian C.
2016-01-01
Ordered intermetallic nanocrystals with high surface area are highly promising as efficient catalysts for fuel cell applications because of their unique electrocatalytic properties. The present work discusses about the controlled synthesis of ordered intermetallic Pd3Pb nanocrystals in different morphologies at relatively low temperature for the first time by polyol and hydrothermal methods both in presence and absence of surfactant. Here for the first time we report surfactant free synthesis of ordered flower-like intermetallic Pd3Pb nanocrystals in 10 s. The structural characteristics of the nanocrystals are confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The as synthesized ordered Pd3Pb nanocrystals exhibit far superior electrocatalytic activity and durability towards formic acid and ethanol oxidation over commercially available Pd black (Pd/C). The morphological variation of nanocrystals plays a crucial role in the electrocatalytic oxidation of formic acid and ethanol. Among the catalysts, the flower-like Pd3Pb shows enhanced activity and stability in electrocatalytic formic acid and ethanol oxidation. The current density and mass activity of flower-like Pd3Pb catalyst are higher by 2.5 and 2.4 times than that of Pd/C for the formic acid oxidation and 1.5 times each for ethanol oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohebbi, Sajjad, E-mail: smohebbi@uok.ac.ir; Eslami, Saadat
2015-06-15
Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT andmore » new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.« less
Busó-Rogero, Carlos; Perales-Rondón, Juan V; Farias, Manuel J S; Vidal-Iglesias, Francisco J; Solla-Gullon, Jose; Herrero, Enrique; Feliu, Juan M
2014-07-21
Thallium modified shape-controlled Pt nanoparticles were prepared and their electrocatalytic activity towards formic acid electrooxidation was evaluated in 0.5 M sulfuric acid. The electrochemical and in situ FTIR spectroscopic results show a remarkable improvement in the electrocatalytic activity, especially in the low potential region (around 0.1-0.2 V vs. RHE). Cubic Pt nanoparticles modified with Tl were found to be more active than the octahedral Pt ones in the entire range of Tl coverages and potential windows. In situ FTIR spectra indicate that the promotional effect produced by Tl results in the inhibition of the poisoning step leading to COads, thus improving the onset potential for the complete formic acid oxidation to CO2. Chronoamperometric experiments were also performed at 0.2 V to evaluate the stability of the electrocatalysts at constant potential. Finally, experiments with different concentrations of formic acid (0.05-1 M) were also carried out. In all cases, Tl-modified cubic Pt nanoparticles result to be the most active. All these facts reinforce the importance of controlling the surface structure of the electrocatalysts to optimize their electrocatalytic properties.
Yu, Nan; Kuai, Long; Wang, Qing; Geng, Baoyou
2012-09-07
Pt-filled porous LaNiO₃ cubes are prepared through a facile route. The characterizations reveal that large numbers of pores (9-10 nm) are distributed homogeneously in porous LaNiO₃ cubes. The Pt nanoparticles residing in the pores of porous LaNiO₃ cubes are about 5 nm in size. The investigation on the electrocatalytic activity reveals that electrocatalytic activity of the obtained Pt loaded porous LaNiO₃ nanocubes exhibit a significantly improved electrochemical active surface area (EASA) and a remarkably enhanced electrocatalytic performance toward methanol oxidation. The results are significant for improving the efficiency of Pt-based catalysts for DMFCs as well as the applications of perovskite compounds.
Safavi, Afsaneh; Tohidi, Maryam
2014-09-01
Microwave-assisted ionic liquid method was used for synthesis of various noble metals, such as gold, silver, platinum and palladium nanomaterials. This route does not employ any template agent, surface capping agents or reducing agents. The process is fast, simple and of high yield. Different metal precursors in various ionic liquids media (1-butyl-3-methylimidazolium tetrafluoroborate, octyl pyridinium hexaflurophosphate and 1-octyl-3-methylimidazolium hexaflurophosphate) were applied to produce metal nanomaterials. Silver, platinium and palladium nanoparticles exhibit spherical morphology while nanosheets with high aspect ratio were obtained for gold. These metal nanostructures were incorporated into a carbon ionic liquid electrode to investigate their electrocatalytic properties. It was found that synthesis in different ionic liquids result in different activity. Excellent electrocatalytic effects toward adenine, hydrazine, formaldehyde and ethanol were observed for the modified electrodes with different nanoparticles synthesized in 1-butyl-3-methylimidazolium tetrafluoroborate. The high conductivity, large surface-to-volume ratio and active sites of nanosized metal particles are responsible for their electrocatalytic activity. In contrast, the carbon ionic liquid electrode modified with synthesized metal nanoparticles in octyl pyridinium hexaflurophosphate and 1-octyl-3-methylimidazolium hexaflurophosphate showed negligible activity for detection of these probes.
Synthesis, characterization and electrocatalytic properties of delafossite CuGaO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jahangeer; Department of Chemistry, College of Science, King Saud University, Riyadh 11451; Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu
2016-10-15
Delafossite CuGaO{sub 2} has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO{sub 2} particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron–sized particles by a modified hydrothermal method at 190 °C for 60 h [1–3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed bymore » powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO{sub 2} hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles. - Graphical abstract: Representative delafossite CuGaO2 samples with sub-micron sized plate and nanocrystalline hexagon morphologies accompanying with chronoamperometric voltammograms for oxygen evolution reaction and hydrogen evolution reaction in 0.5 M KOH electrolyte after purged with N{sub 2} gas. - Highlights: • Delafossite CuGaO{sub 2} with three morphologies has been synthesized. • Phase purity of the synthesized samples was confirmed. • Comparison on their electrocatalytic properties was made for the first time. • Their use as electrodes for oxygen and hydrogen evolution reactions was evaluated. • Nanocrystalline CuGaO{sub 2} hexagons show highest electrocatalytic activity.« less
He, Jinbao; Fernández, Cristina; Primo, Ana
2018-01-01
MoS2 is a promising material to replace Pt-based catalysts for the hydrogen evolution reaction (HER), due to its excellent stability and high activity. In this work, MoS2 nanoparticles supported on graphitic carbon (about 20 nm) with a preferential 002 facet orientation have been prepared by pyrolysis of alginic acid films on quartz containing adsorbed (NH4)2MoS4 at 900 °C under Ar atmosphere. Although some variation of the electrocatalytic activity has been observed from batch to batch, the MoS2 sample exhibited activity for HER (a potential onset between 0.2 and 0.3 V vs. SCE), depending on the concentrations of (NH4)2MoS4 precursor used in the preparation process. The loading and particle size of MoS2, which correlate with the amount of exposed active sites in the sample, are the main factors influencing the electrocatalytic activity. PMID:29361756
Zhang, Jin; Cheng, Yi; Lu, Shanfu; Jia, Lichao; Shen, Pei Kang; Jiang, San Ping
2014-11-18
The inner tubes of carbon nanotubes (CNTs) have a significant promotion effect on the electrocatalytic activity of Pd nanoparticles (NPs) for the ethanol oxidation of direct alcohol fuel cells (DAFCs) and Pd NPs supported on CNTs with 3-7 walls show a much higher activity as compared to that supported on typical single-walled and multi-walled CNTs.
Jena, Bikash Kumar; Raj, C Retna
2007-03-27
This article describes the synthesis of branched flower-like gold (Au) nanocrystals and their electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Gold nanoflowers (GNFs) were obtained by a one-pot synthesis using N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid (HEPES) as a reducing/stabilizing agent. The GNFs have been characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and electrochemical measurements. The UV-visible spectra show two bands corresponding to the transverse and longitudinal surface plasmon (SP) absorption at 532 and 720 nm, respectively, for the colloidal GNFs. The GNFs were self-assembled on a sol-gel-derived silicate network, which was preassembled on a polycrystalline Au electrode and used for electrocatalytic applications. The GNFs retain their morphology on the silicate network; the UV-visible diffuse reflectance spectra (DRS) of GNFs on the silicate network show longitudinal and transverse bands as in the case of colloidal GNFs. The GNFs show excellent electrocatalytic activity toward the oxidation of methanol and the reduction of oxygen. Oxidation of methanol in alkaline solution was observed at approximately 0.245 V, which is much less positive than that on an unmodified polycrystalline gold electrode. Reduction of oxygen to H2O2 and the further reduction of H2O2 to water in neutral pH were observed at less negative potentials on the GNFs electrode. The electrocatalytic activity of GNFs is significantly higher than that of the spherically shaped citrate-stabilized Au nanoparticles (SGNs).
Modified Graphene as Electrocatalyst towards Oxygen Reduction Reaction for Fuel Cells
NASA Astrophysics Data System (ADS)
Qazzazie, D.; Beckert, M.; Mülhaupt, R.; Yurchenko, O.; Urban, G.
2014-11-01
This paper reports modified graphene-based materials as metal-free electrocatalysts for oxygen reduction reaction (ORR) with outstanding electrocatalytic activity in alkaline conditions. Nitrogen-doped graphene samples are synthesized by a novel procedure. The defect density in the structure of the prepared materials is investigated by Raman spectroscopy. Further structural characterization by X-ray photoelectron spectroscopy reveals the successful nitrogen doping of graphene. The electrochemical characterization of graphene and nitrogen-doped graphene in 0.1 M KOH solution demonstrates the material's electrocatalytic activity towards ORR. For graphene an onset potential of - 0.175 V vs. Ag/AgCl reference electrode is determined, while for nitrogen-doped graphene the determined onset potential is - 0.160 V. Thus, the electrocatalytic activity of nitrogen-doped graphene towards ORR is enhanced which can be ascribed to the effect of nitrogen doping.
Chai, Shouning; Wang, Yujing; Zhang, Ya-Nan; Liu, Meichuan; Wang, Yanbin; Zhao, Guohua
2017-07-18
To improve selectivity of electrocatalytic degradation of toxic, odorous mercaptans, the fractal-structured dendritic Au/BDD (boron-doped diamond) anode with molecular recognition is fabricated through a facile replacement method. SEM and TEM characterizations show that the gold dendrites are single crystals and have high population of the Au (111) facet. The distinctive structure endows the electrode with advantages of low resistivity, high active surface area, and prominent electrocatalytic activity. To evaluate selectivity, the dendritic Au/BDD is applied in degrading two groups of synthetic wastewater containing thiophenol/2-mercaptobenzimidazole (targets) and phenol/2-hydroxybenzimidazole (interferences), respectively. Results show that targets removals reach 91%/94%, while interferences removals are only 58%/48% in a short time. The corresponding degradation kinetic constants of targets are 3.25 times and 4.1 times that of interferences in the same group, demonstrating modification of dendritic gold on BDD could effectively enhance electrocatalytic target-selectivity. XPS and EXAFS further reveal that the selective electrocatalytic degradation derives from preferential recognition and fast adsorption to thiophenol depending on strong Au-S bond. The efficient, selective degradation is attributed to the synergetic effects between accumulative behavior and outstanding electrochemical performances. This work provides a new strategy for selective electrochemical degradation of contaminants for actual wastewater treatment.
Meguerdichian, Andrew G; Jafari, Tahereh; Shakil, Md R; Miao, Ran; Achola, Laura A; Macharia, John; Shirazi-Amin, Alireza; Suib, Steven L
2018-02-19
Electrocatalytic decomposition of urea for the production of hydrogen, H 2, for clean energy applications, such as in fuel cells, has several potential advantages such as reducing carbon emissions in the energy sector and environmental applications to remove urea from animal and human waste facilities. The study and development of new catalyst materials containing nickel metal, the active site for urea decomposition, is a critical aspect of research in inorganic and materials chemistry. We report the synthesis and application of [NH 4 ]NiPO 4 ·6H 2 O and β-Ni 2 P 2 O 7 using in situ prepared [NH 4 ] 2 HPO 4 . The [NH 4 ]NiPO 4 ·6H 2 O is calcined at varying temperatures and tested for electrocatalytic decomposition of urea. Our results indicate that [NH 4 ]NiPO 4 ·6H 2 O calcined at 300 °C with an amorphous crystal structure and, for the first time applied for urea electrocatalytic decomposition, had the greatest reported electroactive surface area (ESA) of 142 cm 2 /mg and an onset potential of 0.33 V (SCE) and was stable over a 24-h test period.
Synthesis & characterization of Bi7.38Ce0.62O12.3 and its optical and electrocatalytic property
NASA Astrophysics Data System (ADS)
Padmanaban, A.; Dhanasekaran, T.; Kumar, S. Praveen; Gnanamoorthy, G.; Stephen, A.; Narayanan, V.
2017-05-01
Bismuth cerium oxide was synthesized by thermal decomposition method. The material was characterized by X-ray diffraction technique, DRS UV-Vis, Raman spectral methods and FE-SEM. The electrocatalytic sensing activity of bismuth cerium oxide modified GCE toward 4-nitrophenol exhibits better activity than the bare GCE. The modified electrode shows higher anodic current response with lower potential.
Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.
Wang, Qinchao; Wang, Yiqian; Guo, Peizhi; Li, Qun; Ding, Ruixue; Wang, Baoyan; Li, Hongliang; Liu, Jingquan; Zhao, X S
2014-01-14
Palladium (Pd) nanocrystals have been synthesized by using formic acid as the reducing agent at room temperature. When the concentration of formic acid was increased continuously, the size of Pd nanocrystals first decreased to a minimum and then increased slightly again. The products have been investigated by a series of techniques, including X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), UV-vis absorption, and electrochemical measurements. The formation of Pd nanocrystals is proposed to be closely related to the dynamical imbalance of the growth and dissolution rate of Pd nanocrystals associated with the adsorption of formate ions onto the surface of the intermediates. It is found that small Pd nanocrystals showed blue-shifted adsorption peaks compared with large ones. Pd nanocrystals with the smallest size display the highest electrocatalytic activity for the electrooxidation of formic acid and ethanol on the basis of cyclic voltammetry and chronoamperometric data. It is suggested that both the electrochemical active surface area and the small size effect are the key roles in determining the electrocatalytic performances of Pd nanocrystals. A "dissolution-deposition-aggregation" process is proposed to explain the variation of the electrocatalytic activity during the electrocatalysis according to the HRTEM characterization.
Li, Kai; Rakov, Dmitrii; Zhang, Wei; Xu, Ping
2017-07-18
Here we demonstrate the improvement of the intrinsic electrocatalytic hydrogen evolution activity of NiPS 3 by proper cobalt doping. The optimized Ni 0.95 Co 0.05 PS 3 nanosheets display a geometric catalytic current density of -10 mA cm -2 at an overpotential of 71 mV vs. RHE and a Tafel slope of 77 mV dec -1 in 1.0 M KOH.
NASA Astrophysics Data System (ADS)
Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong
2015-03-01
Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).
Synthesis, characterization and electrocatalytic properties of delafossite CuGaO2
NASA Astrophysics Data System (ADS)
Ahmed, Jahangeer; Mao, Yuanbing
2016-10-01
Delafossite CuGaO2 has been employed as photocatalysts for solar cells, but their electrocatalytic properties have not been extensively studied, especially no comparison among samples made by different synthesis routes. Herein, we first reported the successful synthesis of delafossite CuGaO2 particles with three different morphologies, i.e. nanocrystalline hexagons, sub-micron sized plates and micron-sized particles by a modified hydrothermal method at 190 °C for 60 h [1-3], a sono-chemical method followed by firing at 850 °C for 48 h, and a solid state route at 1150 °C, respectively. Morphology, composition and phase purity of the synthesized samples was confirmed by powder X-ray diffraction and Raman spectroscopic studies, and then their electrocatalytic performance as active and cost effective electrode materials to the oxygen and hydrogen evolution reactions in 0.5 M KOH electrolyte versus Ag/AgCl was investigated and compared under the same conditions for the first time. The nanocrystalline CuGaO2 hexagons show enhanced electrocatalytic activity than the counterpart sub-micron sized plates and micron-sized particles.
Fan, Dawei; Hao, Jingcheng
2009-05-28
Hybrid films composed of chitosan and Keplerate-type polyoxometalate, {Mo72Fe30} (Mo72VIFe30IIIO252L102.ca.180H2O, L=H2O/CH3COO-/Mo2O8/9n-), were fabricated on quartz, silicon, and ITO substrates by layer-by-layer (LbL) method. The LbL films were characterized by UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and cyclic voltammetry (CV). UV-vis spectra show that the absorbance values at characteristic wavelengths of the multilayer films increase almost linearly with the number of chitosan/{Mo72Fe30} bilayers. XPS spectra confirm the incorporation of chitosan and {Mo72Fe30} into the films. The electrocatalytic reduction of ClO3-, BrO3-, and IO3- by chitosan/{Mo72Fe30} hybrid films in an acidic aqueous solution shows an electrocatalytic reduction activity of IO3->BrO3->ClO3-. In particular, the modified electrodes exhibited high electrocatalytic activity for reduction of IO3-.
NASA Astrophysics Data System (ADS)
Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy
2016-04-01
In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.
A graphene-based electrochemical sensor for sensitive detection of paracetamol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Xinhuang; Wang, Jun; Wu, Hong
2010-05-15
An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptivemore » capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.« less
NASA Astrophysics Data System (ADS)
Yoon, Yeung-Pil; Kim, Jae-Hong; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook; Ahn, Kwang-Soon
2014-08-01
Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2- + 2e- (CE) → Sn-12- + S2- at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2- + 2e- (TiO2 in the photoanode) → Sn-12- + S2-, and significantly improved overall energy conversion efficiency.
Antolini, Ermete
2013-06-01
In view of their possible use as anode materials in acid direct ethanol fuel cells, the electrocatalytic activity of Pt-Ru and Pt-Ru-M catalysts for ethanol oxidation has been investigated. This minireview examines the effects of the structural characteristics of Pt-Ru, such as the degree of alloying and Ru oxidation state, on the electrocatalytic activity for ethanol oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrodeposition of Sn-Ni Alloy Coatings for Water-Splitting Application from Alkaline Medium
NASA Astrophysics Data System (ADS)
Shetty, Sandhya; Hegde, A. Chitharanjan
2017-02-01
In this work, Sn-Ni alloy coatings were developed onto the surface of copper from a newly formulated electrolytic bath by a simple and cost-effective electrodeposition technique using gelatin as an additive. The electrocatalytic behavior of coatings deposited at different current densities (c.d.'s) for water-splitting applications, in terms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), has been researched. The experimental results showed that the electrocatalytic activity of Sn-Ni coatings has a close relationship with its composition, surface morphology, and phase structure depending on the c.d. used, supported by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD) analyses. Cyclic voltammetry and chronopotentiometry techniques have demonstrated that Sn-Ni alloy deposited at 4.0 A dm-2 (having 37.6 wt pct Ni) and 1.0 A dm-2 (having 19.6 wt pct Ni) exhibit, respectively, the highest electrocatalytic behavior for HER and OER in 1.0-M KOH solution. Sn-Ni alloy coatings were found to be stable under working conditions of electrolysis, confirmed by electrochemical corrosion tests. High electrocatalytic activity of Sn-Ni alloy coatings for both HER and OER is specific to their composition, surface morphology, and active surface area.
Mazánek, Vlastimil; Matějková, Stanislava; Sedmidubský, David; Pumera, Martin; Sofer, Zdeněk
2018-01-19
In the last decade, numerous studies of graphene doping by various metal and nonmetal elements have been done in order to obtain tailored properties, such as non-zero band gap, electrocatalytic activity, or controlled optical properties. From nonmetal elements, boron and nitrogen were the most studied dopants. Recently, it has been shown that in some cases the enhanced electrocatalytic activity of graphene and its derivatives can be attributed to metal impurities rather than to nonmetal elements. In this paper, we investigated the electrocatalytical properties of B/N co-doped graphene with respect to the content of metallic impurities introduced by the synthesis procedures. For this purpose, a permanganate (Hummers) and a chlorate (Hofmann) route were used for the preparation of the starting graphene oxides (GO). The GO used for the synthesis of B/N co-doped graphene had significantly difference compositions of oxygen functionalities as well as metallic impurities introduced by the different synthetic procedures. We performed a detailed structural and chemical analysis of the doped graphene samples to correlate their electrocatalytic activity with the concentration of incorporated boron and nitrogen as well as metallic impurities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrocatalytic cermet gas detector/sensor
Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.
1995-01-01
An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy, E-mail: drkvgobi@gmail.com, E-mail: satyam.nitw@gmail.com
In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ∼35 nm and are well distributed on the surface ofmore » carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.« less
Synergistic effect of graphene oxide on the methanol oxidation for fuel cell application
NASA Astrophysics Data System (ADS)
Siwal, Samarjeet; Ghosh, Sarit; Nandi, Debkumar; Devi, Nishu; Perla, Venkata K.; Barik, Rasmita; Mallick, Kaushik
2017-09-01
Aromatic polypyrene was synthesized by the oxidative polymerization of pyrene with potassium tetrachloropalladate (II), as oxidant. During the polymerization process the palladium salt was reduced to metallic palladium and forms the metal-polymer composite material. Polypyrene stabilized palladium nanoparticles showed electrocatalytic activity toward the oxidation of methanol. The performance of the electrocatalytic activity was substantially improved with the incorporation of graphene oxide to the palladium-polypyrene composite and the synergistic performance was attributed to the electronic and structural properties of the system.
Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.
Xie, Junfeng; Xie, Yi
2016-03-07
Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tian, Min; Thind, Sapanbir S; Dondapati, Jesse S; Li, Xinyong; Chen, Aicheng
2018-06-07
In the present work, we report on a facile UV treatment approach for enhancing the electrocatalytic activity of TiO 2 nanotubes. The TiO 2 nanotubes were prepared using an anodization oxidation method by applying a voltage of 40 V for 8 h in a DMSO + 2% HF solution, and further treated under UV light irradiation. Compared with Pt and untreated TiO 2 nanotubes, the UV treated electrode exhibited a superior electrocatalytic activity toward the oxidation of 4-chlorophenol (4-ClPh). The effects of current density and temperature on the electrochemical oxidation of the 4-ClPh were also systematically investigated. The high electrocatalytic activity of the UV treated TiO 2 nanotubes was further confirmed by the electrochemical oxidation of other persistent organic pollutants including phenol, 2-, 3-, 4-nitrophenol, and 4-aminophenol. The total organic carbon (TOC) analysis revealed that over 90% 4-ClPh was removed when the UV treated TiO 2 electrode was employed and the rate constant was 16 times faster than that of the untreated TiO 2 electrode; whereas only 60% 4-ClPh was eliminated at the Pt electrode under the same conditions. This dramatically improved electrocatalytic activity might be attributed to the enhanced donor density, conductivity, and high overpotential for oxygen evolution. Our results demonstrated that the application of the UV treatment to the TiO 2 nanotubes enhanced their electrochemical activity and energy consumption efficiency significantly, which is highly desirable for the abatement of persistent organic pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.
Baturina, Olga; Lu, Qin; Xu, Feng; ...
2016-11-10
The effect of support on electrocatalytic activity of Cu nanoparticles (NPs) towards CO 2 electroreduction to hydrocarbon fuels (CH 4 and C 2H 4) is investigated for three types of nanostructured carbons: single wall carbon nanotubes (SWNT), graphene (GP) and onion-like carbon (OLC). Cu/SWNT, Cu/GP and Cu/OLC composite catalysts are synthesized and characterized by X-Ray diffraction analysis, transmission electron microscopy and electrochemical surface area measurements. Electrocatalytic activities of the synthesized materials, as measured in an electrochemical cell connected to a gas chromatograph, are compared to that of Cu NPs supported on Vulcan carbon. All four catalysts demonstrate higher activity towardsmore » C 2H 4 generation vs CH 4, with production of the latter mostly suppressed on Cu NPs supported on nanostructured substrates. Onset potentials for C 2H 4 vs CH 4 generation are shifted positively by 200 mV for Cu/SWNT, Cu/GP, and Cu/OLC catalysts. The Cu/OLC catalyst is found to be superior to the other two nanostructured catalysts in terms of stability, activity and selectivity towards C 2H 4 generation. Its faradaic efficiency reached 60% at -1.8 V vs Ag/AgCl. The enhanced activity and stability of Cu/OLC catalyst can be attributed to the unique catalyst design, wherein a shell of OLC surrounds the Cu NPs such that the outer layer acts as a filter that protects the Cu surface from adsorption of undesirable species, enhances its electrocatalytic performance, and improves its viability in CO 2 electroreduction reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturina, Olga; Lu, Qin; Xu, Feng
The effect of support on electrocatalytic activity of Cu nanoparticles (NPs) towards CO 2 electroreduction to hydrocarbon fuels (CH 4 and C 2H 4) is investigated for three types of nanostructured carbons: single wall carbon nanotubes (SWNT), graphene (GP) and onion-like carbon (OLC). Cu/SWNT, Cu/GP and Cu/OLC composite catalysts are synthesized and characterized by X-Ray diffraction analysis, transmission electron microscopy and electrochemical surface area measurements. Electrocatalytic activities of the synthesized materials, as measured in an electrochemical cell connected to a gas chromatograph, are compared to that of Cu NPs supported on Vulcan carbon. All four catalysts demonstrate higher activity towardsmore » C 2H 4 generation vs CH 4, with production of the latter mostly suppressed on Cu NPs supported on nanostructured substrates. Onset potentials for C 2H 4 vs CH 4 generation are shifted positively by 200 mV for Cu/SWNT, Cu/GP, and Cu/OLC catalysts. The Cu/OLC catalyst is found to be superior to the other two nanostructured catalysts in terms of stability, activity and selectivity towards C 2H 4 generation. Its faradaic efficiency reached 60% at -1.8 V vs Ag/AgCl. The enhanced activity and stability of Cu/OLC catalyst can be attributed to the unique catalyst design, wherein a shell of OLC surrounds the Cu NPs such that the outer layer acts as a filter that protects the Cu surface from adsorption of undesirable species, enhances its electrocatalytic performance, and improves its viability in CO 2 electroreduction reaction.« less
Xu, You; Xu, Rui; Cui, Jianhua; Liu, Yang; Zhang, Bin
2012-04-21
Three-dimensional Pd polyhedron networks (Pd PNs) have been fabricated for the first time through a one-step, Cu(2+)-assisted, solution-chemical approach. These as-prepared 3D Pd PNs exhibit high stability and remarkably improved electrocatalytic activity toward formic acid oxidation over commercially available Pd black. This journal is © The Royal Society of Chemistry 2012
Electrocatalytic cermet gas detector/sensor
Vogt, M.C.; Shoemarker, E.L.; Fraioli, A.V.
1995-07-04
An electrocatalytic device for sensing gases is described. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte. 41 figs.
Shape-Dependent Electrocatalytic Reduction of CO2 to CO on Triangular Silver Nanoplates.
Liu, Subiao; Tao, Hongbiao; Zeng, Li; Liu, Qi; Xu, Zhenghe; Liu, Qingxia; Luo, Jing-Li
2017-02-15
Electrochemical reduction of CO 2 (CO 2 RR) provides great potential for intermittent renewable energy storage. This study demonstrates a predominant shape-dependent electrocatalytic reduction of CO 2 to CO on triangular silver nanoplates (Tri-Ag-NPs) in 0.1 M KHCO 3 . Compared with similarly sized Ag nanoparticles (SS-Ag-NPs) and bulk Ag, Tri-Ag-NPs exhibited an enhanced current density and significantly improved Faradaic efficiency (96.8%) and energy efficiency (61.7%), together with a considerable durability (7 days). Additionally, CO starts to be observed at an ultralow overpotential of 96 mV, further confirming the superiority of Tri-Ag-NPs as a catalyst for CO 2 RR toward CO formation. Density functional theory calculations reveal that the significantly enhanced electrocatalytic activity and selectivity at lowered overpotential originate from the shape-controlled structure. This not only provides the optimum edge-to-corner ratio but also dominates at the facet of Ag(100) where it requires lower energy to initiate the rate-determining step. This study demonstrates a promising approach to tune electrocatalytic activity and selectivity of metal catalysts for CO 2 RR by creating optimal facet and edge site through shape-control synthesis.
Rogers, Cameron; Perkins, Wade S.; Veber, Gregory; ...
2017-02-24
Regulating the complex environment accounting for the stability, selectivity, and activity of catalytic metal nanoparticle interfaces represents a challenge to heterogeneous catalyst design. Here in this paper, we demonstrate the intrinsic performance enhancement of a composite material composed of gold nanoparticles (AuNPs) embedded in a bottom-up synthesized graphene nanoribbon (GNR) matrix for the electrocatalytic reduction of CO 2. Electrochemical studies reveal that the structural and electronic properties of the GNR composite matrix increase the AuNP electrochemically active surface area (ECSA), lower the requisite CO 2 reduction overpotential by hundreds of millivolts (catalytic onset > -0.2 V versus reversible hydrogen electrodemore » (RHE)), increase the Faraday efficiency (>90%), markedly improve stability (catalytic performance sustained over >24 h), and increase the total catalytic output (>100-fold improvement over traditional amorphous carbon AuNP supports). The inherent structural and electronic tunability of bottom-up synthesized GNR-AuNP composites affords an unrivaled degree of control over the catalytic environment, providing a means for such profound effects as shifting the rate-determining step in the electrocatalytic reduction of CO 2 to CO, and thereby altering the electrocatalytic mechanism at the nanoparticle surface.« less
Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich
2011-12-06
Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.
Wang, Sicong; Teng, Zhenyuan; Wang, Chengyin; Wang, Guoxiu
2018-05-17
High activity and stability are crucial for practical electrocatalysts used for reactions in fuel cells, metal-air batteries and water electrolysis including ORR, HER, OER and oxidation reactions of formic acid and alcohols. N-C based electrocatalysts have shown promising prospects for catalyzing these reactions, however, there is no systematic review for strategies toward engineering active and stable N-C based electrocatalysts reported by far. Herein, a comprehensive comparison of recently reported N-C based electrocatalysts regarding both electrocatalytic activity and long-term stability is presented. In the first part of this review, relationships between electrocatalytic reactions and element selections for modifying N-C based materials are discussed. Afterwards, synthesis methods for N-C based electrocatalysts are summarized, and synthetic strategies for highly stable N-C based electrocatalysts are presented. Multiple tables containing data on crucial parameters for both electrocatalytic activity and stability are displayed in this review. Finally, constructing M-Nx moieties is proposed as the most promising engineering strategy for stable N-C based electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian
2017-01-01
Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.
NASA Astrophysics Data System (ADS)
Tan, De-Xin; Wang, Yan-Li
2018-03-01
Sea anemone-like palladium (Pd)/polyaniline (PANI) nanocomposites were synthesized via visible-light-assisted swollen liquid crystals (SLCs) template method. The resulting samples were characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometer (EDS), x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV–vis) absorption spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, respectively. The electrocatalytic properties of Pd/PANI nanocomposites modified glass carbon electrode (GCE) for methane oxidation were investigated by cycle voltammetry (CV) and chronoamperometry. Those dispersed sea anemone-like Pd/PANI nanocomposites had an average diameter of 320 nm. The obtained Pd nanoparticles with an average diameter of about 45 nm were uniformly distributed in PANI matrix. Sea anemone-like Pd/PANI nanocomposites exhibited excellent electrocatalytic activity and stability for oxidation of methane (CH4).
The Mechanism of Room-Temperature Ionic-Liquid-Based Electrochemical CO₂ Reduction: A Review.
Lim, Hyung-Kyu; Kim, Hyungjun
2017-03-28
Electrochemical CO₂ conversion technology is becoming indispensable in the development of a sustainable carbon-based economy. While various types of electrocatalytic systems have been designed, those based on room-temperature ionic liquids (RTILs) have attracted considerable attention because of their high efficiencies and selectivities. Furthermore, it should be possible to develop more advanced electrocatalytic systems for commercial use because target-specific characteristics can be fine-tuned using various combinations of RTIL ions. To achieve this goal, we require a systematic understanding of the role of the RTIL components in electrocatalytic systems, however, their role has not yet been clarified by experiment or theory. Thus, the purpose of this short review is to summarize recent experimental and theoretical mechanistic studies to provide insight into and to develop guidelines for the successful development of new CO₂ conversion systems. The results discussed here can be summarized as follows. Complex physical and chemical interactions between the RTIL components and the reaction intermediates, in particular at the electrode surface, are critical for determining the activity and selectivity of the electrocatalytic system, although no single factor dominates. Therefore, more fundamental research is required to understand the physical, chemical, and thermodynamic characteristics of complex RTIL-based electrocatalytic systems.
Liu, Tao; Li, Xianfeng; Xu, Chi; Zhang, Huamin
2017-02-08
Vanadium flow batteries (VFBs) have received high attention for large-scale energy storage due to their advantages of flexibility design, long cycle life, high efficiency, and high safety. However, commercial progress of VFBs has so far been limited by its high cost induced by its low power density. Ultrathin carbon paper is believed to be a very promising electrode for VFB because it illustrates super-low ohmic polarization, however, is limited by its low electrocatalytic activity. In this paper, a kind of carbon paper (CP) with super-high electrocatalytic activity was fabricated via a universal and simple CO 2 activation method. The porosity and oxygen functional groups can be easily tuned via this method. The charge transfer resistance (denoting the electrochemical polarization) of a VFB with CP electrode after CO 2 activation decreased dramatically from 970 to 120 mΩcm 2 . Accordingly, the energy efficiency of a VFB with activated carbon paper as the electrode increased by 13% as compared to one without activation and reaches nearly 80% when the current density is 140 mAcm -2 . This paper provides an effective way to prepare high-performance porous carbon electrodes for VFBs and even for other battery systems.
NASA Astrophysics Data System (ADS)
Urbanová, Veronika; Karlický, František; Matěj, Adam; Šembera, Filip; Janoušek, Zbyněk; Perman, Jason A.; Ranc, Václav; Čépe, Klára; Michl, Josef; Otyepka, Michal; Zbořil, Radek
2016-06-01
Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms.Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms. Electronic supplementary information (ESI) available: SEM, HRTEM, and AFM images the sheet in pristine graphene sample, survey XPS spectrum, high resolution C 1s XPS spectrum, and Raman spectrum of pristine graphene precursor used for controlled fluorination, survey and high resolution F 1s XPS spectra of the CF0.084, CF0.158, and CF0.218 samples, EDS chemical mapping of fluorine in CF0.158, contact angle measurement of CF0.084, CF0.158, CF0.218, and HOPG, and additional electrochemical data. See DOI: 10.1039/c6nr00353b
Sun, Meng; Zhang, Gong; Qin, Yinghua; Cao, Meijuan; Liu, Yang; Li, Jinghong; Qu, Jiuhui; Liu, Huijuan
2015-08-04
Simultaneous reduction of Cr(VI) to Cr(III) and oxidation of As(III) to As(V) is a promising pretreatment process for the removal of chromium and arsenic from acid aqueous solution. In this work, the synergistic redox conversion of Cr(VI) and As(III) was efficiently achieved in a three-dimensional electrocatalytic reactor with synthesized AuPd/CNTs particles as electrocatalysts. The AuPd/CNTs facilitated the exposure of active Pd{111} facets and possessed an approximate two-electron-transfer pathway of oxygen reduction with the highly efficient formation of H2O2 as end product, resulting in the electrocatalytic reduction of 97.2 ± 2.4% of Cr(VI) and oxidation of 95.7 ± 4% of As(III). The electrocatalytic reduction of Cr(VI) was significantly accelerated prior to the electrocatalytic oxidation of As(III), and the effectiveness of Cr(VI)/As(III) conversion was favored at increased currents from 20 to 150 mA, decreased initial pH from 7 to 1 and concentrations of Cr(VI) and As(III) ranging from 50 to 1 mg/L. The crucial intermediates of Cr(V) and As(IV) and active free radicals HO(•) and O2(•-) were found for the first time, whose roles in the control of Cr(VI)/As(III) redox conversion were proposed. Finally, the potential applicability of AuPd/CNTs was revealed by their stability in electrocatalytic conversion over 10 cycles.
Lu, Qipeng; Yu, Yifu; Ma, Qinglang; Chen, Bo; Zhang, Hua
2016-03-09
Hydrogen (H2) is one of the most important clean and renewable energy sources for future energy sustainability. Nowadays, photocatalytic and electrocatalytic hydrogen evolution reactions (HERs) from water splitting are considered as two of the most efficient methods to convert sustainable energy to the clean energy carrier, H2. Catalysts based on transition metal dichalcogenides (TMDs) are recognized as greatly promising substitutes for noble-metal-based catalysts for HER. The photocatalytic and electrocatalytic activities of TMD nanosheets for the HER can be further improved after hybridization with many kinds of nanomaterials, such as metals, oxides, sulfides, and carbon materials, through different methods including the in situ reduction method, the hot-injection method, the heating-up method, the hydro(solvo)thermal method, chemical vapor deposition (CVD), and thermal annealing. Here, recent progress in photocatalytic and electrocatalytic HERs using 2D TMD-based composites as catalysts is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kumar, Sanjeev; Mahajan, Mani; Singh, Rajinder; Mahajan, Aman
2018-02-01
In this report, silver nanoparticles (Ag NPs) anchored reduced graphene oxide (rGO) sheets (rGO/Ag) nanohybrid has been explored as anode material in direct methanol fuel cells (DMFCs). The synthesized rGO/Ag nanohybrid is characterized by XRD, XPS, FTIR spectroscopy and HRTEM techniques. Cyclic voltammograms demonstrate that the rGO/Ag nanohybrid exhibits higher electrocatalytic activity in comparison to rGO sheets for methanol oxidation reaction (MOR). This enhancement is attributed to the synergetic effect produced by the presence of more active sites provided by Ag NPs anchored on a conducting network of large surface area rGO sheets.
Simultaneous Interfacial Reactivity and Topography Mapping with Scanning Ion Conductance Microscopy.
Momotenko, Dmitry; McKelvey, Kim; Kang, Minkyung; Meloni, Gabriel N; Unwin, Patrick R
2016-03-01
Scanning ion conductance microscopy (SICM) is a powerful technique for imaging the topography of a wide range of materials and interfaces. In this report, we develop the use and scope of SICM, showing how it can be used for mapping spatial distributions of ionic fluxes due to (electro)chemical reactions occurring at interfaces. The basic idea is that there is a change of ion conductance inside a nanopipet probe when it approaches an active site, where the ionic composition is different to that in bulk solution, and this can be sensed via the current flow in the nanopipet with an applied bias. Careful tuning of the tip potential allows the current response to be sensitive to either topography or activity, if desired. Furthermore, the use of a distance modulation SICM scheme allows reasonably faithful probe positioning using the resulting ac response, irrespective of whether there is a reaction at the interface that changes the local ionic composition. Both strategies (distance modulation or tuned bias) allow simultaneous topography-activity mapping with a single channel probe. The application of SICM reaction imaging is demonstrated on several examples, including voltammetric mapping of electrocatalytic reactions on electrodes and high-speed electrochemical imaging at rates approaching 4 s per image frame. These two distinct approaches provide movies of electrochemical current as a function of potential with hundreds of frames (images) of surface reactivity, to reveal a wealth of spatially resolved information on potential- (and time) dependent electrochemical phenomena. The experimental studies are supported by detailed finite element method modeling that places the technique on a quantitative footing.
Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles.
Vidal-Iglesias, Francisco J; Arán-Ais, Rosa M; Solla-Gullón, José; Garnier, Emmanuel; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M
2012-08-07
The electrocatalytic properties of palladium nanocubes towards the electrochemical oxidation of formic acid were studied in H(2)SO(4) and HClO(4) solutions and compared with those of spherical Pd nanoparticles. The spherical and cubic Pd nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The intrinsic electrocatalytic properties of both nanoparticles were shown to be strongly dependent on the amount of metal deposited on the gold substrate. Thus, to properly compare the activity of both systems (spheres and nanocubes), the amount of sample has to be optimized to avoid problems due to a lower diffusion flux of reactants in the internal parts of the catalyst layer resulting in a lower apparent activity. Under the optimized conditions, the activity of the spheres and nanocubes was very similar between 0.1 and 0.35 V. From this potential value, the activity of the Pd nanocubes was remarkably higher. This enhanced electrocatalytic activity was attributed to the prevalence of Pd(100) facets in agreement with previous studies with Pd single crystal electrodes. The effect of HSO(4)(-)/SO(4)(2-) desorption-adsorption was also evaluated. The activity found in HClO(4) was significantly higher than that obtained in H(2)SO(4) in the whole potential range.
Bai, Juan; Xiao, Xue; Xue, Yuan-Yuan; Jiang, Jia-Xing; Zeng, Jing-Hui; Li, Xi-Fei; Chen, Yu
2018-06-13
Rationally designing and manipulating composition and morphology of precious metal-based bimetallic nanostructures can markedly enhance their electrocatalytic performance, including selectivity, activity, and durability. We herein report the synthesis of bimetallic PtRh alloy nanodendrites (ANDs) with tunable composition by a facile complex-reduction synthetic method under hydrothermal conditions. The structural/morphologic features, formation mechanism, and electrocatalytic performance of PtRh ANDs are investigated thoroughly by various physical characterization and electrochemical methods. The preformed Rh crystal nuclei effectively catalyze the reduction of Pt 2+ precursor, resulting in PtRh alloy generation due to the catalytic growth and atoms interdiffusion process. The Pt atoms deposition distinctly interferes in Rh atoms deposition on Rh crystal nuclei, resulting in dendritic morphology of PtRh ANDs. For the ethanol oxidation reaction (EOR), PtRh ANDs display the chemical composition and solution pH co-dependent electrocatalytic activity. Because of the alloy effect and particular morphologic feature, Pt 1 Rh 1 ANDs with optimized composition exhibit better reactivity and stability for the EOR than commercial Pt nanocrystals electrocatalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nirala; Song, Yang; Gutiérrez, Oliver Y.
2016-11-04
Both electrocatalytic hydrogenation (ECH) and thermal hydrogenation (TH) of phenol by Pt and Rh show a roll-over in rate with increasing temperature without changing the principal reaction pathways. The negative effect of temperature for aqueous-phase phenol H2 and electrocatalytic hydrogenation on Pt and Rh is deduced to be due to the unexpected buildup of dehydrogenated phenol adsorbates, which block active sites. Rates of ECH and TH increase similarly with increasing hydrogen chemical potential whether induced by applied potential or H2 pressure, both via increasing H coverage, and indirectly by removing site blockers, a very strong effect at high temperature. Thismore » enables unprecedented rates in the TH of phenol at these temperatures.« less
Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto
2016-01-01
This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491
NASA Astrophysics Data System (ADS)
Li, Yanji; Wang, Zi; Li, Xiaoling; Yin, Tian; Bian, Kexin; Gao, Faming; Gao, Dawei
2017-02-01
Palladium nanomaterials have attracted great attention on the development of electrocatalysts for fuel cells. Herein, we depicted a novel strategy in the synthesis of palladium nanoparticles with superior electrocatalytic activity. The new approach, based on the self-assembly of bacitracin biotemplate and palladium salt for the preparation of bacitracin-palladium nanoparticles (Bac-PdNPs), was simple, low-cost, and green. The complex, composed by a series of spherical Bac-PdNPs with a diameter of 70 nm, exhibited a chain-liked morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The palladium nanoparticles were mono-dispersed and stable in aqueous solution as shown in TEM and zeta potential. Most importantly, compared to the commercial palladium on carbon (Pd/C) catalyst (8.02 m2 g-1), the Bac-PdNPs showed a larger electrochemically active surface area (47.57 m2 g-1), which endowed the products an excellent electrocatalytic activity for ethanol oxidation in alkaline medium. The strategy in synthesis of Bac-PdNPs via biotemplate approach might light up new ideas in anode catalysts for direct ethanol fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Fangfang; Yu, Gang; Shan, Shiyao
2017-01-01
The ability to tune the alloying properties and faceting characteristics of bimetallic nanocatalysts is essential for designing catalysts with enhanced activity and stability through optimizing strain and ligand effects, which is an important frontier for designing advanced materials as catalysts for fuel cell applications. This report describes composition-controlled alloying and faceting of platinum–nickel nanowires (PtNi NWs) for the electrocatalytic oxygen reduction reaction. The PtNi NWs are synthesized by a surfactant-free method and are shown to display bundled morphologies of nano-tetrahedra or nanowires, featuring an ultrathin and irregular helix morphology with composition-tunable facets. Using high-energy synchrotron X-ray diffraction coupled with atomicmore » pair distribution function analysis, lattice expansion and shrinking are revealed, with the Pt : Ni ratio of ~3 : 2 exhibiting a clear expansion, which coincides with the maximum electrocatalytic activity for the ORR. In comparison with PtNi nanoparticles (NPs), the PtNi NWs display remarkably higher electrocatalytic activity and stability as a result of the composition dependent atomic-scale alloying and faceting, demonstrating a new pathway to the design of alloy nanocatalysts with enhanced activity and durability for fuel cells.« less
Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun
2012-05-02
A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Fu, Shaofang; Song, Junhua
Finely controlled synthesis of high active and robust non-precious metal catalysts with excellent electrocatalytic efficiency towards oxygen reduction reaction is extremely vital for successful implementation of fuel cells and metal batteries. Unprecedented oxygen reduction reaction electrocatalytic performances and the diversified synthetic procedure in term of favorable structure/morphology characteristics make transition metals-derived M–N–C (M=Fe, Co) structures the most promising nanocatalysts. Herein, using the nitrogen-containing small molecular and inorganic salt as precursors and ultrathin tellurium nanowires as templates, we successfully synthesized a series of well-defined M-N-doped hollow carbon nanowire aerogels through one step hydrothermal route and subsequent facile annealing treatment. Taking advantagemore » of the porous nanostructures, one-dimensional building block as well as homogeneity of active sites, the resultant Fe-N-doped carbon hollow nanowire aerogels exhibited excellent ORR electrocatalytic performance even better than commercial Pt/C in alkaline solution, holding great potential in fuel cell applications.« less
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Zhang, Jia-Wei; Xiang, Ping-Hua; Qiao, Jinli
2018-05-01
Graphene-fullerene hybrids were facilely fabricated by self-assembly of graphene oxide (GO) and multi-substituted fulleropyrrolidines (PyrC60). The hybrids (GO-PyrC60) were applied as support materials to deposit Pd nanoparticle catalyst by a simple hydrothermal co-reduction approach. The as-prepared electrocatalysts (Pd/RGO-PyrC60) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. The RGO-PyrC60 hybrid supported Pd catalyst with the optimal ratio of RGO to PyrC60, exhibited much enhanced electrocatalytic activity and stability toward methanol oxidation reaction (MOR) compared to the RGO alone supported Pd as well as commercial Pd/C. The introduction of fulleropyrrolidine as spacer between graphene layers could increase the electrocatalytic activity and improve the long-term stability. This strategy may contribute to developing graphene-fullerene hydrids as effective support materials for advanced electrocatalysts.
Electrocatalytic Metal-Organic Frameworks for Energy Applications.
Downes, Courtney A; Marinescu, Smaranda C
2017-11-23
With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mohanapriya, S.; Renuka devi, R.; Raj, V.
2018-02-01
Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.
Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction
NASA Astrophysics Data System (ADS)
Wu, Tian; Zhang, Lieyu
2015-12-01
Development of non-precious electrocatalysts with applicable electrocatalytic activity towards the oxygen reduction reaction (ORR) is important to fulfill broad-based and large-scale applications of metal/air batteries and fuel cells. Herein, nickel and cobalt molybdates with uniform nanorod morphology are synthesized using a facile one-pot hydrothermal method. The ORR activity of the prepared metal molybdate nanorods in alkaline media are investigated by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperomety in rotating disk electrode (RDE) techniques. The present study suggests that the prepared metal molybdate nanorods exhibit applicable electrocatalytic activities towards the ORR in alkaline media, promising the applications as non-precious cathode in fuel cells and metal-air batteries.
Xi, Wenguang; Yan, Gang; Tan, Huaqiao; Xiao, Liguang; Cheng, Sihang; Khan, Shifa Ullah; Wang, Yonghui; Li, Yangguang
2018-06-19
Transition metal (TM) oxides and hydroxides are one of the important candidates for the development of durable and low-cost electrocatalysts towards water splitting. The key issue is exploring effective methods to improve their electrocatalytic activity. Herein, we report a new type of P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet array (abbr. P-Ni(OH)2/NiMoO4) grown on Ni foam (NF), which can act as a highly efficient electrocatalyst towards overall water splitting. Such a composite was obtained by a three-step preparation process. In the first two hydrothermal reactions, the crystalline Ni(OH)2 hierarchical nanosheet arrays were grown on NF and then the low crystallinity NiMoO4 was grafted on the Ni(OH)2 nanosheets. In the third phosphorization step, P element was doped into the composite Ni(OH)2/NiMoO4. Electrocatalytic experiments show that P-Ni(OH)2/NiMoO4 possesses a smaller overpotential (60 mV) and lower Tafel slope (130 mV dec-1) toward HER in 1 M KOH. When it was employed as an integrated water splitting catalyst, only a potential of 1.55 V was required to achieve a current density of 10 mA cm-2. This catalytic activity is even better than those of electrolyzers constructed with noble metals Pt/C∥IrO2. The superior electrocatalytic performance of P-Ni(OH)2/NiMoO4 can be attributed to the high quality of crystalline Ni(OH)2 nanosheet arrays grown on NF, which dramatically improve the conductivity. Furthermore, the hierarchical structure not only increases the surface area and exposes more catalytically active sites, but also provides a superaerophobic surface, which helps to accelerate the release of generated bubbles. Moreover, the synergistic effects between P-Ni(OH)2 and P-NiMoO4 efficiently promote the HER and OER processes also. This work may suggest new a way to explore TM oxide/hydroxide-based durable electrocatalysts with highly efficient electrocatalytic activities towards overall water splitting.
Pan, Yuan; Liu, Yunqi; Lin, Yan; Liu, Chenguang
2016-06-08
The enhancement of catalytic performance of cobalt phosphide-based catalysts for the hydrogen evolution reaction (HER) is still challenging. In this work, the doping effect of some transition metal (M = Fe, Ni, Cu) on the electrocatalytic performance of the M-Co2P/NCNTs (NCNTs, nitrogen-doped carbon nanotubes) hybrid catalysts for the HER was studied systematically. The M-Co2P/NCNTs hybrid catalysts were synthesized via a simple in situ thermal decomposition process. A series of techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma-optical emission spectrometry, transmission electron microscopy, and N2 sorption were used to characterize the as-synthesized M-Co2P/NCNTs hybrid catalysts. Electrochemical measurements showed the catalytic performance according to the following order of Fe-Co2P/NCNTs > Ni-Co2P/NCNTs > Cu-Co2P/NCNTs, which can be ascribed to the difference of structure, morphology, and electronic property after doping. The doping of Fe atoms promote the growth of the [111] crystal plane, resulting in a large specific area and exposing more catalytic active sites. Meanwhile, the Fe(δ+) has the highest positive charge among all the M-Co2P/NCNTs hybrid catalysts after doping. All these changes can be used to contribute the highest electrocatalytic activity of the Fe-Co2P/NCNTs hybrid catalyst for HER. Furthermore, an optimal HER electrocatalytic activity was obtained by adjusting the doping ratio of Fe atoms. Our current research indicates that the doping of metal is also an important strategy to improve the electrocatalytic activity for the HER.
NASA Astrophysics Data System (ADS)
Shiba, Shunsuke; Kato, Dai; Kamata, Tomoyuki; Niwa, Osamu
2016-06-01
We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d-mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol.We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d-mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol. Electronic supplementary information (ESI) available: The concept of UBM co-sputtering for fabricating nanoalloy embedded carbon films. HRTEM images of the NiNP and Ni32Cu68 nanoalloy embedded carbon films. The experimental conditions for sputter deposition, HRTEM, HAADF-STEM, STEM-EDS measurements and continuous flow injection analysis. XPS analysis of the nanoalloy embedded carbon film. Repeated CVs of both the nanoalloy embedded carbon film and the alloy film. Amperometric detection of d-mannitol in the presence of chloride ions. See DOI: 10.1039/c6nr02287a
García-Hernández, Celia; García-Cabezón, Cristina; Martín-Pedrosa, Fernando; De Saja, José Antonio
2016-01-01
The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs), copper phthalocyanine (PEDOT/PSS/CuPc) or lutetium bisphthalocyanine (PEDOT/PSS/LuPc2). Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc2, which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α) confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10−4 to 4.0 × 10−6 mol·L−1 with a limit of detection on the scale of μmol·L−1. The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10−7 mol·L−1 to be attained. PMID:28144543
Dong, Haifeng; Liu, Conghui; Ye, Haitao; Hu, Linping; Fugetsu, Bunshi; Dai, Wenhao; Cao, Yu; Qi, Xueqiang; Lu, Huiting; Zhang, Xueji
2015-01-01
An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS2/N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency. PMID:26639026
Liu, Haiyang; Ren, Miao; Zhang, Zhaocheng; Qu, Jiao; Ma, Ying; Lu, Nan
2018-05-01
Carbon nanotubes (CNTs)/agarose (AG) membrane on the ITO (indium tin oxide) conductive glass, with high efficiency of electrocatalytic degradation for rhodamine B (Rh-B) in water, was prepared using an easy and green method. The prepared CNTs/AG membrane was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectra (EDS), infrared spectroscopy (IR), and electrochemical impedance spectroscopy (EIS). The results revealed that CNTs were dispersed in the AG membrane. Additionally, the electrocatalytic activities for Rh-B were conducted on the electrochemical workstation with a three-electrode system. Both initial pH and potential played an important role in the process of electrocatalytic degradation. At pH 3 and potential reaching 4 V, the removal rate of Rh-B (10 mg/L) in water achieved 96% within 20 min. The stability of the prepared CNTs/AG membrane was also investigated. Besides, the toxicities of the main intermediates from the electrocatalytic degradation for Rh-B were calculated using the ECOSAR program and EPIWIN software, and results indicated that the toxicities of some intermediates were higher than those of the parent pollutant (Rh-B). These findings provided a light-spot to simplify the preparation of efficient working electrode and emphasized the possible potential risks from intermediates at the same time.
Electrooxidative Ruthenium-Catalyzed C-H/O-H Annulation by Weak O-Coordination.
Qiu, Youai; Tian, Cong; Massignan, Leonardo; Rogge, Torben; Ackermann, Lutz
2018-05-14
Electrocatalysis has been identified as a powerful strategy for organometallic catalysis, and yet electrocatalytic C-H activation is restricted to strongly N-coordinating directing groups. The first example of electrocatalytic C-H activation by weak O-coordination is presented, in which a versatile ruthenium(II) carboxylate catalyst enables electrooxidative C-H/O-H functionalization for alkyne annulations in the absence of metal oxidants; thereby exploiting sustainable electricity as the sole oxidant. Mechanistic insights provide strong support for a facile organometallic C-H ruthenation and an effective electrochemical reoxidation of the key ruthenium(0) intermediate. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Soo-Jin; Park, Jeong-Min; Seo, Min-Kang
2009-09-01
Graphite nanofibers (GNFs) treated at various temperatures were used as carbon supports to improve the efficiency of PtRu catalysts. The electrochemical properties of the PtRu/GNFs catalysts were then investigated to evaluate their potential for application in DMFCs. The results indicated that the particle size and dispersibility of PtRu in the catalysts were changed by heat treatment, and the electrochemical activity of the catalysts was improved. Consequently, it was found that heat treatments could have an influence on the surface and structural properties of GNFs, resulting in enhancing an electrocatalytic activity of the catalysts for DMFCs.
Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M
2011-02-01
The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.
NASA Astrophysics Data System (ADS)
Zhang, Yuting; Huang, Qiwei; Chang, Gang; Zhang, Zaoli; Xia, Tiantian; Shu, Honghui; He, Yunbin
2015-04-01
Homogeneous distribution of cube-shaped Pd nanocrystals on the surface of reduced graphene oxide is obtained via a facile one-step method by employing AA and KBr as the reductant and capping agent, respectively. The experimental factors affecting the morphology and structure of Pd nanoparticles have been systematically investigated to explore the formation mechanism of Pd nanocubes (PdNCs). It is revealed that PdNCs enclosed by active {100} facets with an average side length of 15 nm were successfully synthesized on the surface of reduced graphene oxide. KBr plays the role for facet selection by surface passivation and AA controls the reduction speed of Pd precursors, both of which govern the morphology changes of palladium nanoparticles. In the further electrochemical evaluations, the Pd nanocubes/reduced graphene oxide composites show better electrocatalytic activity and stability towards the electro-oxidation of ethanol than both reduced graphene oxide supported Pd nanoparticles and free-standing PdNCs. It could be attributed to the high electrocatalytic activity of the dominated active {100} crystal facets of Pd nanocubes and the enhanced electron transfer of graphene. The developed approach provide a versatile way for shape-controlled preparation of noble metal nanoparticles, which can work as novel electrocatalysts in the application of direct alcohols fuel cells.
Ko, Tae-Hoon; Devarayan, Kesavan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk
2016-01-01
The design and development of an economic and highly active non-precious electrocatalyst for methanol electrooxidation is challenging due to expensiveness of the precursors as well as processes and non-ecofriendliness. In this study, a facile preparation of core-shell-like NiCo2O4 decorated MWCNTs based on a dry synthesis technique was proposed. The synthesized NiCo2O4/MWCNTs were characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and selected area energy dispersive spectrum. The bimetal oxide nanoparticles with an average size of 6 ± 2 nm were homogeneously distributed onto the surface of the MWCNTs to form a core-shell-like nanostructure. The NiCo2O4/MWCNTs exhibited excellent electrocatalytic activity for the oxidation of methanol in an alkaline solution. The NiCo2O4/MWCNTs exhibited remarkably higher current density of 327 mA/cm2 and a lower onset potential of 0.128 V in 1.0 M KOH with as high as 5.0 M methanol. The impressive electrocatalytic activity of the NiCo2O4/MWCNTs is promising for development of direct methanol fuel cell based on non-Pt catalysts. PMID:26828633
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang; Song, Junhua; Xia, Haibing; Du, Dan; Lin, Yuehe
2016-10-01
To accelerate hydrogel formation and further simplify the synthetic procedure, a series of MCu (M = Pd, Pt, and Au) bimetallic aerogels is synthesized from the in situ reduction of metal precursors through enhancement of the gelation kinetics at elevated temperature. Moreover, the resultant PdCu aerogel with ultrathin nanowire networks exhibits excellent electrocatalytic performance toward ethanol oxidation, holding promise in fuel-cell applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2010-12-20
thiolate -Au bonds,30 and so GNP/MB-MWCNT hybrids were synthesized using a modified literature procedure.31 The SEM images show sequential...4 The electrocatalytic stability of GNP/MB-MWCNT supposes to be originated from the formation of stable thiolate -Au bonds that prevent aggregation of...Moon, K.-S.; Wong, C. P. Carbon 2007, 45, 655–661. (19) Sandler, J.; Shaffer, M. S. P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A. H. Polymer
Graphite carbon nitride/boron-doped graphene hybrid for efficient hydrogen generation reaction.
Yang, Liang; Wang, Xin; Wang, Juan; Cui, Guomin; Liu, Daoping
2018-08-24
Metal-free carbon materials, with tuned surface chemical and electronic properties, hold great potential for the hydrogen evolution reaction (HER). We designed and synthesized a CN/BG hybrid electrocatalytic system with a porous and active graphite carbon nitride (CN) layer on boron-doped graphene (BG). A porous CN layer on graphene could provide exposed defects and edges that act as active sites for proton adsorption and reduction. The composition, structure, surface electronics, and chemical properties of this CN/BG hybrid system were tuned to obtain excellent HER activity and stability. Detailed surface chemical, morphological, and structural analyses demonstrated the synergetic effect arising from the electronic interaction between CN and BG, which contributed to the enhanced electrocatalytic performances.
NASA Astrophysics Data System (ADS)
Nair, Anju K.; Thazhe Veettil, Vineesh; Kalarikkal, Nandakumar; Thomas, Sabu; Kala, M. S.; Sahajwalla, Veena; Joshi, Rakesh K.; Alwarappan, Subbiah
2016-12-01
Metal nanowires exhibit unusually high catalytic activity towards oxygen reduction reaction (ORR) due to their inherent electronic structures. However, controllable synthesis of stable nanowires still remains as a daunting challenge. Herein, we report the in situ synthesis of silver nanowires (AgNWs) over boron doped graphene sheets (BG) and demonstrated its efficient electrocatalytic activity towards ORR for the first time. The electrocatalytic ORR efficacy of BG-AgNW is studied using various voltammetric techniques. The BG wrapped AgNWs shows excellent ORR activity, with very high onset potential and current density and it followed four electron transfer mechanism with high methanol tolerance and stability towards ORR. The results are comparable to the commercially available 20% Pt/C in terms of performance.
Scanning Tunneling Spectroscope Use in Electrocatalysis Testing
Knutsen, Turid
2010-01-01
The relationship between the electrocatalytic properties of an electrode and its ability to transfer electrons between the electrode and a metallic tip in a scanning tunneling microscope (STM) is investigated. The alkaline oxygen evolution reaction (OER) was used as a test reaction with four different metallic glasses, Ni78Si8B14, Ni70Mo20Si5B5, Ni58Co20Si10B12, and Ni25Co50Si15B10, as electrodes. The electrocatalytic properties of the electrodes were determined. The electrode surfaces were then investigated with an STM. A clear relationship between the catalytic activity of an electrode toward the OER and its tunneling characteristics was found. The use of a scanning tunneling spectroscope (STS) in electrocatalytic testing may increase the efficiency of the optimization of electrochemical processes.
Li, Qun; Wang, Xianfu; Tang, Kai; Wang, Mengfan; Wang, Chao; Yan, Chenglin
2017-12-26
Cu-based electrocatalysts have seldom been studied for water oxidation because of their inferior activity and poor stability regardless of their low cost and environmentally benign nature. Therefore, exploring an efficient way to improve the activity of Cu-based electrocatalysts is very important for their practical application. Modifying electronic structure of the electrocatalytically active center of electrocatalysts by metal doping to favor the electron transfer between catalyst active sites and electrode is an important approach to optimize hydrogen and oxygen species adsorption energy, thus leading to the enhanced intrinsic electrocatalytic activity. Herein, Co-doped Cu 7 S 4 nanodisks were synthesized and investigated as highly efficient electrocatalyst for oxygen evolution reaction (OER) due to the optimized electronic structure of the active center. Density-functional theory (DFT) calculations reveal that Co-engineered Cu 7 S 4 could accelerate electron transfer between Co and Cu sites, thus decrease the energy barriers of intermediates and products during OER, which are crucial for enhanced catalytic properties. As expected, Co-engineered Cu 7 S 4 nanodisks exhibit a low overpotential of 270 mV to achieve current density of 10 mA cm -2 as well as decreased Tafel slope and enhanced turnover frequencies as compared to bare Cu 7 S 4 . This discovery not only provides low-cost and efficient Cu-based electrocatalyst by Co doping, but also exhibits an in-depth insight into the mechanism of the enhanced OER properties.
Vignesh, Ahilan; Prabu, Moni; Shanmugam, Sangaraju
2016-03-09
Perovskites have emerged as promising earth-abundant alternatives to precious metals for catalyzing the oxygen evolution reaction (OER). Herein, we report the synthesis of a series of porous perovskite nanostructures, LaCo0.97O3-δ, with systematic Ni substitution in Co octahedral sites. Their electrocatalytic activity during the water oxidation reaction was studied in alkaline electrolytes. The electrocatalytic OER activity and stability of the perovskite nanostructure was evaluated using the rotating disk electrode technique. We show that the progressive replacement of Co by Ni in the LaCo0.97O3-δ perovskite structure greatly altered the electrocatalytic activity and that the La(Co0.71Ni0.25)0.96O3-δ composition exhibited the lowest OER overpotential of 324 and 265 mV at 10 mA cm(-2) in 0.1 M KOH and 1 M KOH, respectively. This value was much lower than that of the noble metal catalysts, IrO2, Ru/C, and Pt/C. Furthermore, the La(Co0.71Ni0.25)0.96O3-δ nanostructure showed outstanding electrode stability, with no observable decrease in performance up to 114th cycle in the auxiliary linear sweep voltammetry that lasted for 10 h in chronoamperometry studies. The excellent oxygen evolution activity of the La(Co0.71Ni0.25)0.96O3-δ perovskite nanostructure can be attributed to its intrinsic structure, interconnected particle arrangement, and unique redox characteristics. The enhanced intrinsic electrocatalytic activity of the La(Co0.71Ni0.25)0.96O3-δ catalyst was correlated with several parameters, such as the electrochemical surface area, the roughness factor, and the turnover frequency, with respect to variation in the transition metals of the perovskite structure. Subsequently, La(Co0.71Ni0.25)0.96O3-δ was utilized as the air cathode in a zinc-air battery application.
NASA Astrophysics Data System (ADS)
Soo Kang, Jin; Park, Min-Ah; Kim, Jae-Yup; Ha Park, Sun; Young Chung, Dong; Yu, Seung-Ho; Kim, Jin; Park, Jongwoo; Choi, Jung-Woo; Jae Lee, Kyung; Jeong, Juwon; Jae Ko, Min; Ahn, Kwang-Soon; Sung, Yung-Eun
2015-05-01
Nickel nitride electrodes were prepared by reactive sputtering of nickel under a N2 atmosphere at room temperature for application in mesoscopic dye- or quantum dot- sensitized solar cells. This facile and reliable method led to the formation of a Ni2N film with a cauliflower-like nanostructure and tetrahedral crystal lattice. The prepared nickel nitride electrodes exhibited an excellent chemical stability toward both iodide and polysulfide redox electrolytes. Compared to conventional Pt electrodes, the nickel nitride electrodes showed an inferior electrocatalytic activity for the iodide redox electrolyte; however, it displayed a considerably superior electrocatalytic activity for the polysulfide redox electrolyte. As a result, compared to dye-sensitized solar cells (DSCs), with a conversion efficiency (η) = 7.62%, and CdSe-based quantum dot-sensitized solar cells (QDSCs, η = 2.01%) employing Pt counter electrodes (CEs), the nickel nitride CEs exhibited a lower conversion efficiency (η = 3.75%) when applied to DSCs, but an enhanced conversion efficiency (η = 2.80%) when applied to CdSe-based QDSCs.
Cheng, Fangyi; Shen, Jian; Peng, Bo; Pan, Yuede; Tao, Zhanliang; Chen, Jun
2011-01-01
Spinels can serve as alternative low-cost bifunctional electrocatalysts for oxygen reduction/evolution reactions (ORR/OER), which are the key barriers in various electrochemical devices such as metal-air batteries, fuel cells and electrolysers. However, conventional ceramic synthesis of crystalline spinels requires an elevated temperature, complicated procedures and prolonged heating time, and the resulting product exhibits limited electrocatalytic performance. It has been challenging to develop energy-saving, facile and rapid synthetic methodologies for highly active spinels. In this Article, we report the synthesis of nanocrystalline M(x)Mn(3-x)O(4) (M = divalent metals) spinels under ambient conditions and their electrocatalytic application. We show rapid and selective formation of tetragonal or cubic M(x)Mn(3-x)O(4) from the reduction of amorphous MnO(2) in aqueous M(2+) solution. The prepared Co(x)Mn(3-x)O(4) nanoparticles manifest considerable catalytic activity towards the ORR/OER as a result of their high surface areas and abundant defects. The newly discovered phase-dependent electrocatalytic ORR/OER characteristics of Co-Mn-O spinels are also interpreted by experiment and first-principle theoretical studies.
Wu, Yifan; Gan, Ling; Zhang, Shupeng; Song, Haiou; Lu, Chang; Li, Wentao; Wang, Zheng; Jiang, Bicun; Li, Aimin
2018-08-15
A novel composite bimetallic electrode, palladium-nickel/multi-walled carbon nanotubes/graphite felt (Pd-Ni/MWCNTs/GF), was synthesized for the electrocatalytic hydrodechlorination of 4-chlorophenol (4-CP). GF with a three-dimensional structure was used as the electrode substrate, and doped with MWCNTs, which can improve the GF conductivity and serve as a skeleton for metal loading. Ni and Pd were deposited on the electrode surface stepwise to obtain a well-aligned, highly active and stable Pd-Ni/MWCNTs/GF electrode. The Pd-Ni/MWCNTs/GF cathode showed a high reactivity for the electrocatalytic hydrodechlorination of 4-CP; up to 100% removal of 4-CP was achieved within 30 min, and followed pseudo-first-order kinetics with a rate constant of 0.162 min -1 . Compared with other cathodes, the Pd-Ni/MWCNTs/GF electrode showed superior performance in 4-CP reduction. Excessive current will lower the reaction efficiency and current efficiency because of hydrogen evolution, and acidic solution conditions are more conducive to electrocatalytic reactions. Experiments confirmed that the Ni had a small amount of loss under acidic conditions but remained stable under neutral and alkaline conditions, whereas the loss of Pd for different pH values was constantly low. In cycle tests, the bimetallic electrode exhibits a better reactivity and stability than the single-metal Pd electrode in the long-term. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lohrasbi, Elaheh; Javanbakht, Mehran; Mozaffari, Sayed Ahmad
2017-06-01
The aim of this work is improvement of the stability and durability of sulfonated graphene supported PtCoFe electrocatalyst (PtCoFe/SG) for application in proton exchange membrane fuel cells (PEMFCs). The durability investigation of PtCoFe/SG is evaluated by a repetitive potential cycling test. The compressive strain in the lattice of PtCoFe/SG towards the electrocatalytic oxygen reduction reaction is studied. The synthesized electrocatalysts are examined physically and electrochemically for their structure, morphology and electrocatalytic performance. It is shown that presence of SO3sbnd groups on the graphene cause better adsorption of PtCoFe nanoparticles on the support and increase stability of electrocatalysts. Also, it is shown that Co:Fe atomic ratio in the synthesized electrocatalysts plays important role in their electrocatalytic performance. In the optimum Co:Fe atomic ratio, the compressive strain goes through the ideal value of the binding energy; further increase in Co/Fe atomic fraction introduces the excessive compressive strain and the activity of electrocatalyst decreases. The electrocatalyst synthesized in the optimum conditions is utilized as cathode in PEMFC. The power density of the PEMFC in low metal loading (0.1 mg cm-2 Pt) reaches to a maximum of 530 mW cm-2 at 75 °C. It suggests that PtCoFe/SG with 7:3 Co:Fe atomic ratio promises to improve the power density of PEMFCs.
Razmi, Habib; Azadbakht, Azadeh; Sadr, Moayad Hossaini
2005-11-01
A palladium hexacyanoferrate (PdHCF) film as an electrocatalytic material was obtained at an aluminum (Al) electrode by a simple electroless dipping method. The modified Al electrode demonstrated a well-behaved redox couple due to the redox reaction of the PdHCF film. The PdHCF film showed an excellent electrocatalytic activity toward the oxidation of hydrazine. The electrocatalytic oxidation of hydrazine was studied by cyclic voltammetry and rotating disk electrode voltammetry techniques. A calibration graph obtained for the hydrazine consisted of two segments (localized at concentration ranges 0.39-10 and 20-75 mM). The rate constant k and transfer coefficient alpha for the catalytic reaction and the diffusion coefficient of hydrazine in the solution D, were found to be 3.11 x 10(3) M(-1) s(-1), 0.52 and 8.03 x 10(-6) cm2 s(-1) respectively. The modified electrode was used to amperometric determination of hydrazine in photographic developer. The interference of ascorbic acid and thiosulfate were investigated and greatly reduced using a thin film of Nafion on the modified electrode. The modified electrode indicated reproducible behavior and a high level of stability during electrochemical experiments, making it particularly suitable for analytical purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Thu Ha Thi, E-mail: ptntd2004@yahoo.fr; Tran, Thanh Thuy Thi, E-mail: tranthithanhthuygl@gmail.com; Le, Hong Ngan Thi
2016-01-15
Highlights: • Pt/rGO catalysts were successfully synthesized using either NaBH{sub 4} or ethylene glycol. • Synthesis using NaBH{sub 4} could improve electrocatalytic towards methanol oxidation of Pt/rGO catalyst. • 40%Pt/rGO synthesized using NaBH{sub 4} showed the best electrocatalytic performance. - Abstract: The synthesis processes of Platinum (Pt) on reduced graphene oxide (rGO) catalysts from graphene oxide (GO) using two reducing agents including sodium borohydride and ethylene glycol is reported. Structure and morphology of Pt/rGO catalysts are characterized by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrocatalytic methanol oxidation properties of these catalysts are evaluated bymore » cyclic voltammetry and chronoamperometry. The results show that catalyst synthesized using sodium borohydride has a higher metallic Pt content and an improved catalytic performance in comparison to catalyst synthesized using ethylene glycol. Moreover, effect of Pt loading amount on electrocatalytic methanol oxidation performance of catalysts synthesized using sodium borohydride is systematically investigated. The optimal Pt loading amount on graphene is determined to be 40%.« less
Wang, Wei; Xu, Xiaomin; Zhou, Wei
2017-01-01
The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal‐organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra‐large surface‐to‐volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF‐based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF‐based catalysts for water splitting are proposed. PMID:28435777
Seo, Seon Hee; Jeong, Eun Ji; Han, Joong Tark; Kang, Hyon Chol; Cha, Seung I; Lee, Dong Yoon; Lee, Geon-Woong
2015-05-27
Electrocatalytic materials with a porous structure have been fabricated on glass substrates, via high-temperature fabrication, for application as alternatives to platinum in dye-sensitized solar cells (DSCs). Efficient, nonporous, nanometer-thick electrocatalytic layers based on graphene oxide (GO) nanosheets were prepared on plastic substrates using electrochemical control at low temperatures of ≤100 °C. Single-layer, oxygen-rich GO nanosheets prepared on indium tin oxide (ITO) substrates were electrochemically deoxygenated in acidic medium within a narrow scan range in order to obtain marginally reduced GO at minimum expense of the oxygen groups. The resulting electrochemically reduced GO (E-RGO) had a high density of residual alcohol groups with high electrocatalytic activity toward the positively charged cobalt-complex redox mediators used in DSCs. The ultrathin, alcohol-rich E-RGO layer on ITO-coated poly(ethylene terephthalate) was successfully applied as a lightweight, low-temperature counter electrode with an extremely high optical transmittance of ∼97.7% at 550 nm. A cobalt(II/III)-mediated DSC employing the highly transparent, alcohol-rich E-RGO electrode exhibited a photovoltaic power conversion efficiency of 5.07%. This is superior to that obtained with conventionally reduced GO using hydrazine (3.94%) and even similar to that obtained with platinum (5.10%). This is the first report of a highly transparent planar electrocatalytic layer based on carbonaceous materials fabricated on ITO plastics for application in DSCs.
Nair, Anju K.; Thazhe veettil, Vineesh; Kalarikkal, Nandakumar; Thomas, Sabu; Kala, M. S.; Sahajwalla, Veena; Joshi, Rakesh K.; Alwarappan, Subbiah
2016-01-01
Metal nanowires exhibit unusually high catalytic activity towards oxygen reduction reaction (ORR) due to their inherent electronic structures. However, controllable synthesis of stable nanowires still remains as a daunting challenge. Herein, we report the in situ synthesis of silver nanowires (AgNWs) over boron doped graphene sheets (BG) and demonstrated its efficient electrocatalytic activity towards ORR for the first time. The electrocatalytic ORR efficacy of BG-AgNW is studied using various voltammetric techniques. The BG wrapped AgNWs shows excellent ORR activity, with very high onset potential and current density and it followed four electron transfer mechanism with high methanol tolerance and stability towards ORR. The results are comparable to the commercially available 20% Pt/C in terms of performance. PMID:27941954
Electro-catalytic oxidation device for removing carbon from a fuel reformate
Liu, Di-Jia [Naperville, IL
2010-02-23
An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.
Chen, Jingyuan; Xu, Qin; Shu, Yun; Hu, Xiaoya
2018-07-01
A nonenzymatic glucose electrochemical sensor was constructed based on Au nanoparticles (AuNPs) decorated Ni metal-organic-framework (MOF)/Ni/NiO nanocomposite. Ni-MOF/Ni/NiO nanocomposite was synthesized by one-step calcination of Ni-MOF. Then AuNPs were loaded onto the Ni-based nanocomposites' surface through electrostatic adsorption. Through characterization by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and energy disperse spectroscopy (EDS) mapping, it is found that the AuNPs were well distributed on the surface of Ni-based nanocomposite. Cyclic voltammetric (CV) study showed the electrocatalytic activity of Au-Ni nanocomposite was highly improved after loading AuNPs onto it. Amperometric study demonstrated that the Au-Ni nanocomposites modified glassy carbon electrode (GCE) exhibited a high sensitivity of 2133.5 mA M -1 cm -2 and a wide linear range (0.4-900 μM) toward the oxidation of glucose with a detection limit as low as 0.1 μM. Moreover, the reproducibility, selectivity and stability of the sensor all exhibited outstanding performance. We applied the as-fabricated high performance sensor to measure the glucose levels in human serum and obtained satisfactory results. It is believed that AuNPs decorated Ni MOF/Ni/NiO nanocomposite provides a new platform for developing highly performance electrochemical sensors in practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Self-assembly of a thin highly reduced graphene oxide film and its high electrocatalytic activity
NASA Astrophysics Data System (ADS)
Bai, Yan-Feng; Zhang, Yong-Fang; Zhou, An-Wei; Li, Hai-Wai; Zhang, Yu; Luong, John H. T.; Cui, Hui-Fang
2014-10-01
A thin highly reduced graphene oxide (rGO) film was self-assembled at the dimethyl formamide (DMF)-air interface through evaporation-induced water-assisted thin film formation at the pentane-DMF interface, followed by complete evaporation of pentane. The thin film was transferred onto various solid substrates for film characterization and electrochemical sensing. UV-visible spectrometry, scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemistry techniques were used to characterize the film. An rGO film showing 82.8% of the transmittance at 550 nm corresponds to a few layers of rGO nanosheets. The rGO nanosheets cross-stack with each other, lying approximately in the plane of the film. An rGO film collected on a glassy carbon (GC) electrode exhibited improved electrical conductivity compared to GC, with the electrode charge-transfer resistance (Rct) reduced from 31 Ω to 22 Ω. The as-formed rGO/GC electrode was mechanically very stable, exhibiting significantly enhanced electrocatalytic activity to H2O2 and dopamine. Multiple layers of the rGO films on the GC electrode showed even stronger electrocatalytic activity to dopamine than that of the single rGO film layer. The controllable formation of a stable rGO film on various solid substrates has potential applications for nanoelectronics and sensors/biosensors.
NASA Astrophysics Data System (ADS)
Ahmed, Mohammad Shamsuddin; Jeon, Seungwon
2015-05-01
The carbon nanotube (CNT) has unique electrical and structural properties due to it's sp2 π-conjugative structure that leads to the higher electrocatalysis. The π-conjugative structure, that allows the CNT interact with various compounds and metal nanoparticles (NPs) through π-π electronic interaction. However, the damage of π-conjugative sidewall of CNT that can be hinder the electrocatalytic activity has found. For this study, the CNT, as base material, has been prepared through a conventional acid treatment method up to 15 h; the higher degree of sidewall damage has been observed in last 5 h during treatment period. The short and long term acid treated (denoted as CNT and CNT-COOH, respectively) CNTs have been subsequently fabricated with palladium NPs (denoted as CNT/Pd and CNT-Pd, respectively) and employed as ethanol oxidation reaction (EOR) catalysts. The CNT-Pd displays a poor electrocatalytic performance towards EOR than that of CNT/Pd due to the damage of π-conjugative sidewall. The kinetic parameters including poisoning tolerance have also been hampered by the surface damage. The CNT/Pd (∼3.3 folds) and CNT-Pd (∼1.5 folds) are express higher electrocatalytic activity and poisoning tolerance than that of Pd/C while Pd mass loading remains in the same amount.
Electrochemical detection of uric acid via uricase-immobilized graphene oxide.
Omar, Muhamad Nadzmi; Salleh, Abu Bakar; Lim, Hong Ngee; Ahmad Tajudin, Asilah
2016-09-15
Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng
2015-10-01
An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.
Kavan, Ladislav; Yum, Jun-Ho; Graetzel, Michael
2012-12-01
Thin semitransparent films were fabricated on F-doped SnO(2) (FTO) from single-layer graphene oxide (GO) either pure or in a composite with graphene nanoplatelets. Electrocatalytic activity of prepared films was tested for the Co(bpy)(3)(3+/2+) redox couple in acetonitrile electrolyte solution. Pristine GO showed almost no activity, resembling the properties of basal plane pyrolytic graphite. However, electrochemical performance of graphene oxide improved dramatically upon chemical reduction with hydrazine and/or heat treatment. All GO-containing films were firmly bonded to FTO, which contrasted with the poor adhesion of sole graphene nanoplatelets to this support. The activity loss during long-term aging was considerably improved, too. Enhanced stability of GO-containing films together with high electrocatalytic activity is beneficial for application in a new generation of dye-sensitized solar cells employing Co(bpy)(3)(3+/2+) as the redox shuttle.
An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure.
Sattarahmady, N; Heli, H; Vais, R Dehdari
2013-10-15
Lichen-like nickel oxide nanostructure was synthesized by a simple method and characterized. The nanostructure was then applied to modify a carbon paste electrode and for the fabrication of a sensor, and the electrocatalytic oxidation of acetylcholine (ACh) on the modified electrode was investigated. The electrocatalytic efficiency of the nickel oxide nanostructure was compared with nickel micro- and nanoparticles, and the lichen-like nickel oxide nanostructure showed the highest efficiency. The mechanism and kinetics of the electrooxidation process were investigated by cyclic voltammetry, steady-state polarization curve and chronoamperometry. The catalytic rate constant and the charge transfer coefficient of ACh electrooxidation by the active nickel species, and the diffusion coefficient of ACh were reported. A sensitive and time-saving hydrodynamic amperometry method was developed for the determination of ACh. ACh was determined with a sensitivity of 392.4 mA M⁻¹ cm⁻² and a limit of detection of 26.7 μM. The sensor had the advantages of simple fabrication method without using any enzyme or reagent and immobilization step, high electrocatalytic activity, very high sensitivity, long-term stability, and antifouling surface property toward ACh and its oxidation product. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Xiaoqian; Liu, Li; Zhang, Yan; Zhang, Huijuan; Wang, Yu
2017-08-01
Up to now, the literature on Cu2S with specific morphology applied to oxygen evolution reaction (OER) in the electrocatalytic field has been limited. In this work, unique peapod-like Cu2S/C exhibiting superb electrocatalytic performance toward OER is successfully synthesized, by employing Cu(OH)2 nanorods as the template and nontoxic glucose as the carbon source and then annealing with sublimed sulfur. It can be seen that this work explores a new application area for Cu2S. More precisely, the novel morphology contributes to increasing the electrochemical active surface area effectively and promoting contact between the Cu2S nanoparticles and the electrolyte. During electrochemical measurements, the peapod-like Cu2S/C shows enhanced electrocatalytic activity with a low overpotential of 401 mV at the current density of 10 mA cm-2 and a Tafel slope of 52 mV dec-1. More importantly, our material is able to maintain stability for at least 8 h at constant potential and the current loss is negligible after 2000 cycles. Obviously, these striking properties fully demonstrate that the peapod-like Cu2S/C as an efficient catalyst shows great promise for OER.
NASA Astrophysics Data System (ADS)
Li, Shan-Shan; Zheng, Jie-Ning; Ma, Xiaohong; Hu, Yuan-Yuan; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju
2014-05-01
A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media.A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S12 and Tables S1 and S2. See DOI: 10.1039/c3nr06808k
Concave Pd-Ru nanocubes bounded with high active area for boosting ethylene glycol electrooxidation
NASA Astrophysics Data System (ADS)
Xiong, Zhiping; Xu, Hui; Li, Shumin; Gu, Zhulan; Yan, Bo; Guo, Jun; Du, Yukou
2018-01-01
This paper reported our extensive efforts in the design of concave PdRu nanocubes via a facile wet-chemical strategy. Different from the previously reported PdRu nanostructures, the as-prepared concave PdRu nanocubes combined the advantages of fascinating nanocube structure, synergistic and electronic effect as well as high surface area. All of these beneficial terms endow them to exhibit superior electrocatalytic activity and long-term stability towards ethylene glycol oxidation as compared with commercial Pd/C. Our work highlights the significance of shape-controlled of PdRu nanostructures over the electrocatalytic performances towards the electrooxidation of ethylene glycol (EG), which will pave up a new strategy for boosting the development of renewable and clean energy technology.
Wang, Hua; Ming, Mei; Hu, Min; Xu, Caili; Wang, Yi; Zhang, Yun; Gao, Daojiang; Bi, Jian; Fan, Guangyin; Hu, Jin-Song
2018-06-14
Developing efficient catalytic materials for electrochemical water splitting is important. Herein, uniformly dispersed and size-controllable iridium (Ir) nanoparticles (NPs) were prepared using a nitrogen-functionalized carbon (Ir/CN) as the support. We found that nitrogen function can simultaneously modulate the size of Ir NPs to substantially enhance the catalytically active sites and adjust the electronic structure of Ir, thereby promoting electrocatalytic activity for water splitting. Consequently, the as-synthesized Ir/CN shows excellent electrocatalytic performance with overpotentials of 12 and 265 mV for hydrogen and oxygen evolution reactions in basic medium, respectively. These findings may pave a way for designing and synthesizing other similar materials as efficient catalysts for electrochemical water splitting.
Carbon Nanotubes (CNTs) for the Development of Electrochemical Biosensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuehe; Yantasee, Wassana; Wang, Joseph
2005-01-01
Carbon nanotube (CNT) is a very attractive material for the development of biosensors because of its capability to provide strong electrocatalytic activity and minimize surface fouling of the sensors. This article reviews our recent developments of oxidase- and dehydrogenase-amperometric biosensors based on the immobilization of CNTs, the co-immobilization of enzymes on the CNTs/Nafion or the CNT/Teflon composite materials, or the attachment of enzymes on the controlled-density aligned CNT-nanoelectrode arrays. The excellent electrocatalytic activities of the CNTs on the redox reactions of hydrogen peroxide, nicotinamide adenine dinucleotide (NADH), and homocysteine have been demonstrated. Successful applications of the CNT-based biosensors reviewed hereinmore » include the low-potential detections of glucose, organophosphorus compounds, and alcohol.« less
Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke
2017-06-26
Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hosseini, Hadi; Ahmar, Hamid; Dehghani, Ali; Bagheri, Akbar; Tadjarodi, Azadeh; Fakhari, Ali Reza
2013-04-15
A novel electrochemical sensor based on Au-SH-SiO₂ nanoparticles supported on metal-organic framework (Au-SH-SiO₂@Cu-MOF) has been developed for electrocatalytic oxidation and determination of L-cysteine. The Au-SH-SiO₂@Cu-MOF was characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and cyclic voltammetry. The electrochemical behavior of L-cysteine at the Au-SH-SiO₂@Cu-MOF was investigated by cyclic voltammetry. The Au-SH-SiO₂@Cu-MOF showed a very efficient electrocatalytic activity for the oxidation of L-cysteine in 0.1 M phosphate buffer solution (pH 5.0). The oxidation overpotentials of L-cysteine decreased significantly and their oxidation peak currents increased dramatically at Au-SH-SiO₂@Cu-MOF. The potential utility of the sensor was demonstrated by applying it to the analytical determination of L-cysteine concentration. The results showed that the electrocatalytic current increased linearly with the L-cysteine concentration in the range of 0.02-300 μM and the detection limit was 0.008 μM. Finally, the sensor was applied to determine L-cysteine in water and biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suh, Dong Hoon; Park, Sul Ki; Nakhanivej, Puritut; Kim, Youngsik; Hwang, Soo Min; Park, Ho Seok
2017-12-01
The design of cost-effective and highly active catalysts is a critical challenge. Inspired by the strong points of stability and conductivity of carbon nanotubes (CNTs), high catalytic activity of Co nanoparticles, and rapid ion diffusion and large accessible area of three-dimensional (3D) graphene, we demonstrate a novel strategy to construct a hierarchical hybrid structure consisting of Co/CoOx nanoparticles-incorporated CNT branches onto the 3D reduced graphene oxide (rGO) architecture. The surface-modified 3D rGO by steam activation process has a large surface area and abundant defect sites, which serve as active sites to uniformly grow Co/CoOx nanoparticles. Furthermore, the CNTs preserve their performance stably by encapsulating Co nanoparticles, while the uniformly decorated Co/CoOx nanoparticles exhibit superior electrocatalytic activity toward oxygen evolution/reduction reaction due to highly exposed active sites. Employing the hybrid particle electrocatalyst, the seawater battery operates stably at 0.01 mA cm-2 during 50 cycles, owing to the good electrocatalytic ability.
Tri-metallic PtPdAu mesoporous nanoelectrocatalysts.
Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-06-22
The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.
Tri-metallic PtPdAu mesoporous nanoelectrocatalysts
NASA Astrophysics Data System (ADS)
Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-06-01
The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.
Electrode structure and methods of making same
Ruud, James Anthony; Browall, Kenneth Walter; Rehg, Timothy Joseph; Renou, Stephane; Striker, Todd-Michael
2010-04-06
A method of making an electrode structure is provided. The method includes disposing an electrocatalytic material on an electrode, applying heat to the electrocatalytic material to form a volatile oxide of the electrocatalytic material, and applying a voltage to the electrode to reduce the volatile oxide to provide a number of nano-sized electrocatalytic particles on or proximate to a triple phase boundary, where the number of nano-sized electrocatalytic particles is greater on or proximate to the triple phase boundary than in an area that is not on or proximate to the triple phase boundary, and where the triple phase boundary is disposed on the electrode.
NASA Astrophysics Data System (ADS)
Peng, Yingxiang; Li, Zhipan; Xia, Dingguo; Zheng, Lirong; Liao, Yi; Li, Kai; Zuo, Xia
2015-09-01
Three different pentacoordinate iron phthalocyanine (FePc) electrocatalysts with an axial ligand (pyridyl group, Py) anchored to multi-walled carbon nanotubes (MWCNTs) are prepared by a microwave method as high performance composite electrocatalysts (FePc-Py/MWCNTs) for the oxygen reduction reaction (ORR). For comparison, tetracoordinate FePc electrocatalysts without an axial ligand anchored to MWCNTs (FePc/MWCNTs) are assembled in the same way. Ultraviolet-visible spectrophotometry (UV-Vis), Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HRTEM) are used to characterize the obtained electrocatalysts. The electrocatalytic activity of the samples is measured by linear sweep voltammetry (LSV), and the onset potential of all of the FePc-Py/MWCNTs electrocatalysts is found to be more positive than that of their FePc/MWCNTs counterparts. X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy are employed to elucidate the relationship between molecular structure and electrocatalytic activity. XPS indicates that higher concentrations of Fe3+ and pyridine-type nitrogen play critical roles in determining the electrocatalytic ORR activity of the samples. XAFS spectroscopy reveals that the FePc-Py/MWCNTs electrocatalysts have a coordination geometry around Fe that is closer to the square pyramidal structure, a higher concentration of Fe3+, and a smaller phthalocyanine ring radius compared with those of FePc/MWCNTs.
NASA Astrophysics Data System (ADS)
Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu
2014-04-01
Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.
Lytvynenko, A S; Kolotilov, S V; Kiskin, M A; Cador, O; Golhen, S; Aleksandrov, G G; Mishura, A M; Titov, V E; Ouahab, L; Eremenko, I L; Novotortsev, V M
2014-05-19
Linking of the trinuclear pivalate fragment Fe2CoO(Piv)6 by the redox-active bridge Ni(L)2 (compound 1; LH is Schiff base from hydrazide of 4-pyridinecarboxylic acid and 2-pyridinecarbaldehyde, Piv(-) = pivalate) led to formation of a new porous coordination polymer (PCP) {Fe2CoO(Piv)6}{Ni(L)2}1.5 (2). X-ray structures of 1 and 2 were determined. A crystal lattice of compound 2 is built from stacked 2D layers; the Ni(L)2 units can be considered as bridges, which bind two Fe2CoO(Piv)6 units. In desolvated form, 2 possesses a porous crystal lattice (SBET = 50 m(2) g(-1), VDR = 0.017 cm(3) g(-1) estimated from N2 sorption at 78 K). At 298 K, 2 absorbed a significant quantity of methanol (up to 0.3 cm(3) g(-1)) and chloroform. Temperature dependence of molar magnetic susceptibility of 2 could be fitted as superposition of χMT of Fe2CoO(Piv)6 and Ni(L)2 units, possible interactions between them were taken into account using molecular field model. In turn, magnetic properties of the Fe2CoO(Piv)6 unit were fitted using two models, one of which directly took into account a spin-orbit coupling of Co(II), and in the second model the spin-orbit coupling of Co(II) was approximated as zero-field splitting. Electrochemical and electrocatalytic properties of 2 were studied by cyclic voltammetry in suspension and compared with electrochemical and electrocatalytic properties of a soluble analogue 1. A catalytic effect was determined by analysis of the catalytic current dependency on concentrations of the substrate. Compound 1 possessed electrocatalytic activity in organic halide dehalogenation, and such activity was preserved for the Ni(L)2 units, incorporated into the framework of 2. In addition, a new property occurred in the case of 2: the catalytic activity of PCP depended on its sorption capacity with respect to the substrate. In contrast to homogeneous catalysts, usage of solid PCPs may allow selectivity due to porous structure and simplify separation of product.
NASA Astrophysics Data System (ADS)
Li, Faxin; Wang, Jiali; Zheng, Li; Zhao, Yaqiang; Huang, Niu; Sun, Panpan; Fang, Liang; Wang, Lei; Sun, Xiaohua
2018-04-01
The electrocatalytic composite materials of honeycomb structure NiS2 nanosheets loaded with metallic CoS2 nanoparticles are in situ prepared on F doped SnO2 conductive glass (FTO) substrates used as counter electrodes of DSSCs through chemical bath deposition (CBD) and sulfidizing process. Single crystalline NiS2 honeycomb structure array lay a foundation for the large surface area of NiS2/CoS2 composite CEs. The formed NiS2/CoS2 nanointerface modulates electronic structure of composite CEs from the synergetic interactions between CoS2 nanoparticles and NiS2 nanosheets, which dramatically improves the electrocatalytic activity of NiS2/CoS2 composite CEs; Metallic CoS2 nanoparticles covering NiS2 nanosheets electrodes adjusts the electrodes' structure and then reduces the series resistance (Rs) and the Nernst diffusion resistance (Zw) of counter electrodes. The improvement of these areas greatly enhances the electrocatalytic performance of CEs and the short circuit current density (Jsc) and Fill factor (FF) of DSSCs. Impressively, the DSSC based on NiS2/CoS2-0.1 CE shows the best photovoltaic performance with photovoltaic conversion efficiency of 8.22%, which is 24.36% higher than that (6.61%) of the DSSC with Pt CE. And the NiS2/CoS2-0.1 CE also displays a good stability in the iodine based electrolyte. This work indicates that rational construction of composite electrocatalytic materials paves an avenue for high-performance counter electrodes of DSSCs.
Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J
2011-01-01
PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.
Wang, Deli; Xin, Huolin L; Yu, Yingchao; Wang, Hongsen; Rus, Eric; Muller, David A; Abruña, Hector D
2010-12-22
A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuel cell applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Deli; Xin, Huolin L.; Yu, Yingchao
2010-11-24
A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuelmore » cell applications.« less
NASA Astrophysics Data System (ADS)
Rajesh, B.; Ravindranathan Thampi, K.; Bonard, J.-M.; Mathieu, H. J.; Xanthopoulos, N.; Viswanathan, B.
The electronically conducting hybrid material based on transition metal oxide and conducting polymer has been used as the catalyst support for Pt nanoparticles. The Pt nanoparticles loaded hybrid organic (polyaniline)-inorganic (vanadium pentoxide) composite has been used as the electrode material for methanol oxidation, a reaction of importance for the development of direct methanol fuel cells (DMFC). The hybrid material exhibited excellent electrochemical and thermal stability in comparison to the physical mixture of conducting polymer and transition metal oxide. The Pt nanoparticles loaded hybrid material exhibited high electrocatalytic activity and stability for methanol oxidation in comparison to the Pt supported on the Vulcan XC 72R carbon support. The higher activity and stability is attributed to the better CO tolerance of the composite material.
Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts
NASA Astrophysics Data System (ADS)
Lei, Zhidan; Chen, Hongbiao; Yang, Mei; Yang, Duanguang; Li, Huaming
2017-12-01
A low-cost boron- and oxygen-codoped porous carbon electrocatalyst towards oxygen reduction reaction (ORR) has been fabricated by a facile one-step pyrolysis approach, while a boron- and oxygen-rich polymer network was used as precursor. The boron- and oxygen-codoped carbon catalyst with high ORR electrocatalytic activity is comparable to that of Pt/C and is superior to that of catalysts doped solely with boron atoms or with oxygen atoms. Furthermore, the optimized boron- and oxygen-codoped carbon catalyst possesses excellent methanol tolerance and long-term durability in alkaline media. The high electrocatalytic activity of the dual-doped carbon catalysts can be attributed to the synergistic effects of high surface area, predominant mesostructure, abundant active oxygen-containing groups, and effective boron doping. The present results show that this boron- and oxygen-codoping strategy could be as a promising way for the preparation of highly efficient ORR catalysts.
Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui
2016-12-01
In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xin, Le
The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.
Siriviriyanun, Ampornphan; Imae, Toyoko
2013-04-14
Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.
Electrocatalytic interface based on novel carbon nanomaterials for advanced electrochemical sensors
Zhou, Ming; Guo, Shaojun
2015-07-17
The rapid development of nanoscience and nanotechnology provides new opportunities for the sustainable progress of nanoscale catalysts (i.e., nanocatalysts). The introduction of nanocatalysts into electronic devices implants their novel functions into electronic sensing systems, resulting in the testing of many advanced electrochemical sensors and the fabrication of some highly sensitive, selective, and stable sensing platforms. In this Review, we will summarize recent significant progress on exploring advanced carbon nanomaterials (such as carbon nanotubes, graphene, highly ordered mesoporous carbons, and electron cyclotron resonance sputtered nanocarbon film) as nanoscale electrocatalysts (i.e., nanoelectrocatalysts) for constructing the catalytic nanointerfaces of electronic devices to achievemore » high-sensitivity and high-selectivity electrochemical sensors. Furthermore, different mechanisms for the extraordinary and unique electrocatalytic activities of these carbon nanomaterials will be also highlighted, compared and discussed. An outlook on the future trends and developments in this area will be provided at the end. Notably, to elaborate the nature of carbon nanomaterial, we will mainly focus on the electrocatalysis of single kind of carbon materials rather than their hybrid composite materials. As a result, we expect that advanced carbon nanomaterials with unique electrocatalytic activities will continue to attract increasing research interest and lead to new opportunities in various fields of research.« less
NASA Astrophysics Data System (ADS)
Olu, Pierre-Yves; Job, Nathalie; Chatenet, Marian
2016-09-01
In this paper, different methods are discussed for the evaluation of the potential of a given catalyst, in view of an application as a direct borohydride fuel cell DBFC anode material. Characterizations results in DBFC configuration are notably analyzed at the light of important experimental variables which influence the performances of the DBFC. However, in many practical DBFC-oriented studies, these various experimental variables prevent one to isolate the influence of the anode catalyst on the cell performances. Thus, the electrochemical three-electrode cell is a widely-employed and useful tool to isolate the DBFC anode catalyst and to investigate its electrocatalytic activity towards the borohydride oxidation reaction (BOR) in the absence of other limitations. This article reviews selected results for different types of catalysts in electrochemical cell containing a sodium borohydride alkaline electrolyte. In particular, propositions of common experimental conditions and benchmarks are given for practical evaluation of the electrocatalytic activity towards the BOR in three-electrode cell configuration. The major issue of gaseous hydrogen generation and escape upon DBFC operation is also addressed through a comprehensive review of various results depending on the anode composition. At last, preliminary concerns are raised about the stability of potential anode catalysts upon DBFC operation.
NASA Astrophysics Data System (ADS)
Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng
2018-02-01
In quasi-solid-state dye-sensitized solar cells (QSDSSCs), electron transport through a random network of catalyst in the counter electrode (CE) and electrolyte diffusion therein are limited by the grain boundaries of catalyst particles, thus diminishing the electrocatalytic performance of CE and the corresponding photovoltaic performance of QSDSSCs. We demonstrate herein an ordered Co0.85Se hollow nanorods array film as the Pt-free CE of QSDSSCs. The Co0.85Se hollow nanorods array displays excellent electrocatalytic activity for the reduction of I3- in the quasi-solid-state electrolyte with extremely low charge transfer resistance at the CE/electrolyte interface, and the diffusion of redox species within the Co0.85Se hollow nanorods array CE is pretty fast. The QSDSSC device with the Co0.85Se hollow nanorods array CE produces much higher photovoltaic conversion efficiency (8.35%) than that (4.94%) with the Co0.85Se randomly packed nanorods CE, against the control device with the Pt CE (7.75%). Moreover, the QSDSSC device based on the Co0.85Se hollow nanorods array CE presents good long-term stability with only 4% drop of power conversion efficiency after 1086 h one-sun soaking.
Electrocatalytic interface based on novel carbon nanomaterials for advanced electrochemical sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ming; Guo, Shaojun
The rapid development of nanoscience and nanotechnology provides new opportunities for the sustainable progress of nanoscale catalysts (i.e., nanocatalysts). The introduction of nanocatalysts into electronic devices implants their novel functions into electronic sensing systems, resulting in the testing of many advanced electrochemical sensors and the fabrication of some highly sensitive, selective, and stable sensing platforms. In this Review, we will summarize recent significant progress on exploring advanced carbon nanomaterials (such as carbon nanotubes, graphene, highly ordered mesoporous carbons, and electron cyclotron resonance sputtered nanocarbon film) as nanoscale electrocatalysts (i.e., nanoelectrocatalysts) for constructing the catalytic nanointerfaces of electronic devices to achievemore » high-sensitivity and high-selectivity electrochemical sensors. Furthermore, different mechanisms for the extraordinary and unique electrocatalytic activities of these carbon nanomaterials will be also highlighted, compared and discussed. An outlook on the future trends and developments in this area will be provided at the end. Notably, to elaborate the nature of carbon nanomaterial, we will mainly focus on the electrocatalysis of single kind of carbon materials rather than their hybrid composite materials. As a result, we expect that advanced carbon nanomaterials with unique electrocatalytic activities will continue to attract increasing research interest and lead to new opportunities in various fields of research.« less
NASA Astrophysics Data System (ADS)
Kwak, Kyuju; Kumar, S. Senthil; Lee, Dongil
2012-06-01
We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid.We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid. Electronic supplementary information (ESI) available: TEM image of GS-Au25, SWV of GS-Au25 in solution, effect of scan rate on the CV of GS-Au25ME, CVs of DA and AA at the bare GCE and CVs of GS-Au25ME at different pHs. See DOI: 10.1039/c2nr30481c
NASA Astrophysics Data System (ADS)
Makinde, Zainab O.; Louzada, Marcel; Mashazi, Philani; Nyokong, Tebello; Khene, Samson
2017-12-01
Cobalt binuclear phthalocyanine (CoBiPc) bearing pentanethio substituents at the peripheral positions were synthesized. The immobilization of the synthesized cobalt phthalocyanines on gold electrode was achieved using self-assembled monolayer method (SAM). X-ray photoelectron spectroscopy (XPS) and Kelvin Probe (KP) techniques were used to characterise the formation of monomeric and binuclear phthalocyanine SAMs on the gold surface. The phthalocyanine SAMs on gold electrodes were investigated for electrocatalytic oxidation of 4-chlorophenol. The electrocatalytic properties of tetra- and octa- pentanethio substituted cobalt binuclear phthalocyanine (CoBiPc) are compared with their tetra- and octa-pentanethio substituted phthalocyanine (CoPc). The SAMs modified gold electrode surfaces showed a peak current enhancement and stability and reduction in electrocatalytic potentials compared to the bare or unmodified electrodes towards the detection of the 4-chlorophenol. The SAMs of cobalt binuclear phthalocyanines exhibited more enhanced electrocatalytic properties in terms of stability, detection peak current and reduction of the electrocatalytic over potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsyganok, A.I.; Yamanaka, Ichiro; Otsuka, Kiyoshi
1998-11-01
Electrocatalytic reductive dehalogenation of 2,4-dichlorophenoxyacetic acid (2,4-D) to phenoxyacetic acid in aqueous solution containing MeOH, trifluoroacetic acid, and tetraalkylammonium salt was studied. A Teflon-made two-compartment flow-through cell with a permeable carbon felt cathode and a platinum foil anode was employed. Several noble metals were tested as electrocatalysts. Palladium-loaded carbon felt was found to be the most suitable significantly enhanced its electrocatalytic activity toward 2,4-D dechlorination. The reaction was hypothesized to proceed at carbon-palladium interface areas through 4-chlorine cleavage to form 2-chlorophenoxyacetic acid as the main reaction intermediate.
Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; ...
2017-05-08
Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolyzers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using Density Functional Theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that aremore » tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. Finally, the results suggest design principles for a new class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.« less
Kuttiyiel, Kurian A.; Choi, YongMan; Sasaki, Kotaro; ...
2016-05-18
Here, platinum monolayer electrocatalyst are known to exhibit excellent oxygen reduction reaction (ORR) activity depending on the type of substrate used. Here we demonstrate a relationship between the ORR electrocatalytic activity and the surface electronic structure of Pt monolayer shell induced by various IrM bimetallic cores (M=Fe, Co, Ni or Cu). The relationship is rationalized by comparing density functional theory calculations and experimental results. For an efficient Pt monolayer electrocatalyst, the core should induce sufficient contraction to the Pt shell leading to a downshift of the d-band center with respect to the Fermi level. Depending on the structure of themore » IrM, relative to that of pure Ir, this interaction not only alters the electronic and geometric structure but also induces segregation effects. Combined these effects significantly enhance the ORR activities of the Pt monolayer shell on bimetallic Ir cores electrocatalysts.« less
NASA Astrophysics Data System (ADS)
Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; Markovic, Nenad M.; Greeley, Jeffrey
2017-06-01
Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolysers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using density functional theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that are tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. The results suggest design principles for this class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.
Kulesza, Pawel J; Pieta, Izabela S; Rutkowska, Iwona A; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A
2013-11-01
Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO 3 , MoO 3 , TiO 2 , ZrO 2 , V 2 O 5 , and CeO 2 ) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems.
Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.
2013-01-01
Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590
Elias, Jamil; Gizowska, Magdalena; Brodard, Pierre; Widmer, Roland; Dehazan, Yoram; Graule, Thomas; Michler, Johann; Philippe, Laetitia
2012-06-29
Here, an easy and effective electrochemical route towards the synthesis of gold thin films with well-controlled roughness, morphology and crystallographic orientation is reported. To control these different factors, the applied potential during deposition played a major role. A tentative nucleation and growth mechanism is demonstrated by means of electrochemical characterizations and a formation mechanism is proposed. Interestingly, the differences in geometry and orientation of the different gold deposits have shown a clear correlation with the electrocatalytical activity in the case of oxygen sensing. In addition, not only the electrocatalytical activity but also the surface-enhanced Raman scattering of the gold deposits have been found to depend both on the roughness and on the size of the surface nanostructures, allowing a fine tuning by controlling these two parameters during deposition.
NASA Astrophysics Data System (ADS)
Elias, Jamil; Gizowska, Magdalena; Brodard, Pierre; Widmer, Roland; deHazan, Yoram; Graule, Thomas; Michler, Johann; Philippe, Laetitia
2012-06-01
Here, an easy and effective electrochemical route towards the synthesis of gold thin films with well-controlled roughness, morphology and crystallographic orientation is reported. To control these different factors, the applied potential during deposition played a major role. A tentative nucleation and growth mechanism is demonstrated by means of electrochemical characterizations and a formation mechanism is proposed. Interestingly, the differences in geometry and orientation of the different gold deposits have shown a clear correlation with the electrocatalytical activity in the case of oxygen sensing. In addition, not only the electrocatalytical activity but also the surface-enhanced Raman scattering of the gold deposits have been found to depend both on the roughness and on the size of the surface nanostructures, allowing a fine tuning by controlling these two parameters during deposition.
Chang, Yung-Huang; Nikam, Revannath D; Lin, Cheng-Te; Huang, Jing-Kai; Tseng, Chien-Chih; Hsu, Chang-Lung; Cheng, Chia-Chin; Su, Ching-Yuan; Li, Lain-Jong; Chua, Daniel H C
2014-10-22
Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo(5+) and S2(2-) species in the MoSx, especially with S2(2-) serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g(-1) cm(-2) h(-1) (286 mmol g(-1) cm(-2) h(-1)) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.
Bin, Duan; Yang, Beibei; Zhang, Ke; Wang, Caiqin; Wang, Jin; Zhong, Jiatai; Feng, Yue; Guo, Jun; Du, Yukou
2016-11-07
In this study, galvanic replacement provides a simple route for the synthesis of PdAg hollow nanoflower structures by using the Ag-seeds as sacrificial templates in the presence of l-ascorbic acid (reductant) and CTAC (capping agent). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and EDS mapping were used to characterize the as-prepared PdAg hollow nanoflower catalysts, where they were alloyed nanoflower structures with hollow interiors. By maneuvering the Pd/Ag ratio, we found that the as-prepared Pd 1 Ag 3 hollow nanoflower catalysts had the optimized performance for catalytic activity toward ethanol oxidation reaction. Moreover, these as-prepared PdAg hollow nanoflower catalysts exhibited noticeably higher electrocatalytic activity as compared to pure Pd and commercial Pd/C catalysts due to the alloyed Ag-Pd composition as well as the hollow nanoflower structures. It is anticipated that this work provides a rational design of other architecturally controlled bimetallic nanocrystals for application in fuel cells. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rise of nano effects in electrode during electrocatalytic CO2 conversion.
Yang, Ki Dong; Lee, Chan Woo; Jang, Jun Ho; Ha, Tak Rae; Nam, Ki Tae
2017-09-01
The electrocatalytic conversion of CO 2 into value-added fuels has received increasing attention as a promising way to mitigate the atmospheric CO 2 concentration and close the broken carbon-cycle. Early studies, focused on polycrystalline metal electrodes, outlined in detail the overall trends in the catalytic activity and product selectivity of pure metals; however, several inherent limitations were found, such as low current density and high overpotential, which hindered electrocatalytic CO 2 reduction from practical application. Fortunately, the recent development of precisely synthesized nanocatalysts has led to several breakthroughs in catalytic CO 2 conversion. By carefully controlling the thermodynamic adsorption energies and flow dynamics of reaction intermediates, nanosized electrocatalysts afford more versatile and energetically efficient routes to convert CO 2 into desired chemicals. In this article, we review the state-of-the-art nanocatalysts applied for CO 2 conversion and discuss newly found phenomena at the local environment near the catalyst surface. The mechanistic understanding of these findings can provide insight into the future design of catalysts for the efficient and selective reduction of CO 2 .
Wu, Ya-Pan; Zhou, Wei; Zhao, Jun; Dong, Wen-Wen; Lan, Ya-Qian; Li, Dong-Sheng; Sun, Chenghua; Bu, Xianhui
2017-10-09
Reported herein are two new polymorphic Co-MOFs (CTGU-5 and -6) that can be selectively crystallized into the pure 2D or 3D net using an anionic or neutral surfactant, respectively. Each polymorph contains a H 2 O molecule, but differs dramatically in its bonding to the framework, which in turn affects the crystal structure and electrocatalytic performance for hydrogen evolution reaction (HER). Both experimental and computational studies find that 2D CTGU-5 which has coordinates water and more open access to the cobalt site has higher electrocatalytic activity than CTGU-6 with the lattice water. The integration with co-catalysts, such as acetylene black (AB) leads to a composite material, AB&CTGU-5 (1:4) with very efficient HER catalytic properties among reported MOFs. It exhibits superior HER properties including a very positive onset potential of 18 mV, low Tafel slope of 45 mV dec -1 , higher exchange current density of 8.6×10 -4 A cm -2 , and long-term stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pei, Zhihao; Xu, Li; Xu, Wei
2018-03-01
Efficient electrocatalytic water splitting is one of the most effective ways to solve the global energy crisis. In this paper, we report on a novel self-assembled hierarchical structure of Co3O4/CoMoO4 grown in situ on a bare nickel foam. The unique, three-dimensional honeycomb-like Co3O4 pores were constructed from one-dimensional nanowires and coated on two-dimensional CoMoO4 nanosheets structures grown on nickel foam. The synthesis involved a step-wise solvothermal method followed by an annealing treatment. Benefiting from the synergistic effect of the hierarchical nanostructures, the materials had more reaction active sites and a smaller electron transfer impedance, and they exhibited excellent electrocatalytic performances for the HER and OER of 143 and 244 mV, respectively, at 10 mA cm-2 in an alkaline solution. Furthermore, the materials remained stable during the long electrolysis period, over 10 h, presenting promising application prospects in the field of electrocatalytic water splitting.
Karimi-Maleh, Hassan; Salehi, Mehdi; Faghani, Fatemeh
2017-10-01
The electrooxidation of N-acetylcysteine (N-AC) was studied by a novel Ni(II) complex modified ZrO 2 nanoparticle carbon paste electrode [Ni(II)/ZrO 2 /NPs/CPE] using voltammetric methods. The results showed that Ni(II)/ZrO 2 /NPs/CPE had high electrocatalytic activity for the electrooxidation of N-AC in aqueous buffer solution (pH = 7.0). The electrocatalytic oxidation peak currents increase linearly with N-AC concentrations over the concentration ranges of 0.05-600μM using square wave voltammetric methods. The detection limit for N-AC was equal to 0.009μM. The catalytic reaction rate constant, k h , was calculated (7.01 × 10 2 M -1 s -1 ) using the chronoamperometry method. Finally, Ni(II)/ZrO 2 /NPs/CPE was also examined as an ultrasensitive electrochemical sensor for the determination of N-AC in real samples such as tablet and urine. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tam, Tsz Kin; Chen, Baowei; Lei, Chenghong
NAD/NADH is a coenzyme found in all living cells, carrying electrons from one reaction to another. We report on characterizations of in situ regeneration of NADH via lipoamide dehydrogenase (LD)-catalyzed electron transfer reaction to regenerate NADH using UV-vis spectroelectrochemistry. The Michaelis-Menten constant (Km) and maximum velocity (Vmax) of NADH regeneration were measured as 0.80 {+-} 0.15 mM and 1.91 {+-} 0.09 {micro}M s-1 in a 1-mm thin-layer spectroelectrochemical cell using gold gauze as the working electrode at the applied potential -0.75 V (vs. Ag/AgCl). The electrocatalytic reduction of the NAD system was further coupled with the enzymatic conversion of pyruvatemore » to lactate by lactate dehydrogenase to examine the coenzymatic activity of the regenerated NADH. Although the reproducible electrocatalytic reduction of NAD into NADH is known to be difficult compared to the electrocatalytic oxidation of NADH, our spectroelectrochemical results indicate that the in situ regeneration of NADH via LD-catalyzed electron transfer reaction is fast and sustainable and can be potentially applied to many NAD/NADH-dependent enzyme systems.« less
NASA Astrophysics Data System (ADS)
Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing
2017-04-01
In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO2+/VO2+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO2+/VO2+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO2+/VO2+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO2+/VO2+ redox reaction for VRFB system.
Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment.
Yang, Yang; Wang, Hong; Li, Jianxin; He, Benqiao; Wang, Tonghua; Liao, Shijun
2012-06-19
Membrane fouling is a critical problem in membrane filtration processes for water purification. Electrocatalytic membrane reactor (ECMR) was an effective method to avoid membrane fouling and improve water quality. This study focuses on the preparation and characterization of a novel functionalized nano-TiO(2) loading electrocatalytic membrane for oily wastewater treatment. A TiO(2)/carbon membrane used in the reactor is prepared by coating TiO(2) as an electrocatalyst via a sol-gel process on a conductive microporous carbon membrane. In order to immobilize TiO(2) on the carbon membrane, the carbon membrane is first pretreated with HNO(3) to generate the oxygen-containing functional groups on its surface. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS) analyses are used to evaluate the morphology and microstructure of the membranes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements are employed to illustrate the eletrochemical activity of the TiO(2)/carbon membrane. The membrane performance is investigated by treating oily wastewater. The oil removal rate increases with a decrease in the liquid hourly space velocity (LHSV) through the ECMR. The COD removal rate was 100% with a LHSV of 7.2 h(-1) and 87.4% with a LHSV of 21.6 h(-1) during the treatment of 200 mg/L oily water. It suggests that the synergistic effect of electrocatalytic oxidation and membrane separation in the ECMR plays a key role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zexing; Wang, Jie; Han, Lili
2016-01-19
Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement overmore » the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.« less
Wang, Yanyong; Qiao, Man; Li, Yafei; Wang, Shuangyin
2018-04-01
Intrinsically inferior electrocatalytic activity of NiFe layered double hydroxides (LDHs) nanosheets is considered as a limiting factor to inhibit the electrocatalytic properties for oxygen evolution reaction (OER). Proper defect engineering to tune the surface electronic configuration of electrocatalysts may significantly improve the intrinsic activity. In this work, the selective formation of cation vacancies in NiFe LDHs nanosheets is successfully realized. The as-synthesized NiFe LDHs-V Fe and NiFe LDHs-V Ni electrocatalysts show excellent activity for OER, mainly attributed to the introduction of rich iron or nickel vacancies in NiFe LDHs nanosheets, which efficiently tune the surface electronic structure increasing the adsorbing capacity of OER intermediates. Density functional theory (DFT) computational results also further indicate that the OER catalytic performance of NiFe LDHs can be pronouncedly improved by introducing Fe or Ni vacancies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Yizhen; Wang, Le; Chen, Mingxing; Jin, Zhaoxia; Zhang, Wei; Cao, Rui
2017-12-08
Artificial photosynthesis requires efficient anodic electrode materials for water oxidation. Cobalt metal thin films are prepared through facile physical vapor deposition (PVD) on various nonconductive substrates, including regular and quartz glass, mica sheet, polyimide, and polyethylene terephthalate (PET). Subsequent surface electrochemical modification by cyclic voltammetry (CV) renders these films active for electrocatalytic water oxidation, reaching a current density of 10 mA cm -2 at a low overpotential of 330 mV in 1.0 m KOH solution. These electrodes are robust with unchanged activity throughout prolonged chronopotentiometry measurements. This work is thus significant to show that the combination of PVD and CV is very valuable and convenient to fabricate active electrodes on various nonconductive substrates, particularly with flexible polyimide and PET substrates. This efficient, safe and convenient method can potentially be expanded to many other electrochemical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Suyun; Xiao, Xinxin; Lv, Taotao; Lv, Xiaomeng; Liu, Botao; Wei, Wei; Liu, Jun
2018-07-01
Exploring efficient and economical Pt-free electrocatalysts is of great significance for the electrocatalytic hydrogen evolution reaction (HER). However, the rational design on an industrial scale is a formidable challenge. Herein, we reported a facile calcination at controlled temperatures to fabricate rationally assembled cobalt nanoparticles embedded in defect-rich N-doped carbon nanotubes (Co-NCNTs), which was derived from low-cost dicyanadiamide thermally polymerized with cobalt precursor forming metal-organic frameworks, then further calculation leading to final products. The as-obtained samples were endowed with high content of N as electrocatalytic active site, defect-rich structure and excellent synergistic effect between cobalt nanoparticles and carbon nanotubes toward electrocatalytic HER. As expected, Co-NCNTs were highly active and long-term stable with onset potentials of c.a. 15 mV in acidic electrolytes (0.5 M H2SO4), 70 mV in alkaline (1 M KOH) and 300 mV in neutral media (pH 7). Specially, to achieve the current density of 10 mA cm-2, the overpotential of 103 mV in acid, 204 mV in alkaline and 337 mV in neutral media was obtained. The enhanced HER performance was discussed in detail by adjusting the molar ratio of precursor and metal species. Moreover, the present synthetic route is easy to scale up and expand to other non-noble metal and alloy.
Pd-Cu/poly(o-Anisidine) nanocomposite as an efficient catalyst for formaldehyde oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseini, Sayed Reza, E-mail: r.hosseini@umz.ac.ir; Raoof, Jahan-Bakhsh; Ghasemi, Shahram
Highlights: • o-Anisidine monomer was electro-polymerized at the pCPE surface in acid medium. • Palladium/copper NPs were prepared by galvanic replacement method at the POA/pCPE. • Pd-Cu NPs showed excellent electrocatalytic activity towards formaldehyde oxidation. • The bimetallic Pd-Cu NPs/POA nanocomposite showed satisfactory long-term stability. - Abstract: In this work, for the first time, the electrocatalytic oxidation of formaldehyde in 0.5 M sulfuric acid solution at spherical bimetallic palladium-copper nanoparticles (Pd-Cu NPs) deposited on the poly (o-Anisidine) film modified electrochemically pretreated carbon paste electrode (POA/pCPE) has been investigated. Highly porous POA film prepared by electropolymerization onto the pCPE was usedmore » as a potent support for deposition of the Pd-Cu NPs. The Pd-Cu NPs were prepared through spontaneous and irreversible reaction via galvanic replacement between Pd{sup II} ions and the Cu{sup 0} particles. The prepared Pd-Cu NPs were characterized by scanning electron microscopy, energy dispersive spectroscopy and electrochemical methods. The obtained results showed that the utilization of Cu nanoparticles and pretreatment technique enhances the electrocatalytic activity of the modified electrode towards formaldehyde oxidation. The influence of several parameters on formaldehyde oxidation as well as stability of the Pd-Cu/POA/pCPE has been investigated.« less
Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides
2015-01-01
Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities. PMID:26045733
NASA Astrophysics Data System (ADS)
Ooi, M. D. Johan; Aziz, A. Abdul
2017-05-01
Surfactant removal from the surface of platinum nanoparticles prepared by solution based method is a prerequisite process to accomplish a high catalytic activity for electrochemical reactions. Here, we report a possible approach of combining acid acetic with thermal treatment for improving catalytic performance of formic acid oxidation. This strategy involves conversion of amine to amide in acetic acid followed by surfactant removal via subsequent thermal treatment at 85 °C. This combined activation technique produced monodisperse nanoparticle with the size of 3 to 5 nm with enhanced formic acid oxidation activity, particularly in perchloric acid solution. Pt treated in 1 h of acetic acid and heat treatment of 9 h shows high electrochemical surface area value (27.6 m2/g) compares to Pt without activation (16.6 m2/g). The treated samples also exhibit high current stability of 0.3 mA/cm2 compares to the as-prepared mA/cm2). Shorter duration of acid wash and longer duration of heating process result in high electrocatalytic activity. This work demonstrates a possible technique in improving catalytic activity of platinum nanoparticles synthesized using methylamine as surfactant.
NASA Astrophysics Data System (ADS)
Kim, Joon Hyub; Lee, Jun-Yong; Jin, Joon-Hyung; Park, Eun Jin; Min, Nam Ki
2013-01-01
The single-walled carbon nanotube (SWCNT)-based thin film was spray-coated on the Pt support and functionalized using O2 plasma. The effects of plasma treatment on the biointerfacial properties of the SWCNT films were analyzed by cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The plasma-functionalized (pf) SWCNT electrodes modified with Legionella pneumophila-specific probe DNA strands showed a much higher peak current and a smaller peak separation in differential pulse voltammetry and a lower charge transfer resistance, compared to the untreated samples. These results suggest that the pf-SWCNT films have a better electrocatalytic character and an electron transfer capability faster than the untreated SWCNTs, due to the fact that the oxygen-containing functional groups promote direct electron transfer in the biointerfacial region of the electrocatalytic activity of redox-active biomolecules.
He, Yanzhen; Han, Xijiang; Du, Yunchen; Song, Bo; Xu, Ping; Zhang, Bin
2016-02-17
Heteroatom-doped carbon materials have attracted significant attention because of their applications in oxygen reduction reaction (ORR) and supercapacitors. Here we demonstrate a facile poly(o-methylaniline)-derived fabrication of bifunctional microporous nitrogen-doped carbon microspheres (NCMSs) with high electrocatalytic activity and stability for ORR and energy storage in supercapacitors. At a pyrolysis temperature of 900 °C, the highly dispersed NCMSs present a high surface area (727.1 m(2) g(-1)), proper total content of doping N, and high concentration of quaternary N, which exhibit superior electrocatalytic activities for ORR to the commercial Pt/C catalysts, high specific capacitance (414 F g(-1)), and excellent durability, making them very promising for advanced energy conversion and storage. The presented conducting polymer-derived strategy may provide a new way for the fabrication of heteroatom-doped carbon materials for energy device applications.
Fabrication of Te@Au core-shell hybrids for efficient ethanol oxidation
NASA Astrophysics Data System (ADS)
Jin, Huile; Wang, Demeng; Zhao, Yuewu; Zhou, Huan; Wang, Shun; Wang, Jichang
2012-10-01
Using Au nanoparticles to catalyze the oxidation of alcohols has garnered increasing attention due to its potential application in direct alcohol fuel cells. In this research Te@Au core-shell hybrids were fabricated for the catalytic oxidation of ethanol, where the preparation procedure involved the initial production of Te crystals with different microstructures and the subsequent utilization of the Te crystal as a template and reducing agent for the production of Te@Au hybrids. The as-prepared core-shell hybrids were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Electrochemical measurements illustrate that the hybrids have great electrocatalytic activity and stability toward ethanol oxidation in alkaline media. The enhanced electrocatalytic property may be attributed to the cooperative effects between the metal and semiconductor and the presence of a large number of active sites on the hybrids surface.
Zhang, Haimin; Wang, Yun; Wang, Dan; Li, Yibing; Liu, Xiaolu; Liu, Porun; Yang, Huagui; An, Taicheng; Tang, Zhiyong; Zhao, Huijun
2014-08-27
In this work, we present a low cost and environmentally benign hydrothermal method using dried grass as the sole starting material without any synthetic chemicals to directly produce high quality nitrogen-doped carbon nanodot/nanosheet aggregates (N-CNAs), achieving a high yield of 25.2%. The fabricated N-CNAs possess an N/C atomic ratio of 3.41%, consist of three typed of doped N at a ratio of 2.6 (pyridinic):1.7 (pyrrolic):1 (graphitic). The experimental results reveal that for oxygen reduction reaction (ORR), the performance of N-CNAs, in terms of electrocatalytic activity, stability and resistance to crossover effects, is better or comparable to the commercial Pt/C electrocatalyst. The theoretical studies further indicate that the doped pyridinic-N plays a key role for N-CNAs' excellent four-electron ORR electrocatalytic activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrocatalytic process for carbon dioxide conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masel, Richard I.; Salehi-Khojin, Amin
2017-01-31
An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and Helper Catalyst in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. the reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2,more » and CF.sub.3COOH.« less
Electrocatalytic process for carbon dioxide conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masel, Richard I.; Salehi-Khojin, Amin; Kutz, Robert
An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and a Helper Polymer in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said carbon dioxide reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. The reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH,more » C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.« less
Ngo, Ken T.; McKinnon, Meaghan; Mahanti, Bani; ...
2017-01-24
Electrocatalytic reduction of CO 2 to CO is reported for the complex, { fac-Mn I([(MeO) 2Ph] 2bpy)(CO) 3(CH 3CN)}(OTf), containing four pendant methoxy groups, where [(MeO) 2Ph] 2bpy = 6,6'-bis(2,6-dimethoxyphenyl)-2,2'-bipyridine. In addition to a steric influence similar to that previously established for the 6,6'-dimesityl-2,2'-bipyridine ligand in [ fac-MnI(mes 2bpy)(CO) 3(CH 3CN)](OTf), which prevents Mn 0–Mn 0 dimerization, the [(MeO) 2Ph] 2bpy ligand introduces an additional electronic influence combined with a weak allosteric hydrogen-bonding interaction that significantly lowers the activation barrier for C–OH bond cleavage from the metallocarboxylic acid intermediate. This provides access to the thus far elusive protonation-first pathway, minimizingmore » the required overpotential for electrocatalytic CO 2 to CO conversion by Mn(I) polypyridyl catalysts, while concurrently maintaining a respectable turnover frequency. Comprehensive electrochemical and computational studies here confirm the positive influence of the [(MeO) 2Ph] 2bpy ligand framework on electrocatalytic CO 2 reduction and its dependence upon the concentration and p K a of the external Bronsted acid proton source (water, methanol, trifluoroethanol, and phenol) that is required for this class of manganese catalyst. Linear sweep voltammetry studies show that both phenol and trifluoroethanol as proton sources exhibit the largest protonation-first catalytic currents in combination with { fac-Mn I([(MeO) 2Ph] 2bpy)(CO) 3(CH 3CN)}(OTf), saving up to 0.55 V in overpotential with respect to the thermodynamically demanding reduction-first pathway, while bulk electrolysis studies confirm a high product selectivity for CO formation. As a result, to gain further insight into catalyst activation, time-resolved infrared (TRIR) spectroscopy combined with pulse-radiolysis (PR-TRIR), infrared spectroelectrochemistry, and density functional theory calculations were used to establish the v(CO) stretching frequencies and energetics of key redox intermediates relevant to catalyst activation.« less
Beeman, Michael G; Nze, Ugochukwu C; Sant, Himanshu J; Malik, Hammad; Mohanty, Swomitra; Gale, Bruce K; Carlson, Krista
2018-05-10
The availability of clean drinking water is a significant problem worldwide. Many technologies exist for purifying drinking water, however, many of these methods require chemicals or use simple methods, such as boiling and filtering, which may or may not be effective in removing waterborne pathogens. Present methods for detecting pathogens in point-of-use (POU) sterilized water are typically time prohibitive or have limited ability differentiating between active and inactive cells. This work describes a rapid electrochemical sensor to differentially detect the presence of active Escherichia coli (E. coli) O157:H7 in samples that have been partially or completely sterilized using a new POU electrocatalytic water purification technology based on superradicals generated by defect laden titania (TiO₂) nanotubes. The sensor was also used to detect pathogens sterilized by UV-C radiation for a comparison of different modes of cell death. The sensor utilizes immunomagnetic bead separation to isolate active bacteria by forming a sandwich assay comprised of antibody functionalized secondary magnetic beads, E. coli O157:H7, and polyguanine (polyG) oligonucleotide functionalized secondary polystyrene beads as an electrochemical tag. The assay is formed by the attachment of antibodies to active receptors on the membrane of E. coli , allowing the sensor to differentially detect viable cells. Ultravioloet (UV)-C radiation and an electrocatalytic reactor (ER) with integrated defect-laden titania nanotubes were used to examine the sensors’ performance in detecting sterilized cells under different modes of cell death. Plate counts and flow cytometry were used to quantify disinfection efficacy and cell damage. It was found that the ER treatments shredded the bacteria into multiple fragments, while UV-C treatments inactivated the bacteria but left the cell membrane mostly intact.
Catalytic and electrocatalytic hydrogenolysis of brominated diphenyl ethers.
Bonin, Pascale M L; Edwards, Patrick; Bejan, Dorin; Lo, Chun Chi; Bunce, Nigel J; Konstantinov, Alexandre D
2005-02-01
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental contaminants due to their use as additive flame-retardants. Conventional catalytic hydrogenolysis in methanol solution and electrocatalytic hydrogenolysis in aqueous methanol were examined as methods for debrominating mono- and di-bromodiphenyl ethers, as well as a commercial penta-PBDE mixture, in each case using palladium on alumina as the catalyst. Electrocatalytic hydrogenolysis employed a divided flow-through batch cell, with reticulated vitreous carbon cathodes and IrO2/Ti dimensionally stable anodes. Both methods gave efficient sequential debromination, with essentially complete removal of bromine from the PBDEs, but the electrocatalytic method was limited by the poor solubility of PBDEs in aqueous methanol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Yeung-Pil; Kim, Jae-Hong; Ahn, Kwang-Soon, E-mail: kstheory@ynu.ac.kr
Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO{sub 2} (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Aumore » particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of S{sub n}{sup 2− }+ 2e{sup −} (CE) → S{sub n−1}{sup 2−} + S{sup 2−} at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, S{sub n}{sup 2− }+ 2e{sup −} (TiO{sub 2} in the photoanode) → S{sub n-1}{sup 2−} + S{sup 2−}, and significantly improved overall energy conversion efficiency.« less
Wang, Beibei; Ji, Xueping; Ren, Jujie; Ni, Ruixing; Wang, Lin
2017-12-01
A simple, ultrasensitive peroxynitrite anion (ONOO - ) electrochemical sensing platform was developed by immobilizing hemin on a density controllable electrochemically reduced graphene oxide-Au nanoparticles (ERGO-AuNPs) nanohybrids. The ERGO-AuNPs in situ nanohybrids were produced onto a glass carbon electrode (GCE) by one-step electrodeposition, the density of which could be easily controlled by electrodeposited time. The morphology of ERGO-AuNPs nanohybrids was characterized by a scanning electron microscope (SEM). The ERGO-AuNPs nanohybrids showed a high electrocatalytic activity for immobilized-hemin, because the nanostructures hybrids could effectively promote electron transfer rate between hemin and the electrode. Due to nanohybrids-enhanced catalytic effect for hemin, they were firstly selected for use as a highly sensitive electrochemical platform for ONOO - detection. The resulted sensor showed a high electrocatalytic activity toward ONOO - oxidation, being free from the electroactive interferents, including nitrite, nitrate, dopamine and uric acid at an applied potential of 0.7V. The sensor exhibited a high sensitivity of 123.1nAμM -1 and a lower detection limit of 0.1μM, and a wide linear range of 2.4×10 -6 to 5.5×10 -5 M, which could be attributed to the synergy between ERGO and AuNPs in hybrids. The nanohybrids in situ preparation and ONOO - detection methods would be beneficial to developing other sensing interface and have promising applications in biological molecules analysis and clinical diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Bin; Liu, Yongkang; Wang, Zhuo-Wei; Song, Yingpan; Wang, Minghua; Zhang, Zhihong; Liu, Chun-Sen
2018-05-01
We report on the synthesis of Co- and Fe-based bimetallic nanocatalysts embedded in mesoporous carbon and g-C3N4 nanosheets (denoted as Co3O4/Fe3O4/mC@g-C3N4) for selectively simultaneous determination of ascorbic acid (AA), dopamine acid (DA), and uric acid (UA). These electrocatalysts consisting of bimetallic Co-Fe alloy nanoparticles encapsulated in N-doped carbon matrix were prepared via pyrolysis of Co/Fe-MOFs after grinding with high amounts of melamine. Chemical/crystal structures suggest high contents of mesoporous carbon in calcinated Co3O4/Fe3O4/mC nanocomposites, which exhibited enhanced electrocatalytic activity toward small biomolecules. The intrinsic performances of Co/Fe-MOFs with large specific surface area and regular nodes in the two-dimensional nanostructured g-C3N4 nanosheets endowed the as-prepared series of Co3O4/Fe3O4/mC@g-C3N4 nanocomposites with remarkable electrocatalytic activities and high adsorption ability toward oxidation of AA, DA, and UA. The developed biosensors also showed long-term stability and high selectivity for targeted analytes, with satisfactory results on actual samples in human urine. The results indicate that the as-synthesized Co3O4/Fe3O4/mC@g-C3N4 nanostructure exhibits good electrocatalytic activity and potential applications in clinical diagnosis and biosensing.
Light-Regulated Electrochemical Sensor Array for Efficiently Discriminating Hazardous Gases.
Liang, Hongqiu; Zhang, Xin; Sun, Huihui; Jin, Han; Zhang, Xiaowei; Jin, Qinghui; Zou, Jie; Haick, Hossam; Jian, Jiawen
2017-10-27
Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C 3 H 6 , NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.
Abdel Hameed, R M; Medany, Shymaa S
2018-03-01
Nickel oxide nanoparticles were deposited on different carbon supports including activated Vulcan XC-72R carbon black (NiO/AC), multi-walled carbon nanotubes (NiO/MWCNTs), graphene (NiO/Gr) and graphite (NiO/Gt) through precipitation step followed by calcination at 400 °C. To determine the crystalline structure and morphology of prepared electrocatalysts, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed. The electrocatalytic activity of NiO/carbon support electrocatalysts was investigated towards urea electro-oxidation reaction in NaOH solution using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Urea oxidation peak current density was increased in the following order: NiO/AC < NiO/MWCNTs < NiO/Gr < NiO/Gt. Chronoamperometry test also showed an increased steady state oxidation current density for NiO/Gt in comparison to other electrocatalysts. The increased activity and stability of NiO/Gt electrocatalyst encourage the application of graphite as an efficient and cost-saving support to carry metal nanoparticles for urea electro-oxidation reaction. Copyright © 2017 Elsevier Inc. All rights reserved.
Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye
2017-12-01
Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou
2017-11-01
Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.
Wang, An-Liang; Xu, Han; Feng, Jin-Xian; Ding, Liang-Xin; Tong, Ye-Xiang; Li, Gao-Ren
2013-07-24
Low cost, high activity, and long-term durability are the main requirements for commercializing fuel cell electrocatalysts. Despite tremendous efforts, developing non-Pt anode electrocatalysts with high activity and long-term durability at low cost remains a significant technical challenge. Here we report a new type of hybrid Pd/PANI/Pd sandwich-structured nanotube array (SNTA) to exploit shape effects and synergistic effects of Pd-PANI composites for the oxidation of small organic molecules for direct alcohol fuel cells. These synthesized Pd/PANI/Pd SNTAs exhibit significantly improved electrocatalytic activity and durability compared with Pd NTAs and commercial Pd/C catalysts. The unique SNTAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Besides the merits of nanotube arrays, the improved electrocatalytic activity and durability are especially attributed to the special Pd/PANI/Pd sandwich-like nanostructures, which results in electron delocalization between Pd d orbitals and PANI π-conjugated ligands and in electron transfer from Pd to PANI.
Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W
2017-11-14
Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.
Electrocatalytic reduction of carbon dioxide on electrodeposited tin-based surfaces
NASA Astrophysics Data System (ADS)
Alba, Bianca Christina S.; Camayang, John Carl A.; Mopon, Marlon L.; del Rosario, Julie Anne D.
2017-08-01
The electrocatalytic reduction of carbon dioxide to small organic molecular compounds provides a means of generating alternative fuel source while suppressing climate change. Suitable catalysts, however, are necessary to optimize its reaction kinetics towards more valuable products. Consequently, in this study, electrodeposited Sn electrodes have been developed as catalysts for CO2 electroreduction. Deposition potential was varied to produce different Sn catalysts. SEM showed varying morphologies and increasing amount as the applied potential becomes more negative. Cyclic voltammetry and chronoamperometry showed that the activity and stability of the catalysts towards CO2 reduction depend on the morphology and presence of tin oxides. These results provide a better understanding on the performance of electrodeposited Sn-based surfaces as catalysts for CO2 reduction.
Wang, An-Liang; He, Xu-Jun; Lu, Xue-Feng; Xu, Han; Tong, Ye-Xiang; Li, Gao-Ren
2015-03-16
PdCo nanotube arrays (NTAs) supported on carbon fiber cloth (CFC) (PdCo NTAs/CFC) are presented as high-performance flexible electrocatalysts for ethanol oxidation. The fabricated flexible PdCo NTAs/CFC exhibits significantly improved electrocatalytic activity and durability compared with Pd NTAs/CFC and commercial Pd/C catalysts. Most importantly, the PdCo NTAs/CFC shows excellent flexibility and the high electrocatalytic performance remains almost constant under the different distorted states, such as normal, bending, and twisting states. This work shows the first example of Pd-based alloy NTAs supported on CFC as high-performance flexible electrocatalysts for ethanol oxidation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ekrami-Kakhki, Mehri-Saddat; Farzaneh, Nahid; Abbasi, Sedigheh; Beitollahi, Hadi; Ekrami-Kakhki, Seyed Ali
2018-05-01
In this research, graphene oxide was prepared by a modified Hummers' method, and then functionalized with 1, 1'-dimethyl-4, 4'-bipyridinium dichloride (MV), and chitosan (CH) to get a MV-RGO-CH support. Pt nanoparticles were prepared on this support to get Pt/MV-RGO-CH catalyst. The morphology and microstructure of Pt/MV-RGO-CH catalyst were characterized with transmission electron microscopy image and X-ray diffraction analysis. The electrocatalytic activity of the prepared catalyst towards ethanol oxidation was investigated by carbon monoxide stripping voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy techniques. The effects of some experimental parameters such as scan rate, ethanol concentration, and temperature were investigated for ethanol electrooxidation at Pt/MV-RGO-CH catalyst. Durability of the catalyst was also investigated. The electrocatalytic performance of Pt/MV-RGO-CH catalyst for ethanol oxidation was compared with those of Pt/CH and Pt/MV-RGO catalysts. The higher electrocatalytic performance of Pt/MV-RGO-CH than Pt/CH and Pt/MV-RGO catalysts towards ethanol electrooxidation indicated that Pt/MV-RGO-CH could be a promising catalyst for application in direct ethanol fuel cells.
NASA Astrophysics Data System (ADS)
Rutkowska, Iwona A.; Wadas, Anna; Kulesza, Pawel J.
2016-12-01
Nanostructured mixed metal (W, Zr) oxide matrices (in a form of layered intercalated films of WO3 and ZrO2) are considered here for supporting and activating catalytic platinum nanoparticles toward electrooxidation of ethanol. Remarkable increases of electrocatalytic (voltammetric, chronoamperometric) currents measured in 0.5 mol dm-3 H2SO4 (containing 0.5 mol dm-3 ethanol) have been observed. Comparison has been made to the behavior of methanol and acetaldehyde under analogous conditions. The enhancement effects are interpreted in terms of specific interactions between platinum nanoparticles and the metal oxide species, high acidity of the mixed oxide sites, as well as high population of surface hydroxyl groups and high mobility of protons existing in close vicinity of Pt catalytic sites. The metal oxide nanostructures are expected to interact competitively (via the surface hydroxyl groups) with adsorbates of the undesirable reaction intermediates, including CO, facilitating their desorption ("third body effect"), or even oxidative removal (e.g., of CO to CO2). The fact that the partially reduced tungsten oxide (HxWO3) component is characterized by fast electron transfers coupled to proton displacements tends to improve the overall charge propagation at the electrocatalytic interface.
Li, Yapeng; Liu, Jindou; Chen, Chen; Zhang, Xiaohua; Chen, Jinhua
2017-02-22
Double metal phosphide (NiCoP) with hollow quasi-polyhedron structure was prepared by acidic etching and precipitation of ZIF-67 polyhedra and further phosphorization treatment with NaH 2 PO 2 . The morphology and microstructure of NiCoP quasi-polyhedron and its precursors were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and a micropore and chemisorption analyzer. Electrocatalytic properties were examined by typical electrochemical methods, such as linear sweep voltammetry, cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy in 1.0 M KOH aqueous solution. Results reveal that, compared with CoP hollow polyhedra, NiCoP hollow quasi-polyhedra exhibit better electrochemical properties for hydrogen evolution with a low onset overpotential of 74 mV and a small Tafel slope of 42 mV dec -1 . When the current density is 10 mA cm -2 , the corresponding overpotential is merely 124 mV, and 93% of its electrocatalytic activity can be maintained for 12 h. This indicates that NiCoP with hollow quasi-polyhedron structure, bimetallic merit, and low cost may be a good candidate as electrocatalyst in the practical application of hydrogen evolution.
Wu, Peng; Huang, Yiyin; Kang, Longtian; Wu, Maoxiang; Wang, Yaobing
2015-01-01
A series of palladium-based catalysts of metal alloying (Sn, Pb) and/or (N-doped) graphene support with regular enhanced electrocatalytic activity were investigated. The peak current density (118.05 mA cm−2) of PdSn/NG is higher than the sum current density (45.63 + 47.59 mA cm−2) of Pd/NG and PdSn/G. It reveals a synergistic electrocatalytic oxidation effect in PdSn/N-doped graphene Nanocomposite. Extend experiments show this multisource synergetic catalytic effect of metal alloying and N-doped graphene support in one catalyst on small organic molecule (methanol, ethanol and Ethylene glycol) oxidation is universal in PdM(M = Sn, Pb)/NG catalysts. Further, The high dispersion of small nanoparticles, the altered electron structure and Pd(0)/Pd(II) ratio of Pd in catalysts induced by strong coupled the metal alloying and N-doped graphene are responsible for the multisource synergistic catalytic effect in PdM(M = Sn, Pb) /NG catalysts. Finally, the catalytic durability and stability are also greatly improved. PMID:26434949
Yuan, Yali; Gou, Xuxu; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying; Mao, Li; Gan, Xianxue
2011-06-15
A simple electrochemical aptasensor for sensitive detection of thrombin was fabricated with G-quadruplex horseradish peroxidase-mimicking DNAzyme (hemin/G-quadruplex system) and blocking reagent-horseradish peroxidase as dual signal-amplification scheme. Gold nanoparticles (nano-Au) were firstly electrodeposited onto single wall nanotube (SWNT)-graphene modified electrode surface for the immobilization of electrochemical probe of nickel hexacyanoferrates nanoparticles (NiHCFNPs). Subsequently, another nano-Au layer was electrodeposited for further immobilization of thrombin aptamer (TBA), which later formed hemin/G-quadruplex system with hemin. Horseradish peroxidases (HRP) then served as blocking reagent to block possible remaining active sites and avoided the non-specific adsorption. In the presence of thrombin, the TBA binded to thrombin and the hemin released from the hemin/G-quadruplex electrocatalytic structure, increasing steric hindrance of the aptasensor and decomposing hemin/G-quadruplex electrocatalytic structure, which finally decreased the electrocatalytic efficiency of aptasensor toward H(2)O(2) in the presence of NiHCFNPs with a decreased electrochemical signal. On the basis of the synergistic amplifying action, a detection limit as low as 2 pM for thrombin was obtained. Copyright © 2011 Elsevier B.V. All rights reserved.
Effective Degradation of Aqueous Tetracycline Using a Nano-TiO2/Carbon Electrocatalytic Membrane
Liu, Zhimeng; Zhu, Mengfu; Wang, Zheng; Wang, Hong; Deng, Cheng; Li, Kui
2016-01-01
In this work, an electrocatalytic membrane was prepared to degrade aqueous tetracycline (TC) using a carbon membrane coated with nano-TiO2 via a sol-gel process. SEM, XRD, EDS, and XPS were used to characterize the composition and structure of the electrocatalytic membrane. The effect of operating conditions on the removal rate of tetracycline was investigated systematically. The results show that the chemical oxygen demand (COD) removal rate increased with increasing residence time while it decreased with increasing the initial concentration of tetracycline. Moreover, pH had little effect on the removal of tetracycline, and the electrocatalytic membrane could effectively remove tetracycline with initial concentration of 50 mg·L−1 (pH, 3.8–9.6). The 100% tetracycline and 87.8% COD removal rate could be achieved under the following operating conditions: tetracycline concentration of 50 mg·L−1, current density of 1 mA·cm−2, temperature of 25 °C, and residence time of 4.4 min. This study provides a new and feasible method for removing antibiotics in water with the synergistic effect of electrocatalytic oxidation and membrane separation. It is evident that there will be a broad market for the application of electrocatalytic membrane in the field of antibiotic wastewater treatment. PMID:28773486
Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regmi, Yagya N.; Roy, Asa; King, Laurie A.
Composites of electrocatalytically active transition-metal compounds present an intriguing opportunity toward enhanced activity and stability. Here, to identify potentially scalable pairs of a catalytically active family of compounds, we demonstrate that phosphides of iron, nickel, and cobalt can be deposited on molybdenum carbide to generate nanocrystalline heterostructures. Composites synthesized via solvothermal decomposition of metal acetylacetonate salts in the presence of highly dispersed carbide nanoparticles show hydrogen evolution activities comparable to those of state-of-the-art non-noble metal catalysts. Investigation of the spent catalyst using high resolution microscopy and elemental analysis reveals that formation of carbide–phosphide composite prevents catalyst dissolution in acid electrolyte.more » Lattice mismatch between the two constituent electrocatalysts can be used to rationally improve electrochemical stability. Among the composites of iron, nickel, and cobalt phosphide, iron phosphide displays the lowest degree of lattice mismatch with molybdenum carbide and shows optimal electrochemical stability. Turnover rates of the composites are higher than that of the carbide substrate and compare favorably to other electrocatalysts based on earth-abundant elements. Lastly, our findings will inspire further investigation into composite nanocrystalline electrocatalysts that use molybdenum carbide as a stable catalyst support.« less
Gao, Daqiang; Xia, Baorui; Wang, Yanyan; Xiao, Wen; Xi, Pinxian; Xue, Desheng; Ding, Jun
2018-04-01
Although transition metal dichalcogenide MoSe 2 is recognized as one of the low-cost and efficient electrocatalysts for the hydrogen evolution reaction (HER), its thermodynamically stable basal plane and semiconducting property still hamper the electrocatalytic activity. Here, it is demonstrated that the basal plane and edges of 2H-MoSe 2 toward HER can be activated by introducing dual-native vacancy. The first-principle calculations indicate that both the Se and Mo vacancies together activate the electrocatalytic sites in the basal plane and edges of MoSe 2 with the optimal hydrogen adsorption free energy (ΔG H* ) of 0 eV. Experimentally, 2D MoSe 2 nanosheet arrays with a large amount of dual-native vacancies are fabricated as a catalytic working electrode, which possesses an overpotential of 126 mV at a current density of 100 mV cm -2 , a Tafel slope of 38 mV dec -1 , and an excellent long-term durability. The findings pave a rational pathway to trigger the activity of inert MoSe 2 toward HER and also can be extended to other layered dichalcogenide. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability
Regmi, Yagya N.; Roy, Asa; King, Laurie A.; ...
2017-10-19
Composites of electrocatalytically active transition-metal compounds present an intriguing opportunity toward enhanced activity and stability. Here, to identify potentially scalable pairs of a catalytically active family of compounds, we demonstrate that phosphides of iron, nickel, and cobalt can be deposited on molybdenum carbide to generate nanocrystalline heterostructures. Composites synthesized via solvothermal decomposition of metal acetylacetonate salts in the presence of highly dispersed carbide nanoparticles show hydrogen evolution activities comparable to those of state-of-the-art non-noble metal catalysts. Investigation of the spent catalyst using high resolution microscopy and elemental analysis reveals that formation of carbide–phosphide composite prevents catalyst dissolution in acid electrolyte.more » Lattice mismatch between the two constituent electrocatalysts can be used to rationally improve electrochemical stability. Among the composites of iron, nickel, and cobalt phosphide, iron phosphide displays the lowest degree of lattice mismatch with molybdenum carbide and shows optimal electrochemical stability. Turnover rates of the composites are higher than that of the carbide substrate and compare favorably to other electrocatalysts based on earth-abundant elements. Lastly, our findings will inspire further investigation into composite nanocrystalline electrocatalysts that use molybdenum carbide as a stable catalyst support.« less
Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.
Tang, Cheng; Wang, Hao-Fan; Zhang, Qiang
2018-04-17
Various gas-involving energy electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), has witnessed increasing concerns recently for the sake of clean, renewable, and efficient energy technologies. However, these heterogeneous reactions exhibit sluggish kinetics due to multistep electron transfer and only occur at triple-phase boundary regions. Up to now, tremendous attention has been attracted to develop cost-effective and high-performance electrocatalysts to boost the electrocatalytic activities as promising alternatives to noble metal counterparts. In addition to the prolific achievements in materials science, the advances in interface chemistry are also very critical in consideration of the complex phenomena proceeded at triple-phase boundary regions, such as mass diffusion, electron transfer, and surface reaction. Therefore, insightful principles and effective strategies for a comprehensive optimization, ranging from active sites to electrochemical interface, are necessary to fully enhance the electrocatalytic performance aiming at practical device applications. In this Account, we give an overview of our recent attempts toward efficient gas-involving electrocatalysis with multiscale principles from the respect of electronic structure, hierarchical morphology, and electrode interface step by step. It is widely accepted that the intrinsic activity of individual active sites is directly influenced by their electronic structure. Heteroatom doping and topological defects are demonstrated to be the most effective strategies for metal-free nanocarbon materials, while the cationic (e.g., Ni, Fe, Co, Sn) and anionic (e.g., O, S, OH) regulation is revealed to be a promising method for transition metal compounds, to alter the electronic structure and generate high activity. Additionally, the apparent activity of the whole electrocatalyst is significantly impacted by its hierarchical morphology. The active sites of nanocarbon materials are expected to be enriched on the surface for a full exposure and utilization; the hybridization of other active components with nanocarbon materials should achieve a uniform dispersion in nanoscale and a strongly coupled interface, thereby ensuring the electron transfer and boosting the activity. Furthermore, steady and favorable electrochemical interfaces are strongly anticipated in working electrodes for optimal reaction conditions. The powdery electrocatalysts are suggested to be constructed into self-supported electrodes for more efficient and stable catalysis integrally, while the local microenvironment can be versatilely modified by ionic liquids with more beneficial gas solubility and hydrophobicity. Collectively, with the all-round regulation of the electronic structure, hierarchical morphology, and electrode interface, the electrocatalytic performances are demonstrated to be comprehensively facilitated. Such multiscale principles stemmed from the in-depth insights on the structure-activity relationship and heterogeneous reaction characteristics will no doubt pave the way for the future development of gas-involving energy electrocatalysis, and also afford constructive inspirations in a broad range of research including CO 2 reduction reaction, hydrogen peroxide production, nitrogen reduction reaction, and other important electrocatalytic activation of small molecules.
Gupta, Ruma; Sundararajan, Mahesh; Gamare, Jayashree S
2017-08-01
Reduction of UO 2 2+ ions to U 4+ ions is difficult due to involvement of two axially bonded oxygen atoms, and often requires a catalyst to lower the activation barrier. The noble metal nanoparticles (NPs) exhibit high electrocatalytic activity, and could be employed for the sensitive and rapid quantifications of U0 2 2+ ions in the aqueous matrix. Therefore, the Pd, Ru, and Rh NPs decorated glassy carbon electrode were examined for their efficacy toward electrocatalytic reduction of UO 2 2+ ions and observed that Ru NPs mediate efficiently the electro-reduction of UO 2 2+ ions. The mechanism of the electroreduction of UO 2 2+ by the RuNPs/GC was studied using density functional theory calculations which pointed different approach of 5f metal ions electroreduction unlike 4p metal ions such as As(III). RuNP decorated on the glassy carbon would be hydrated, which in turn assist to adsorb the uranyl sulfates through hydrogen bonding thus facilitated electro-reduction. Differential pulse voltammetric (DPV) technique, was used for rapid and sensitive quantification of UO 2 2+ ions. The RuNPs/GC based DPV technique could be used to determine the concentration of uranyl in a few minutes with a detection limit of 1.95 ppb. The RuNPs/GC based DPV was evaluated for its analytical performance using seawater as well lake water and groundwater spiked with known amounts of UO 2 2+ .
Li, Shuwen; Dong, Zhengping; Yang, Honglei; Guo, Shujing; Gou, Galian; Ren, Ren; Zhu, Zhejun; Jin, Jun; Ma, Jiantai
2013-02-11
A new catalyst consisting of ionic liquid (IL)-functionalized carbon nanotubes (CNTs) obtained through 1,3-dipolar cycloaddition support-enhanced electrocatalytic Pd nanoparticles (Pd@IL(Cl(-))-CNTs) was successfully fabricated and applied in direct ethanol alkaline fuel cells. The morphology, structure, component and stability of Pd@IL(Cl(-))-CNTs were systematic characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectra, thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The new catalyst exhibited higher electrocatalytic activity, better tolerance and electrochemical stability than the Pd nanoparticles (NPs) immobilized on CNTs (Pd@CNTs), which was ascribed to the effects of the IL, larger electrochemically active surface area (ECSA), and greater processing performance. Cyclic voltammograms (CVs) at various scan rates illustrated that the oxidation behaviors of ethanol at all electrodes were controlled by diffusion processes. The investigation of the different counteranions demonstrated that the performance of the IL-CNTs hybrid material was profoundly influenced by the subtly varied structures of the IL moiety. All the results indicated that the Pd@IL(Cl(-))-CNTs catalyst is an efficient anode catalyst, which has potential applications in direct ethanol fuel cells and the strategy of IL functionalization of CNTs could be available to prepare other carbonaceous carrier supports to enhance the dispersivity, stability, and catalytic performance of metal NPs as well. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction
NASA Astrophysics Data System (ADS)
Ge, Zhijun; Wang, Ling; He, Zhangxing; Li, Yuehua; Jiang, Yingqiao; Meng, Wei; Dai, Lei
2018-04-01
A novel strategy for improving the electro-catalytic properties of graphite felt (GF) electrode in vanadium redox flow battery (VRFB) is designed by depositing cobalt phosphide (CoP) onto GF surface. The CoP powder is synthesized by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Cyclic voltammetry results confirm that the CoP-modified graphite felt (GF-CoP) electrode has excellent reversibility and electro-catalytic activity to the VO2+/VO2+ cathodic reaction compared with the pristine GF electrode. The cell using GF-CoP electrode shows apparently higher discharge capacity over that based on GF electrode. The cell using GF-CoP electrode has the capacity of 67.2 mA h at 100 mA cm-2, 32.7 mA h larger than that using GF electrode. Compared with cell using GF electrode, the voltage efficiency of the cell based on GF-CoP electrode increases by 5.9% and energy efficiency by 5.4% at a current density of 100 mA cm-2. The cell using GF-CoP electrode can reach 94.31% capacity retention after 50 cycles at a current density of 30 mA cm-2. The results show that the CoP can effectively promote the VO2+/VO2+ redox reaction, implying that metal phosphides are a new kind of potential catalytic materials for VRFB.
Wan, Chieh-Hao; Wu, Chun-Lin; Lin, Meng-Tsun; Shih, Chihhsiong
2010-07-01
In this paper, a modified technique to prepare Pt-Ir catalyst layer on the proton exchange membrane (PEM) surface using the impregnation-reduction (IR) method is proposed to improve the electrocatalytic activity as well as the life cycle of the bifunctional oxygen electrode (BOE). The resulted electrocatalysts were characterized by the Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Electron Probe Micro-Analysis (EPMA), and Transmission Electron Microscope (TEM). The electrocatalytic properties of the Pt-Ir layer on PEM surface for the oxygen reduction and water oxidation reactions as well as the life cycle of MEA were investigated. Experimental results showed that the Ir particles were dispersed densely in the platinum layer through the modified IR technique. The atomic ratio of Pt over Ir elements was 9:1, and the resulted thickness of the obtained Pt-Ir catalyst layer was about 1.0 microm. The Pt-Ir catalyst layer was composed of Pt layer doped with Ir nano-particles comprising nano Pt-Ir alloy phase. The large surface area of Ir core with Pt shell particles and the presence of nano Pt-Ir alloy phase led to a higher electrocatalytic activity of BOE. Due to the good binding between the Nafion membrane and the Pt-Ir alloy catalyst, as well as the composite structure of the resulted Pt-Ir, the life cycle of Unitized Regenerative Fuel Cell (URFC) is improved through this novel BOE.
[Treatment of acrylate wastewater by electrocatalytic reduction process].
Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min
2011-10-01
High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process.
Sharifi, Ensiyeh; Salimi, Abdollah; Shams, Esmaeil
2012-08-01
The modification of glassy carbon (GC) electrode with electrodeposited nickel oxide nanoparticles (NiOxNPs) and deoxyribonucleic acid (DNA) is utilized as a new efficient platform for entrapment of osmium (III) complex. Surface morphology and electrochemical properties of the prepared nanocomposite modified electrode (GC/DNA/NiOxNPs/Os(III)-complex) were investigated by FESEM, cyclic voltammetry and electrochemical impedance spectroscopy techniques. Cyclic voltammetric results indicated the excellent electrocatalytic activity of the resulting electrode toward oxidation of l-cysteine (CySH) at reduced overpotential (0.1 V vs. Ag/AgCl). Using chronoamperometry to CySH detection, the sensitivity and detection limit of the biosensor are obtained as 44 μA mM(-1) and 0.07 μM with a concentration range up to 1000 μM. The electrocatalytic activity of the modified electrode not only for oxidation of low molecular-mass biothiols derivatives such as, glutathione, l-cystine, l-methionine and electroactive biological species ( dopamine, uric acid, glucose) is negligible but also for very similar biothiol compound (homocysteine) no recognizable response is observed at the applied potential window. Furthermore, the simultaneous voltammetric determination of l-cysteine and homocysteine compounds without any separation or pretreatment process was reported for the first time in this work. Finally, the applicability of sensor for the analysis of CySH concentration in complex serum samples was successfully demonstrated. Highly selectivity, excellent electrocatalytic activity and stability, remarkable antifouling property toward thiols and their oxidation products, as well as the ability for simultaneous detection of l-cysteine and homocysteine are remarkably advantageous of the proposed DNA based biosensor. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, Yuanyuan; Song, Ye; Dou, Meiling; Ji, Jing; Wang, Feng
2018-03-01
A highly ordered TiO2 nanotube array covered with MoS2 is fabricated through a facile anodization of a metallic Ti followed by electrochemical deposition approach. The morphologies characterization of v-TiO2@MoS2 indicate that a whole scale of 1D TiO2nanotube uniformly covered with the MoS2 layer inside and outside, and the pathway inside the TiO2nanotube is kept flow-through. The as-synthesized v-TiO2@MoS2 hybrid exhibits higher efficient and stable visible light activities than that of either pure TiO2 nanotubes or nv-TiO2@MoS2 nanostructures. By electrochemical measurements such as linear sweep voltammetry(LSV) and electrochemical impedance spectroscope (EIS) under light illumination or in dark, we find that the v-TiO2@MoS2hybrid shows markedly enhanced photoelectrochemical performance. Furthermore, we compare the electrocatalytic behavior of v-TiO2@MoS2under illumination in H2SO4/Lactic acid within Na2S/NaSO3 solution. The results show that the photo-assistant electrocatalytic activity in acidic environment is much better than in alkaline environment. The highly directional and orthogonal separation of charge carriers between TiO2 nanotubes and MoS2 layer, together with maximally exposed MoS2 edges, light harvesting and junctions formed between TiO2 and MoS2 is supposed to be mainly responsible for the enhanced photo-assistant electrocatalytic activity of v-TiO2@MoS2.
NASA Astrophysics Data System (ADS)
Bai, Juan; Xing, Shi-Hui; Zhu, Ying-Ying; Jiang, Jia-Xing; Zeng, Jing-Hui; Chen, Yu
2018-05-01
Rationally tailoring the surface/interface structures of noble metal nanostructures emerges as a highly efficient method for improving their electrocatalytic activity, selectivity, and long-term stability. Recently, hydrogen evolution reaction is attracting more and more attention due to the energy crisis and environment pollution. Herein, we successfully synthesize polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids via a facile one-pot hydrothermal method. Three-dimensionally branched rhodium nanosheet nanoassemblies are consisted of two dimensionally atomically thick ultrathin rhodium nanosheets. The as-prepared polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids show the excellent electrocatalytic activity for the hydrogen evolution reaction in acidic media, with a low onset reduction potential of -1 mV, a small overpotential of 5 mV at 10 mA cm-2, which is much superior to commercial platinum nanocrystals. Two dimensionally ultrathin morphology of rhodium nanosheet, particular rhodium-polyallylamine interface, and three-dimensionally networks induced by carbon nanotube are the key factors for the excellent hydrogen evolution reaction activity in acidic media.
NASA Astrophysics Data System (ADS)
Jana, Rajkumar; Peter, Sebastian C.
2016-10-01
Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.
NASA Astrophysics Data System (ADS)
Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki
2010-08-01
An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.
A flower-like nickel oxide nanostructure: synthesis and application for choline sensing.
Sattarahmady, N; Heli, H; Dehdari Vais, R
2014-02-01
Flower-like nickel oxide nanostructure was synthesized by a simple desolvation method. The nanostructure was then employed as the modifier of a carbon paste electrode to fabricate a choline sensor. The mechanism and kinetics of the electrocatalytic oxidation of choline on the modified electrode surface were studied by cyclic voltammetry, steady-state polarization curve, and chronoamperometry. The catalytic rate constant and the charge transfer coefficient of the choline electrooxidation process by an active nickel species, and the diffusion coefficient of choline were reported. An amperometric method was developed for determination of choline with a sensitivity of 60.5 mA mol(-1)Lcm(-2) and a limit of detection of 25.4 μmol L(-1). The sensor had the advantages of high electrocatalytic activity and sensitivity, and long-term stability toward choline, with a simple fabrication method without complications of immobilization steps and using any enzyme or reagent. © 2013 Published by Elsevier B.V.
Hao, Feng; Dong, Pei; Zhang, Jing; Zhang, Yongchang; Loya, Phillip E; Hauge, Robert H; Li, Jianbao; Lou, Jun; Lin, Hong
2012-01-01
Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide -mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. Impressively, device with VASWCNTs counter electrode demonstrates a high fill factor of 0.68 and power conversion efficiency up to 5.25%, which is significantly higher than 0.56 and 3.49% for that with a conventional Pt electrode. Moreover, VASWCNTs counter electrode produces a charge transfer resistance of only 21.22 Ω towards aqueous polysulfide electrolyte commonly applied in quantum dots-sensitized solar cells (QDSCs), which is several orders of magnitude lower than that of a typical Pt electrode. Therefore, VASWCNTs counter electrodes are believed to be a versatile candidate for further improvement of the power conversion efficiency of other iodine-free redox couple based DSCs and polysulfide electrolyte based QDSCs.
Ku, Shuhao; Palanisamy, Selvakumar; Chen, Shen-Ming
2013-12-01
Herein, we report a highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite/nafion composite modified screen printed carbon (SPC) electrode. Electrochemically activated graphite/nafion composite was prepared by using a simple electrochemical method. Scanning electron microscope (SEM) used to characterize the surface morphology of the fabricated composite electrode. The SEM result clearly indicates that the graphitic basal planes were totally disturbed and leads to the formation of graphite nanosheets. The composite modified electrode showed an enhanced electrocatalytic activity toward the oxidation of DA when compared with either electrochemical pretreated graphite or nafion SPC electrodes. The fabricated composite electrode exhibits a good electrocatalytic oxidation toward DA in the linear response range from 0.5 to 70 μM with the detection limit of 0.023 μM. The proposed sensor also exhibits very good selectivity and stability, with the appreciable sensitivity. In addition, the proposed sensor showed satisfactory recovery results toward the commercial pharmaceutical DA samples. Copyright © 2013 Elsevier Inc. All rights reserved.
Sun, Yue; Zhou, Yunjie; Zhu, Cheng; Hu, Lulu; Han, Mumei; Wang, Aoqi; Huang, Hui; Liu, Yang; Kang, Zhenhui
2017-05-04
Highly efficient electrocatalysts remain huge challenges in direct methanol fuel cells (DMFCs). Here, a Pt-Co 3 O 4 -CDs/C composite was fabricated as an anode electrocatalyst with low Pt content (12 wt%) by using carbon dots (CDs) and Co 3 O 4 nanoparticles as building blocks. The Pt-Co 3 O 4 -CDs/C composite catalyst shows a significantly enhanced electrocatalytic activity (1393.3 mA mg -1 Pt), durability (over 4000 s) and CO-poisoning tolerance. The superior catalytic activity should be attributed to the synergistic effect of CDs, Pt and Co 3 O 4 . Furthermore, the Pt-Co 3 O 4 -CDs/C catalyst was integrated into a single cell, which exhibits a maximum power density of 45.6 mW cm -2 , 1.7 times the cell based on the commercial 20 wt% Pt/C catalyst.
Zhao, Zhi-Gang; Zhang, Jing; Yuan, Yinyin; Lv, Hong; Tian, Yuyu; Wu, Dan; Li, Qing-Wen
2013-01-01
Oxygen conversion process between O2 and H2O by means of electrochemistry or photochemistry has lately received a great deal of attention. Cobalt-phosphate (Co-Pi) catalyst is a new type of cost-effective artificial oxygen-evolving complex (OEC) with amorphous features during photosynthesis. However, can such Co-Pi OEC also act as oxygen reduction reaction (ORR) catalyst in electrochemical processes? The question remains unanswered. Here for the first time we demonstrate that Co-Pi OEC does be rather active for the ORR. Particularly, Co-Pi OEC anchoring on reduced graphite oxide (rGO) nanosheet is shown to possess dramatically improved electrocatalytic activities. Differing from the generally accepted role of rGO as an “electron reservoir”, we suggest that rGO serves as “peroxide cleaner” in enhancing the electrocatalytic behaviors. The present study may bridge the gap between photochemistry and electrochemistry towards oxygen conversion. PMID:23877331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang
Delicately engineering the well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported one-pot and facile method for synthesizing core-shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 hrs, far faster than the previous reports. Owe to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performancemore » towards ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.Core–shell PdPb@Pd aerogels with multiply-twinned grains and an ordered intermetallic phase was synthesized, which exhibited good electrocatalytic activity towards ethanol oxidation.« less
NASA Astrophysics Data System (ADS)
Guo, Hailing; Youliwasi, Nuerguli; Zhao, Lei; Chai, Yongming; Liu, Chenguang
2018-03-01
This paper addresses a new post-treatment strategy for the formation of carbon-encapsulated nickel-cobalt alloys nanoparticles, which is easily controlled the performance of target products via changing precursor composition, calcination conditions (e.g., temperature and atmosphere) and post-treatment condition. Glassy carbon electrode (GCE) modified by the as-obtained carbon-encapsulated mono- and bi-transition metal nanoparticles exhibit excellent electro-catalytic activity for hydrogen production in alkaline water electrolysis. Especially, Ni0.4Co0.6@N-Cs800-b catalyst prepared at 800 °C under an argon flow exhibited the best electrocatalytic performance towards HER. The high HER activity of the Ni0.4Co0.6@N-Cs800-b modified electrode is related to the appropriate nickel-cobalt metal ratio with high crystallinity, complete and homogeneous carbon layers outside of the nickel-cobalt with high conductivity and the synergistic effect of nickel-cobalt alloys that also accelerate electron transfer process.
NASA Astrophysics Data System (ADS)
Li, Xiyan; Lei, Yongqian; Li, Xiaona; Song, Shuyan; Wang, Cheng; Zhang, Hongjie
2011-12-01
α-Fe 2O 3 nanocrystals (NCs) with different morphologies are successfully synthesized via a facile template-free hydrothermal route. By simply changing the volume ratio of ethanol to water, we obtained three different α-Fe 2O 3 nanostructures of rhombohedra, truncated rhombohedra and hexagonal sheet. The morphologies and structures of the as-obtained products have been confirmed by varieties of characterizations such as X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influences of the experimental conditions, such as the amount of NaOH and reaction temperature on the morphologies of the as-prepared α-Fe 2O 3 NCs, have been well investigated. Additionally, magnetic investigations show that the as-obtained α-Fe 2O 3 nanostructures show structure-dependent magnetic properties. Furthermore, the electrochemical experiments indicate that the as-prepared α-Fe 2O 3 hexagonal sheets exhibit strong electrocatalytic reduction activity for H 2O 2.
NASA Astrophysics Data System (ADS)
Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir
2018-03-01
A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.
NASA Astrophysics Data System (ADS)
Wu, Xuan; Fan, Zihan; Ling, Xiaolun; Wu, Shuting; Chen, Xin; Hu, Xiaolin; Zhuang, Naifeng; Chen, Jianzhong
2018-06-01
Molybdenum disulfide hybridized with graphene nanoribbon (MoS2/GNR) was prepared by mild method. MoS2/GNR hybrids interlace loosely into a three-dimension structure. GNR hybridization can improve the dispersity of MoS2, reduce the grain size of MoS2 to 3-6 nm, increase the specific surface area, and broaden the interlamellar spacing of MoS2 (002) plane to 0.67-0.73 nm, which facilitates the transportation of Li+ ions for lithium-ion battery. MoS2/GNR hybrids have better cyclic durability, higher specific discharge capacity, and superior rate performance than MoS2. The electrocatalytic activity in hydrogen evolution reaction shows that MoS2/GNR hybrids have the lower overpotential and the larger current density with a negligible current loss after 2000 cycles. Hybridizing with GNRs enhances both the lithium-ion electrochemical storage and the electrocatalytic activity of MoS2. [Figure not available: see fulltext.
Hasanzadeh, Mohammad; Shadjou, Nasrin; Omidinia, Eskandar
2013-08-01
Magnetic (Fe2O3) mobile crystalline material-41 (MCM-41) was prepared and characterized using transmission electron microscopy (TEM) and nitrogen adsorption-desorption techniques. Due to the large surface area (1213 m(2)g(-1)) and remarkable electrocatalytic properties of MCM-41-Fe2O3, the MCM-41-Fe2O3 modified glassy carbon electrode (MCM-41-Fe2O3/GCE) exhibits potent electrocatalytic activity toward the electro-oxidation of amino acids. MCM-41-Fe2O3/GCE brings new capabilities for electrochemical sensing by combining the advantages of Fe2O3 magnetic nanoparticles and MCM-41 with very large surface area. Cyclic voltammetry, hydrodynamic amperometry and flow injection analysis used to determination of amino acids at higher concentration range. Fast response time, excellent catalytic activity, and ease of preparation are the advantages of the proposed amino acid sensor. Copyright © 2013 Elsevier B.V. All rights reserved.
Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...
2015-04-21
Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O 2/O 2 •- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O 2 reduction reaction is from mass diffusion. Li 2O 2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O 2 2- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings revealmore » an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.« less
Miao, Fengjuan; Tao, Bairui; Chu, Paul K
2012-04-28
A new silicon-based anode suitable for direct ethanol fuel cells (DEFCs) is described. Pd-Ni nanoparticles are coated on Si nanowires (SiNWs) by electroless co-plating to form the catalytic materials. The electrocatalytic properties of the SiNWs and ethanol oxidation on the Pd-Ni catalyst (Pd-Ni/SiNWs) are investigated electrochemically. The effects of temperature and working potential limit in the anodic direction on ethanol oxidation are studied by cyclic voltammetry. The Pd-Ni/SiNWs electrode exhibits higher electrocatalytic activity and better long-term stability in an alkaline solution. It also yields a larger current density and negative onset potential thus boding well for its application to fuel cells. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Jang, Dawoon; Lee, Seungjun; Shin, Yunseok; Ohn, Saerom; Park, Sunghee; Lim, Donggyu; Park, Gilsoo; Park, Sungjin
2017-12-01
The generation of molecular active species on the surface of nano-materials has become promising routes to produce efficient electrocatalysts. Development of cost-effective catalysts with high performances for oxygen reduction reaction (ORR) is an important challenge for fuel cell and metal-air battery applications. In this work, we report a novel hybrid produced by room-temperature solution processes using Ni-based organometallic molecules and N-doped graphene-based materials. Chemical and structural characterizations reveal that Ni-containing species are well-dispersed on the surface of graphene network as molecular entity. The hybrid shows excellent electrocatalytic performances for ORR in basic medium with an onset potential of 0.87 V (vs. RHE), superior durability and good methanol tolerance.
Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yuyan; Cheng, Yingwen; Duan, Wentao
2015-12-04
PEM fuel cells and redox flow batteries are two very similar technologies which share common component materials and device design. Electrocatalysts are the key components in these two devices. In this Review, we discuss recent progress of electrocatalytic materials for these two technologies with a focus on our research activities at Pacific Northwest National Laboratory (PNNL) in the past years. This includes (1) nondestructive functionalization of graphitic carbon as Pt support to improve its electrocatalytic performance, (2) triple-junction of metal–carbon–metal oxides to promote Pt performance, (3) nitrogen-doped carbon and metal-doped carbon (i.e., metal oxides) to improve redox reactions in flowmore » batteries. A perspective on future research and the synergy between the two technologies are also discussed.« less
Porous bimetallic PdNi catalyst with high electrocatalytic activity for ethanol electrooxidation.
Feng, Yue; Bin, Duan; Yan, Bo; Du, Yukou; Majima, Tetsuro; Zhou, Weiqiang
2017-05-01
Porous bimetallic PdNi catalysts were fabricated by a novel method, namely, reduction of Pd and Ni oxides prepared via calcining the complex chelate of PdNi-dimethylglyoxime (PdNi-dmg). The morphology and composition of the as-prepared PdNi were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Furthermore, the electrochemical properties of PdNi catalysts towards ethanol electrooxidation were also studied by electrochemical impedance spectrometry (EIS), cyclic voltammetry (CV) and chronoamperometry (CA) measurement. In comparison with porous Pd and commercial Pd/C catalysts, porous structural PdNi catalysts showed higher electrocatalytic activity and durability for ethanol electrooxidation, which may be ascribed to Pd and Ni property, large electroactive surface area and high electron transfer property. The Ni exist in the catalyst in the form of the nickel hydroxides (Ni(OH) 2 and NiOOH) which have a high electron and proton conductivity enhances the catalytic activity of the catalysts. All results highlight the great potential application of the calcination-reduction method for synthesizing high active porous PdNi catalysts in direct ethanol fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A.; Xiang, Bin
2015-02-01
Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale.
NASA Astrophysics Data System (ADS)
Wang, Minghua; Yang, Longyu; Hu, Bin; Liu, Yongkang; Song, Yingpan; He, Linghao; Zhang, Zhihong; Fang, Shaoming
2018-07-01
A novel electrocatalyst based on amine-functionalized Ti-based metal-organic framework (NH2-MIL-125(Ti)) embedded with Cu3P nanocrystals (denoted by Cu3P@NH2-MIL-125(Ti)) was synthesized and used for electrocatalytic oxidation and detection of hydrazine in aqueous solution. A series of Cu3P@NH2-MIL-125(Ti) nanocomposites were obtained by adding Cu3P nanoparticles into the preparation system of NH2-MIL-125(Ti), with the Cu3P nanocrystals derived from the phospatization of Cu(OH)2 at high temperature. Based on the detailed characterizations and analysis of the chemical and physical performances of the series of Cu3P@NH2-MIL-125(Ti) nanocomposites at dosages of Cu3P nanocrystals at 5, 20, 50, and 100 mg, the good synergic effect between the Cu3P (50 mg) and the NH2-MIL-125(Ti) endows the as-prepared Cu3P50@NH2-MIL-125(Ti) nanocomposite with the excellent electrocatalytic activity toward the electrocatalytic oxidation of hydrazine. The Cu3P50@NH2-MIL-125(Ti)-based electrochemical sensor exhibited a detection limit of 79 nM (S/N = 3) within a wider linear range from 5 μM to 7.5 mM. Moreover, the developed sensor exhibited high selectivity toward the detection of hydrazine with the addition of certain common interferents and good applicability in real samples. All of these results imply that the Cu3P50@NH2-MIL-125(Ti) nanocomposite could be promising for detecting hydrazine and offer potential applications in the field of electroanalytical chemistry.
Huang, Xiaoxi; Zhou, Li-Jing; Voiry, Damien; Chhowalla, Manish; Zou, Xiaoxin; Asefa, Tewodros
2016-07-27
In our quest to make various chemical processes sustainable, the development of facile synthetic routes and inexpensive catalysts can play a central role. Herein we report the synthesis of monodisperse, polyaniline (PANI)-derived mesoporous carbon nanoparticles (PAMCs) that can serve as efficient metal-free electrocatalysts for the hydrogen peroxide reduction reaction (HPRR) as well as the oxygen reduction reaction (ORR) in fuel cells. The materials are synthesized by polymerization of aniline with the aid of (NH4)2S2O8 as oxidant and colloidal silica nanoparticles as templates, then carbonization of the resulting PANI/silica composite material at different high temperatures, and finally removal of the silica templates from the carbonized products. The PAMC materials that are synthesized under optimized synthetic conditions possess monodisperse mesoporous carbon nanoparticles with an average size of 128 ± 12 nm and an average pore size of ca. 12 nm. Compared with Co3O4, a commonly used electrocatalyst for HPRR, these materials show much better catalytic activity for this reaction. In addition, unlike Co3O4, the PAMCs remain relatively stable during the reaction, under both basic and acidic conditions. The nanoparticles also show good electrocatalytic activity toward ORR. Based on the experimental results, PAMCs' excellent electrocatalytic activity is attributed partly to their heteroatom dopants and/or intrinsic defect sites created by vacancies in their structures and partly to their high porosity and surface area. The reported synthetic method is equally applicable to other polymeric precursors (e.g., polypyrrole (PPY)), which also produces monodisperse, mesoporous carbon nanoparticles in the same way. The resulting materials are potentially useful not only for electrocatalysis of HPRR and ORR in fuel cells but also for other applications where high surface area, small sized, nanostructured carbon materials are generally useful for (e.g., adsorption, supercapacitors, etc.).
Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.
Yin, Jun; Shan, Shiyao; Ng, Mei Shan; Yang, Lefu; Mott, Derrick; Fang, Weiqin; Kang, Ning; Luo, Jin; Zhong, Chuan-Jian
2013-07-23
The control of the nanoscale composition and structure of alloy catalysts plays an important role in heterogeneous catalysis. This paper describes novel findings of an investigation for Pd-based nanoalloy catalysts (PdCo and PdCu) for ethanol oxidation reaction (EOR) in gas phase and alkaline electrolyte. Although the PdCo catalyst exhibits a mass activity similar to Pd, the PdCu catalyst is shown to display a much higher mass activity than Pd for the electrocatalytic EOR in alkaline electrolyte. This finding is consistent with the finding on the surface enrichment of Pd on the alloyed PdCu surface, in contrast to the surface enrichment of Co in the alloyed PdCo surface. The viability of C-C bond cleavage was also probed for the PdCu catalysts in both gas-phase and electrolyte-phase EOR. In the gas-phase reaction, although the catalytic conversion rate for CO2 product is higher over Pd than PdCu, the nanoalloy PdCu catalyst appears to suppress the formation of acetic acid, which is a significant portion of the product in the case of pure Pd catalyst. In the alkaline electrolyte, CO2 was detected from the gas phase above the electrolyte upon acid treatment following the electrolysis, along with traces of aldehyde and acetic acid. An analysis of the electrochemical properties indicates that the oxophilicity of the base metal alloyed with Pd, in addition to the surface enrichment of metals, may have played an important role in the observed difference of the catalytic and electrocatalytic activities. In comparison with Pd alloyed with Co, the results for Pd alloyed with Cu showed a more significant positive shift of the reduction potential of the oxygenated Pd species on the surface. These findings have important implications for further fine-tuning of the Pd nanoalloys in terms of base metal composition toward highly active and selective catalysts for EOR.
NASA Astrophysics Data System (ADS)
Wu, Tianli; Pi, Mingyu; Wang, Xiaodeng; Guo, Weimeng; Zhang, Dingke; Chen, Shijian
2018-01-01
Exploring highly-efficient and low-cost non-noble metal electrocatalyst toward the hydrogen evolution reaction (HER) is highly desired for renewable energy system but remains challenging. In this work, three dimensional hierarchical porous cobalt poly-phosphide hollow spheres (CoP3 HSs) were prepared by topotactic phosphidation of the cobalt-based precursor via vacuum encapsulation technique. As a porous HER cathode, the CoP3 HSs delivers remarkable electrocatalytic performance over the wide pH range. It needs overpotentials of -69 mV and -118 mV with a small Tafel slope of 51 mV dec-1 to obtain current densities of 10 mA cm-2 and 50 mA cm-2, respectively, and maintains its electrocatalytic performance over 30 h in acidic solution. In addition, CoP3 also exhibit superior electrocatalytic performance and stability under neutral and alkaline conditions for the HER. Both experimental measurements and density functional theory (DFT) calculations are performed to explore the mechanism behind the excellent HER performance. The results of our study make the porous CoP3 HSs as a promising electrocatalyst for practical applications toward energy conversion system and present a new way for designing and fabricating HER electrodes through high degree of phosphorization and nano-porous architecture.
Yu, Xue; Kuai, Long; Geng, Baoyou
2012-09-21
Pt-based nanocomposites have been of great research interest. In this paper, we design an efficient MO/rGO/Pt sandwich nanostructure as an anodic electrocatalyst for DMFCs with combination of the merits of rigid structure of metallic oxides (MOs) and excellent electronic conductivity of reduced oxidized graphene (rGO) as well as overcoming their shortcomings. In this case, the CeO(2)/rGO/Pt sandwich nanostructure is successfully fabricated through a facile hydrothermal approach in the presence of graphene oxide and CeO(2) nanoparticles. This structure has a unique building architecture where rGO wraps up the CeO(2) nanoparticles and Pt nanoparticles are homogeneously dispersed on the surface of rGO. This novel structure endows this material with great electrocatalytic performance in methanol oxidation: it reduces the overpotential of methanol oxidation significantly and its electrocatalytic activity and stability are much enhanced compared with Pt/rGO, CeO(2)/Pt and Pt/C catalysts. This work supplies a unique MO/rGO/Pt sandwich nanostructure as an efficient way to improve the electrocatalytic performance, which will surely shed some light on the exploration of some novel structures of electrocatalyst for DMFCs.
NASA Astrophysics Data System (ADS)
Pargoletti, E.; Cappelletti, G.; Minguzzi, A.; Rondinini, S.; Leoni, M.; Marelli, M.; Vertova, A.
2016-09-01
Nanostructured MnO2 has unique electrocatalytic properties towards the Oxygen Reduction Reaction (ORR, the main cathodic reaction in metal-air devices), representing an excellent alternative to the expensive platinum. Herein, we report the hydrothermal synthesis of bare and 5% Ti-doped α-MnO2 nanoparticles using two different oxidizing agents, namely ammonium persulfate for MH_N samples and potassium permanganate for MH_K ones. The physico-chemical characterizations show that oxidant cations induce different structural, morphological and surface properties of the final powders. Hence, correlations between the different α-MnO2 characteristics and their electrocatalytic performances towards the ORR are drawn, highlighting the diverse effect even on the kinetic point of view. The ORR activity in alkaline media is examined by means of Staircase - Linear Sweep Voltammetry (S-LSV), using Gas Diffusion Electrode (GDE) as the air-cathode. The presence of these nanoparticles in the GDEs leads to a significant shift of the ORR onset potential (∼100 mV) towards less cathodic values, underlining the electrocatalytic efficiency of all the nanopowders. Furthermore, high exchange current densities (j0) are determined for GDEs with Ti-doped MnO2, comparable to the well-performing Pd45Pt5Sn50, and making it a promising material for the ORR.
Li, Zhenhua; An, Hongli; Wang, Zixuan; Xu, Simin; Evans, David G.; Duan, Xue
2015-01-01
A new electrochemical synthesis route was developed for the fabrication of Fe-containing layered double hydroxide (MFe-LDHs, M = Ni, Co and Li) hierarchical nanoarrays, which exhibit highly-efficient electrocatalytic performances for the oxidation reactions of several small molecules (water, hydrazine, methanol and ethanol). Ultrathin MFe-LDH nanoplatelets (200–300 nm in lateral length; 8–12 nm in thickness) perpendicular to the substrate surface are directly prepared within hundreds of seconds (<300 s) under cathodic potential. The as-obtained NiFe-LDH nanoplatelet arrays display promising behavior in the oxygen evolution reaction (OER), giving rise to a rather low overpotential (0.224 V) at 10.0 mA cm–2 with largely enhanced stability, much superior to previously reported electro-oxidation catalysts as well as the state-of-the-art Ir/C catalyst. Furthermore, the MFe-LDH nanoplatelet arrays can also efficiently catalyze several other fuel molecules’ oxidation (e.g., hydrazine, methanol and ethanol), delivering a satisfactory electrocatalytic activity and a high operation stability. In particular, this preparation method of Fe-containing LDHs is amenable to fast, effective and large-scale production, and shows promising applications in water splitting, fuel cells and other clean energy devices. PMID:29435211
Mapping Catalytically Relevant Edge Electronic States of MoS2
2018-01-01
Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532
Patil, Supriya A; Kim, Eun-Kyung; Shrestha, Nabeen K; Chang, Jinho; Lee, Joong Kee; Han, Sung-Hwan
2015-11-25
Metal telluride nanostructures have demonstrated several potential applications particularly in harvesting and storing green energy. Metal tellurides are synthesized by tellurization process performed basically at high temperature in reducing gas atmosphere, which makes the process expensive and complicated. The development of a facile and economical process for desirable metal telluride nanostructures without complicated manipulation is still a challenge. In an effort to develop an alternative strategy of tellurization, herein we report a thin film formation of self-standing cobalt telluride nanotubes on various conducting and nonconducting substrates using a simple binder-free synthetic strategy based on anion exchange transformation from a thin film of cobalt hydroxycarbonate nanostructures in aqueous solution at room temperature. The nanostructured films before and after ion exchange transformation reaction are characterized using field emission scanning electron microscope, energy dispersive X-ray analyzer, X-ray photoelectron spectroscopy, thin film X-ray diffraction technique, high resolution transmission electron microscope, and selected area electron diffraction analysis technique. After the ion exchange transformation of nanostructures, the film shows conversion from insulator to highly electrical conductive semimetallic characteristic. When used as a counter electrode in I3(-)/I(-) redox electrolyte based dye-sensitized solar cells, the telluride film exhibits an electrocatalytic reduction activity for I3(-) with a demonstration of solar-light to electrical power conversion efficiency of 8.10%, which is highly competitive to the efficiency of 8.20% exhibited by a benchmarked Pt-film counter electrode. On the other hand, the telluride film electrode also demonstrates electrocatalytic activity for oxygen evolution reaction from oxidation of water.
Fang, Zhiwei; Peng, Lele; Qian, Yumin; Zhang, Xiao; Xie, Yujun; Cha, Judy J; Yu, Guihua
2018-04-18
Seeking earth-abundant electrocatalysts with high efficiency and durability has become the frontier of energy conversion research. Mixed-transition-metal (MTM)-based electrocatalysts, owing to the desirable electrical conductivity, synergistic effect of bimetal atoms, and structural stability, have recently emerged as new-generation hydrogen evolution reaction (HER) electrocatalysts. However, the correlation between anion species and their intrinsic electrocatalytic properties in MTM-based electrocatalysts is still not well understood. Here we present a novel approach to tuning the anion-dependent electrocatalytic characteristics in MTM-based catalyst for HER, using holey Ni/Co-based phosphides/selenides/oxides (Ni-Co-A, A = P, Se, O) as the model materials. The electrochemical results, combined with the electrical conductivity measurement and DFT calculation, reveal that P substitution could modulate the electron configuration, lower the hydrogen adsorption energy, and facilitate the desorption of hydrogen on the active sites in Ni-Co-A holey nanostructures, resulting in superior HER catalytic activity. Accordingly we fabricate the NCP holey nanosheet electrocatalyst for HER with an ultralow onset overpotential of nearly zero, an overpotential of 58 mV, and long-term durability, along with an applied potential of 1.56 V to boost overall water splitting at 10 mA cm -2 , among the best electrocatalysts reported for non-noble-metal catalysts to date. This work not only presents a deeper understanding of the intrinsic HER electrocatalytic properties for MTM-based electrocatalyst with various anion species but also offers new insights to better design efficient and durable water-splitting electrocatalysts.
NASA Astrophysics Data System (ADS)
Wang, Li; Wang, Yi; Li, An; Yang, Yunshang; Tang, Qinghu; Cao, Hongbin; Qi, Tao; Li, Changming
2014-07-01
The Pd-Tb/C catalysts with different Pd/Tb ratios were synthesized by a simple simultaneous reduction reaction with sodium borohydride in aqueous solution. The structure and morphology of those catalysts had been characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electrocatalytic performance of those catalysts for methanol oxidation in alkaline media was investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and CO stripping experiments. It is found that the 20%Pd-1%Tb/C catalyst has a higher catalytic activity than the 20%Pd/C catalyst, but the effect of Tb cannot be explained by a bi-functional mechanism. According to the X-Ray photoelectron spectroscopy (XPS) analyses, it is suggested that the higher content of metallic Pd caused by the addition of Tb contributes to the better catalytic activity of 20%Pd-1%Tb/C. Based on the good electrocatalytic performance of 20%Pd-1%Tb/C, the 20%Pd-1%Tb catalyst supported on poly(diallyldimethylammonium chloride) (PDDA)-functionalized activated carbon nanotubes was prepared, and it exhibits a better catalytic activity. The improvement mainly results from the further increase of metallic Pd due to the presence of PDDA.
Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons.
Gao, Shuang; Li, Guo-Dong; Liu, Yipu; Chen, Hui; Feng, Liang-Liang; Wang, Yun; Yang, Min; Wang, Dejun; Wang, Shan; Zou, Xiaoxin
2015-02-14
One of the main barriers blocking sustainable hydrogen production is the use of expensive platinum-based catalysts to produce hydrogen from water. Herein we report the cost-effective synthesis of catalytically active, nitrogen-doped, cobalt-encased carbon nanotubes using inexpensive starting materials-urea and cobalt chloride hexahydrate (CoCl2·6H2O). Moreover, we show that the as-obtained nanocarbon material exhibits a remarkable electrocatalytic activity toward the hydrogen evolution reaction (HER); and thus it can be deemed as a potential alternative to noble metal HER catalysts. In particular, the urea-derived carbon nanotubes synthesized at 900 °C (denoted as U-CNT-900) show a superior catalytic activity for HER with low overpotential and high current density in our study. Notably also, U-CNT-900 has the ability to operate stably at all pH values (pH 0-14), and even in buffered seawater (pH 7). The possible synergistic effects between carbon-coated cobalt nanoparticles and the nitrogen dopants can be proposed to account for the HER catalytic activity of U-CNT-900. Given the high natural abundance, ease of synthesis, and high catalytic activity and durability in seawater, this U-CNT-900 material is promising for hydrogen production from water in industrial applications.
Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes.
Faisal, Firas; Stumm, Corinna; Bertram, Manon; Waidhas, Fabian; Lykhach, Yaroslava; Cherevko, Serhiy; Xiang, Feifei; Ammon, Maximilian; Vorokhta, Mykhailo; Šmíd, Břetislav; Skála, Tomáš; Tsud, Nataliya; Neitzel, Armin; Beranová, Klára; Prince, Kevin C; Geiger, Simon; Kasian, Olga; Wähler, Tobias; Schuster, Ralf; Schneider, M Alexander; Matolín, Vladimír; Mayrhofer, Karl J J; Brummel, Olaf; Libuda, Jörg
2018-07-01
Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future 1-3 . However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to 'electrify' complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal-support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal-support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.
An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone.
Mozo Mulero, Cristina; Sáez, Alfonso; Iniesta, Jesús; Montiel, Vicente
2018-01-01
The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using a polymer electrolyte membrane electrochemical reactor (PEMER). Palladium (Pd) nanoparticles were synthesised and supported on a carbonaceous matrix (Pd/C) with a 28 wt % of Pd with respect to carbon material. Pd/C was characterised by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Cathodes were prepared using Pd electrocatalytic loadings (L Pd ) of 0.2 and 0.02 mg cm -2 . The anode consisted of hydrogen gas diffusion for the electrooxidation of hydrogen gas, and a 117 Nafion exchange membrane acted as a cationic polymer electrolyte membrane. Benzophenone solution was electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H 2 SO 4 . Current densities of 10, 15 and 20 mA cm -2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (X R ) of around 30% and a selectivity over 90% for the synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity.
An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone
Mozo Mulero, Cristina; Iniesta, Jesús; Montiel, Vicente
2018-01-01
The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using a polymer electrolyte membrane electrochemical reactor (PEMER). Palladium (Pd) nanoparticles were synthesised and supported on a carbonaceous matrix (Pd/C) with a 28 wt % of Pd with respect to carbon material. Pd/C was characterised by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Cathodes were prepared using Pd electrocatalytic loadings (LPd) of 0.2 and 0.02 mg cm−2. The anode consisted of hydrogen gas diffusion for the electrooxidation of hydrogen gas, and a 117 Nafion exchange membrane acted as a cationic polymer electrolyte membrane. Benzophenone solution was electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H2SO4. Current densities of 10, 15 and 20 mA cm−2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (XR) of around 30% and a selectivity over 90% for the synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity. PMID:29623115
2015-01-01
To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnOx, a promising OER catalyst. We conclusively demonstrate that adding Au to MnOx significantly enhances OER activity relative to MnOx in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnOx catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnOx that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnOx. PMID:24661269
Gorlin, Yelena; Chung, Chia-Jung; Benck, Jesse D; Nordlund, Dennis; Seitz, Linsey; Weng, Tsu-Chien; Sokaras, Dimosthenis; Clemens, Bruce M; Jaramillo, Thomas F
2014-04-02
To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO(x), a promising OER catalyst. We conclusively demonstrate that adding Au to MnO(x) significantly enhances OER activity relative to MnO(x) in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO(x) catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO(x) that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO(x).
Gold nanoparticles-decorated fluoroalkylsilane nano-assemblies for electrocatalytic applications
NASA Astrophysics Data System (ADS)
Ballarin, Barbara; Barreca, Davide; Cassani, Maria Cristina; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Lazzari, Dario; Bertola, Maurizio
2016-01-01
Metal/organosilane/oxide sandwich structures were prepared via a two-step self-assembly method. First, indium tin oxide (ITO) substrates were functionalized with the following fluoroalkylsilanes (FAS): RFC(O)N(H)(CH2)3Si(OMe)3 (1, RF = C5F11), containing an embedded amide between the perfluoroalkyl chain and the syloxanic moiety, and RF(CH2)2Si(OEt)3 (2, RF = C6F13). Subsequently, Au nanoparticles (AuNPs) introduction in the obtained systems was carried out by controlled immersion into a solution of citrate-stabilized AuNPs. The physico-chemical properties of the target materials were thoroughly investigated by using various complementary techniques. Finally, the application of such systems as catalysts for methanol electro-oxidation under alkaline conditions was investigated, revealing the synergistical role played by FAS and AuNPs in promoting a remarkable electrocatalytic activity.
Sun, Wei; Dong, Lifeng; Deng, Ying; Yu, Jianhua; Wang, Wencheng; Zhu, Qianqian
2014-06-01
Nitrogen-doped graphene (NG) was synthesized and used for the investigation on direct electrochemistry of hemoglobin (Hb) with a carbon ionic liquid electrode as the substrate electrode. Due to specific characteristics of NG such as excellent electrocatalytic property and large surface area, direct electron transfer of Hb was realized with enhanced electrochemical responses appearing. Electrochemical behaviors of Hb on the NG modified electrode were carefully investigated with the electrochemical parameters calculated. The Hb modified electrode exhibited excellent electrocatalytic reduction activity toward different substrates, such as trichloroacetic acid and H2O2, with wider dynamic range and lower detection limit. These findings show that NG can be used for the preparation of chemically modified electrodes with improved performance and has potential applications in electrochemical sensing. Copyright © 2014 Elsevier B.V. All rights reserved.
Shinagawa, Tatsuya
2017-01-01
Abstract Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine‐tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. PMID:27984671
He, Junkai; Wang, Mingchao; Wang, Wenbo; Miao, Ran; Zhong, Wei; Chen, Sheng-Yu; Poges, Shannon; Jafari, Tahereh; Song, Wenqiao; Liu, Jiachen; Suib, Steven L
2017-12-13
We report on the new facile synthesis of mesoporous NiO/MnO 2 in one step by modifying inverse micelle templated UCT (University of Connecticut) methods. The catalyst shows excellent electrocatalytic activity and stability for both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media after further coating with polyaniline (PANI). For electrochemical performance, the optimized catalyst exhibits a potential gap, ΔE, of 0.75 V to achieve a current of 10 mA cm -2 for the OER and -3 mA cm -2 for the ORR in 0.1 M KOH solution. Extensive characterization methods were applied to investigate the structure-property of the catalyst for correlations with activity (e.g., XRD, BET, SEM, HRTEM, FIB-TEM, XPS, TGA, and Raman). The high electrocatalytic activity of the catalyst closely relates to the good electrical conductivity of PANI, accessible mesoporous structure, high surface area, as well as the synergistic effect of the specific core-shell structure. This work opens a new avenue for the rational design of core-shell structure catalysts for energy conversion and storage applications.
Xu, Liang; Wang, Zhe; Chen, Xu; Qu, Zongkai; Li, Feng; Yang, Wensheng
2018-01-10
The development of non-precious metal electrocatalysts for renewable energy conversion and storage is compelling but greatly challenging due to low activity of the existing catalysts. Herein, the ultrathin NiAl-layered double hydroxide nanosheets (NiAl-LDH-NSs) are prepared by simple liquid-exfoliation of bulk NiAl-LDHs and first used as ethanol electrooxidation catalysts. The ultrathin two-dimensional (2D) structure ensures that the LDH nanosheets expose a greater number of active sites. More importantly, much Ni(III) active species (NiOOH) in the ultrathin nanosheets are formed by the exfoliation process, which play an authentic catalytic role in the ethanol oxidation reaction (EOR). The presence of NiOOH remarkably improves the reactivity and electrical conductivity of LDH nanosheets. These synergistic effects lead to strikingly more than 30 times enhanced EOR activity of NiAl-LDH-NSs compared to bulk NiAl-LDHs. The obtained electrocatalytic activity is also much better than those of most Ni- and LDH-based EOR catalysts reported to date. In addition, the ultrathin NiAl-LDH-NS electrocatalyst also exhibits good long-term stability (maintain 81.8% of the original value after 10000 s). This study not only provides a highly competitive EOR catalyst, but also opens new avenues toward the design of highly efficient electrode materials that have various potential applications in supercapacitor, Ni-MH battery and other electrocatalytic systems.
NASA Astrophysics Data System (ADS)
Tang, Yongfu; Chen, Teng; Guo, Wenfeng; Chen, Shunji; Li, Yanshuai; Song, Jianzheng; Chang, Limin; Mu, Shichun; Zhao, Yufeng; Gao, Faming
2017-09-01
Electronic structure of Mn cations, electric conductivity of active materials and three dimensional structure for mass transport play vital roles in the electrocatalytic activity of Mn-based electrocatalysts for oxygen reduction reaction (ORR). To construct efficient and robust Mn-based electrocatalysts, MnS nanotubes anchored on reduced graphene oxide (MnS-NT@rGO) hybrid was synthesized and used as a novel non-precious metal electrocatalyst for ORR. The formation of nano-tubular structure, which offers more active sites and suitable channels for mass transport to enhance the electrocatalytic activity towards ORR, are carefully illustrated based on the core-dissolution/shell-recrystallization type Ostwald ripening effect. Tuned electronic structure of Mn cations, enhanced electric conductivity and suitable nano-tubular structure endow MnS-NT@rGO electrocatalyst comparative catalytic activity to commercial 20 wt % Pt/C in alkaline electrolyte. The MnS-NT@rGO electrocatalyst exhibits higher catalytic activity than rGO supported MnS nanoparticles (MnS-NP@rGO) and MnS nanotubes without rGO substrate (MnS-NT), as well as rGO supported Mn(OH)2 (Mn(OH)2@rGO) and rGO supported MnO (MnO@rGO). Moreover, the MnS-NT@rGO electrocatalyst shows superior durability and methanol tolerance to commercial Pt/C.
High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst.
Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi-Zhang
2016-12-14
Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.
Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun; Vailionis, Arturas; Baricuatro, Jack H.; Higgins, Drew C.; Nitopi, Stephanie A.; Soriaga, Manuel P.; Jaramillo, Thomas F.
2017-01-01
In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the <100>, <111>, and <751> orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C–C coupling than Cu(111), Cu(751) is the most selective for >2e− oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction. PMID:28533377
NASA Astrophysics Data System (ADS)
Di, Yi; Xiao, Zhanhai; Yan, Xiaoshuang; Ru, Geying; Chen, Bing; Feng, Jiwen
2018-05-01
The photovoltaic performance of dye-sensitized solar cell (DSSC) is strongly influenced by the electrocatalytic ability of its counter electrode (CE) materials. To obtain the affordable and high-performance electrocatalysts, the N/S dual-doped chitin-derived carbon materials SCCh were manufactured via in-situ S-doped method in the annealing process, where richer active sites are created compared to the pristine chitin-derived carbon matrix CCh, thus enhancing the intrinsic catalytic activity of carbon materials. When SCCh is incorporated with graphene, the yielded composites hold a further boosted catalytic activity due to facilitating the electronic fast transfer. The DSSC assembled with the optimizing rGO-SCCh-3 composite CE shows a favourable power conversion efficiency of 6.36%, which is comparable with that of the Pt-sputtering electrode (6.30%), indicate of the outstanding I3- reduction ability of the composite material. The electrochemical characterizations demonstrate that the low charge transfer resistance and excellent electrocatalytic activity all contribute to the superior photovoltaic performance. More importantly, the composite CE exhibits good electrochemical stability in the practical operation. In consideration of the low cost and the simple preparation procedure, the present metal-free carbonaceous composites could be used as a promising counter electrode material in future large scale production of DSSCs.
Carbon-supported Pd-Co as cathode catalyst for APEMFCs and validation by DFT.
Maheswari, S; Karthikeyan, S; Murugan, P; Sridhar, P; Pitchumani, S
2012-07-21
Carbon supported PdCo catalysts in varying atomic ratios of Pd to Co, namely 1 : 1, 2 : 1 and 3 : 1, were prepared. The oxygen reduction reaction (ORR) was studied on commercial carbon-supported Pd and carbon-supported PdCo nanocatalysts in aqueous 0.1 M KOH solution with and without methanol. The structure, dispersion, electrochemical characterization and surface area of PdCo/C were determined by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Cyclic Voltammetry (CV), respectively. The electrochemical activity for ORR was evaluated from Linear Sweep Voltammograms (LSV) obtained using a rotating ring disk electrode. The catalysts were evaluated for their electrocatalytic activity towards oxygen reduction reaction (ORR) in Alkaline Polymer Electrolyte Membrane Fuel Cells (APEMFCs). PdCo(3 : 1)/C gives higher performance (85 mW cm(-2)) than PdCo(1 : 1)/C, PdCo(2 : 1)/C and Pd/C. The maximum electrocatalytic activity for ORR in the presence of methanol was observed for PdCo(3 : 1)/C. First principles calculations within the framework of density functional theory were performed to understand the origin of its catalytic activity based on the energy of adsorption of an O(2) molecule on the cluster, structural variation and charge transfer mechanism.
Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation
NASA Astrophysics Data System (ADS)
Hu
2014-02-01
A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05722d
NASA Astrophysics Data System (ADS)
Ehsani, Ali; Jaleh, Babak; Nasrollahzadeh, Mahmoud
2014-07-01
Reduced graphene oxide (rGO) was used to support Cu nanoparticles. As electro-active electrodes for supercapacitors composites of reduced graphene oxide/Cu nanoparticles (rGO/CuNPs) and polytyramine (PT) with good uniformity are prepared by electropolymerization. Composite of rGO/CuNPs-PT was synthesized by cyclic voltammetry (CV) methods and electrochemical properties of film were investigated by using electrochemical techniques. The results show that, the rGO/CuNPs-PT/G has better capacitance performance. This is mainly because of the really large surface area and the better electronic and ionic conductivity of rGO/CuNPs-PT/G, which lead to greater double-layer capacitance and faradic pseudo capacitance. Modified graphite electrodes (rGO/CuNPs-PT/G) were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) were employed. In comparison with a Cu-PT/G (Graphite), rGO/CuNPs-PT/G modified electrode shows a significantly higher response for methanol oxidation. A mechanism based on the electro-chemical generation of Cu(III) active sites and their subsequent consumptions by methanol have been discussed.
Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng
2018-02-28
Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.
Peljo, Pekka; Scanlon, Micheál D; Olaya, Astrid J; Rivier, Lucie; Smirnov, Evgeny; Girault, Hubert H
2017-08-03
Redox electrocatalysis (catalysis of electron-transfer reactions by floating conductive particles) is discussed from the point-of-view of Fermi level equilibration, and an overall theoretical framework is given. Examples of redox electrocatalysis in solution, in bipolar configuration, and at liquid-liquid interfaces are provided, highlighting that bipolar and liquid-liquid interfacial systems allow the study of the electrocatalytic properties of particles without effects from the support, but only liquid-liquid interfaces allow measurement of the electrocatalytic current directly. Additionally, photoinduced redox electrocatalysis will be of interest, for example, to achieve water splitting.
Zhou, Yi-Ge; Chen, Jing-Jing; Wang, Feng-bin; Sheng, Zhen-Huan; Xia, Xing-Hua
2010-08-28
A one-step electrochemical approach to the synthesis of highly dispersed Pt nanoparticles on graphene has been proposed. The resultant Pt NPs@G nanocomposite shows higher electrocatalytic activity and long-term stability towards methanol electrooxidation than the Pt NPs@Vulcan.
Iron vs. cobalt clathrochelate electrocatalysts of HER: the first example on a cage iron complex.
Dolganov, Alexander V; Belov, Alexander S; Novikov, Valentin V; Vologzhanina, Anna V; Mokhir, Andriy; Bubnov, Yurii N; Voloshin, Yan Z
2013-04-07
New macrobicyclic 2-thiopheneboron-capped iron and cobalt(II) tris-dioximates showed high electrocatalytic activity for hydrogen production from H(+) ions. This is the first example of the hydrogen evolution reaction electrocatalyzed by a clathrochelate iron complex, which catalyzes the hydrogen production at low overpotential.
NASA Astrophysics Data System (ADS)
Cui, Zhentao; Wang, Shuguang; Zhang, Yihe; Cao, Minhua
2014-08-01
We for the first time demonstrate a simple and green approach to heteroatom (N and S) co-doped hierarchically porous carbons (N-S-HC) with high surface area by using one organic ionic liquid as nitrogen, sulfur and carbon sources and the eutectic salt as templating. The resultant dual-doped N-S-HC catalysts exhibit significantly enhanced electrocatalytic activity, long-term operation stability, and tolerance to crossover effect compared to commercial Pt/C for oxygen reduction reactions (ORR) in alkaline environment. The excellent electrocatalytic performance may be attributed to the synergistic effects, which includes more catalytic sites for ORR provided by N-S heteroatom doping and high electron transfer rate provided by hierarchically porous structure. The DFT calculations reveal that the dual doping of S and N atoms lead to the redistribution of spin and charge densities, which may be responsible for the formation of a large number of carbon atom active sites. This newly developed approach may supply an efficient platform for the synthesis of a series of heteroatom doped carbon materials for fuel cells and other applications.
Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco
2016-12-12
Considering the depletion of fossil-fuel reserves and their negative environmental impact, new energy schemes must point towards alternative ecological processes. Efficient hydrogen evolution from water is one promising route towards a renewable energy economy and sustainable development. Here we show a tridimensional electrocatalytic interface, featuring a hierarchical, co-axial arrangement of a palladium/titanium dioxide layer on functionalized multi-walled carbon nanotubes. The resulting morphology leads to a merging of the conductive nanocarbon core with the active inorganic phase. A mechanistic synergy is envisioned by a cascade of catalytic events promoting water dissociation, hydride formation and hydrogen evolution. The nanohybrid exhibits a performance exceeding that of state-of-the-art electrocatalysts (turnover frequency of 15000 H 2 per hour at 50 mV overpotential). The Tafel slope of ∼130 mV per decade points to a rate-determining step comprised of water dissociation and formation of hydride. Comparative activities of the isolated components or their physical mixtures demonstrate that the good performance evolves from the synergistic hierarchical structure.
NASA Astrophysics Data System (ADS)
Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J.; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco
2016-12-01
Considering the depletion of fossil-fuel reserves and their negative environmental impact, new energy schemes must point towards alternative ecological processes. Efficient hydrogen evolution from water is one promising route towards a renewable energy economy and sustainable development. Here we show a tridimensional electrocatalytic interface, featuring a hierarchical, co-axial arrangement of a palladium/titanium dioxide layer on functionalized multi-walled carbon nanotubes. The resulting morphology leads to a merging of the conductive nanocarbon core with the active inorganic phase. A mechanistic synergy is envisioned by a cascade of catalytic events promoting water dissociation, hydride formation and hydrogen evolution. The nanohybrid exhibits a performance exceeding that of state-of-the-art electrocatalysts (turnover frequency of 15000 H2 per hour at 50 mV overpotential). The Tafel slope of ~130 mV per decade points to a rate-determining step comprised of water dissociation and formation of hydride. Comparative activities of the isolated components or their physical mixtures demonstrate that the good performance evolves from the synergistic hierarchical structure.
Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J.; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco
2016-01-01
Considering the depletion of fossil-fuel reserves and their negative environmental impact, new energy schemes must point towards alternative ecological processes. Efficient hydrogen evolution from water is one promising route towards a renewable energy economy and sustainable development. Here we show a tridimensional electrocatalytic interface, featuring a hierarchical, co-axial arrangement of a palladium/titanium dioxide layer on functionalized multi-walled carbon nanotubes. The resulting morphology leads to a merging of the conductive nanocarbon core with the active inorganic phase. A mechanistic synergy is envisioned by a cascade of catalytic events promoting water dissociation, hydride formation and hydrogen evolution. The nanohybrid exhibits a performance exceeding that of state-of-the-art electrocatalysts (turnover frequency of 15000 H2 per hour at 50 mV overpotential). The Tafel slope of ∼130 mV per decade points to a rate-determining step comprised of water dissociation and formation of hydride. Comparative activities of the isolated components or their physical mixtures demonstrate that the good performance evolves from the synergistic hierarchical structure. PMID:27941752
Xue, Hairong; Tang, Jing; Gong, Hao; Guo, Hu; Fan, Xiaoli; Wang, Tao; He, Jianping; Yamauchi, Yusuke
2016-08-17
PdCo bimetallic nanoparticles (NPs) anchored on three-dimensional (3D) ordered N-doped porous carbon (PdCo/NPC) were fabricated by an in situ synthesis. Within this composite, N-doped porous carbon (NPC) with an ordered mesoporous structure possesses a high surface area (659.6 m(2) g(-1)), which can facilitate electrolyte infiltration. NPC also acts as a perfect 3D conductive network, guaranteeing fast electron transport. In addition, homogeneously distributed PdCo alloy NPs (∼15 nm) combined with the doping of the N element can significantly improve the electrocatalytic activity for the oxygen reduction reaction (ORR). Due to the structural and material superiority, although the weight percentage of PdCo NPs (∼8 wt%) is much smaller than that of commercial Pt/C (20 wt%), the PdCo/NPC catalyst exhibits similar excellent electrocatalytic activity; however, its superior durability and methanol-tolerance ability of the ORR are as great as those of commercial Pt/C in alkaline media.
Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Yan; Liu, Yanqin; Zhang, Zhe; Dong, Wenkui; Lei, Ziqiang
2015-01-01
To improve the electrocatalytic activity of Pd for ethanol oxidation, hybrid NiCoOx adjacent to Pd catalyst (Pd-NiCoOx/C) is successfully synthesized. Physical characterization shows NiCoOx is closely adjacent to Pd nanoparticles in Pd-NiCoOx/C catalyst, which leads to Strong Metal-Support Interactions (SMSI) between the NiCoOx and Pd nanoparticles, in favor of the electrocatalytic properties. The Pd-NiCoOx/C catalyst is estimated to own larger electrochemically active surface area than Pd/C and Pd-NiO/C catalysts. Moreover, compared to Pd/C catalyst, the onset potential of Pd-NiCoOx/C catalyst is negative 40 mV for ethanol oxidation. Noticeably, the current density of Pd-NiCoOx/C catalyst is 2.05 and 1.43 times higher contrasted to Pd/C and Pd-NiO/C catalysts accordingly. Importantly, the Pd-NiCoOx/C catalyst exhibits better stability during ethanol oxidation, which is a promising electrocatalyst for application in direct alkaline alcohol fuel cells.
Zhang, Qing; Liu, Yanming; Chen, Shuo; Quan, Xie; Yu, Hongtao
2014-01-30
Effective electrode materials are critical to electrochemical reduction, which is a promising method to pre-treat anti-oxidative and bio-refractory wastewater. Herein, nitrogen-doped diamond (NDD) electrodes that possess superior electrocatalytic properties for reduction were fabricated by microwave-plasma-enhanced chemical vapor deposition technology. Nitrobenzene (NB) was chosen as the probe compound to investigate the material's electro-reduction activity. The effects of potential, electrolyte concentration and pH on NB reduction and aniline (AN) formation efficiencies were studied. NDD exhibited high electrocatalytic activity and selectivity for reduction of NB to AN. The NB removal efficiency and AN formation efficiency were 96.5% and 88.4% under optimal conditions, respectively; these values were 1.13 and 3.38 times higher than those of graphite electrodes. Coulombic efficiencies for NB removal and AN formation were 27.7% and 26.1%, respectively; these values were 4.70 and 16.6 times higher than those of graphite electrodes under identical conditions. LC-MS analysis revealed that the dominant reduction pathway on the NDD electrode was NB to phenylhydroxylamine (PHA) to AN. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Tao; Rodrigues de Almeida, Carlos Manuel; Ramasamy, Devaraj; Almeida Loureiro, Francisco José
2014-12-01
A facile co-reduction and annealing synthesis route of nanospheric particles of Au-Ni bimetal with adjustable composition was developed. In a typical synthesis, a direct co-reduction of HAuCl4.4H2O and NiCl2 in aqueous solution was performed with the assistance of reductive NaBH4 and an anionic surfactant sodium dodecyl sulfate (SDS) functioned as the structure-directing agent. Ultrasonic mixing was used at the same time to control the size of the particles. The morphology, microstructure and the state of the surface atoms were analyzed in detail. These nanospheres showed enhanced electrocatalytic activity towards oxygen reduction reaction than that of pure Au nanoparticles, demonstrated in the low temperature SOFC as cathode. The maximum power density generated is 810 mW cm-2 at 550 °C. This is a promising route of taking advantages the Phase Separation Mechanism to greatly reduce the use of noble metals in the ORR field without sacrificing the electrocatalytic activity.
Li, Chun-Ting; Chang, Hung-Yu; Li, Yu-Yan; Huang, Yi-June; Tsai, Yu-Lin; Vittal, R; Sheng, Yu-Jane; Ho, Kuo-Chuan
2015-12-30
Highly efficient zinc compounds (Zn3N2, ZnO, ZnS, and ZnSe) have been investigated as low-cost electrocatalysts for the counter electrodes (CE) of dye-sensitized solar cells (DSSCs). Among them, Zn3N2 and ZnSe are introduced for the first time in DSSCs. The zinc compounds were separately mixed with a conducting binder, poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) ( PSS), and thereby four composite films of Zn3N2/PEDOT:PSS, ZnO/PEDOT:PSS, ZnS/PEDOT:PSS, and ZnSe/ PSS were coated on the tin-doped indium oxide (ITO) substrates through a simple drop-coating process. In the composite film, nanoparticles of the zinc compound form active sites for the electrocatalytic reduction of triiodide ions, and PSS provides a continuous conductive matrix for fast electron transfer. By varying the weight percentage (5-20 wt %) of a zinc compound with respect to the weight of the PSS, the optimized concentration of a zinc compound was found to be 10 wt % in all four cases, based on the photovoltaic performances of the corresponding DSSCs. At this concentration (10 wt %), the composites films with Zn3N2 (Zn3N2-10), ZnO (ZnO-10), ZnS (ZnS-10), and ZnSe (ZnSe-10) rendered, for their DSSCs, power conversion efficiencies (η) of 8.73%, 7.54%, 7.40%, and 8.13%, respectively. The difference in the power conversion efficiency is explained based on the electrocatalytic abilities of those composite films as determined by cyclic voltammetry (CV), Tafel polarization plots, and electrochemical impedance spectroscopy (EIS) techniques. The energy band gaps of the zinc compounds, obtained by density functional theory (DFT) calculations, were used to explain the electrocatalytic behaviors of the compounds. Among all the zinc-based composites, the one with Zn3N2-10 showed the best electrocatalytic ability and thereby rendered for its DSSC the highest η of 8.73%, which is even higher than that of the cell with the traditional Pt CE (8.50%). Therefore, Zn3N2 can be considered as a promising inexpensive electrocatalyst to replace the rare and expensive Pt.
Arán-Ais, Rosa M; Dionigi, Fabio; Merzdorf, Thomas; Gocyla, Martin; Heggen, Marc; Dunin-Borkowski, Rafal E; Gliech, Manuel; Solla-Gullón, José; Herrero, Enrique; Feliu, Juan M; Strasser, Peter
2015-11-11
Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction "one-step" conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a "two-step" route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.
Enzyme-modified nanoporous gold-based electrochemical biosensors.
Qiu, Huajun; Xue, Luyan; Ji, Guanglei; Zhou, Guiping; Huang, Xirong; Qu, Yinbo; Gao, Peiji
2009-06-15
On the basis of the unique physical and chemical properties of nanoporous gold (NPG), which was obtained simply by dealloying Ag from Au/Ag alloy, an attempt was made in the present study to develop NPG-based electrochemical biosensors. The NPG-modified glassy carbon electrode (NPG/GCE) exhibited high-electrocatalytic activity toward the oxidation of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)), which resulted in a remarkable decrease in the overpotential of NADH and H(2)O(2) electro-oxidation when compared with the gold sheet electrode. The high density of edge-plane-like defective sites and large specific surface area of NPG should be responsible for the electrocatalytic behavior. Such electrocatalytic behavior of the NPG/GCE permitted effective low-potential amperometric biosensing of ethanol or glucose via the incorporation of alcohol dehydrogenase (ADH) or glucose oxidase (GOD) within the three-dimensional matrix of NPG. The ADH- and GOD-modified NPG-based biosensors showed good analytical performance for biosensing ethanol and glucose due to the clean, reproducible and uniformly distributed microstructure of NPG. The stabilization effect of NPG on the incorporated enzymes also made the constructed biosensors very stable. After 1 month storage at 4 degrees C, the ADH- and GOD-based biosensors lost only 5.0% and 4.2% of the original current response. All these indicated that NPG was a promising electrode material for biosensors construction.
Ulubay, Sükriye; Dursun, Zekerya
2010-01-15
Cu nanoparticles have been electrochemically incorporated polypyrrole film that was used for modification of the glassy carbon electrode surface. The performance of the electrode has been characterized by cyclic voltammetry and atomic force microscopy. The electrode has shown high electrocatalytic activity towards the oxidation of dopamine (DA) and uric acid (UA) simultaneously in a phosphate buffer solution (pH 7.00). The electrocatalytic oxidation currents of UA and DA were found linearly related to concentration over the range 1x10(-9) to 1x10(-5)M for UA and 1x10(-9) to 1x10(-7)M for DA using DPVs method. The detection limits were determined as 8x10(-10)M (s/n=3) for UA and 8.5x10(-10)M (s/n=3) for DA at a signal-to-noise ratio of 3.
2017-01-01
Conversion of carbon monoxide (CO), a major one-carbon product of carbon dioxide (CO2) reduction, into value-added multicarbon species is a challenge to addressing global energy demands and climate change. Here we report a modular synthetic approach for aqueous electrochemical CO reduction to carbon–carbon coupled products via self-assembly of supramolecular cages at molecular–materials interfaces. Heterobimetallic cavities formed by face-to-face coordination of thiol-terminated metalloporphyrins to copper electrodes through varying organic struts convert CO to C2 products with high faradaic efficiency (FE = 83% total with 57% to ethanol) and current density (1.34 mA/cm2) at a potential of −0.40 V vs RHE. The cage-functionalized electrodes offer an order of magnitude improvement in both selectivity and activity for electrocatalytic carbon fixation compared to parent copper surfaces or copper functionalized with porphyrins in an edge-on orientation. PMID:28979945
Dreyse, Paulina; Honores, Jessica; Quezada, Diego; Isaacs, Mauricio
2015-11-01
The electrochemical reduction of carbon dioxide is studied herein by using conducting polymers based on metallotetraruthenated porphyrins (MTRPs). The polymers on glassy carbon electrodes were obtained by electropolymerization processes of the monomeric MTRP. The linear sweep voltammetry technique resulted in polymeric films that showed electrocatalytic activity toward carbon dioxide reduction with an onset potential of -0.70 V. The reduction products obtained were hydrogen, formic acid, formaldehyde, and methanol, with a tendency for a high production of methanol with a maximum value of turnover frequency equal to 15.07 when using a zinc(II) polymeric surface. Studies of the morphology (AFM) and electrochemical impedance spectroscopy results provide an adequate background to explain that the electrochemical reduction is governed by the roughness of the polymer, for which the possible mechanism involves a series of one-electron reduction reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Smirnova, N.; Petrik, I.; Vorobets, V.; Kolbasov, G.; Eremenko, A.
2017-03-01
Mesoporous nanosized titania films modified with Co2+, Ni2+, Mn3+, and Cu2+ ions have been produced by templated sol-gel method and characterized by optical spectroscopy, X-ray diffraction (XRD), and Brunauer, Emmett, and Teller (BET) surface area measurement. Band gap energy and the position of flat band potentials were estimated by photoelectrochemical measurements. The films doped with transition metals possessed higher photocurrent quantum yield, as well as photo- and electrochemical activity compared to undoped samples. Mn+/TiO2 (M-Co, Ni, Mn, Cu) electrodes with low dopant content demonstrate high efficiency in electrocatalytic reduction of dissolved oxygen. Polarization curves of TiO2, TiO2/Ni2+, TiO2/Co2+/3+, and TiO2/Mn3+ electrodes contain only one current wave (oxygen reduction current). It means that reaction proceeds without the formation of an intermediate product H2O2.
NASA Astrophysics Data System (ADS)
Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin
2008-12-01
A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.
Oxygen reduction of several gold alloys in 1-molar potassium hydroxide
NASA Technical Reports Server (NTRS)
Miller, R. O.
1975-01-01
With rotated disk-and-ring equipment, polarograms and other electrochemical measurements were made of oxygen reduction in 1-molar potassium hydroxide on an equiatomic gold-copper (Au-Cu) alloy and a Au-Cu alloy doped with either indium (In) or cobalt (Co) and on Au doped with either nickel (Ni) or platinum (Pt). The results were compared with those for pure Au and pure Pt. The two-electron reaction dominated on all Au alloys as it did on Au. The polarographic results at lower polarization potentials were compared, assuming exclusively a two-step reduction. A qualified ranking of cathodic electrocatalytic activity on the freshly polished reduced disks was indicated: anodized Au Au-Cu-In Au-Cu Au-Cu-Co is equivalent or equal to Au-Pt Au-Ni. Aging in distilled water improved the electrocatalytic efficiency of Au-Cu-Co, Au-Cu, and (to a lesser extent) Au-Cu-In.
Gong, Ming; Cao, Zhi; Liu, Wei; ...
2017-09-13
Conversion of carbon monoxide (CO), a major one-carbon product of carbon dioxide (CO 2) reduction, into value-added multicarbon species is a challenge to addressing global energy demands and climate change. Here in this paper, we report a modular synthetic approach for aqueous electrochemical CO reduction to carbon-carbon coupled products via self-assembly of supramolecular cages at molecular-materials interfaces. Heterobimetallic cavities formed by face-to-face coordination of thiol-terminated metalloporphyrins to copper electrodes through varying organic struts convert CO to C2 products with high faradaic efficiency (FE = 83% total with 57% to ethanol) and current density (1.34 mA/cm 2) at a potential ofmore » -0.40 V vs RHE. The cage-functionalized electrodes offer an order of magnitude improvement in both selectivity and activity for electrocatalytic carbon fixation compared to parent copper surfaces or copper functionalized with porphyrins in an edge-on orientation.« less
Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation.
Liu, B; Chen, J H; Zhong, X X; Cui, K Z; Zhou, H H; Kuang, Y F
2007-03-01
Due to their high stability in general acidic solutions, SiO(2) nanoparticles were selected as the second catalyst for ethanol oxidation in sulfuric acid aqueous solution. Pt-SiO(2) nanocatalysts were prepared in this paper. The micrography and elemental composition of Pt-SiO(2) nanoparticles were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. The electrocatalytic properties of Pt-SiO(2) nanocatalysts for ethanol oxidation were investigated by cyclic voltammetry. Under the same Pt loading mass and experimental conditions for ethanol oxidation, Pt-SiO(2) nanocatalysts show higher activity than PtRu/C (E-Tek), Pt/C (E-Tek), and Pt catalysts. Additionally, Pt-SiO(2) nanocatalysts possess good anti-poisoning ability. The results indicate that Pt-SiO(2) nanocatalysts may have good potential applications in direct ethanol fuel cells.
Hong, Xiao-ping; Zhu, Yan; Zhang, Yan-zhen
2012-01-01
A highly sensitive amperometric sulfadiazine sensor fabricated by electrochemical deposition of poly(cobalt tetraaminophthalocyanine) (poly(CoIITAPc)) on the surface of a multi-walled carbon nanotubes-Nafion (MWCNTs-Nafion) modified electrode is described. This electrode showed a very attractive performance by combining the advantages of CoIITAPc, MWCNTs, and Nafion. Compared with the bare glassy carbon electrode (GCE) and the MWCNTs-Nafion modified electrode, the electrocatalytic activity of poly(CoIITAPc)-coated MWCNTs-Nafion GCE generated greatly improved electrochemical detections toward sulfadiazine including low oxidation potential, high current responses, and good anti-fouling performance. The oxidation peak currents of sulfadiazine obtained on the new modified electrode increased linearly while increasing the concentration of sulfadiazine from 0.5 to 43.5 μmol/L with the detection limit of 0.17 μmol/L. PMID:22661213
PdCuPt Nanocrystals With Multi-branches for Enzyme-free Glucose Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Shaofang; Zhu, Chengzhou; Song, Junhua
By carefully controlling the synthesis condition, branched PtCu bimetallic templates were synthesized in aqueous solution. After the galvanic replacement reaction between PtCu templates and the Pt precursors, PdCuPt trimetallic nanocrystals with branched structures were obtained. Owing to the open structure and the optimized composition, the electrochemical experimental results reveal that the PdCuPt trimetallic nanocrystals exhibit high electrocatalytic activity, selectivity and stability for the oxidation of glucose in alkaline solution. In details, a sensitivity of 378 μA/mM/cm2 and a detection limit of 1.29 μM can be achieved. The good electrocatalytic performance should be attributed to the unique branched nanostructure as wellmore » as the synergistic effect among metals. The superior catalytic properties suggest that these nanocrystals are promising for enzyme-free detection of glucose.« less
Chen, Wei; Niu, Xueliang; Li, Xiaoyan; Li, Xiaobao; Li, Guangjiu; He, Bolin; Li, Qiutong; Sun, Wei
2017-11-01
Palladium-graphene (Pd-GR) nanocomposite was acted as modifier for construction of the modified electrode with direct electrochemistry of hemoglobin (Hb) realized. By using Nafion as the immobilization film, Hb was fixed tightly on Pd-GR nanocomposite modified carbon ionic liquid electrode. Electrochemical behaviors of Hb modified electrode were checked by cyclic voltammetry and a pair of redox peaks originated from direct electron transfer of Hb was appeared. The Hb modified electrode had excellent electrocatalytic activity to the reduction of trichloroacetic acid and sodium nitrite in the concentration range from 0.6 to 13.0mmol·L -1 and from 0.04 to 0.5 mmol·L -1 . Therefore Pd-GR nanocomposite was proven to be a good candidate for the fabrication of third-generation electrochemical biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Ting
2016-03-01
Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinarymore » collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the particle size and microcomposition in nanoscale, it is able to achieve superior electrocatalytic activities comparing with traditional preparative methods. Examples to be discussed are high surface area carbon supported Pt, PtM binary, and PtMN ternary alloys, their synthesis processes, characterizations and electrocatalytic activities towards molecular oxygen reduction.« less
Carbon supported Pt-NiO nanoparticles for ethanol electro-oxidation in acid media
NASA Astrophysics Data System (ADS)
Comignani, Vanina; Sieben, Juan Manuel; Brigante, Maximiliano E.; Duarte, Marta M. E.
2015-03-01
In the present work, the influence of nickel oxide as a co-catalyst of Pt nanoparticles for the electro-oxidation of ethanol in the temperature range of 23-60 °C was investigated. The carbon supported nickel oxide and platinum nanoparticles were prepared by hydrothermal synthesis and microwave-assisted polyol process respectively, and characterized by XRD, EDX, TEM and ICP analysis. The electrocatalytic activity of the as-prepared materials was studied by cyclic voltammetry and chronoamperometry. Small metal nanoparticles with sizes in the range of 3.5-4.5 nm were obtained. The nickel content in the as-prepared Pt-NiO/C catalysts was between 19 and 35 at.%. The electrochemical experiments showed that the electrocatalytic activity of the Pt-NiO/C materials increase with NiO content in the entire temperature range. The apparent activation energy (Ea,app) for the overall ethanol oxidation reaction was found to decrease with NiO content (24-32 kJ mol-1 at 0.3 V), while for Pt/C the activation energy exceeds 48 kJ mol-1. The better performance of the Pt-NiO/C catalysts compared to Pt/C sample is ascribed to the activation of both the C-H and O-H bonds via oxygen-containing species adsorbed on NiO molecules and the modification of the surface electronic structure (changes in the density of states near the Fermi level).
Shinagawa, Tatsuya; Takanabe, Kazuhiro
2017-04-10
Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Tee, Si Yin; Ye, Enyi; Pan, Pei Hua; Lee, Coryl Jing Jun; Hui, Hui Kim; Zhang, Shuang-Yuan; Koh, Leng Duei; Dong, Zhili; Han, Ming-Yong
2015-06-01
Herein, we report a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu+-oleylamine complex at 220 °C to form copper nanowires and the subsequent reaction with Au3+ at different temperatures of 140, 220 and 300 °C. In comparison with copper nanowires, these bimetallic Cu/Au nanostructures exhibit their synergistic effect to greatly enhance glucose oxidation. Among them, the shape-controlled Cu/Au nanotubes prepared at 140 °C show the highest electrocatalytic activity for non-enzymatic glucose sensing in alkaline solution. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to the initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.Herein, we report a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu+-oleylamine complex at 220 °C to form copper nanowires and the subsequent reaction with Au3+ at different temperatures of 140, 220 and 300 °C. In comparison with copper nanowires, these bimetallic Cu/Au nanostructures exhibit their synergistic effect to greatly enhance glucose oxidation. Among them, the shape-controlled Cu/Au nanotubes prepared at 140 °C show the highest electrocatalytic activity for non-enzymatic glucose sensing in alkaline solution. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to the initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02399h
Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries.
Kim, Ki Jae; Park, Min-Sik; Kim, Jae-Hun; Hwang, Uk; Lee, Nam Jin; Jeong, Goojin; Kim, Young-Jun
2012-06-04
A new approach for enhancing the electrochemical performance of carbon felt electrodes by employing non-precious metal oxides is designed. The outstanding electro-catalytic activity and mechanical stability of Mn(3)O(4) are advantageous in facilitating the redox reaction of vanadium ions, leading to efficient operation of a vanadium redox flow battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Ishwar Kumar; Zhou, Haiqing; Sun, Jingying
Exceptional Pt-like electrocatalytic activity was achieved in a sandwich-like catalyst of CoP/Ni 5 P 4 /CoP microsheet arrays for pH-universal hydrogen evolution through simply wrapping Ni 5 P 4 nanosheet arrays in CoP nanoparticles.
Electrocatalytic Reduction of Carbon Dioxide with a Well-Defined PN 3 -Ru Pincer Complex
Min, Shixiong; Rasul, Shahid; Li, Huaifeng; ...
2015-11-13
We established a well-defined PN 3-Ru pincer complex (5) bearing a redox-active bipyridine ligand with an aminophosphine arm as an effective and stable molecular electrocatalyst for CO 2 reduction to CO and HCOOH with negligible formation of H 2 in a H 2O/MeCN mixture.
Mishra, Ishwar Kumar; Zhou, Haiqing; Sun, Jingying; ...
2018-01-01
Exceptional Pt-like electrocatalytic activity was achieved in a sandwich-like catalyst of CoP/Ni 5 P 4 /CoP microsheet arrays for pH-universal hydrogen evolution through simply wrapping Ni 5 P 4 nanosheet arrays in CoP nanoparticles.
Chen, Bang-Bao; Ma, De-Kun; Ke, Qing-Ping; Chen, Wei; Huang, Shao-Ming
2016-03-07
Edges often play a role as active centers for catalytic reactions in some nanomaterials. Therefore it is highly desirable to enhance catalytic activity of a material through modulating the microstructure of the edges. However, the study associated with edge engineering is less investigated and still at its preliminary stage. Here we report that Cu2MoS4 nanosheets with indented edges can be fabricated through a simple chemical etching route at room temperature, using Cu2MoS4 nanosheets with flat ones as sacrifice templates. Taking the electrocatalytic hydrogen evolution reaction (HER), photocatalytic degradation of rhodamine B (RhB) and conversion of benzyl alcohol as examples, the catalytic activity of Cu2MoS4 indented nanosheets (INSs) obtained through edge engineering was comparatively studied with those of Cu2MoS4 flat nanosheets (FNSs) without any modification. The photocatalytic tests revealed that the catalytic active sites of Cu2MoS4 nanosheets were associated with their edges rather than basal planes. Cu2MoS4 INSs were endowed with larger electrochemically active surface area (ECSA), more active edges and better hydrophilicity through the edge engineering. As a result, the as-fabricated Cu2MoS4 INSs exhibited an excellent HER activity with a small Tafel slope of 77 mV dec(-1), which is among the best records for Cu2MoS4 catalysts. The present work demonstrated the validity of adjusting catalytic activity of the material through edge engineering and provided a new strategy for designing and developing highly efficient catalysts.
USDA-ARS?s Scientific Manuscript database
Shewanella oneidensis MR-1 was grown in a chemostatic, continuously-fed bioelectrochemical cell under slightly aerated conditions. The start-up phase was controlled potentiostatically (0.4 V vs. SHE). When a stable performance was achieved, the reactor was switched to bio-electrocatalytic producti...
Kumar, Rajesh; da Silva, Everson T S G; Singh, Rajesh K; Savu, Raluca; Alaferdov, Andrei V; Fonseca, Leandro C; Carossi, Lory C; Singh, Arvind; Khandka, Sarita; Kar, Kamal K; Alves, Oswaldo L; Kubota, Lauro T; Moshkalev, Stanislav A
2018-04-01
Palladium nanoparticles decorated reduced graphene oxide (Pd-rGO) and palladium nanoparticles intercalated inside nitrogen doped reduced graphene oxide (Pd-NrGO) hybrids have been synthesized by applying a very simple, fast and economic route using microwave-assisted in-situ reduction and exfoliation method. The Pd-NrGO hybrids materials show good activity as catalyst for ethanol electro oxidation for direct ethanol fuel cells (DEFCs) as compared to Pd-rGO hybrids. The enhanced direct ethanol fuel cell can serve as alternative to fossil fuels because it is renewable and environmentally-friendly with a high energy conversion efficiency and low pollutant emission. As proof of concept, the electrocatalytic activity of Pd-NrGO hybrid material was accessed by cyclic voltammetry in presence of ethanol to evaluate its applicability in direct-ethanol fuel cells (DEFCs). The Pd-NrGO catalyst presented higher electro active surface area (∼6.3 m 2 g -1 ) for ethanol electro-oxidation when compared to Pd-rGO hybrids (∼3.7 m 2 g -1 ). Despite the smaller catalytic activity of Pd-NrGO, which was attributed to the lower exfoliation rate of this material in relation to the Pd-rGO, Pd-NrGO showed to be very promising and its catalytic activity can be further improved by tuning the synthesis parameters to increase the exfoliation rate. Copyright © 2018 Elsevier Inc. All rights reserved.
Xu, Liang; Wang, Zhe; Chen, Xu; Qu, Zongkai; Li, Feng; Yang, Wensheng
2018-01-01
The development of non-precious metal electrocatalysts for renewable energy conversion and storage is compelling but greatly challenging due to low activity of the existing catalysts. Herein, the ultrathin NiAl-layered double hydroxide nanosheets (NiAl-LDH-NSs) are prepared by simple liquid-exfoliation of bulk NiAl-LDHs and first used as ethanol electrooxidation catalysts. The ultrathin two-dimensional (2D) structure ensures that the LDH nanosheets expose a greater number of active sites. More importantly, much Ni(III) active species (NiOOH) in the ultrathin nanosheets are formed by the exfoliation process, which play an authentic catalytic role in the ethanol oxidation reaction (EOR). The presence of NiOOH remarkably improves the reactivity and electrical conductivity of LDH nanosheets. These synergistic effects lead to strikingly more than 30 times enhanced EOR activity of NiAl-LDH-NSs compared to bulk NiAl-LDHs. The obtained electrocatalytic activity is also much better than those of most Ni- and LDH-based EOR catalysts reported to date. In addition, the ultrathin NiAl-LDH-NS electrocatalyst also exhibits good long-term stability (maintain 81.8% of the original value after 10000 s). This study not only provides a highly competitive EOR catalyst, but also opens new avenues toward the design of highly efficient electrode materials that have various potential applications in supercapacitor, Ni-MH battery and other electrocatalytic systems. PMID:29622818
Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis.
Sun, Yingjun; Liang, Yanxia; Luo, Mingchuan; Lv, Fan; Qin, Yingnan; Wang, Lei; Xu, Chuan; Fu, Engang; Guo, Shaojun
2018-01-01
Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C + ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Use of Spray-Dried Mn₃O₄/C Composites as Electrocatalysts for Li-O₂ Batteries.
Yang, Hong-Kai; Chin, Chih-Chun; Chen, Jenn-Shing
2016-11-07
The electrocatalytic activities of Mn₃O₄/C composites are studied in lithium-oxygen (Li-O₂) batteries as cathode catalysts. The Mn₃O₄/C composites are fabricated using ultrasonic spray pyrolysis (USP) with organic surfactants as the carbon sources. The physical and electrochemical performance of the composites is characterized by X-ray diffraction, scanning electron microscopy, particle size analysis, Brunauer-Emmett-Teller (BET) measurements, elemental analysis, galvanostatic charge-discharge methods and rotating ring-disk electrode (RRDE) measurements. The electrochemical tests demonstrate that the Mn₃O₄/C composite that is prepared using Trition X-114 (TX114) surfactant has higher activity as a bi-functional catalyst and delivers better oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance in Li-O₂ batteries because there is a larger surface area and particles are homogeneous with a meso/macro porous structure. The rate constant ( k f ) for the production of superoxide radical (O₂ • - ) and the propylene carbonate (PC)-electrolyte decomposition rate constant ( k ) for M₃O₄/C and Super P electrodes are measured using RRDE experiments and analysis in the 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆)/PC electrolyte. The results show that TX114 has higher electrocatalytic activity for the first step of ORR to generate O₂ • - and produces a faster PC-electrolyte decomposition rate.
NASA Astrophysics Data System (ADS)
Niu, Mengying; Xu, Wence; Zhu, Shengli; Liang, Yanqin; Cui, Zhenduo; Yang, Xianjin; Inoue, Akihisa
2017-09-01
Nanoporous CuO/TiO2/Pd-NiO-x (x = 0, 1, 3, 5, 7 at%) catalysts have been synthesized by dealloying Cu-Ti-Pd-Ni alloy ribbons in acid solution. The nanoporous structure and chemical composition of the catalysts distribute uniformly. Based on the electrochemical active area (EASA), electrocatalytic activity and stability, the np-CuO/TiO2/Pd-NiO-3 catalyst possesses the best performance for methanol and ethanol electro-oxidation. For methanol and ethanol electro-oxidation, the anodic current densities in forward scan of the np-CuO/TiO2/Pd-NiO-3 catalyst are about 5.6 times and 2.1 times larger than that of the np-CuO/TiO2/Pd catalyst, respectively. The introduction of NiO provides more electrochemical active sites due to the improved geometrical and bifunctional mechanism. NiO promotes the adsorption of oxygen-containing species (OHads) on the catalyst surface, and electron effect between Pd and Ni is favorable for charge transfer. This accelerates the removal of intermediate products during the oxidation process. The electrocatalytic processes of methanol and ethanol oxidation in alkaline solution are controlled by both charge transfer and diffusion.
NASA Astrophysics Data System (ADS)
Yasmin, Sabina; Joo, Yuri; Jeon, Seungwon
2017-06-01
The electrochemical deposition of Pd nanoparticles (Pd NPs) on 2,3 diamino pyridine functionalized reduced graphene oxide (2,3 DAP-rGO/Pd) has been investigated for the oxygen reduction reaction (ORR) in alkaline media. First, 2,3 diaminopyridine functionalized graphene oxide (2,3 DAP-rGO) has been synthesized via simple hydrothermal method. Then, palladium is directly incorporated into the 2,3 DAP-rGO by electrochemical deposition method to generate 2,3 DAP-rGO/Pd composites. The as-prepared material 2,3 DAP-rGO/Pd has been characterized by various instrumental methods. The morphological analysis shows the cluster-like Pd nanoparticles are dispersed onto the 2,3 diamino pyridine functionalized reduced graphene oxide (2,3 DAP-rGO). The electrocatalytic activities have been verified using cyclic voltammetry (CV) and hydrodynamic voltammetry and chronoamperometry techniques in 0.1 M KOH electrolyte. The as-synthesized 2,3 DAP-rGO/Pd shows higher catalytic activity toward ORR with more positive onset potential and cathodic current density, superior methanol/ethanol tolerance and excellent stability in alkaline medium. It is also noteworthy that the 2,3 DAP-rGO/Pd exhibits a four-electron transfer pathway for ORR with lower H2O2 yield.
Lu, Beihu; Zhou, Jing; Song, Yuqiao; Wang, Hailong; Xiao, Wei; Wang, Dihua
2016-08-15
Carbon powders are building blocks for electrochemical energy storage/conversion devices. Green, cost-affordable and facile preparation of carbon with applicable electrochemical properties is therefore essential for effective utilization of fluctuating renewable energy. Herein, the preparation of carbon nanoflakes via impregnation of waste biomass i.e. boiled coffee beans in molten Na2CO3-K2CO3 (with equal mass) at 800 °C and molten CaCl2 at 850 °C is reported. The microstructure and surface chemistry of the obtained carbons are specified. The correlations between synthetic conditions and microstructure/surface chemistry of the obtained carbons are rationalized. The derived carbon nanosheets are tested and compared as active materials for supercapacitors in a configuration of symmetric full cells in 1 M MeEt3NBF4 in acetonitrile and electrocatalysts towards the oxygen reduction reaction (ORR) in O2-saturated 0.1 M aqueous KOH. Despite the lower surface area, the carbon nanosheets derived in molten Na2CO3-K2CO3 exhibit enhanced capacitive properties and electrocatalytic ORR activity. The present study highlights the importance of thermal media on the microstructure, surface chemistry and electrochemistry of carbon from biomass.
Pan, Yuan; Sun, Kaian; Liu, Shoujie; Cao, Xing; Wu, Konglin; Cheong, Weng-Chon; Chen, Zheng; Wang, Yu; Li, Yang; Liu, Yunqi; Wang, Dingsheng; Peng, Qing; Chen, Chen; Li, Yadong
2018-02-21
The construction of highly active and stable non-noble-metal electrocatalysts for hydrogen and oxygen evolution reactions is a major challenge for overall water splitting. Herein, we report a novel hybrid nanostructure with CoP nanoparticles (NPs) embedded in a N-doped carbon nanotube hollow polyhedron (NCNHP) through a pyrolysis-oxidation-phosphidation strategy derived from core-shell ZIF-8@ZIF-67. Benefiting from the synergistic effects between highly active CoP NPs and NCNHP, the CoP/NCNHP hybrid exhibited outstanding bifunctional electrocatalytic performances. When the CoP/NCNHP was employed as both the anode and cathode for overall water splitting, a potential as low as 1.64 V was needed to achieve the current density of 10 mA·cm -2 , and it still exhibited superior activity after continuously working for 36 h with nearly negligible decay in potential. Density functional theory calculations indicated that the electron transfer from NCNHP to CoP could increase the electronic states of the Co d-orbital around the Fermi level, which could increase the binding strength with H and therefore improve the electrocatalytic performance. The strong stability is attributed to high oxidation resistance of the CoP surface protected by the NCNHP.
NASA Astrophysics Data System (ADS)
Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin
2018-03-01
Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.
Wang, Yaqiong; Li, Bin; Cui, Dan; Xiang, Xingde; Li, Weishan
2014-01-15
A novel electrode, carbon felt-supported nano-molybdenum carbide (Mo2C)/carbon nanotubes (CNTs) composite, was developed as platinum-free anode of high performance microbial fuel cell (MFC). The Mo2C/CNTs composite was synthesized by using the microwave-assisted method with Mo(CO)6 as a single source precursor and characterized by using X-ray diffraction and transmission electron microscopy. The activity of the composite as anode electrocatalyst of MFC based on Escherichia coli (E. coli) was investigated with cyclic voltammetry, chronoamperometry, and cell discharge test. It is found that the carbon felt electrode with 16.7 wt% Mo Mo2C/CNTs composite exhibits a comparable electrocatalytic activity to that with 20 wt% platinum as anode electrocatalyst. The superior performance of the developed platinum-free electrode can be ascribed to the bifunctional electrocatalysis of Mo2C/CNTs for the conversion of organic substrates into electricity through bacteria. The composite facilitates the formation of biofilm, which is necessary for the electron transfer via c-type cytochrome and nanowires. On the other hand, the composite exhibits the electrocatalytic activity towards the oxidation of hydrogen, which is the common metabolite of E. coli. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fard, Leyla Abolghasemi; Ojani, Reza; Raoof, Jahan Bakhsh; Zare, Ehsan Nazarzadeh; Lakouraj, Moslem Mansour
2017-04-01
In the current study, well-defined PdCo porous nanostructure (PdCo PNS) is prepared by a simple one-pot wet-chemical method and polypyrrole@multi-walled carbon nanotubes (PPy@MWCNTs) nanocomposite is used as a catalyst support. The morphology and the structural properties of the prepared catalyst were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The electrocatalytic performance of PdCo PNS/PPy@MWCNTs on glassy carbon electrode has been evaluated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) techniques. The specific activity of PdCo PNS/PPy@MWCNTs for ethanol electrooxidation (1.65 mA cm-2) is higher than those of other compared electrocatalysts. Also, PdCo PNS/PPy@MWCNTs catalyst represented higher electrocatalytic activity, better long-term stability and high level of poisoning tolerance to the carbonaceous oxidative intermediates for ethanol electrooxidation reaction in alkaline media. Furthermore, the presence of PPY@MWCNTs on the surface of GCE produce a high activity to electrocatalyst, which might be due to the easier charge transfer at polymer/carbon nanotubes interfaces, higher electrochemically accessible surface areas and electronic conductivity. The superior catalytic activity of PdCo PNS/PPy@MWCNTs suggests it to be as a promising electrocatalyst for future direct ethanol fuel cells.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui
2017-08-01
Nickel and molybdenum carbide modified carbon black (Ni-MoCx/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoCx/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoCx/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoCx/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoCx/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoCx/C reached 68.4 m2 g-1, which was higher than that of 20Pt/C (63.2 m2 g-1). The enhanced stability and activity of 10Pt/Ni-MoCx/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoCx formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoOx and MoCx. These findings indicated that 10Pt/Ni-MoCx/C was a promising electrocatalyst for direct methanol fuel cells.
Our previous study on the electrocatalytic dechlorination of 2-chlorobiphenyl at a Pd-loaded granular graphite-packed electrode demonstrated that the process did not follow the first order kinetics. The rate constant varied with the applied potential at the beginning, but later b...
NASA Astrophysics Data System (ADS)
Hosseini, Sayed Reza; Ghasemi, Shahram; Kamali-Rousta, Mina
2017-03-01
In present work, polyvinyl alcohol/copper acetate-nickel acetate composite nanofibers (PVA/Cu(OAc)2-Ni(OAc)2 NFs) with various weight percentages of Cu(OAc)2:Ni(OAc)2 such as 25:75, 50:50 and 75:25 are fabricated by electrospinning method. After this, the CuO/NiO composite NFs are produced after thermal treatment. A calcination temperature at about 600 °C is determined by thermal gravimetric analysis. Field-emission scanning electron microscopy (FE-SEM) for morphology characterization indicates that large quantities of the prepared PVA/Cu(OAc)2-Ni(OAc)2 composite fibers have smooth and bead-free surfaces. Fourier transform infrared spectroscopy, FE-SEM and energy dispersive X-ray spectroscopy are used to characterize the CuO/NiO composites. According to FE-SEM results, with increasing of Cu(OAc)2 content in polymeric solution, the fibers don't remain as continuous structures after calcination and accumulate in the form of nanoparticles. Also, a carbon paste electrode (CPE) bulky modified with CuO/NiO composites is used for investigation of the electro-catalytic oxidation of hydrazine hydrate in NaOH solution. The catalytic activities of the synthesized catalysts are studied through cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The obtained results demonstrate that the most appropriate proportion of Cu(OAc)2:Ni(OAc)2 in electrospinning solution to enhance the electro-catalytic ability is 25:75.
NASA Astrophysics Data System (ADS)
Lamy, Claude; Jaubert, Thomas; Baranton, Stève; Coutanceau, Christophe
2014-01-01
The electrocatalytic oxidation of ethanol was investigated in a Proton Exchange Membrane Electrolysis Cell (PEMEC) working at low temperature (20°C) on several Pt-based catalysts (Pt/C, PtSn/C, PtSnRu/C) in order to produce very clean hydrogen by electrolysis of a biomass compound. The electrocatalytic activity was determined by cyclic voltammetry and the rate of hydrogen evolution was measured for each catalyst at different current densities. The cell voltages UEtOH were recorded as a function of time for each current density. At 100 mA cm-2, i.e. 0.5 A with the 5 cm2 surface area PEMEC used, the cell voltage did not exceed 0.9 V for an evolution rate of about 220 cm3 of hydrogen per hour and the electrical energy consumed was less than 2.3 kWh (Nm3)-1, i.e. less than one half of the energy needed for water electrolysis (4.7 kWh (Nm3)-1 at UH2O = 2 V). This result is valid for the decomposition of any organic compound, particularly those originated from biomass resource, provided that their electro-oxidation rate is sufficient (>100 mA cm-2) at a relatively low cell voltage (Ucell < 1 V) which necessitates the development of efficient electrocatalysts for the electrochemical decomposition of this compound.
Das, Biswanath; Ezzedinloo, Lida; Bhadbhade, Mohan; Bucknall, Martin P; Colbran, Stephen B
2017-09-05
A new ruthenium(ii) complex capable of catalysing both CO 2 reduction and water oxidation was designed and synthesised. The electro-catalytic efficiency and robustness of the complex together with the electronic effect of its co-ligands were investigated to develop next generation dual activity electrocatalysts.
Synthesis and characterization of an Fe(i) cage complex with high stability towards strong H-acids.
Voloshin, Yan Z; Novikov, Valentin V; Nelyubina, Yulia V; Belov, Alexander S; Roitershtein, Dmitrii M; Savitsky, Anton; Mokhir, Andriy; Sutter, Jörg; Miehlich, Matthias E; Meyer, Karsten
2018-04-03
The first synthesized and X-ray structurally characterized "classical" iron(i) dioximate showed an unrivaled stability towards strong acids, thus calling for a reassessment of the origins of the electrocatalytic activity of similar low-valent cobalt and iron cage complexes with electron-withdrawing ribbed substituents, shown previously to be effective electrocatalysts of the HER.
Shu, Yun; Li, Bing; Chen, Jingyuan; Xu, Qin; Pang, Huan; Hu, Xiaoya
2018-01-24
Two-dimensional (2D) ultrathin nickel-cobalt phosphate nanosheets were synthesized using a simple one-step hydrothermal method. The morphology and structure of nanomaterials synthesized under different Ni/Co ratios were investigated by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Moreover, the influence of nanomaterials' structure on the electrochemical performance for glucose oxidation was investigated. It is found that the thinnest nickel-cobalt phosphate nanosheets synthesized with a Ni/Co ratio of 2:5 showed the best electrocatalytic activity for glucose oxidation. Also, the ultrathin nickel-cobalt phosphate nanosheet was used as an electrode material to construct a nonenzymatic electrochemical glucose sensor. The sensor showed a wide linear range (2-4470 μM) and a low detection limit (0.4 μM) with a high sensitivity of 302.99 μA·mM -1 ·cm -2 . Furthermore, the application of the as-prepared sensor in detection of glucose in human serum was successfully demonstrated. These superior performances prove that ultrathin 2D nickel-cobalt phosphate nanosheets are promising materials in the field of electrochemical sensing.
NASA Astrophysics Data System (ADS)
Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan
2017-08-01
An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.
Köhler, Lennart; Ebrahimizadeh Abrishami, Majid; Roddatis, Vladimir; Geppert, Janis; Risch, Marcel
2017-11-23
Targeted improvement of the low efficiency of water oxidation during the oxygen evolution reaction (OER) is severely hindered by insufficient knowledge of the electrocatalytic mechanism on heterogeneous surfaces. We chose LiMn 2 O 4 as a model system for mechanistic investigations as it shares the cubane structure with the active site of photosystem II and the valence of Mn 3.5+ with the dark-stable S1 state in the mechanism of natural photosynthesis. The investigated LiMn 2 O 4 nanoparticles are electrochemically stable in NaOH electrolytes and show respectable activity in any of the main metrics. At low overpotential, the key mechanistic parameters of Tafel slope, Nernst slope, and reaction order have constant values on the RHE scale of 62(1) mV dec -1 , 1(1) mV pH -1 , -0.04(2), respectively. These values are interpreted in the context of the well-studied mechanism of natural photosynthesis. The uncovered difference in the reaction sequence is important for the design of efficient bio-inspired electrocatalysts. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Choe, Ju Eun; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon
2015-05-01
Poly(3,4-ethylenedioxythiophene) functionalized graphene with palladium nanoparticles (denoted as Pd/PEDOT/rGO) has been synthesized for electrochemical oxygen reduction reaction (ORR) in alkaline solution. The structural features of catalyst are characterized by scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The TEM images suggest a well dispersed PdNPs onto PEDOT/rGO film. The ORR activity of Pd/PEDOT/rGO has been investigated via cyclic voltammetry (CV), rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) techniques in 0.1 M KOH aqueous solution. Comparative CV analysis suggests a general approach of intermolecular charge-transfer in between graphene sheet and PdNPs via PEDOT which leads to the better PdNPs dispersion and subsequently superior ORR kinetics. The results from ORR measurements show that Pd/PEDOT/rGO has remarkable electrocatalytic activity and stability compared to Pd/rGO and state-of-the-art Pt/C. The Koutecky-Levich and Tafel analysis suggest that the proposed main path in the ORR mechanism has direct four-electron transfer process with faster transfer kinetic rate on the Pd/PEDOT/rGO.
Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions
NASA Astrophysics Data System (ADS)
Liu, Rongji; Liu, Huibiao; Li, Yuliang; Yi, Yuanping; Shang, Xinke; Zhang, Shuangshuang; Yu, Xuelian; Zhang, Suojiang; Cao, Hongbin; Zhang, Guangjin
2014-09-01
Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts.Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts. Electronic supplementary information (ESI) available: Detailed RDE and RRDE experiments, additional tables and figures. See DOI: 10.1039/c4nr03185g
Gu, Zhulan; Li, Shumin; Xiong, Zhiping; Xu, Hui; Gao, Fei; Du, Yukou
2018-07-01
Bimetallic nanocatalysts with small particle size benefit from markedly enhanced electrocatalytic activity and stability during small molecule oxidation. Herein, we report a facile method to synthesize binary Pt-Ru nanoparticles dispersed on a carbon support at an optimum temperature. Because of its monodispersed nanostructure, synergistic effects were observed between Pt and Ru and the PtRu/C electrocatalysts showed remarkably enhanced electrocatalytic activity towards ethanol oxidation. The peak current density of the Pt 1 Ru 1 /C electrocatalyst is 3731 mA mg -1 , which is 9.3 times higher than that of commercial Pt/C (401 mA mg -1 ). Furthermore, the synthesized Pt 1 Ru 1 /C catalyst exhibited higher stability during ethanol oxidation in an alkaline medium and maintained a significantly higher current density after successive cyclic voltammograms (CVs) of 500 cycles than commercial Pt/C. Our work highlights the significance of the reaction temperature during electrocatalyst synthesis, leading to enhanced catalytic performance towards ethanol oxidation. The Pt 1 Ru 1 /C electrocatalyst has great potential for application in direct ethanol fuel cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Control over the branched structures of platinum nanocrystals for electrocatalytic applications.
Ma, Liang; Wang, Chengming; Gong, Ming; Liao, Lingwen; Long, Ran; Wang, Jinguo; Wu, Di; Zhong, Wei; Kim, Moon J; Chen, Yanxia; Xie, Yi; Xiong, Yujie
2012-11-27
Structural control of branched nanocrystals allows tuning two parameters that are critical to their catalytic activity--the surface-to-volume ratio, and the number of atomic steps, ledges, and kinks on surface. In this work, we have developed a simple synthetic system that allows tailoring the numbers of branches in Pt nanocrystals by tuning the concentration of additional HCl. In the synthesis, HCl plays triple functions in tuning branched structures via oxidative etching: (i) the crystallinity of seeds and nanocrystals; (ii) the number of {111} or {100} faces provided for growth sites; (iii) the supply kinetics of freshly formed Pt atoms in solution. As a result, tunable Pt branched structures--tripods, tetrapods, hexapods, and octopods with identical chemical environment--can be rationally synthesized in a single system by simply altering the etching strength. The controllability in branched structures enables to reveal that their electrocatalytic performance can be optimized by constructing complex structures. Among various branched structures, Pt octopods exhibit particularly high activity in formic acid oxidation as compared with their counterparts and commercial Pt/C catalysts. It is anticipated that this work will open a door to design more complex nanostructures and to achieve specific functions for various applications.
Liu, Zhiguang; Guo, Yujing; Dong, Chuan
2015-05-01
In this report, a new nanocomposite was successfully synthesized by chemical deposition of nickel nanoparticles (NiNPs) on polyvinylpyrrolidone (PVP) stabilized graphene nanosheets (GNs) with chitosan (CS) as the protective coating. The as obtained nanocomposite (PVP-GNs-NiNPs-CS) was characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Benefiting from the synergistic effect of GNs (large surface area and high conductivity), NiNPs (high electrocatalytic activity towards the glucose oxidation) and CS (good film-forming and antifouling ability), a nonenzymatic electrochemical glucose sensor was established. The nanocomposite displays greatly enhanced electrocatalytic activity towards the glucose oxidation in NaOH solution. The PVP-GNs-NiNPs-CS based electrochemical glucose sensor demonstrates good sensitivity, wide linear range (0.1 μM-0.5 mM), outstanding detection limit (30 nM), attractive selectivity, good reproducibility, high stability as well as prominent feasibility for the real sample analysis. The proposed experiment might open up a new possibility for widespread use of non-enzymatic sensors for monitoring blood glucose owing to its advantages of low cost, simple preparation and excellent properties for glucose detection. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Yanjuan; Jiang, Jizhou; Liu, Yi; Wu, Shengli; Zou, Jing
2018-02-01
The Co3O4/g-C3N4 heterojunctions were prepared by a facile one-pot thermal decomposition technique. Compared with g-C3N4, it was found that Co3O4/g-C3N4 heterojunctions possessed a higher Brunner-Emmet-Teller (BET) surface area, which was beneficial to the diffusion of aim molecules on the electrode surfaces. And the optimal Co3O4/g-C3N4 heterojunctions exhibited a narrower band gap and a higher donor density, resulting in an excellent electrocatalytic activity for environmental phenolic hormones. Moreover, the Co3O4/g-C3N4 heterojunctions were used for the electrochemical sensing of environmental phenolic hormones such as bisphenol A, pentachlorophenol, p-nitrophenol and octylphenol. All detection ranges reached three orders of magnitude, showing a lower limit of detection of 10-9 mol L-1. So, sensitivity and accurate determination of environmental phenolic hormones in real water samples may use this Co3O4/g-C3N4 heterojunctions modified electrode.
Wu, Yongmei; Xu, Wenju; Bai, Lijuan; Yuan, Yali; Yi, Huayu; Chai, Yaqin; Yuan, Ruo
2013-12-15
For the first time, a sandwich-type electrochemical method was proposed for ultrasensitive thrombin (TB) detection based on direct electrochemistry of highly loaded hemoglobin spheres-encapsulated platinum nanoparticles (PtNPs@Hb) as labels and electrocatalysts. The prepared PtNPs@Hb not only exhibited good biocompatibility, excellent electrocatalytic activity, but also presented redox activity of Hb. Thus, it was employed for the fabrication of aptasensor without any extraneous redox mediators, leading to a simple preparation process for the aptasensor. The high loading of Hb spheres as redox mediators could enhance the electrochemical signal. Importantly, the synergetic electrocatalytic behavior of Hb and PtNPs toward H2O2 reduction greatly amplified the electrochemical signal, resulting in the high sensitivity of aptasensor. Consequently, under optimal conditions, the designed aptasensor exhibited a lower detection limit of 0.05 pM and wide dynamic linear range from 0.15 pM to 40 nM for TB detection. Additionally, the proposed mediator-free and signal-amplified electrochemical aptasensor showed great potential in portable and cost-effective TB sensing devices. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Yongxin; Lu, Qiufang; Wu, Shengnan; Wang, Lun; Shi, Xianming
2013-03-15
Ultrathin platinum-coated gold (Pt@Au) nanoparticles with core@shell structure have been developed by under-potential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt(2+) produced a uniform Pt monolayer on the surface of gold nanoparticles, which are immobilized on glassy carbon electrode (GCE) surface based on electrostatic interaction. The ultrathin Pt@Au nanoparticles were confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Voltammetry and amperometric methodologies were used to evaluate the electrocatalytic activity of the Pt@Au nanoparticles modified electrode towards the reduction of hydrogen peroxide under the physiological condition. The present results show that ultrathin Pt coating greatly enhances the electrocatalytic activity towards the reduction of hydrogen peroxide, which can be utilized to fabricate the hydrogen peroxide sensor. Chronoamperometric experiments showed that at an applied potential of 0.08 V (vs. Ag/AgCl), the current reduction of hydrogen peroxide was linear to its concentration in the range of 1-450 μΜ, and the detection limit was found to be 0.18 μM (signal-to-noise ratio, S/N=3). Copyright © 2012 Elsevier B.V. All rights reserved.
Chen, Shiming; Perathoner, Siglinda; Ampelli, Claudio; Mebrahtu, Chalachew; Su, Dangsheng; Centi, Gabriele
2017-03-01
Ammonia is synthesized directly from water and N 2 at room temperature and atmospheric pressure in a flow electrochemical cell operating in gas phase (half-cell for the NH 3 synthesis). Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this half-cell. A rate of ammonia formation of 2.2×10 -3 gNH3 m -2 h -1 was obtained at room temperature and atmospheric pressure in a flow of N 2 , with stable behavior for at least 60 h of reaction, under an applied potential of -2.0 V. This value is higher than the rate of ammonia formation obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with a total Faraday efficiency as high as 95.1 % was obtained. Data also indicate that the active sites in NH 3 electrocatalytic synthesis may be associated to specific carbon sites formed at the interface between iron particles and CNT and able to activate N 2 , making it more reactive towards hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tian, Liangliang; He, Gege; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Yang, Cong; Chen, Yanling; Li, Lu
2018-02-16
Inspired by kinetics, the design of hollow hierarchical electrocatalysts through large-scale integration of building blocks is recognized as an effective approach to the achievement of superior electrocatalytic performance. In this work, a hollow, hierarchical Co 3 O 4 architecture (Co 3 O 4 HHA) was constructed using a coordinated etching and precipitation (CEP) method followed by calcination. The resulting Co 3 O 4 HHA electrode exhibited excellent electrocatalytic activity in terms of high sensitivity (839.3 μA mM -1 cm -2 ) and reliable stability in glucose detection. The high sensitivity could be attributed to the large specific surface area (SSA), ample unimpeded penetration diffusion paths and high electron transfer rate originating from the unique two-dimensional (2D) sheet-like character and hollow porous architecture. The hollow hierarchical structure also affords sufficient interspace for accommodation of volume change and structural strain, resulting in enhanced stability. The results indicate that Co 3 O 4 HHA could have potential for application in the design of non-enzymatic glucose sensors, and that the construction of hollow hierarchical architecture provides an efficient way to design highly active, stable electrocatalysts.
NASA Astrophysics Data System (ADS)
Tian, Liangliang; He, Gege; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Yang, Cong; Chen, Yanling; Li, Lu
2018-02-01
Inspired by kinetics, the design of hollow hierarchical electrocatalysts through large-scale integration of building blocks is recognized as an effective approach to the achievement of superior electrocatalytic performance. In this work, a hollow, hierarchical Co3O4 architecture (Co3O4 HHA) was constructed using a coordinated etching and precipitation (CEP) method followed by calcination. The resulting Co3O4 HHA electrode exhibited excellent electrocatalytic activity in terms of high sensitivity (839.3 μA mM-1 cm-2) and reliable stability in glucose detection. The high sensitivity could be attributed to the large specific surface area (SSA), ample unimpeded penetration diffusion paths and high electron transfer rate originating from the unique two-dimensional (2D) sheet-like character and hollow porous architecture. The hollow hierarchical structure also affords sufficient interspace for accommodation of volume change and structural strain, resulting in enhanced stability. The results indicate that Co3O4 HHA could have potential for application in the design of non-enzymatic glucose sensors, and that the construction of hollow hierarchical architecture provides an efficient way to design highly active, stable electrocatalysts.
Suryanto, Bryan H R; Chen, Sheng; Duan, Jingjing; Zhao, Chuan
2016-12-28
The role of carbon nanotubes in the advancement of energy conversion and storage technologies is undeniable. In particular, carbon nanotubes have attracted significant applications for electrocatalysis. However, one central issue related to the use of carbon nanotubes is the required oxidative pretreatment that often leads to significant damage of graphitic structures which deteriorates their electrochemical properties. Traditionally, the oxidized carbon nanomaterials are treated at high temperature under an inert atmosphere to repair the oxidation-induced defect sites, which simultaneously removes a significant number of oxygen functional groups. Nevertheless, recent studies have shown that oxygen functional groups on the surface of MWCNT are the essential active centers for a number of important electrocatalytic reactions such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein we first show that hydrothermal treatment as a mild method to improve the electrochemical properties and activities of surface-oxidized MWCNT for OER, HER, and ORR without significantly altering the oxygen content. The results indicate that hydrothermal treatment could potentially repair the defects without significantly reducing the pre-existing oxygen content, which has never been achieved before with conventional high-temperature annealing treatment.
Recent Developments in Hydrogen Evolving Molecular Cobalt(II)-Polypyridyl Catalysts
Queyriaux, N.; Jane, R. T.; Massin, J.; Artero, V.; Chavarot-Kerlidou, M.
2015-01-01
The search for efficient noble metal-free hydrogen-evolving catalysts is the subject of intense research activity. A new family of molecular cobalt(II)-polypyridyl catalysts has recently emerged. These catalysts prove more robust under reductive conditions than other cobalt-based systems and display high activities under fully aqueous conditions. This review discusses the design, characterization, and evaluation of these catalysts for electrocatalytic and light-driven hydrogen production. Mechanistic considerations are addressed and structure-catalytic activity relationships identified in order to guide the future design of more efficient catalytic systems. PMID:26688590
NASA Astrophysics Data System (ADS)
Sun, Baoliang; Shan, Fei; Jiang, Xinxin; Ji, Jing; Wang, Feng
2018-03-01
A bifunctional MoS2/In2S3 hybrid composite that has both photo- and electrocatalytic activity toward hydrogen evolution reaction (HER) is prepared by a facile one pot hydrothermal method. The characterizations by scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM) and Photoluminescence (PL) shows that the MoS2/In2S3 hybrid exhibits ultrathin nanoflakes with mesh-shaped structure on transparent conductive substrates, and the as prepared catalyst composite obviously improves the separation of electro-hole pairs. The as prepared hybrid nanosheets with Mo:In of 1/2 integrate In-doped MoS2 to reduce the stacking and increase the active surface area. The novel mesh-shaped nanostructure with a moderate degree of disorder provides not only simultaneously intrinsic conductivity and defects but also higher electrochemically active surface area (ECSA). By electrochemical measurements, such as linear sweep voltammetry (LSV), electrochemical impedance spectroscope (EIS) and cyclic voltammetry (CV), we find that the MoS2/In2S3 hybrid possesses much better photo/electrochemical activity than pristine MoS2 or In2S3. MoS2/In2S3 ultrathin nanoflaks are anticipated to be a superior photoelectrocatalyst for PEC cells, and the rational use of the MoS2/In2S3 cathode offers a new avenue toward achieving effective photo-assistant electrocatalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karan, Hiroko I.; Sasaki, Kotaro; Kuttiyiel, Kurian
2012-05-04
A new type of electrocatalyst with a core–shell structure that consists of a platinum monolayer shell placed on an iridium–rhenium nanoparticle core or platinum and palladium bilayer shell deposited on that core has been prepared and tested for electrocatalytic activity for the oxygen reduction reaction. Carbon-supported iridium–rhenium alloy nanoparticles with several different molar ratios of Ir to Re were prepared by reducing metal chlorides dispersed on Vulcan carbon with hydrogen gas at 400 °C for 1 h. These catalysts showed specific electrocatalytic activity for oxygen reduction reaction comparable to that of platinum. The activities of Pt ML/Pd ML/Ir 2Re 1,more » Pt ML/Pd 2layers/Ir 2Re 1, and Pt ML/Pd 2layers/Ir 7Re 3 catalysts were, in fact, better than that of conventional platinum electrocatalysts, and their mass activities exceeded the 2015 DOE target. Our density functional theory calculations revealed that the molar ratio of Ir to Re affects the binding strength of adsorbed OH and, thereby, the O 2 reduction activity of the catalysts. The maximum specific activity was found for an intermediate OH binding energy with the corresponding catalyst on the top of the volcano plot. The monolayer concept facilitates the use of much less platinum than in other approaches. Finally, the results with the Pt ML/Pd ML/Ir 2Re electrocatalyst indicate that it is a promising alternative to conventional Pt electrocatalysts in low-temperature fuel cells.« less
NASA Astrophysics Data System (ADS)
Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.
2014-01-01
Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.
Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K.; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K.; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D.; Sunkara, Mahendra K.; Gupta, Gautam
2016-01-01
Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance. PMID:27282871
Dong, Pei; Pint, Cary L; Hainey, Mel; Mirri, Francesca; Zhan, Yongjie; Zhang, Jing; Pasquali, Matteo; Hauge, Robert H; Verduzco, Rafael; Jiang, Mian; Lin, Hong; Lou, Jun
2011-08-01
A novel dye-sensitized solar cell (DSSC) structure using vertically aligned single-walled carbon nanotubes (VASWCNTs) as the counter electrode has been developed. In this design, the VASWCNTs serve as a stable high surface area and highly active electrocatalytic counter-electrode that could be a promising alternative to the conventional Pt analogue. Utilizing a scalable dry transfer approach to form a VASWCNTs conductive electrode, the DSSCs with various lengths of VASWCNTs were studied. VASWCNTs-DSSC with 34 μm original length was found to be the optimal choice in the present study. The highest conversion efficiencies of VASWCNTs-DSSC achieved 5.5%, which rivals that of the reference Pt DSSC. From the electrochemical impedance spectroscopy analysis, it shows that the new DSSC offers lower interface resistance between the electrolyte and the counter electrode. This reproducible work emphasizes the promise of VASWCNTs as efficient and stable counter electrode materials in DSSC device design, especially taking into account the low-cost merit of this promising material.
Cummins, Dustin R; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D; Sunkara, Mahendra K; Gupta, Gautam
2016-06-10
Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.
Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; ...
2016-06-10
In this study, hydrogen evolution reaction is catalyzed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoO x/MoS 2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ~100 mV improvement in over potential following exposure to dilute hydrazine, while also showing a 10-fold increase inmore » current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoO x core in the core-shell nanowires, which leads to improved electrocatalytic performance.« less
Oxygen and hydrogen evolution reaction on oriented single crystals of ruthenium dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, L I; Pollak, F H; Canivez, Y
1979-01-01
A novel design for water electrolysis using a solid polymer electrolyte is being developed by General Electric. Ruthenium is one of the best electrocatalysts for the oxygen evolution reaction. There are problems connected with the significant loss in electrocatalytic activity with time. This performance degradation is presumably due to the gradual formation of an RuO/sub 2/ film. We have performed electrochemical measurements on (100), (110) and (111) oriented single crystals of RuO/sub 2/ in order to elucidate the mechanism of the electrocatalytic process. Large single crystals were grown by the vapor transport method. Our investigation has revealed several interesting differencesmore » for the various orientations. This study indicates that RuO/sub 3/ may be an important intermediate species prior to oxygen evolution and that the formation of the RuO/sub 3/ is the rate limiting process. Similar results were previously obtained for IrO/sub 2/.« less
Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution
NASA Astrophysics Data System (ADS)
Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao; Zhang, Jian; Feng, Xinliang; Müllen, Klaus
2015-08-01
Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt-nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt-N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s-1 at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols.
Electrodeposition of Ni-Mo alloy coatings for water splitting reaction
NASA Astrophysics Data System (ADS)
Shetty, Akshatha R.; Hegde, Ampar Chitharanjan
2018-04-01
The present study reports the development of Ni-Mo alloy coatings for water splitting applications, using a citrate bath the inducing effect of Mo (reluctant metal) on electrodeposition, its relationship with their electrocatalytic efficiency were studied. The alkaline water splitting efficiency of Ni-Mo alloy coatings, for both hydrogen evolution reaction (HER) and oxygen evolution reaction were tested using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Moreover, the practical utility of these electrode materials were evaluated by measuring the amount of H2 and O2 gas evolved. The variation in electrocatalytic activity with composition, structure, and morphology of the coatings were examined using XRD, SEM, and EDS analyses. The experimental results showed that Ni-Mo alloy coating is the best electrode material for alkaline HER and OER reactions, at lower and higher deposition current densities (c. d.'s) respectively. This behavior is attributed by decreased Mo and increased Ni content of the alloy coating and the number of electroactive centers.
NASA Astrophysics Data System (ADS)
Bai, Juan; Fang, Chun-Long; Liu, Zong-Huai; Chen, Yu
2016-01-01
Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than did commercial Pt black.Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than did commercial Pt black. Electronic supplementary information (ESI) available: Experimental details and additional physical characterization. See DOI: 10.1039/c5nr08150e
Liu, Yisi; Jiang, Hao; Hao, Jiayu; Liu, Yulong; Shen, Haibo; Li, Wenzhang; Li, Jie
2017-09-20
Aluminum-air battery is a promising candidate for large-scale energy applications because of its low cost and high energy density. Remarkably, tremendous efforts have been concentrated on developing efficient and stable cathode electrocatalysts toward the oxygen reduction reaction. In this work, a hydrothermal-calcination approach was utilized to prepare novel reduced graphene oxide (rGO)-supported hollow ZnO/ZnCo 2 O 4 nanoparticle-embedded carbon nanocages (ZnO/ZnCo 2 O 4 /C@rGO) using a zeolitic imidazolate framework (ZIF-67)/graphene oxide/zinc nitrate composite as the precursor. The ZnO/ZnCo 2 O 4 /C@rGO hybrid exhibits remarkable electrocatalytic performance for oxygen reduction reaction under alkaline conditions and superior stability and methanol tolerance to those of the commercial Pt/C catalyst. Furthermore, novel and simple Al-air coin cells were first fabricated using the hybrid materials as cathode catalysts under ambient air conditions to further investigate their catalytic performance. The coin cell with the ZnO/ZnCo 2 O 4 /C@rGO cathode catalyst displays a higher open circuit voltage and discharge voltage and more sluggish potential drop than those of the cell with the ZnO/ZnCo 2 O 4 /C cathode catalyst, which confirms that rGO can enhance the electrocatalytic activity and stability of the catalyst system. The excellent electrocatalytic performance of the ZnO/ZnCo 2 O 4 /C@rGO hybrid is attributed to the prominent conductivity and high specific surface area resulting from rGO, the more accessible catalytic active sites induced by the unique porous hollow nanocage structure, and synergic covalent coupling between rGO sheets and ZnO/ZnCo 2 O 4 /C nanocages.
De, Sandip Kumar; Mondal, Subrata; Sen, Pintu; Pal, Uttam; Pathak, Biswarup; Rawat, Kuber Singh; Bardhan, Munmun; Bhattacharya, Maireyee; Satpati, Biswarup; De, Amitabha; Senapati, Dulal
2018-06-14
Understanding and exploring the decisive factors responsible for superlative catalytic efficiency is necessary to formulate active electrode materials for improved electrocatalysis and high-throughput sensing. This research demonstrates the ability of bud-shaped gold nanoflowers (AuNFs), intermediates in the bud-to-blossom gold nanoflower synthesis, to offer remarkable electrocatalytic efficiency in the oxidation of ascorbic acid (AA) at nanomolar concentrations. Multicomponent sensing in a single potential sweep is measured using differential pulse voltammetry while the kinetic parameters are estimated using electrochemical impedance spectroscopy. The outstanding catalytic activity of bud-structured AuNF [iAuNFp(Bud)/iGCp ≅ 100] compared with other bud-to-blossom intermediate nanostructures is explained by studying their structural transitions, charge distributions, crystalline patterns, and intrinsic irregularities/defects. Detailed microscopic analysis shows that density of crystal defects, such as edges, terraces, steps, ledges, kinks, and dislocation, plays a major role in producing the high catalytic efficiency. An associated ab initio simulation provides necessary support for the projected role of different crystal facets as selective catalytic sites. Density functional theory corroborates the appearance of inter- and intra-molecular hydrogen bonding within AA molecules to control the resultant fingerprint peak potentials at variable concentrations. Bud-structured AuNF facilitates AA detection at nanomolar levels in a multicomponent pathological sample.
Li, Zhengping; Han, Fangchun; Li, Cheng; Jiao, Xiuling; Chen, Dairong
2018-05-04
Electrochemically active hollow nanostructured materials hold great promise in diverse energy conversion and storage applications, however, intricate synthesis steps and poor control over compositions and morphologies have limited the realization of delicate hollow structures with advanced functional properties. In this study, we demonstrate a one-step wet-chemical strategy for co-engineering the hollow nanostructure and anion intercalation of nickel cobalt layered double hydroxide (NiCo-LDH) to attain highly electrochemical active energy conversion and storage functionalities. Self-templated pseudomorphic transformation of cobalt acetate hydroxide solid nanoprisms using nickel nitrate leads to the construction of well-defined NiCo-LDH hollow nanoprisms (HNPs) with multi-anion intercalation. The unique hierarchical nanosheet-assembled hollow structure and efficiently expanded interlayer spacing offer an increased surface area and exposure of active sites, reduced mass and charge transfer resistance, and enhanced stability of the materials. This leads to a significant improvement in the pseudocapacitive and electrocatalytic properties of NiCo-LDH HNP with respect to specific capacitance, rate and cycling performance, and OER overpotential, outperforming most of the recently reported NiCo-based materials. This work establishes the potential of manipulating sacrificial template transformation for the design and fabrication of novel classes of functional materials with well-defined nanostructures for electrochemical applications and beyond. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bai, Jing; Sun, Chunhe; Jiang, Xiue
2016-07-01
A novel enzyme-free hydrogen peroxide sensor composed of carbon dots (CDs) and multi-walled carbon nanotubes (MWCNTs) was prepared. It was found that the carbon dots-decorated multi-walled carbon nanotubes nanocomposites (CDs/MWCNTs) modified glassy carbon (GC) electrode (CDs/MWCNTs/GCE) exhibited a significant synergistic electrocatalytic activity towards hydrogen peroxide reduction as compared to carbon dots or multi-walled carbon nanotubes alone, and the CDs/MWCNTs/GCE has shown a low detection limit as well as excellent stability, selectivity, and reproducibility. These remarkable analytical advantages enable the practical application of CDs/MWCNTs/GCE for the real-time tracking of hydrogen peroxide (H2O2) released from human cervical cancer cells with satisfactory results. The enhanced electrochemical activity can be assigned to the edge plane-like defective sites and lattice oxygen in the CDs/MWCNTs nanocomposites due to the small amount of decoration of carbon dots on the multi-walled carbon nanotubes. Based on a facile preparation method and with good electrochemical properties, the CDs/MWCNTs nanocomposites represent a new class of carbon electrode for electrochemical sensor applications. Graphical Abstract CDs/MWCNTs exhibited good electrocatalytic activity and stability to H2O2 reduction and can be used for real-time detection of H2O2 released from living cells.
NASA Astrophysics Data System (ADS)
Mohanraju, Karuppannan; Sreejith, Vasudevan; Ananth, Ramaiyan; Cindrella, Louis
2015-06-01
New catalysts of reduced graphene oxide (rGO) with poly aniline (PANI) and cobalt ferrite (CF) have been successfully prepared by simple chemical reduction method. Their electrocatalytic activity for oxygen reduction reaction (ORR) was evaluated. Semi-crystalline nature of CF was analyzed by X-ray diffraction (XRD) study. Surface morphology by HR-SEM showed features of CF particles and PANI film on graphene sheets. FT-IR studies revealed changes in C-N and Cdbnd N stretching vibrations of PANI confirming bonding of PANI to graphene sheets. Raman spectrum showed presence of PANI on distorted graphene layers. TG/DTA revealed thermal stability and extent of loading of CF in composite. ORR performance was studied using catalyst modified rotating disc electrode (RDE). A maximum kinetic current density of -3.46 mA cm-2 at -0.2 V was obtained for CF/PANI/rGO. Tafel slope, onset and half wave potentials for the catalyst were obtained from ORR response. Durability studies showed that synthesized electrocatalyst has better stability and methanol tolerance than commercial Pt/C catalyst. To the best of our knowledge, this is the first study aiming enhancement of ORR activity using PANI and CoFe2O4 on graphene support. A trace amount of Pt in the composite boosted the performance of single PEM fuel cell.
NASA Astrophysics Data System (ADS)
Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin
2015-12-01
Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.
Manivannan, Shanmugam; Kang, Inhak; Seo, Yeji; Jin, Hyo-Eon; Lee, Seung-Wuk; Kim, Kyuwon
2017-09-27
We report a virus-incorporated biological template (biotemplate) on electrode surfaces and its use in electrochemical nucleation of metal nanocomposites as an electrocatalytic material for energy applications. The biotemplate was developed with M13 virus (M13) incorporated in a silicate sol-gel matrix as a scaffold to nucleate Au-Pt alloy nanostructures by electrodeposition, together with reduced graphene oxide (rGO). The phage when engineered with Y3E peptides could nucleate Au-Pt alloy nanostructures, which ensured adequate packing density, simultaneous stabilization of rGO, and a significantly increased electrochemically active surface area. Investigation of the electrocatalytic activity of the resulting sol-gel composite catalyst toward methanol oxidation in an alkaline medium showed that this catalyst had mass activity greater than that of the biotemplate containing wild-type M13 and that of monometallic Pt and other Au-Pt nanostructures with different compositions and supports. M13 in the nanocomposite materials provided a close contact between the Au-Pt alloy nanostructures and rGO. In addition, it facilitated the availability of an OH - -rich environment to the catalyst. As a result, efficient electron transfer and a synergistic catalytic effect of the Au and Pt in the alloy nanostructures toward methanol oxidation were observed. Our nanocomposite synthesis on the novel biotemplate and its application might be useful for developing novel clean and green energy-generating and energy-storage materials.
Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin
2015-12-18
Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theerthagiri, J.; Senthil, R.A.; Buraidah, M.H.
2016-06-15
Ternary metal selenides of (Ni{sub 1−x}Co{sub x})Se{sub 2} with 0≤x≤1 were synthesized by using one-step hydrothermal reduction route. The synthesized metal selenides were utilized as an efficient, low-cost platinum free counter electrode for dye-sensitized solar cells. The cyclic voltammetry and electrochemical impedance spectroscopy studies revealed that the Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode exhibited higher electrocatalytic activity and lower charge transfer resistance at the counter electrode/electrolyte interface than the other compositions for reduction of triiodide to iodide. Ternary selenides of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} offer a synergistic effect to the electrocatalytic activity for the reduction of triiodide that might bemore » due to an increase in active catalytic sites and small charge transfer resistance. The DSSC with Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode achieved a high power conversion efficiency of 6.02%, which is comparable with that of conventional platinum counter electrode (6.11%). This present investigation demonstrates the potential application of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} as counter electrode in dye-sensitized solar cells.« less
Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan
2017-08-01
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Qingqing; Hu, Yufang; Wu, Di; Ma, Shaohua; Wang, Jiao; Rao, Jiajia; Xu, Lihua; Xu, Huan; Shao, Huili; Guo, Zhiyong; Wang, Sui
2018-06-01
A highly sensitive electrochemical biosensor based on the synthetized L-Cysteine-Ag(I) coordination polymer (L-Cys-Ag(I) CP), which looks like a protein-mimicking nanowire, was constructed to detect acetylcholinesterase (AChE) activity and screen its inhibitors. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce hydrogen peroxide (H 2 O 2 ), thus L-Cys-Ag(I) CP possesses the electro-catalytic property to H 2 O 2 reduction. Herein, the protein-mimicking nanowire-based platform was capable of investigating successive of H 2 O 2 effectively by amperometric i-t (current-time) response, and was further applied for the turn-on electrochemical detection of AChE activity. The proposed sensor is highly sensitive (limit of detection is 0.0006 U/L) and is feasible for screening inhibitors of AChE. The model for AChE inhibition was further established and two traditional AChE inhibitors (donepezil and tacrine) were employed to verify the feasibility of the system. The IC 5 0 of donepezil and tacrine were estimated to be 1.4 nM and 3.5 nM, respectively. The developed protocol provides a new and promising platform for probing AChE activity and screening its inhibitors with low cost, high sensitivity and selectivity. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju
2006-03-01
The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.
NASA Astrophysics Data System (ADS)
Dembinska, Beata; Kiliszek, Malgorzata; Elzanowska, Hanna; Pisarek, Marcin; Kulesza, Pawel J.
2013-12-01
Electrocatalytic activity of carbon (Vulcan XC-72) supported selenium-modified ruthenium, RuSex/C, nanoparticles for reduction of oxygen was enhanced through intentional decoration with iridium nanostructures (dimensions, 2-3 nm). The catalytic materials were characterized in oxygenated 0.5 mol dm-3 H2SO4 using cyclic and rotating ring disk voltammetric techniques as well as using transmission electron microscopy and scanning electron microscopy equipped with X-ray dispersive analyzer. Experiments utilizing gas diffusion electrode aimed at mimicking conditions existing in the low-temperature fuel cell. Upon application of our composite catalytic system, the reduction of oxygen proceeded at more positive potentials, and higher current densities were observed when compared to the behavior of the simple iridium-free system (RuSex/C) investigated under the analogous conditions. The enhancement effect was more pronounced than that one would expect from simple superposition of voltammetric responses for the oxygen reduction at RuSex/C and iridium nanostructures studied separately. Nanostructured iridium acted here as an example of a powerful catalyst for the reduction of H2O2 (rather than O2) and, when combined with such a moderate catalyst as ruthenium-selenium (for O2 reduction), it produced an integrated system of increased electrocatalytic activity in the oxygen reduction process. The proposed system retained its activity in the presence of methanol that could appear in a cathode compartment of alcohol fuel cell.
Understanding the electrocatalytic activity of Pt xSn y in direct ethanol fuel cells
NASA Astrophysics Data System (ADS)
Wang, Yi; Song, Shuqin; Andreadis, George; Liu, Hong; Tsiakaras, Panagiotis
In the present work, the activity of Pt xSn y/C catalysts towards ethanol, acetaldehyde and acetic acid electrooxidation reactions is investigated for each one separately by means of cyclic voltammetry. To this purpose, a series of Pt xSn y/C catalysts with different atomic ratio (x: y = 2:1, 3:2, 1:1) and small particle size (∼3 nm) are fast synthesized by using the pulse microwave assisted polyol method. The catalysts are well dispersed over the carbon support based on the physicochemical characterization by means of XRD and TEM. Concerning the ethanol electrooxidation, it is found that the Sn addition strongly enhances Pt's electrocatalytic activity and the contributing effect of Sn depends on: (i) the Sn content and (ii) the operating temperature. More precisely, at lower temperatures, Sn-rich catalysts exhibit better ethanol electrooxidation performance while at higher temperatures Sn-poor catalysts give better performance. In the case of acetaldehyde electrooxidation, Pt 1Sn 1/C catalyst exhibits the highest activity at all the investigated temperatures; due to the role of Sn, which could effectively remove C 2 species and inhibit the poison formation by supplying oxygen-containing species. Finally, it is found that the Pt xSn y/C catalysts are almost inactive (little current was measured) towards the acetic acid electrooxidation. The above findings indicate that Sn cannot substantially promote the electrooxidation of acetic acid to C 1 species.
Wen-wu, Liu; Xiu-ping, Wang; Xue-yan, Tu; Chang-yong, Wang
2014-10-01
The coking wastewater generally comprises highly concentrated, recalcitrant, and toxic organic pollutants, so its treatment has been of great importance to prevent living beings and their environment from these hazardous contaminations. The treatment of pretreated coking wastewater by flocculation-coagulation, alkali out, air stripping, and three-dimensional (3-D) electrocatalytic oxidation was performed (gap between the used β-PbO2/Ti anode and titanium cathode, 12 mm; mass ratio of Cu-Mn/granular activated carbon (GAC) to effluent, 1:4; cell voltage, 7 V). The results showed that the pH adjusting from 3.7 to 6.1 was necessary for coagulants; alkali out played an important role because it brought up precipitation containing higher fatty acids as well as other contaminants to decrease the chemical oxygen demand (COD) in the effluent, and it had also forced the reduction of ammonia nitrogen (NH3-N) by incorporating with air stripping; for 3-D electrocatalytic oxidation with a bleaching liquid assisting, the initial pH 8.5 of effluent was suitable for Cu-Mn/GAC; moreover, it was considered that its Cu component was dedicated to the decrease of COD and NH3-N, while the Mn component specialized in the decay of NH3-N. The residual COD and NH3-N values in the final effluent with pH 6.5 were 95.8 and 8.8 mg/L, respectively, demonstrating that the whole processes applied were feasible and low in cost.
NASA Astrophysics Data System (ADS)
Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu
2014-01-01
Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit typical agglomerate mesoporous nanostructures with a large surface area (190.1 m2 g-1) and high mesopore volume (0.943 cm3 g-1). Remarkably, the NiCo2O4 shows much higher catalytic activity, lower overpotential, better stability and greater tolerance towards urea electro-oxidation compared to those of cobalt oxide (Co3O4) synthesized by the same procedure. The NiCo2O4 electrode delivers a current density of 136 mA cm-2 mg-1 at 0.7 V (vs. Hg/HgO) in 1 M KOH and 0.33 M urea electrolytes accompanied with a desirable stability. The impressive electrocatalytic activity is largely ascribed to the high intrinsic electronic conductivity, superior mesoporous nanostructures and rich surface Ni active species of the NiCo2O4 materials, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation, indicating promising applications in future wastewater remediation, hydrogen production and fuel cells.Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit typical agglomerate mesoporous nanostructures with a large surface area (190.1 m2 g-1) and high mesopore volume (0.943 cm3 g-1). Remarkably, the NiCo2O4 shows much higher catalytic activity, lower overpotential, better stability and greater tolerance towards urea electro-oxidation compared to those of cobalt oxide (Co3O4) synthesized by the same procedure. The NiCo2O4 electrode delivers a current density of 136 mA cm-2 mg-1 at 0.7 V (vs. Hg/HgO) in 1 M KOH and 0.33 M urea electrolytes accompanied with a desirable stability. The impressive electrocatalytic activity is largely ascribed to the high intrinsic electronic conductivity, superior mesoporous nanostructures and rich surface Ni active species of the NiCo2O4 materials, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation, indicating promising applications in future wastewater remediation, hydrogen production and fuel cells. Electronic supplementary information (ESI) available: XRD patterns of NO and CO; XRD patterns and XPS profiles of CO; SEM images of CO; BET plots of CO; XPS quantitative analysis of NCO; a comparison of N2 sorption data between NCO and CO; the fitted values of impedimetric parameters of NCO and CO electrodes. See DOI: 10.1039/c3nr05359h
Wu, Yi-Jin; Wang, Yu-Cheng; Wang, Rui-Xiang; Zhang, Peng-Fang; Yang, Xiao-Dong; Yang, Hui-Juan; Li, Jun-Tao; Zhou, Yao; Zhou, Zhi-You; Sun, Shi-Gang
2018-05-02
Reasonable design and synthesis of Fe/N/C-based catalysts is one of the most promising way for developing precious metal-free oxygen reduction reaction (ORR) catalysts in acidic mediums. Herein, we developed a highly active metal-organic framework-derived S-doped Fe/N/C catalyst [S-Fe/Z8/2-aminothiazole (2-AT)] prepared by thermal treatment. The S-Fe/Z8/2-AT catalyst with uniform S-doping possesses a three-dimensional macro-meso-micro hierarchically porous structure. Moreover, the chemical composition and structural features have been well-optimized and characterized for such S-Fe/Z8/2-AT catalysts; and their formation mechanism was also revealed. Significantly, applying the optimal S-Fe/Z8/2-AT catalysts into electrocatalytic test exhibits remarkable ORR catalytic activity with a half-wave potential of 0.82 V (vs reversible hydrogen electrode) and a mass activity of 18.3 A g -1 at 0.8 V in 0.1 M H 2 SO 4 solution; the polymer electrolyte membrane fuel cell test also confirmed their excellent catalytic activity, which gives a maximal power density as high as 800 mW cm -2 at 1 bar. A series of designed experiments disclosed that the favorable structural merits and desirable chemical compositions of S-Fe/Z8/2-AT catalysts are critical factors for efficient electrocatalytic performance. The work provides a new approach to open an avenue for accurately controlling the composition and structure of Fe/N/C catalysts with highly activity for ORR.
Develop high activity, low cost non-PGM fuel cell electrocatalyst and stable supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colon-Mercado, H. R.; Elvington, M. C.; Garcia-Diaz, B. L.
2016-09-28
A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFC. Iron based functionalities have been engineered into Metallic Organic Framework (MOF) catalysts to evaluate their impact on activity for the ORR. A series of FePhen@MOF catalysts have been synthesized with varying [Fe] to investigate the effect on electrochemical and electrocatalytic properties. The magnitude of the Fe II/III redox couple and the electrochemical surface area are analyzed to determine if there is a correlation between [Fe] and the ORR onset potential and/or the relative number of active sites.
NASA Astrophysics Data System (ADS)
Rowley-Neale, Samuel J.; Brownson, Dale A. C.; Smith, Graham C.; Sawtell, David A. G.; Kelly, Peter J.; Banks, Craig E.
2015-10-01
We explore the use of two-dimensional (2D) MoS2 nanosheets as an electrocatalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electrocatalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underlying support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrode's individual electron transfer kinetics/properties and is thus distinct. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER.We explore the use of two-dimensional (2D) MoS2 nanosheets as an electrocatalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electrocatalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underlying support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrode's individual electron transfer kinetics/properties and is thus distinct. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05164a|ART
Bao, Chao; Li, Faxin; Wang, Jiali; Sun, Panpan; Huang, Niu; Sun, Yihua; Fang, Liang; Wang, Lei; Sun, Xiaohua
2016-12-07
One-dimensional single-crystal nanostructural nickel selenides were successfully in situ grown on metal nickel foils by two simple one-step solvothermal methods, which formed NiSe/Ni counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The nickel foil acted as the nickel source in the reaction process, a supporting substrate, and an electron transport "speedway". Electrochemical testing indicated that the top 1D single-crystal NiSe exhibited prominent electrocatalytic activity for I 3 - reduction. Due to the metallic conductivity of Ni substrate and the outstanding electrocatalytic activity of single-crystal NiSe, the DSSC based on a NiSe/Ni CE exhibited higher fill factor (FF) and larger short-circuit current density (J sc ) than the DSSC based on Pt/FTO CE. The corresponding power conversion efficiency (6.75%) outperformed that of the latter (6.18%). Moreover, the NiSe/Ni CEs also showed excellent electrochemical stability in the I - /I 3 - redox electrolyte. These findings indicated that single-crystal NiSe in situ grown on Ni substrate was a potential candidate to replace Pt/TCO as a cheap and highly efficient counter electrode of DSSC.
Engineering Single-Atom Cobalt Catalysts toward Improved Electrocatalysis.
Wan, Gang; Yu, Pengfei; Chen, Hangrong; Wen, Jianguo; Sun, Cheng-Jun; Zhou, Hua; Zhang, Nian; Li, Qianru; Zhao, Wanpeng; Xie, Bing; Li, Tao; Shi, Jianlin
2018-04-01
The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hossain, Md Faruk; Park, Jae Y.
2017-01-01
A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it had a wide linear response that ranged from 0.5 to 8 mM (R2 = 0.997), and high sensitivity of 506.25 μA/mMcm2. Furthermore, glucose oxidase-chitosan composite and cationic polydiallyldimethylammonium chloride (PDDA) were assembled by a casting method on the surface of MRGO/PtAuNPs modified electrode. This as-fabricated hybrid biosensor electrode exhibited high electrocatalytic activity for the detection of glucose in PBS. It demonstrated good analytical properties in terms of a low detection limit of 1 μM (signal-to-noise ratio of 3), short response time (3 s), high sensitivity (17.85 μA/mMcm2), and a wide linear range (0.01–8 mM) for glucose sensing. These results reveal that the newly developed sensing electrode offers great promise for new type enzymatic biosensor applications. PMID:28333943
NASA Astrophysics Data System (ADS)
Ekrami-Kakhki, Mehri-Saddat; Abbasi, Sedigheh; Farzaneh, Nahid
2018-01-01
The purpose of this study is to statistically analyze the anodic current density and peak potential of methanol oxidation at Pt nanoparticles supported on functionalized reduced graphene oxide (RGO), using design of experiments methodology. RGO is functionalized with methyl viologen (MV) and chitosan (CH). The novel Pt/MV-RGO-CH catalyst is successfully prepared and characterized with transmission electron microscopy (TEM) image. The electrocatalytic activity of Pt/MV-RGOCH catalyst is experimentally evaluated for methanol oxidation. The effects of methanol concentration and scan rate factors are also investigated experimentally and statistically. The effects of these two main factors and their interactions are investigated, using analysis of variance test, Duncan's multiple range test and response surface method. The results of the analysis of variance show that all the main factors and their interactions have a significant effect on anodic current density and peak potential of methanol oxidation at α = 0.05. The suggested models which encompass significant factors can predict the variation of the anodic current density and peak potential of methanol oxidation. The results of Duncan's multiple range test confirmed that there is a significant difference between the studied levels of the main factors. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Yang, Yang; Li, Yun-Hua; Zhao, Ya-Fei; Li, Peng-Wei; Li, Qiao-Xia
2018-01-01
A Pd/WO3/C nanocomposite with 3-aminopropyltrimethoxysilane (APTMS)-functionalized tungsten oxide nanosheets (Pd/WO3/C-APTMS) was synthesized and applied as the efficient anode catalyst for direct formic acid fuel cells (DFAFCs). The mechanism for synthesizing the nanocomposite is as follows: initially, [PdCl4]2- was assembled onto the tungsten oxide nanosheets modified with APTMS. Following this, Pd nanoparticles were reduced via traditional impregnation reduction of [PdCl4]2- with NaBH4. The transmission electron microscope (TEM) images revealed that the Pd nanoparticles were uniformly dispersed on WO3 nanosheets and were approximately 2.7 nm in size. The electrochemical test results showed that enhanced electrocatalytic activity for the formic acid oxidation reaction (FAOR) was obtained on the Pd/WO3/C catalyst compared with Pd/C. The higher electrocatalytic activity might be attributed to the uniform distribution of Pd with smaller particles. Furthermore, it is likely that the improvement in catalytic stability for the Pd/WO3/C catalyst is due to the hydrogen spillover effect of WO3 particles. These results indicate that this novel Pd/WO3/C-APTMS nanocomposite exhibits promising potential for use as an anode electrocatalyst in DFAFCs.
Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries.
Kichambare, Padmakar; Rodrigues, Stanley; Kumar, Jitendra
2012-01-01
The composite of nitrogen-doped carbon (N-C) blend with lithium aluminum germanium phosphate (LAGP) was studied as cathode material in a solid-state lithium-oxygen cell. Composite electrodes exhibit high electrochemical activity toward oxygen reduction. Compared to the cell capacity of N-C blend cathode, N-C/LAGP composite cathode exhibits six times higher discharge cell capacity. A significant enhancement in cell capacity is attributed to higher electrocatalytic activity and fast lithium ion conduction ability of LAGP in the cathode. © 2011 American Chemical Society
Zhu, Yun Pei; Guo, Chunxian; Zheng, Yao; Qiao, Shi-Zhang
2017-04-18
Developing cost-effective and high-performance electrocatalysts for renewable energy conversion and storage is motivated by increasing concerns regarding global energy security and creating sustainable technologies dependent on inexpensive and abundant resources. Recent achievements in the design and synthesis of efficient non-precious-metal and even non-metal electrocatalysts make the replacement of noble metal counterparts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) with earth-abundant elements, for example, C, N, Fe, Mn, and Co, a realistic possibility. It has been found that surface atomic engineering (e.g., heteroatom-doping) and interface atomic or molecular engineering (e.g., interfacial bonding) can induce novel physicochemical properties and strong synergistic effects for electrocatalysts, providing new and efficient strategies to greatly enhance the catalytic activities. In this Account, we discuss recent progress in the design and fabrication of efficient electrocatalysts based on carbon materials, graphitic carbon nitride, and transition metal oxides or hydroxides for efficient ORR, OER, and HER through surface and interfacial atomic and molecular engineering. Atomic and molecular engineering of carbon materials through heteroatom doping with one or more elements of noticeably different electronegativities can maximally tailor their electronic structures and induce a synergistic effect to increase electrochemical activity. Nonetheless, the electrocatalytic performance of chemically modified carbonaceous materials remains inferior to that of their metallic counterparts, which is mainly due to the relatively limited amount of electrocatalytic active sites induced by heteroatom doping. Accordingly, coupling carbon substrates with other active electrocatalysts to produce composite structures can impart novel physicochemical properties, thereby boosting the electroactivity even further. Although the majority of carbon-based materials remain uncompetitive with state-of-the-art metal-based catalysts for the aforementioned catalytic processes, non-metal carbon hybrids have already shown performance that typically only conventional noble metals or transition metal materials can achieve. The idea of hybridized carbon-based catalysts possessing unique active surfaces and macro- or nanostructures is addressed herein. For metal-carbon couples, the incorporation of carbon can effectively compensate for the intrinsic deficiency in conductivity of the metallic components. Chemical modification of carbon frameworks, such as nitrogen doping, not only can change the electron-donor character, but also can introduce anchoring sites for immobilizing active metallic centers to form metal-nitrogen-carbon (M-N-C) species, which are thought to facilitate the electrocatalytic process. With thoughtful material design, control over the porosity of composites, the molecular architecture of active metal moieties and macromorphologies of the whole catalysts can be achieved, leading to a better understanding structure-activity relationships. We hope that we can offer new insight into material design, particularly the role of chemical composition and structural properties in electrochemical performance and reaction mechanisms.
Cationic dirhodium(II,II) complexes for the electrocatalytic reduction of CO 2 to HCOOH
Witt, Suzanne E.; White, Travis A.; Li, Zhanyong; ...
2016-09-22
Two formamidinate bridged dirhodium(II,II) complexes with chelating diimine ligands L, [Rh 2(μ-DTolF) 2(L) 2] 2+, were shown to electrocatalytically reduce CO 2 in the presence of H 2O. Analysis of the reaction mixture and headspace following bulk electrolysis revealed H 2 and HCOOH as the major products. Finally, the variation in relative product formation is discussed.
NASA Astrophysics Data System (ADS)
Wei, Xuedong; Li, Na; Zhang, Xianming
2017-12-01
It remains a huge challenge to develop non precious electrocatalysts with high activity to substitute commercial Pt catalysts for hydrogen evolution reactions (HER). Here, the C-Cu-DI and C-Cu materials with the copper based nanoporous carbon structures were synthesized by carbonizing MOF199 and DI-MOF199. The composite structure and HER electrocatalytic properties of the C-Cu-DI and C-Cu materials are studied. The results show that C-Cu-DI and C-Cu samples exhibit good catalytic activity. And C-Cu-DI sample through the addition of Dimethyl imidazole(DI) in the DI-MOF199 precursor has higher electrocatalytic activity than the C-Cu sample. The superior catalytic activity is attributed to the special composite structure of nanoscale deposition particles on the framework with plenty of nano pores and nano copper and few copper oxidation particles distributed or wrapped into the amorphous porous carbon phase. The nano copper and few copper oxidation particles in the C-Cu and C-Cu-DI catalysts maybe provide the more effective catalytic activity sites. The C-Cu-DI composite with large size spherical hollow deposition particles has higher conductivity, better BET surface area and reasonable micro-meso-macro porous distribution, so the overpotentials at the current density of 1 mA cm-2 and 10 mA cm-2 are respectively 270 mV and 390 mV vs. RHE. Although the HER activity has a big gap with commercial platinum catalyst, this study can provide an important experimental exploration for the design of copper based non noble metal/nano porous carbon composite HER electrocatalyst.
Electrocatalysis using transition metal carbide and oxide nanocrystals
NASA Astrophysics Data System (ADS)
Regmi, Yagya N.
Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel molybdate showing the highest OER activities.
Gholami-Orimi, Fathali; Taleshi, Farshad; Biparva, Pourya; Karimi-Maleh, Hassan; Beitollahi, Hadi; Ebrahimi, Hamid R; Shamshiri, Mohamad; Bagheri, Hasan; Fouladgar, Masoud; Taherkhani, Ali
2012-01-01
We propose chlorpromazine (CHP) as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy) using multiwall carbon nanotube paste electrode (MWCNTPE). The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV) are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1-210.0 μM Hcy) with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples.
Gholami-Orimi, Fathali; Taleshi, Farshad; Biparva, Pourya; Karimi-Maleh, Hassan; Beitollahi, Hadi; Ebrahimi, Hamid R.; Shamshiri, Mohamad; Bagheri, Hasan; Fouladgar, Masoud; Taherkhani, Ali
2012-01-01
We propose chlorpromazine (CHP) as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy) using multiwall carbon nanotube paste electrode (MWCNTPE). The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV) are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1–210.0 μM Hcy) with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples. PMID:22675657
NASA Astrophysics Data System (ADS)
Jiao, Kailong; Jiang, Yu; Kang, Zepeng; Peng, Ruiyun; Jiao, Shuqiang; Hu, Zongqian
2017-12-01
Three-dimensional nanoarchitectures of Co3O4@multi-walled carbon nanotubes (Co3O4@MWNTs) were synthesized via a one-step process with hydrothermal growth of Co3O4 nanoparticles onto MWNTs. The structure and morphology of the Co3O4@MWNTs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, scanning electron microscopy and transmission electron microscopy. The electrocatalytic mechanism of the Co3O4@MWNTs was studied by X-ray photoelectron spectroscopy and cyclic voltammetry. Co3O4@MWNTs exhibited high electrocatalytic activity towards glucose oxidation in alkaline medium and could be used in nonenzymatic electrochemical devices for glucose oxidation. The open circuit voltage of the nonenzymatic glucose/O2 fuel cell was 0.68 V, with a maximum power density of 0.22 mW cm-2 at 0.30 V. The excellent electrochemical properties, low cost, and facile preparation of Co3O4@MWNTs demonstrate the potential of strongly coupled oxide/nanocarbon hybrid as effective electrocatalyst in glucose fuel cells and biosensors.
Cheemalapati, Srikanth; Palanisamy, Selvakumar; Mani, Veerappan; Chen, Shen-Ming
2013-12-15
In the present study, multiwalled carbon nanotubes (MWCNT)/graphene oxide (GO) nanocomposite was prepared by homogenous dispersion of MWCNT and GO and used for the simultaneous voltammetric determination of dopamine (DA) and paracetamol (PA). The TEM results confirmed that MWCNT walls were wrapped well with GO sheets. The MWCNT/GO nanocomposite showed superior electrocatalytic activity towards the oxidation of DA and PA, when compared with either pristine MWCNT or GO. The major reason for the efficient simultaneous detection of DA and PA at nanocomposite was the synergistic effect between MWCNT and GO. The electrochemical oxidation of DA and PA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The nanocomposite modified electrode showed electrocatalytic oxidation of DA and PA in the linear response range from 0.2 to 400 µmol L(-1) and 0.5 to 400 µmol L(-1) with the detection limit of 22 nmol L(-1) and 47 nmol L(-1) respectively. The proposed sensor displayed good selectivity, sensitivity, stability with appreciable consistency and precision. © 2013 Elsevier B.V. All rights reserved.
Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin
2015-11-16
Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gangwar, Rajesh K.; Dhumale, Vinayak A.; Date, Kalyani S.; Alegaonkar, Prashant; Sharma, Rishi B.; Datar, Suwarna
2016-03-01
Thin multiwall carbon nanotubes (MWCNTs) have been decorated with gold nanoparticles (Au NPs) with polyaniline (PANI) as an inter-linker by a simple wet chemical method. The synthesized AuNPs:MWCNT:PANI composite was studied with UV-vis, FTIR, Raman spectroscopy, x-ray diffractometer, transmission electron microscopy (TEM) and atomic force microscopy (AFM). Conducting AFM (C-AFM) images of the composite reveal the role played by the two components in electrochemical reactions. The size of the Au NPs was found to be 13 ± 2 nm in the composite as observed from TEM. The synthesized AuNPs:MWCNT:PANI composite was further drop casted onto a glassy carbon electrode (GCE) for electrocatalytic study. The resulting composite exhibits good electrocatalytic activity towards reduction of H2O2 and O2. A glucose biosensor was developed by immobilizing glucose oxidase into AuNPs:MWCNT:PANI composite film on GCE. The fabricated sensor demonstrates good linear response to glucose (i.e. R = 0.9975) in the range of 2 to 12 mM.
Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions.
Jiao, Yan; Zheng, Yao; Jaroniec, Mietek; Qiao, Shi Zhang
2015-04-21
A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Fu, Xin; Zhang, Chunjing; Pang, Hainjun; Ma, Huiyuan; Zhao, Xi; Wang, Cheng
2018-02-01
A novel organic-inorganic hybrid compound, {[CuI(btpe)2][CuII2(H2O)2(btpe)2][BW12O40]}·2H2O, (btpe = 1,5-bis(1,2,4-triazol-1-yl)pentane) (1) has been synthesized by hydrothermal reaction, and characterized by elemental analyses, IR spectroscopy, TG and single X-ray diffraction. Compound 1 is composed of α-Keggin type [BW12O40]5- (BW12) polyoxoanions and copper-btpe complexes. The copper-btpe complexes are stagger-packed to form an open framework containing the two kinds of channels with parallelogram-like apertures, in which the BW12 guests are encapsulated into the bigger channels. The electrochemical studies show that 1 has a good electrocatalytic activity towards reduction of hydrogen peroxide (H2O2), thanking to its special porous POMOF structure. The molecular design of 1 not only generates a new POMOF, but also opens a new avenue to the electrocatalytic materials.
Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution
Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao; Zhang, Jian; Feng, Xinliang; Müllen, Klaus
2015-01-01
Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt–nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt–N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s−1 at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols. PMID:26250525
Dolganov, Alexander V; Belov, Alexander S; Novikov, Valentin V; Vologzhanina, Anna V; Romanenko, Galina V; Budnikova, Yulia G; Zelinskii, Genrikh E; Buzin, Michail I; Voloshin, Yan Z
2015-02-07
Template condensation of dibromoglyoxime with n-butylboronic acid on the corresponding metal ion as a matrix under vigorous reaction conditions afforded iron and cobalt(ii) hexabromoclathrochelates. The paramagnetic cobalt clathrochelate was found to be a low-spin complex at temperatures below 100 K, with a gradual increase in the effective magnetic moment at higher temperatures due to the temperature 1/2↔3/2 spin crossover and a gap caused by the structure phase transition. The multitemperature X-ray and DSC studies of this complex and its iron(ii)-containing analog also showed temperature structural transitions. The variation of an encapsulated metal ion's radius, electronic structure and spin state caused substantial differences in the geometry of its coordination polyhedron; these differences increase with the decrease in temperature due to Jahn-Teller distortion of the encapsulated cobalt(ii) ion with an electronic configuration d(7). As follows from CV and GC data, these cage iron and cobalt complexes undergo both oxidation and reduction quasireversibly, and showed an electrocatalytic activity for hydrogen production in different producing systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentil, Solène; Lalaoui, Noémie; Dutta, Arnab
A biomimetic nickel bis-diphosphine complex incorporating the amino-acid arginine in the outer coordination sphere, was immobilized on modified single-wall carbon nanotubes (SWCNTs) through electrostatic interactions. The sur-face-confined catalyst is characterized by a reversible 2-electron/2-proton redox process at potentials close to the equibrium potential of the H+/H2 couple. Consequently, the functionalized redox nanomaterial exhibits reversible electrocatalytic activity for the H2/2H+ interconversion over a broad range of pH. This system exhibits catalytic bias, analogous to hydrogenases, resulting in high turnover frequencies at low overpotentials for electrocatalytic H2 oxida-tion between pH 0 and 7. This allowed integrating such bio-inspired nanomaterial together with amore » multicopper oxi-dase at the cathode side in a hybrid bioinspired/enzymatic hydrogen fuel cell. This device delivers ~2 mW cm–2 with an open-circuit voltage of 1.0 V at room temperature and pH 5, which sets a new efficiency record for a bio-related hydrogen fuel cell with base metal catalysts.« less
Theory, Investigation and Stability of Cathode Electrocatalytic Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Dong; Liu, Mingfei; Lai, Samson
2012-09-30
The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details andmore » stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.« less
Selective electrocatalytic oxidation of sorbitol to fructose and sorbose.
Kwon, Youngkook; de Jong, Ed; van der Waal, Jan Kees; Koper, Marc T M
2015-03-01
A new electrocatalytic method for the selective electrochemical oxidation of sorbitol to fructose and sorbose is demonstrated by using a platinum electrode promoted by p-block metal atoms. By the studying a range of C4, C5 and C6 polyols, it is found that the promoter interferes with the stereochemistry of the polyol and thereby modifies its reactivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Shanshan; Xue, Yejian; Wang, Qin; Li, Shihua; Huang, Heran; Miao, He; Liu, Zhaoping
2017-07-11
Nanosheet-constructing porous CeO 2 microspheres with silver nanoparticles anchored on the surface were developed as a highly efficient oxygen reduction reaction (ORR) catalyst. The aluminum-air batteries applying Ag-CeO 2 as the ORR catalyst exhibit a high output power density and low degradation rate of 345 mW cm -2 and 2.6% per 100 h, respectively.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2012-10-09
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Structures and fabrication techniques for solid state electrochemical devices
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2008-04-01
Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.
Leem, Yun Jin; Cho, Keumnam; Oh, Kyung Hee; Han, Sung-Hwan; Nam, Ki Min; Chang, Jinho
2017-03-25
A self-assembled Ni(cyclam)-BTC film was formed on ITO in an acidic solution. Ni(cyclam)-BTC exhibited an enhanced electro-catalytic property for the oxygen evolution reaction (OER), which was strongly relevant to the Ni(iii)/Ni(iv) redox reaction activated by the potential dynamic process. A possible formation mechanism of Ni(cyclam)-BTC by self-assembly on ITO was also proposed.
Janus structured Pt–FeNC nanoparticles as a catalyst for the oxygen reduction reaction
Kuttiyiel, Kurian A.; Sasaki, Kotaro; Park, Gu -Gon; ...
2017-01-03
Here, we present a new Janus structured catalyst consisting of Pt nanoparticles on Fe–N–C nanoparticles encapsulated by graphene layers for the ORR. The ORR activity of the catalyst increases under potential cycling as the unique Janus nanostructure is further bonded due to a synergetic effect. The present study describes an important advanced approach for the future design of efficient, stable, and low-cost Pt-based electrocatalytic systems.
Roughening of Pt nanoparticles induced by surface-oxide formation.
Zhu, Tianwei; Hensen, Emiel J M; van Santen, Rutger A; Tian, Na; Sun, Shi-Gang; Kaghazchi, Payam; Jacob, Timo
2013-02-21
Using density functional theory (DFT) and thermodynamic considerations we studied the equilibrium shape of Pt nanoparticles (NPs) under electrochemical conditions. We found that at very high oxygen coverage, obtained at high electrode potentials, the experimentally-observed tetrahexahedral (THH) NPs consist of high-index (520) faces. Since high-index surfaces often show higher (electro-)chemical activity in comparison to their close-packed counterparts, the THH NPs can be promising candidates for various (electro-)catalytic applications.
Development of Carbon and Sulphur Tolerant Anodes of Solid Oxide Fuel Cells
2010-01-14
LSCM/YSZ) composite anode is investigated in detail for the direct utilization of ethanol and methane (the main component of natural gas) in SOFCs...Impregnation of Pd nanoparticles significantly promotes the electrocatalytic activity of LSCM/YSZ composite anodes for the ethanol and methane... electrooxidation reaction. At 800°C, the electrode polarization resistance for the methane oxidation is reduced by a factor of 3 after impregnation of 0.10
Li, Wei-Liang; Chiou, Tzung-Wen; Chen, Chien-Hong; Yu, Yi-Ju; Chu, Li-Kang; Liaw, Wen-Feng
2018-05-29
In artificial photosynthesis, water splitting plays an important role for the conversion and storage of renewable energy sources. Here, we report a study on the electrocatalytic properties of the electrodeposited-film electrodes derived from irreversible electro-reduction/-oxidation of a molecular dinitrosyl iron complex (DNIC) {Fe(NO)2}9 [(Me6tren)Fe(NO)2]+ (Me6tren = tris[2-(dimethylamino)ethyl]amine) for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solution, individually. For HER, the overpotential and Tafel slope for the electrodeposited-film cathode are lower than those of the equiv.-weight Pt/C electrode. The electrodeposited-film anode for the OER is stable for 139 h. Integration of the electrodeposited-film cathode and anode into a single electrode-pair device for electrocatalytic water splitting exhibits an onset voltage of 1.77 V, achieving a geometrical current density of 10 mA cm-2.
Metallo Protoporphyrin Functionalized Microelectrodes for Electrocatalytic Sensing of Nitric Oxide
Li, Chen-Zhong; Alwarappan, Subbiah; Zhang, Wenbo; Scafa, Nikki; Zhang, Xueji
2010-01-01
Nitric oxide (NO) has been considered as an important bio-regulatory molecule in the physiological process. All the existing methods often employed for NO measurement are mainly indirect and not suitable for in vivo conditions. In this paper, we report a systematic study of electrocatalytic NO reduction by comparing the redox properties of NO at carbon microelectrodes functionalized by Fe, Mn and Co protoporphyrins. The mechanisms of electrocatalytic reduction of NO by different metalloporphyrins have been proposed and compared. In addition, by varying the metallic cores of the metalloporphyrins, NO exhibits voltammograms in which the cathodic peak current occur at different potential. A comparative study on the electrochemical behavior of each of these metalloporphyrin (as a result of varying the metallic core) has been performed and a possible mechanism for the observed behavior is proposed. The results confirmed the potential applicability of using metalloporphyrins modified electrodes for voltammetric NO detection. PMID:20526418
Liu, Xiao; Gong, Hao; Wang, Tao; Guo, Hu; Song, Li; Xia, Wei; Gao, Bin; Jiang, Zhongyi; Feng, Linfei; He, Jianping
2018-03-02
Perovskite-type oxides based on rare-earth metals containing lanthanum manganate are promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. Perovskite-type LaMnO 3 shows excellent ORR performance, but poor OER activity. To improve the OER performance of LaMnO 3 , the element cobalt is doped into perovskite-type LaMnO 3 through a sol-gel method followed by a calcination process. To assess electrocatalytic activities for the ORR and OER, a series of LaMn 1-x Co x O 3 (x=0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) perovskite oxides were synthesized. The results indicate that the amount of doped cobalt has a significant effect on the catalytic performance of LaMn 1-x Co x O 3 . If x=0.3, LaMn 0.7 Co 0.3 O 3 not only shows a tolerable electrocatalytic activity for the ORR, but also exhibits a great improvement (>200 mV) on the catalytic activity for the OER; this indicates that the doping of cobalt is an effective approach to improve the OER performance of LaMnO 3 . Furthermore, the results demonstrate that LaMn 0.7 Co 0.3 O 3 is a promising cost-effective bifunctional catalyst with high performance in the ORR and OER for application in hybrid Li-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Jee-Yee; Jheng, Shao-Lou; Tuan, Hsing-Yu
2018-06-14
Desigining advanced materials as electrochemical catalysts for the hydrogen evolution reaction (HER) has caught great attention owing to the growing demand for clean and renewable energy. Nickel (Ni)-based compounds and alloys are promising non-noble-metal electrocatalysts due to their low cost and high activity. However, in most cases, Ni-based compounds and alloys have low durability in acid electrolyte, which limits their application in the electrolytic processes. In this study, monoclinic Ge12Ni19 nanoparticles were synthesized and exhibited high electrocatalytic activity and stability for the HER in acidic solution. Ge12Ni19 nanoparticles achieve an overpotential of 190 mV at cathodic current density of 10 mA cm-2 and a Tafel slope of 88.5 mV per decade in 0.50 M H2SO4 electrolyte. Moreover, the performance is maintained after a 10 000-cycle CV sweep (-0.3 to +0.1 V vs. RHE) or under a static overpotential of -0.7 V vs. RHE for 24 hours. The reported electrocatalytic performance of the Ge12Ni19 nanoparticles sufficiently proves the excellent endurance at lower required active overpotentials in acidic solution, enabling the broad applications of the Ni-based electrocatalysts. Finally, a large-area (5 cm2) electrocatalyst for HER was demonstrated for the first time. The great efficiency of the energy conversion performance sufficiently represented the potential of Ge12Ni19 nanoparticles as electrocatalysts in commercial fuel cells.
Liu, Tao; Mai, Xianmin; Chen, Haijun; Ren, Jing; Liu, Zheting; Li, Yingxiang; Gao, Lina; Wang, Ning; Zhang, Jiaoxia; He, Hongcai; Guo, Zhanhu
2018-03-01
The carbon nanotube aerogel (CNA) with an ultra-low density, three-dimensional network nanostructure, superior electronic conductivity and large surface area is being widely employed as a catalytic electrode and catalytic support. Impressively, dye-sensitized solar cells (DSSCs) assembled with a CNA counter electrode (CE) achieved a maximum power conversion efficiency (PCE) of 8.28%, which exceeded that of the conventional platinum (Pt)-based DSSC (7.20%) under the same conditions. Furthermore, highly dispersed CoS 2 nanoparticles endowed with excellent intrinsic catalytic activity were hydrothermally incorporated to form a CNA-supported CoS 2 (CNA-CoS 2 ) CE, which was due to the large number of catalytically active sites and sufficient connections between CoS 2 and the CNA. The electrocatalytic ability and stability were systematically evaluated by cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and Tafel polarization, which confirmed that the resultant CNA-CoS 2 hybrid CE exhibited a remarkably higher electrocatalytic activity toward I 3 - reduction, and faster ion diffusion and electron transfer than the pure CNA CE. Such cost-effective DSSCs assembled with an optimized CNA-CoS 2 CE yielded an enhanced PCE of 8.92%, comparable to that of the cell fabricated with the CNA-Pt hybrid CE reported in our published literature (9.04%). These results indicate that the CNA-CoS 2 CE can be considered as a promising candidate for Pt-free CEs used in low-cost and high-performance DSSCs.
Hou, Meifang; Chu, Yaofei; Li, Xiang; Wang, Huijiao; Yao, Weikun; Yu, Gang; Murayama, Seiichi; Wang, Yujue
2016-12-05
This study compares the degradation of diethyl phthalate (DEP) by the electro-peroxone (E-peroxone) process with three different carbon-based cathodes, namely, carbon-polytetrafluorethylene (carbon-PTFE), carbon felt, and reticulated vitreous carbon (RVC). Results show that the three cathodes had different electrocatalytic activity for converting sparged O2 to H2O2, which increased in order of carbon felt, RVC, and carbon-PTFE. The in-situ generated H2O2 then reacts with sparged O3 to yield OH, which can in turn oxidize ozone-refractory DEP toward complete mineralization. In general, satisfactory total organic carbon removal yields (76.4-91.8%) could be obtained after 60min of the E-peroxone treatment with the three carbon-based cathodes, and the highest yield was obtained with the carbon-PTFE cathode due to its highest activity for H2O2 generation. In addition, the carbon-PTFE and carbon felt cathodes exhibited excellent stability over six cycles of the E-peroxone treatment of DEP solutions. Based on the intermediates (e.g., monoethyl phthalate, phthalic acid, phenolics, and carboxylic acids) identified by HPLC-UV, plausible reaction pathways were proposed for DEP mineralization by the E-peroxone process. The results of this study indicate that carbon-based cathodes generally have good electrocatalytic activity and stability for application in extended E-peroxone operations to effectively remove phthalates from water. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, Hongmei; Chang, Gang; Lei, Ming; He, Hanping; Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie; He, Yunbin
2016-10-01
Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the oxidation of glucose because of excellent synergetic effects between gold and platinum species and the increased electrochemical active area from Pt nanoparticles loading. The non-enzymatic glucose biosensor based on Pt/DGNs/GC showed a rapid respond time (within 2 s), wide linear range (from 0.1 mM to 14 mM), low detection limit (0.01 mM), supernal sensitivity (275.44 μA cm-2 mM-1, R = 0.993), satisfactory reproducibility and good stability for glucose sensing. It was demonstrated that Pt/DGNs/GC could work as promising candidate for factual non-enzymatic glucose detection.
Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides.
Yang, So Young; Vecitis, Chad D; Park, Hyunwoong
2017-01-28
This study examined the electrocatalytic activity of multi-walled carbon nanotube (CNT) filters for remediation of aqueous phenol in a sodium sulfate electrolyte. CNT filters were loaded with antimony-doped tin oxide (Sb-SnO 2 ; SS) and bismuth- and antimony-codoped tin oxide (Bi-Sb-SnO 2 ; BSS) via electrosorption at 2 V for 1 h and then assembled into a flow-through batch reactor as anode-cathode couples with perforated titanium foils. The as-synthesized pristine CNT filters were composed of 50-60-nm-thick tubular carbons with smooth surfaces, whereas the tubes composing the SS-CNT and BSS-CNT filters were slightly thicker and bumpy, because they were coated with SS and BSS particles ~50 nm in size. Electrochemical characterization of the samples indicated a positive shift in the onset potential and a decrease in the current magnitude in the modified CNT filters due to passivation and oxidation inhibition of the bare CNT filters. These filters exhibited a similar adsorption capacity for phenol (5-8%), whereas loadings of SS and BSS enhanced the degradation rate of phenol by ~1.5 and 2.1 times, respectively. In particular, the total organic carbon removal performance and mineralization efficiency of the BSS-CNT filters were approximately twice those of the bare CNT filters. The BSS-CNT filters also exhibited an enhanced oxidation of ferrocyanide [Fe II (CN) 6 4- ], which was not adsorbed onto the CNT filters. The enhanced electrocatalytic performance of the modified CNT filters was attributed to an effective generation of OH radicals. The surfaces of the filters were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.
Rowley-Neale, Samuel J; Brownson, Dale A C; Smith, Graham C; Sawtell, David A G; Kelly, Peter J; Banks, Craig E
2015-11-21
We explore the use of two-dimensional (2D) MoS2 nanosheets as an electrocatalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electrocatalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underlying support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrode's individual electron transfer kinetics/properties and is thus distinct. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER.
Li, Yang; Kuttiyiel, Kurian A.; Wu, Lijun; ...
2016-11-21
In this paper, we report the synthesis and characterization of graphenesupported cobalt–manganese-oxynitride nanocatalysts (CoMnON/G) as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A nitriding treatment of spinel compound CoMnO increased the ORR activity considerably, and the most active material catalyzed the ORR with only a 30 mV half-wave potential difference from the commercial carbon-supported platinum (Pt/C) in alkaline media. In addition to high activity, the catalyst also exhibited an intrinsic stability that outperformed Pt/C. Finally, an appropriately designed nitridation thus facilitates new directions for developing active and durable non-precious-metal oxynitride electocatalysts.
NASA Astrophysics Data System (ADS)
Lei, Yonggang; Hou, Jianhua; Wang, Fang; Ma, Xiaohua; Jin, Zhiliang; Xu, Jing; Min, Shixiong
2017-10-01
Low-crystalline or amorphous molybdenum sulfides (MoSx), bearing abundant unsaturated active sites, have been identified as efficient catalysts for electrocatalytic and photocatalytic H2 evolution reactions, however, their intrinsic activity is still low and need to be further improved for large-scale applications. In this paper, we report that low-crystalline MoSx doped with Co (Co-MoSx) as efficient cocatalysts could be loaded on CdS nanoparticles through a facile and controllable photochemical reduction method and showed high performances in catalyzing H2 evolution under visible light irradiation (≥420 nm). The photochemical loading of Co-MoSx was accomplished by using an in-situ formed molecular complex precursor and photogenerated electrons on CdS as reductants under mild conditions. The optimized CdS/Co-MoSx (Co:Mo = 1:4, 2 mol% loading) photocatalyst exhibited a catalytic H2 evolution rate of 535 μmol h-1, which is 1.8 times higher than that of CdS/MoSx, and an apparent quantum efficiency (AQE) of 23.5% was achieved over CdS/Co-MoSx photocatalyst at 420 nm. Co-MoSx catalyst also shows a long-term stability without noticeable activity degradation. Notably, Co-MoSx cocatalyst was found more efficient than that of noble metals in catalyzing photocatalytic H2 evolution on CdS. The formation of CoMoS phase, the enhanced electrocatalytic activity as well as reduced electron transfer resistance due to the doping effects of Co ions, account for the enhanced catalytic activity of this Co-MoSx cocatalyst.
Cheng, Wei; Compton, Richard G
2016-02-12
We report the electrocatalytic dehalogenation of trichloroethylene (TCE) by single soft nanoparticles in the form of Vitamin B12 -containing droplets. We quantify the turnover number of the catalytic reaction at the single soft nanoparticle level. The kinetic data shows that the binding of TCE with the electro-reduced vitamin in the Co(I) oxidation state is chemically reversible. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Wenjun; Hu, Yi; Ma, Lianbo; Zhu, Guoyin; Wang, Yanrong; Xue, Xiaolan; Chen, Renpeng; Yang, Songyuan
2017-01-01
Abstract The worldwide unrestrained emission of carbon dioxide (CO2) has caused serious environmental pollution and climate change issues. For the sustainable development of human civilization, it is very desirable to convert CO2 to renewable fuels through clean and economical chemical processes. Recently, electrocatalytic CO2 conversion is regarded as a prospective pathway for the recycling of carbon resource and the generation of sustainable fuels. In this review, recent research advances in electrocatalytic CO2 reduction are summarized from both experimental and theoretical aspects. The referred electrocatalysts are divided into different classes, including metal–organic complexes, metals, metal alloys, inorganic metal compounds and carbon‐based metal‐free nanomaterials. Moreover, the selective formation processes of different reductive products, such as formic acid/formate (HCOOH/HCOO−), monoxide carbon (CO), formaldehyde (HCHO), methane (CH4), ethylene (C2H4), methanol (CH3OH), ethanol (CH3CH2OH), etc. are introduced in detail, respectively. Owing to the limited energy efficiency, unmanageable selectivity, low stability, and indeterminate mechanisms of electrocatalytic CO2 reduction, there are still many tough challenges need to be addressed. In view of this, the current research trends to overcome these obstacles in CO2 electroreduction field are summarized. We expect that this review will provide new insights into the further technique development and practical applications of CO2 electroreduction. PMID:29375961
Zhang, Wenjun; Hu, Yi; Ma, Lianbo; Zhu, Guoyin; Wang, Yanrong; Xue, Xiaolan; Chen, Renpeng; Yang, Songyuan; Jin, Zhong
2018-01-01
The worldwide unrestrained emission of carbon dioxide (CO 2 ) has caused serious environmental pollution and climate change issues. For the sustainable development of human civilization, it is very desirable to convert CO 2 to renewable fuels through clean and economical chemical processes. Recently, electrocatalytic CO 2 conversion is regarded as a prospective pathway for the recycling of carbon resource and the generation of sustainable fuels. In this review, recent research advances in electrocatalytic CO 2 reduction are summarized from both experimental and theoretical aspects. The referred electrocatalysts are divided into different classes, including metal-organic complexes, metals, metal alloys, inorganic metal compounds and carbon-based metal-free nanomaterials. Moreover, the selective formation processes of different reductive products, such as formic acid/formate (HCOOH/HCOO - ), monoxide carbon (CO), formaldehyde (HCHO), methane (CH 4 ), ethylene (C 2 H 4 ), methanol (CH 3 OH), ethanol (CH 3 CH 2 OH), etc. are introduced in detail, respectively. Owing to the limited energy efficiency, unmanageable selectivity, low stability, and indeterminate mechanisms of electrocatalytic CO 2 reduction, there are still many tough challenges need to be addressed. In view of this, the current research trends to overcome these obstacles in CO 2 electroreduction field are summarized. We expect that this review will provide new insights into the further technique development and practical applications of CO 2 electroreduction.
Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian; ...
2017-03-10
Electro-oxidation of alcohol is the key reaction occurring at the anode of a direct alcohol fuel cell (DAFC), in which both reaction kinetics (rate) and selectivity (to deep oxidation products) need improvement to obtain higher power density and fuel utilization for a more efficient DAFC. We recently found that a PdAg bimetallic nanoparticle catalyst is more efficient than Pd for alcohol oxidation: Pd can facilitate deprotonation of alcohol in a base electrolyte, while Ag can promote intermediate aldehyde oxidation and cleavage of C-single bondC bond of C 3 species to C 2 species. Furthermore, a combination of the two activemore » sites (Pd and Ag) with two different functions, can simultaneously improve the reaction rates and deeper oxidation products of alcohols. In this continuing work, Pd, Ag mono, and bimetallic nanoparticles supported on carbon nanotubes (Ag/CNT, Pd/CNT, Pd 1Ag 1/CNT, and Pd 1Ag 3/CNT) were prepared using an aqueous-phase reduction method; they served as working catalysts for studying electrocatalytic oxidation of glycerol in an anion-exchange membrane-based direct glycerol fuel cell. Combined XRD, TEM, and HAADF-STEM analyses performed to fully characterize as-prepared catalysts suggested that they have small particle sizes: 2.0 nm for Pd/CNT, 2.3 nm for PdAg/CNT, 2.4 nm for PdAg 3/CNT, and 13.9 nm for Ag/CNT. XPS further shows that alloying with Ag results in more metal state Pd presented on the surface, and this may be related to their higher direct glycerol fuel cell (DGFC) performances. Single DGFC performance and product analysis results show that PdAg bimetallic nanoparticles can not only improve the glycerol reaction rate so that higher power output can be achieved, but also facilitate deep oxidation of glycerol so that a higher faradaic efficiency and fuel utilization can be achieved along with optimal reaction conditions (increased base-to-fuel ratio). Half-cell electrocatalytic activity measurement and single fuel cell product analysis of different glycerol oxidation intermediates, including C 3: glycerate, tartronate, mesoxalate, and lactate; C 2: glycolate and oxalate, over PdAg/CNT catalyst was further conducted and produced deeper insight into the synergistic effects and reaction pathways of bimetallic PdAg catalysts in glycerol electrocatalytic oxidation.« less
Belov, Alexander S; Zelinskii, Genrikh E; Varzatskii, Oleg A; Belaya, Irina G; Vologzhanina, Anna V; Dolganov, Alexander V; Novikov, Valentin V; Voloshin, Yan Z
2015-02-28
Pentafluorophenylboron-capped iron and cobalt(II) hexachloroclathrochelate precursors were obtained by the one-pot template condensation of dichloroglyoxime with pentafluorophenylboronic acid on iron and cobalt(II) ions under vigorous reaction conditions in trifluoroacetic acid media. These reactive precursors easily undergo nucleophilic substitution with (per)fluoroarylthiolate anions, giving (per)fluoroarylsulfide macrobicyclic complexes with encapsulated iron and cobalt(II) ions; nucleophilic substitution of the cobalt(II) hexachloroclathrochelate precursor with a pentafluorophenylsulfide anion gave the target hexasulfide monoclathrochelate and the mixed-valence Co(III)Co(II)Co(III) bis-clathrochelate as a side product. The complexes obtained were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (57)Fe Mössbauer (for the X-rayed iron complexes), (1)H, (11)B, (13)C and (19)F NMR spectroscopies and by X-ray diffraction; their redox and electrocatalytic behaviors were studied using cyclic voltammetry and gas chromatography. As can be seen from the single-crystal X-ray diffraction data, the second superhydrophobic shell of such caged metal ions is formed by fluorine atoms of both the apical and ribbed (per)fluoroaryl peripheral groups. The main bond distances and chelate N=C-C=N angles in their molecules are similar, but rotational elongation (contraction) along the molecular C3-pseudoaxes, accompanied by changes in the geometry of the corresponding MN6-coordination polyhedra from a trigonal prism to a trigonal antiprism, allowed encapsulating Fe(2+), Co(2+) and Co(3+) ions. The nature of an encapsulated metal ion and its oxidation state affect the M-N bond lengths, and, for cobalt(ii) clathrochelate with an electronic configuration d(7) the Jahn-Teller structural effect is observed as an alternation of the Co-N distances. Pentafluorophenylboron-capped hexachloroclathrochelate precursors, giving stable catalytically active metal(I)-containing intermediates due to the electron-withdrawing effect of their six ribbed chlorine substituents, were found to show moderate electrocatalytic activity in a 2H(+)/H2 hydrogen-forming reaction. In the case of their ribbed-functionalized sulfide derivatives, the strong electron-withdrawing (per)fluoroaryl groups do not stabilize the reduced electrocatalytically active metal(i)-containing species as their mesomeric effect is absent or substantially decreased by steric hindrances between them.
NASA Astrophysics Data System (ADS)
Wang, Ying; Liu, Qing; Hu, Tianjun; Zhang, Limin; Deng, Youquan
2017-05-01
The catalyst MnO2-CoFe2O4/C was firstly synthesized via a two-step process and applied as a bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The composite exhibits better bifunctional activity than CoFe2O4/C and MnO2/C. Moreover, superior durability and high methanol tolerance in alkaline media outperforms the commercial Pt/C electrocatalyst, which signifying its excellent potential for applications in metal-air batteries and alkaline fuel cells.
Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators.
Badalyan, Artavazd; Stahl, Shannon S
2016-07-21
The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1–2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2′-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2′-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how electron-proton-transfer mediators, such as TEMPO, may be used in combination with first-row transition metals, such as copper, to achieve efficient two-electron electrochemical processes, thereby introducing a new concept for the development of non-precious-metal electrocatalysts.
Multimetallic Systems for the Photocatalytic Production of Fuels from Abundant Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunbar, Kim R.; Turro, Claudia
The reported findings herein are a result of a collaboration between the groups of Claudia Turro at The Ohio State University (DE-SC0010542) and Kim R. Dunbar at Texas A&M University (DE-SC0010721). The Turro and Dunbar groups jointly discovered that cationic d 7–d 7 Rh 2(II,II) complexes bridged by electron-donating formamidinate (form) ligands possess redox-active excited states that are relatively long-lived and can engage in charge transfer reactions. As part of the present grant we designed new complexes that exhibit strong absorption from the UV to ~800 nm. The Rh 2(II,II) complexes under investigation are poised to undergo catalytic reduction ofmore » substrates because they are robust to changes in metal oxidation state, the two metals and the two diimine ligands, together with the non-innocent bridges, can be used to store redox equivalents, making these complexes capable of coupling one-electron events with multi-electron transformations. We discovered the electrocatalytic reduction of H + and CO 2 by complexes that are able to electrocatalytically reduce H + to H 2 with high turnover frequencies (TOFs) and overpotentials, η, of ~0.5 V,8 as well as to reduce CO 2 to HCOOH. We now have experimental evidence that both the production of H 2 from H + and HCOOH. The molecular catalysts are stable after the acid and/or CO 2 is consumed since electrocatalysis is restored at the same rate upon the addition of substrate to the cell.8,9 Moreover, we showed that the catalysis is not a result of a decomposition product deposited on the electrode, since placing an electrode from an active electrocatalytic solution into one that does not contain catalyst completely shuts down the reactivity. We are currently exploring the reactivity of these complexes in hydride transfer reactions with other substrates and in the presence of CO 2 and reducing agents, as well as attempting to grow single crystals for x-ray diffraction.« less
Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators
NASA Astrophysics Data System (ADS)
Badalyan, Artavazd; Stahl, Shannon S.
2016-07-01
The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, with potential applications ranging from fuel cells to biomass utilization and fine-chemical synthesis. Small-molecule electrocatalysts for processes of this type are promising targets for further development, as demonstrated by recent advances in nickel catalysts for electrochemical production and oxidation of hydrogen. Complexes with tethered amines that resemble the active site of hydrogenases have been shown both to catalyse hydrogen production (from protons and electrons) with rates far exceeding those of such enzymes and to mediate reversible electrocatalytic hydrogen production and oxidation with enzyme-like performance. Progress in electrocatalytic alcohol oxidation has been more modest. Nickel complexes similar to those used for hydrogen oxidation have been shown to mediate efficient electrochemical oxidation of benzyl alcohol, with a turnover frequency of 2.1 per second. These compounds exhibit poor reactivity with ethanol and methanol, however. Organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidine N-oxyl), are the most widely studied electrocatalysts for alcohol oxidation. These catalysts exhibit good activity (1-2 turnovers per second) with a wide range of alcohols and have great promise for electro-organic synthesis. Their use in energy-conversion applications, however, is limited by the high electrode potentials required to generate the reactive oxoammonium species. Here we report (2,2‧-bipyridine)Cu/nitroxyl co-catalyst systems for electrochemical alcohol oxidation that proceed with much faster rates, while operating at an electrode potential a half-volt lower than that used for the TEMPO-only process. The (2,2‧-bipyridine)Cu(II) and TEMPO redox partners exhibit cooperative reactivity and exploit the low-potential, proton-coupled TEMPO/TEMPOH redox process rather than the high-potential TEMPO/TEMPO+ process. The results show how electron-proton-transfer mediators, such as TEMPO, may be used in combination with first-row transition metals, such as copper, to achieve efficient two-electron electrochemical processes, thereby introducing a new concept for the development of non-precious-metal electrocatalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mo; Sun, Wenlong; Pang, Haijun, E-mail: panghj116@163.com
With tuning the ligands from bte, btp, btb to bth, four new decavanadate-based metal–organic hybrid compounds, [Zn(bte)(H{sub 2}O){sub 4}][Zn{sub 2}(bte)(H{sub 2}O){sub 10}](V{sub 10}O{sub 28})·8H{sub 2}O, [Zn{sub 2}(btp){sub 4}(H{sub 2}O){sub 6}](H{sub 2}V{sub 10}O{sub 28})·4H{sub 2}O, [Zn(H{sub 2}O){sub 6}][Zn{sub 2}(btb){sub 2}V{sub 10}O{sub 28}(H{sub 2}O){sub 6}]·4H{sub 2}O, and [Zn{sub 2}(bth)(H{sub 2}O){sub 10}](H{sub 2}V{sub 10}O{sub 28})·6H{sub 2}O (bte=1,2-bis(1,2,4-triazol-1-yl)ethane, btp=1,3-bis(1,2,4-triazol-1-y1)propane, btb=1,4-bis(1,2,4-triazol-1-y1)butane, bth=1,6-bis(1,2,4-triazol-1-y1)hexane), have been synthesized under conventional conditions. The four compounds represent the first examples of decavanadate-based metal–organic hybrids constructed by Zn–bis(triazole) complexes. Their structural analyses show that the four compounds possess different Zn–bis(triazole) structural motifs and various finally structures, which verifies that regular changingmore » the spacers of ligands is an effective strategy to tuning the structures of polyoxometalate-based hybrids. Also, the electrochemical studies show that the compounds have good electrocatalytic activities towards oxidation of nitrite molecules ascribed to V-centers. - Graphical abstract: Four compounds representing the first examples of V{sub 10}O{sub 28}-based hybrids constructed by Zn–bis(triazole) complexes have been synthesized by changing the spacers of the ligands and their electrocatalytic properties have been investigated. - Highlights: • The first examples of V{sub 10}O{sub 28}-based hybrids constructed by Zn-bis(triazole) complexes. • Verifying that changing the spacers of ligands is a strategy to tuning structures. • Showing good electrocatalytic activities toward oxidation of nitrite molecules.« less
New Electrochemical Methods for Studying Nanoparticle Electrocatalysis and Neuronal Exocytosis
NASA Astrophysics Data System (ADS)
Cox, Jonathan T.
This dissertation presents the construction and application of micro and nanoscale electrodes for electroanalytical analysis. The studies presented herein encompass two main areas: electrochemical catalysis, and studies of the dynamics of single cell exocytosis. The first portion of this dissertation engages the use of Pt nanoelectrodes to study the stability and electrocatalytic properties of materials. A single nanoparticle electrode (SNPE) was fabricated by immobilizing a single Au nanoparticle on a Pt disk nanoelectrode via an amine-terminated silane cross linker. In this manner we were able to effectively study the electrochemistry and electrocatalytic activity of single Au nanoparticles and found that the electrocatalytic activity is dependent on nanoparticle size. This study can further the understanding of the structure-function relationship in nanoparticle based electrocatalysis. Further work was conducted to probe the stability of Pt nanoelectrodes under conditions of potential cycling. Pt based catalysts are known to deteriorate under such conditions due to losses in electrochemical surface area and Pt dissolution. By using Pt disk nanoelectrodes we were able to study Pt dissolution via steady-state voltammetry. We observed an enhanced dissolution rate and higher charge density on nanoelectrodes than that previously found on macro scale electrodes. The goal of the second portion of this dissertation is to develop new analytical methods to study the dynamics of exocytosis from single cells. The secretion of neurotransmitters plays a key role in neuronal communication, and our studies highlight how bipolar electrochemistry can be employed to enhance detection of neurotransmitters from single cells. First, we developed a theory to quantitatively characterize the voltammetric behavior of bipolar carbon fiber microelectrodes and secondly applied those principles to single cell detection. We showed that by simply adding an additional redox mediator to the back-fill solution of a carbon fiber microelectrode, there is a significant enhancement in detection. Additionally we used solid state nanopores to detect individual phospholipid vesicles in solution. Vesicles are key cellular components that play essential biological roles especially in neurotransmission. This work represents preliminary studies in detection and size determination from vesicles isolated from individual cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Yanli; Li, Ling; Mu, Bao
2017-05-15
Three POMs–based inorganic–organic frameworks, namely, [Cu{sub 2}(L){sub 2}(SiW{sub 12}O{sub 40})(H{sub 2}O){sub 2}]·6H{sub 2}O (1), [Co{sub 2}(L){sub 2}(SiW{sub 12}O{sub 40})(H{sub 2}O){sub 8}]·8H{sub 2}O (2) and [Ni{sub 2}(L){sub 2}(SiW{sub 12}O{sub 40})(H{sub 2}O){sub 8}]·6H{sub 2}O (3), (L=1,1′-(1,4-phenylene-bis(methylene))-bis(pyridine-3-carboxylic acid)), have been synthesized and characterized by elemental analyses, IR, XRPD, TG, and single crystal X-ray diffraction. Compound 1 contains 1D double chains decorated by (Cu{sub 2}(L){sub 4}(H{sub 2}O){sub 2}) units and the 1D chains and POMs are stacked to yield 2D frameworks. Compound 2 displays a 2D network constructed from 1D zigzag chains and POMs arranged in ABAB mode. Compound 3 consists of big squaremore » girds and the POMs are dispersed in the middle of the two adjacent girds, forming 2D networks. Compounds 1–3 all show structural integrity in aqueous solutions at different pH values and in common organic solvents. Additionally, the fluorescence and electrochemical properties of compounds 1–3 are also investigated. Compounds 1–3 exhibit good electrocatalytic activities for the reduction of NaNO{sub 2} and H{sub 2}O{sub 2}. - Highlights: • Compound 1–3 all contain different 1D chains. The noncovalent interaction of metal–organic moieties from compounds 1–3 and POMs to construct three new host–guest supramolecular compounds. • Compounds 1–3 show good electrocatalytic activities towards the reduction of NaNO{sub 2} and H{sub 2}O{sub 2}. • Compounds 1–3 all show structural integrity in aqueous solutions at different pH values and in common organic solvents. • Compounds 1–3 may be promising luminescent materials due to their luminescent properties.« less
Strasser, Peter
2016-11-15
Nanomaterial science and electrocatalytic science have entered a successful "nanoelectrochemical" symbiosis, in which novel nanomaterials offer new frontiers for studies on electrocatalytic charge transfer, while electrocatalytic processes give meaning and often practical importance to novel nanomaterial concepts. Examples of this fruitful symbiosis are dealloyed core-shell nanoparticle electrocatalysts, which often exhibit enhanced kinetic charge transfer rates at greatly improved atom-efficiency. As such, they represent ideal electrocatalyst architectures for the acidic oxygen reduction reaction to water (ORR) and the acidic oxygen evolution reaction from water (OER) that require scarce Pt- and Ir-based catalysts. Together, these two reactions constitute the "O-cycle", a key elemental process loop in the field of electrochemical energy interconversion between electricity (free electrons) and molecular bonds (H 2 O/O 2 ), realized in the combination of water electrolyzers and hydrogen/oxygen fuel cells. In this Account, we describe our recent efforts to design, synthesize, understand, and test noble metal-poor dealloyed Pt and Ir core-shell nanoparticles for deployment in acidic polymer electrolyte membrane (PEM) electrolyzers and PEM fuel cells. Spherical dealloyed Pt core-shell particles, derived from PtNi 3 precursor alloys, showed favorable ORR activity. More detailed size-activity correlation studies further revealed that the 6-8 nm diameter range is a most desirable initial particle size range in order to maximize the particle Ni content after ORR testing and to preserve performance stability. Similarly, dealloyed and oxidized IrO x core-shell particles derived from Ni-rich Ir-Ni precursor particles proved highly efficient oxygen evolution reaction (OER) catalysts in acidic conditions. In addition to the noble metal savings in the particle cores, the Pt core-shell particles are believed to benefit in terms of their mass-based electrochemical kinetics from surface lattice strain effects that tune the adsorption energies and barriers of elementary steps. The molecular mechanism of the kinetic benefit of the dealloyed IrO x particle needs more attention, but there is mounting evidence for ligand hole effects in defect-rich IrO x shells that generate preactive oxygen centers.
2012-01-01
solvents, such as ethanol , N-methyl-2-pyrrolidone, and methanesulfonic acid. The absorption and emission properties of DAB- MWCNT in solution state are...MWCNT) are highly dispersible in polar solvents, such as ethanol N-methyl-2-pyrrolidone, and methanesulfonic acid. The absorption and emission properties...oxidized defects on the CNTs are probable sites for deactivation of transition metal catalysts (Wildgoose et al. 2006). Hence, the development of a
Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof
Adzic, Radoslav; Zhang, Junliang
2010-04-27
The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.
Zhu, Xiaolin; Zhang, Kexin; Wang, Chengzhi; Guan, Jiunian; Yuan, Xing; Li, Baikun
2016-01-01
This study aimed at developing simple, sensitive and rapid electrochemical approach to quantitatively determine and assess the toxicity of 2,4-dichlorophenol (2,4-DCP), a priority pollutant and has potential risk to public health through a novel poly(eosin Y, EY)/hydroxylated multi-walled carbon nanotubes composite modified electrode (PEY/MWNTs-OH/GCE). The distinct feature of this easy-fabricated electrode was the synergistic coupling effect between EY and MWNTs-OH that enabled a high electrocatalytic activity to 2,4-DCP. Under optimum conditions, the oxidation peak current enhanced linearly with concentration increasing from 0.005 to 0.1 μM and 0.2 to 40.0 μM, and revealed the detection limit of 1.5 nM. Moreover, the PEY/MWNTs-OH/GCE exhibited excellent electrocatalytic activity toward intracellular electroactive species. Two sensitive electrochemical signals ascribed to guanine/xanthine and adenine/hypoxanthine in human hepatoma (HepG2) cells were detected simultaneously. The sensor was successfully applied to evaluate the toxicity of 2,4-DCP to HepG2 cells. The IC50 values based on the two electrochemical signals are 201.07 and 252.83 μM, respectively. This study established a sensitive platform for the comprehensive evaluation of 2,4-DCP and posed a great potential to simplify environmental toxicity monitoring. PMID:27941912
Hu, Chenyi; Yang, Da-Peng; Zhu, Fengjuan; Jiang, Fengjing; Shen, Shuiyun; Zhang, Junliang
2014-03-26
Electrocatalytic reactions of glucose oxidation based on enzyme-labeled electrochemical biosensors demand a high enzymatic activity and fast electron transfer property to produce the amplified signal response. Through a "green" synthesis method, Pt@BSA nanocomposite was prepared as a biosensing interface for the first time. Herein we presented a convenient and effective glucose sensing matrix based on Pt@BSA nanocomposite along with the covalent adsorption of glucose oxidase (GOD). The electrocatalytic activity toward oxygen reduction was significantly enhanced due to the excellent bioactivity of anchored GOD and superior catalytic performance of interior platinum nanoparticles, which was gradually restrained with the addition of glucose. A sensitive glucose biosensor was then successfully developed upon the restrained oxygen reduction peak current. Differential pulse voltammetry (DPV) was employed to investigate the determination performance of the enzyme biosensor, resulting in a linear response range from 0.05 to 12.05 mM with an optimal detection limit of 0.015 mM. The as-proposed sensing technique revealed high selectivity against endogenous interfering species, satisfactory storage stability, acceptable durability, and favorable fabrication reproducibility with the RSD of 3.8%. During the practical application in human blood serum samples, this glucose biosensor obtained a good detection accuracy of analytical recoveries within 97.5 to 104.0%, providing an alternative scheme for glucose level assay in clinical application.
NASA Astrophysics Data System (ADS)
Bramhaiah, K.; Pandey, Indu; Singh, Vidya N.; Kavitha, C.; John, Neena S.
2018-03-01
Hybrid films of reduced graphene oxide-osmium nanoparticles (rGO-Os NPs) synthesized at a liquid/liquid interface are explored for their electrocatalytic activity towards the oxidation of rhodamine B (RhB), a popular colourant found in textile industry effluents and a non-permitted food colour. The free-standing nature of the films enables them to be lifted directly on to electrodes without the aid of any binders. The films consist of aggregates of ultra-small Os NPs interspersed with rGO layers. The hybrid film exhibits enhanced RhB oxidation when compared to its constituents arising from the synergic effect between rGO and Os NPs, Os contributing to electrocatalysis and rGO contributing to high surface area and conductance as well as stabilization of Os nanoparticles. The electrochemical sensor based on rGO-Os NP hybrid film on pencil graphite electrode shows a remarkable performance for the quantitative detection of RhB with a linear variation in a wide range of concentrations, 4-1300 ppb (8.3 nM-2.71 μM). The modified electrode presents good stability over more than 6 months, reproducibility and anti-interference capability. The use of developed sensor for adequate detection of RhB in real samples such as food samples and pen markers is also demonstrated.
NASA Astrophysics Data System (ADS)
Liu, Bingchuan; Brückner, Cristian; Lei, Yu; Cheng, Yue; Santoro, Carlo; Li, Baikun
2014-07-01
This study focused on the development of novel cathode material based on the pyrolysis of [meso-tetrakis(2-thienyl)porphyrinato]Co(II) (CoTTP) for use in single chamber microbial fuel cells (SCMFCs) to treat wastewater containing methanol. The cathodes produced at two loadings (0.5 and 1.0 mg cm-2) were examined in batch mode SCMFCs treating methanol of different concentrations (ranging from 0.005 to 0.04 M) over a 900 h operational period. Methanol was completely removed in SCMFCs, and the cycle duration was prolonged at high methanol concentrations, indicating methanol was used as fuel in SCMFCs. Methanol had more poisoning effects to the traditional platinum (Pt) cathodes than to the CoTTP cathodes. Specifically, power generations from SCMFCs with Pt cathodes gradually decreased over time, while the ones with CoTTP cathodes remained stable, even at the highest methanol concentration (0.04 M). Cathode linear sweep voltammetry (LSVs) indicated that the electrocatalytic activity of the Pt cathode was suppressed by methanol. Higher CoTTP loadings had similar open circuit potential (OCP) but higher electrocatalytic activity than lower loadings. This study demonstrated that methanol can be co-digested with wastewater and converted to power in MFCs, and a novel cathode CoTTP catalyst exhibits higher tolerance towards methanol compared with traditional Pt catalyst.
Studies of Cobalt-Mediated Electrocatalytic CO2 Reduction Using a Redox-Active Ligand
2015-01-01
The cobalt complex [CoIIIN4H(Br)2]+ (N4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(7),2,11,13,15-pentaene) was used for electrocatalytic CO2 reduction in wet MeCN with a glassy carbon working electrode. When water was employed as the proton source (10 M in MeCN), CO was produced (fCO= 45% ± 6.4) near the CoI/0 redox couple for [CoIIIN4H(Br)2]+ (E1/2 = −1.88 V FeCp2+/0) with simultaneous H2 evolution (fH2= 30% ± 7.8). Moreover, we successfully demonstrated that the catalytically active species is homogeneous through the use of control experiments and XPS studies of the working glassy-carbon electrodes. As determined by cyclic voltammetry, CO2 catalysis occurred near the formal CoI/0redox couple, and attempts were made to isolate the triply reduced compound (“[Co0N4H]”). Instead, the doubly reduced (“CoI”) compounds [CoN4] and [CoN4H(MeCN)]+ were isolated and characterized by X-ray crystallography. Their molecular structures prompted DFT studies to illuminate details regarding their electronic structure. The results indicate that reducing equivalents are stored on the ligand, implicating redox noninnocence in the ligands for H2 evolution and CO2 reduction electrocatalysis. PMID:24773584
Cao, Xuecheng; Sun, Zhihui; Zheng, Xiangjun; Jin, Chao; Tian, Jinhua; Li, Xiaowei; Yang, Ruizhi
2018-02-09
Carbon is usually used as cathode material for Li-O 2 batteries. However, the discharge product, such as Li 2 O 2 and LiO 2 , could react with carbon to form an insulating lithium carbonate layer, resulting in cathode passivation and capacity fading. To solve this problem, the development of non-carbon cathodes is highly desirable. Herein, we successfully synthesized MnCo 2 O 4 (MCO) nanoparticles anchored on porous MoO 2 nanosheets that are grown on Ni foam (current collector) (MCO/MoO 2 @Ni), acting as a carbon- and binder-free cathode for Li-O 2 batteries, in an attempt to improve the electrical conductivity, electrocatalytic activity, and durability. This MCO/MoO 2 @Ni electrode delivers excellent cyclability (more than 400 cycles) and rate performance (voltage gap of 0.75 V at 5000 mA g -1 ). Notably, the battery with this electrode exhibits a high energy efficiency (higher than 85 %). The advanced electrochemical performance of MCO/MoO 2 @Ni can be attributed to its high electrical conductivity, excellent stability, and outstanding electrocatalytic activity. This work offers a new strategy to fabricate high-performance Li-O 2 batteries with non-carbon cathode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Jing; Cui, Meirong; Zhou, Hong; Zhang, Shusheng
2016-01-01
A novel ternary composite of hemin-graphene-Au nanorods (H-RGO-Au NRs) with high electrocatalytic activity was synthesized by a simple method. And this ternary composite was firstly used in construction of electrochemiluminescence (ECL) immunosensor due to its double-quenching effect of quantum dots (QDs). Based on the high electrocatalytic activity of ternary complexes for the reduction of H2O2 which acted as the coreactant of QDs-based ECL, as a result, the ECL intensity of QDs decreased. Besides, due to the ECL resonance energy transfer (ECL-RET) strategy between the large amount of Au nanorods (Au NRs) on the ternary composite surface and the CdS:Eu QDs, the ECL intensity of QDs was further quenched. Based on the double-quenching effect, a novel ultrasensitive ECL immunoassay method for detection of carcinoembryonic antigen (CEA) which is used as a model biomarker analyte was proposed. The designed immunoassay method showed a linear range from 0.01 pg mL−1 to 1.0 ng mL−1 with a detection limit of 0.01 pg mL−1. The method showing low detection limit, good stability and acceptable fabrication reproducibility, provided a new approach for ECL immunoassay sensing and significant prospect for practical application. PMID:27460868
NASA Astrophysics Data System (ADS)
Ruan, Dajiang
The aim of this work is to investigate the effect of current density on the grain size and surface morphology of electrodeposited platinum nanowires and their applications. Platinum (Pt) nanowires were fabricated by a galvanostatic electrodeposition method in a porous anodic alumina oxide (AAO) template with different current densities. Both direct current and pulse current electrodeposition were used to synthesize the Pt nanowires. The grain size and surface morphology of the Pt nanowires were studied by field emission scanning electron microscopy (FE-SEM), transmission electron microcopy (TEM) and X-ray diffraction (XRD). The experimental results showed that the current density was the key factor to control the surface roughness. The surface of the Pt nanowires became rougher and the grain sizes were increased by increasing the current densities. From the experimental results, a growth mechanism of Pt nanowires based on progressive nucleation and crystallization was proposed in order to find out the relationship between the surface morphology and current density. The electrochemical properties and catalytic activities of these surface roughed Pt nanowires were investigated in the detection of H20 2 and for the methanol oxidation. Cyclic voltammograms of Pt nanowire modified electrodes were obtained using a potentiostat, which showed that rougher Pt nanowires have higher response and better activity than that of smooth nanowires. For H202 detection, the effect of scan rate and H202 concentration were studied and it was found that the peak current for hydrogen peroxide reduction became larger with the increasing of either scan rate or H202 concentration. It can be inferred that the process of electrocatalytic hydrogen peroxide reduction may be controlled by diffusion of hydrogen peroxide and the Pt nanowire modified glassy carbon electrode (GCE) is well suited for the detection of H202. From the relationship between the peak current and square root of scan rates for methanol oxidation, it can be inferred that the process of electrocatalytic methanol oxidation was controlled by diffusion of methanol. To understand the effect of the morphological feature on the electrocatalytic activity of the Pt nanowire catalysts, the electrochemically active surface area (ECSA) as a function of deposited current density was investigated, which suggests that Pt nanowire catalysts deposited at highest current density had the most ECSA surface morphology of the Pt nanowires. The chronoamperometric curves and electrochemical impedance spectroscopy (EIS) results confirmed that the Pt nanowire catalyst synthesized at higher current density possessed longer durability and gave more efficient electrochemical performance.
What Should We Make with CO 2 and How Can We Make It?
Bushuyev, Oleksandr S.; De Luna, Phil; Dinh, Cao Thang; ...
2018-03-29
In this forward-looking Perspective, we discuss the current state of technology and the economics of electrocatalytic transformation of CO 2 into various chemical fuels. Furthermore, our analysis finds that short-chain simple building-block molecules currently present the most economically compelling targets. Making an optimistic prediction of technology advancement in the future, we propose the gradual rise of photocatalytic, CO 2 polymerization, biohybrid, and molecular machine technologies to augment and enhance already practical electrocatalytic CO 2 conversion methods.
What Should We Make with CO 2 and How Can We Make It?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bushuyev, Oleksandr S.; De Luna, Phil; Dinh, Cao Thang
In this forward-looking Perspective, we discuss the current state of technology and the economics of electrocatalytic transformation of CO 2 into various chemical fuels. Furthermore, our analysis finds that short-chain simple building-block molecules currently present the most economically compelling targets. Making an optimistic prediction of technology advancement in the future, we propose the gradual rise of photocatalytic, CO 2 polymerization, biohybrid, and molecular machine technologies to augment and enhance already practical electrocatalytic CO 2 conversion methods.
Single-molecule electrocatalysis by single-walled carbon nanotubes.
Xu, Weilin; Shen, Hao; Kim, Yoon Ji; Zhou, Xiaochun; Liu, Guokun; Park, Jiwoong; Chen, Peng
2009-12-01
We report a single-molecule fluorescence study of electrocatalysis by single-walled carbon nanotubes (SWNTs) at single-reaction resolution. Applying super-resolution optical imaging, we find that the electrocatalysis occurs at discrete, nanometer-dimension sites on SWNTs. Single-molecule kinetic analysis leads to an electrocatalytic mechanism, allowing quantification of the reactivity and heterogeneity of individual reactive sites. Combined with conductivity measurements, this approach will be powerful to interrogate how the electronic structure of SWNTs affects the electrocatalytic interfacial charge transfer, a process fundamental to photoelectrochemical cells.
Nonaqueous electrocatalytic water oxidation by a surface-bound Ru(bda)(L)₂ complex.
Sheridan, Matthew V; Sherman, Benjamin D; Wee, Kyung-Ryang; Marquard, Seth L; Gold, Alexander S; Meyer, Thomas J
2016-04-21
The rate of electrocatalytic water oxidation by the heterogeneous water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], , (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate) on metal oxide surfaces is greatly enhanced relative to water as the solvent. In these experiments with propylene carbonate (PC) as the nonaqueous solvent, water is the limiting reagent. Mechanistic studies point to atom proton transfer (APT) as the rate limiting step in water oxidation catalysis.
Lee, Seunghwa; Kim, Dahee; Lee, Jaeyoung
2015-12-01
Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper-derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)-induced bi-phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high-carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high-carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi-carbon fuels, including n-propanol and n-butane C3-C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pang, H L; Zhang, X H; Zhong, X X; Liu, B; Wei, X G; Kuang, Y F; Chen, J H
2008-03-01
Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.
Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.
2018-04-24
A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.
NASA Astrophysics Data System (ADS)
Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping
2018-02-01
La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.
NASA Astrophysics Data System (ADS)
Chen, De-Jun; Zhang, Qian-Li; Feng, Jin-Xia; Ju, Ke-Jian; Wang, Ai-Jun; Wei, Jie; Feng, Jiu-Ju
2015-08-01
In this work, a simple, rapid and facile one-pot wet-chemical co-reduction method is developed for synthesis of bimetallic Au-Pt alloyed nanochains supported on reduced graphene oxide (Au-Pt NCs/RGO), in which caffeine is acted as a capping agent and a structure-directing agent, while no any seed, template, surfactant or polymer involved. The as-prepared nanocomposites display enlarged electrochemical active surface area, significantly enhanced catalytic activity and better stability for methanol and ethylene glycol oxidation, compared with commercial Pt-C (Pt 50 wt%), PtRu-C (Pt 30 wt% and Ru 15 wt%) and Pt black.
NASA Astrophysics Data System (ADS)
Zhang, Chengwei; Yang, Hui; Sun, Tingting; Shan, Nannan; Chen, Jianfeng; Xu, Lianbin; Yan, Yushan
2014-01-01
Three dimensionally ordered macro-/mesoporous (3DOM/m) Pt catalysts are fabricated by chemical reduction employing a dual-templating synthesis approach combining both colloidal crystal (opal) templating (hard-templating) and lyotropic liquid crystal templating (soft-templating) techniques. The macropore walls of the prepared 3DOM/m Pt exhibit a uniform mesoporous structure composed of polycrystalline Pt nanoparticles. Both the size of the mesopores and Pt nanocrystallites are in the range of 3-5 nm. The 3DOM/m Pt catalyst shows a larger electrochemically active surface area (ECSA), and higher catalytic activity as well as better poisoning tolerance for methanol oxidation reaction (MOR) than the commercial Pt black catalyst.
Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram
2016-03-01
In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gu, Daguo; Zhou, Yao; Ma, Ruguang; Wang, Fangfang; Liu, Qian; Wang, Jiacheng
2018-06-01
A series of N-doped carbon materials (NCs) were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile one-step pyrolysis method. The characterization of microstructural features shows that the NCs samples are composed of few-layered graphene-like nanoflakes with controlled in situ N doping, which is attributed to the confined pyrolysis of citric acid within the interlayers of the dicyandiamide-derived g-C3N4 with high nitrogen contents. Evidently, the pore volumes of the NCs increased with the increasing content of dicyandiamide in the precursor. Among these samples, the NCs nanoflakes prepared with the citric acid/dicyandiamide mass ratio of 1:6, NC-6, show the highest N content of 6.2 at%, in which pyridinic and graphitic N groups are predominant. Compared to the commercial Pt/C catalyst, the as-prepared NC-6 exhibits a small negative shift of 66 mV at the half-wave potential, demonstrating excellent electrocatalytic activity in the oxygen reduction reaction. Moreover, NC-6 also shows better long-term stability and resistance to methanol crossover compared to Pt/C. The efficient and stable performance are attributed to the graphene-like microstructure and high content of pyridinic and graphitic doped nitrogen in the sample, which creates more active sites as well as facilitating charge transfer due to the close four-electron reaction pathway. The superior electrocatalytic activity coupled with the facile synthetic method presents a new pathway to cost-effective electrocatalysts for practical fuel cells or metal-air batteries.
Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst
NASA Astrophysics Data System (ADS)
Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi
2015-04-01
The electro-catalytic behavior of Pt-CoOx/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH4 as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoOx, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of COads on Pt active sites by the participation of CoOx. Compared to Pt/MWCNTs, Pt-CoOx/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoOx/MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups controls the total rate of MOR process.
BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction
2012-01-01
annealing GO in the presence of boric acid and ammonia. The resultant BCN graphene was shown to have superior electrocatalytic activities to the commercial...graphene samples of different chemical compositions, along with the mixture of GO and boric acid (B-GO) starting material as reference. Comparing with the...in addition to B into GO by thermal annealing in the presence of boric acid and ammonia. Like VA-BCN nanotubes,[15] the presence of a O1s peak in the
Yilmaz, Gamze; Yam, Kah Meng; Zhang, Chun; Fan, Hong Jin; Ho, Ghim Wei
2017-07-01
Direct adoption of metal-organic frameworks (MOFs) as electrode materials shows impoverished electrochemical performance owing to low electrical conductivity and poor chemical stability. In this study, we demonstrate self-templated pseudomorphic transformation of MOF into surface chemistry rich hollow framework that delivers highly reactive, durable, and universal electrochemically active energy conversion and storage functionalities. In situ pseudomorphic transformation of MOF-derived hollow rhombic dodecahedron template and sulfurization of nickel cobalt layered double hydroxides (NiCo-LDHs) lead to the construction of interlayered metal sulfides (NiCo-LDH/Co 9 S 8 ) system. The embedment of metal sulfide species (Co 9 S 8 ) at the LDH intergalleries offers optimal interfacing of the hybrid constituent elements and materials stability. The hybrid NiCo-LDH/Co 9 S 8 system collectively presents an ideal porous structure, rich redox chemistry, and high electrical conductivity matrix. This leads to a significant enhancement in its complementary electrocatalytic hydrogen evolution and supercapacitive energy storage properties. This work establishes the potential of MOF derived scaffold for designing of novel class hybrid inorganic-organic functional materials for electrochemical applications and beyond. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping
2016-02-01
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
Xu, Guang-Rui; Bai, Juan; Jiang, Jia-Xing
2017-01-01
The electrocatalytic hydrogen evolution reaction (HER) is a highly promising green method for sustainable and efficient hydrogen production. So far, Pt nanocrystals are still the most active electrocatalysts for the HER in acidic media, although a tremendous search for alternatives has been done in the past decade. In this work, we synthesize polyethyleneimine (PEI) functionalized Pt superstructures (Pt-SSs@PEI) with tetragonal, hierarchical, and branched morphologies with a facile wet chemical reduction method. A series of physical characterizations are conducted to investigate the morphology, electronic structure, surface composition, and formation mechanism of Pt-SSs@PEI. Impressively, the as-prepared Pt-SSs@PEI show an unprecedented onset reduction potential (+64.6 mV vs. reversible hydrogen electrode) for the HER in strong acidic media due to the protonation of –NH2 groups in the PEI adlayers on the Pt surface, and they outperform all currently reported HER electrocatalysts. The work highlights a highly effective interface-engineering strategy for improving the electrocatalytic performance of Pt nanocrystals for the HER. PMID:29619188
Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping
2016-02-15
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
NASA Astrophysics Data System (ADS)
Navaee, Aso; Salimi, Abdollah; Soltanian, Saeid; Servati, Peyman
2015-03-01
Due to exceptional electronic properties of graphene (Gr) and nitrogen doped graphene (N-Gr), they are considered as superior supporting platforms for novel metal nanoparticle decorations. Here, we report, a novel one-step electrochemical method for synthesis of Nitrogen-doped graphene sheets uniformly decorated with platinum nanoparticles (Pt/N-Gr). A graphite rod and platinum wire are respectively used for graphene and platinum nanoparticles production. The potential is cycled from -3V to +3V in acetonitrile solution as a nitrogen dopant source. By increasing the number of cycles the nitrogen-doped graphene/platinum nanoparticles composite is generated. After heat-treating the composite is characterized with various techniques such as FTIR, Raman, XPS, SEM and TEM. The electrocatalytic activity of the prepared composite toward the reduction of O2 and the oxidation of usual anodic fuels such as methanol, ethanol, hydrazine and formic acid is investigated using cyclic voltammetry technique. In comparison to commercial platinum/carbon, the onset potentials and the current densities for both O2 reduction and fuels oxidation are remarkably improved. Furthermore, the modified electrode by this composite shows good long-term stability and poisoning tolerance.
Xiao, Fei; Song, Jibin; Gao, Hongcai; Zan, Xiaoli; Xu, Rong; Duan, Hongwei
2012-01-24
The development of flexible electrodes is of considerable current interest because of the increasing demand for modern electronics, portable medical products, and compact energy devices. We report a modular approach to fabricating high-performance flexible electrodes by structurally integrating 2D-assemblies of nanoparticles with freestanding graphene paper. We have shown that the 2D array of gold nanoparticles at oil-water interfaces can be transferred on freestanding graphene oxide paper, leading to a monolayer of densely packed gold nanoparticles of uniform sizes loaded on graphene oxide paper. One major finding is that the postassembly electrochemical reduction of graphene oxide paper restores the ordered structure and electron-transport properties of graphene, and gives rise to robust and biocompatible freestanding electrodes with outstanding electrocatalytic activities, which have been manifested by the sensitive and selective detection of two model analytes: glucose and hydrogen peroxide (H(2)O(2)) secreted by live cells. The modular nature of this approach coupled with recent progress in nanocrystal synthesis and surface engineering opens new possibilities to systematically study the dependence of catalytic performance on the structural parameters and chemical compositions of the nanocrystals. © 2011 American Chemical Society
Enhanced Charge Collection in MOF‐525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing
Huang, Tzu‐Yen; Kung, Chung‐Wei; Liao, Yu‐Te; Kao, Sheng‐Yuan; Cheng, Mingshan; Chang, Ting‐Hsiang; Henzie, Joel; Alamri, Hatem R.; Alothman, Zeid A.
2017-01-01
Abstract With the aim of a reliable biosensing exhibiting enhanced sensitivity and selectivity, this study demonstrates a dopamine (DA) sensor composed of conductive poly(3,4‐ethylenedioxythiophene) nanotubes (PEDOT NTs) conformally coated with porphyrin‐based metal–organic framework nanocrystals (MOF‐525). The MOF‐525 serves as an electrocatalytic surface, while the PEDOT NTs act as a charge collector to rapidly transport the electron from MOF nanocrystals. Bundles of these particles form a conductive interpenetrating network film that together: (i) improves charge transport pathways between the MOF‐525 regions and (ii) increases the electrochemical active sites of the film. The electrocatalytic response is measured by cyclic voltammetry and differential pulse voltammetry techniques, where the linear concentration range of DA detection is estimated to be 2 × 10−6–270 × 10−6 m and the detection limit is estimated to be 0.04 × 10−6 m with high selectivity toward DA. Additionally, a real‐time determination of DA released from living rat pheochromocytoma cells is realized. The combination of MOF5‐25 and PEDOT NTs creates a new generation of porous electrodes for highly efficient electrochemical biosensing. PMID:29201623
Lang, Qiaolin; Han, Lei; Hou, Chuantao; Wang, Fei; Liu, Aihua
2016-08-15
A sensitive amperometric acetylcholinesterase (AChE) biosensor, based on gold nanorods (AuNRs), was developed for the detection of organophosphate pesticide. Compared with Au@Ag heterogeneous NRs, AuNRs exhibited excellent electrocatalytic properties, which can electrocatalytically oxidize thiocholine, the hydrolysate of acetylthiocholine chloride (ATCl) by AChE at +0.55V (vs. SCE). The AChE/AuNRs/GCE biosensor was fabricated on basis of the inhibition of AChE activity by organophosphate pesticide. The biosensor could detect paraoxon in the linear range from 1nM to 5μM and dimethoate in the linear range from 5nM to 1μM, respectively. The detection limits of paraoxon and dimethoate were 0.7nM and 3.9nM, which were lower than the reported AChE biosensor. The proposed biosensor could restore to over 95% of its original current, which demonstrated the good reactivation. Moreover, the biosensor can be applicable to real water sample measurement. Thus, the biosensor exhibited low applied potential, high sensitivity and good stability, providing a promising tool for analysis of pesticides. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Meisong; Cheng, Yu; Yu, Yanan; Hu, Jingbo
2017-09-01
Proton exchange membrane (PEM) fuel cells have drawn a great deal of attention due to the rapidly growing energy consumption. Recently, Ni- and Co-based materials have been considered as promising electorcatalysts owing to their multi-functionality. In this work, Ni and Co nanoparticles are directly immobilized on a three-dimensional Ni foam substrate (Ni-Co/NF) without any conductive agents or polymer binder by a facile ion implantation method. The structure and morphology of the Ni-Co/NF electrode were characterized by scanning electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. The performance of the Ni-Co/NF electrode in the electrochemical oxidation of NaBH4 is investigated by cyclic voltammetry and chronoamperometry. The Ni-Co/NF electrode exhibited excellent electrocatalytic activity and good stability during electrochemical reactions. These properties are attributed to the 3D porous structure of the Ni foam and the synergistic effect of Ni and Co nanoparticles. The enhanced electrocatalytic performance in NaBH4 electrooxidation compared with either Ni or Co nanoparticles alone suggests that the Ni-Co/NF is promising for fuel cell applications.
NASA Astrophysics Data System (ADS)
Zhu, Guoxing; Xie, Xulan; Liu, Yuanjun; Li, Xiaoyun; Xu, Keqiang; Shen, Xiaoping; Yao, Yinjie; Shah, Sayyar Ali
2018-06-01
The sluggish oxygen evolution kinetics involved in water splitting and various metal-air batteries makes the effective and inexpensive electrocatalysts be highly desirable for oxygen evolution reaction (OER). Herein, an effective and facile two-step route is developed to construct Fe3O4@NiSx composite loaded on reduced graphene oxide (rGO). The morphology and microstructure of the composites were characterized by different characterization techniques. The obtained composites show amounts of heterointerfaces. The shift of binding energy in X-ray photoelectron spectrum demonstrates the existence of interfacial charge transfer effect between Fe3O4 and NiSx. The optimized Fe3O4@NiSx/rGO sample exhibits excellent electrocatalytic performance toward OER in alkaline media, showing 10 mA·cm-2 at η = 330 mV, lower Tafel slope (35.5 mV·dec-1), and good durability, demonstrating a great perspective. The excellent OER performance can be ascribed to the synergetic effect between Fe and Ni species. It is believed that the heterointerfaces between Fe3O4 and NiSx perform as active centers for OER.
Shetti, Nagaraj P; Malode, Shweta J; Nandibewoor, Sharanappa T
2012-12-01
Electrochemical oxidation of acyclovir at fullerene-C(60)-modified glassy carbon electrode has been investigated using cyclic and differential pulse voltammetry. In pH 7.4 phosphate buffer, acyclovir showed an irreversible oxidation peak at about 0.96V. The cyclic voltammetric results showed that fullerene-C(60)-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of acyclovir. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the acyclovir determination by differential pulse voltammetry. Effects of anodic peak potential (E(p)/V), anodic peak current (I(p)/μA) and heterogeneous rate constant (k(0)) have been discussed. Under optimized conditions, the concentration range and detection limit were 9.0×10(-8) to 6.0×10(-6)M and 1.48×10(-8)M, respectively. The proposed method was applied to acyclovir determination in pharmaceutical samples and human biological fluids such as urine and blood plasma as a real sample. This method can also be employed in quality control and routine determination of drugs in pharmaceutical formulations. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mao, Hui; Song, Jinling; Zhang, Qian; Liu, Daliang; Gong, Naiqi; Li, Ying; Wu, Qiong; Verpoort, Francis; Song, Xi-Ming
2013-05-01
Copolymerization of styrene (St) and 1-vinyl-3-ethylimidazolium bromide (VEIB), novel poly(St-co-VEIB) microspheres were generated. Owing to the presence of imidazolium groups, such microspheres having an average diameter of 125 nm, behave electropositively when dispersed in aqueous solution. Furthermore, due to the presence of imidazolium groups, having a capacity of ion-exchange and weak reducibility on the surface of the PS microspheres, [Fe(CN)6]3- was absorbed on the surface of poly(St-co-VEIB) microspheres, and simultaneously, Fe3+ was reduced to Fe2+. Thus, in situ growth of Prussian blue (PB) nanoparticles could occur on the surface of poly(St-co-VEIB) microspheres without the addition of any other reducing agent. This methodology, utilizing the ion-exchange and weak reducibility properties of the imidazolium groups on the surface of micro-/nanostructures is a novel general method for assembling hierarchical nanostructured materials. Finally, the electrochemical property of the strawberry-like PS/PB composite microspheres was also investigated by applying a glassy carbon electrode. A good repeatability of the cyclic voltammetry responses, having a good linearity and sensitivity, for the electrocatalytic reduction of H2O2 was obtained.
Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation.
Hu, Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia
2014-03-07
A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Shaofang; Zhu, Chengzhou; Song, Junhua
2017-07-11
The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.
Chen, Jitang; Xia, Guoliang; Jiang, Peng; Yang, Yang; Li, Ren; Shi, Ruohong; Su, Jianwei; Chen, Qianwang
2016-06-01
The water electrolysis is of critical importance for sustainable hydrogen production. In this work, a highly efficient and stable PdCo alloy catalyst (PdCo@CN) was synthesized by direct annealing of Pd-doped metal-organic frameworks (MOFs) under N2 atmosphere. In 0.5 M H2SO4 solution, PdCo@CN displays remarkable electrocatalytic performance with overpotential of 80 mV, a Tafel slope of 31 mV dec(-1), and excellent stability of 10 000 cycles. Our studies reveal that noble metal doped MOFs are ideal precursors for preparing highly active alloy electrocatalysts with low content of noble metal.
Bifunctional catalytic electrode
NASA Technical Reports Server (NTRS)
Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)
2005-01-01
The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.
Cui, Zhiming; Li, Chang Ming; Jiang, San Ping
2011-09-28
A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.
Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong
2015-06-15
A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na2SO4 concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol(-1). Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Eunjik; Park, Ah-Hyeon; Park, Hyun-Uk; Kwon, Young-Uk
2018-01-01
In this work, we present facile synthesis of amorphous Ni/Fe mixed (oxy)hydroxide (NiFe(H)) nanoparticles (NPs) and their electrocatalytic performance for oxygen evolution reaction (OER) in alkaline media. a-NiFe(H) NPs have received lots of attention as OER electrocatalysts with many desirable properties. By using a simple sonochemical route, we prepared amorphous Ni and Fe-alkoxide (NiFe(A)) NPs whose composition can be controlled in the entire composition range (Ni 100-x Fe x , 0≤x≤1). These samples are composed of extremely small NiFe(A) NPs with Ni and Fe atoms homogeneously distributed. NiFe(A) NPs are readily converted into corresponding electrocatalytically active NiFe(H) NP by a simple electrochemical treatment. Electrochemical analysis data show that the OER activity of amorphous NiFe(H) samples follows the volcano-type trend when plotted against the Fe content. Ni 70 Fe 30 (H) sample showed the lowest overpotential of 292mV at 10mAcm -2 geo and the lowest Tafel slope of 30.4mVdec -1 , outperforming IrO x /C (326mV, 41.7mVdec -1 ). Our samples are highly durable based on the chronopotentiometry data at the current density of 10mAcm -2 geo for 2h which show that Ni 70 Fe 30 sample maintains the steady-state potential, contrary to the time-varying IrO x /C. Copyright © 2017 Elsevier B.V. All rights reserved.
Lopes, Pietro P.; Strmcnik, Dusan; Jirkovsky, Jakub S.; ...
2015-09-28
Oxygen reduction and ethanol oxidation reactions were studied on Au(111), Pt(111) and Ir(111) in alkaline solutions containing sodium and/or lithium cations. By keeping the same (111) surface orientation and exploring oxophilicity trends and non-covalent interactions between OH ad and alkali metal cations (AMC n+), we were able to gain deep insights into the multiple roles that OH ad plays in these important electrocatalytic reactions. Cyclic voltammetry experiments revealed that OH ad formation initiates at distinct electrode potentials, governed by the oxophilicity of the specific metal surface, with further OH ad adlayer stabilization by non-covalent alkali-cation interactions and affecting the formationmore » of a “true oxide” layer at higher electrode potentials. Although OH ad is a simple spectator for the ORR, it promotes the ethanol oxidation reaction (EOR) at lower potentials and act as spectator at high OHad coverages. By changing the alkali metal cation at the interface (Li +) on more oxophilic surfaces, it was possible to promote the EOR even more, relative to Na +, without changing the product distribution for the reaction. This cation effect suggests that OH ad—Li +(H 2O) x clusters can stabilize the ethoxide adlayer, thus improving the EOR activity. Finally, our results indicate the importance of the entire electrochemical interface in determining the electrocatalytic activity during reaction.« less
NASA Astrophysics Data System (ADS)
Xu, Jiasheng; Wang, Mengjun; Pan, Binbin; Li, Jinpeng; Xia, Bin; Zhang, Xiaobo; Tong, Zhiwei
To prepare the novel plate-like nanocomposite CoIIITMPyP/Nb3O8, the cationic cobalt (III) tetrakis-5, 10, 15, 20-(N-methyl-4-pyridyl) porphyrin (CoIIITMPyP) was intercalated into the interlayer of the perovskite structural material KNb3O8 via the electrostatic self-assembly of the positively charged CoIIITMPyP molecules and the electronegative Nb3O8- nanosheets. The Nb3O8- nanosheets was obtained by exfoliating the protonated product of niobate KNb3O8 in the tetrabutyl ammonium hydroxide (TBA+OH-) aqueous solution. The zeta potential was measured to indicate the stability and uniformity of the Nb3O8- nanosheet colloidal dispersion, and the structure and component of the parent material KNb3O8, the acidified product HNb3O8, and the interlayered nanocomposite CoIIITMPyP/Nb3O8 were characterized using XRD, FT-IR, SEM and AFM. Furthermore, the electrocatalytic activity toward the oxygen reduction reaction (ORR) of CoIIITMPyP/Nb3O8 hybrids modified GCE was investigated by the cyclic voltammetry (CV) measurements. The modified GCE exhibited good electrocatalytic activity toward ORR in consideration of the peak shift from -0.723V to -0.300V. The linear correlation of the reduction peak current and the square root of the scan rate suggested a diffusion controlled process.
NASA Astrophysics Data System (ADS)
Zhang, Taihong; Yun, Sining; Li, Xue; Huang, Xinlei; Hou, Yuzhi; Liu, Yanfang; Li, Jing; Zhou, Xiao; Fang, Wen
2017-02-01
Transition metal compounds (TMCs), as a representative family of functional materials, have attracted great attention in the field of renewable energy. Herein, Nb3.49N4.56O0.44 and NbN are prepared from the nitridation of NbO2 in an NH3 atmosphere. These dual-functional Nb-based compounds were applied to dye-sensitized solar cells (DSSCs) and anaerobic digestion (AD), and the efficiency and stability of these DSSCs and AD systems were systematically evaluated. The Nb3.49N4.56O0.44 counter electrode (CE) exhibited considerable electrocatalytic activity and stability in I3- reduction in DSSCs, achieving photovoltaic performance comparable with Pt (6.36% vs. 7.19%). Furthermore, as accelerants, Nb-based compounds can greatly improve the AD environment, increasing substrate utilization and decreasing the hazards in the digestate. Compared with the control sample (409.2 mL/g·VS and 29.55%), substantially higher cumulative biogas production (437.1-522.7 mL/g·VS) and chemical oxygen demand removal rates (56.08%-65.19%) were achieved using Nb-based accelerants in the AD system. The nitridation technique is an effective and general means of converting Nb-based oxides into oxynitrides and nitrides. The Nb-based compounds with high electrocatalytic activities showed promise for DSSCs applications, while greatly enhancing the biodegradability of the AD system as accelerants. These findings could pave the way for multifunctional applications of TMCs in renewable energy fields.
Liu, Pengpeng; Ge, Xingbo; Wang, Rongyue; Ma, Houyi; Ding, Yi
2009-01-06
Ultrathin Pt films from one to several atomic layers are successfully decorated onto nanoporous gold (NPG) membranes by utilizing under potential deposition (UPD) of Cu onto Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers can be controlled precisely by repeating the Cu-UPD-RRR cycles. TEM observations coupled with electrochemical testing suggest that the morphology of Pt overlayers changes from an ultrathin epitaxial film in the case of one or two atomic layers to well-dispersed nanoislands in the case of four and more atomic layers. Electron diffraction (ED) patterns confirm that the as-prepared NPG-Pt membranes maintain a single-crystalline structure, even though the thickness of Pt films reaches six atomic layers, indicating the decorated Pt films hold the same crystallographic relationship to the NPG substrate during the entire fabrication process. Due to the regular modulation of Pt utilization, the electrocatalytic activity of NPG-Pt exhibits interesting surface structure dependence in methanol, ethanol, and CO electrooxidation reactions. These novel bimetallic nanocatalysts show excellent electrocatalytic activity and much enhanced poison tolerance as compared to the commercial Pt/C catalysts. The success in the fabrication of NPG-Pt-type materials provides a new path to prepare electrocatalysts with ultralow Pt loading and high Pt utilization, which is of great significance in energy-related applications, such as direct alcohol fuel cells (DAFCs).
NASA Astrophysics Data System (ADS)
Ponce, Jilberto; Ríos, Edmundo; Rehspringer, Jean-Luc; Poillerat, Gérard; Chartier, Pierre; Gautier, Juan Luis
1999-06-01
Two different procedures were used to prepare spinel-type NixAl1-xMn2O4 (0≤x≤1) compounds to study the effects of solid state properties of mixed oxides on their electrocatalytic properties. The oxalic route, coprecipitation of metal oxalates dissolved in propanol or ethanol, and the propionic route, hydrolysis of metal carboxylates in propionic acid, have been used. In both routes, thermal decomposition produces the corresponding oxides. X-ray diffraction patterns showed that the oxides crystallize in a cubic spinel phase with a unit cell parameter a that increases as aluminum is replaced by nickel. At low x values, compounds prepared by the propionic route showed a larger variation for parameter a than compounds prepared by the oxalic route, probably due to oxygen stoichiometric deficiency. This effect was estimated from the tetrahedral force constant (kt) values, which showed a fast decrease as x varied from 0 to 1. Electrical conductivity, conduction activation energy, hole mobility, and pHz of oxides prepared by the propionic route were also higher than those from oxides prepared by the oxalic route. Crystallinity grade and particle size were nearly 50‧ higher in propionic-route samples than in oxalic-route samples. The apparent and real electrocatalytic activities of both types of oxides were compared for O2 evolution.
NASA Astrophysics Data System (ADS)
Viswanathan, Venkatasubramanian; Wang, Frank Yi-Fei
2012-07-01
We perform a first-principles based computational analysis of the effect of particle size and support material on the electrocatalytic activity of platinum nanoparticles. Using a mechanism for oxygen reduction that accounts for electric field effects and stabilization from the water layer on the (111) and (100) facets, we show that the model used agrees well with linear sweep voltammetry and rotating ring disk electrode experiments. We find that the per-site activity of the nanoparticle saturates for particles larger than 5 nm and we show that the optimal particle size is in the range of 2.5-3.5 nm, which agrees well with recent experimental work. We examine the effect of support material and show that the perimeter sites on the metal-support interface are important in determining the overall activity of the nanoparticles. We also develop simple geometric estimates for the activity which can be used for determining the activity of other particle shapes and sizes.We perform a first-principles based computational analysis of the effect of particle size and support material on the electrocatalytic activity of platinum nanoparticles. Using a mechanism for oxygen reduction that accounts for electric field effects and stabilization from the water layer on the (111) and (100) facets, we show that the model used agrees well with linear sweep voltammetry and rotating ring disk electrode experiments. We find that the per-site activity of the nanoparticle saturates for particles larger than 5 nm and we show that the optimal particle size is in the range of 2.5-3.5 nm, which agrees well with recent experimental work. We examine the effect of support material and show that the perimeter sites on the metal-support interface are important in determining the overall activity of the nanoparticles. We also develop simple geometric estimates for the activity which can be used for determining the activity of other particle shapes and sizes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30572k
Tan, Xin; Tahini, Hassan A; Smith, Sean C
2016-12-07
Electrocatalytic, switchable hydrogen storage promises both tunable kinetics and facile reversibility without the need for specific catalysts. The feasibility of this approach relies on having materials that are easy to synthesize, possessing good electrical conductivities. Graphitic carbon nitride (g-C 4 N 3 ) has been predicted to display charge-responsive binding with molecular hydrogen-the only such conductive sorbent material that has been discovered to date. As yet, however, this conductive variant of graphitic carbon nitride is not readily synthesized by scalable methods. Here, we examine the possibility of conductive and easily synthesized boron-doped graphene nanosheets (B-doped graphene) as sorbent materials for practical applications of electrocatalytically switchable hydrogen storage. Using first-principle calculations, we find that the adsorption energy of H 2 molecules on B-doped graphene can be dramatically enhanced by removing electrons from and thereby positively charging the adsorbent. Thus, by controlling charge injected or depleted from the adsorbent, one can effectively tune the storage/release processes which occur spontaneously without any energy barriers. At full hydrogen coverage, the positively charged BC 5 achieves high storage capacities up to 5.3 wt %. Importantly, B-doped graphene, such as BC 49 , BC 7 , and BC 5 , have good electrical conductivity and can be easily synthesized by scalable methods, which positions this class of material as a very good candidate for charge injection/release. These predictions pave the route for practical implementation of electrocatalytic systems with switchable storage/release capacities that offer high capacity for hydrogen storage.
Copper-Based Metal-Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols.
Albo, Jonathan; Vallejo, Daniel; Beobide, Garikoitz; Castillo, Oscar; Castaño, Pedro; Irabien, Angel
2017-03-22
The electrocatalytic reduction of CO 2 has been investigated using four Cu-based metal-organic porous materials supported on gas diffusion electrodes, namely, (1) HKUST-1 metal-organic framework (MOF), [Cu 3 (μ 6 -C 9 H 3 O 6 ) 2 ] n ; (2) CuAdeAce MOF, [Cu 3 (μ 3 -C 5 H 4 N 5 ) 2 ] n ; (3) CuDTA mesoporous metal-organic aerogel (MOA), [Cu(μ-C 2 H 2 N 2 S 2 )] n ; and (4) CuZnDTA MOA, [Cu 0.6 Zn 0.4 (μ-C 2 H 2 N 2 S 2 )] n . The electrodes show relatively high surface areas, accessibilities, and exposure of the Cu catalytic centers as well as favorable electrocatalytic CO 2 reduction performance, that is, they have a high efficiency for the production of methanol and ethanol in the liquid phase. The maximum cumulative Faradaic efficiencies for CO 2 conversion at HKUST-1-, CuAdeAce-, CuDTA-, and CuZnDTA-based electrodes are 15.9, 1.2, 6, and 9.9 %, respectively, at a current density of 10 mA cm -2 , an electrolyte-flow/area ratio of 3 mL min cm -2 , and a gas-flow/area ratio of 20 mL min cm -2 . We can correlate these observations with the structural features of the electrodes. Furthermore, HKUST-1- and CuZnDTA-based electrodes show stable electrocatalytic performance for 17 and 12 h, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.
We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemicalmore » experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.« less
NASA Astrophysics Data System (ADS)
Romeiro, Fernanda C.; Rodrigues, Mônica A.; Silva, Luiz A. J.; Catto, Ariadne C.; da Silva, Luis F.; Longo, Elson; Nossol, Edson; Lima, Renata C.
2017-11-01
Reduced graphene oxide-zinc oxide (rGO-ZnO) nanocomposites were successfully synthesized using a facile microwave-hydrothermal method under mild conditions, and their electrocatalytic properties towards O2 evolution were investigated. The microwave radiation played an important role in obtainment of well dispersed ZnO nanoparticles directly on reduced graphene oxide sheets without any additional reducing reagents or passivation agent. X-ray diffraction (XRD), Raman and infrared spectroscopies indicated the reduction of GO as well as the successful synthesis of rGO-ZnO nanocomposites. The chemical states of the samples were shown by XPS analyses. Due to the synergic effect, the resulting nanocomposites exhibited high electronic interaction between ZnO and rGO sheets, which improved the electrocatalytic oxidation of water with low onset potential of 0.48 V (vs. Ag/AgCl) in neutral pH and long-term stability, with high current density during electrolysis. The overpotential for water oxidation decreased in alkaline pH, suggesting useful insight on the catalytic mechanism for O2 evolution.
Minguzzi, Alessandro; Longoni, Gianluca; Cappelletti, Giuseppe; Pargoletti, Eleonora; Di Bari, Chiara; Locatelli, Cristina; Marelli, Marcello; Rondinini, Sandra; Vertova, Alberto
2016-01-06
Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO₂ nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO₂ (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g -1 . Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO₂ nanoparticles.
Minguzzi, Alessandro; Longoni, Gianluca; Cappelletti, Giuseppe; Pargoletti, Eleonora; Di Bari, Chiara; Locatelli, Cristina; Marelli, Marcello; Rondinini, Sandra; Vertova, Alberto
2016-01-01
Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO2 nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO2 (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g−1. Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO2 nanoparticles. PMID:28344267
Leong, Shi Xuan; Mayorga-Martinez, Carmen C; Sofer, Zdeněk; Luxa, Jan; Tan, Shu Min; Pumera, Martin
2017-01-25
WS 2 is a transition metal dichalcogenide (TMD) with many potential applications from catalysis to sensing, and is of interest both in its bulk and monolayer forms. There is discrepancy in the literature on the reported electrocatalytic effect of layered WS 2 . In this study, we examine two issues: the influence of the WS 2 source and the effect of a common agitation technique via ultrasonication on the observed electrocatalysis. Bulk WS 2 from five different chemical providers demonstrated different HER electrocatalytic performances. Changes to the duration of sonication result in different HER electrocatalytic performances across all WS 2 materials. This may affect the efficiency of subsequent modifications from which these TMD materials serve as precursor materials. On the other hand, while WS 2 materials from different suppliers showed varying HET performances, changes in sonication time have no significant effect on their HET performances. Both the WS 2 source and the duration of sonication have different implications for the electrochemical performance of bulk WS 2 and thus represent important variables to consider in research involving WS 2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Eric S.; Bullock, R. Morris
2016-07-06
We report the use of variable scan rate cyclic voltammetry to detect transient CoIIIH and CoIIH intermediates of electrocatalytic H2 production by CoII(dmgBF2)2(CH3CN)2 and [CoII(PtBu2NPh2)(CH3CN)3]2+. In both cases, reduction of the CoIIIH intermediate was observed to coincide with the CoII/I couple, and the resulting CoIIH intermediate is protonated by acid to afford H2. Our studies indicate that in electrocatalytic H2 production, protonation of CoIIH is rate-limiting for CoII(dmgBF2)2(CH3CN)2, and protonation of CoI is rate-limiting for [CoII(PtBu2NPh2)(CH3CN)3]2+. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy,more » Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
NASA Astrophysics Data System (ADS)
Chakraborty, Himanshu; Chhetri, Manjeet; Maitra, Somak; Waghmare, Umesh; Rao, C. N. R.
We report superior hydrogen evolution activity of metal-free borocarbonitride (BCN) catalysts. The highly positive onset potential (-56 mV vs. RHE) and the current density of 10 mAcm2 at an overpotential of 70 mV exhibited by a carbon-rich BCN with the composition BC7N2 demonstrates the extraordinary electrocatalytic activity at par with Pt. Theoretical studies throw light on the cause of high activity of this composition. The high activity and good stability of BCN's surpass the characteristics of other metal-free catalysts reported in recent literature. an Energy Frontier Research Centre funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012575.
Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation
Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan
2013-01-01
Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402
Understanding trends in electrochemical carbon dioxide reduction rates
Liu, Xinyan; Xiao, Jianping; Peng, Hongjie; ...
2017-05-22
Electrochemical carbon dioxide reduction to fuels presents one of the great challenges in chemistry. Herein we present an understanding of trends in electrocatalytic activity for carbon dioxide reduction over different metal catalysts that rationalize a number of experimental observations including the selectivity with respect to the competing hydrogen evolution reaction. We also identify two design criteria for more active catalysts. The understanding is based on density functional theory calculations of activation energies for electrochemical carbon monoxide reduction as a basis for an electrochemical kinetic model of the process. Furthermore, we develop scaling relations relating transition state energies to the carbonmore » monoxide adsorption energy and determine the optimal value of this descriptor to be very close to that of copper.« less
An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.
Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie
2013-06-12
Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
Understanding trends in electrochemical carbon dioxide reduction rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xinyan; Xiao, Jianping; Peng, Hongjie
Electrochemical carbon dioxide reduction to fuels presents one of the great challenges in chemistry. Herein we present an understanding of trends in electrocatalytic activity for carbon dioxide reduction over different metal catalysts that rationalize a number of experimental observations including the selectivity with respect to the competing hydrogen evolution reaction. We also identify two design criteria for more active catalysts. The understanding is based on density functional theory calculations of activation energies for electrochemical carbon monoxide reduction as a basis for an electrochemical kinetic model of the process. Furthermore, we develop scaling relations relating transition state energies to the carbonmore » monoxide adsorption energy and determine the optimal value of this descriptor to be very close to that of copper.« less
NASA Astrophysics Data System (ADS)
Ghadge, Shrinath Dattatray; Patel, Prasad P.; Datta, Moni K.; Velikokhatnyi, Oleg I.; Shanthi, Pavithra M.; Kumta, Prashant N.
2018-07-01
One dimensional (1D) vertically aligned nanotubes (VANTs) of (Sn0.8Ir0.2)O2:10F are synthesized for the first time by a sacrificial template assisted approach. The aim is to enhance the electrocatalytic activity of F doped (Sn,Ir)O2 solid solution electrocatalyst for oxygen evolution reaction (OER) in proton exchange membrane (PEM) based water electrolysis by generating (Sn0.8Ir0.2)O2:10F nanotubes (NTs). The 1D vertical channels and the high electrochemically active surface area (ECSA ∼38.46 m2g-1) provide for facile electron transport. This results in low surface charge transfer resistance (4.2 Ω cm2), low Tafel slope (58.8 mV dec-1) and excellent electrochemical OER performance with ∼2.3 and ∼2.6 fold higher electrocatalytic activity than 2D thin films of (Sn0.8Ir0.2)O2:10F and benchmark IrO2 electrocatalysts, respectively. Furthermore, (Sn0.8Ir0.2)O2:10F NTs exhibit excellent mass activity (21.67 A g-1), specific activity (0.0056 mAcm-2) and TOF (0.016 s-1), which is ∼2-2.6 fold higher than thin film electrocatalysts at an overpotential of 270 mV, with a total mass loading of 0.3 mg cm-2. In addition, (Sn0.8Ir0.2)O2:10F NTs demonstrate remarkable electrochemical durability - comparable to thin films of (Sn0.8Ir0.2)O2:10F and pure IrO2, operated under identical testing conditions in PEM water electrolysis. These results therefore indicate promise of (Sn0.8Ir0.2)O2:10F NTs as OER electrocatalysts for efficient and sustainable hydrogen production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Rajkumar; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
Ordered intermetallic Pt{sub 2}In{sub 3} nanoparticles have been synthesized by superhydride reduction of K{sub 2}PtCl{sub 4} and InCl{sub 3}.xH{sub 2}O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt{sub 2}In{sub 3} intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt{sub 2}In{sub 3} catalyst exhibit far superior electrocatalytic activity andmore » stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt{sub 2}In{sub 3} nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell. - Graphical abstract: The ordered structure of Pt{sub 2}In{sub 3} nanoparticles synthesized by solvothermal method has confirmed through XRD and TEM. Cyclic voltametry and chronoamperometry showed improved catalytic activity and stability compared to commercial Pt/C. - Highlights: • Ordered Pt{sub 2}In{sub 3} nanoparticles were synthesized by solvothermal method. • Electrooxidation of alcohols on Pt{sub 2}In{sub 3} catalyst was investigated in acidic medium. • Pt{sub 2}In{sub 3} catalyst has superior catalytic activity compared to commercial Pt/C. • Pt{sub 2}In{sub 3} catalyst exhibited much higher stability than commercial Pt/C.« less
Sheng, Tian; Xu, Yue-Feng; Jiang, Yan-Xia; Huang, Ling; Tian, Na; Zhou, Zhi-You; Broadwell, Ian; Sun, Shi-Gang
2016-11-15
The performance of nanomaterials in electrochemical energy conversion (fuel cells) and storage (secondary batteries) strongly depends on the nature of their surfaces. Designing the structure of electrode materials is the key approach to achieving better performance. Metal or metal oxide nanocrystals (NCs) with high-energy surfaces and open surface structures have attained significant attention in the past decade since such features possess intrinsically exceptional properties. However, they are thermodynamically metastable, resulting in a huge challenge in their shape-controlled synthesis. The tuning of material structure, design, and performance on the nanoscale for electrochemical energy conversion and storage has attracted extended attention over the past few years. In this Account, recent progress made in shape-controlled synthesis of nanomaterials with high-energy surfaces and open surface structures using both electrochemical methods and surfactant-based wet chemical route are reviewed. In fuel cells, the most important catalytic materials are Pt and Pd and their NCs with high-energy surfaces of convex or concave morphology. These exhibit remarkable activity toward electrooxidation of small organic molecules, such as formic acid, methanol, and ethanol and so on. In practical applications, the successful synthesis of Pt NCs with high-energy surfaces of small sizes (sub-10 nm) realized a superior high mass activity. The electrocatalytic performances have been further boosted by synergetic effects in bimetallic systems, either through surface decoration using foreign metal atoms or by alloying in which the high-index facet structure is preserved and the electronic structure of the NCs is altered. The intrinsic relationship of high electrocatalytic performance dependent on open structure and high-energy surface is also valid for (metal) oxide nanomaterials used in Li ion batteries (LIB). It is essential for the anode nanomaterials to have optimized structures to keep them more stable during the charge/discharge processes for reducing damaging volume expansion via intercalation and subsequent reduced battery lifetime. In the case of cathodes, tuning the surface structure of nanomaterials should be one of the most beneficial strategies to enhance the capacity and rate performance. In addition, metal oxides with unique defective structure of high catalytic activity and carbon materials of porous structure for facilitating fast Li + diffusion paths and efficiently trapping polysulfide are most important approached and employed in Li-O 2 battery and Li-S battery, respectively. In summary, significant progress has already been made in the electrocatalytic field, and likely emerging techniques based on NCs enclosed with high-energy surfaces and high-index facets could provide a promising platform to investigate the surface structure-catalytic functionality at nanoscale, thus shedding light on the rational design of practical catalysts with high activity, selectivity, and durability for energy conversion and storage.
Nantaphol, Siriwan; Watanabe, Takeshi; Nomura, Naohiro; Siangproh, Weena; Chailapakul, Orawon; Einaga, Yasuaki
2017-12-15
The enormous demand for medical diagnostics has encouraged the fabrication of high- performance sensing platforms for the detection of glucose. Nonenzymatic glucose sensors are coming ever closer to being used in practical applications. Bimetallic catalysts have been shown to be superior to single metal catalysts in that they have greater activity and selectivity. Here, we demonstrate the preparation, characterization, and electrocatalytic characteristics of a new bimetallic Pt/Au nanocatalyst. This nanocatalyst can easily be synthesized by electrodeposition by sequentially depositing Au and Pt on the surface of a boron-doped diamond (BDD) electrode. We characterized the nanocatalyst by scanning electron microscopy (SEM), X-ray diffraction (XRD), and voltammetry. The morphology and composition of the nanocatalyst can be easily controlled by adjusting the electrodeposition process and the molar ratio between the Pt and Au precursors. The electrocatalytic characteristics of a Pt/Au/BDD electrode for the nonenzymatic oxidation of glucose were systematically investigated by cyclic voltammetry. The electrode exhibits higher catalytic activity for glucose oxidation than Pt/BDD and Au/BDD electrodes. The best catalytic activity and stability was obtained with a Pt:Au molar ratio of 50:50. Moreover, the presence of Au can significantly enhance the long-term stability and poisoning tolerance during the electro-oxidation of glucose. Measurements of glucose using the Pt/Au/BDD electrode were linear in the range from 0.01 to 7.5mM, with a detection limit of 0.0077mM glucose. The proposed electrode performs selective electrochemical analysis of glucose in the presence of common interfering species (e.g., acetaminophen, uric and ascorbic acids), avoiding the generation of overlapping signals from such species. Copyright © 2017 Elsevier B.V. All rights reserved.
Spain, Elaine; McArdle, Hazel; Keyes, Tia E; Forster, Robert J
2013-08-07
Suspensions of electrocatalytic platinum nanoparticles with radii as small as 78.9 ± 3.5 nm that are functionalised with DNA only in one region have been created using templated electrodeposition. The integrity of the bound DNA following nanoparticle desorption from the electrode is demonstrated by detecting attomolar concentrations of DNA without the need for molecular, e.g., PCR or NASBA, amplification. Double potential step approaches coupled with interface engineering via nucleation sites allows PtNPs to be created with controlled particle size and density in a facile and reproducible manner.
Abdelrahim, M. Yahia M.; Benjamin, Stephen R.; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; Hidalgo-Hidalgo de Cisneros, Josè L.; Delgado, Juan Josè; Palacios-Santander, Josè Ma
2013-01-01
The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL−1)- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10−6 and 5.32 × 10−6 M, and 2.93 × 10−6 and 9.77 × 10−6 M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 μM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM;. The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of electroactive species of interest in real samples. PMID:23584124
Abdelrahim, M Yahia M; Benjamin, Stephen R; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; de Cisneros, José L Hidalgo-Hidalgo; Delgado, Juan José; Palacios-Santander, José Ma
2013-04-12
The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL(-1))- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10(-6) and 5.32 × 10(-6) M, and 2.93 × 10(-6) and 9.77 × 10(-6) M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 µM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM). The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of electroactive species of interest in real samples.
Yuan, Jiangtan; Wu, Jingjie; Hardy, Will J; Loya, Philip; Lou, Minhan; Yang, Yingchao; Najmaei, Sina; Jiang, Menglei; Qin, Fan; Keyshar, Kunttal; Ji, Heng; Gao, Weilu; Bao, Jiming; Kono, Junichiro; Natelson, Douglas; Ajayan, Pulickel M; Lou, Jun
2015-10-07
A facile chemical vapor deposition method to prepare single-crystalline VS2 nanosheets for the hydrogen evolution reaction is reported. The electrocatalytic hydrogen evolution reaction (HER) activities of VS2 show an extremely low overpotential of -68 mV at 10 mA cm(-2), small Tafel slopes of ≈34 mV decade(-1), as well as high stability, demonstrating its potential as a candidate non-noble-metal catalyst for the HER. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fu, Qi; Yang, Lei; Wang, Wenhui; Han, Ali; Huang, Jian; Du, Pingwu; Fan, Zhiyong; Zhang, Jingyu; Xiang, Bin
2015-08-26
The first realization of a tunable band-gap in monolayer WS2(1-x) Se2x is demonstrated. The tuning of the bandgap exhibits a strong dependence of S and Se content, as proven by PL spectroscopy. Because of its remarkable electronic structure, monolayer WS2(1-x) Se2x exhibits novel electrochemical catalytic activity and offers long-term electrocatalytic stability for the hydrogen evolution reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Navaee, Aso; Salimi, Abdollah; Jafari, Fereydoon
2015-03-23
The electrochemical conditioning of amino-carbon nanotubes (CNTs) on a graphene support in an alkaline solution is used to produce -NHOH as hydrophilic functional groups for the efficient immobilization of bilirubin oxidase enzyme. The application of the immobilized enzyme for the direct electrocatalytic reduction of O2 is investigated. The onset potential of 0.81 V versus NHE and peak current density of 2.3 mA cm(-2) for rotating modified electrode at 1250 rpm, indicate improved biocatalytic activity of the proposed system for O2 reduction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Stonehart, P.; Baris, J.; Hochmuth, J.; Pagliaro, P.
1981-01-01
Two cooperative phenomena are required the development of highly efficient porous electrocatalysts: (1) is an increase in the electrocatalytic activity of the catalyst particle; and (2) is the availability of that electrocatalyst particle for the electromechanical reaction. The two processes interact with each other so that improvements in the electrochemical activity must be coupled with improvements in the availability of the electrocatalyst for reaction. Cost effective and highly reactive electrocatalysts were developed. The utilization of the electrocatalyst particles in the porous electrode structures was analyzed. It is shown that a large percentage of the electrocatalyst in anode structures is not utilized. This low utilization translates directly into a noble metal cost penalty for the fuel cell.
Hexagonal tungsten oxide nanoflowers as enzymatic mimetics and electrocatalysts.
Park, Chan Yeong; Seo, Ji Min; Jo, Hongil; Park, Juhyun; Ok, Kang Min; Park, Tae Jung
2017-01-27
Tungsten oxide (WO x ) has been widely studied for versatile applications based on its photocatalytic, intrinsic catalytic, and electrocatalytic properties. Among the several nanostructures, we focused on the flower-like structures to increase the catalytic efficiency on the interface with both increased substrate interaction capacities due to their large surface area and efficient electron transportation. Therefore, improved WO x nanoflowers (WONFs) with large surface areas were developed through a simple hydrothermal method using sodium tungstate and hydrogen chloride solution at low temperature, without any additional surfactant, capping agent, or reducing agent. Structural determination and electrochemical analyses revealed that the WONFs have hexagonal Na 0.17 WO 3.085 ·0.17H 2 O structure and exhibit peroxidase-like activity, turning from colorless to blue by catalyzing the oxidation of a peroxidase substrate, such as 3,3',5,5'-tetramethylbenzidine, in the presence of H 2 O 2 . Additionally, a WONF-modified glassy carbon electrode was adopted to monitor the electrocatalytic reduction of H 2 O 2 . To verify the catalytic efficiency enhancement by the unique shape and structure of the WONFs, they were compared with calcinated WONFs, cesium WO x nanoparticles, and other peroxidase-like nanomaterials. The results indicated that the WONFs showed a low Michaelis-Menten constant (k m ), high maximal reaction velocity (v max ), and large surface area.
Yan, Xiaoxiao; Chen, Yifan; Deng, Sihui; Yang, Yifan; Huang, Zhenna; Ge, Cunwang; Xu, Lin; Sun, Dongmei; Fu, Gengtao; Tang, Yawen
2017-11-27
Ultrathin Pt-based nanowires are considered as promising electrocatalysts owing to their high atomic utilization efficiency and structural robustness. Moreover, integration of Pt-based nanowires with graphene oxide (GO) could further increase the electrocatalytic performance, yet remains challenging to date. Herein, for the first time we demonstrate the in situ synthesis of ultrathin PtCu nanowires grown over reduced GO (PtCu-NWs/rGO) by a one-pot hydrothermal approach with the aid of amine-terminated poly(N-isopropyl acrylamide) (PNIPAM-NH 2 ). The judicious selection of PNIPAM-NH 2 facilitates the in situ nucleation and anisotropic growth of nanowires on the rGO surface and oriented attachment mechanism accounts for the formation of PtCu ultrathin nanowires. Owing to the synergy between PtCu NWs and rGO support, the PtCu-NWs/rGO outperforms the rGO supported PtCu nanoparticles (PtCu-NPs/rGO), PtCu-NWs, and commercial Pt/C toward the oxygen reduction reaction (ORR) with higher activity and better stability, making it a promising cathodic electrocatalyst for both fuel cells and metal-air cells. Moreover, the present synthetic strategy could inspire the future design of other metal alloy nanowires/carbon hybrid catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shaping electrocatalysis through tailored nanomaterials
Kang, Yijin; Yang, Peidong; Markovic, Nenad M.; ...
2016-09-21
Electrocatalysis is a subclass of heterogeneous catalysis that is aimed towards increase of the electrochemical reaction rates that are taking place at the surface of electrodes. Real-world electrocatalysts are usually based on precious metals in the form of nanoparticles due to their high surface-to-volume ratio, which enables better utilization of employed materials. Ability to tailor nanostructure of an electrocatalyst is critical in order to tune their electrocatalytic properties. Over the last decade, that has mainly been achieved through implementation of fundamental studies performed on well-defined extended surfaces with distinct single crystalline and polycrystalline structures. Based on these studies, it hasmore » been demonstrated that performance of an electrocatalyst could be significantly changed through the control of size, composition, morphology and architecture of employed nanomaterials. Here, this review outlines the following steps in the process of rational development of an efficient electrocatalyst: 1) electrochemical properties of well-defined surfaces, 2) synthesis and characterization of different classes of electrocatalysts, and 3) correlation between physical properties (size, shape, composition and morphology) and electrochemical behavior (adsorption, electrocatalytic activity and durability) of electrocatalyst. In addition, this is a brief summary of the novel research platforms in the development of functional nano materials for energy conversion and storage applications such as fuel cells electrolyzers and batteries.« less
A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen
Chakraborty, Saumen; Babanova, Sofia; Rocha, Reginaldo C.; ...
2015-08-19
We report the synthesis and characterization of a new DNA-templated gold nanocluster (AuNC) of ~1 nm in diameter and possessing ~7 Au atoms. When integrated with bilirubin oxidase (BOD) and single walled carbon nanotubes (SWNTs), the AuNC acts as an enhancer of electron transfer (ET) and lowers the overpotential of electrocatalytic oxygen reduction reaction (ORR) by ~15 mV as compared to the enzyme alone. In addition, the presence of AuNC causes significant enhancements in the electrocatalytic current densities at the electrode. Control experiments show that such enhancement of ORR by the AuNC is specific to nanoclusters and not to plasmonicmore » gold particles. Rotating ring disk electrode (RRDE) measurements confirm 4e– reduction of O 2 to H 2O with minimal production of H 2O 2, suggesting that the presence of AuNC does not perturb the mechanism of ORR catalyzed by the enzyme. This unique role of the AuNC as enhancer of ET at the enzyme-electrode interface makes it a potential candidate for the development of cathodes in enzymatic fuel cells, which often suffer from poor electronic communication between the electrode surface and the enzyme active site. In conclusion, the AuNC displays phosphorescence with large Stokes shift and microsecond lifetime.« less
Razmi, H; Heidari, H
2009-05-01
This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.
Nouri-Nigjeh, Eslam; Bruins, Andries P; Bischoff, Rainer; Permentier, Hjalmar P
2012-10-21
Electrochemistry in combination with mass spectrometry has shown promise as a versatile technique not only in the analytical assessment of oxidative drug metabolism, but also for small-scale synthesis of drug metabolites. However, electrochemistry is generally limited to reactions initiated by direct electron transfer. In the case of substituted-aromatic compounds, oxidation proceeds through a Wheland-type intermediate where resonance stabilization of the positive charge determines the regioselectivity of the anodic substitution reaction, and hence limits the extent of generating drug metabolites in comparison with in vivo oxygen insertion reactions. In this study, we show that the electrocatalytic oxidation of hydrogen peroxide on a platinum electrode generates reactive oxygen species, presumably surface-bound platinum-oxo species, which are capable of oxygen insertion reactions in analogy to oxo-ferryl radical cations in the active site of Cytochrome P450. Electrochemical oxidation of lidocaine at constant potential in the presence of hydrogen peroxide produces both 3- and 4-hydroxylidocaine, suggesting reaction via an arene oxide rather than a Wheland-type intermediate. No benzylic hydroxylation was observed, thus freely diffusing radicals do not appear to be present. The results of the present study extend the possibilities of electrochemical imitation of oxidative drug metabolism to oxygen insertion reactions.
Mass transport modelling for the electroreduction of CO2 on Cu nanowires
NASA Astrophysics Data System (ADS)
Raciti, David; Mao, Mark; Wang, Chao
2018-01-01
Mass transport plays an important role in CO2 reduction electrocatalysis. Albeit being more pronounced on nanostructured electrodes, the studies of mass transport for CO2 reduction have yet been limited to planar electrodes. We report here the development of a mass transport model for the electroreduction of CO2 on Cu nanowire electrodes. Fed with the experimental data from electrocatalytic studies, the local concentrations of CO2, {{{{HCO}}}3}-,{{{{CO}}}3}2- and OH- on the nanostructured electrodes are calculated by solving the diffusion equations with spatially distributed electrochemical reaction terms incorporated. The mass transport effects on the catalytic activity and selectivity of the Cu nanowire electrocatalysts are thus discussed by using the local pH as the descriptor. The established correlations between the electrocatalytic performance and the local pH shows that, the latter does not only determine the acid-base reaction equilibrium, but also regulates the mass transport and reaction kinetics. Based on these findings, the optimal range of local pH for CO2 reduction is discussed in terms of a fine balance among the suppression of hydrogen evolution, improvement of C2 product selectivity and limitation of CO2 supply. Our work highlights the importance of understanding the mass transport effects in interpretation of CO2 reduction electrocatalysis on high-surface-area catalysts.
Ghavami, Raouf; Salimi, Abdollah; Navaee, Aso
2011-05-15
For the first time a novel and simple electrochemical method was used for simultaneous detection of DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment or separation process. Glassy carbon electrode modified with silicon carbide nanoparticles (SiCNP/GC), have been used for electrocatalytic oxidation of purine (guanine and adenine) and pyrimidine bases (thymine and cytosine) nucleotides. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) techniques were used to examine the structure of the SiCNP/GC modified electrode. The modified electrode shows excellent electrocatalytic activity toward guanine, adenine, thymine and cytosine. Differential pulse voltammetry (DPV) was proposed for simultaneous determination of four DNA bases. The effects of different parameters such as the thickness of SiC layer, pulse amplitude, scan rate, supporting electrolyte composition and pH were optimized to obtain the best peak potential separation and higher sensitivity. Detection limit, sensitivity and linear concentration range of the modified electrode toward proposed analytes were calculated for, guanine, adenine, thymine and cytosine, respectively. As shown this sensor can be used for nanomolar or micromolar detection of different DNA bases simultaneously or individually. This sensor also exhibits good stability, reproducibility and long lifetime. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ertan, Salih; Şen, Fatih; Şen, Selda; Gökağaç, Gülsün
2012-06-01
In this study, platinum nanoparticle catalysts have been prepared using PtCl4 as a starting material and 1-octanethiol, 1-decanethiol, 1-dodecanethiol, and 1-hexadecanethiol as surfactants for methanol, ethanol, and 2-propanol oxidation reactions. The structure, particle sizes, and surface morphologies of the catalysts were characterized by X-ray diffraction (XRD), atomic force microscopy and transmission electron microscopy (TEM). XRD and TEM results indicate that all prepared catalysts have a face-centered cubic structure and are homogeneously dispersed on the carbon support with a narrow size distribution (2.0-1.3 nm). X-ray photoelectron spectra of the catalysts were examined and it is found that platinum has two different oxidation states, Pt (0) and Pt(IV), oxygen and sulfur compounds are H2Oads and OHads, bound and unbound thiols. The electrochemical and electrocatalytic properties of these catalysts were investigated with respect to C1-C3 alcohol oxidations by cyclic voltammetry and chronoamperometry. The highest electrocatalytic activity was obtained from catalyst I which was prepared with 1-octanethiol. This may be attributed to a decrease in the ratio of bound to unbound thiol species increase in Pt (0)/Pt(IV), H2Oads/OHads ratios, electrochemical surface area, CO tolerance and percent platinum utility.
Cheemalapati, Srikanth; Chen, Shen-Ming; Ali, M Ajmal; Al-Hemaid, Fahad M A
2014-09-01
A simple and sensitive electrochemical method has been proposed for the determination of isoniazid (INZ). For the first time, rhodium (Rh) modified glassy carbon electrode (GCE) has been employed for the determination of INZ by linear sweep voltammetry technique (LSV). Compared with the unmodified electrode, the proposed Rh modified electrode provides strong electrocatalytic activity toward INZ with significant enhancement in the anodic peak current. Scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) results reveal the morphology of Rh particles. With the advantages of wide linearity (70-1300μM), good sensitivity (0.139μAμM(-1)cm(-2)) and low detection limit (13μM), this proposed sensor holds great potential for the determination of INZ in real samples. The practicality of the proposed electrode for the detection of INZ in human urine and blood plasma samples has been successfully demonstrated using LSV technique. Through the determination of INZ in commercially available pharmaceutical tablets, the practical applicability of the proposed method has been validated. The recovery results are found to be in good agreement with the labeled amounts of INZ in tablets, thus showing its great potential for use in clinical and pharmaceutical analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Vincent C-C
2016-08-10
Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented.
Mphuthi, Ntsoaki G.; Adekunle, Abolanle S.; Ebenso, Eno E.
2016-01-01
Glassy carbon electrode (GCE) was modified with metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, and the electrocatalytic properties were studied. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using FTIR, Raman and SEM techniques. The electrodes were characterized using cyclic voltammetry (CV) technique. The electrocatalytic behaviour of the electrode towards epinephrine (EP) and norepinephrine (NE) oxidation was investigated using CV and DPV. Result showed that GCE-MWCNT/Fe3O4/2,3-Nc, GCE-MWCNT/Fe3O429H,31H-Pc, GCE-MWCNT/ZnO/2,3-Nc and GCE-MWCNT/ZnO/29H,31H-Pc electrodes gave enhanced EP and NE current response. Stability study indicated that the four GCE-MWCNT/MO/Pc modified electrodes were stable against electrode fouling effect with the percentage NE current drop of 5.56–5.88% after 20 scans. GCE-MWCNT/Fe3O4/29H,31H-Pc gave the lowest limit of detection (4.6 μM) towards EP while MWCNT/ZnO/29H,31H-Pc gave the lowest limit of detection (1.7 μM) towards NE. The limit of detection and sensitivity of the electrodes compared well with literature. Electrocatalytic oxidation of EP and NE on GCE-MWCNT/MO/Pc electrodes was diffusion controlled with some adsorption of electro-oxidation reaction intermediates products. The electrodes were found to be electrochemically stable, reusable and can be used for the analysis of EP and NE in real life samples. PMID:27245690
Charge transfer mediator based systems for electrocatalytic oxygen reduction
Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.
2017-11-07
Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.
Charge transfer mediator based systems for electrocatalytic oxygen reduction
Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.
2017-07-18
Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.
Electrocatalytic reduction of CO2 with CCC-NHC pincer nickel complexes.
Cope, James D; Liyanage, Nalaka P; Kelley, Paul J; Denny, Jason A; Valente, Edward J; Webster, Charles Edwin; Delcamp, Jared H; Hollis, T Keith
2017-08-22
A CCC-NHC pincer Ni(ii)Cl complex was prepared according to the metallation/transmetallation methodology. It was fully characterized by electrochemical, NMR spectroscopic, theoretical, and X-ray crystallographic methods. The complex and its cation were evaluated for electrocatalytic reduction of CO 2 under a variety of conditions and found to provide some of the fastest catalytic rates and highest substrate selectivities (CO 2 vs. H + ) reported. Rates improved in the presence of water and, significantly, catalysis occurred at the first reduction potential, presumably at the Ni(i) state. Controlled potential electrolysis (CPE) was found to yield CO at 34% and formate at 47% Faradaic efficiency (FE).
Library of electrocatalytic sites in nano-structured domains: electrocatalysis of hydrogen peroxide.
Pandey, Prem C; Singh, Bhupendra
2008-12-01
Electrochemical detection of hydrogen peroxide at eight types of ormosil-modified electrodes, referred as hexacyanoferrate-system; Prussian blue systems (PB-1, PB-2, and PB-3), palladium (Pd-) system, graphite (Gr-) system, gold nanoparticle (AuNPs) system and palladium-gold nanoparticle (Pd-AuNPs) system were studied. The results on electrochemical detection suggested that hydrogen peroxide does not undergo homogeneous electrochemical mediation; however, the presence of redox mediator within nano-structured domains facilitates the electro-analysis of the same via redox electrocatalysis. Four approaches causing manipulation in nano-structured domains are described: (a) increase in the molecular size of the components generating nano-structured domains; (b) modulation via chemical reactivity; (c) modulation by non-reactive moieties and known nanoparticles; and (d) modulation by mixed approaches (a-c), all leading to decrease in a nano-structured domains. The results demonstrated that an increase in the size of nano-structured domains or decrease in micro-porous geometry increases the efficiency of electrocatalysis. The basic reaction protocol adopted in generating nano-structured domains, followed by manipulation protocols, supported the introduction of a library for creating electrocatalytic sites with varying electrocatalytic efficiency within the same basic nano-structured platform.
Catholyte-Free Electrocatalytic CO2 Reduction to Formate.
Lee, Wonhee; Kim, Young Eun; Youn, Min Hye; Jeong, Soon Kwan; Park, Ki Tae
2018-04-16
Electrochemical reduction of carbon dioxide (CO 2 ) into value-added chemicals is a promising strategy to reduce CO 2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO 2 reduction (CO 2 R) is the low solubility of CO 2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte-free electrocatalytic CO 2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm -2 , despite the decrease in CO 2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L -1 is obtained as a one-path product at 343 K with high PCD (51.7 mA cm -2 ) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Lu; Zhang, Yijia; Chu, Mi; Deng, Wenfang; Tan, Yueming; Ma, Ming; Su, Xiaoli; Xie, Qingji; Yao, Shuozhuo
2014-02-15
We report here on the facile fabrication of network film electrodes with ultrathin Au nanowires (AuNWs) and their electrochemical applications for high-performance nonenzymatic glucose sensing and glucose/O2 fuel cell under physiological conditions (pH 7.4, containing 0.15M Cl(-)). AuNWs with an average diameter of ~7 or 2 nm were prepared and can self-assemble into robust network films on common electrodes. The network film electrode fabricated with 2-nm AuNWs exhibits high sensitivity (56.0 μA cm(-2)mM(-1)), low detection limit (20 μM), short response time (within 10s), excellent selectivity, and good storage stability for nonenzymatic glucose sensing. Glucose/O2 fuel cells were constructed using network film electrodes as the anode and commercial Pt/C catalyst modified glassy carbon electrode as cathode. The glucose/O2 fuel cell using 2-nm AuNWs as anode catalyst output a maximum power density of is 126 μW cm(-2), an open-circuit cell voltage of 0.425 V, and a short-circuit current density of 1.34 mA cm(-2), respectively. Due to the higher specific electroactive surface area of 2-nm AuNWs, the network film electrode fabricated with 2-nm AuNWs exhibited higher electrocatalytic activity toward glucose oxidation than the network film electrode fabricated with 7-nm AuNWs. The network film electrode exhibits high electrocatalytic activity toward glucose oxidation under physiological conditions, which is helpful for constructing implantable electronic devices. © 2013 Elsevier B.V. All rights reserved.
Li, Yifeng; Zhang, Wenqiang; Zheng, Yun; Chen, Jing; Yu, Bo; Chen, Yan; Liu, Meilin
2017-10-16
Solid oxide cell (SOC) based energy conversion systems have the potential to become the cleanest and most efficient systems for reversible conversion between electricity and chemical fuels due to their high efficiency, low emission, and excellent fuel flexibility. Broad implementation of this technology is however hindered by the lack of high-performance electrode materials. While many perovskite-based materials have shown remarkable promise as electrodes for SOCs, cation enrichment or segregation near the surface or interfaces is often observed, which greatly impacts not only electrode kinetics but also their durability and operational lifespan. Since the chemical and structural variations associated with surface enrichment or segregation are typically confined to the nanoscale, advanced experimental and computational tools are required to probe the detailed composition, structure, and nanostructure of these near-surface regions in real time with high spatial and temporal resolutions. In this review article, an overview of the recent progress made in this area is presented, highlighting the thermodynamic driving forces, kinetics, and various configurations of surface enrichment and segregation in several widely studied perovskite-based material systems. A profound understanding of the correlation between the surface nanostructure and the electro-catalytic activity and stability of the electrodes is then emphasized, which is vital to achieving the rational design of more efficient SOC electrode materials with excellent durability. Furthermore, the methodology and mechanistic understanding of the surface processes are applicable to other materials systems in a wide range of applications, including thermo-chemical photo-assisted splitting of H 2 O/CO 2 and metal-air batteries.
Electrocatalytic Oxidation of Formate by [Ni(P R 2 N R' 2 ) 2 (CH 3 CN)] 2+ Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, Brandon R.; Schöffel, Julia; Linehan, John C.
2011-08-17
New [Ni(P R 2N R` 2) 2+(CH 3CN)] 2+ complexes with R = Ph, R` = 4-MeOPh; R = Cy, R` = Ph and a mixed ligand [Ni(P R 2N R` 2)(P R`` 2N R` 2)] 2+ with R = Cy, R` = Ph, R`` = Ph have been synthesized and characterized by single crystal X-ray crystallography. These complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO 2, protons, and electrons with rates which are first order in catalyst and in formate at formate concentrations below approximately 0.05 M. For the catalysts studied,more » maximum observed turnover frequencies vary from <1.1 s -1 to 12.5 s -1 at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. A mechanistic scheme is proposed which involves an initial nickel complex bound <1-OC(O)H followed by a rate limiting hydride transfer step. An acetate complex demonstrating the η 1-OC(O)CH 3 binding mode to nickel has also been synthesized and characterized by single crystal X-ray crystallography. The pendant amines have been demonstrated to be essential for this electrocatalytic activity as no activity toward formate was found for the similar [Ni(depe) 2][BF 4] 2+ (depe = diethylphosphinoethane) complex. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Zhang, Fang-Shuai; Wang, Jia-Wei; Luo, Jun; Liu, Rui-Rui
2017-01-01
The development of highly efficient, low-cost and stable electrocatalysts for overall water splitting is highly desirable for the storage of intermittent solar energy and wind energy sources. Herein, we show for the first time that nickel can be extracted from NiFe-layered double hydroxide (NiFe-LDH) to generate an Ni2P@FePOx heterostructure. The Ni2P@FePOx heterostructure was converted to an Ni2P@NiFe hydroxide heterostructure (P-NiFe) during water splitting, which displays high electrocatalytic performance for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH solution, with an overpotential of 75 mV at 10 mA cm–2 for HER, and overpotentials of 205, 230 and 430 mV at 10, 100 and 1000 mA cm–2 for OER, respectively. Moreover, it could afford a stable current density of 10 mA cm–2 for overall water splitting at 1.51 V in 1.0 M KOH with long-term durability (100 h). This cell voltage is among the best reported values for bifunctional electrocatalysts. The results of theoretical calculations demonstrate that P-NiFe displays optimized adsorption energies for both HER and OER intermediates at the nickel active sites, thus dramatically enhancing its electrocatalytic activity. PMID:29675186
Durable electrocatalytic-activity of Pt-Au/C cathode in PEMFCs.
Selvaganesh, S Vinod; Selvarani, G; Sridhar, P; Pitchumani, S; Shukla, A K
2011-07-21
Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ∼10% after 7000 accelerated potential-cycles as against ∼60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer. This journal is © the Owner Societies 2011
NASA Astrophysics Data System (ADS)
Paterakis, Georgios; Raptis, Dimitrios; Ploumistos, Alexandros; Belekoukia, Meltiani; Sygellou, Lamprini; Ramasamy, Madeshwaran Sekkarapatti; Lianos, Panagiotis; Tasis, Dimitrios
2017-11-01
A composite film was obtained by layer deposition of N-doped graphene and poly(3,4-ethylenedioxythiophene) (PEDOT) and was used as Pt-free counter electrode for dye-sensitized solar cells. N-doping of graphene was achieved by annealing mixtures of graphene oxide with urea. Various parameters concerning the treatment of graphene oxide-urea mixtures were monitored in order to optimize the electrocatalytic activity in the final solar cell device. These include the mass ratio of components, the annealing temperature, the starting concentration of the mixture in aqueous solution and the spinning rate for film formation. PEDOT was applied by electrodeposition. The homogeneity of PEDOT coverage onto either untreated or thermally annealed graphene oxide-urea film was assessed by imaging (AFM/SEM) and surface techniques (XPS). It was found that PEDOT was deposited in the form of island structures onto untreated graphene oxide-urea film. On the contrary, the annealed film was homogeneously covered by the polymer, acquiring morphology of decreased roughness. An apparent chemical interaction between PEDOT and N-doped graphene flakes was revealed by XPS data, involving potential grafting of PEDOT chains onto graphitic lattice through Csbnd C bonding. In addition, diffusion of nitrogen-containing fragments within the PEDOT layer was found to take place during electrodeposition process, resulting in enhanced interfacial interactions between components. The solar cell with the optimized N-doped graphene/PEDOT composite counter electrode exhibited a power conversion efficiency (η) of 7.1%, comparable within experimental error to that obtained by using a reference Pt counter electrode, which showed a value of 7.0%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponce, J.; Rios, E.; Gautier, J.L.
Two different procedures were used to prepare spinel-type Ni{sub x}Al{sub 1{minus}x}Mn{sub 2}O{sub 4} (0 {le} x {le} 1) compounds to study the effects of solid state properties of mixed oxides on their electrocatalytic properties. The oxalic route, coprecipitation of metal oxalates dissolved in propanol or ethanol, and the propionic route, hydrolysis of metal carboxylates in propionic acid, have been used. In both routes, thermal decomposition produces the corresponding oxides. X-ray diffraction patterns showed that the oxides crystallize in a cubic spinel phase with a unit cell parameter a that increases as aluminum is replaced by nickel. At low x values,more » compounds prepared by the propionic route showed a larger variation for parameter a than compounds prepared by the oxalic route, probably due to oxygen stoichiometric deficiency. This effect was estimated from the tetrahedral force constant (k{sub 1}) values, which showed a fast decrease as x varied from 0 to 1. Electrical conductivity, conduction activation energy, hole mobility, and pHz of oxides prepared by the propionic route were also higher than those from oxides prepared by the oxalic route. Crystallinity grade and particle size were nearly 50% higher in propionic-route samples than in oxalic-route samples. The apparent and real electrocatalytic activities of both types of oxides were compared for O{sub 2} evolution. 42 refs., 6 figs., 4 tabs.« less
von Weber, Alexander; Baxter, Eric T; Proch, Sebastian; Kane, Matthew D; Rosenfelder, Michael; White, Henry S; Anderson, Scott L
2015-07-21
Understanding the factors that control electrochemical catalysis is essential to improving performance. We report a study of electrocatalytic ethanol oxidation - a process important for direct ethanol fuel cells - over size-selected Pt centers ranging from single atoms to Pt14. Model electrodes were prepared by soft-landing of mass-selected Ptn(+) on indium tin oxide (ITO) supports in ultrahigh vacuum, and transferred to an in situ electrochemical cell without exposure to air. Each electrode had identical Pt coverage, and differed only in the size of Pt clusters deposited. The small Ptn have activities that vary strongly, and non-monotonically with deposited size. Activity per gram Pt ranges up to ten times higher than that of 5 to 10 nm Pt particles dispersed on ITO. Activity is anti-correlated with the Pt 4d core orbital binding energy, indicating that electron rich clusters are essential for high activity.
Krishnamurthy, Dilip; Sumaria, Vaidish; Viswanathan, Venkatasubramanian
2018-02-01
Density functional theory (DFT) calculations are being routinely used to identify new material candidates that approach activity near fundamental limits imposed by thermodynamics or scaling relations. DFT calculations are associated with inherent uncertainty, which limits the ability to delineate materials (distinguishability) that possess high activity. Development of error-estimation capabilities in DFT has enabled uncertainty propagation through activity-prediction models. In this work, we demonstrate an approach to propagating uncertainty through thermodynamic activity models leading to a probability distribution of the computed activity and thereby its expectation value. A new metric, prediction efficiency, is defined, which provides a quantitative measure of the ability to distinguish activity of materials and can be used to identify the optimal descriptor(s) ΔG opt . We demonstrate the framework for four important electrochemical reactions: hydrogen evolution, chlorine evolution, oxygen reduction and oxygen evolution. Future studies could utilize expected activity and prediction efficiency to significantly improve the prediction accuracy of highly active material candidates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strmcnik, D.; Hodnik, N.; Hocevar, S. B.
2010-02-18
A carbon fiber microelectrode (CFME) was used for characterization of the nanoparticle catalysts as an alternative to the well-established rotating disk electrode (RDE) method. We found that the novel CFME method yielded comparable results to the RDE method when investigating the adsorption/desorption processes as well the specific activity for reactions such as the oxygen reduction reaction. Its major advantage over the RDE method is a fast sample preparation and rapid measurement, reducing significantly the time of a single sample characterization from 2-3 h to a favorable 5-10 min.
Electrocatalytic cermet sensor
Shoemaker, E.L.; Vogt, M.C.
1998-06-30
A sensor is described for O{sub 2} and CO{sub 2} gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer. 16 figs.
Electrocatalytic cermet sensor
Shoemaker, Erika L.; Vogt, Michael C.
1998-01-01
A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.
Graphene Based Electrochemical Sensors and Biosensors: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yuyan; Wang, Jun; Wu, Hong
2010-05-01
Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphene-based enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.
NASA Astrophysics Data System (ADS)
Li, Shan-Shan; Lv, Jing-Jing; Hu, Yuan-Yuan; Zheng, Jie-Ning; Chen, Jian-Rong; Wang, Ai-Jun; Feng, Jiu-Ju
2014-02-01
In this study, a simple, facile, and effective wet-chemical strategy was developed in the synthesis of uniform porous Pt-Pd nanospheres (Pt-Pd NSs) supported on reduced graphene oxide nanosheets (RGOs) under ambient temperature, where octylphenoxypolye thoxyethanol (NP-40) is used as a soft template, without any seed, organic solvent or special instruments. The as-prepared nanocomposites display enhanced electrocatalytic activity and good stability toward methanol oxidation, compared with commercial Pd/C and Pt/C catalysts. This strategy may open a new route to design and prepare advanced electrocatalysts for fuel cells.